03.07.2013 Views

The nonlinear directional coupler: an analytic solution - CCM

The nonlinear directional coupler: an analytic solution - CCM

The nonlinear directional coupler: an analytic solution - CCM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

<strong>The</strong> <strong>nonlinear</strong> <strong>directional</strong> <strong>coupler</strong>: <strong>an</strong> <strong>an</strong>alytic <strong>solution</strong><br />

R. Vilela Mendes *<br />

Universidade Tecnica de Lisboa <strong>an</strong>d Grupo de Fısica-Matematica, Complexo Interdisciplinar,<br />

Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal<br />

Received 13 November 2003; received in revised form 19 December 2003; accepted 21 December 2003<br />

Linear <strong>an</strong>d <strong>nonlinear</strong> <strong>directional</strong> <strong>coupler</strong>s are currently used in fiber optics communications. <strong>The</strong>y may also play a<br />

role in multiphoton approaches to qu<strong>an</strong>tum information processing if accurate control is obtained over the phases <strong>an</strong>d<br />

polarizations of the signals at the output of the <strong>coupler</strong>. With this motivation, the const<strong>an</strong>ts of motion of the <strong>coupler</strong><br />

equation are used to obtain <strong>an</strong> explicit <strong>an</strong>alytical <strong>solution</strong> for the <strong>nonlinear</strong> <strong>coupler</strong>.<br />

Ó 2003 Elsevier B.V. All rights reserved.<br />

PACS: 42.30.Qw; 42.80.Vc; 42.81.My<br />

Keywords: Nonlinear <strong>directional</strong> <strong>coupler</strong><br />

1. Introduction<br />

Directional <strong>coupler</strong>s are useful devices currently<br />

used in fiber optics communications. Because of<br />

the interaction between the signals in the input fibers,<br />

power fed into one fiber is tr<strong>an</strong>sferred to the<br />

other. <strong>The</strong> amount of power tr<strong>an</strong>sfer c<strong>an</strong> be controlled<br />

by the coupling const<strong>an</strong>t, the interaction<br />

length or the phase mismatch between the inputs.<br />

If, in addition, the material in the <strong>coupler</strong> region<br />

has <strong>nonlinear</strong>ity properties, the power tr<strong>an</strong>sfer will<br />

also depend on the intensities of the signals [1,2]. A<br />

large number of interesting effects take place in<br />

<strong>nonlinear</strong> <strong>directional</strong> <strong>coupler</strong>s [3–7] with, in particular,<br />

the possibility of performing all classical<br />

* Tel.: +351-914739442; fax: +351-217954288.<br />

E-mail address: vilela@cii.fc.ul.pt (R. Vilela Mendes).<br />

Optics Communications 232 (2004) 425–427<br />

0030-4018/$ - see front matter Ó 2003 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.optcom.2003.12.056<br />

www.elsevier.com/locate/optcom<br />

logic operations by purely optical me<strong>an</strong>s [8]. <strong>The</strong>y<br />

may also play a role in qu<strong>an</strong>tum information<br />

processing.<br />

<strong>The</strong> use of the intensity-dependent phase shifts<br />

associated to the Kerr <strong>nonlinear</strong>ity was, in the<br />

past, proposed for the construction of qu<strong>an</strong>tum<br />

gates [9–11]. However they rely on one-photon<br />

processes <strong>an</strong>d therefore would require very strong<br />

<strong>nonlinear</strong>ities, not available in the low loss optical<br />

materials. On the other h<strong>an</strong>d, the qu<strong>an</strong>tum computation<br />

scheme based on linear optics of Knill,<br />

Laflamme <strong>an</strong>d Milburn [12] is probabilistic <strong>an</strong>d<br />

relies on a delicate sensitivity of one-photon detectors.<br />

For this reason multiphoton approaches<br />

have been explored based either on the qu<strong>an</strong>tumlike<br />

behavior [14–16] of optical modes on a fiber<br />

[13] (the role of time played by a space coordinate)<br />

or on coherent states [17]. For light beams on a


426 R. Vilela Mendes / Optics Communications 232 (2004) 425–427<br />

fiber, sizable <strong>nonlinear</strong> effects are easy to achieve<br />

with available materials. In particular the <strong>directional</strong><br />

<strong>coupler</strong> might provide <strong>an</strong> already available<br />

tool for the implementation of linear or <strong>nonlinear</strong><br />

gates. 1<br />

For qu<strong>an</strong>tum information purposes one would<br />

require accurate information on the phases <strong>an</strong>d<br />

polarizations of the signals at the output of the<br />

<strong>coupler</strong>. Analytic <strong>solution</strong>s are ideal for this purpose<br />

although, in general, difficult to obtain for<br />

<strong>nonlinear</strong> systems. Here, by exploring the const<strong>an</strong>ts<br />

of motion of the <strong>coupler</strong> equation, <strong>an</strong> explicit<br />

<strong>an</strong>alytical <strong>solution</strong> is obtained for the<br />

<strong>nonlinear</strong> <strong>coupler</strong>.<br />

Jensen [1] had already obtained <strong>an</strong> elliptic integral<br />

<strong>solution</strong> for the power propagating in each<br />

fiber. However, for information processing purposes,<br />

detailed information on both amplitude <strong>an</strong>d<br />

phase is required. In addition, by parametrizing all<br />

the <strong>nonlinear</strong> information in the const<strong>an</strong>ts of<br />

motion, a simpler <strong>solution</strong> is obtained.<br />

2. An <strong>an</strong>alytic <strong>solution</strong><br />

Consider two linear optical fibers coming together<br />

in a <strong>coupler</strong> of <strong>nonlinear</strong> material. <strong>The</strong><br />

equation for the electric field is<br />

o<br />

DE l0e0 2E ot2 ¼ l o<br />

0<br />

2PL ot2 þ l o<br />

0<br />

2PNL ot2 ; ð1Þ<br />

PL <strong>an</strong>d PNL being the linear <strong>an</strong>d <strong>nonlinear</strong> components<br />

of the medium polarization<br />

PLðr; tÞ ¼e0v ð1Þ Eðr; tÞ: ð2Þ<br />

For symmetric molecules (like SiO2) the leading<br />

<strong>nonlinear</strong> term is<br />

PNLðr; tÞ ¼e0v ð3Þ jEðr; tÞj 2 Eðr; tÞ; ð3Þ<br />

where <strong>an</strong> inst<strong>an</strong>t<strong>an</strong>eous <strong>nonlinear</strong> response may be<br />

assumed (except for extremely short pulses) because<br />

in current fibers the electronic contribution<br />

to v ð3Þ occurs on a time scale of 1–10 fs.<br />

1 <strong>The</strong>re have been some speculations [18] that <strong>nonlinear</strong><br />

qu<strong>an</strong>tum(like) effects might endow qu<strong>an</strong>tum computation with<br />

yet additional power.<br />

Separating fast <strong>an</strong>d slow (time) variations<br />

Eðr; tÞ ¼1 2fEðr; tÞe ix0t þ c:c:g;<br />

PNLðr; tÞ ¼1 2fPNLðr; tÞe ix ð4Þ<br />

0t<br />

þ c:c:g;<br />

<strong>an</strong>d using Eqs. (3) <strong>an</strong>d (4) one obtains for the e ix0t part of a tr<strong>an</strong>sversal mode<br />

PNL 1;2 ðr; tÞ ¼ 3e0<br />

8 vð3Þ e ix 0t<br />

jE1;2j 2 þ 2<br />

3 jE2;1j 2 E1;2<br />

þ 1<br />

3 E2;1E2;1E 1;2 þ c:c: : ð5Þ<br />

<strong>The</strong> labels 1 <strong>an</strong>d 2 denote two orthogonal polarizations.<br />

<strong>The</strong> dependence on tr<strong>an</strong>sversal coordinates<br />

ðx; yÞ is separated by considering<br />

E ðiÞ<br />

k ðr; tÞ ¼WðiÞ<br />

k ðx; y; zÞeibiz ix0t<br />

e ; ð6Þ<br />

W ðiÞ<br />

k ðx; y; zÞ being <strong>an</strong> eigenmode of the <strong>coupler</strong> with<br />

slow variation along z<br />

D2W ðiÞ<br />

k þ x2 0<br />

c2 1 þ vð1Þ b ðiÞ2 W ðiÞ<br />

k ¼ 0; ð7Þ<br />

ðiÞ denotes the mode number, k the polarization <strong>an</strong>d<br />

D2 ¼ o2 o2<br />

þ<br />

ox2 oy2 :<br />

Neglecting 2 o2W ðiÞ =oz2 one obtains<br />

ðiÞ<br />

oWðiÞ<br />

1;2<br />

2ib<br />

oz ¼ 3x2 0<br />

4c<br />

2 vð3Þ<br />

W ðiÞ<br />

2<br />

1;2 þ 2<br />

3 WðiÞ<br />

2<br />

2;1<br />

W ðiÞ<br />

1;2<br />

þ 1<br />

3 WðiÞ<br />

2;1WðiÞ 2;1WðiÞ 1;2 : ð8Þ<br />

In <strong>directional</strong> <strong>coupler</strong>s the propagating beams are<br />

made to overlap along one of the tr<strong>an</strong>sversal coordinates<br />

ðxÞ. Typically, in the <strong>nonlinear</strong> region of<br />

the <strong>directional</strong> <strong>coupler</strong>, the eigenmodes are symmetric<br />

(+) <strong>an</strong>d <strong>an</strong>tisymmetric ()) functions of x,<br />

the amplitudes in each fiber at the input <strong>an</strong>d output<br />

of the <strong>coupler</strong> being recovered by<br />

W ð1Þ<br />

k<br />

W ð2Þ<br />

k<br />

1<br />

¼<br />

2 WðþÞ<br />

Þ<br />

k þ Wð<br />

k<br />

¼ 1<br />

2 WðþÞ<br />

ð Þ<br />

k Wk ;<br />

:<br />

ð9Þ<br />

2 Justified for slow variations of the refractive index along the<br />

beam axis over dist<strong>an</strong>ces of the order of one wavelength.


An explicit <strong>an</strong>alytic <strong>solution</strong> for the <strong>nonlinear</strong><br />

<strong>coupler</strong> Eq. (8) is now obtained by noticing that it<br />

has two const<strong>an</strong>ts of motion, namely<br />

o<br />

oz WðiÞ<br />

2<br />

1<br />

o<br />

oz WðiÞ<br />

1 WðiÞ<br />

n<br />

2<br />

þ W ðiÞ<br />

2<br />

<strong>The</strong>refore, defining<br />

W ðiÞ<br />

1<br />

2<br />

W ðiÞ<br />

1 WðiÞ<br />

2<br />

þ W ðiÞ<br />

2<br />

2<br />

WðiÞ<br />

1 WðiÞ<br />

2<br />

2<br />

¼ 0;<br />

W ðiÞ<br />

1 WðiÞ<br />

o<br />

2 ¼ 0:<br />

¼ a ðiÞ ;<br />

¼ icðiÞ ;<br />

ð10Þ<br />

ð11Þ<br />

one obtains for the electrical field of the eigenmodes<br />

i oEðiÞ<br />

1<br />

oz<br />

i oEðiÞ<br />

2<br />

oz<br />

with<br />

b ðiÞ<br />

¼ bðiÞE<br />

ðiÞ<br />

1<br />

ik ðiÞ E ðiÞ<br />

2 ;<br />

¼ bðiÞE<br />

ðiÞ<br />

2 þ ikðiÞE ðiÞ<br />

1 ;<br />

¼ b ðiÞ þ 3x2 0<br />

8c 2<br />

k ðiÞ ¼ x2 0<br />

8c2 vð3Þ b ðiÞ cðiÞ :<br />

v ð3Þ<br />

b ðiÞ aðiÞ ;<br />

Notice that, through a ðiÞ <strong>an</strong>d c ðiÞ , b ðiÞ<br />

E ðiÞ<br />

2 z ¼ e ibðiÞ z E ðiÞ<br />

1 0 sin k ðiÞ z<br />

ð12Þ<br />

ð13Þ<br />

<strong>an</strong>d jðiÞ depend<br />

on the material properties, on the geometry<br />

of the mode <strong>an</strong>d also on its intensity. One may<br />

now obtain, for each eigenmode, the input–output<br />

relation of the <strong>nonlinear</strong> <strong>coupler</strong><br />

E ðiÞ<br />

1 ðÞ¼e z<br />

ibðiÞz ðiÞ<br />

E1 0 ð Þcos kðiÞ n<br />

z<br />

E ðiÞ<br />

2 0 sin k ðiÞ o<br />

z ;<br />

n<br />

ð14Þ<br />

þ E ðiÞ<br />

2 0 cos k ðiÞ z<br />

(ðiÞ ¼ ðþÞ or ())), the <strong>nonlinear</strong>ity being embedded<br />

into b ðiÞ<br />

<strong>an</strong>d k ðiÞ<br />

b ðiÞ<br />

¼ b ðiÞ þ 3x2 0<br />

8c 2<br />

k ðiÞ ¼ x2 0<br />

4c 2<br />

v ð3Þ<br />

v ð3Þ<br />

b ðiÞ<br />

Im EðiÞ<br />

ðiÞ 1<br />

b<br />

E ðiÞ<br />

2<br />

ð Þ þ E ðiÞ<br />

2<br />

ð Þ<br />

1 0<br />

ð0ÞE ðiÞ<br />

ð Þ :<br />

R. Vilela Mendes / Optics Communications 232 (2004) 425–427 427<br />

2 0<br />

2 0<br />

;<br />

ð15Þ<br />

To obtain the corresponding input–output relations<br />

in the two fibers (1) <strong>an</strong>d (2) one uses Eq.<br />

(9), namely<br />

E ð1Þ<br />

k ðzÞ ¼1<br />

2 EðþÞ<br />

ð Þ<br />

k ðÞþ z Ek ðzÞ ;<br />

E ð2Þ<br />

k ðzÞ ¼1<br />

2 EðþÞ<br />

k ðÞ z<br />

ð Þ<br />

Ek ðzÞ :<br />

ð16Þ<br />

In conclusion, Eqs. (14)–(16) provide <strong>an</strong> <strong>an</strong>alytic<br />

<strong>solution</strong> for the <strong>nonlinear</strong> <strong>directional</strong> <strong>coupler</strong>, from<br />

which phases <strong>an</strong>d polarizations may be obtained<br />

explicitly. Through the const<strong>an</strong>ts of motion a ðiÞ <strong>an</strong>d<br />

c ðiÞ , which depend on the material properties <strong>an</strong>d<br />

the geometry of the mode, the <strong>nonlinear</strong>ity of the<br />

system is completely parametrized. <strong>The</strong> <strong>solution</strong><br />

(14)–(16) may then be used as a convenient guide<br />

for experimental implementation.<br />

References<br />

[1] S.M. Jensen, IEEE J. Qu<strong>an</strong>tum Electron. QE-18 (1982)<br />

1580.<br />

[2] Y. Silberberg, G.I. Stegem<strong>an</strong>, Appl. Phys. Lett. 50 (1987)<br />

801.<br />

[3] G.I. Stegem<strong>an</strong>, C.T. Seaton, A.C. Walker, C.N. Ironside,<br />

Opt. Commun. 61 (1987) 277.<br />

[4] G.I. Stegem<strong>an</strong>, E. Caglioti, S. Trillo, S. Wabnitz, Opt.<br />

Commun. 63 (1987) 281.<br />

[5] J.S. Aitchison, A.H. Ke<strong>an</strong>, C.N. Ironside, A. Villeneuve,<br />

G.I. Stegem<strong>an</strong>, Electron. Lett. 27 (1991) 1709.<br />

[6] A.M. Kenis, I. Vorobeichik, M. Orenstein, N. Moiseyev,<br />

IEEE J. Qu<strong>an</strong>tum Electron. 37 (2001) 1321.<br />

[7] G.J. Liu, B.M. Li<strong>an</strong>g, Q. Li, G.L. Jin, Opt. Commun. 218<br />

(2003) 113.<br />

[8] Y. W<strong>an</strong>g, J. Liu, IEEE Photon. Technol. Lett. 11 (1999) 72.<br />

[9] G.J. Milburn, Phys. Rev. Lett. 62 (1989) 2124.<br />

[10] S. Gl<strong>an</strong>cy, J.M. LoSecco, C.E. T<strong>an</strong>ner. Available form<br />

qu<strong>an</strong>t-ph/0009110.<br />

[11] J. Fu. Available from qu<strong>an</strong>t-ph/0211038.<br />

[12] E. Knill, R. Laflamme, G. Milburn, Nature 409 (2001) 46.<br />

[13] M.A. M<strong>an</strong>Õko, V.I. M<strong>an</strong>Õko, R. Vilela Mendes, Phys. Lett.<br />

A 288 (2001) 132.<br />

[14] M.A. M<strong>an</strong>Õko, in: P. Chen (Ed.), Qu<strong>an</strong>tum Aspects of<br />

Beam Physics, World Scientific, Singapore, 2002.<br />

[15] R. Fedele, P.K. Shukla (Eds.), Qu<strong>an</strong>tum Like Models <strong>an</strong>d<br />

Coherent Effects, World Scientific, Singapore, 1995.<br />

[16] S. De Martino, S. De Nicola, S. De Siena, R. Fedele, G.<br />

Miele (Eds.), New perspectives in Physics of Mesoscopic<br />

Systems: Qu<strong>an</strong>tumlike Descriptions <strong>an</strong>d Macroscopical<br />

Coherence Phenomena, World Scientific, Singapore, 1997.<br />

[17] T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, S.<br />

Gl<strong>an</strong>cy. Availabele from qu<strong>an</strong>t-ph/0306004.<br />

[18] D.S. Abrams, S. Lloyd, Phys. Rev. Lett. 18 (1998) 3992.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!