the effect of the particle size distribution on non-newtonian turbulent ...

the effect of the particle size distribution on non-newtonian turbulent ... the effect of the particle size distribution on non-newtonian turbulent ...

digitalknowledge.cput.ac.za
from digitalknowledge.cput.ac.za More from this publisher
03.07.2013 Views

Chapter 2 Literature Review Page 2.16 At fixed values ong>ofong> T y , K and n, a root mean square error ong>ofong> fit function E can be defined for a series ong>ofong> N data points in ong>theong> laminar flow region, E = N - 1 2 (2.23) The K value for minimum error K.u.. can be found by setting aE/aK=O for a fixed value ong>ofong> Ty and n, K. = 11 auo T 2 y ] + l+n The T y and n values are ong>theong>n optimized to give a global minimum for E. 2.9 VELOCITY DISTRIBUTION FOR TURBULENT FLOW n (2.24) Turbulent flow models for non-Newtonian fluids are normally based on ong>theong> analytical methods adopted for Newtonian fluid turbulent behaviour (eg. Torrance 1963, Wilson & Thomas 1985, 1987, SIatter 1994). In this section turbulent flow for Newtonian fluids is COvered although ong>theong> ong>effectong> ong>ofong> solid ong>particleong>s is also considered as it is felt that this should form part ong>ofong> ong>theong> basis for turbulent flow analysis ong>ofong> any non-Newtonian flow model. 2.9.1 Wall Roughness The type ong>ofong> turbulent flow encountered depends on ong>theong> wall roughness (Govier & Aziz, 1972). Under microscopic investigation it can be seen that ong>theong> inner wall ong>ofong> ong>theong> pipe is not smooth but many protrusions exist. The term wall, pipe or surface TOughness is used to describe ong>theong> complex ong>sizeong>, shape and spacing ong>ofong> ong>theong>se protrusions. The elttent ong>ofong> roughness will depend on ong>theong> material used in manufacturing ong>theong> pipe and ong>theong> method ong>ofong> its manufacture. For a given fluid and velocity, roughness in a pipe increases ong>theong> pressure drop

Chapter 2 Literature Review Page 2.16<br />

At fixed values <str<strong>on</strong>g>of</str<strong>on</strong>g> T y , K and n, a root mean square error <str<strong>on</strong>g>of</str<strong>on</strong>g> fit functi<strong>on</strong> E can be defined for<br />

a series <str<strong>on</strong>g>of</str<strong>on</strong>g> N data points in <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar flow regi<strong>on</strong>,<br />

E =<br />

N - 1<br />

2<br />

(2.23)<br />

The K value for minimum error K.u.. can be found by setting aE/aK=O for a fixed value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ty and n,<br />

K. = 11<br />

auo<br />

T<br />

2 y ]<br />

+ l+n<br />

The T y and n values are <str<strong>on</strong>g>the</str<strong>on</strong>g>n optimized to give a global minimum for E.<br />

2.9 VELOCITY DISTRIBUTION FOR TURBULENT FLOW<br />

n<br />

(2.24)<br />

Turbulent flow models for n<strong>on</strong>-Newt<strong>on</strong>ian fluids are normally based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical<br />

methods adopted for Newt<strong>on</strong>ian fluid <strong>turbulent</strong> behaviour (eg. Torrance 1963, Wils<strong>on</strong> &<br />

Thomas 1985, 1987, SIatter 1994). In this secti<strong>on</strong> <strong>turbulent</strong> flow for Newt<strong>on</strong>ian fluids is<br />

COvered although <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s is also c<strong>on</strong>sidered as it is felt that this should<br />

form part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis for <strong>turbulent</strong> flow analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> any n<strong>on</strong>-Newt<strong>on</strong>ian flow model.<br />

2.9.1 Wall Roughness<br />

The type <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbulent</strong> flow encountered depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall roughness (Govier & Aziz,<br />

1972). Under microscopic investigati<strong>on</strong> it can be seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> inner wall <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe is not<br />

smooth but many protrusi<strong>on</strong>s exist. The term wall, pipe or surface TOughness is used to<br />

describe <str<strong>on</strong>g>the</str<strong>on</strong>g> complex <str<strong>on</strong>g>size</str<strong>on</strong>g>, shape and spacing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se protrusi<strong>on</strong>s. The elttent <str<strong>on</strong>g>of</str<strong>on</strong>g> roughness<br />

will depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> material used in manufacturing <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe and <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

manufacture. For a given fluid and velocity, roughness in a pipe increases <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!