03.07.2013 Views

the effect of the particle size distribution on non-newtonian turbulent ...

the effect of the particle size distribution on non-newtonian turbulent ...

the effect of the particle size distribution on non-newtonian turbulent ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 2 Literature Review<br />

• ..Page<br />

2.20<br />

Figure 2.8: Magnified view <str<strong>on</strong>g>of</str<strong>on</strong>g> a rough pipe wall showing <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry <str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

The Blasius equati<strong>on</strong> is applicable to <str<strong>on</strong>g>the</str<strong>on</strong>g> range 3000 < Re < 100 000 where,<br />

f = 0,079 Reo. 25 • (2.28)<br />

Knudsen & Katz (1958) proposed a similar equati<strong>on</strong> for fully developed <strong>turbulent</strong> Newt<strong>on</strong>ian<br />

flow supposedly applicable to <str<strong>on</strong>g>the</str<strong>on</strong>g> range 5000. < Re < 200 000 where,<br />

f = 0,046 Reo. 2 •<br />

(2.29)<br />

Equati<strong>on</strong> 2.29 is about 10% below equati<strong>on</strong> 2.28 at low Reynolds numbers but meets it at<br />

higher Reynolds numbers (Bowen, 1961). A logarithmic plot <str<strong>on</strong>g>of</str<strong>on</strong>g>f vs Re (Figure 2.8) for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

above equati<strong>on</strong>s yields a straight line and over <str<strong>on</strong>g>the</str<strong>on</strong>g> years evidence has supported this single<br />

line correlati<strong>on</strong>. For example, Cadwell & Babbitt (1941), who studied <str<strong>on</strong>g>the</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> muds,<br />

Sludges and suspensi<strong>on</strong>s in circular pipes c<strong>on</strong>cluded that head loss in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow<br />

regime can be calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> Blasius equati<strong>on</strong> if<str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry and a proper<br />

viscosity (defined under larninar flow c<strong>on</strong>diti<strong>on</strong>s) are used.<br />

The v<strong>on</strong> Karmen equati<strong>on</strong> (1930) based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Prandtl (1926) mixing length model was<br />

proposed to represent moreexactly <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental data for Reynolds numbers for <str<strong>on</strong>g>the</str<strong>on</strong>g> range<br />

3000 < Re < 300 000 where,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!