03.07.2013 Views

2 - CERN Accelerator School

2 - CERN Accelerator School

2 - CERN Accelerator School

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction<br />

Emittance mittance growth in single-<br />

passage systems<br />

Sources of emittance<br />

growth<br />

M. Giovannozzi<br />

<strong>CERN</strong>- <strong>CERN</strong> AB Department<br />

Summary:<br />

Scattering through thin foils<br />

Emittance growth in multi-<br />

passage systems<br />

Injection process<br />

Scattering processes<br />

Others<br />

Emittance manipulation<br />

Longitudinal<br />

Transverse<br />

Acknowledgements:<br />

D. Brandt and D. Möhl<br />

hl<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 1


Introduction - I<br />

The starting point is the well-known well known Hill’s Hill s<br />

equation<br />

x ″ (s) + K(s)<br />

x(s)<br />

=<br />

Such an equation has an invariant (the so-<br />

called Courant-Snyder Courant Snyder invariant)<br />

2<br />

A = γ x + 2α x x′<br />

+ β x′<br />

Parenthetically: in in a bending-free bending bending-free free region<br />

the following dispersion invariant exists<br />

2<br />

A = γ<br />

D + 2α D D′<br />

+ β D′<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 2<br />

2<br />

2<br />

0


Introduction - II<br />

In the case of a beam, i.e. an ensemble of<br />

particles:<br />

Emittance: Emittance:<br />

value of the Courant-Snyder<br />

Courant Snyder<br />

invariant corresponding to a given fraction of<br />

particles.<br />

Example: rms emittance for Gaussian beams.<br />

Why emittance can grow?<br />

Hill equation is linear -> > in the presence of<br />

nonlinear conserved.<br />

effects emittance is no more<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 3


Introduction - III<br />

Why emittance growth is an issue?<br />

Machine performance is reduced, e.g. in the<br />

case of a collider the luminosity (i.e. the rate<br />

of collisions per unit time) is reduced.<br />

It can lead to beam losses.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 4


Introduction - IV<br />

Filamentation is one of the key concepts for<br />

computing emittance growth<br />

Due to the presence of nonlinear imperfections,<br />

the rotation frequency in phase space is amplitude-<br />

dependent.<br />

After a certain time the initial beam distribution is<br />

smeared out to fill a phase space ellipse.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 5


Typical situation:<br />

Incident<br />

beam<br />

Scattering through thin foil - I<br />

Vacuum window between the transfer line and a target (in<br />

case of fixed target physics)<br />

Vacuum window to separate standard vacuum in transfer line<br />

from high vacuum in circular machine<br />

Emerging<br />

beam<br />

The beam receives an<br />

angular kick<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 6


x<br />

p<br />

i<br />

xi<br />

Multiple Coulomb scattering<br />

due to beam-matter<br />

beam matter<br />

interaction is described by<br />

means of the rms<br />

scattering angle:<br />

14 MeV / c L<br />

θ = q 1 +<br />

rms<br />

p<br />

pβ<br />

L<br />

Downstream of the foil the<br />

transformed coordinates<br />

are given by<br />

→<br />

→<br />

x<br />

i<br />

p<br />

xi<br />

=<br />

+<br />

A<br />

p<br />

io<br />

Δ<br />

sin( ψ<br />

p<br />

=<br />

A<br />

i<br />

io<br />

)<br />

Scattering through thin foil - II<br />

rad<br />

cos( ψ<br />

( ε )<br />

i<br />

corr<br />

) + β θ<br />

Normalised coordinate<br />

= α x + β x′<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 7<br />

p x<br />

α = 0 at the<br />

location of the foil


By assuming that:<br />

Scattering through thin foil -<br />

III<br />

Scattering angle and betatronic phase are uncorrelated<br />

Averaging of the phase, i.e. assuming filamentation in the<br />

transfer line or the subsequent machine<br />

2<br />

i<br />

2<br />

i<br />

2<br />

xi<br />

Therefore the final result is<br />

Taking into account the statistical definition of emittance<br />

π<br />

ε rms ( θ<br />

2<br />

= Δ<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 8<br />

rms<br />

2<br />

)<br />

2<br />

i0<br />

A = x + p = A + β θ<br />

2<br />

x<br />

2<br />

x0<br />

2σ =<br />

2σ<br />

+ β θ rms<br />

2<br />

β<br />

2<br />

2<br />

2<br />

i


Scattering through thin foil -<br />

IV<br />

Few remarks<br />

A special case with α = 0 at the location of the<br />

thin foil is discussed -> > it can be generalised.<br />

The correct way of treating this problem is (see<br />

next slides):<br />

Compute all three second-order second order moments of the beam<br />

distribution downstream of the foil<br />

Evaluate the new optical parameters and emittance using<br />

the statistical definition<br />

The emittance function!<br />

growth depends on the beta-<br />

THE SMALLER THE VALUE OF THE BETA- BETA<br />

FUNCTION AT THE LOCATION OF THE FOIL<br />

THE SMALLER THE EMITTANCE GROWTH<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 9


Scattering through thin foil -<br />

V<br />

Correct computation (always for α=0): =0):<br />

x<br />

=<br />

x′<br />

=<br />

−<br />

A<br />

o<br />

A<br />

o<br />

β<br />

o<br />

1/<br />

β<br />

o<br />

By squaring and averaging over the beam distribution<br />

Using the relation<br />

cos( ψ )<br />

o<br />

sin( ψ ) + θ = − A<br />

o 1<br />

2<br />

2 < A0<br />

><br />

< x > =<br />

2<br />

′ 2 < A > 0<br />

< x > =<br />

2β<br />

2<br />

0<br />

β<br />

0<br />

1/<br />

β<br />

1<br />

cos( ψ )<br />

1<br />

sin( ψ<br />

1<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 10<br />

+<br />

ε rms =<br />

π<br />

θ<br />

=<br />

2<br />

rms<br />

=<br />

A<br />

1<br />

1<br />

β<br />

1<br />

< A2<br />

><br />

2<br />

1<br />

β<br />

1<br />

< A 2 > 1 =<br />

2β<br />

2<br />

A<br />

2<br />

)


The solution of the system is<br />

Scattering through thin foil -<br />

VI<br />

This can be solved exactly, or by assuming that the<br />

relative emittance growth is small, then<br />

emittance growth is now only half<br />

π<br />

Δε<br />

rms = θ 2β<br />

rms 0<br />

4<br />

1, β1<br />

Twiss<br />

⎡<br />

⎤<br />

⎢ π θ 2 ⎥<br />

β = β ⎢1−<br />

rms<br />

1 0<br />

⎥<br />

⎢ 4 ε ⎥<br />

⎢⎣<br />

rms ⎥⎦<br />

NB: NB: the the emittance<br />

growth is now only half<br />

of of the the previous estimate!<br />

Downstream of of the the foil foil the the transfer line<br />

line<br />

should be be matched using the the new new Twiss<br />

parameters α1, α1, β1<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 11<br />

A<br />

β1<br />

β<br />

0<br />

2<br />

1<br />

2<br />

=<br />

−<br />

A<br />

2<br />

0<br />

A<br />

A<br />

A<br />

2<br />

0<br />

2<br />

0<br />

2<br />

1<br />

2<br />

=<br />

2β<br />

0<br />

θ<br />

2<br />

rms


70<br />

50<br />

30<br />

10<br />

-10<br />

β H<br />

Stripper location<br />

D V<br />

Example: ion stripping for LHC<br />

lead beam between PS and SPS<br />

β V<br />

D H<br />

0 50 100 150 200 250 300<br />

Courtesy M. M. Martini - <strong>CERN</strong><br />

Pb 54+ -> > Pb 82+<br />

A low-beta low beta<br />

insertion is<br />

designed (beta<br />

reduced by a<br />

factor of 5)<br />

Stripping foil,<br />

0.8 mm thick<br />

Al, is located in<br />

the low-beta low beta<br />

insertion<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 12


Exercises…<br />

Exercises<br />

Compute the Twiss parameters and emittance<br />

growth for a THICK foil<br />

Compute the Twiss parameters and emittance<br />

growth for a THICK foil in a quadrupolar field<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 13


Two sources of errors:<br />

Injection process - I<br />

Steering errors.<br />

Optics errors (Twiss ( Twiss parameters and dispersion).<br />

In case the incoming beam has an energy<br />

error, then the next effect will be a<br />

combination of the two.<br />

In all cases filamentation, filamentation,<br />

i.e. nonlinear<br />

imperfection in the ring, is the source of<br />

emittance growth.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 14


Steering errors:<br />

Injection process - II<br />

Injection conditions, i.e. position and angle, do not<br />

match position and angle of the closed orbit.<br />

Consequences:<br />

The beam performs betatron oscillations around the<br />

closed orbit. The emittance grows due to the<br />

filamentation<br />

Solution:<br />

Change the injection conditions, either by steering<br />

in the transfer line or using the septum and the<br />

kicker.<br />

In practice, slow drifts of settings may require<br />

regular tuning. In this case a damper (see course<br />

on feedback systems) is the best solution.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 15


Analysis in normalised phase<br />

space (i ( stands for injection<br />

m for machine):<br />

x<br />

p<br />

m<br />

m<br />

=<br />

=<br />

r<br />

r<br />

i<br />

i<br />

cosψ<br />

sinψ<br />

Squaring and averaging gives<br />

<<br />

<<br />

r<br />

r<br />

2<br />

m<br />

2<br />

m<br />

><br />

><br />

=<br />

=<br />

<<br />

<<br />

After filamentation<br />

2<br />

x<br />

r<br />

2<br />

i<br />

i<br />

2<br />

m<br />

2<br />

i<br />

+ Δr<br />

cosψ<br />

Injection process - III<br />

+ Δr<br />

cosψ<br />

+<br />

p<br />

2<br />

m<br />

> + Δr<br />

< x > = 1 < rm<br />

> = 1 < ri<br />

> + 1 Δr<br />

2<br />

2<br />

2<br />

><br />

2<br />

2<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 16<br />

σ<br />

2<br />

= σ<br />

2<br />

i<br />

+<br />

1 2<br />

Δr<br />

2


Example of beam<br />

distribution<br />

generated by<br />

steering errors<br />

and filamentation.<br />

filamentation<br />

The beam core is<br />

displaced -> > large<br />

effect on<br />

emittance growth<br />

Injection process - IV<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 17


Dispersion mismatch:<br />

analysis is similar to<br />

that for steering errors.<br />

In this case<br />

Δr<br />

2<br />

⎡<br />

= ⎢ΔD<br />

⎣<br />

2<br />

+<br />

1<br />

2<br />

( β ΔD′<br />

+ α ΔD)<br />

The final result is<br />

ε<br />

after fil.<br />

rms<br />

= ε<br />

rms<br />

Injection process - V<br />

2<br />

⎤ ⎛ σ<br />

⎥<br />

⎜<br />

⎦<br />

⎜<br />

⎝ p<br />

p<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 18<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

⎧<br />

2<br />

⎪ 1 [ ( ) ]<br />

2<br />

2 ⎛ σ p ⎞<br />

⎨1<br />

+ ΔD<br />

+ β ΔD′<br />

+ α ΔD<br />

⎜ ⎟<br />

⎜ ⎟<br />

/ σ 0<br />

⎪⎩<br />

2<br />

⎝ p ⎠<br />

2<br />

⎫<br />

⎪<br />

⎬<br />

⎪⎭


Optics errors:<br />

Optical parameters (Twiss ( Twiss and<br />

dispersion) of the transfer line<br />

at the injection point are<br />

different from those of the ring<br />

Consequences:<br />

The beam performs quadrupolar<br />

oscillations (size changes on a<br />

turn-by turn by-turn turn basis). The<br />

emittance grows due to the<br />

filamentation<br />

Solution:<br />

Tune transfer line to match<br />

optics of the ring<br />

Injection process - VI<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 19<br />

x’<br />

Ring ellipse<br />

Transfer<br />

line ellipse<br />

x


Injection process - VII<br />

In normalised phase space (that of the ring) the<br />

injected beam will fill an ellipse due to the<br />

mismatch of the optics…<br />

optics<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 20


ε<br />

after fil.<br />

rms<br />

=<br />

ε<br />

rms<br />

⎛<br />

⎜<br />

⎝<br />

l<br />

i<br />

Injection process - VIII<br />

Given the initial condition of the beam end of the transfer<br />

line<br />

x = A b / a sinψ<br />

, p = A a / b cosψ<br />

b / a<br />

2<br />

<<br />

2 2<br />

ri >= < Ai<br />

+ a / b<br />

⎞<br />

⎟<br />

⎠<br />

i<br />

By squaring and averaging over the particles’ particles distribution<br />

><br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 21<br />

l<br />

i<br />

( b / a + a / b)<br />

The emittance after filamentation is given by<br />

ε<br />

F<br />

2<br />

after fil.<br />

rms<br />

=<br />

=<br />

ε<br />

rms<br />

1<br />

⎛<br />

⎜ β l<br />

2 ⎜ β m ⎝<br />

+<br />

F<br />

β m<br />

β<br />

l<br />

i<br />

⎛ α<br />

+<br />

⎜<br />

⎝ β<br />

m<br />

m<br />

αl<br />

⎞<br />

−<br />

⎟<br />

β l ⎠<br />

2<br />

β<br />

m<br />

⎞<br />

β<br />

⎟<br />

l ⎟<br />


Scattering processes - I<br />

Two main categories considered:<br />

Scattering on residual gas -> > similar to scattering<br />

on a thin foil (the gas replaces the foil…) foil<br />

Δε<br />

kσ<br />

=<br />

2<br />

2 2 14 MeV / c β pc<br />

t<br />

k q p<br />

β<br />

2 pβ<br />

⎟<br />

p Lrad<br />

⎟<br />

⎛<br />

⎞<br />

⎜<br />

⎝<br />

⎠<br />

π<br />

NB: βpct ct represents the<br />

scatterer length until time t<br />

NB: β p ct represents the<br />

where<br />

average beta<br />

Intra-beam Intra beam scattering, i.e. Coulomb scattering<br />

between charged particles in the beam.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 22<br />

β<br />

This is is why good<br />

vacuum is is necessary!


Intra-beam Intra beam scattering<br />

Multiple (small angle)<br />

Coulomb scattering<br />

between particles.<br />

charged<br />

Single scattering<br />

events lead to<br />

Touscheck effect.<br />

All three degrees of<br />

freedom are affected.<br />

Scattering processes - II<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 23


Scattering processes - III<br />

How to compute IBS?<br />

Transform momenta of colliding particles into their centre<br />

of mass system.<br />

Rutherford cross-section cross section is used to compute change of<br />

momenta. momenta<br />

Transform the new momenta back to the laboratory<br />

system.<br />

Calculate the change of the emittances due to the change<br />

of momenta at the given location of the collision.<br />

1. For each scattering event compute average over all<br />

possible scattering angles (impact parameters from the<br />

size of the nucleus to the beam radius).<br />

2. Take the average over momenta and transverse position of<br />

the particles at the given location on the ring<br />

circumference (assuming Gaussian distribution in all phase<br />

space planes.<br />

3. Compute the average around the circumference, including<br />

lattice functions, to determine the change per turn.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 24


Scattering processes - IV<br />

Features of IBS<br />

For constant lattice functions and below<br />

transition energy, the sum of the three<br />

emittances is constant.<br />

Above transition the sum of the emittances<br />

always grows.<br />

In any strong focusing lattice the sum of the<br />

emittances always grows.<br />

Even though the sum grows from the<br />

theoretical point of view emittance reduction<br />

in one plane predicted by simulations, but<br />

were never observed.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 25


Scattering processes - V<br />

Scaling laws of IBS<br />

Accurate computations can be performed only with<br />

numerical tools.<br />

However, scaling laws can be derived.<br />

Assuming<br />

1 1<br />

=<br />

Then<br />

1/<br />

τ0<br />

=<br />

( 4/<br />

2<br />

π<br />

*<br />

x<br />

*<br />

y<br />

τ<br />

2<br />

2<br />

2⎛q<br />

⎞<br />

Nbr0<br />

⎜<br />

A ⎟<br />

⎝ ⎠<br />

) γ ε ε ε / E<br />

*<br />

l<br />

x,<br />

y,<br />

l<br />

0<br />

τ<br />

∝<br />

0<br />

F x,<br />

y,<br />

l<br />

2 ⎛q<br />

⎞<br />

Nb<br />

⎜<br />

A ⎟<br />

⎝ ⎠<br />

γ ε ε ε<br />

*<br />

x<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 26<br />

*<br />

y<br />

2<br />

*<br />

l<br />

Strong charge<br />

dependence on<br />

on<br />

ε x,y,l* x,y,l*<br />

are x,y,l* are<br />

emittances<br />

normalised<br />

N b of b of particles/bunch<br />

r 0 classical 0 classical proton radius


Diffusive phenomena:<br />

Others<br />

Resonance crossings<br />

Ripple in the power converters<br />

Collective effects<br />

Space charge (soft part of Coulomb interactions<br />

between charged particles in the beam) -> > covered<br />

by a specific course. course<br />

Beam-beam<br />

Beam beam -> > covered by a specific course. course<br />

Instabilities -> > covered by a specific course.<br />

course<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 27


Emittance manipulation<br />

Emittance is (hopefully) conserved…<br />

conserved<br />

Sometimes, it is necessary to manipulate the<br />

beam so to reduce its emittance.<br />

emittance<br />

Standard techniques: electron cooling, stochastic<br />

cooling.<br />

Less standard techniques: longitudinal or transverse<br />

emittance splitting.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 28


PS ejection:<br />

72 bunches<br />

in 1 turn<br />

Acceleration<br />

to 25 GeV<br />

PS injection:<br />

2+4 bunches<br />

in 2 batches<br />

320 ns beam gap<br />

Quadruple splitting<br />

at 25 GeV<br />

Triple splitting<br />

at 1.4 GeV<br />

Longitudinal manipulation:<br />

LHC beam in PS machine - I<br />

Empty<br />

bucket<br />

72 bunches<br />

on h=84<br />

18 bunches<br />

on h=21<br />

6 bunches<br />

on h=7<br />

0.35 eVs (bunch)<br />

1.1 × 10 11 ppb<br />

1 eVs (bunch)<br />

4.4 × 10 11 ppb<br />

1.4 eVs (bunch)<br />

13.2 × 10 11 ppb<br />

40 %<br />

Blow-up<br />

(pessimistic)<br />

115 %<br />

Blow-up<br />

(voluntary)<br />

Courtesy R. R. Garoby - <strong>CERN</strong><br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 29


Courtesy R. R. Garoby - <strong>CERN</strong><br />

Longitudinal manipulation:<br />

LHC beam in PS machine -<br />

II<br />

Measurement results<br />

obtained at at the <strong>CERN</strong><br />

Proton Synchrotron<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 30


Transverse manipulation:<br />

novel multi-turn multi turn extraction –<br />

I<br />

The main ingredients of the novel extraction:<br />

The beam splitting is not performed using a<br />

mechanical device, thus avoiding losses. Indeed, the<br />

beam is separated in the transverse phase space<br />

using<br />

Nonlinear magnetic elements (sextupoles ad<br />

octupoles) to create stable islands. islands<br />

Slow (adiabatic ( adiabatic) ) tune-variation tune variation to cross an<br />

appropriate resonance.<br />

NB: third-order third third-order order extraction is is based on<br />

separatrices (see O. Brüning Br Brüning ning lecture)<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 31


1<br />

X’<br />

(a)<br />

-1<br />

-1 X<br />

1<br />

Four islands<br />

require<br />

tune = 0.25<br />

Transverse manipulation: novel<br />

multi-turn multi turn extraction – II<br />

Left: initial phase<br />

space topology. No<br />

islands.<br />

Right: intermediate<br />

phase space topology.<br />

Islands are created<br />

near the centre.<br />

1<br />

X’<br />

-1<br />

-1 X<br />

1<br />

-1<br />

-1 X<br />

1<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 32<br />

(c)<br />

1<br />

X’<br />

(b)<br />

Bottom: final phase<br />

space topology.<br />

Islands are separated<br />

to allow extraction.


Tune variation<br />

Phase space<br />

portrait<br />

Transverse manipulation:<br />

novel multi-turn multi turn extraction –<br />

III<br />

Simulation<br />

parameters:<br />

Hénon non-like like<br />

map (i.e. 2D<br />

polynomial –<br />

degree 3 -<br />

mapping)<br />

representing<br />

a FODO cell<br />

with<br />

sextupole and<br />

octupole<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 33


A movie to show the evolution of<br />

beam distribution<br />

A series of<br />

horizontal beam<br />

profiles have been<br />

taken during the<br />

capture process.<br />

Measurement results<br />

obtained at the <strong>CERN</strong><br />

Proton Synchrotron<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 34


Some references<br />

D. Edwards, M. Syphers: Syphers:<br />

An introduction to the<br />

physics of high energy accelerators, J. Wiley & Sons,<br />

NY 1993.<br />

P. Bryant, K. Johnsen: Johnsen:<br />

The principles of circular<br />

accelerators and storage rings, Cambridge University<br />

press, 1993.<br />

P. Bryant: Beam transfer lines, <strong>CERN</strong> yellow rep. 94- 94<br />

10 (CAS, Jyvaskyla, Jyvaskyla,<br />

Finland , 1992).<br />

J. Buon: Buon:<br />

Beam phase space and emittance, emittance,<br />

<strong>CERN</strong><br />

yellow rep. 91-04 91 04 (CAS, Julich, Julich,<br />

Germany, 1990).<br />

A. Piwinski: Piwinski:<br />

Intra-beam Intra beam scattering, <strong>CERN</strong> yellow rep.<br />

85-19 85 19 (CAS, Gif-sur Gif sur-Yvette, Yvette, France 1984).<br />

A. H. Sorensen: Sorensen:<br />

Introduction to intra-beam<br />

intra beam<br />

scattering, <strong>CERN</strong> yellow rep. 87-10 87 10 (CAS, Aarhus, Aarhus,<br />

Denmark 1986).<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!