the effect of the particle size distribution on non-newtonian turbulent ...

the effect of the particle size distribution on non-newtonian turbulent ... the effect of the particle size distribution on non-newtonian turbulent ...

digitalknowledge.cput.ac.za
from digitalknowledge.cput.ac.za More from this publisher
03.07.2013 Views

Chapter 2 Literature Review Viscous Sub-layer Thickness ---------------------._----------._-.-._----- Page 2.18 Figure 2.6: Magnified view ong>ofong> a rough wall pipe showing regions ong>ofong> turbulent flow 2.9.2 The Effect ong>ofong> Solid Particles Although a ong>particleong> ong>sizeong> ong>effectong> on energy gradients in turbulent flow has been reported by Maude & Whitmore (1956, 1958), Mun (1988) and Slatter (1994), it is still customary in homogenous non-Newtonian slurries to ignore ong>theong> fact that solid ong>particleong>s are present. As previously mentioned in Chapter 1 it has been found that ong>particleong> ong>sizeong> and ong>distributionong> do influence flow behaviour (philippong>ofong>f 1944, Hedstrom 1952, Orr & Blocker 1955, Zettlemoyer & Lower 1955, Maude & Whitrnore 1956, Thomas 1983, Mun 1988, Slatter 1994) and yet it is ong>theong> most overlooked piece ong>ofong> data in turbulent flow analysis (Mun, 1988). Particles will cause a decrease in ong>theong> velocity gradient similar to ong>theong> ong>effectong> ong>ofong> ong>theong> wall roughness (Slatter, 1994) and should ong>theong>refore be taken into account in turbulent flow analyses. This can be understood if ong>theong> following is considered. The change in velocity as ong>theong> pipe wall is approached is very rapid. The magnitude ong>ofong> change in ong>theong> region ong>ofong> ong>theong> pipe wall is in ong>theong> order ong>ofong> hn/s (Slatter, 1994) over ong>theong> diameter ong>ofong>a typical ong>particleong>. Ifsolid ong>particleong>s are present in ong>theong> fluid ong>theong>y will resist-shear and hence impede ong>theong> rapid changes in velocity.

Chapter 2 Literature Review Page 2.19 2.9.3 Continuum Approximation From section 2.9.1 and section 2.9.2 it can be seen that wall roughness and ong>theong> presence ong>ofong> solid ong>particleong>s will affect ong>theong> velocity gradient. This fact should be stressed as virtually all researchers in ong>theong> field ong>ofong> hydrotransport describe homogeneous solid-liquid suspensions using continuum models. The definition ong>ofong> continuum as given by Parker (1994) is: "The study ong>ofong> ong>distributionong>s ong>ofong> energy. matter and oong>theong>r physical quannnes under . circumstances where ong>theong>ir discrete (composed ong>ofong> separate and distinct pans) nature is unimportant and ong>theong>y may be regarded as (in general. complex) continuous ftmctions ong>ofong> position. " The problem with using continuum models is that homogeneous solid-liquid suspensions can never be truly homogeneous. The continuum nature ong>ofong>ong>theong>se slurries is an approximation and is a state to which ong>theong> slurries tend asymptotically (Shook & Roco, 1991). Although this approximation is deemed to hold good, it only does so as long as ong>theong> scale ong>ofong> fineness required by ong>theong> subsequent modelling is not surpassed by ong>theong> ong>particleong> ong>sizeong> (Lumley, 1978). Hence, when considering ong>theong> viscous sub-layer, ong>theong> continuum approximation MUST be compromised (Slatter 1994, Slatter et al 1996). This can clearly be seen in Figure 2.7, a magnified view ong>ofong> a rough pipe wall showing ong>theong> viscous sub-layer thickness and ong>theong> slurry ong>particleong>s, which indicates that ong>theong> solid ong>particleong>s are large compared with ong>theong> scale ong>ofong> modelling. It is ong>theong>refore imperative that ong>theong> ong>theong>oretical model account for ong>theong> ong>effectong> ong>ofong> ong>theong> ong>particleong>s in turbulent flow. Maude & Whitmore (1956, 1958) and Slatter (1994) are at ong>theong> time ong>ofong> writing ong>theong> only known researchers to have taken ong>particleong> ong>sizeong> into account in ong>theong> turbulent flow analyses ong>ofong> ong>theong>ir ong>theong>oretical models. Their analyses are presented in section 2.11.6 and section 2.11.5 respectively. 2.9.4 Turbulence Blasius (1913) was ong>theong> first to suggest a standard empirical relationship between ong>theong> Reynolds number and ong>theong> friction factor for fully developed turbulenLNewtonian flow.

Chapter 2 Literature Review Page 2.19<br />

2.9.3 C<strong>on</strong>tinuum Approximati<strong>on</strong><br />

From secti<strong>on</strong> 2.9.1 and secti<strong>on</strong> 2.9.2 it can be seen that wall roughness and <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s will affect <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity gradient. This fact should be stressed as virtually all<br />

researchers in <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrotransport describe homogeneous solid-liquid suspensi<strong>on</strong>s<br />

using c<strong>on</strong>tinuum models. The definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuum as given by Parker (1994) is:<br />

"The study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> energy. matter and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r physical quannnes under<br />

.<br />

circumstances where <str<strong>on</strong>g>the</str<strong>on</strong>g>ir discrete (composed <str<strong>on</strong>g>of</str<strong>on</strong>g> separate and distinct pans) nature is<br />

unimportant and <str<strong>on</strong>g>the</str<strong>on</strong>g>y may be regarded as (in general. complex) c<strong>on</strong>tinuous ftmcti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

positi<strong>on</strong>. "<br />

The problem with using c<strong>on</strong>tinuum models is that homogeneous solid-liquid suspensi<strong>on</strong>s can<br />

never be truly homogeneous. The c<strong>on</strong>tinuum nature <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se slurries is an approximati<strong>on</strong> and<br />

is a state to which <str<strong>on</strong>g>the</str<strong>on</strong>g> slurries tend asymptotically (Shook & Roco, 1991). Although this<br />

approximati<strong>on</strong> is deemed to hold good, it <strong>on</strong>ly does so as l<strong>on</strong>g as <str<strong>on</strong>g>the</str<strong>on</strong>g> scale <str<strong>on</strong>g>of</str<strong>on</strong>g> fineness<br />

required by <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent modelling is not surpassed by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> (Lumley, 1978).<br />

Hence, when c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuum approximati<strong>on</strong> MUST be<br />

compromised (Slatter 1994, Slatter et al 1996). This can clearly be seen in Figure 2.7, a<br />

magnified view <str<strong>on</strong>g>of</str<strong>on</strong>g> a rough pipe wall showing <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thickness and <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry<br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g>s, which indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s are large compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> scale <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modelling. It is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore imperative that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical model account for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g>s in <strong>turbulent</strong> flow.<br />

Maude & Whitmore (1956, 1958) and Slatter (1994) are at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> writing <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly<br />

known researchers to have taken <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> into account in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow analyses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models. Their analyses are presented in secti<strong>on</strong> 2.11.6 and secti<strong>on</strong> 2.11.5<br />

respectively.<br />

2.9.4 Turbulence<br />

Blasius (1913) was <str<strong>on</strong>g>the</str<strong>on</strong>g> first to suggest a standard empirical relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> Reynolds<br />

number and <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> factor for fully developed turbulenLNewt<strong>on</strong>ian flow.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!