03.07.2013 Views

the effect of the particle size distribution on non-newtonian turbulent ...

the effect of the particle size distribution on non-newtonian turbulent ...

the effect of the particle size distribution on non-newtonian turbulent ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 2 Literature Review Page 2.12<br />

The partial integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> 2.9 using equati<strong>on</strong> 2.10 and equati<strong>on</strong> 2.12 leads to:<br />

3<br />

rD '. du<br />

Q = - - • J r- - - dT ,<br />

8 [ TO ] 0 dr<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> shear stress at <str<strong>on</strong>g>the</str<strong>on</strong>g> wall is given by:<br />

T = Ddp<br />

o 4 L<br />

(2.12)<br />

(2.13)<br />

(2.14)<br />

The flow rate for <str<strong>on</strong>g>the</str<strong>on</strong>g> yield pseudoplastic model, <str<strong>on</strong>g>the</str<strong>on</strong>g> Bingham plastic model or <str<strong>on</strong>g>the</str<strong>on</strong>g> power law<br />

model can hence be obtained by substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relevant rheological equati<strong>on</strong> ie. equati<strong>on</strong><br />

2.6, equati<strong>on</strong> 2.7 or equati<strong>on</strong> 2.8 respectively. As menti<strong>on</strong>ed, <str<strong>on</strong>g>the</str<strong>on</strong>g> yield pseudoplastic model<br />

- - -is<br />

to used for this study <str<strong>on</strong>g>the</str<strong>on</strong>g>refore substituting equati<strong>on</strong> 2.6 into equati<strong>on</strong> 2.13 yields:<br />

4n<br />

1<br />

• n 3<br />

TO<br />

K<br />

2.7.3 Generalized Approach for Laminar Flow<br />

(2.15)<br />

Metzner & Reed (1955) proposed a generalized correlati<strong>on</strong> for any time independent fluid.<br />

This is based up<strong>on</strong> a relati<strong>on</strong>ship developed by Rabinowitsch (1929) and Mo<strong>on</strong>ey (1931) for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shear rates at <str<strong>on</strong>g>the</str<strong>on</strong>g> wall <str<strong>on</strong>g>of</str<strong>on</strong>g> a pipe, where:<br />

[ _dU] = l. [ 8Y]<br />

dr 0 4 D<br />

I 8Y<br />

+ - - To'<br />

4 D<br />

(2.16)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!