03.07.2013 Views

Formulating with Rheology Modifiers

Formulating with Rheology Modifiers

Formulating with Rheology Modifiers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

“<strong>Formulating</strong> <strong>with</strong> <strong>Rheology</strong> <strong>Modifiers</strong>”<br />

SWSCC Suppliers’ Day<br />

August 23, 2012<br />

Cosmetic Division<br />

By Joseph Albanese<br />

3V Technical Marketing Manager<br />

Personal Care<br />

j.albanese@3vusa.com<br />

Tele: (908) 456-2968


• <strong>Rheology</strong><br />

• Instruments<br />

• <strong>Rheology</strong> <strong>Modifiers</strong><br />

• Formulation Tips<br />

Cosmetic Division<br />

Agenda<br />

2


<strong>Rheology</strong> <strong>Modifiers</strong><br />

INCI Dictionary Functional Classes<br />

• Viscosity Controlling Agents<br />

• Viscosity Decreasing Agents<br />

• Viscosity Increasing Agents for Non-Aqueous<br />

Systems<br />

• Viscosity Increasing Agents for Aqueous<br />

Systems


So what then is the relationship<br />

of viscosity to rheology?<br />

• Viscosity measures the resistance<br />

(“internal friction”) of fluid or liquid to an<br />

applied stress or shear force.<br />

• <strong>Rheology</strong> is a complex study of the<br />

deformation and flow of matter. It is a<br />

branch of science.<br />

Cosmetic Division<br />

4


Ideal<br />

Liquid<br />

<strong>Rheology</strong><br />

G*, G’, G”, Tan δ, etc.<br />

Ideal<br />

Solid<br />

Deform irreversibly Deform elastically<br />

Mineral Oil spring back unchanged<br />

G” (dynes/cm 2 ) = Viscous Modulus Steel Ball<br />

G” > G’ – effective viscosifier G’ (dynes/cm2) = Elastic Modulus<br />

G’ > G” – effective suspending agent<br />

Fluid Mechanics <strong>Rheology</strong> Solid Mechanics<br />

Newtonian Fluids Plasticity and Elasticity<br />

Non-Newtonian Fluids


Lord Kelvin 1804-1901<br />

“When you can measure what you<br />

are speaking about in numbers,<br />

you know something about it,<br />

but when you cannot measure it,<br />

when you cannot express it in<br />

numbers, your knowledge is of a<br />

meager and unsatisfactory kind;<br />

it may be the beginning of<br />

knowledge, but you have<br />

scarcely, in your thoughts,<br />

advanced to the stage of<br />

science.”


Viscosity<br />

• Viscosity (η) is the ratio of shear stress (σ) to shear rate (γ)<br />

and describes the resistance to flow of a liquid.<br />

Viscosity = Shear Stress / Shear Rate<br />

η = σ / γ<br />

Units: dynes-sec/cm 2 = poise = 100 centipoise (cp)


But what is “shear stress” and “shear rate”?<br />

Cosmetic Division<br />

Moving<br />

Liquid between two parallel plates<br />

Stationary<br />

8


Distance (d)<br />

Viscosity<br />

Stationary<br />

Shear Stress = Force / Area = dynes/cm 2 = N/m 2<br />

Dynes/cm 2 = 0.1 Pascal (Pa)<br />

N/m 2 = 1 Pascal (Pa)<br />

Shear Rate = Velocity / Thickness = (m/s)/m = 1/s = s -1<br />

The rate of change of shear stress. The velocity gradient perpendicular to the<br />

direction of shear flow (dv/dx). Units 1/s or s -1<br />

Viscosity = Shear Stress / Shear Rate<br />

Area (A) Force (F)<br />

Moving<br />

Velocity (v)


Types of Rheological Behavior<br />

RHEOLOGY<br />

Newtonian Non-Newtonian<br />

Time Dependant Time Independent<br />

Rheopectic<br />

Thixotropic<br />

Dilatant<br />

Pseudoplastic


Types of <strong>Rheology</strong><br />

• Newtonian – viscosity constant regardless of shear<br />

– Typical of many shampoos, water, mineral oil, glycerin<br />

• Pseudoplastic flow – shear thinning and immediate<br />

recovery<br />

– Viscosity decreases <strong>with</strong> an increase in shear rate<br />

– Typical of Carbomers and other Polyacrylates<br />

• Thixotropic flow – shear thinning and slow recovery<br />

– Viscosity decreases <strong>with</strong> time<br />

– Typical of clays and organoclays<br />

• Dilatant* – immediate shear thickening. Undesirable for<br />

cosmetics.<br />

• Rheopectic* – shear thickening over time<br />

* NOTE: Undesirable for cosmetics.


Shear Stress<br />

Cosmetic Division<br />

Newtonian Fluid<br />

A “thick” (viscous)<br />

liquid: high stress,<br />

low shear rate<br />

A “thin” (low viscosity)<br />

liquid: low stress, high<br />

shear rate<br />

Shear Rate<br />

Linear Relationship Constant Viscosity<br />

Viscosity<br />

A “thick” (high viscosity) liquid<br />

A “thin” (low viscosity) liquid<br />

Shear Rate<br />

Temperature must be kept constant.<br />

12


Shear Rate (velocity gradient)<br />

Dilatant<br />

Cosmetic Division<br />

Non-Newtonian<br />

Pseudoplastic<br />

Shear Stress (Force)<br />

Viscosity<br />

Pseudoplastic<br />

Dilatant<br />

Shear Rate<br />

13


Viscosity<br />

Viscosity vs. Typical Shear Rates<br />

Experienced by Products<br />

Thixotropic<br />

Pseudoplastic<br />

Newtonian<br />

Shear Rate (s-1 )<br />

Storage Shipping Dispensing Application Homogenization


A Non-Newtonian Pool Party<br />

Cosmetic Division<br />

15


And now for a word from our sponsor . . .<br />

Cosmetic Division<br />

16


And now for a word from our sponsor . . .


Viscoelasticity of Silly Putty<br />

G”<br />

G’ ŋ<br />

G” > G’ more viscous<br />

Modulus = Shear Stress / Shear Strain<br />

Viscosity = Shear Stress / Shear Rate<br />

Cosmetic Division<br />

G’ > G” more elastic<br />

SOURCE: http://www.campoly.com/general_research.html


SOURCE: http://www.technicianonline.com/multimedia/gallery-silly-putty-hits-hard-1.2602855<br />

Cosmetic Division<br />

19


Cosmetic Division<br />

Silly Putty Drop<br />

20


Cosmetic Division<br />

Agenda<br />

• The Science of <strong>Rheology</strong><br />

• Instruments<br />

• <strong>Rheology</strong> <strong>Modifiers</strong><br />

• Formulation Tips<br />

21


Cosmetic Division<br />

Modes of Deformation<br />

All materials will strain or deform if a load or stress is applied.<br />

Linear<br />

Rotational<br />

Tensile Compression Bending<br />

Torsional Shear Rectangular Torsion<br />

22


Viscometer or Rheometer?<br />

Viscometer<br />

• Relatively low cost<br />

• Low to medium shear<br />

• Rotates in a one direction<br />

• Limited to more viscous<br />

materials<br />

• Suitable for simple flow<br />

measurements.<br />

• Portable enough to do remote<br />

testing<br />

• Highly suitable for QC<br />

Cosmetic Division<br />

Rheometer<br />

• Relatively very expensive<br />

• Very low to very high shear<br />

• Greater characterization of<br />

flow and deformation behavior<br />

• Oscillatory motion possible<br />

• Can apply large step changes<br />

in stress and strain to find both<br />

viscoelastic and flow<br />

properties<br />

• Can measure very low<br />

viscosity samples<br />

• Can do other tests under a<br />

wider range of conditions<br />

• Highly suitable or R&D & QC<br />

23


Viscometer or Rheometer?<br />

Cosmetic Division<br />

Approximate Velocity Gradients<br />

Shear Rate (1/s)<br />

0.001 0.01 0.1 1 10 100 1000 10,000 100,000<br />

STORAGE TRANSPORTATION<br />

SETTLING<br />

SAGGING / LEVELING<br />

APPLICATION<br />

Brookfield Shear Rate Range<br />

Rheometer Shear Rate Range<br />

PRODUCTION<br />

DISPERSION<br />

BRUSHING, ROLLING SPRAYING<br />

MIXING, STIRRING, PUMPING<br />

24


Proper Immersion of Brookfield Spindle<br />

1<br />

2<br />

1


Important Parameters to Control<br />

• Size of container<br />

• Depth of<br />

immersion<br />

• History of shear<br />

(especially for<br />

Thixotropic<br />

materials)<br />

Cosmetic Division<br />

FAST SLOW<br />

Velocity<br />

Gradient<br />

dv/dx<br />

• Spindle<br />

configuration<br />

• Rotational<br />

speed (rpm)<br />

• Time of shear<br />

(Helipath)<br />

• Temperature<br />

(25 o C)<br />

26


Brookfield Helipath Stand & T-Spindles<br />

(for very viscous liquids)<br />

Instruments control either shear rate or shear stress. A Brookfield viscometer is a<br />

controlled shear rate instrument. The shear stress is read off a scale while its motor is<br />

turning at a constant speed. Shear rate is controlled by spindle speed. Shear stress is<br />

controlled by spindle size and shape.<br />

27<br />

Cosmetic Division


Increasing Viscosity (Pa s) <br />

The inherent danger of a 1-point viscosity<br />

measurement instead of a rheogram<br />

QC – 1-point rotational viscometer measurement<br />

taken at a set shear rate (spindle speed in r.p.m.)<br />

X<br />

Increasing Shear Rate (s -1 ) <br />

Lot A Control<br />

Lot B


Increasing Viscosity (Pa s) <br />

The inherent danger of a 1-point viscosity<br />

measurement instead of a rheogram<br />

QC – 1-point rotational viscometer measurement<br />

taken at a set shear rate (spindle speed in r.p.m.)<br />

X<br />

Increasing Shear Rate (s -1 ) <br />

Lot A Control<br />

Lot B


Factors Effecting Settling Velocity<br />

Particle<br />

• count<br />

• size<br />

• shape<br />

• density<br />

• charge<br />

& Emulsion Stability<br />

Suspending Medium<br />

• density<br />

• charge<br />

• rheology<br />

• MW of suspending<br />

polymer


Stable Suspensions & Emulsions<br />

Yield Value<br />

Gravity<br />

Viscosity<br />

Adopted from “The <strong>Rheology</strong> of Natural and Synthetic Hydrophilic Polymer Solutions as related to Suspending Ability” By<br />

RJ Meyer and L. Cohen (BF Goodrich Chem. Co.) Presented in Nov. 1958, NYC. Published in Journal of cosmetic Chemists


Stokes Law<br />

predictor of emulsion stability<br />

V = 2r 2 g(D 1-D 2)/9µ<br />

Where: V = the particle’s settling velocity (m/s)<br />

r = the radius of the particle<br />

g = the gravitational acceleration (m/s 2 )<br />

D1 = the density of the particles (kg/m 3 )<br />

D2 = the density of the fluid (kg/m 3 )<br />

µ = the viscosity of the fluid (Pa s)<br />

In words – A higher viscosity (denominator)<br />

reduces the settling velocity. Therefore, the<br />

emulsion or suspension will be more stable.


Insufficient force<br />

to induce flow<br />

Yield Value<br />

Enough force to overcome<br />

yield value of the toothpaste<br />

Yield Point (Pa) Viscosity (Pa·s)<br />

Honey 0 11.0<br />

Ketchup 14 0.1<br />

Mayonnaise 85 0.6


Brookfield Yield Value (BYV)<br />

BYV (dynes/cm 2 ) = (η1 - η2)/100<br />

BYV = (Apparent viscosity at 0.5 rpm – Apparent Viscosity at 1 rpm)<br />

BYV<br />

τ 1<br />

τ 2<br />

X<br />

100<br />

X<br />

r 1 r 2


Minimum BYV required for a stable suspension<br />

BYV = [23.6 R (D – D2) g] 2/3<br />

Where: R = particle radius (cm)<br />

D = density of particle (gm/cc)<br />

D2 = density of medium (gm/cc)<br />

g = acceleration due to gravity = 980 cm/sec 2<br />

Particle Volume = 4/3πR 3<br />

Cross Sectional Area = πR 2<br />

Cosmetic Division<br />

Gravity


Cosmetic Division<br />

Agenda<br />

• The Science of <strong>Rheology</strong><br />

• Instruments<br />

• <strong>Rheology</strong> <strong>Modifiers</strong><br />

• Formulation Tips<br />

36


Why use rheology modifiers?<br />

• Viscosity (Thickening)<br />

• Yield Value (Suspension)<br />

• Emulsion Stability (Stokes’ Law)<br />

• Flatten viscosity-temperature<br />

curve (consistency)<br />

• Product aesthetics (visual, etc.)<br />

• Dispensing & applying the product<br />

• Sensory perceptions (skin feel)<br />

• Even distribution of sunscreens<br />

(better coverage and skin<br />

protection)<br />

• Film-forming (styling and water<br />

resistance)<br />

• Homogeneity of actives<br />

• Prevent syneresis<br />

• Provide structural integrity to gels<br />

and solid stick forms<br />

• Leveling (nail polishes,<br />

sunscreens)


What are these Ingredients?<br />

• Viscosity Controlling Agents - 39<br />

– Silicones, Essential Oils, Sorbitol, Plant Extracts . . .<br />

• Viscosity Decreasing Agents - 101<br />

– Short chain Alcohols, Isoparaffins, Glycols, Ethoxylates . . .<br />

• Viscosity Increasing Agents<br />

– For Non-Aqueous Systems – 531<br />

• Waxes & long chain Alcohols, High MW Silicones, Alkylated<br />

Dimethicone . . .<br />

– For Aqueous Systems – 496<br />

• Alkanolamides, Betaines, Sodium Chloride, Polyquaternium<br />

Compounds . . .


Viscosity Increasing Agents<br />

• Long c-chain waxes <strong>with</strong> high melting<br />

points, electrolytes, perfumes, surfactants,<br />

acids & bases, higher solids content, etc.<br />

are typically not thought of as “rheology<br />

modifiers”.<br />

• So what is?


• Organoclays<br />

• Polyethylenes<br />

<strong>Rheology</strong> <strong>Modifiers</strong><br />

Non-Aqueous<br />

• Al/Mg Hydroxystearate<br />

• Trihydroxystearate<br />

• Polyethylene Glycols<br />

• Silicas<br />

• Synthetic Polymers<br />

Aqueous<br />

• Gums<br />

• Cellulosics<br />

• Clays<br />

• Polyethylene Glycols<br />

• Silicas<br />

• Synthetic Polymers


<strong>Rheology</strong> <strong>Modifiers</strong><br />

Viscosity Increasing Agents (Thickeners)<br />

• Naturally derived<br />

– Organic (plant or<br />

microbial)<br />

• Polysaccharides<br />

• Xanthan gum<br />

• Alginates<br />

• Cellulose<br />

• Guar gum<br />

– Inorganic<br />

• Smectite clays<br />

• Amorphous silicon<br />

dioxide<br />

• Synthetically derived<br />

– Polymers of Acrylic<br />

Acid (PAA)<br />

– Polyethylene and<br />

copolymers<br />

– Alkylene oxide polymers<br />

and esters<br />

– PVM/Decadiene<br />

Crosspolymer


Synthetic Polymeric Thickeners<br />

(Homopolymers, Copolymers, Crosspolymers)<br />

• Non-associative<br />

– Anionic – Carbomer, Acrylates Copolymer<br />

– Cationic – Polyquaternium-37<br />

• Associative<br />

– Anionic – Acrylates/Palmeth-25 Acrylate Copolymer,<br />

Acrylates/Steareth-20 Methacrylate Copolymer, Acrylates/C10-<br />

30 Alkylacrylate Crosspolymer . . .<br />

– Nonionic / Cationic – Acrylates/Aminoacrylates/C10-30 Alkyl<br />

PEG-20 Itaconate Copolymer, Polyacrylate-1 Crosspolymer<br />

(surfactant or acid swellable aqueous emulsion) . . .


Carbomer<br />

Anionic & Non-associative<br />

Polyacrylic Acid<br />

(PAA)<br />

Carbomer is a homopolymer of<br />

acrylic acid crosslinked <strong>with</strong> an<br />

allyl ether of either pentaerythritol,<br />

sucrose, or propylene.<br />

• Advantages of Carbomers:<br />

– Consistent quality, high purity & low<br />

toxicity<br />

– Low-use level, cost effective<br />

– Pseudoplastic rheology & good<br />

suspending power (yield value)<br />

– Wide pH application (4.5 – 11)<br />

• Other considerations of Carbomers:<br />

– Water phase thickeners<br />

– Require neutralization <strong>with</strong> suitable base<br />

– Incompatible <strong>with</strong> cationics<br />

– Poor electrolyte tolerance - recommend<br />

adding chelating agent (0.1% EDTA)<br />

– Photodegradable - recommend adding<br />

UV filter (0.1% Benzophenone-4)<br />

– Low emulsifying power<br />

– Very hygroscopic


Carbomer – Thickening Mechanism<br />

- COOH<br />

Dry Powder Dispersed Neutralized<br />

Tightly Coiled Loosely Coiled More Linear<br />

Swollen Hydrogels Tightly Packed<br />

Swollen Hydrogels<br />

Increasing Viscosity<br />

+ NaOH <br />

Na +<br />

- COO -<br />

Electrostatic repulsion


Controlling the rheology and<br />

performance of Carbomers<br />

• Solvent choice<br />

• Reaction parameters and drying time<br />

• Particle size<br />

• Extent of cross-linking<br />

• Molecular weight between crosslinks (Mc)<br />

• Polydispersity<br />

• Fraction of the total units, which occur as terminal, i.e. free<br />

chain ends<br />

• Surface treatment<br />

• Pre-neutralized INCI Name Sodium Carbomer<br />

• pH of the final formulation controls amount of swelling and<br />

packing


Cosmetic Division<br />

Carbomer Types<br />

(relative comparisons)<br />

Property Carbomer<br />

940/980 Types<br />

Carbomer<br />

941/980 Types<br />

Carbomer 934<br />

Type<br />

X-Linking High Low Medium<br />

Flow Characteristic Short Long Short<br />

Viscosity High Low Medium<br />

Yield Value Medium High Medium<br />

Electrolyte Tolerance Low Medium Medium<br />

Shear Tolerance High Low Medium<br />

Clarity Clear Clear Hazy<br />

46


USP/NF-29<br />

Classification of Residual Solvents by Risk Assessment<br />

• Class 1 – solvents to be avoided<br />

– Benzene is suspected carcinogen<br />

• Class 2 – solvents to be limited<br />

– Cyclohexane<br />

– Methylene Chloride (a.k.a. Dichloromethane)<br />

• Class 3 – solvents <strong>with</strong> low toxic potential.<br />

No exposure limit needed.<br />

– Ethyl Acetate<br />

– N-Heptane


US Pharmacopeia<br />

Official Monograph<br />

• Same names for Carbomers synthesized in Benzene -<br />

934, 940, 941 and 1342 (alkylated). All now prohibited<br />

in Europe.<br />

• New names for all Carbomers and alkylated<br />

Carbomers synthesized in a solvent other than<br />

Benzene became effective January 1, 2011.<br />

– Carbomer Homopolymer – PAA x-linked <strong>with</strong> allyl ethers of<br />

polyalcohols<br />

– Carbomer Copolymer – Co-PAA & long chain alkyl<br />

methacrylate x-linked <strong>with</strong> allyl ethers of polyalcohols<br />

– Carbomer Interpolymer - Carbomer Homopolymer or<br />

Copolymer that contains a block copolymer of polyethylene<br />

glycol and a long chain alkyl acid ester.


USP/NF-29 Carbomers<br />

• Carbomer Homopolymer<br />

– Homopolymer Type A = 4,000-11,000cps<br />

– Homopolymer Type B = 25,000-45,000cps<br />

– Homopolymer Type C = 40,000-60,000cps<br />

• Carbomer Copolymer<br />

– Carbomer Copolymer Type A = 4,500-13,500<br />

– Carbomer Copolymer Type B = 10,000-29,000<br />

– Carbomer Copolymer Type C = 25,000-45,000<br />

• Carbomer Interpolymer<br />

– Carbomer Interpolymer Type A = 45,000-65,000<br />

– Carbomer Interpolymer Type B = 47,000-77,000<br />

– Carbomer Interpolymer Type C = 8,500-16,500<br />

Type is determined by the viscosity range of a 0.5% Carbomer gel neutralized <strong>with</strong> NaOH<br />

using a Brookfield viscometer and appropriate spindle rotating at 20 rpm at 25 o C.


Carbomer Dispersion: EDUCTOR


Cosmetic Division<br />

Acrylates Copolymer<br />

Anionic and non-associative<br />

Acrylates Copolymer is a copolymer of two or more monomers<br />

consisting of Acrylic Acid, Methacrylic Acid or one of their<br />

simple esters.<br />

Acrylic Acid + Methacrylic Acid<br />

Ethylhexyl Acrylate<br />

51


Acrylates Copolymer<br />

Anionic and non-associative<br />

• Water-thin latex emulsion<br />

about 30% polymer solids<br />

• Some optimized to provide<br />

best clarity & peak viscosity /<br />

yield value at low pH 4.5-5.5<br />

required for Sodium<br />

Benzoate or Benzoic Acid<br />

efficacy<br />

• May require ‘back-acid<br />

titration’ step<br />

• Works synergistically <strong>with</strong><br />

Alkanolamides and salt<br />

• Pseudoplastic <strong>with</strong> viscosity<br />

recovered after shear<br />

Cosmetic Division<br />

52


Cosmetic Division<br />

Polyquaternium-37<br />

Cationic & Non-associative<br />

Polyacrylic Acid<br />

Polymethacrylic Acid<br />

No<br />

Yes<br />

Synthesis of PQ-37<br />

Polyquaternium-37


Polyquaternium-37<br />

Cationic & Non-associative<br />

• Cationic thickener <strong>with</strong> high yield value<br />

• Available either as 100% high bulk density<br />

and low dusting powder or as a dispersion<br />

in Mineral Oil or Propylene Glycol<br />

Dicaprylate/Dicaprate<br />

• Self thickening – no neutralization required<br />

• Use-level 0.1-3.0%<br />

– 0.5% provide 7-13,000cps<br />

• Once dispersed in water can add up to<br />

70% EtOH<br />

• Compatible w/ iron oxides, sunscreens, &<br />

self tanners<br />

• Excellent water proofing film former <strong>with</strong><br />

elegant skin-feel


Anionic Associative Thickeners<br />

• Acrylates/Palmeth-25 Acrylate Copolymer<br />

– 30% polymer solids latex emulsion<br />

• Acrylates/Palmeth-25 Itaconate Copolymer<br />

– 30% polymer solids latex emulsion<br />

• Acrylates/Vinyl Isodecanoate Crosspolymer<br />

– powder<br />

• Acrylates/C10-30 Alkylacrylate Crosspolymer<br />

• Acrylates/Beheneth-25 Methacrylate Copolymer


Anionic Associative Thickener<br />

INCI Name: Acrylates/Vinyl Isodecanoate Crosspolymer<br />

Hydrophilic part<br />

Thickening properties<br />

Lipophilic Part<br />

Emulsifying properties<br />

Resistance to electrolyte<br />

Sensorial improvement


HASE After Neutralization <strong>with</strong> Base<br />

Hydrophobic<br />

alkylation<br />

enhances<br />

performance<br />

in many<br />

systems<br />

Associative Polymeric Network<br />

Drawing courtesy of Raymond Rigoletto, Ashland Chemical<br />

HASE =<br />

Hydrophobically<br />

Modified<br />

Alkali<br />

Swellable<br />

Emulsion


Oil<br />

Action Mechanism<br />

Oil<br />

Oil<br />

Carbomer Alkylated Carbomer<br />

Oil<br />

Oil<br />

Oil


Anionic Associative Thickener<br />

Acrylates/Vinyl Isodecanoate Crosspolymer<br />

Mineral Oil (HLB 10)<br />

Up to 50%<br />

C12-15 Alkyl Benzoate (HLB 13)<br />

Up to 30%<br />

Caprylic/Capric Triglyceride (HLB 11)<br />

Up to 30%<br />

Cyclopentasiloxane (HLB 7.5)<br />

Up to 30%


Cosmetic Division<br />

Agenda<br />

• The Science of <strong>Rheology</strong><br />

• Instruments<br />

• <strong>Rheology</strong> <strong>Modifiers</strong><br />

• Formulation Tips<br />

60


Formula Considerations<br />

• Type of formula – gel, emulsion, foam, surfactant . . .<br />

• Desired rheology – viscosity, yield value . . .<br />

• Effect of pH<br />

• Electrolyte tolerance<br />

• Compatibility (charge characteristics)<br />

• Synergistic interactions<br />

• Processing parameters & filling equipment<br />

• Storage conditions (light, temperature)<br />

• Homogeneous delivery of active ingredients<br />

• Dispensing from packaging<br />

• Application to body<br />

• Skin feel


<strong>Rheology</strong> <strong>Modifiers</strong><br />

• Pseudoplastic<br />

– Synthetic Polymers:<br />

Polymers of Acrylic Acid,<br />

Carbomers, Hydrophobically<br />

Modifier Polymers<br />

– Gums: Guar, Hydroxypropyl<br />

Guar, Xanthan, Carrageenan<br />

– Clays: Hectorites, Bentonites,<br />

Mg/Al Silicates<br />

– Cellulosics: HEC, HPC<br />

– Silicas: Hydrated Silicas,<br />

Fumed Silicas<br />

• Newtonian<br />

– Polyethylene Glycols<br />

• Thixotropic<br />

– Gums: Karaya,<br />

Carrageenan<br />

– Organoclays: Quaternium-<br />

18 Hectorites & Bentonites,<br />

Stearalkonium Hectorites &<br />

Bentonites,<br />

Disteardimonium<br />

Hectorites<br />

– Polyethylenes<br />

– Silicas: Hydrated Silicas,<br />

Fumed Silicas<br />

– Trihydroxystearin<br />

– Al/Mg Hydroxystearate


Frequently used rheology modifiers<br />

in personal care formulations<br />

• Surfactant systems<br />

• Emulsions<br />

• Hair conditioners<br />

• Styling Mousse<br />

• Hair Styling Gels


Cosmetic Division<br />

Surfactant systems<br />

• PAA - Acrylates Copolymer,<br />

Acrylates/Palmeth-25 Acrylates Copolymer<br />

• Others - Salt, CAPB, Guar, Hydroxypropyl<br />

Methylcellulose, Xanthan Gum, PEG-150<br />

Distearate, Magnesium Aluminum Stearate, etc.<br />

• TIPS: improve lather stability, reduced salt<br />

raises surfactant cloud point, add fragrance prior<br />

to final pH & viscosity adjustments<br />

64


Carbomer and/or Acrylates/Vinyl Isodecanoate Crosspolymer<br />

Acrylates Copolymer<br />

Acrylates/Palmeth-25 Acrylates Copolymer<br />

Cosmetic Division<br />

65


Cosmetic Division<br />

Emulsions<br />

• PAA - Polymeric emulsifiers (associative<br />

thickeners), Carbomer, Hydrophobically<br />

Modified Carbomers<br />

• Others – Fatty Alcohols, Fatty Acids,<br />

Organoclays, etc.<br />

• TIPS: reducing surfactant emulsifiers often<br />

improves mildness and water resistance of<br />

sunscreens<br />

66


Cosmetic Division<br />

Hair conditioners<br />

• PAA - Polyquaternium-37, Polyacrylate-1<br />

Crosspolymer, etc.<br />

• Others - Fatty Alcohols, Hydroxyethyl Cellulose,<br />

etc.<br />

• TIPS: speed dissolution of HEC <strong>with</strong> heat and<br />

fully dissolve before adding other ingredients<br />

67


Cosmetic Division<br />

Hair Styling Mousse<br />

• PAA - Polyquaternium-37<br />

• Others - Cellulosics, Polyquaternium-4,<br />

Polyquaternium-10, Polyquaternium -24, PVP,<br />

etc.<br />

• TIPS: Foam should not become “too stable”,<br />

concentrate & propellant levels<br />

68


• PAA - Carbomer<br />

Cosmetic Division<br />

Hair Styling Gels<br />

• Others: Hydroxypropyl Cellulose.<br />

• TIPS: Partially neutralize Carbomer before<br />

adding PVP or PVP/VA to optimize clarity. Use<br />

EDTA Na 4 and Benzophenone-4.<br />

– Tetrasodium EDTA has pH >10.5<br />

– B-4 has pH


Special formulation challenges<br />

• Hydroalcoholic – selection of appropriate base is<br />

critical to successful thickening <strong>with</strong> Carbomers<br />

• Hydrogen peroxide – must keep pH below 5 for<br />

H 2O 2 stability<br />

• Sulfate-free and low WAS surfactant systems –<br />

NaCl just won’t do it<br />

• Sodium Benzoate, Benzoic Acid preservatives –<br />

require low pH for efficacy<br />

• Cationic – ionic charge incompatibilities<br />

• Oils – high processing temperatures and<br />

rheological properties. PAAs won’t thicken nonaqueous<br />

systems


Recommended Reading


Suggested Reading<br />

In print and available. Cost is 17,50 EU including Tax excluding Shipping.<br />

15 free copies if ordering 100 or more.<br />

Contact: Siegfried Fischer at s.fischer@sofw.com<br />

Tele: +49 82132583 16


Cosmetic Division<br />

Other References<br />

73


Suggested Reading on <strong>Rheology</strong>


Thank you<br />

Cosmetic Division

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!