03.07.2013 Views

the effect of the particle size distribution on non-newtonian turbulent ...

the effect of the particle size distribution on non-newtonian turbulent ...

the effect of the particle size distribution on non-newtonian turbulent ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 5 Discussi<strong>on</strong> Page 5.9<br />

5.7 THEORETICAL MODELS<br />

As stated Slatter's model was c<strong>on</strong>sistently <str<strong>on</strong>g>the</str<strong>on</strong>g> best model for <str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin test sets and for<br />

mixture 2 with increasing representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>. This is attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that his<br />

model is able to account for <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r models do not. Where<br />

Slarter's model fails to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture 1 test sets, it could be<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> following reas<strong>on</strong>s. Firstly, it should be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thickness is<br />

relatively large in <strong>turbulent</strong> flow (± 300JLm) as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> possible <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe<br />

and <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>s. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer is suppressing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> and Slatter's model which is over predicting <str<strong>on</strong>g>the</str<strong>on</strong>g> shear stress values is over<br />

compensating for a roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> which is not that significant. It is interesting to note for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> test data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> large pipes (ie. 200mm pipes) for mixture 1, when <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g><br />

could be a factor, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model is fairly good - an average<br />

percentage error <str<strong>on</strong>g>of</str<strong>on</strong>g>2.59%, 2,98% and 15,48% for <str<strong>on</strong>g>the</str<strong>on</strong>g> three tests. Also, from Table 5.1 it<br />

can be seen that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are relatively fewer larger <str<strong>on</strong>g>particle</str<strong>on</strong>g>s present in <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer<br />

as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r test sets due to <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer (see secti<strong>on</strong><br />

5.5). Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r reas<strong>on</strong> is that <str<strong>on</strong>g>the</str<strong>on</strong>g> rheology is tending towards being a Bingham plastic (ie. <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

value for n is approaching n=l) and under <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model tends to over<br />

predict <str<strong>on</strong>g>the</str<strong>on</strong>g> shear stress values. At high shear rate values for a Bingham plastic as opposed<br />

to yield pseudoplastic <str<strong>on</strong>g>the</str<strong>on</strong>g> shear stress values will be greater as <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous forces<br />

predominate in this regi<strong>on</strong> for Bingham plastics.<br />

Although Slatter's model is <str<strong>on</strong>g>the</str<strong>on</strong>g> best model overall. <str<strong>on</strong>g>the</str<strong>on</strong>g> data presented <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

rOughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> (Figure 4.2) does bring into questi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s <strong>on</strong><br />

Which <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model is based. However, because Slatter's model is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> it proves very useful when undertaking for example scale-up from a smooth­<br />

Walled small bore (eg. PVC pipe) to a rough wall large-scale pipe (eg. galvanised ir<strong>on</strong>), or<br />

Vice versa. Normally, for example, if <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop in <strong>turbulent</strong> flow is predicted by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sCale-up method <str<strong>on</strong>g>of</str<strong>on</strong>g> Bowen, a corrected pressure gradient would have to be estimated for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

change in roughness. This could be d<strong>on</strong>e by using <str<strong>on</strong>g>the</str<strong>on</strong>g> Govier & Aziz (1972) approach <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mUltiplying <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted pressure gradient by a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> fricti<strong>on</strong> factors obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!