03.07.2013 Views

Origin and chemical behavior of radionuclides observed in the ... - KEK

Origin and chemical behavior of radionuclides observed in the ... - KEK

Origin and chemical behavior of radionuclides observed in the ... - KEK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>KEK</strong> Prepr<strong>in</strong>t 2012-29<br />

November 2012<br />

<strong>Orig<strong>in</strong></strong> <strong>and</strong> <strong>chemical</strong> <strong>behavior</strong> <strong>of</strong> <strong>radionuclides</strong> <strong>observed</strong><br />

<strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water for magnetic horns at <strong>the</strong> J-PARC<br />

neutr<strong>in</strong>o experimental facility<br />

Kotaro Bessho, Hiroshi Matsumura, Masayuki Hagiwara,<br />

Kazutoshi Takahashi, Asako Takahashi, Hiroshi Iwase,<br />

Kazuyoshi Masumoto, Hideaki Monjushiro, Yuichi Oyama,<br />

Tetsuro Sekiguchi, Yoshikazu Yamada<br />

High Energy Accelerator Research Organization, <strong>KEK</strong><br />

1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801, Japan<br />

Presented at <strong>the</strong> Eleventh Meet<strong>in</strong>g <strong>of</strong> <strong>the</strong> Task-Force on Shield<strong>in</strong>g Aspects <strong>of</strong><br />

Accelerators, Targets <strong>and</strong> Irradiation Facilities (SATIF11),<br />

<strong>KEK</strong>, Tsukuba, Japan, September 11-13, 2012<br />

High Energy Accelerator Research Organization<br />

R


High Energy Accelerator Research Organization (<strong>KEK</strong>), 2012<br />

<strong>KEK</strong> Reports are available from:<br />

High Energy Accelerator Research Organization (<strong>KEK</strong>)<br />

1-1 Oho, Tsukuba-shi<br />

Ibaraki-ken, 305-0801<br />

JAPAN<br />

Phone: +81-29-864-5137<br />

Fax: +81-29-864-4604<br />

E-mail: irdpub@mail.kek.jp<br />

Internet: http://www.kek.jp


Submitted to <strong>the</strong> Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Eleventh Meet<strong>in</strong>g <strong>of</strong> <strong>the</strong> Task-Force on<br />

Shield<strong>in</strong>g Aspects <strong>of</strong> Accelerators, Targets <strong>and</strong> Irradiation Facilities (SATIF11)<br />

<strong>Orig<strong>in</strong></strong> <strong>and</strong> <strong>chemical</strong> <strong>behavior</strong> <strong>of</strong> <strong>radionuclides</strong> <strong>observed</strong> <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g<br />

water for magnetic horns at <strong>the</strong> J-PARC neutr<strong>in</strong>o experimental facility<br />

Kotaro Bessho, Hiroshi Matsumura, Masayuki Hagiwara, Kazutoshi Takahashi,<br />

Asako Takahashi, Hiroshi Iwase, Kazuyoshi Masumoto, Hideaki Monjushiro,<br />

Yuichi Oyama, Tetsuro Sekiguchi, Yoshikazu Yamada<br />

High Energy Accelerator Research Organization, <strong>KEK</strong><br />

1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan<br />

Abstract<br />

Radionuclides, <strong>in</strong>clud<strong>in</strong>g 3 H, 7 Be, <strong>and</strong> 22 Na, are produced by high-energy nuclear reactions<br />

<strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water used to cool magnetic horns at <strong>the</strong> Japan Proton Accelerator Research<br />

Complex (J-PARC) neutr<strong>in</strong>o experimental facility. The orig<strong>in</strong> <strong>of</strong> each nuclide is discussed by<br />

compar<strong>in</strong>g <strong>the</strong> experimentally determ<strong>in</strong>ed concentrations with results from PHITS<br />

calculations. The <strong>chemical</strong> <strong>behavior</strong> <strong>of</strong> <strong>the</strong> <strong>radionuclides</strong> <strong>in</strong> water is dependent on <strong>the</strong><br />

element be<strong>in</strong>g considered. Certa<strong>in</strong> nuclides exhibit complex <strong>behavior</strong> <strong>and</strong> become distributed<br />

<strong>in</strong>homogeneously <strong>in</strong> <strong>the</strong> water-circulation system. In particular, 7 Be nuclides, dom<strong>in</strong>ant<br />

gamma-ray emitters <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g-waters, exist <strong>in</strong> <strong>the</strong> water as both water-soluble ions <strong>and</strong><br />

colloidal species. After pass<strong>in</strong>g through <strong>the</strong> deionizer, some amount <strong>of</strong> 7 Be rema<strong>in</strong>s <strong>in</strong> <strong>the</strong><br />

water, ma<strong>in</strong>ly as colloidal species. In addition, 7 Be tends to adsorb on <strong>the</strong> metal pip<strong>in</strong>g <strong>and</strong><br />

metallic components <strong>of</strong> <strong>the</strong> circulation system. The <strong>behavior</strong> <strong>of</strong> 7 Be contrasts that <strong>of</strong> 3 H (or<br />

T), which exists as tritiated water (HTO) <strong>and</strong> distributes homogeneously throughout <strong>the</strong><br />

water cool<strong>in</strong>g system.<br />

Introduction<br />

The T2K experiment is a long basel<strong>in</strong>e neutr<strong>in</strong>o oscillation experiment carried out us<strong>in</strong>g <strong>the</strong><br />

neutr<strong>in</strong>o beam produced at <strong>the</strong> Japan Proton Accelerator Research Complex (J-PARC), Tokai, Japan<br />

[1, 2]. The experiment is designed to <strong>in</strong>vestigate how neutrons change from one flavor to o<strong>the</strong>rs as<br />

<strong>the</strong>y travel [3]. In this experiment, an artificial neutr<strong>in</strong>o beam produced at <strong>the</strong> J-PARC neutr<strong>in</strong>o<br />

experimental facility is shot towards <strong>the</strong> neutr<strong>in</strong>o observatory Super-Kamiok<strong>and</strong>e, which is 295 km<br />

away <strong>in</strong> Gifu, Japan. At <strong>the</strong> neutr<strong>in</strong>o experimental facility, a graphite target (26 mm x 900 mm) is<br />

bombarded with 30-GeV protons. Secondary charged-pions are focused us<strong>in</strong>g three types <strong>of</strong> magnetic<br />

horn. A schematic diagram <strong>of</strong> <strong>the</strong> first magnetic horn <strong>and</strong> <strong>the</strong> graphite target is shown <strong>in</strong> Figure 1 [4].<br />

The magnetic horns consist <strong>of</strong> two coaxial (<strong>in</strong>ner <strong>and</strong> outer) conductors made <strong>of</strong> alum<strong>in</strong>um alloy<br />

A6061. Cool<strong>in</strong>g water is sprayed through <strong>the</strong> enclosed region between <strong>the</strong> two coaxial conductors, as<br />

<strong>in</strong>dicated <strong>in</strong> Figure 1. Intense high-energy protons, neutrons, <strong>and</strong> pions produce various <strong>radionuclides</strong><br />

<strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water as a result <strong>of</strong> high-energy nuclear reactions.<br />

At <strong>the</strong> J-PARC neutr<strong>in</strong>o experimental facility, cool<strong>in</strong>g water for <strong>the</strong> magnetic horns is refreshed<br />

every 1 to 2 months, after each experimental run. The concentrations <strong>of</strong> <strong>radionuclides</strong> <strong>in</strong> <strong>the</strong> dra<strong>in</strong>age


water are monitored to ensure that levels are below <strong>the</strong> regulatory limits [5]. To keep <strong>the</strong> levels <strong>of</strong><br />

<strong>radionuclides</strong> low, it is important to underst<strong>and</strong> <strong>the</strong>ir <strong>behavior</strong> <strong>in</strong> water <strong>and</strong> reduce <strong>the</strong>ir radioactivity.<br />

In this work, <strong>the</strong> production <strong>and</strong> <strong>behavior</strong> <strong>of</strong> <strong>radionuclides</strong> <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water for magnetic<br />

horns were exam<strong>in</strong>ed by experiments <strong>and</strong> calculations. The specific activities <strong>of</strong> γ-emitt<strong>in</strong>g nuclides<br />

<strong>and</strong> 3 H <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water were measured. The <strong>chemical</strong> <strong>behavior</strong> <strong>of</strong> 7 Be was also <strong>in</strong>vestigated. The<br />

production <strong>of</strong> various <strong>radionuclides</strong> <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water <strong>and</strong> <strong>in</strong> <strong>the</strong> metal components was estimated<br />

us<strong>in</strong>g multi-purpose Monte Carlo Particle <strong>and</strong> Heavy Ion Transport code System, PHITS [6]. The<br />

concentrations <strong>of</strong> <strong>in</strong>dividual nuclides <strong>observed</strong> <strong>in</strong> <strong>the</strong> circulat<strong>in</strong>g cool<strong>in</strong>g-water were compared with<br />

estimations from PHITS calculations <strong>in</strong> order to underst<strong>and</strong> <strong>the</strong> orig<strong>in</strong> <strong>and</strong> <strong>behavior</strong> <strong>of</strong> nuclides <strong>in</strong> <strong>the</strong><br />

cool<strong>in</strong>g water system.<br />

Spray<br />

nozzle<br />

Water<br />

Protons<br />

Pure water<br />

Heat<br />

exchanger<br />

Dra<strong>in</strong><br />

tank<br />

He gas (1 atm)<br />

160 L/m<strong>in</strong><br />

Beam operation : closed<br />

After beam stop : opened<br />

16 L/m<strong>in</strong><br />

Water<br />

supply<br />

Deionizer<br />

Pump<br />

Inner<br />

conductor<br />

( Al alloy)<br />

Outer<br />

conductor<br />

( Al alloy)<br />

Graphite target<br />

Figure 1: Schematic diagram <strong>of</strong> <strong>the</strong> first magnetic horn <strong>and</strong> graphite target used at<br />

<strong>the</strong> J-PARC neutr<strong>in</strong>o experimental facility.<br />

Radioactivity measurements <strong>of</strong> <strong>the</strong> cool<strong>in</strong>g water<br />

Magnetic horn cool<strong>in</strong>g water system<br />

A schematic diagram <strong>of</strong> <strong>the</strong> cool<strong>in</strong>g water system used to cool <strong>the</strong> magnetic horns at <strong>the</strong> J-PARC<br />

neutr<strong>in</strong>o experimental facility is shown <strong>in</strong> Figure 2. Highly purified water passes through three types<br />

<strong>of</strong> magnetic horns, a surge tank (900 L), <strong>and</strong> heat-exchanger units as it circulates around <strong>the</strong> cool<strong>in</strong>g<br />

water system at 160 L/m<strong>in</strong>. The total volume <strong>of</strong> water circulat<strong>in</strong>g is 2,700 L. The cool<strong>in</strong>g system is<br />

equipped with a deionizer that conta<strong>in</strong>s a mixture <strong>of</strong> cation <strong>and</strong> anion-exchange res<strong>in</strong>s. Dur<strong>in</strong>g beam<br />

operation, <strong>the</strong> water path through <strong>the</strong> deionizer is closed. When <strong>the</strong> beam is not <strong>in</strong> operation a part <strong>of</strong><br />

water flows through <strong>the</strong> deionizer at a rate <strong>of</strong> 16 L/m<strong>in</strong>. This flow removes macroscopic amounts <strong>of</strong><br />

ionic impurities <strong>and</strong> trace amounts <strong>of</strong> <strong>radionuclides</strong> <strong>in</strong>clud<strong>in</strong>g 7 Be by <strong>the</strong> ion-exchange process.<br />

1 st –3 rd Horns<br />

Water volume<br />

2700 L<br />

Figure 2: Schematic diagram <strong>of</strong> <strong>the</strong> cool<strong>in</strong>g water system used <strong>in</strong> <strong>the</strong> magnetic horns at <strong>the</strong><br />

J-PARC neutr<strong>in</strong>o experimental facility.


Sampl<strong>in</strong>g <strong>of</strong> cool<strong>in</strong>g water<br />

Cool<strong>in</strong>g water samples were collected <strong>in</strong> polyethylene bottles immediately after two experimental<br />

runs. The first collection was carried out <strong>in</strong> December 2010 (Run 36), <strong>and</strong> <strong>the</strong> second, <strong>in</strong> February<br />

2011 (Run 37). The numbers <strong>of</strong> protons <strong>in</strong>cident on <strong>the</strong> graphite target (pot) were 4.27 × 10 19 <strong>and</strong> 5.77<br />

× 10 19 for Runs 36 <strong>and</strong> 37 respectively. The maximum power <strong>of</strong> <strong>the</strong> proton beam dur<strong>in</strong>g <strong>the</strong> two<br />

experimental runs was 150 kW.<br />

Measurements <strong>of</strong> radioactivities <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water<br />

Determ<strong>in</strong>ation <strong>of</strong> -ray emitt<strong>in</strong>g nuclides was carried out on 50 mL samples, which had been<br />

acidified with 0.1 %(v/v) sulfuric acid. The samples were placed <strong>in</strong> plastic conta<strong>in</strong>ers (<strong>in</strong>ner diameter<br />

(ID) = 50 mm, height <strong>of</strong> water = 25 mm). Measurements <strong>of</strong> <strong>the</strong> γ-ray spectra were carried out us<strong>in</strong>g a<br />

high-purity germanium (HPGe) detector. The count<strong>in</strong>g efficiency <strong>of</strong> <strong>the</strong> detector was calibrated us<strong>in</strong>g<br />

a mixed -ray source.<br />

The concentration <strong>of</strong> 3 H was determ<strong>in</strong>ed us<strong>in</strong>g a liquid sc<strong>in</strong>tillation counter. 1 ml <strong>of</strong> <strong>the</strong> sample<br />

was mixed with 7 to 20 ml <strong>of</strong> <strong>the</strong> sc<strong>in</strong>tillation cocktail for <strong>the</strong> measurements.<br />

Radionuclides <strong>observed</strong> <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water<br />

Gamma-ray measurements <strong>of</strong> <strong>the</strong> cool<strong>in</strong>g water were carried out immediately after <strong>the</strong> beam<br />

operation had stopped. Figure 3 shows <strong>the</strong> gamma-ray spectrum for cool<strong>in</strong>g water measured 11.7 h<br />

after <strong>the</strong> beam was turned <strong>of</strong>f (Run 37). Strong -ray peaks were <strong>observed</strong> at 478 keV <strong>and</strong> 511 keV.<br />

These peaks correspond to 7 Be <strong>and</strong> annihilation -rays result from short-lived nuclides e.g., 11 C <strong>and</strong><br />

13 N. Many o<strong>the</strong>r -ray peaks were also detected. The -emitt<strong>in</strong>g nuclides (half-life > 1 h) <strong>observed</strong> <strong>in</strong><br />

<strong>the</strong> spectra <strong>of</strong> Figure 4 are 7 Be, 24 Na, 56 Mn, 52 Mn, 42 K, 58 Co, 22 Na, 28 Mg, 43 K, 54 Mn <strong>and</strong> 110m Ag. The<br />

specific activities <strong>of</strong> <strong>the</strong> detected -nuclides <strong>and</strong> 3 H are summarized <strong>in</strong> Table 1. The activity <strong>of</strong> each<br />

nuclide is corrected accord<strong>in</strong>g to <strong>the</strong> time at which <strong>the</strong> beam was turned <strong>of</strong>f (beam-stop time).<br />

Counts / Channel<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

Be-7<br />

annihilation <br />

K-43<br />

Ag-110m<br />

Mn-52<br />

Co-58 Mn-54<br />

Mn-56<br />

Ag-110m<br />

Mn-52<br />

0 500 1000<br />

Energy (keV)<br />

1500 2000<br />

Na-24<br />

Na-22<br />

Mg-28<br />

Mn-52<br />

K-42<br />

Na-24 (esc. 2754 keV)<br />

Mg-28<br />

K-42<br />

Figure 3: Gamma-ray spectrum <strong>of</strong> <strong>the</strong> cool<strong>in</strong>g water from Run 37 at <strong>the</strong> J-PARC neutr<strong>in</strong>o<br />

experimental facility. The measurement was carried out on 2011/2/28 at 16:43 (Live<br />

time: 2171 s). The beam (pot 5.77 × 10 19 ) was stopped at 05:00 on 2011/2/28.


Table 1: Specific activities <strong>of</strong> γ-emitt<strong>in</strong>g <strong>radionuclides</strong> <strong>and</strong> 3 H <strong>observed</strong> <strong>in</strong><br />

<strong>the</strong> cool<strong>in</strong>g water after it had passed through <strong>the</strong> magnetic horns<br />

at <strong>the</strong> J-PARC neutr<strong>in</strong>o experimental facility.<br />

* corrected to <strong>the</strong> beam-stop time (2011/2/28 5:00)<br />

The specific activities <strong>of</strong> 3 H <strong>and</strong> 7 Be are exceptionally high compared to o<strong>the</strong>r nuclides. The 3 H<br />

<strong>and</strong> 7 Be are produced by spallation <strong>of</strong> O atoms <strong>in</strong> water molecules. O<strong>the</strong>r nuclides are produced <strong>in</strong> <strong>the</strong><br />

metal components <strong>and</strong> <strong>the</strong>n transferred to <strong>the</strong> water phase by <strong>chemical</strong> processes such as corrosion or<br />

dissolution <strong>of</strong> <strong>the</strong> solid surfaces, <strong>and</strong>/or physical processes such as recoil reactions. The metal<br />

components <strong>in</strong> contact with <strong>the</strong> water <strong>in</strong>clude <strong>the</strong> Al alloy A6061 horn (Al ~97%, Mg, Si, Fe, Cu, Mn,<br />

Cr, Ti), water pipes made from SUS 304 sta<strong>in</strong>less steel (Fe, Cr, Ni), <strong>the</strong> SUS 316 sta<strong>in</strong>less steel (Fe,<br />

Cr, Ni, Mo) heat-exchanger, <strong>and</strong> silver (Ag) <strong>and</strong> copper (Cu) plat<strong>in</strong>g <strong>and</strong> coat<strong>in</strong>gs.<br />

Chemical <strong>behavior</strong> <strong>of</strong> 7 Be <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water<br />

Radiouclide Half life Specific activity* (Bq/ml)<br />

7 Be 53.3 d 9,100<br />

3 H 12.3 y 2,000<br />

24 Na 15.0 h 94<br />

56 Mn 2.58 h 34<br />

52 Mn 5.59 d 5.2<br />

42 K 12.4 h 4.5<br />

58 Co 70.9 d 1.8<br />

22 Na 2.60 y 1.5<br />

28 Mg 20.9 h 1.6<br />

43 K 22.2 h 0.9<br />

54 Mn 312 d 0.6<br />

110m Ag 250 d 0.5<br />

The <strong>chemical</strong> form <strong>of</strong> 3 H (or T) <strong>observed</strong> <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water at <strong>the</strong> accelerator facilities has been<br />

found to be tritiated water (HTO) which behaves as same as ord<strong>in</strong>ary water (H2O) molecules. In<br />

contrast to 3 H, <strong>the</strong> form <strong>of</strong> 7 Be <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water has not previously been clarified experimentally.<br />

In <strong>the</strong> plann<strong>in</strong>g <strong>and</strong> construction <strong>of</strong> experimental facilities, it is assumed that all <strong>the</strong> 7 Be produced <strong>in</strong><br />

<strong>the</strong> cool<strong>in</strong>g water exists <strong>in</strong> <strong>the</strong> form <strong>of</strong> cations (Be 2+ , Be(OH) + ), which adsorb on <strong>the</strong> ion-exchange<br />

res<strong>in</strong>s. In order to study <strong>the</strong> adsorption <strong>behavior</strong> <strong>of</strong> 7 Be on <strong>the</strong> ion-exchange res<strong>in</strong>s, <strong>the</strong> cool<strong>in</strong>g water<br />

was sampled at appropriate time <strong>in</strong>tervals as it passed through <strong>the</strong> deionizer, <strong>and</strong> <strong>the</strong> 7 Be activities <strong>in</strong><br />

water were measured.<br />

Figure 4 shows <strong>the</strong> relationship between <strong>the</strong> circulation time through <strong>the</strong> deionizer <strong>and</strong> <strong>the</strong><br />

specific activity <strong>of</strong> 7 Be <strong>in</strong> water measured after Runs 36 <strong>and</strong> 37. Initially, <strong>the</strong> specific activities <strong>of</strong> 7 Be<br />

decrease exponentially <strong>in</strong> accordance with <strong>the</strong> expectation function. This implies that most <strong>of</strong> <strong>the</strong> 7 Be<br />

is collected by <strong>the</strong> deionizer at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> water circulation cycle. After 90% <strong>of</strong> <strong>the</strong> 7 Be is<br />

removed from <strong>the</strong> water (circulation > 10 h), <strong>the</strong> decreas<strong>in</strong>g slope becomes more shallow. After<br />

several tens <strong>of</strong> hours <strong>of</strong> circulation, small amounts <strong>of</strong> 7 Be rema<strong>in</strong> <strong>in</strong> <strong>the</strong> water. This implies that<br />

adsorptivity <strong>of</strong> 7 Be on ion-exchange res<strong>in</strong>s becomes weak after long hours <strong>of</strong> circulation through <strong>the</strong><br />

deionizer.<br />

In order to underst<strong>and</strong> <strong>the</strong> <strong>behavior</strong> <strong>of</strong> 7 Be <strong>in</strong> deionization processes, <strong>the</strong> soluble <strong>and</strong> colloidal<br />

fractions <strong>of</strong> 7 Be <strong>in</strong> water were determ<strong>in</strong>ed us<strong>in</strong>g ultrafiltration experiments. In <strong>the</strong>se experiments, very<br />

f<strong>in</strong>e filters (pore size ≈ 3 nm) were used. After <strong>the</strong> beam has stopped, but before deionization has<br />

started, <strong>the</strong> colloidal fractions <strong>of</strong> 7 Be are less than 1%. This <strong>in</strong>creases to 15–40% after several tens <strong>of</strong><br />

hours <strong>of</strong> deionization, where <strong>the</strong> percentage depends on <strong>the</strong> beam operation <strong>and</strong> water-circulation<br />

conditions. These results imply that <strong>the</strong> adsorptivity <strong>of</strong> 7 Be on <strong>the</strong> ion-exchange res<strong>in</strong> is closely related


to <strong>the</strong> formation <strong>of</strong> 7 Be colloids <strong>and</strong> that <strong>the</strong> removal <strong>of</strong> colloidal 7 Be by <strong>the</strong> deionizer does not<br />

progress efficiently compared to <strong>the</strong> removal <strong>of</strong> soluble 7 Be ions by <strong>the</strong> deionizer. Thus, <strong>the</strong> formation<br />

<strong>of</strong> radionuclide colloids <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water is an important subject <strong>in</strong> radiation control at high-energy<br />

accelerator facilities. Fur<strong>the</strong>r, experimental studies are presently be<strong>in</strong>g carried out to clarify <strong>the</strong><br />

mechanisms <strong>in</strong>volved <strong>in</strong> colloid formation <strong>in</strong> <strong>in</strong>tense radiation environments.<br />

PHITS calculations<br />

Calculation method<br />

7 Be ( Bq/ml )<br />

10 5<br />

1.E+05<br />

10 4<br />

1.E+04<br />

10 3<br />

1.E+03<br />

10 2<br />

1.E+02<br />

Run 36<br />

Run 37<br />

expected *<br />

1.E+01 10<br />

0 20 40 60 80<br />

Circulation Time (h)<br />

1<br />

Figure 4: Specific activity <strong>of</strong> 7 Be <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g-water for magnetic horns at <strong>the</strong><br />

J-PARC neutr<strong>in</strong>o experimental facility as a function <strong>of</strong> circulation time<br />

through <strong>the</strong> deionization unit. (* l<strong>in</strong>e) <strong>the</strong> expected concentration<br />

dependence <strong>of</strong> 7 Be, assum<strong>in</strong>g that all <strong>the</strong> 7 Be <strong>in</strong> <strong>the</strong> water is<br />

removed when it passes through <strong>the</strong> deionizer.<br />

Water pass<strong>in</strong>g between <strong>the</strong> <strong>in</strong>ner <strong>and</strong> outer conductors <strong>of</strong> <strong>the</strong> first magnetic horn is exposed to<br />

<strong>in</strong>tense high-energy particles orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> graphite target. Therefore, most <strong>of</strong> <strong>the</strong> <strong>radionuclides</strong><br />

can be expected to be produced <strong>in</strong> <strong>the</strong> water <strong>in</strong> <strong>the</strong> first magnetic horn. The spatial distribution <strong>of</strong> highenergy<br />

hadrons <strong>in</strong>side <strong>and</strong> near <strong>the</strong> first magnetic horn, <strong>the</strong> energy spectra <strong>of</strong> <strong>the</strong> hadrons, <strong>and</strong> <strong>the</strong><br />

production <strong>of</strong> <strong>radionuclides</strong> <strong>in</strong> <strong>the</strong> water <strong>and</strong> surround<strong>in</strong>g experimental apparatus were calculated<br />

us<strong>in</strong>g PHITS calculation code [6]. Figure 5 shows <strong>the</strong> simplified model used <strong>in</strong> <strong>the</strong> calculations. In <strong>the</strong><br />

experimental system, water was sprayed <strong>in</strong>to <strong>the</strong> <strong>in</strong>ner conductor from nozzles placed on <strong>the</strong> outer<br />

conductor. The gap between <strong>the</strong> two conductors was filled with helium gas saturated with water vapor<br />

(Figure 1). As a result, def<strong>in</strong><strong>in</strong>g <strong>the</strong> geometry <strong>and</strong> <strong>the</strong> amount <strong>of</strong> water <strong>in</strong> <strong>the</strong> system became difficult.<br />

Hence, it was assumed that a uniform water layer forms, which covers <strong>the</strong> outside surface <strong>of</strong> <strong>the</strong> <strong>in</strong>ner<br />

conductor. The amount <strong>of</strong> water was estimated from <strong>the</strong> water-circulation conditions. The water-layer<br />

thickness was set to be 4 mm, which corresponds to 1125 g <strong>of</strong> water. Most <strong>of</strong> <strong>the</strong> calculation<br />

parameters were set to <strong>the</strong> default sett<strong>in</strong>gs adopted <strong>in</strong> PHITS/W<strong>in</strong>dows Ver. 2.30 (Cascade model; n,<br />

p: Bert<strong>in</strong>i < 3.5 GeV < JAM, pions: Bert<strong>in</strong>i < 2.5 GeV < JAM; Evaporation model: GEM; Cut-<strong>of</strong>f; n, p,<br />

pions: 1 MeV). The nuclear production cross section data, <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> PHITS code, were used to<br />

calculate <strong>the</strong> nuclear reactions <strong>in</strong>duced by <strong>the</strong> protons <strong>and</strong> neutrons projected on <strong>the</strong> light element<br />

targets. In <strong>the</strong> present calculations, cross-section data correspond<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g reactions were<br />

used [6].<br />

4He(n,x) 3 H, 4 He(p,x) 3 H, 16 O(n,x) 3 H, 16 O(p,x) 3 H, 16 O(n,x) 7 Be, 16 O(p,x) 7 Be.


30‐GeV<br />

protons<br />

Figure 5: Simplified model <strong>of</strong> <strong>the</strong> graphite target <strong>and</strong> first magnetic horn used <strong>in</strong> <strong>the</strong> PHITS calculations.<br />

The sizes <strong>of</strong> <strong>the</strong> components are as follows: C target ( Diameter(Φ) 26 x 900 mm ). Inner<br />

conductor (ID: 54 mm, thickness (t): 3 mm). Outer conductor (ID: 360 mm, t: 10 mm ). Water<br />

layer cover<strong>in</strong>g <strong>the</strong> surface <strong>of</strong> <strong>the</strong> <strong>in</strong>ner conductor (t: 4 mm, 1125 g <strong>of</strong> H2O). Beam w<strong>in</strong>dow: Ti-<br />

6Al4V (t: 0.3 mm). Gas phase: He (1.0 atm) + H2O (0.03 atm). Projectile: 30-GeV protons<br />

(Gaussian, σ = 4.2 mm).<br />

High-energy hadrons irradiat<strong>in</strong>g on <strong>the</strong> water layer<br />

Spatial distribution pr<strong>of</strong>iles show that <strong>the</strong> water layer cover<strong>in</strong>g <strong>the</strong> <strong>in</strong>ner conductor <strong>of</strong> <strong>the</strong> first<br />

magnetic horn is exposed to <strong>in</strong>tense high-energy protons, neutrons, <strong>and</strong> charged pions ( + <strong>and</strong> - ).<br />

Figure 6 shows <strong>the</strong> energy spectra <strong>of</strong> protons, neutrons, <strong>and</strong> charged pions <strong>in</strong>jected <strong>in</strong>to this water<br />

layer. The energy spectra <strong>of</strong> <strong>the</strong> protons, neutrons, <strong>and</strong> pions have similar characteristics. High energy<br />

particles (>100 MeV) are dom<strong>in</strong>ant <strong>and</strong> are most likely responsible for <strong>the</strong> production <strong>of</strong> <strong>radionuclides</strong><br />

<strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water. Thermal neutrons <strong>and</strong> epi-<strong>the</strong>rmal neutrons may also <strong>in</strong>duce nuclide production,<br />

e.g., <strong>of</strong> 24 Na, 56 Mn, <strong>and</strong> 110m Ag, through (n, ) reactions.<br />

Fluence [1/cm 2 /proton]<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

Graphite target<br />

Al alloy A6061<br />

( He gas + H2O vapor )<br />

1 10 100 1,000 10,000 100,000<br />

Energy [MeV]<br />

Proton<br />

Neutron<br />

Pion<br />

Figure 6: Energy spectra <strong>of</strong> protons, neutrons, <strong>and</strong> charged pions ( + <strong>and</strong> - ) <strong>in</strong>jected <strong>in</strong>to <strong>the</strong><br />

water layer cover<strong>in</strong>g <strong>the</strong> <strong>in</strong>ner conductor <strong>of</strong> <strong>the</strong> first magnetic horn.<br />

H2O layer *<br />

(t:4 mm)<br />

PHITS calculation on radionuclide production <strong>and</strong> comparison with experimental results<br />

Production <strong>of</strong> <strong>radionuclides</strong> <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water, <strong>in</strong> He gas saturated with water vapor, <strong>and</strong> <strong>in</strong><br />

metallic components <strong>of</strong> <strong>the</strong> experimental setup, was estimated us<strong>in</strong>g PHITS calculations. Among <strong>the</strong><br />

long-lived nuclides (half-life > 1 h), 3 H <strong>and</strong> 7 Be are produced <strong>in</strong> <strong>the</strong> water <strong>and</strong> He gas phase directly.<br />

Table 2 summaries <strong>the</strong> production <strong>of</strong> 3 H <strong>and</strong> 7 Be <strong>in</strong> water layer <strong>and</strong> <strong>in</strong> <strong>the</strong> He gas phase. The results<br />

show that <strong>the</strong> production <strong>of</strong> 3 H <strong>and</strong> 7 Be occurs ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> water layer attached to <strong>the</strong> <strong>in</strong>ner<br />

conductor. Production <strong>of</strong> 3 H <strong>and</strong> 7 Be <strong>in</strong> <strong>the</strong> He gas phase can <strong>the</strong>refore be neglected. The geometry <strong>of</strong><br />

<strong>the</strong> water layer <strong>and</strong> <strong>the</strong> amount <strong>of</strong> water are ambiguous <strong>in</strong> <strong>the</strong> present calculation-geometry, mean<strong>in</strong>g<br />

He<br />

C<br />

Al alloy<br />

(<strong>in</strong>ner cond.)


that absolute activities <strong>of</strong> <strong>the</strong> <strong>radionuclides</strong> cannot be discussed. Instead, <strong>the</strong> activity ratio <strong>of</strong> 7 Be/ 3 H is<br />

calculated <strong>and</strong> compared to <strong>the</strong> activities measured <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water. The activity ratio <strong>of</strong> 7 Be/ 3 H<br />

<strong>observed</strong> <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water is smaller than that predicted by <strong>the</strong> calculations. In <strong>the</strong> cool<strong>in</strong>g water at<br />

accelerator facilities, 3 H exists as tritiated water (HTO) molecules <strong>and</strong> distributes homogeneously<br />

throughout <strong>the</strong> circulat<strong>in</strong>g water. The small <strong>observed</strong> activity ratio <strong>of</strong> 7 Be/ 3 H implies that some <strong>of</strong> <strong>the</strong><br />

7 Be is removed as <strong>the</strong> water circulates <strong>in</strong> <strong>the</strong> loop. Removal <strong>of</strong> 7 Be has previously been <strong>observed</strong> at<br />

o<strong>the</strong>r accelerator facilities [7, 8] due to adsorption on water pipes, filters, <strong>and</strong> o<strong>the</strong>r components <strong>in</strong> <strong>the</strong><br />

water circulation systems.<br />

Table 2: Radioactivities <strong>of</strong> 3 H <strong>and</strong> 7 Be, produced <strong>in</strong> <strong>the</strong> water layer, <strong>and</strong> He-water gas phase,<br />

estimated us<strong>in</strong>g PHITS calculations. The experimental activities were measured us<strong>in</strong>g<br />

<strong>the</strong> cool<strong>in</strong>g water from Runs 36 <strong>and</strong> 37.<br />

3 H<br />

7 Be<br />

PHITS Calculation<br />

Water layer 3.7E-11<br />

He-Water gas 2.1E-13<br />

Total 3.7E-11<br />

Water layer 6.4E-10<br />

He-Water gas 5.0E-14<br />

Total 6.4E-10<br />

Activity ratio ( 7 Be / 3 H )<br />

Observed <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water<br />

Run 36<br />

(Pot = 4.27 × 10 19 )<br />

Activity (Bq/proton)<br />

8.9E-11<br />

6.2E-10<br />

Run 37<br />

(Pot = 5.77 × 10 19 )<br />

9.4E-11<br />

4.3E-10<br />

17.1 7.0 4.6<br />

The activities <strong>of</strong> <strong>the</strong> nuclides produced <strong>in</strong> <strong>the</strong> first magnetic horn are summarized <strong>in</strong> Table 3.<br />

Most <strong>of</strong> <strong>the</strong> nuclides <strong>observed</strong> <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water (Table 1), with <strong>the</strong> exception <strong>of</strong> 110m Ag, are<br />

reproduced <strong>in</strong> <strong>the</strong> magnetic horn by PHITS calculations. The predicted activities <strong>of</strong> nuclides produced<br />

<strong>in</strong> <strong>the</strong> magnetic horn are compared with <strong>the</strong> experimental measurements <strong>of</strong> <strong>the</strong> activities <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g<br />

water. In order to <strong>in</strong>vestigate <strong>the</strong> rate at which nuclides are transferred to <strong>the</strong> water from <strong>the</strong> magnetic<br />

horn, <strong>the</strong> experimental/PHITS activity ratio is determ<strong>in</strong>ed. For long-lived nuclides, this activity ratio<br />

should be corrected by consider<strong>in</strong>g <strong>the</strong> beam-operation history, which takes <strong>in</strong>to account <strong>the</strong><br />

accumulation <strong>of</strong> nuclides <strong>in</strong>side <strong>the</strong> horn material. For 3 H <strong>and</strong> 7 Be <strong>the</strong> experimental/PHITS activity<br />

ratio is exceptionally high compared to that measured for <strong>the</strong> o<strong>the</strong>r nuclides. Large differences <strong>in</strong> this<br />

ratio demonstrate that <strong>the</strong> formation processes <strong>of</strong> 3 H <strong>and</strong> 7 Be, which are produced <strong>in</strong> water directly, are<br />

different from those <strong>of</strong> o<strong>the</strong>r nuclides. For <strong>the</strong> nuclides produced <strong>in</strong> <strong>the</strong> metallic components <strong>of</strong> <strong>the</strong><br />

magnetic horn, <strong>the</strong> experimental/PHITS activity ratio can be used to probe <strong>the</strong> transfer rates <strong>of</strong><br />

nuclides from <strong>the</strong> horn to <strong>the</strong> water. For example, if <strong>the</strong> produced <strong>radionuclides</strong> are assumed to be<br />

distributed homogeneously throughout <strong>the</strong> horn components, <strong>the</strong> history-corrected activity ratio <strong>of</strong> 9 ×<br />

10 -5 for 22 Na corresponds to <strong>the</strong> elution <strong>of</strong> 0.3 m <strong>of</strong> alum<strong>in</strong>um alloy from <strong>the</strong> surface <strong>of</strong> <strong>the</strong> <strong>in</strong>ner<br />

conductor (t = 3 mm). Some <strong>of</strong> <strong>the</strong> nuclides described <strong>in</strong> Table 3, along with 110m Ag, are also produced<br />

<strong>in</strong> o<strong>the</strong>r metal materials, such as sta<strong>in</strong>less steels, silver plat<strong>in</strong>g <strong>and</strong> copper coat<strong>in</strong>gs. However, this was<br />

not considered here <strong>and</strong> requires fur<strong>the</strong>r considerations for more reliable <strong>and</strong> reasonable discussions.


Table 3: Comparison <strong>of</strong> nuclide activities from PHITS calculations <strong>of</strong> <strong>the</strong> magnetic horn <strong>and</strong> experimental<br />

measurements <strong>of</strong> <strong>the</strong> cool<strong>in</strong>g water.<br />

Nuclide Half-life PHITS Calculation<br />

Summary<br />

Activity (Bq/proton)<br />

Observed <strong>in</strong> CW<br />

( Run 37 )<br />

<strong>Orig<strong>in</strong></strong>al ratio<br />

Corrected<br />

consider<strong>in</strong>g <strong>the</strong><br />

operation history<br />

3 H 12.3 y 1.2E-10 9.4E-11 0.76 0.33<br />

7 Be 53.3 d 1.2E-09 4.3E-10 0.37 0.28<br />

22 Na 2.60 y 2.3E-10 7.E-14 3.E-04 1.E-04<br />

52 Mn 5.59 d 2.7E-10 2.E-13 9.E-04 9.E-04<br />

54 Mn 312 d 1.7E-11 3.E-14 2.E-03 8.E-04<br />

58 Co 70.9 d 1.2E-11 8.E-14 7.E-03 5.E-03<br />

24 Na 15.0 h 3.4E-07 4.E-12 1.E-05<br />

28 Mg 20.9 h 5.1E-11 7.E-14 1.E-03<br />

42 K 12.4 h 6.7E-10 2.E-13 3.E-04<br />

43 K 22.2 h 6.4E-10 4.E-14 7.E-05<br />

56 Mn 2.58 h 2.6E-05 2.E-12 6.E-08<br />

Activity ratio<br />

(experimental / PHITS)<br />

Production <strong>of</strong> <strong>radionuclides</strong> <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water, which passes through <strong>the</strong> magnetic horns at <strong>the</strong><br />

J-PARC neutr<strong>in</strong>o experimental facility, was <strong>in</strong>vestigated by experiments <strong>and</strong> calculations. The ma<strong>in</strong><br />

<strong>radionuclides</strong> <strong>observed</strong> were 3 H <strong>and</strong> 7 Be, <strong>and</strong> o<strong>the</strong>r -emitt<strong>in</strong>g nuclides were also detected.<br />

Calculations us<strong>in</strong>g PHITS code demonstrate that 3 H <strong>and</strong> 7 Be were directly produced <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g<br />

water, while <strong>the</strong> o<strong>the</strong>r nuclides were produced <strong>in</strong> <strong>the</strong> metal components <strong>of</strong> <strong>the</strong> system <strong>and</strong> transferred<br />

to <strong>the</strong> water via <strong>chemical</strong> <strong>and</strong>/or physical processes.<br />

The <strong>chemical</strong> <strong>behavior</strong> <strong>of</strong> 7 Be <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water was also <strong>in</strong>vestigated. After several tens <strong>of</strong><br />

hours <strong>of</strong> circulation through <strong>the</strong> deionizer, small amounts <strong>of</strong> 7 Be rema<strong>in</strong>ed <strong>in</strong> <strong>the</strong> circulat<strong>in</strong>g water. In<br />

<strong>the</strong> water, 7 Be was <strong>observed</strong> to exist as both water-soluble ions <strong>and</strong> colloidal species. The results<br />

imply that colloid formation <strong>of</strong> 7 Be <strong>in</strong> water affects <strong>the</strong> adsorptivity on <strong>the</strong> deionizer <strong>in</strong>stalled <strong>in</strong> <strong>the</strong><br />

water circulation system. The formation process <strong>of</strong> radionuclide colloids <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water should<br />

be clarified for radiation control at high-energy accelerator facilities.<br />

PHITS calculations were used to study <strong>the</strong> spatial distribution <strong>and</strong> energy spectra <strong>of</strong> protons,<br />

neutrons, <strong>and</strong> pions <strong>in</strong>side <strong>and</strong> near <strong>the</strong> first magnetic horn. The water layer <strong>and</strong> horn materials were<br />

exposed to high-energy protons, neutrons, <strong>and</strong> pions (>100 MeV ), which resulted <strong>in</strong> <strong>the</strong> production <strong>of</strong><br />

various nuclides <strong>in</strong> both <strong>the</strong> water <strong>and</strong> metal components. Comparison <strong>of</strong> <strong>the</strong> calculations <strong>and</strong><br />

experimental results was used to <strong>in</strong>vestigate <strong>the</strong> <strong>in</strong>homogeneous distributions <strong>of</strong> <strong>the</strong> <strong>radionuclides</strong> <strong>and</strong><br />

<strong>the</strong> transfer rates <strong>of</strong> nuclides to <strong>the</strong> water from <strong>the</strong> metal components.<br />

In future work, more reliable <strong>the</strong>oretical <strong>and</strong> experimental data, especially for high-energy<br />

nuclear reactions concerned with light elements, would be imperative for an accurate determ<strong>in</strong>ation <strong>of</strong><br />

<strong>the</strong> <strong>behavior</strong> <strong>of</strong> <strong>radionuclides</strong> <strong>in</strong> water. Fur<strong>the</strong>rmore, simulations that take <strong>in</strong>to consideration <strong>the</strong><br />

movement <strong>of</strong> nuclides <strong>in</strong> materials, accompanied with physical <strong>and</strong>/or <strong>chemical</strong> processes, would be<br />

highly useful for underst<strong>and</strong><strong>in</strong>g <strong>the</strong> <strong>behavior</strong> <strong>of</strong> <strong>radionuclides</strong> <strong>in</strong> various environments <strong>and</strong> various<br />

media at high-energy accelerator facilities.


References<br />

[1] K. Abe et al. (T2K collaboration), “The T2K experiment”, Nucl. Instrum. Meth. A, 659, 106<br />

(2010).<br />

[2] Accelerator Group JAERI/<strong>KEK</strong> Jo<strong>in</strong>t Project Team, “Accelerator technical design report for<br />

high-<strong>in</strong>tensity proton accelerator facility project, J-PARC”, <strong>KEK</strong> Report 2002-13, JAERI Tech<br />

2003-044, J-PARC 03-01 (2003).<br />

[3] K. Abe et al. (T2K collaboration), “Indication <strong>of</strong> electron neutr<strong>in</strong>o appearance from an<br />

accelerator-produced <strong>of</strong>f-axis muon neutr<strong>in</strong>o beam”, Phys. Rev. Lett., 107, 041801 (2011).<br />

[4] N. Ichikawa, T. Sekiguchi, T. Nakadaira, “Neutr<strong>in</strong>o production facility at <strong>the</strong> T2K experiment (<strong>in</strong><br />

Japanese)”, High Energy News, 28, 246 (2010).<br />

[5] M. Hagiwara, K. Takahashi, A. Takahashi, T. Miura, A. Kanai, F. Kouno, Y. Oyama, T. Ishida, Y.<br />

Yamada, “Radiation protection study for <strong>the</strong> J-PARC neutr<strong>in</strong>o experimental facility”, Sixth<br />

International Symposium on Radiation Safety <strong>and</strong> Detection Technology (ISORD-6), Langkawi,<br />

Malaysia, July 12–14, 2011.<br />

[6] K. Niita, N. Matsuda, Y. Iwamoto, H. Iwase, T. Sato, H. Nakashima, Y. Sakamoto, L. Sihver,<br />

“PHITS: Particle <strong>and</strong> Heavy Ion Transport code System, Version 2.23”, JAEA-Data/Code, 2010-<br />

022 (2010).<br />

[7] S. Itoh, T. Miura, M. Furusaka, S. Yasui, Y. Ogawa, Y. Kiyanagi, S. Sasaki, K. Iijima, “Behavior<br />

<strong>of</strong> 7 Be <strong>in</strong> <strong>the</strong> moderator cool<strong>in</strong>g system at <strong>the</strong> pulsed neutron source, KENS”, Proc. 14 th Meet<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> International Collaboration on Advanced Neutron Sources (ICANS-XIV), Utica, Ill<strong>in</strong>ois,<br />

USA, June 14–19, 1998.<br />

[8] H. Matsumura, S. Sekimoto, H. Yashima, A. Toyoda, Y. Kasugai, N. Matsuda, K. Oishi, K.<br />

Bessho, Y. Sakamoto, H. Nakashima, D. Boehnle<strong>in</strong>, G. Lauten, A. Level<strong>in</strong>g, N. Mokhov, K.<br />

Vaziri, “Radionuclides <strong>in</strong> <strong>the</strong> cool<strong>in</strong>g water systems for <strong>the</strong> NuMI beaml<strong>in</strong>e <strong>and</strong> <strong>the</strong> antiproton<br />

production target station at Fermilab”, 12th International Conference on Radiation Shield<strong>in</strong>g<br />

(ICRS-12), Nara, Japan, September 2–7, 2012.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!