03.07.2013 Views

3D EM Simulations

3D EM Simulations

3D EM Simulations

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>3D</strong> <strong>EM</strong> <strong>Simulations</strong><br />

1 ube / v2.0 / 2008<br />

www.cst.com


• CCavities iti<br />

– Eigenmodes<br />

–Q Factor<br />

Overview<br />

– Time Domain and Resonances<br />

• Cavities and Particles<br />

• Electron Guns<br />

• Collector<br />

• Wakefields<br />

2 www.cst.com


f<br />

Eigenmode Solver<br />

Theoretical Background<br />

PEC<br />

f f<br />

f=c/L f=c/L<br />

f=2c/L f=2c/L<br />

PMC<br />

In free space travelling waves can<br />

exist i t ffor any frequencies.<br />

f i<br />

If such a plane wave is reflected at a<br />

perfect f wall ll ( (electric l i or magnetic) i )<br />

there will be a standing wave. This<br />

standing wave exists independently<br />

from the frequency.<br />

The insertion of a second wall does<br />

not affect those standing wave as<br />

long g as the distance L between the<br />

walls fits perfectly to the wave-length.<br />

The standing wave of this closed<br />

structure is called an eigenmode.<br />

The frequency and the shape of the<br />

next eigenmode fitting between those<br />

two walls is predictable.<br />

3 www.cst.com


Eigenmode g Computation<br />

r r<br />

rot E r r=<br />

− jωμ<br />

r rH<br />

r σσ<br />

r<br />

rot H = jωε<br />

E + σ E = jω(<br />

ε + ) E =<br />

jω<br />

rot<br />

1<br />

μμ<br />

rot<br />

r<br />

E<br />

=<br />

ω<br />

2<br />

ε<br />

r<br />

E<br />

Eigenvalue equation for the resonant structure modes<br />

and resonance frequencies. q<br />

Eigenvalues ω and eigenvectors E r<br />

4 www.cst.com<br />

j<br />

ω ε<br />

r<br />

E


Eigenmodes g<br />

f1=34.7 GHz f2=52.0 GHz<br />

f3=54.3 GHz f4=57.9 GHz f5=67.7 GHz<br />

5 www.cst.com


1<br />

2<br />

Eigenmode g Solver<br />

Main user input:<br />

1<br />

2<br />

Which eigenmode method should be used?<br />

(AKS might be faster for well behaved examples,<br />

JD is more robust and might even find good<br />

solutions for bad conditioned problems)<br />

How many modes are required?<br />

The AKS method always calculates internally at<br />

least 10 modes. (Therefore ( nearly y no difference in<br />

cpu time between 1 and 10 modes).<br />

The JD method calculates one mode after<br />

another, therefore 10 modes need roughly<br />

10times the simulation time of 1 mode.<br />

Therefore the number of modes should be<br />

decreased when using the JD method.<br />

Th<br />

6 www.cst.com


A simple lossfree Cavity<br />

3 symmetry y y pplanes only y 1/8<br />

of the volume needs to be calculated<br />

Mode1<br />

E H<br />

Mode2<br />

Mode3<br />

7 www.cst.com<br />

cavity_03.zip


electric energy density<br />

0.5 ε E_peak^2<br />

Energy gy Densities<br />

magnetic energy density<br />

0.5 μ H_peak^2<br />

Volume Integration of Energy Density is possible via Result Template<br />

0D / Evaluate Field in arbitrary Coordinates (0D, 1D, 2D, <strong>3D</strong>)<br />

Note: for a lossfree eigenmode both integrals (el. + mag.energy) will be 1 Joule,<br />

since i th the energy iis oscillating ill ti bbetween t electric l t i and d magnetic ti fi field.<br />

ld<br />

8 www.cst.com


Plotting Fields and getting Field Values<br />

All modes are normed<br />

to 1 Joule stored energy.<br />

E / H / surface current<br />

are stored as peak values.<br />

9 www.cst.com


Benchmark Pillbox<br />

h1 r11 Influence of Meshing<br />

E H<br />

surface current J<br />

QQ_theory=50 theory=50 940<br />

Q_simul=50 990<br />

cpu-time<br />

pass 1 = 16sec<br />

pass 5 = 2 min<br />

f_theory=229.485MHz<br />

f_simul=229.444MHz<br />

10 pillbox_01.zip<br />

www.cst.com


The Quality y Factor Q<br />

2π<br />

• StoredEnergy<br />

2π<br />

⋅ f ⋅W<br />

Q =<br />

=<br />

Energy _ consumed _ per _ period<br />

the higher Q, the longer the energy is kept<br />

• for a lossfree structure P=0 infinite Q<br />

• different kind of losses exist:<br />

• skin effect (surface) losses: Qwall • dielectric (volume) losses: Q diel<br />

• losses due to connected feeding lines: Qext • losses due to energy transfer between beam and mode: Qbeam 1<br />

Q<br />

tot<br />

1<br />

=<br />

Q<br />

As a circuit model, all losses can be seen as a<br />

parallel circuit, acting on the same mode.<br />

wall<br />

Prms<br />

1<br />

+<br />

Q<br />

diel<br />

1<br />

+<br />

Q<br />

ext<br />

1<br />

+<br />

Q<br />

11 www.cst.com<br />

beam


Calculation of Q and Q wall diel<br />

Results -> Loss and Q-Calculation performs p a loss calculation in the<br />

postprocessing based on perturbation theory. It handles metallic losses<br />

due to finite conductivity (skin effect) as well as dielectric losses.<br />

Q=2*Pi*frq * Energy / Loss_rms<br />

frq = 2.96289815e+010 Hz<br />

Loss Loss_rms rms = 00.5 5 Loss Loss_peak peak<br />

Energy = 1 Joule<br />

12 www.cst.com


Integration of Voltage,<br />

Calculation of Shunt Impedance & R/Q<br />

Shunt Impedance Rs=Vo^2/(2W)<br />

with Vo : voltage „seen“ by a charged<br />

interacting particle.<br />

For voltage integration also the Transit Time Factor<br />

can be specified, which defines the speed of<br />

the particle (beta=v/c) ( ) and gguarantees<br />

a<br />

phase-correct integration of electr. field.<br />

R/Q (R over Q) only depends on the geometry<br />

(not on the loss mechanism) and is therefore<br />

often used to compare different cavity structures.<br />

13 www.cst.com


Example Superconducting Cavity<br />

easy construction via Macros -><br />

Construct -> Superconducting p g Cavity y<br />

ellipt_cav_01.zip<br />

14 www.cst.com


Eigenmode Solver<br />

Calc Calculation lation of Q Qext Langer filter<br />

Results of the Q-Factor calculation: Log File<br />

EE.g. g external QQ-factor factor comparison for the Langer filter<br />

f [GHz]<br />

4.546<br />

4.572<br />

7.080<br />

77.185 185<br />

CST Q_ext<br />

332<br />

305<br />

26200<br />

9070<br />

Steiglitz-McBride<br />

332<br />

305<br />

24132<br />

8472<br />

15 www.cst.com • Oct-09


Other methods for loaded Q<br />

calc calculation lation<br />

• Using the transient analysis<br />

• Amplitude E-field inside a resonator is given:<br />

) t ( E<br />

=<br />

E<br />

0 t<br />

2 Q<br />

0 e<br />

ω ⋅<br />

−<br />

⋅<br />

⋅<br />

load<br />

or<br />

ω0⋅t<br />

E( t)<br />

−<br />

2⋅Q<br />

• MMonitored it d using i an EE-field fi ld probe b<br />

• Measure the time difference Δt in which the E-field is<br />

damped by a factor of 1/e then Q load is given by<br />

load<br />

E<br />

Q = π⋅<br />

Δt<br />

⋅f<br />

16 CST Microwave Studio • www.cst-world.com • Oct-09<br />

0<br />

0<br />

=<br />

e<br />

load


Other methods for loaded Q<br />

calc calculation lation<br />

lloadd = π π⋅<br />

Δ t f 0<br />

Signal: 503.7 at t1=200 ns<br />

Signal: 503 503.7/e 7/e = at t2 t2= 423 423.6ns 6ns<br />

Δt = t2 –t1 = 223.6ns<br />

f0 = 2.4615 GHz<br />

Qload = 1729<br />

Q Δ ⋅<br />

1/e<br />

17 CST Microwave Studio • www.cst-world.com • Oct-09


Time Domain Simulation and<br />

Resonant SStructures<br />

Slow energy decay since energy is kept in the resonance<br />

Long Simulation Time<br />

Prediction of signal by Autoregressive Filter<br />

Usage of Frequency Domain Solver<br />

Transient Activity<br />

Energy Decay<br />

18 www.cst.com | Oct-09


Time Domain Simulation<br />

AR Filter<br />

Stop at 31.0 ns<br />

Without online-AR cpu=100 sec<br />

Stop at 1.4 ns<br />

With online-AR-Filter cpu=15 sec (1port)<br />

Original SS-Parameter Parameter<br />

from Time Signals<br />

S-Parameter<br />

predicted by<br />

AR Filter<br />

19 www.cst.com | Oct-09


Frequency q y Domain Solver<br />

• Simulation performed at single frequencies<br />

• Simulation of Steady State<br />

• Broadband Frequency Sweep<br />

20 www.cst.com • Oct-09


Thermal Calculation<br />

Surface and volume losses<br />

from previous eigenmode<br />

simulation can be used to perform<br />

a thermal analysis<br />

21 www.cst.com


• CCavities iti<br />

– Eigenmodes<br />

–Q Factor<br />

Overview<br />

– Time Domain and Resonances<br />

• Cavities and Particles<br />

• Electron Guns<br />

• Collector<br />

• Wakefields<br />

22 www.cst.com


Workflow:<br />

Tracking Algorithm<br />

1. Calculate electro- and magnetostatic fields<br />

2. Calculate force on charged particles<br />

3. Move particles according to the previously calculated<br />

force Trajectory<br />

d<br />

dt<br />

r<br />

r<br />

r<br />

r<br />

( m v ) )<br />

= q(<br />

E + v × B<br />

Velocity<br />

( )<br />

n+<br />

1 n+<br />

1 n n<br />

n+<br />

1/<br />

2 n+<br />

1 n+<br />

1/<br />

2<br />

= q(<br />

E + v × B<br />

y<br />

update<br />

+ Δt(<br />

E + × B )<br />

n+<br />

1 n+<br />

1 n n<br />

n+<br />

1/<br />

2 n+<br />

1 n+<br />

1/<br />

2<br />

m v = m v + qΔt<br />

E + v × B<br />

dr<br />

v<br />

ddt<br />

Position update<br />

t = n+ 3/2 n+ 1/2 n+<br />

1<br />

r<br />

r<br />

r r r<br />

r = r +Δtv<br />

23 www.cst.com | Oct-09<br />

r


Tesla-Type 9-Cell Cavity<br />

Electric Field<br />

calculated by<br />

MWS-E<br />

24 www.cst.com | Oct-09


Tesla-Type 9-Cell Cavity<br />

Particle Trajectory<br />

(color indicates the<br />

energy of the particles)<br />

25 www.cst.com | Oct-09


TESLA – Two-Point-Multipacting<br />

• Eigenmode at 1.3 GHz<br />

•Emax = 45 MV/m<br />

26 www.cst.com | Oct-09


time<br />

TESLA – Two-Point-Multipacting<br />

half hf period<br />

27 www.cst.com | Oct-09


• CCavities iti<br />

– Eigenmodes<br />

–Q Factor<br />

Overview<br />

– Time Domain and Resonances<br />

• Cavities and Particles<br />

• Electron Guns<br />

• Collector<br />

• Wakfields<br />

28 www.cst.com


Emission Models<br />

Space Charge Limited Emission:<br />

Assumption:<br />

Φ (d d d<br />

)<br />

•Unlimited number of particles<br />

•Particle extraction depends on<br />

field close to emitting surface<br />

Childs Law:<br />

J<br />

s<br />

( ) 3/2<br />

Φ( d)<br />

−Φ(0)<br />

4 q<br />

ε 2<br />

9 m d<br />

= rent<br />

2<br />

Curr<br />

PEC<br />

( 0)<br />

Φ<br />

Voltage<br />

Child-Langmuir Model<br />

d<br />

Virtual Cathode<br />

29 www.cst.com | Oct-09


Thermionic Emission:<br />

Assumption:<br />

•Limited number of particles<br />

Emission Models<br />

•Particle extraction depends on<br />

field close to emitting surface<br />

until ntil all particles are emitted<br />

Richardson Richardson-Dushman Dushman Equation:<br />

J = AT<br />

s<br />

2<br />

e<br />

eΦ<br />

-<br />

kT<br />

Currrent<br />

Temperature Limited<br />

Space Charge<br />

Limited<br />

Voltage<br />

30 www.cst.com | Oct-09


Gridded Gun<br />

control grid<br />

permanent magnets<br />

31 www.cst.com | Oct-09<br />

Potential<br />

B-Field


Gridded Gun - Mesh<br />

32 www.cst.com


33<br />

S-DALINAC Electron Source<br />

-100kV<br />

Photocathode<br />

Diagnosis and<br />

Manipulation<br />

Vacuum<br />

See also Bastian Steiner, PhD Thesis, T<strong>EM</strong>F, TU Darmstadt<br />

0V


S-DALINAC Electron Source<br />

Electron trajectory<br />

34 See also Bastian Steiner, PhD Thesis, T<strong>EM</strong>F, TU Darmstadt


S-DALINAC Electron Source<br />

Electric potential<br />

35 See also Bastian Steiner, PhD Thesis, T<strong>EM</strong>F, TU Darmstadt


• CCavities iti<br />

– Eigenmodes<br />

–Q Factor<br />

Overview<br />

– Time Domain and Resonances<br />

• Cavities and Particles<br />

• Electron Guns<br />

• Collector<br />

• Wakefields<br />

36 www.cst.com


Collector<br />

Potential<br />

37 www.cst.com | Oct-09


Collector, including secondary electron<br />

emission<br />

E0 = 50 keV E0 = 125 keV<br />

E0 = 200 keV E0 = 275 keV<br />

38 www.cst.com | Oct-09<br />

E0 = initial energy of the electrons


• CCavities iti<br />

– Eigenmodes<br />

–Q Factor<br />

Overview<br />

– Time Domain and Resonances<br />

• Cavities and Particles<br />

• Electron Guns<br />

• Collector<br />

• Wakefields<br />

40 www.cst.com


Wakefields<br />

What does the Wakefield Solver do?<br />

simple explanation: SSpecial current excitation of f CST CS MWS S T-Solver. S<br />

more complex explanation:<br />

- Moving charged particles are represented as Gaussian current density<br />

- At structure discontinuities the intrinsic electromagnetic fields of the moving<br />

charged c a ged pa particles t c es causes tthe e appea appearance a ce o of „ „Wakefields“ a e e ds<br />

- These Wakefields can act back on the particles which is expressed in terms<br />

of a Wakepotential<br />

41 www.cst.com | Oct-09


Beam Position Monitor<br />

Wakefields<br />

Note: Beta smaller<br />

than 1 is possible.<br />

detailed deta ed<br />

view<br />

42 www.cst.com | Oct-09


Beam Position Monitor<br />

150<br />

0<br />

Wakefields<br />

Port 1<br />

Port 2<br />

-150 0 7<br />

Time/ns<br />

Output Signals at the electrode<br />

ports excited by the beam<br />

Electric field vs. time<br />

43 www.cst.com | Oct-09


Wakefields<br />

Normalized<br />

output at the<br />

electrode<br />

See also: P. Raabe, VDI Fortschrittsberichte, Reihe 21, Nr. 128, 1993<br />

44 www.cst.com | Oct-09


Pillbox Cavity<br />

Structure<br />

Wakefields<br />

Beam definition<br />

45 www.cst.com | Oct-09


Wl(s)/ /(V/C)<br />

Wakefields<br />

RReference f PPulse l<br />

Wl(s)<br />

46 www.cst.com | Oct-09


Wakefields<br />

47 www.cst.com | Oct-09


Wakefields<br />

48 www.cst.com | Oct-09


• CCavities iti<br />

– Eigenmodes<br />

–Q Factor<br />

SUMMARY<br />

– Time Domain and Resonances<br />

• Cavities and Particles<br />

• Electron Guns<br />

• Collector<br />

• Wakefields<br />

49 www.cst.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!