03.07.2013 Views

the effect of the particle size distribution on non-newtonian turbulent ...

the effect of the particle size distribution on non-newtonian turbulent ...

the effect of the particle size distribution on non-newtonian turbulent ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THE EFFECT OF THE PARTICLE SIZE<br />

DISTRIBUTION ON NON-NEWTONIAN<br />

TURBULENT SLURRY FLOW. IN PIPES<br />

by<br />

GARY SVEN THORVALDSEN<br />

Thesis presented for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

M Tech Degree in Chemical Engineering,<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical and Process Engineering,<br />

Cape Technik<strong>on</strong> .<br />

October 1996


ABSTRACT<br />

THE EFFECT OF THE PARTICLE SIZE<br />

DISTRIBUTION ON NON-NEWTONIAN<br />

TURBULENT SLURRY FLOW IN PIPES<br />

The handling <str<strong>on</strong>g>of</str<strong>on</strong>g> solid-liquid suspensi<strong>on</strong>s is an important c<strong>on</strong>cern within <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical and<br />

processing industries and many <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models have been proposed to try and explain and<br />

predict <strong>turbulent</strong> flow behaviour. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbulent</strong> flow from <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

viscous properties <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian suspensi<strong>on</strong>s has over <str<strong>on</strong>g>the</str<strong>on</strong>g> years been questi<strong>on</strong>ed by<br />

researchers. This <str<strong>on</strong>g>the</str<strong>on</strong>g>sis c<strong>on</strong>siders <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models well established in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model, which uses both <str<strong>on</strong>g>the</str<strong>on</strong>g> rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> suspensi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g><br />

<str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solids. These models are used to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental data and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effect</str<strong>on</strong>g> that <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> has <strong>on</strong> <strong>turbulent</strong> flow behaviour.<br />

The literature c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> rheological fundamentals relevant to fluid flow in pipes has<br />

been examined. The Newt<strong>on</strong>ian <strong>turbulent</strong> flow model as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>Dodge & Metzner, Torrance, Kemblowski & Kolodziejski, Wils<strong>on</strong> & Thomas and Slatter<br />

have been reviewed.<br />

Test work was c<strong>on</strong>ducted at <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cape Town's Hydrotransport Research<br />

Laboratory using a pumped recirculating pipe test rig. The test apparatus has been fully<br />

described and calibrati<strong>on</strong> and test procedures to enable collecting <str<strong>on</strong>g>of</str<strong>on</strong>g> accurate pipeline data<br />

have been presented. Three slurries were used in test work namely kaolin clay, mixture I<br />

(kaolin clay and rock flour) and mixture 2 (kaolin clay, rock flour and sand) with ad,s<br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> ranging from 24/Lm to 170/Lm.<br />

The yield pseudoplastic model has been used to model and predict <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar flow <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

suspensi<strong>on</strong>s that were tested and <str<strong>on</strong>g>the</str<strong>on</strong>g> meth9J adopted by Neill (1988) has been used to<br />

determine <str<strong>on</strong>g>the</str<strong>on</strong>g> rheological c<strong>on</strong>stants. The pipeline test results have been presented as pseudoshear<br />

diagrams toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical model lines providing a visual appraisal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

performance <str<strong>on</strong>g>of</str<strong>on</strong>g> each model. The Slatter model predicts <str<strong>on</strong>g>the</str<strong>on</strong>g> test data best with <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models that were c<strong>on</strong>sidered tending to under predict <str<strong>on</strong>g>the</str<strong>on</strong>g> head loss. The reas<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model performs better than <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models is because this model can<br />

account for <str<strong>on</strong>g>the</str<strong>on</strong>g> wall roughness and <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>. Evidence to support this<br />

statement has been presented.<br />

This <str<strong>on</strong>g>the</str<strong>on</strong>g>sis highlights <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> is a vitally important property<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> suspensi<strong>on</strong> and that it does influence <strong>turbulent</strong> flow behaviour. It shows that<br />

turbulence modelling using <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> (eg Slatter, 1994) is valid and can<br />

be adopted for n<strong>on</strong>-Newt<strong>on</strong>ian slurries. It is c<strong>on</strong>cluded that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> must<br />

be used to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> and this <str<strong>on</strong>g>effect</str<strong>on</strong>g> must be incorporated in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>turbulent</strong> flow analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian slurries.


Preamble<br />

DECLARATION<br />

Page iii<br />

I, Gary Sven Thorvaldsen, hereby declare that to <str<strong>on</strong>g>the</str<strong>on</strong>g> best <str<strong>on</strong>g>of</str<strong>on</strong>g> my knowledge and belief, this<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is essentially my own work and has not been submitted for <str<strong>on</strong>g>the</str<strong>on</strong>g> award <str<strong>on</strong>g>of</str<strong>on</strong>g> any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

diploma or degree at any university or technik<strong>on</strong>.<br />

G S Thorvaldsen<br />

October 1996


Preamble<br />

DEDICATION<br />

to my parents<br />

Page iv<br />

and to those who have shown and taught me to celebrate life to <str<strong>on</strong>g>the</str<strong>on</strong>g> fuIIest, to seize <str<strong>on</strong>g>the</str<strong>on</strong>g> day,<br />

to be educated - not simply to fiII <str<strong>on</strong>g>the</str<strong>on</strong>g> mind with knowledge but to open <str<strong>on</strong>g>the</str<strong>on</strong>g> mind to all<br />

possibilities, for learning produces change, change produces surprise and surprise, joy.<br />

"I am a survivor <str<strong>on</strong>g>of</str<strong>on</strong>g>a c<strong>on</strong>centrati<strong>on</strong> camp. My<br />

eyes saw what no pers<strong>on</strong> should witness. Gas<br />

chambers built by learned engineers, children<br />

pois<strong>on</strong>ed by educated physicians, infants killed<br />

lJy trained nurses, woman and babies shot and<br />

killed by high school and college graduates.<br />

So 1 am suspicious <str<strong>on</strong>g>of</str<strong>on</strong>g>educati<strong>on</strong>. My request<br />

is, help your students to be human. Your<br />

efforts must never produce leamed m<strong>on</strong>sters,<br />

skilled psychopaths or educated Eikmans.<br />

Reading and writing and spelling and history<br />

and arithmetic are <strong>on</strong>ly imp<strong>on</strong>ant if<str<strong>on</strong>g>the</str<strong>on</strong>g>y serve<br />

to make our students HUMAN. "<br />

Quotati<strong>on</strong> taken from a book by H Genard<br />

"Each <str<strong>on</strong>g>of</str<strong>on</strong>g>us has a time for life.<br />

There is a misc<strong>on</strong>cepti<strong>on</strong> that we haveforever.<br />

In reality we have such a briefmoment in time<br />

but remember even that briefmoment is yours.<br />

It's yours to celebrate - to misuse it, to loose<br />

it, is to devalue our greatest gift - <str<strong>on</strong>g>the</str<strong>on</strong>g> gift <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

life.<br />

It's our pers<strong>on</strong>al celebrati<strong>on</strong> with so much to<br />

be joyous over, like <str<strong>on</strong>g>the</str<strong>on</strong>g> right to love, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

w<strong>on</strong>der <str<strong>on</strong>g>of</str<strong>on</strong>g> mingling with unique people, <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

smiles, <str<strong>on</strong>g>of</str<strong>on</strong>g>hugging each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r, <str<strong>on</strong>g>of</str<strong>on</strong>g>goodfood, <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

flowers, <str<strong>on</strong>g>of</str<strong>on</strong>g> trees, <str<strong>on</strong>g>of</str<strong>on</strong>g> sunlight, <str<strong>on</strong>g>of</str<strong>on</strong>g> green grass<br />

and cool summer breezes, <str<strong>on</strong>g>of</str<strong>on</strong>g> high flying<br />

ballo<strong>on</strong>s - oh and so much more. This is our<br />

time, <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> our lives. D<strong>on</strong>'t miss a<br />

minute <str<strong>on</strong>g>of</str<strong>on</strong>g>it, it passes so quickly. The time to<br />

live and celebrate is NOW.•<br />

Leo Buscaglia


Preamble<br />

ACKNOWLEDGEMENrS<br />

Page v<br />

I wish to express my gratitude to <str<strong>on</strong>g>the</str<strong>on</strong>g> following pers<strong>on</strong>s and organisati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir assistance<br />

towards <str<strong>on</strong>g>the</str<strong>on</strong>g> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis:<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>Paul Slatter for supervising this project, for his help and guidance, and for his assistance<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> prepap.ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this manuscript.<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g> Francis Petersen for his help and advice.<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g> Mike de Kock for <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hydrotransport test facilities at <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g>Cape<br />

Town.<br />

Mr A Siko and Mr D Botha for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir assistance in repairing <str<strong>on</strong>g>the</str<strong>on</strong>g> test facility.<br />

B Tech students, Mr P Ndamage and Mr J Martin, for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir practical assistance.<br />

Murray & Roberts for transporting <str<strong>on</strong>g>the</str<strong>on</strong>g> raw materials.<br />

GeoScience Laboratories for assistance with Particle Size Distributi<strong>on</strong>s.


Preamble<br />

PUBLICATIONS<br />

The following paper was presented by <str<strong>on</strong>g>the</str<strong>on</strong>g> author in support <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis:<br />

Page vi<br />

"Particle Roughness Turbulence", 13 th Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Slurry Handling and<br />

Pipeline Transport, Johannesburg, South Africa, September 1996, BHR Group C<strong>on</strong>ference<br />

Series - edited by J F Richards<strong>on</strong>, Mechanical Engineering Publicati<strong>on</strong> Limited, UK, pg 237­<br />

257.


Preamble Page vii<br />

CHAPTER 1: INTRODUCTION<br />

CONTENTS<br />

Page<br />

1.1 Statement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> problem 1.1<br />

1.1.1 Solid Particle Effect 1.2<br />

1.2 Objective 1.4<br />

1.3 Methodology 1.5<br />

1.3.1 Literature Review 1.5<br />

1.3.2 Experimental Work 1.5<br />

1.3.3 Analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> Data 1.5<br />

1.4 Benefits 1.6<br />

CHAPI'ER 2: LITERATURE REVIEW<br />

2.1 Introducti<strong>on</strong> 2.1<br />

2.2 Flow Patterns 2.1<br />

2.2.1 Laminar Flow 2.1<br />

2.2.2 Transiti<strong>on</strong> from Laminar to Turbulent Flow 2.2<br />

2.2.3 Turbulent Flow 2.3<br />

2.3 Reynolds Number 2.3<br />

2.4 Rheology 2.4<br />

2.4.1 Shear Stress 2.4<br />

2.4.2 Yield Stress 2.4<br />

2.4.3 Newt<strong>on</strong>'s Law <str<strong>on</strong>g>of</str<strong>on</strong>g> Viscosity 2.5<br />

2.5 Fluid Classificati<strong>on</strong> 2.6<br />

2.5.1 Newt<strong>on</strong>ian Fluids 2.6<br />

2.5.2 N<strong>on</strong>-Newt<strong>on</strong>ian Fluids 2.7<br />

2.5.3 Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>-Newt<strong>on</strong>ian Behaviour 2.7


Preamble Page ix<br />

2.14 C<strong>on</strong>clusi<strong>on</strong>s 2.44<br />

2.14.1 Laminar Flow 2.44<br />

2.14.2 Transiti<strong>on</strong> from Laminar to Turbulent Flow 2.44<br />

2.14.3 Turbulent Flow 2.44<br />

2.14.4 Objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> Thesis 2.45<br />

CHAPTER 3: EXPERIMENTAL WORK<br />

3.1 Introducti<strong>on</strong>. 3.1<br />

3.2 Testing Facilities 3.1<br />

3.2.1 The East Rig 3.1<br />

3.2.2 The Mini Rig 3.7<br />

3.3 Measured Variables 3.8<br />

3.3.1 Pressure Measurement 3.8<br />

3.3.2 Flow Measurement 3.11<br />

3.4 Calibrati<strong>on</strong> 3.12<br />

3.4.1 Pipeline 3.12<br />

3.4.2 Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Differential Pressure Transducer 3.13<br />

3.4.3 Magnetic Flow Meters 3.16<br />

3.5 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Measured Variables 3.18<br />

3.5.1 Slurry Density 3.18<br />

3.5.2 Solids Relative Density 3.18<br />

3.5.3 Slurry Temperature 3.18<br />

3.5.4 Particle Size Distributi<strong>on</strong> 3.19<br />

3.6 Material 3.20<br />

3.6.1 Kaolin Clay 3.20<br />

3.6.2 Rock Flour 3.21<br />

3.6.3 Sand 3.21<br />

3.7 Mixtures 3.22<br />

3.7.1 Mixture Kaolin Clay and Rock Flour 3.22<br />

3.7.2 Mixture Kaolin Clay and Sand 3.22


Preamble<br />

3.8 Experimental Procedure<br />

3.9 C<strong>on</strong>clusi<strong>on</strong>s<br />

CHAPfER 4:<br />

4.1 Introducti<strong>on</strong><br />

4.2 Pipeline Tests<br />

3.8.1 Start-up Procedure<br />

Page x<br />

3.23<br />

3.23<br />

3.24<br />

RESULTS AND ANALYSIS 4.1<br />

4.2.1 Pipe Roughness 4.2<br />

4.2.2 Particle Roughness Effect 4.2 .<br />

4.2.3 Kaolin Clay 4.3<br />

4.2.4 11ixtures 4.4<br />

4.2.5 Representative Particle Size 4.4<br />

4.2.6 Roughness Functi<strong>on</strong> Correlati<strong>on</strong> Using Optimum Particle Sizes 4.9<br />

4.2.7 Slurry Temperature 4.9<br />

4.3 Rheological Characterizati<strong>on</strong><br />

4.4 Viscous Sub-Layer<br />

4.5 Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>centrati<strong>on</strong><br />

4.6 Theoretical 110dels<br />

4.6.1 Turbulent 110del Performance<br />

4.6.2 11aude & Whitmore Correlati<strong>on</strong><br />

4.6.3 Bowen Correlati<strong>on</strong><br />

4.7 Data from <str<strong>on</strong>g>the</str<strong>on</strong>g> Literature<br />

4.8 C<strong>on</strong>clusi<strong>on</strong>s<br />

CHAPTERS:<br />

5.1 Introducti<strong>on</strong><br />

DISCUSSION<br />

5.2 Particle Roughness Effect<br />

5.3 Roughness Functi<strong>on</strong> Correlati<strong>on</strong> Using Optimum Particle Sizes<br />

4.1<br />

4.1<br />

4.11<br />

4.12<br />

4.16<br />

4.18<br />

4.18<br />

4.24<br />

4.24<br />

4.25<br />

4.26<br />

5.1<br />

5.1<br />

5.2


Preamble Page xi<br />

5.4 Temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> Slurry<br />

5.5 Viscous Sub-Layer 5.2<br />

5.6 Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Particle Size 5.3<br />

5.7 Theoretical Models 5.3<br />

5.8 Reynolds Number vs Fricti<strong>on</strong> Factor Plots 5.6<br />

5.9 C<strong>on</strong>clusi<strong>on</strong>s 5.8<br />

CHAPrER 6:<br />

6.1 Introducti<strong>on</strong><br />

6.2 Summary and C<strong>on</strong>clusi<strong>on</strong>s<br />

SUMMARy & CONCLUSIONS<br />

6.3 Future Research Recommendati<strong>on</strong>s<br />

6.4 Final C<strong>on</strong>clusi<strong>on</strong>s<br />

REFERENCES<br />

APPENDICES<br />

APPENDIX A - EXPERIMENTAL RESULTS<br />

A.I Detailed Pipe Test Results<br />

APPENDIX B - CONFERENCE PAPER<br />

RI Particle Roughness Turbulence<br />

6.1<br />

6.1<br />

6.2<br />

6.3


Preamble Page xii<br />

LIST OF FIGURES<br />

Page<br />

2.1 illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Newt<strong>on</strong>'s law <str<strong>on</strong>g>of</str<strong>on</strong>g> viscosity 2.5<br />

2.2 Rheological models for n<strong>on</strong>-Newt<strong>on</strong>ian fluids 2.8<br />

2.3 Forces acting <strong>on</strong> a fluid element in larninar flow 2.12<br />

2.4 Typical pipeline test data for three pipe diameters 2.14<br />

2.5 Graphical representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Metzner & Reed approach 2.15<br />

2.6 Magnified view <str<strong>on</strong>g>of</str<strong>on</strong>g> a rough wall pipe showing regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbulent</strong> flow 2.18<br />

2.7 Magnified view <str<strong>on</strong>g>of</str<strong>on</strong>g> a rough wall pipe showing <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry <str<strong>on</strong>g>particle</str<strong>on</strong>g>s 2.20<br />

2.8 Graphical comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Blasius, Knudsen & Katz and v<strong>on</strong> Karmen<br />

fricti<strong>on</strong> factor equati<strong>on</strong>s for <strong>turbulent</strong> flow 2.21<br />

2.9 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall for smooth and rough pipes 2.25<br />

2.10 Moody diagram 2.28<br />

2.11 The Dodge & Metzner correlati<strong>on</strong> shown <strong>on</strong> a fricti<strong>on</strong> factor-Reynolds<br />

number diagram<br />

2.29<br />

2.12 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dodge & Metzner predicti<strong>on</strong> curve and Kemblowski &<br />

Kolodziejski experimental data for <str<strong>on</strong>g>the</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> a 30% aqueous kaolin<br />

suspensi<strong>on</strong> at n'=O,39 (taken from Kemblowski & Kolodziejski, 1973) 2.32<br />

2.13 illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area ratio 2.34<br />

2.14 Unsheared plug geometry 2.35<br />

2.15 Velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile in <strong>turbulent</strong> flow 2.38<br />

2.16 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbulent</strong> velocity <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> between a n<strong>on</strong>-Newt<strong>on</strong>ian<br />

slurry and air at Re=40600<br />

2.17 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relative turbulence intensities between a n<strong>on</strong>-Newt<strong>on</strong>ian<br />

slurry and air at Re=40600<br />

2.42<br />

2.43


Preamble Page xiii<br />

2.18 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relative turbulence intensities between bent<strong>on</strong>ite clay<br />

suspensi<strong>on</strong>s (C y =4% and Cy =6%) and water 2.43<br />

3.1 Isometric drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> East Rig 3.2<br />

3.2 Solids handling pump and variable speed hydraulic drive 3.3<br />

3.3 Vertical counterflow secti<strong>on</strong> 3.4<br />

3.4 Horiz<strong>on</strong>tli test secti<strong>on</strong> 3.5<br />

3.5 The 80mm, l50mm and 200mm horiz<strong>on</strong>tal return pipelines 3.5<br />

3.6 Steel hopper and weigh tank 3.6<br />

3.7 The Mini Rig 3.7<br />

3.8 Pressure tapping and solids collecting pod 3.8<br />

3.9 Manometer board 3.10<br />

3.10 Layout <str<strong>on</strong>g>of</str<strong>on</strong>g> valves for a manometer for <str<strong>on</strong>g>the</str<strong>on</strong>g> East and Mini Rigs 3.10<br />

3.11 Data logging set-up 3.11<br />

3.12 Typical output obtained from calibrati<strong>on</strong> programme 3.15<br />

3.13 Current signal vs time for <str<strong>on</strong>g>the</str<strong>on</strong>g> l50mm magnetic flow meter for a desired<br />

speed setting 3.17<br />

3.14 Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> l50mm magnetic flow meter, showing laminar and<br />

<strong>turbulent</strong> data over <str<strong>on</strong>g>the</str<strong>on</strong>g> full test range 3.17<br />

3.15 Particle <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g>s using <str<strong>on</strong>g>the</str<strong>on</strong>g> ASTM and Malvern Particle Sizer<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> same mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay, rock flour and sand 3.19<br />

3.16 Solids materials used for testing purposes 3.21<br />

4.1 Kaolin sec<strong>on</strong>d data test set Ty =5,8; K=0,OO676; n=0,645 4.1<br />

4.2 Roughness functi<strong>on</strong> correlati<strong>on</strong> for n<strong>on</strong>-Newt<strong>on</strong>ian slurries 4.3<br />

4.3 Optimum representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> for test sets K_lO 4.5<br />

4.4 Optimum representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> for test sets K_20 4.6


Preamble Page xiv<br />

4.5 Optimum representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> for test sets RF_lO 4.6<br />

4.6 Optimum representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> for test sets RF_20 4.7<br />

4.7 Optimum representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> for test sets RF_30 4.7<br />

4.8 Optimum representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> for test sets S_1O 4.8<br />

4.9 Optimum representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> for test sets S_20 4.8<br />

4.lO Optimum representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> for test sets S_20 4.9<br />

4.11 Roughness functi<strong>on</strong> correlati<strong>on</strong> using optimum <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>s 4.lO<br />

4.12 Pseudo-shear diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> test KMRL20 including data points at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extreme temperatures 4.11<br />

4.13 Pseudo-shear diagram showing rheological characterizati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin<br />

test sets 4.13<br />

4.14 Pseudo-shear diagram showing rheological characterizati<strong>on</strong> for Mixture 1<br />

test sets 4.13<br />

4.15 Pseudo-shear diagram showing rheological characterizati<strong>on</strong> for Mixture 2<br />

test sets 4.14<br />

4.16 Viscous sub-layer thickness predicti<strong>on</strong>s for kaolin clay 4.14<br />

4.17 Viscous sub-layer thickness predicti<strong>on</strong>s for Mixture 1 4.15<br />

4.18 Viscous sub-layer thickness predicti<strong>on</strong>s for Mixture 2 4.15<br />

4.19 Pseudo-shear diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> 150mm pipe showing <str<strong>on</strong>g>the</str<strong>on</strong>g> data for <str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin<br />

test sets 4.16<br />

4.20 Pseudo-shear diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> 150mm pipe showing <str<strong>on</strong>g>the</str<strong>on</strong>g> data for Mixture 1<br />

test sets 4.17<br />

4.21 Pseudo-shear diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> 150mm pipe showing <str<strong>on</strong>g>the</str<strong>on</strong>g> data for Mixture 2<br />

test sets 4.17<br />

4.22 Pseudo-shear diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> 80mm pipeline: KERSlO: dss =30JLm 4.18<br />

4.23 Pseudo-shear diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> 80mm pipeline: RFERSlO: dss =52JLm 4.19<br />

4.24 Pseudo-shear diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> 80mm pipeline: SERS!O: dss =137JLm 4.19


Preamble<br />

LIST OF TABLES<br />

Page xvi<br />

Page<br />

3.1 Pipeline diameters 3.12<br />

3.II Pipeline roughness 3.13<br />

3.III d S5 Sizes for <str<strong>on</strong>g>the</str<strong>on</strong>g> various data test sets 3.20<br />

.<br />

4.1 Optimum and experimental representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> for Mixture 2 test sets 4.6<br />

4.II Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> slurry properties 4.8<br />

4.III Turbulent model performance - average percentage error 4.17<br />

4.IV Turbulent model performance - log standard error 4.17<br />

5.1 Number c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s in viscous sub-layer 5.5<br />

I


Preamble<br />

NOMENCLATURE<br />

Svrnbol Descripti<strong>on</strong> Unit<br />

a c<strong>on</strong>stant<br />

A c<strong>on</strong>stant<br />

cross secti<strong>on</strong>al area m2 A, area ratio<br />

b c<strong>on</strong>stant<br />

B c<strong>on</strong>stant<br />

roughness functi<strong>on</strong><br />

c c<strong>on</strong>stant<br />

C c<strong>on</strong>centrati<strong>on</strong><br />

CD drag coefficient<br />

d <str<strong>on</strong>g>particle</str<strong>on</strong>g> diameter !Lm<br />

D internal pipe diameter m<br />

E error functi<strong>on</strong><br />

rheological parameter<br />

f Fanning fricti<strong>on</strong> factor<br />

F force N<br />

k c<strong>on</strong>stant<br />

hydraulic roughness !Lm<br />

K fluid c<strong>on</strong>sistency index Pa.s·<br />

K' apparent fluid c<strong>on</strong>sistency index Pa.s·'<br />

I average amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid oscillati<strong>on</strong><br />

:£ PrandtI mixing length m<br />

L pipe length m<br />

m slope<br />

rheological parameter<br />

M mass kg<br />

n flow behaviour index<br />

Page xvii


Preamble<br />

n' apparent flow behaviour index<br />

N number <str<strong>on</strong>g>of</str<strong>on</strong>g> items<br />

p mixing length factor<br />

pressure Pa<br />

q ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> solid to liquid oscillati<strong>on</strong> amplitude<br />

Q volumetric flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> slurry m 3 /s<br />

r radius at a point in <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe m<br />

correlati<strong>on</strong> coefficient<br />

R radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe m<br />

Re Reynolds number<br />

S relative density<br />

u point velocity m/s<br />

u+ dimensi<strong>on</strong>less velocity<br />

V average slurry velocity m/s<br />

V. shear velocity m/s<br />

X unknown quantity<br />

abscissa value<br />

y distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe wall m<br />

y+ dimensi<strong>on</strong>less wall distance<br />

y ordinate value<br />

et proporti<strong>on</strong>al to<br />

shape factor<br />

shear stress ratio<br />


Preamble<br />

T shear stress Pa<br />

T y yield stress Pa<br />

q, functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

X<br />

rheological parameter<br />

v<strong>on</strong> Kannan c<strong>on</strong>stant<br />

0 velocity functi<strong>on</strong><br />

SUbscripts<br />

o<br />

85<br />

ann<br />

c<br />

calc<br />

m-<br />

max<br />

N<br />

NN<br />

obs<br />

P<br />

plug<br />

r<br />

res<br />

s<br />

shear<br />

v<br />

w<br />

x<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe wall<br />

85 th percentile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s passing<br />

refers to <str<strong>on</strong>g>the</str<strong>on</strong>g> annulus<br />

critical<br />

calculated<br />

loss, liquid<br />

mixture (slurry)<br />

maximum<br />

Newt<strong>on</strong>ian<br />

n<strong>on</strong>-Newt<strong>on</strong>ian<br />

observed (experimental)<br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plug<br />

roughness<br />

residual<br />

solids<br />

z<strong>on</strong>e over which shear occurs<br />

volumetric<br />

water<br />

representative <str<strong>on</strong>g>size</str<strong>on</strong>g><br />

Page xix


CHAPTER 1


Chapter I<br />

For example:<br />

Introducti<strong>on</strong> Page 1.3<br />

• In experiments carried out by Maude & Whitmore (1956) it was postulated that in<br />

detennining <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> suspensi<strong>on</strong>s, <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> is a significant<br />

factor. Maude & Whitmore (1958) hence performed a study <strong>on</strong> dilute m<strong>on</strong>o-


Chapter 1 Introducti<strong>on</strong> Page lA<br />

flow, which in turn affects <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer.<br />

However, even with findings such as <str<strong>on</strong>g>the</str<strong>on</strong>g>se, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models which have been<br />

proposed to predict <strong>turbulent</strong> flow behaviour have not taken into account <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g>s inherent in <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid. In fact Mun (1988) states that <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> is <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

frequently overlooked piece <str<strong>on</strong>g>of</str<strong>on</strong>g> data in published literature data. Only as recently as 1994<br />

was a new model been proposed by Slatter (1994) to account for not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> rheology <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g><br />

.<br />

slurry but also <str<strong>on</strong>g>the</str<strong>on</strong>g> representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solids.<br />

1.2 OBJECTIVE<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is to model <strong>turbulent</strong> flow using Slatter's model as well as o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

models already well established in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature, to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PSD <strong>on</strong> n<strong>on</strong>­<br />

Newt<strong>on</strong>ian flow in pipes and to anaiyze <str<strong>on</strong>g>the</str<strong>on</strong>g> results.<br />

The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> test work c<strong>on</strong>ducted by Slatter (1994) was d<strong>on</strong>e using kaolin clay as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

solids material with <strong>on</strong>ly 15 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tests having a representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> exceeding<br />

50jLm. The average representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining tests was 29JLm.<br />

This study is essentially a c<strong>on</strong>tinuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> work c<strong>on</strong>ducted by Slatter (1994) and hence tests<br />

were c<strong>on</strong>ducted using kaolin clay to first c<strong>on</strong>firm <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> Slatter's model. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

tests were <str<strong>on</strong>g>the</str<strong>on</strong>g>n carried out using a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay and rock flour (mixture 1) and a<br />

mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay, rock flour and sand (mixture 2) in order to obtain a representative<br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> higher than that tested by Slatter (1994) and to observe <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> <strong>turbulent</strong> flow predicti<strong>on</strong>s using <str<strong>on</strong>g>the</str<strong>on</strong>g> various<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models.


Chapter 1 Introducti<strong>on</strong> Page 1.5<br />

1.3 METHODOLOGY<br />

The following steps were undertaken with <str<strong>on</strong>g>the</str<strong>on</strong>g> above objective in mind.<br />

1.3.1 Literature Review<br />

The literature review covers <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models:<br />

- Newt<strong>on</strong>ian approximati<strong>on</strong><br />

- Dodge and Metzner (1959)<br />

- Torrance (1963)<br />

- Kemb10wski & Kolodziejski (1973)<br />

- Wils<strong>on</strong> & Thomas (1985)<br />

- Slatter (1994)<br />

The correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Maude & Whitmore (1956, 1958) is also reviewed as it is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly<br />

correlati<strong>on</strong> previous to Slatter's <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical model to take any account <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> suspensi<strong>on</strong>.<br />

1.3.2 Experimental Work<br />

Experimental work was c<strong>on</strong>ducted at <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g>Cape Town's Hydrotransport Facility<br />

using a pumped recirculating pipe test rig c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g>pipe diameters 25mm, 80mm, 150mm<br />

and 200mm.<br />

1.3.3 Analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> Data<br />

The aforementi<strong>on</strong>ed <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models were used to anaIyze <str<strong>on</strong>g>the</str<strong>on</strong>g> data obtained.


Chapter 1 Introducti<strong>on</strong> Page 1.6<br />

1.4 BENEFITS<br />

Slatter's model is mainly <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical at this stage and it is envisaged that through applying<br />

practical research to <str<strong>on</strong>g>the</str<strong>on</strong>g> model that it will go some way to establishing a new model for<br />

industry and to make it more acceptable.


CHAPTER 2


2.1 INTRODUCTION<br />

CHAPTER 2<br />

LITERATURE REVIEW<br />

The presentati<strong>on</strong> in this chapter deals with <str<strong>on</strong>g>the</str<strong>on</strong>g> rheological fundamentals relevant to fluid flow<br />

in pipes. These fundamentals include <str<strong>on</strong>g>the</str<strong>on</strong>g> classificati<strong>on</strong>, measurement and interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>-Newt<strong>on</strong>ian behaviour.<br />

.<br />

2.2 FLOW PATTERNS<br />

The nature <str<strong>on</strong>g>of</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g>a fluid depends <strong>on</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> factors. Factors influencing flow are:<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid and its mass flow rate,<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tainer or pipeline.<br />

The flow <str<strong>on</strong>g>of</str<strong>on</strong>g> a fluid can be characterized into <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> three categories namely larninar flow,<br />

transiti<strong>on</strong>al flow or <strong>turbulent</strong> flow.<br />

2.2.1 L4uninar Flow<br />

In larninar flow layers <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid move relative to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r without any macroscopic<br />

intermixing (Holland, 1973) ie. <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> velocity normal to <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> flow (Govier & Aziz, 1972). From <str<strong>on</strong>g>the</str<strong>on</strong>g> above statement it can be understood why laminar<br />

flow is also referred to as viscous or streamline flow in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this study <str<strong>on</strong>g>the</str<strong>on</strong>g> yield pseudoplastic model has been used for larninar flow<br />

predicti<strong>on</strong>s (secti<strong>on</strong> 2.6), although o<str<strong>on</strong>g>the</str<strong>on</strong>g>r models in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature may also be used.<br />

2.2.2 Transiti<strong>on</strong> from Laminar to Turbulent Flow<br />

There are several methods in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature that can be used to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> between<br />


Chapter 2 Literature Review Page 2.6<br />

However, even though <str<strong>on</strong>g>the</str<strong>on</strong>g> above statements can be taken to be true for Newt<strong>on</strong>ian fluids<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re are times when certain fluids deviate from <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>ian behaviour. From <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical<br />

c<strong>on</strong>siderati<strong>on</strong>s as presented by Grunberg & Nissan (1945) it can be c<strong>on</strong>cluded that at high<br />

rates <str<strong>on</strong>g>of</str<strong>on</strong>g> shear <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se fluids (eg. n-pentane) may become a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> shear<br />

rate. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r fluids which behave as Newt<strong>on</strong>ian at lower shear stresses also exhibit n<strong>on</strong>­<br />

Newt<strong>on</strong>ian behaviour above certain shear stresses. In experiments c<strong>on</strong>ducted by We1tmann<br />

(1948) it was shown that several oils have a n<strong>on</strong>-Newt<strong>on</strong>ian behaviour above a limiting shear<br />

stress <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 958 Pa. This seems to c<strong>on</strong>tradict <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that normally at high<br />

Reynolds numbers n<strong>on</strong>-Newt<strong>on</strong>ian behaviour decreases (see secti<strong>on</strong> 2.5.3.d).<br />

i Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> Newt<strong>on</strong>ian behaviour include:<br />

• all gases,'<br />

• all liquids or soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> low molecular weight (Metzner, 1956).<br />

2.5.2 N<strong>on</strong>-Newt<strong>on</strong>ian fluids<br />

Unlike Newt<strong>on</strong>ian fluids, <str<strong>on</strong>g>the</str<strong>on</strong>g> term viscosity has no meaning for a n<strong>on</strong>-Newt<strong>on</strong>ian fluid unless<br />

it is related to a particular shear rate (Holland, 1973). However, an apparent viscosity can<br />

be defiiled as (Holland 1973, Wils<strong>on</strong> 1986):<br />

N<strong>on</strong>-Newt<strong>on</strong>ian fluids are normally divided into <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two categories (Metzner, 1956):<br />

(a) Fluids with properties independent <str<strong>on</strong>g>of</str<strong>on</strong>g> tome or <str<strong>on</strong>g>the</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shear.<br />

(2.5)<br />

(b) More complex fluids where <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between shear stress and shear<br />

rate depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shear.<br />

A graphical representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several possible relati<strong>on</strong>ships between shear stress and shear<br />

rate for n<strong>on</strong>-Newt<strong>on</strong>ian fluids, called a rheogram, is showlLin Figure 2.2.


Chapter 2 Literature Review Page 2.8<br />

... Cb) Particle Shape<br />

In a Newt<strong>on</strong>ian liquid, if <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s are rigid spherical <str<strong>on</strong>g>particle</str<strong>on</strong>g>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>y impart<br />

pseudoplastic behaviour. Rigid ellipsoidal and elastic spherical <str<strong>on</strong>g>particle</str<strong>on</strong>g>s will normally<br />

result in visco-elastic behaviour (Charles & Kenchingt<strong>on</strong>, 1976).<br />

I (c) C<strong>on</strong>centrati<strong>on</strong><br />

The increase <str<strong>on</strong>g>of</str<strong>on</strong>g> solids c<strong>on</strong>centrati<strong>on</strong> increases <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newt<strong>on</strong>ian behaviour<br />

and larger <str<strong>on</strong>g>particle</str<strong>on</strong>g>s may form a n<strong>on</strong>-Newt<strong>on</strong>ian mixture at increased c<strong>on</strong>centrati<strong>on</strong><br />

(Lazarus, 1992). Thomas (1963) showed that for <str<strong>on</strong>g>particle</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> range 0,35 to 13 Itm<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> yield stress is inversely proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> diameter and proporti<strong>on</strong>al to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cube <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> volumetric c<strong>on</strong>centrati<strong>on</strong>.<br />

I (d) Reynolds Number<br />

Athigh Reynolds numbers n<strong>on</strong>-Newt<strong>on</strong>ian behaviour decreases (Lazarus, 1992). This<br />

is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian fluids at high Reynolds<br />

numbers is characterized by increased inertial forces compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous<br />

forces. This is in c<strong>on</strong>tradicti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> findings <str<strong>on</strong>g>of</str<strong>on</strong>g> Weltman (1948) (see secti<strong>on</strong><br />

2.5.1). In laminar flow and at "low Reynolds numbers <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian<br />

characteristics or behaviour becomes more prominent.<br />

2.6 SLURRY CLASSIFICATION<br />

Solid-liquid suspensi<strong>on</strong>s (ie. slurries) can be classified in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two regimes according to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> manner in which <str<strong>on</strong>g>the</str<strong>on</strong>g>y flow.<br />

2.6.1 Homogeneous Slurries<br />

This type <str<strong>on</strong>g>of</str<strong>on</strong>g>slurry <str<strong>on</strong>g>of</str<strong>on</strong>g>ten exhibits n<strong>on</strong>-Newt<strong>on</strong>ian rheology (Thomas 1976, Lazarus 1992) and<br />

although it is characterized by a uniform c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s about <str<strong>on</strong>g>the</str<strong>on</strong>g> axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe,<br />

it flows as a single-phase fluid (Thomas 1976). This definiti<strong>on</strong> encompasses n<strong>on</strong>-settling


Chapter 2 Literature Review Page 2.9<br />

slurries as well as those requiring <strong>turbulent</strong> flow to maintain homogeneity. This study will<br />

c<strong>on</strong>centrate <strong>on</strong> homogeneous slurries.<br />

2.6.2 Heterogeneous Slurries<br />

By c<strong>on</strong>trast, heterogeneous slurries do not behave as single-phase fluid ie. <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid and solid<br />

phase retain <str<strong>on</strong>g>the</str<strong>on</strong>g>ir separate identities. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g>se slurries will flow with a n<strong>on</strong>­<br />

axisymmetric c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g>. The solids phase tends to have larger <str<strong>on</strong>g>particle</str<strong>on</strong>g>s than<br />

homogeneous slurries.<br />

2.7 TIME-INDEPENDENT FLUIDS<br />

2.7.1 Introducti<strong>on</strong><br />

Bingharn plastic, pseudoplastic and dilatant fluids all fall into this category. However, all<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se rheological relati<strong>on</strong>ships as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>ian and yield dilatant relati<strong>on</strong>ships can<br />

be described by <str<strong>on</strong>g>the</str<strong>on</strong>g> yield pseudoplastic model (sometimes referred to in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

generalised Bingharn model). The rheological assumpti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> yield-pseudoplastic model,<br />

as suggested by Herschel & Bulkley (1926), is as follows:<br />

T = T + K [_ dUJ D<br />

Y dr'<br />

where T y is <str<strong>on</strong>g>the</str<strong>on</strong>g> yield stress;<br />

(2.6)<br />

K is <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid c<strong>on</strong>sistency index which characterizes <str<strong>on</strong>g>the</str<strong>on</strong>g> "thickness" <str<strong>on</strong>g>of</str<strong>on</strong>g> a fluid and<br />

is similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> a Newt<strong>on</strong>ian fluid,<br />

n is <str<strong>on</strong>g>the</str<strong>on</strong>g> flow behaviour index and characterizes <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g>deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>a fluid from<br />

Newt<strong>on</strong>ian behaviour (Metzner,1956).<br />

The above menti<strong>on</strong>ed rheological relati<strong>on</strong>ships can be described using <str<strong>on</strong>g>the</str<strong>on</strong>g> yield pseudoplastic<br />

model depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> T y and n:<br />

(a)<br />

(b)<br />

Bingham plastic<br />

Yield pseudoplastic<br />

{Ty>O and n=l}<br />

{Ty>O and n < 11


Chapter 2 Literature Review Page 2.11<br />

The relati<strong>on</strong>ship between shear rate and <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> is given by<br />

i' = -<br />

dV<br />

dr<br />

Length (L)<br />

"<br />

Fluid element<br />

Figure 2.3: Forces acting <strong>on</strong> a fluid element in laminar flow<br />

(2.9)<br />

(2.10)<br />

A force balance <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cylindrical element in Figure 2.3 will yield <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shear stress at a radial positi<strong>on</strong> r to <str<strong>on</strong>g>the</str<strong>on</strong>g> overall axial pressure drop over <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe <str<strong>on</strong>g>of</str<strong>on</strong>g> length<br />

L:<br />

or,<br />

(2.11)


Chapter 2 Literature Review Page 2.12<br />

The partial integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> 2.9 using equati<strong>on</strong> 2.10 and equati<strong>on</strong> 2.12 leads to:<br />

3<br />

rD '. du<br />

Q = - - • J r- - - dT ,<br />

8 [ TO ] 0 dr<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> shear stress at <str<strong>on</strong>g>the</str<strong>on</strong>g> wall is given by:<br />

T = Ddp<br />

o 4 L<br />

(2.12)<br />

(2.13)<br />

(2.14)<br />

The flow rate for <str<strong>on</strong>g>the</str<strong>on</strong>g> yield pseudoplastic model, <str<strong>on</strong>g>the</str<strong>on</strong>g> Bingham plastic model or <str<strong>on</strong>g>the</str<strong>on</strong>g> power law<br />

model can hence be obtained by substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relevant rheological equati<strong>on</strong> ie. equati<strong>on</strong><br />

2.6, equati<strong>on</strong> 2.7 or equati<strong>on</strong> 2.8 respectively. As menti<strong>on</strong>ed, <str<strong>on</strong>g>the</str<strong>on</strong>g> yield pseudoplastic model<br />

- - -is<br />

to used for this study <str<strong>on</strong>g>the</str<strong>on</strong>g>refore substituting equati<strong>on</strong> 2.6 into equati<strong>on</strong> 2.13 yields:<br />

4n<br />

1<br />

• n 3<br />

TO<br />

K<br />

2.7.3 Generalized Approach for Laminar Flow<br />

(2.15)<br />

Metzner & Reed (1955) proposed a generalized correlati<strong>on</strong> for any time independent fluid.<br />

This is based up<strong>on</strong> a relati<strong>on</strong>ship developed by Rabinowitsch (1929) and Mo<strong>on</strong>ey (1931) for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shear rates at <str<strong>on</strong>g>the</str<strong>on</strong>g> wall <str<strong>on</strong>g>of</str<strong>on</strong>g> a pipe, where:<br />

[ _dU] = l. [ 8Y]<br />

dr 0 4 D<br />

I 8Y<br />

+ - - To'<br />

4 D<br />

(2.16)


Chapter 2 Literature Review Page 2.16<br />

At fixed values <str<strong>on</strong>g>of</str<strong>on</strong>g> T y , K and n, a root mean square error <str<strong>on</strong>g>of</str<strong>on</strong>g> fit functi<strong>on</strong> E can be defined for<br />

a series <str<strong>on</strong>g>of</str<strong>on</strong>g> N data points in <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar flow regi<strong>on</strong>,<br />

E =<br />

N - 1<br />

2<br />

(2.23)<br />

The K value for minimum error K.u.. can be found by setting aE/aK=O for a fixed value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ty and n,<br />

K. = 11<br />

auo<br />

T<br />

2 y ]<br />

+ l+n<br />

The T y and n values are <str<strong>on</strong>g>the</str<strong>on</strong>g>n optimized to give a global minimum for E.<br />

2.9 VELOCITY DISTRIBUTION FOR TURBULENT FLOW<br />

n<br />

(2.24)<br />

Turbulent flow models for n<strong>on</strong>-Newt<strong>on</strong>ian fluids are normally based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical<br />

methods adopted for Newt<strong>on</strong>ian fluid <strong>turbulent</strong> behaviour (eg. Torrance 1963, Wils<strong>on</strong> &<br />

Thomas 1985, 1987, SIatter 1994). In this secti<strong>on</strong> <strong>turbulent</strong> flow for Newt<strong>on</strong>ian fluids is<br />

COvered although <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s is also c<strong>on</strong>sidered as it is felt that this should<br />

form part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis for <strong>turbulent</strong> flow analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> any n<strong>on</strong>-Newt<strong>on</strong>ian flow model.<br />

2.9.1 Wall Roughness<br />

The type <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbulent</strong> flow encountered depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall roughness (Govier & Aziz,<br />

1972). Under microscopic investigati<strong>on</strong> it can be seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> inner wall <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe is not<br />

smooth but many protrusi<strong>on</strong>s exist. The term wall, pipe or surface TOughness is used to<br />

describe <str<strong>on</strong>g>the</str<strong>on</strong>g> complex <str<strong>on</strong>g>size</str<strong>on</strong>g>, shape and spacing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se protrusi<strong>on</strong>s. The elttent <str<strong>on</strong>g>of</str<strong>on</strong>g> roughness<br />

will depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> material used in manufacturing <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe and <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

manufacture. For a given fluid and velocity, roughness in a pipe increases <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop


Chapter 2 Literature Review<br />

Viscous Sub-layer Thickness<br />

---------------------._----------._-.-._-----<br />

Page 2.18<br />

Figure 2.6: Magnified view <str<strong>on</strong>g>of</str<strong>on</strong>g> a rough wall pipe showing regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbulent</strong> flow<br />

2.9.2 The Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Solid Particles<br />

Although a <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> energy gradients in <strong>turbulent</strong> flow has been reported by<br />

Maude & Whitmore (1956, 1958), Mun (1988) and Slatter (1994), it is still customary in<br />

homogenous n<strong>on</strong>-Newt<strong>on</strong>ian slurries to ignore <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s are present. As<br />

previously menti<strong>on</strong>ed in Chapter 1 it has been found that <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> and <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> do<br />

influence flow behaviour (philipp<str<strong>on</strong>g>of</str<strong>on</strong>g>f 1944, Hedstrom 1952, Orr & Blocker 1955,<br />

Zettlemoyer & Lower 1955, Maude & Whitrnore 1956, Thomas 1983, Mun 1988, Slatter<br />

1994) and yet it is <str<strong>on</strong>g>the</str<strong>on</strong>g> most overlooked piece <str<strong>on</strong>g>of</str<strong>on</strong>g> data in <strong>turbulent</strong> flow analysis (Mun, 1988).<br />

Particles will cause a decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity gradient similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall<br />

roughness (Slatter, 1994) and should <str<strong>on</strong>g>the</str<strong>on</strong>g>refore be taken into account in <strong>turbulent</strong> flow<br />

analyses. This can be understood if <str<strong>on</strong>g>the</str<strong>on</strong>g> following is c<strong>on</strong>sidered.<br />

The change in velocity as <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe wall is approached is very rapid. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

change in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe wall is in <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> hn/s (Slatter, 1994) over <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>a typical <str<strong>on</strong>g>particle</str<strong>on</strong>g>. Ifsolid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s are present in <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid <str<strong>on</strong>g>the</str<strong>on</strong>g>y will resist-shear and hence<br />

impede <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid changes in velocity.


Chapter 2 Literature Review Page 2.19<br />

2.9.3 C<strong>on</strong>tinuum Approximati<strong>on</strong><br />

From secti<strong>on</strong> 2.9.1 and secti<strong>on</strong> 2.9.2 it can be seen that wall roughness and <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s will affect <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity gradient. This fact should be stressed as virtually all<br />

researchers in <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrotransport describe homogeneous solid-liquid suspensi<strong>on</strong>s<br />

using c<strong>on</strong>tinuum models. The definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuum as given by Parker (1994) is:<br />

"The study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> energy. matter and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r physical quannnes under<br />

.<br />

circumstances where <str<strong>on</strong>g>the</str<strong>on</strong>g>ir discrete (composed <str<strong>on</strong>g>of</str<strong>on</strong>g> separate and distinct pans) nature is<br />

unimportant and <str<strong>on</strong>g>the</str<strong>on</strong>g>y may be regarded as (in general. complex) c<strong>on</strong>tinuous ftmcti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

positi<strong>on</strong>. "<br />

The problem with using c<strong>on</strong>tinuum models is that homogeneous solid-liquid suspensi<strong>on</strong>s can<br />

never be truly homogeneous. The c<strong>on</strong>tinuum nature <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se slurries is an approximati<strong>on</strong> and<br />

is a state to which <str<strong>on</strong>g>the</str<strong>on</strong>g> slurries tend asymptotically (Shook & Roco, 1991). Although this<br />

approximati<strong>on</strong> is deemed to hold good, it <strong>on</strong>ly does so as l<strong>on</strong>g as <str<strong>on</strong>g>the</str<strong>on</strong>g> scale <str<strong>on</strong>g>of</str<strong>on</strong>g> fineness<br />

required by <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent modelling is not surpassed by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> (Lumley, 1978).<br />

Hence, when c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuum approximati<strong>on</strong> MUST be<br />

compromised (Slatter 1994, Slatter et al 1996). This can clearly be seen in Figure 2.7, a<br />

magnified view <str<strong>on</strong>g>of</str<strong>on</strong>g> a rough pipe wall showing <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thickness and <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry<br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g>s, which indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s are large compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> scale <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modelling. It is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore imperative that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical model account for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g>s in <strong>turbulent</strong> flow.<br />

Maude & Whitmore (1956, 1958) and Slatter (1994) are at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> writing <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly<br />

known researchers to have taken <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> into account in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow analyses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models. Their analyses are presented in secti<strong>on</strong> 2.11.6 and secti<strong>on</strong> 2.11.5<br />

respectively.<br />

2.9.4 Turbulence<br />

Blasius (1913) was <str<strong>on</strong>g>the</str<strong>on</strong>g> first to suggest a standard empirical relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> Reynolds<br />

number and <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> factor for fully developed turbulenLNewt<strong>on</strong>ian flow.


Chapter 2 Literature Review<br />

• ..Page<br />

2.20<br />

Figure 2.8: Magnified view <str<strong>on</strong>g>of</str<strong>on</strong>g> a rough pipe wall showing <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry <str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

The Blasius equati<strong>on</strong> is applicable to <str<strong>on</strong>g>the</str<strong>on</strong>g> range 3000 < Re < 100 000 where,<br />

f = 0,079 Reo. 25 • (2.28)<br />

Knudsen & Katz (1958) proposed a similar equati<strong>on</strong> for fully developed <strong>turbulent</strong> Newt<strong>on</strong>ian<br />

flow supposedly applicable to <str<strong>on</strong>g>the</str<strong>on</strong>g> range 5000. < Re < 200 000 where,<br />

f = 0,046 Reo. 2 •<br />

(2.29)<br />

Equati<strong>on</strong> 2.29 is about 10% below equati<strong>on</strong> 2.28 at low Reynolds numbers but meets it at<br />

higher Reynolds numbers (Bowen, 1961). A logarithmic plot <str<strong>on</strong>g>of</str<strong>on</strong>g>f vs Re (Figure 2.8) for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

above equati<strong>on</strong>s yields a straight line and over <str<strong>on</strong>g>the</str<strong>on</strong>g> years evidence has supported this single<br />

line correlati<strong>on</strong>. For example, Cadwell & Babbitt (1941), who studied <str<strong>on</strong>g>the</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> muds,<br />

Sludges and suspensi<strong>on</strong>s in circular pipes c<strong>on</strong>cluded that head loss in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow<br />

regime can be calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> Blasius equati<strong>on</strong> if<str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry and a proper<br />

viscosity (defined under larninar flow c<strong>on</strong>diti<strong>on</strong>s) are used.<br />

The v<strong>on</strong> Karmen equati<strong>on</strong> (1930) based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Prandtl (1926) mixing length model was<br />

proposed to represent moreexactly <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental data for Reynolds numbers for <str<strong>on</strong>g>the</str<strong>on</strong>g> range<br />

3000 < Re < 300 000 where,


Chapter 2 Literature Review Page 2.21<br />

I{ =<br />

4 log(Re If) - 0,4 .<br />

(2.30)<br />

Even though this equati<strong>on</strong> was proposed for a much wider range <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds numbers, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Reynolds numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vast majority <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newt<strong>on</strong>ian fluids rarely exceeds 100 000 due<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se fluids.<br />

However, even though <str<strong>on</strong>g>the</str<strong>on</strong>g> simple Blasius type equati<strong>on</strong>s can be used, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> work to<br />

develop semi-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models for <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> Newt<strong>on</strong>ian fluids in pipes has centred<br />

around <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing length model <str<strong>on</strong>g>of</str<strong>on</strong>g> Prandtl (1926).<br />

0.01<br />

0.00 1-f---r--r-;..-rrTT.,,---.----.T"T"T"TTTT--r-r.....,...,....,.-T"TTi<br />

1000 10000 100000 1000000<br />

Reynolds Number (Re)<br />

Figure 2.9: Graphical comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Blasius, Knudsen & Katz and v<strong>on</strong><br />

Karmen fricti<strong>on</strong> factor equati<strong>on</strong>s for <strong>turbulent</strong> flow<br />

2.9.5 Smooth Wall Turbulence<br />

In <strong>turbulent</strong> flow, <str<strong>on</strong>g>the</str<strong>on</strong>g> interchange <str<strong>on</strong>g>of</str<strong>on</strong>g>momentum between layers, due to eddy formati<strong>on</strong>, sets<br />

up shear stresses, also koown as Reynolds stresses (Schlichting, 1968). The shear stress in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> core must be related to <str<strong>on</strong>g>the</str<strong>on</strong>g> shear rate in order to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g><br />

and flow rate (Janna, 1983).


Chapter 2 Literature Review Page 2.26<br />

_1 =-410g [ k].<br />

If 3,7 D<br />

2.10.4 Partially Developed Rough Wall Turbulence<br />

(2.48)<br />

The transiti<strong>on</strong>al flow between smooth and rough pipes as shown in Figure 2.10 was<br />

investigated by Colebrook and White (Colebrook, 1939). The following empirical equati<strong>on</strong><br />

was proposed:<br />

If 1 [ k<br />

= -4 log 3,7 D<br />

2.10.5 Moody Diagram<br />

+ 1,26]<br />

Re If<br />

(2.49)<br />

Moody (1944) was <str<strong>on</strong>g>the</str<strong>on</strong>g> first to present a composite diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> interest for<br />

Newt<strong>on</strong>ian flow in pipes. The chart, termed <str<strong>on</strong>g>the</str<strong>on</strong>g> Moody diagram, as shown in Figure 2.10,<br />

represents <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Re and kiD <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> factor and includes:<br />

2.11<br />

•<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> straight line laminar fricti<strong>on</strong> factor curve<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> smooth pipe <strong>turbulent</strong> fricti<strong>on</strong> factor curve<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> various fully rough <strong>turbulent</strong> fricti<strong>on</strong> factor curves<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> fricti<strong>on</strong> factors<br />

NON-NEWTONIAN TURBULENT FLOW MODELS<br />

Data obtained by Slatter (1994) was analyzed and compared using his new model with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Torrance (1963) and Wils<strong>on</strong> & Thomas (1985, 1987) models, <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models which have<br />

a str<strong>on</strong>ger analytical background. It was decided to use <str<strong>on</strong>g>the</str<strong>on</strong>g>se two models for analysis and<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> data for this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis seeing that this is a c<strong>on</strong>tinuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> work c<strong>on</strong>ducted by<br />

Slatter (1994). It was, however, also decided to incorporate into <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>the</str<strong>on</strong>g> models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Dodge & Metzner (1959) and Kemblowski & Kolodziejski (1973), models having a more and<br />

empirical approach.


Chapter 2<br />

2.11.1<br />

Literature Review<br />

The Dodge & Metzner Model<br />

Page 2.28<br />

The n<strong>on</strong>-Newt<strong>on</strong>ian <strong>turbulent</strong> flow model <str<strong>on</strong>g>of</str<strong>on</strong>g> Dodge & Metzner is probably <str<strong>on</strong>g>the</str<strong>on</strong>g> most quoted<br />

and used <str<strong>on</strong>g>of</str<strong>on</strong>g> all flow models due to its simplicity and applicability to a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>­<br />

Newt<strong>on</strong>ian fluids (Mun, 1988). The model was developed from <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar flow work <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Metzner & Reed (1955) in which sixteen different n<strong>on</strong>-Newt<strong>on</strong>ian materials were studied.<br />

Both Metzner & Reed (1955) and Dodge & Metzner (1958) stated that standard Newt<strong>on</strong>ian<br />

procedures could be used for <strong>turbulent</strong> flow predicti<strong>on</strong>s. In order to obtain a velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>Ile<br />

equati<strong>on</strong> Dodge & Metzner a;sumed <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g>a discrete boundary layer (viscous sub­<br />

layer), transiti<strong>on</strong> z<strong>on</strong>e and <strong>turbulent</strong> core in <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe. They also assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> apparent<br />

flow behaviour index n' influences <str<strong>on</strong>g>the</str<strong>on</strong>g> point velocity in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> core which means that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow head loss is dependant <strong>on</strong> n'.<br />

Their relati<strong>on</strong>ship for <strong>turbulent</strong> flow is:<br />

1<br />

If = A. log<br />

where<br />

and<br />

c =-<br />

•<br />

0,4<br />

(n ')1.2<br />

[ Re f{1 -.;:l] + c<br />

MR n ,<br />

(2.50)<br />

(2.51)<br />

(2.52)<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s made by Dodge & Metzner (1959) <str<strong>on</strong>g>the</str<strong>on</strong>g> above relati<strong>on</strong>ship will revert<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> smooth wall Newt<strong>on</strong>ian model when n' = I. The above relati<strong>on</strong>ship can also be<br />

represented graphically as shown in Figure 2.11.<br />

2.11.2 The Torrance Model<br />

Torrance developed a relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> fanning fricti<strong>on</strong> factor and <str<strong>on</strong>g>the</str<strong>on</strong>g> Reynolds<br />

number for Herschel-BulkIey model fluids ie. <str<strong>on</strong>g>the</str<strong>on</strong>g> yield pseudoplastic rheological model.


Chapter 2 Literature Review Page 2.30<br />

The two c<strong>on</strong>stants a and b were assumed to be identical to those evaluated by Clapp (1961)<br />

and hence taken to be:<br />

3,8<br />

a =-,<br />

n<br />

and<br />

b = 2,78.<br />

n<br />

(2.54)<br />

(2.55)<br />

For rough walled pipes <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile was modified using Prandtl's assumpti<strong>on</strong> that<br />

u(y) ex y/k and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stants re-evaluated using <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>ian data <str<strong>on</strong>g>of</str<strong>on</strong>g> Nikuradse (1933).<br />

The relati<strong>on</strong>ship for rough wall pipes is:<br />

JT<br />

- -- -2,5 1 og [Re] -<br />

f n k<br />

_ 3,75 + 8,5 .<br />

n<br />

The Reynolds number formulati<strong>on</strong> as given by Torrance is:<br />

(2.56)<br />

(2.57)<br />

The Torrance model is unable to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence (as shown by Slatter, 1994)<br />

and thus it was assumed (Mun, 1988) that <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> occurs at <str<strong>on</strong>g>the</str<strong>on</strong>g> intersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

laminar and <strong>turbulent</strong> curves.<br />

2.11.3 The Kemblowski & Kolodziejski Model<br />

Kemblowski & Kolodziejski (1973) developed an empirical equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Blasius type to<br />

predict <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> power law fluids. Tests undertaken related <str<strong>on</strong>g>the</str<strong>on</strong>g> flow resistances <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10%,20%,30%,40% and 50% by weight aqueous suspensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>kaolin in pipes <str<strong>on</strong>g>of</str<strong>on</strong>g>circular<br />

cross-secti<strong>on</strong>. The test results are given in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

flow resistance <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized Reynolds number


Chapter 2 Literature Review Page 2.31<br />

A = 4f = f (Re) . (2.58)<br />

This forms a relatively flat f-Re line. At higher values <str<strong>on</strong>g>of</str<strong>on</strong>g> Re all lines <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> 2.58<br />

approach <str<strong>on</strong>g>the</str<strong>on</strong>g> curve described by <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong><br />

A = 4f = 0,3164<br />

R 0.25<br />

e MR<br />

(2.59)<br />

Kemblowski & Kolodziejski (1973) compared <str<strong>on</strong>g>the</str<strong>on</strong>g>ir work extensively with <str<strong>on</strong>g>the</str<strong>on</strong>g> Dodge &<br />

Metzner model and found that it did not accurately describe <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se aqueous<br />

kaolin suspensi<strong>on</strong>s. In fact <str<strong>on</strong>g>the</str<strong>on</strong>g>y found that <str<strong>on</strong>g>the</str<strong>on</strong>g> data lay <strong>on</strong> a relatively flat f-Re line between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> lines <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> 2.59 and <str<strong>on</strong>g>the</str<strong>on</strong>g> Dodge & Metzner predicti<strong>on</strong> as can be seen in <str<strong>on</strong>g>the</str<strong>on</strong>g> figure<br />

below (Figure 2.12).<br />

Figure 2.12: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dodge & Metzner predicti<strong>on</strong> curve and Kemb10wski &<br />

Kolodziejski experimental data for <str<strong>on</strong>g>the</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> a 30% aqueous kaolin<br />

suspensi<strong>on</strong> at n=0,39 (taken from Kemblowski & Kolodziejski, 1973)


Chapter 2 Literature Review Page 2.33<br />

• Yield pseudoplastic fluids (Thomas & Wils<strong>on</strong>, 1987). Their analysis showed<br />

that as <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flow behaviour index decreases from unity, <str<strong>on</strong>g>the</str<strong>on</strong>g> plot<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fricti<strong>on</strong> factor vs Reynolds number c<strong>on</strong>verges towards <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>ian line.<br />

The plot <str<strong>on</strong>g>the</str<strong>on</strong>g>n parallels <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>ian line and eventually diverges downwards<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>ian line. It was found that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>verging behaviour was<br />

exhibited by low c<strong>on</strong>centrati<strong>on</strong> slurries compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> diverging behaviour,<br />

exhibited by high c<strong>on</strong>centrati<strong>on</strong> slurries.<br />

The equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir turbulel)t flow model as applying to pseudoplastic fluids is presented<br />

below.<br />

The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer increases by a factor called <str<strong>on</strong>g>the</str<strong>on</strong>g> area ratio A. shown<br />

graphically in Figure 2.13. The figure shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> area ratio is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

integrals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian and assumed Newt<strong>on</strong>ian rheograms under identical shear<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

Figure 2.13: Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area ratio<br />

Shear Rate ---...


Chapter 2 Literature Review Page 2.34<br />

The area ratio A, is thus given by:<br />

1 + :y n]<br />

A<br />

r<br />

= 2 [ 0<br />

1 + n '<br />

and hence <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thickness is:<br />

(2.64)<br />

(2.65)<br />

where 0" and 0",. are equivalent Newt<strong>on</strong>ian and n<strong>on</strong>-Newt<strong>on</strong>ian viscous sub-layer thicknesses<br />

respectively.<br />

The velocity <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> is given by:<br />

u<br />

-=251n<br />

V. ' [ PV.y]<br />

p.' + 5,5 + 11,6 (A, - 1) - 2,5 In(A,) .<br />

The mean velocity is given by:<br />

V V N<br />

- = - + 11 6 (A - 1) - 2 5 In A - {}<br />

V V' r ' r'<br />

. .<br />

where V N is <str<strong>on</strong>g>the</str<strong>on</strong>g> mean velocity for <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent Newt<strong>on</strong>ian fluid and n is given by:<br />

{} = -2,5 In [1 _T y ] _ 2,5 T y [1 + 0,5 T y ] •<br />

To TO TO<br />

2.11.5 The Slatter Model<br />

(2.66)<br />

(2.67)<br />

(2.68)<br />

As menti<strong>on</strong>ed in Chapter 1 Slatter (1994) is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> few researchers to have taken into<br />

account <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid for <strong>turbulent</strong> flow analysis.<br />

A new Reynolds number was developed for predicting <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence. It was<br />

modelled using <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> unsheared plug present due to <str<strong>on</strong>g>the</str<strong>on</strong>g> yield stress acts as<br />

a solid at <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe axis and inhibits turbulence (Figure 2.14).


Chapter 2 Literature Review Page 2.35<br />

I<br />

Pipe wall<br />

Sheared<br />

annulus<br />

The Reyno1ds number is given by<br />

where<br />

and<br />

D ohear = D - D p,ug •<br />

Annular<br />

velocity<br />

Figure 2.14: Unsheared plug geometry<br />

Plug diameter<br />

Pipe diameter<br />

Slatter (1994) used <str<strong>on</strong>g>the</str<strong>on</strong>g> following precepts as <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> his <strong>turbulent</strong> flow model:<br />

(2.69)<br />

(2.70)<br />

(2.71)<br />

• The velocity <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> is logarithmic and similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> classic Newt<strong>on</strong>ian<br />

<strong>turbulent</strong> velocity <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> over <str<strong>on</strong>g>the</str<strong>on</strong>g> entire core regi<strong>on</strong>.<br />

• A roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> is caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s.


Chapter 2 Literature Review Page 2.36<br />

• Fully developed rough wall <strong>turbulent</strong> flow does exist and <str<strong>on</strong>g>the</str<strong>on</strong>g> partially rough<br />

wall <strong>turbulent</strong> regi<strong>on</strong> is much narrower than for Newt<strong>on</strong>ian fluids.<br />

• Fully developed <strong>turbulent</strong> flow is independent <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> viscous characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> slurry.<br />

• Plug flow does not occur.<br />

In order to determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r smooth wall <strong>turbulent</strong> flow or fully developed rough wall<br />

<strong>turbulent</strong> flow exists a roughness Reynolds number was formulated in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> yield<br />

pseudoplastic model.<br />

The roughness Reynolds number is:<br />

(2.72)<br />

Where cl. is <str<strong>on</strong>g>the</str<strong>on</strong>g> representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>. d.=d85 was found to be good representative<br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> for <str<strong>on</strong>g>the</str<strong>on</strong>g> slurries tested.<br />

If Re, < 3,32 <str<strong>on</strong>g>the</str<strong>on</strong>g>n smooth wall <strong>turbulent</strong> flow exists and <str<strong>on</strong>g>the</str<strong>on</strong>g> mean velocity is given by:<br />

V = 2,5 In [R] -<br />

• dgs<br />

+ 2,5 In Re, + 1,75 .<br />

(2.73)<br />

If Re, > 3,32 <str<strong>on</strong>g>the</str<strong>on</strong>g>n fully developed rough wall <strong>turbulent</strong> flow exists and <str<strong>on</strong>g>the</str<strong>on</strong>g> mean velocity<br />

is given by:<br />

V = 2,5 In [R] -<br />

• d85 Which reduces to<br />

+ 4,75 ,<br />

(2.74)


Chapter 2 Literature Review Page 2.38<br />

(2.77)<br />

Tests c<strong>on</strong>ducted by Slatter (1994) c<strong>on</strong>firmed <str<strong>on</strong>g>the</str<strong>on</strong>g> model to be more accurate than <str<strong>on</strong>g>the</str<strong>on</strong>g> Torrance<br />

(1963) model and Wils<strong>on</strong> & Thomas (1985, 1987) model against which experimental data<br />

was compared. This model was also supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental data <str<strong>on</strong>g>of</str<strong>on</strong>g>Park et al (1989)<br />

and Xu et al (1993).<br />

2.11.6 Maude & Whitmore Correlati<strong>on</strong><br />

Maude & Whitmore (1956, 1958) are two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> few researchers, if not <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly two before<br />

Slatter (1994), to take any account <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s play in <strong>turbulent</strong> flow.<br />

Tests ·were c<strong>on</strong>ducted in thin vertical 2,2mm, 3,5mm and 5mm diameter tubes using emery<br />

slurries at six different c<strong>on</strong>centrati<strong>on</strong>s. The <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emery slurries<br />

fell within <str<strong>on</strong>g>the</str<strong>on</strong>g> range 20 to 40JLm. Data was presented in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g>curves <str<strong>on</strong>g>of</str<strong>on</strong>g> fricti<strong>on</strong> factors<br />

against Reynolds numbers.<br />

The main observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Maude & Whitmore (1958) was that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> fricti<strong>on</strong> factor<br />

(based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall viscosity) was initially higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>ian fricti<strong>on</strong> factor but fell<br />

below at increased Reynolds numbers. This observati<strong>on</strong> is c<strong>on</strong>tradictory to <str<strong>on</strong>g>the</str<strong>on</strong>g> more widely<br />

publicised finding that <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian fricti<strong>on</strong> factor is always less than <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>ian<br />

fricti<strong>on</strong> factor (eg Wils<strong>on</strong>, 1986).<br />

The phenomena encountered by Maude & Whitmore (1958) were explained in <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical terms. The mixing length, as developed by Prandtl, is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> mean<br />

distance which fluid elements move at right angles to <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flow before <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

acquire <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> layer <str<strong>on</strong>g>the</str<strong>on</strong>g>y have entered. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid element would pursue<br />

an oscillating passage down <str<strong>on</strong>g>the</str<strong>on</strong>g> tube. However, inertial forces would prevent any high<br />

denSity <str<strong>on</strong>g>particle</str<strong>on</strong>g>s from following exactly <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid. The <str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

Would instead oscillate with a smaller amplitude and <str<strong>on</strong>g>the</str<strong>on</strong>g> mean mixing length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

suspensi<strong>on</strong> would decrease with an increase in solids c<strong>on</strong>centrati<strong>on</strong> as compared to that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> raw fluid. They postulated that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive mixing length is reduced by a <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical


Chapter 2 Literature Review Page 2.39<br />

mixing length factor p<br />

p = P, (I - Cv> + q Pp Cv ,<br />

PI (1 - Cv> + Pp Cv<br />

where Cv = volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s per unit volume <str<strong>on</strong>g>of</str<strong>on</strong>g> suspensi<strong>on</strong><br />

(2.78)<br />

q = <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid, given by;<br />

where I = vot, = average amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid oscillati<strong>on</strong> and K is given by:<br />

where a = shape factor.<br />

(2.79)<br />

(2.80)<br />

Maude & Whitmore (1958) hence stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure loss and fricti<strong>on</strong> factor should be<br />

reduced in <strong>turbulent</strong> flow. It must be noted however, that while this accounts for flow<br />

behaviour at high ReynoIds numbers, <str<strong>on</strong>g>the</str<strong>on</strong>g> approach does not take into account low Reynolds<br />

number behaviour.<br />

In order to account for low Reynolds number behaviour and to explain why higher-than­<br />

Newt<strong>on</strong>ian equivalent fricti<strong>on</strong> factors were being observed, Maude & Whitmore (1958)<br />

c<strong>on</strong>sidered <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> suspended <str<strong>on</strong>g>particle</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> medium forming <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

viscous sub-layer. It is known that as <str<strong>on</strong>g>the</str<strong>on</strong>g> Reynolds number increases <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer<br />

becomes narrower to <str<strong>on</strong>g>the</str<strong>on</strong>g> extent that <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>particle</str<strong>on</strong>g> diameter is greater. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous<br />

SUb-layer is said to c<strong>on</strong>sist <strong>on</strong>ly <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> suspending medium. At lower Reynolds numbers, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

viscous sub-layer thickens and <str<strong>on</strong>g>the</str<strong>on</strong>g> whole suspensi<strong>on</strong> is sheared by <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous flow in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

SUb-layer. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive viscosity becomes that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> suspensi<strong>on</strong> and explains <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

higher fricti<strong>on</strong> factors.


Chapter 2 Literature Review Page 2.40<br />

Two equati<strong>on</strong>s were postulated by Maude & Whitrnore (1958) for <strong>turbulent</strong> flow. The<br />

criteri<strong>on</strong> as to which equati<strong>on</strong> to use being when <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> diameter is greater than half <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer. The equati<strong>on</strong> for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> viscous<br />

sub-layer was given by:<br />

o = [11,7 p. - .!.k' Cd] (l - k'cr l .<br />

P, V. 2<br />

The <strong>turbulent</strong> flow equati<strong>on</strong>s for 0 ;:: lhd is given by:<br />

1 _ -0,815 I [66,3 1 _ d k'c ]<br />

If - 0,408p oglO Re If (1 - k'c) D (1 - k'c)<br />

The <strong>turbulent</strong> flow equati<strong>on</strong>s for 0 < lhd is given by:<br />

1<br />

If<br />

2.11.7<br />

-0,815 I [66,3] _ 0,531 + 4 14<br />

oglO ' .<br />

0,408p Re If 0,408p<br />

The Bowen Correlati<strong>on</strong><br />

(2.81)<br />

_ 0,531 + 4,14 .(2.82)<br />

0,408p<br />

(2.83)<br />

Bowen (1961) noted that no universal correlati<strong>on</strong> had been suggested for n<strong>on</strong>-Newt<strong>on</strong>ian<br />

flUids and hence published a method which appeared to be applicable to all fluids. The basis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> his method was his finding that <strong>on</strong> a log-log pseudo-shear diagram <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> branches<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>different diameters appeared to describe similar straight lines, with each branch appearing<br />

to be almost parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g> next. He suggested that if <str<strong>on</strong>g>the</str<strong>on</strong>g> shear stress or shear rate were<br />

mUltiplied by a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter, a correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> data might be<br />

obtained. Hence, he was able to correlate <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter <str<strong>on</strong>g>effect</str<strong>on</strong>g> by adapting <str<strong>on</strong>g>the</str<strong>on</strong>g> Blasius<br />

equati<strong>on</strong> (equati<strong>on</strong> 2.28) for Newt<strong>on</strong>ian fluids and obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following correlati<strong>on</strong>:<br />

Where k and b are c<strong>on</strong>stants.<br />

Bowen presented four worked examples to substantiate his method.<br />

(2.84)


Chapter 2 Literature Review Page 2.41<br />

Although this correlati<strong>on</strong> does not provide an explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry, it does produce a good correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>­<br />

Newt<strong>on</strong>ian <strong>turbulent</strong> flow pipe data (Harris & Quader, 1971 and Quader & Wilkins<strong>on</strong>, 1980).<br />

2.12 EVIDENCE OF PARTICLE ROUGHNESS<br />

Many researchers report similarity between <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> Newt<strong>on</strong>ian fluids and<br />

n<strong>on</strong>-Newt<strong>on</strong>ian slurries (Caldwell & Babbitt 1941, Hedstrom 1952, Metzner & Reed 1955,<br />

Dodge & Metzner 1959, Tomita 1959, Michiyoshi et al 1966, Edwards & Smith 1980,<br />

Thomas & Wils<strong>on</strong> 1987 and Sive 1988). One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> more interesting pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence to<br />

date <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> similarity between Newt<strong>on</strong>ian and n<strong>on</strong>-Newt<strong>on</strong>ian slurry <strong>turbulent</strong> flow is<br />

presented by Park et al (1989).<br />

Park et al (1989) investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-Newt<strong>on</strong>ian slurry using laser<br />

doppler anemometry and c<strong>on</strong>cluded that <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> regi<strong>on</strong> is much narrower than for<br />

Newt<strong>on</strong>ian fluids. Their n<strong>on</strong>-Newt<strong>on</strong>ian slurry <strong>turbulent</strong> flow velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (Figure 2.16)<br />

agrees well with measurements with air (Newt<strong>on</strong>ian fluid). However, <str<strong>on</strong>g>the</str<strong>on</strong>g>y reported higher<br />

relative turbulence intensities in <str<strong>on</strong>g>the</str<strong>on</strong>g> wall regi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry, when compared with air<br />

(Figure 2.17). This would support <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness. Pokryvalio &<br />

Grozberg (1995) c<strong>on</strong>fmned <str<strong>on</strong>g>the</str<strong>on</strong>g> findings <str<strong>on</strong>g>of</str<strong>on</strong>g> Park et al (1989) using electro-diffusi<strong>on</strong><br />

techniques for measuring velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g>Bent<strong>on</strong>ite clay suspensi<strong>on</strong>s at c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

4% and 6% and comparing it with air. They reported a significant increase in turbulence<br />

intensities in <str<strong>on</strong>g>the</str<strong>on</strong>g> wall regi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> Bent<strong>on</strong>ite clay suspensi<strong>on</strong> (Figure 2.18), providing<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness.<br />

2.13 DATA FROM THE LITERATURE<br />

Experimental data obtained by Sive (1988) was used in <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various models<br />

under c<strong>on</strong>siderati<strong>on</strong>. The tests c<strong>on</strong>ducted by Sive (1988) were d<strong>on</strong>e using a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g>kaolin<br />

clay and a relatively coarse quartz sand, which resulted in a heterogeneous, settling slurry.<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> using this data was to see if <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse, settling <str<strong>on</strong>g>particle</str<strong>on</strong>g>s c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>turbulent</strong> flow headloss, as proposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model.


Chapter 2 Literature Review<br />

2<br />

o Q2 a6 aB . Yjl?<br />

Figure 2.19: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relative <strong>turbulent</strong> intensities between bent<strong>on</strong>ite<br />

clay suspensi<strong>on</strong>s (C v =4% and Cv =6%) and water<br />

(Taken from Pokryvalio & Grozberg, 1995)<br />

2.14 CONCLUSIONS<br />

Page 2.43<br />

The rheo1ogical fundamentals relevant to fluid flow in pipes have been presented and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models under c<strong>on</strong>siderati<strong>on</strong> have been reviewed<br />

2.14.1 Laminar Flow<br />

The yield pseudoplastic model can be used to model and predict <str<strong>on</strong>g>the</str<strong>on</strong>g> 1aminar flow <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>­<br />

Newt<strong>on</strong>ian slurries. The rheological c<strong>on</strong>stants can be accurately detennined using <str<strong>on</strong>g>the</str<strong>on</strong>g> method<br />

adopted by Neill (1988).


Chapter 2<br />

2.14.2<br />

Literature Review<br />

Transiti<strong>on</strong> from Laminar to Turbulent Flow<br />

Page 2.44<br />

There are several methods in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> between larninar and<br />

<strong>turbulent</strong> flow. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> full rheology should be used.<br />

2.14.3 Turbulent flow<br />

The Blasius type equati<strong>on</strong>s can be used to determine <strong>turbulent</strong> flow. However, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

work to develop semi-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models for <strong>turbulent</strong> flow has centred around <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing<br />

length model <str<strong>on</strong>g>of</str<strong>on</strong>g> Prandtl. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> logarithmic velocity <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> can be used to model<br />

smooth wall Newt<strong>on</strong>ian <strong>turbulent</strong> flow. A logarithmic velocity <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> with a roughness<br />

functi<strong>on</strong> and a roughness Reynolds number to correlate <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness functi<strong>on</strong> can be used<br />

to model fully developed rough wall Newt<strong>on</strong>ian <strong>turbulent</strong> flow. The Colebrook White<br />

relati<strong>on</strong> can be used to model partially rough wall Newt<strong>on</strong>ian <strong>turbulent</strong> flow.<br />

There are three approaches in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature for modelling n<strong>on</strong>-Newt<strong>on</strong>ian <strong>turbulent</strong> flow data:<br />

• empirical approach eg Bowen (1961),<br />

• approach based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry rheology eg Torrance (1963) or Wils<strong>on</strong> &<br />

Thomas (1985, 1987),<br />

• approach based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> or <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> eg Slatter<br />

(1994).<br />

The c<strong>on</strong>tinuum approximati<strong>on</strong> must be compromised as <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

slurry are large compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> scale <str<strong>on</strong>g>of</str<strong>on</strong>g> modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thickness.<br />

Theoretical models must <str<strong>on</strong>g>the</str<strong>on</strong>g>refore account for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s in <strong>turbulent</strong> flow and<br />

hence from <str<strong>on</strong>g>the</str<strong>on</strong>g> three possible approaches that can be adopted, <str<strong>on</strong>g>the</str<strong>on</strong>g> approach using <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> should be used. Although Bowen's method does produce good correlati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian <strong>turbulent</strong> flow pipe data it cannot provide an explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry.<br />

A wall roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>, <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> or <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> has been reported in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

literature (Maude & Whitmore 1956, 1958, Mun 1988, Slatter 1994). This <str<strong>on</strong>g>effect</str<strong>on</strong>g> has been


Chapter 2 Literature Review Page 2.45<br />

supported by data from Park et al (1989) and Pokryvalio & Grozberg (1995).<br />

There are reported differences in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature as to when <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer breaks down.<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> has been reported in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no published<br />

limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>.<br />

2.14.4 Objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> Thesis<br />

Having reviewed <str<strong>on</strong>g>the</str<strong>on</strong>g> relevant literature <str<strong>on</strong>g>the</str<strong>on</strong>g> following areas for investigati<strong>on</strong> can be noted:<br />

• There is a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> published literature <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>. Slatter (1994)<br />

has developed a new general approach to turbulence flow modelling and c<strong>on</strong>cluded<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> was valid for <str<strong>on</strong>g>the</str<strong>on</strong>g> slurries that were tested.<br />

However, research is required to determine if Slatter's model is accurate with<br />

increasing <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> and whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> d 85 <str<strong>on</strong>g>size</str<strong>on</strong>g> (as suggested by Slatter) does produce<br />

a good representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>.<br />

• To investigate if <str<strong>on</strong>g>the</str<strong>on</strong>g> PSD does affect <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry.<br />

• To determine if <str<strong>on</strong>g>the</str<strong>on</strong>g> correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Maude & Whitmore (<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly o<str<strong>on</strong>g>the</str<strong>on</strong>g>r model to<br />

incorporate <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> besides <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model) can accurately predict <strong>turbulent</strong><br />

flow behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian homogeneous slurries.<br />

• To determine if increasing <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> has an <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> <strong>turbulent</strong> flow behaviour.<br />

This can be achieved by using <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models (as described in this chapter) to<br />

model experimental data and to observe and analyze any <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> has <strong>on</strong><br />

<strong>turbulent</strong> flow behaviour.


CHAPTER 3


3.1 INTRODUCTION<br />

CHAPTER 3<br />

EXPERIMENTAL WORK<br />

The test work was c<strong>on</strong>ducted at <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cape Town's Hydrotransport Research<br />

Facility. The test facilities used included a pumped recirculating pipe test rig known as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

East Rig and a pipeline rig known as <str<strong>on</strong>g>the</str<strong>on</strong>g> Mini Rig.<br />

In large scale pipe testing (as used for this study), slurry is pumped in a looped circuit<br />

normally c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> two pipe diameters, over a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> velocities. This is d<strong>on</strong>e in<br />

order to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry (rheology) and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> pipe flow head loss<br />

which are needed in designing a piping system. Rheological data which is obtained from<br />

laminar flow data can be used to predict <strong>turbulent</strong> pipe flow head loss (Slatter, 1994).<br />

The test facilities which were used c<strong>on</strong>sisted in total <str<strong>on</strong>g>of</str<strong>on</strong>g> four different pipe diameters namely<br />

a 25mm, 80mm, l50mm and 200mm nominal bore. Slurries were tested at mean velocities<br />

ranging froI11 O,lrn/s to 6.2rn/s. Slurries tested included kaolin clay, a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g>kaolin clay<br />

and rock flour (mixture 1) and a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay, rock flour and silica sand (mixture<br />

2) at varying ratios.<br />

3.2 TESTING FACILITIES<br />

3.2.1 The East Rig<br />

Figure 3.1 depicts a schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pumped recirculating pipe test rig.<br />

(a) Pump Specificati<strong>on</strong><br />

Slurry is supplied to <str<strong>on</strong>g>the</str<strong>on</strong>g> East Rig by a four bladed Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>r and Platt 8x6, solids<br />

handling pump, which is driven by a variable speed hydraulic drive (Figure 3.2).


Chapter 3 Experimental Work<br />

Figure 3.2: Solids handling pump & variable speed hydraulic drive<br />

(b) Layout<br />

Page 3.3<br />

Slurry to be used for a test run is collected in a steel hopper which has a capacity 2m 3<br />

from where it is pumped through a looped circuit. Directly after <str<strong>on</strong>g>the</str<strong>on</strong>g> pump <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

l50mm line splits up into an SOmm and l50mm pipeline. These two pipelines have<br />

a vertical counterflow secti<strong>on</strong> (Figure 3.3) and horiz<strong>on</strong>tal secti<strong>on</strong> (Figure 3.4), <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

flow rate being measured in both downcomer secti<strong>on</strong>s by means <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic flux flow<br />

meters. The horiz<strong>on</strong>tal secti<strong>on</strong> is approximately 30m in length, with <str<strong>on</strong>g>the</str<strong>on</strong>g> return<br />

pipelines passing through an in-line heat exchanger and pneumatic diverter valve<br />

before being re-routed back into <str<strong>on</strong>g>the</str<strong>on</strong>g> hopper.


Chapter 3 Experimental Work Page 3.5<br />

Figure 3.4: Horiz<strong>on</strong>tal test secti<strong>on</strong><br />

Figure 3.5: The 8Omm, 150mm and 200mm horiz<strong>on</strong>tal return pipelines


Chapter 3 Experimental Work Page 3.6<br />

3.2.2 Mini Rig<br />

Figure 3.6: Steel hopper and weigh tank<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Mini Rig was to obtain accurate measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> velocity and head loss<br />

in laminar flow for <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry. Slurry was tapped <str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> 150rnrn pipeline <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> East Rig through a 25mm secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PVC piping, which<br />

included a 25mm Altometer magnetic flux flowmeter, and <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry directed into <str<strong>on</strong>g>the</str<strong>on</strong>g> weigh<br />

tank. The weight <str<strong>on</strong>g>of</str<strong>on</strong>g> slurry passing into <str<strong>on</strong>g>the</str<strong>on</strong>g> weigh tank during a data test point, and <str<strong>on</strong>g>the</str<strong>on</strong>g> time<br />

taken for that specific volume to ftIl <str<strong>on</strong>g>the</str<strong>on</strong>g> weigh tank, were recorded, in order to ensure that<br />

aCCurate velocity readings were being obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> flowmeter.<br />

The back pressure from <str<strong>on</strong>g>the</str<strong>on</strong>g> 150mm pipeline was used as <str<strong>on</strong>g>the</str<strong>on</strong>g> driving force for <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry to<br />

pass through <str<strong>on</strong>g>the</str<strong>on</strong>g> Mini Rig.<br />

Using slurry from <str<strong>on</strong>g>the</str<strong>on</strong>g> East Rig ensured that <str<strong>on</strong>g>the</str<strong>on</strong>g> same slurry is tested in both rigs ie. East and<br />

Mini Rigs. Figure 3.7 depicts <str<strong>on</strong>g>the</str<strong>on</strong>g> Mini Rig used for testing purposes.


Chapter 3 Experimental Work Page 3.7<br />

3.3 MEASURED VARIABLES<br />

3.3.1 Pressure Measurement<br />

(a) Pressure Tappings<br />

Figure 3.8: The Mini Rig<br />

Pressure tappings located in <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal test secti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe wall are used for<br />

differential pressure measurements. Figure 3.8 shows a typical pressure tapping<br />

arrangement that was used.<br />

The tapping hole diameter is 3mm and as reported by Hanks (1981) <str<strong>on</strong>g>the</str<strong>on</strong>g> length to<br />

diameter (lJD) ratio (ie. length <str<strong>on</strong>g>of</str<strong>on</strong>g> tapping hole to tapping diameter), which is<br />

c<strong>on</strong>sidered critical, was designed according to <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio<br />

L = 4 (3.1)<br />

D '<br />

to ensure accurate readings. All burrs <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> inside edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tappings were<br />

removed.


Chapter 3 Experimental Work<br />

Figure 3.8: Pressure tapping and solids collecting pod<br />

Page 3.8<br />

Pressure measurement points are located at 45° to <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal to ensure that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ingesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s or air bubbles into <str<strong>on</strong>g>the</str<strong>on</strong>g> solids trap (see Figure 3.9) is kept<br />

to a minimum. There is, however, a valve located <strong>on</strong> each solids trap for flushing<br />

away any unwanted solids which may accumulate.<br />

The manometer and differential pressure transducer (DPT) are c<strong>on</strong>nected by clear<br />

water lines to <str<strong>on</strong>g>the</str<strong>on</strong>g> solids trap.<br />

The test secti<strong>on</strong>s which are 2,995m in length are preceded by unobstructed straight<br />

pipe <str<strong>on</strong>g>of</str<strong>on</strong>g> at least 50 pipe diameters (Govier & Aziz, 1972 and Hanks 1981). The <strong>on</strong>ly


Chapter 3 Experimental Work Page 3.9<br />

excepti<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> 200mm nominal bore pipe which has a straight entry length <str<strong>on</strong>g>of</str<strong>on</strong>g> 35<br />

pipe diameters.<br />

(b) Manometer Board<br />

The manometer board serves as a centralised point for measuring pressure and flow.<br />

There are six differential water manometers and <str<strong>on</strong>g>the</str<strong>on</strong>g> layout is shown in Figure 3.9 and<br />

Figure 3.10. Electrical signals from <str<strong>on</strong>g>the</str<strong>on</strong>g> DPT and flow meters are output from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

board to <str<strong>on</strong>g>the</str<strong>on</strong>g> data logging system (Figure 3.11). Head loss measurements can be<br />

measured with manometer menisci visible or masked, although <str<strong>on</strong>g>the</str<strong>on</strong>g> air over water<br />

manometer head (ie. visible) is usually maintained during a test run to provide<br />

c<strong>on</strong>firmati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> head loss measurements. Flushing water is supplied from <str<strong>on</strong>g>the</str<strong>on</strong>g> water<br />

main (400 kPa) and air pressure is supplied at 800 kPa by a compressor.<br />

Figure 3.9: Manometer Board


Chapter 3 Experimental Work Page 3.11<br />

(c) Pressure Transducers<br />

A Gould PD3000 pressure transducer was used for differential pressure measurement.<br />

The transducer employs a strain gauge bridge to c<strong>on</strong>vert differential pressure to an<br />

electrical output which can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be read. The diaphragm is made <str<strong>on</strong>g>of</str<strong>on</strong>g>Hastelloy C with<br />

a 316 stainless steel body.<br />

3.3.2 Flow Measurement<br />

(a) Magnetic Flow Meters<br />

The magnetic flow meters that were used for <str<strong>on</strong>g>the</str<strong>on</strong>g> East Rig were manufactured by Kent<br />

Instruments (80mm pipeline) and Kr<strong>on</strong>e Instruments (150mm & 200mm pipelines).<br />

The principle <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both magnetic flow meters used is similar. Firstly, a<br />

magnetic field is set up across <str<strong>on</strong>g>the</str<strong>on</strong>g> bore <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic flow meter. Liquid flowing<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> metering tube will cut <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic field and thus develop an induced emf<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid. This emfis detected by two electrodes in <str<strong>on</strong>g>the</str<strong>on</strong>g> wall <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metering tube.<br />

The emfis proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> flow velocity multiplied by <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic field strength.<br />

The transducer signal is digitised by a data logger.<br />

3.4 CALIBRATION<br />

The transducers and magnetic flux flow meters are re-ealibrated at regular intervals to ensure<br />

accuracy for collecting research data. The transducers are calibrated at <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g>each day<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> flow meters at <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> each week as well as during a test run.<br />

3.4.1 Pipeline<br />

(a) Pipeline Diameter<br />

The internal pipeline diameter (D) is measured by filling a known length (L) <str<strong>on</strong>g>of</str<strong>on</strong>g> pipe<br />

with water. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water required to fill <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe is weighed (Mw) and <str<strong>on</strong>g>the</str<strong>on</strong>g>


Chapter 3 Experimental Work<br />

Table 3.II: Pipeline Roughness<br />

Actual Inside Diameter Pipeline Roughness<br />

(mm) (]Lm)<br />

21,6 4<br />

79,0 7<br />

140,7 9<br />

207,0 130<br />

.<br />

3.4.2 Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Differential Pressure Transducer<br />

The following procedure is used to calibrate <str<strong>on</strong>g>the</str<strong>on</strong>g> DPT <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> East and Mini Rig.<br />

Page 3.13<br />

1. The transducer and manometer that are to be calibrated are flushed with mains<br />

water to ensure that air and any solids have been removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> lines.<br />

2. Air over water manometer head ie. a differential head (H) is set up in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

glass manometer tubes.<br />

3. . This head is measured and <str<strong>on</strong>g>the</str<strong>on</strong>g> DPT output is logged at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time.<br />

4. Steps 2 and 3 are repeated for different manometer heights over <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

differential head test range until enough data points have been collected for<br />

calibrati<strong>on</strong>.<br />

A least squares linear regressi<strong>on</strong> is performed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> measured head and transducer readings<br />

in order to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> calibrati<strong>on</strong> equati<strong>on</strong>. A set <str<strong>on</strong>g>of</str<strong>on</strong>g> N observed measurements Y <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

corresp<strong>on</strong>ding set <str<strong>on</strong>g>of</str<strong>on</strong>g> N transducer readings X will yield <str<strong>on</strong>g>the</str<strong>on</strong>g> least squares regressi<strong>on</strong> line <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(Spiegel, 1972)<br />

Y:mX+c<br />

Where<br />

(3.4)


Chapter 3 Experimental Work Page 3.14<br />

N EXY - (EX) (EY)<br />

m =<br />

N E(X 2) - (EX)2<br />

and<br />

EY E(X2) - EX E(XY)<br />

c =<br />

N E(X 2) - (EX)2<br />

(3.5)<br />

(3.6)<br />

An objective measure <str<strong>on</strong>g>of</str<strong>on</strong>g> how well <str<strong>on</strong>g>the</str<strong>on</strong>g> line represents <str<strong>on</strong>g>the</str<strong>on</strong>g> data is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> correlati<strong>on</strong><br />

coefficient (r) equati<strong>on</strong>:<br />

(3.7)<br />

Calibrati<strong>on</strong>s were accepted for r values in <str<strong>on</strong>g>the</str<strong>on</strong>g> range O,99


Chapter 3 Experimental Work Page 3.16<br />

The following procedure was undertaken for calibrating <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic flow meters.<br />

I. The pump speed was set to <str<strong>on</strong>g>the</str<strong>on</strong>g> desired speed.<br />

2. The weigh tank scale reading was noted (Ml)'<br />

3. The data logger was first started and <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> diverter valve was opened and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stopwatch started at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time.<br />

4. The diverter valve was closed and <str<strong>on</strong>g>the</str<strong>on</strong>g> stopwatch stopped at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time when<br />

sufficient slurry had been collected. The data logger ran for a pre-set time, enough<br />

to cover <str<strong>on</strong>g>the</str<strong>on</strong>g> whole procedure.<br />

5. The weigh tank reading .was noted (M,).<br />

The flow rate for each reading is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>:<br />

(3.9)<br />

The average transducer reading cannot be used for calibrati<strong>on</strong> purposes as it is not accurate.<br />

In order to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> correct transducer reading for each point a graph <str<strong>on</strong>g>of</str<strong>on</strong>g> current signal vs<br />

time was plotted. Figure 3.13 shows a typical output.<br />

As can be seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> graph <str<strong>on</strong>g>the</str<strong>on</strong>g> current signal drops sharply after <str<strong>on</strong>g>the</str<strong>on</strong>g> diverter valve is<br />

opened (point A) before c<strong>on</strong>stantly decreasing (point B to point C). After <str<strong>on</strong>g>the</str<strong>on</strong>g> diverter valve<br />

is closed (point C) <str<strong>on</strong>g>the</str<strong>on</strong>g> current signal reading returns to <str<strong>on</strong>g>the</str<strong>on</strong>g> original value (point D). The<br />

slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> line BC remains c<strong>on</strong>stant at <str<strong>on</strong>g>the</str<strong>on</strong>g> varying pump speeds. The transducer reading<br />

is thus read by extending a line EF from <str<strong>on</strong>g>the</str<strong>on</strong>g> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> line BC halfway during <str<strong>on</strong>g>the</str<strong>on</strong>g> time taken<br />

to divert <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry to <str<strong>on</strong>g>the</str<strong>on</strong>g> weigh tank (point A to point C).<br />

The calibrati<strong>on</strong> equati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g>n derived by performing a linear regressi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> flow rate<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> transducer readings in each case.<br />

No difference was found between <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar and <strong>turbulent</strong> flow data when calibrated in this<br />

Way, as indicated by Fig 3.14 showing a typical calibrati<strong>on</strong>.


Chapter 3 Experimental Work Page 3.18<br />

3.5 OTHER MEASURED VARIABLES<br />

3.5.1 Slurry Density<br />

Slurry density and relative density are determined by performing <str<strong>on</strong>g>the</str<strong>on</strong>g> following steps.<br />

1. A clean, dry <strong>on</strong>e litre volumetric flask is weighed (M,).<br />

2. The volumetric flask was filled with slurry from a tapping in <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe wall <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> vertical secti<strong>on</strong> above <str<strong>on</strong>g>the</str<strong>on</strong>g> pump before it splits into <str<strong>on</strong>g>the</str<strong>on</strong>g> 80mm and 150mm<br />

pipelines. The volume <str<strong>on</strong>g>of</str<strong>on</strong>g> slurry is approximately 990ml.<br />

3. The flask plus slurry are weighed (Mz).<br />

4. The flask is <str<strong>on</strong>g>the</str<strong>on</strong>g>n filled with water up to <str<strong>on</strong>g>the</str<strong>on</strong>g> graduated mark and weighed<br />

(M3)·<br />

5. The flask is emptied, filled with clear water and weighed again (M4)'<br />

6. Steps 1-5 were repeated except that in step 2 slurry was taken from a tapping<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal test secti<strong>on</strong>.<br />

The relative slurry density Sm is defined as:<br />

Sm = __m_as.-s_o_f..."s_lurry--;=---sam_..:,p1,...e__<br />

mass <str<strong>on</strong>g>of</str<strong>on</strong>g> equal volume <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

S.. is calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g> above equati<strong>on</strong> and slurry density is calculated from:<br />

p = Sm P w •<br />

(3.10)<br />

(3.11)<br />

Normally <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g>tappings for sampling slurries is not a good procedure to follow however<br />

in this particular case <str<strong>on</strong>g>the</str<strong>on</strong>g> following should be noted:<br />

•<br />

•<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> slurry being tested was homogeneous;<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> point at which slurry was tapped was from an area where <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry had been well<br />

mixed;<br />

Slatter (1994) compared this method against samples taken from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r points in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pipe system and hopper and found no discrepancies.


Chapter 3 Experimental Work Page 3.19<br />

3.5.2 Solids Relative Density<br />

The relative density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solids (S,) is determined using test method 6B for fine grained<br />

soils from BS 1377 (1975).<br />

3.5.3 Slurry Temperature<br />

A mercury <str<strong>on</strong>g>the</str<strong>on</strong>g>rmometer was used to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry in <str<strong>on</strong>g>the</str<strong>on</strong>g> hopper.<br />

The temperature very rarely went above 20°C, with a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> between 19°C and<br />

20°C being <str<strong>on</strong>g>the</str<strong>on</strong>g> norm. A rise <str<strong>on</strong>g>of</str<strong>on</strong>g>.approximately 2°C is usually experienced during a test run.<br />

If a temperature rise exceeding 2°C is experienced, data at <str<strong>on</strong>g>the</str<strong>on</strong>g> extreme temperatures is<br />

compared to detect for any temperature <str<strong>on</strong>g>effect</str<strong>on</strong>g>s (Slatter, 1994).<br />

3.5.4. Particle Size Distributi<strong>on</strong><br />

The ASTM (American Standard Testing Method), which is recognized worldwide, was used<br />

to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g>s and were c<strong>on</strong>ducted at Gibbs Africa laboratories.<br />

In this procedure a sample <str<strong>on</strong>g>of</str<strong>on</strong>g> slurry is thoroughly dried and <str<strong>on</strong>g>the</str<strong>on</strong>g> courser <str<strong>on</strong>g>particle</str<strong>on</strong>g>s are screened<br />

to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g>. The <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> finer <str<strong>on</strong>g>particle</str<strong>on</strong>g>s is determined using a<br />

hydrometer. The <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin clay test sets however, were<br />

determined using <str<strong>on</strong>g>the</str<strong>on</strong>g> Malvern 2600/3600 Particle Sizer VF.6 instrument, which if used<br />

correctly produces more accurate results for finer material (Roberts<strong>on</strong>, 1996). Ideally it<br />

would have been preferable to use <strong>on</strong>ly <strong>on</strong>e PSD method however, <str<strong>on</strong>g>the</str<strong>on</strong>g> testing method <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Malvern instrument was not suitable for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> courser <str<strong>on</strong>g>particle</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry and<br />

hence it was decided to use <str<strong>on</strong>g>the</str<strong>on</strong>g> ASTM method for Mixture 1 and Mixture 2 and <str<strong>on</strong>g>the</str<strong>on</strong>g> Malvern<br />

Instrument for <str<strong>on</strong>g>the</str<strong>on</strong>g> finer kaolin clay <str<strong>on</strong>g>particle</str<strong>on</strong>g>s. The <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g>s are presented<br />

in Appendix A.<br />

Any comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g>s should be undertaken with cauti<strong>on</strong> as those<br />

prodUced by methods o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g> ASTM or <str<strong>on</strong>g>the</str<strong>on</strong>g> Malvern 2600/3600 Particle Sizer VF.6<br />

Instrument may not necessarily agree. An example <str<strong>on</strong>g>of</str<strong>on</strong>g> this can be seen in Figure 3.15 where<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same slurry (mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin, rock flour and sand) used for <str<strong>on</strong>g>the</str<strong>on</strong>g> ASTM, was used <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Malvern instrument for <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> determjnati<strong>on</strong>s. As can be seen from


Chapter 3 Experimental Work Page 3.22<br />

3.6.2 Rock Flour<br />

Rock Flour was obtained from Hippo Quarries from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir quarry called Peninsula.<br />

3.6.3 Sand<br />

Sand was obtained from C<strong>on</strong>sol in 2Skg bags called No. 2 Foundry Sand. The <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sand was between 7S and 3S0 /Lm.<br />

3.7 ]',llXTURES<br />

3.7.1 Mixture Kaolin Clay and Rock Flour<br />

The rock flour was found to form a settling slurry when mixed with water. In order to<br />

obtain a homogeneous slurry kaolin clay was used as a suspending agent for <str<strong>on</strong>g>the</str<strong>on</strong>g> rock flour.<br />

Tests were <str<strong>on</strong>g>the</str<strong>on</strong>g>refore c<strong>on</strong>ducted to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay needed to suspend <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rock flour.<br />

Twenty sample bottles each c<strong>on</strong>taining 200g <str<strong>on</strong>g>of</str<strong>on</strong>g> water were used for <str<strong>on</strong>g>the</str<strong>on</strong>g> tests. For Test A,<br />

10 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample bottles c<strong>on</strong>tained rock flour at a relative density <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,1 and for Test B, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

remaining ten sample bottles c<strong>on</strong>tained rockflour at a relative density <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,2.<br />

Kaolin clay was <str<strong>on</strong>g>the</str<strong>on</strong>g>n added to <str<strong>on</strong>g>the</str<strong>on</strong>g> sample bottles in Test A, starting at 5g <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay for<br />

L1e first sample bottle and increasing in Sg amounts per sample bottle until <str<strong>on</strong>g>the</str<strong>on</strong>g> last sample<br />

bottle c<strong>on</strong>tained SOg <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay. The rock flour and kaolin clay were <str<strong>on</strong>g>the</str<strong>on</strong>g>n thoroughly<br />

mixed and allowed to stand. This procedure was repeated for Test B.<br />

It Was found that in both Test A and Test B that 30g <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay was required to suspend<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rock flour and form a homogeneous slurry. At 25g <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay added, <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture<br />

formed a slow settling slurry and hence <str<strong>on</strong>g>the</str<strong>on</strong>g> critical point lay between <str<strong>on</strong>g>the</str<strong>on</strong>g>se two limits ie. 2Sg<br />

and 30g <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin. It was <str<strong>on</strong>g>the</str<strong>on</strong>g>refore decided to use <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 30g <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin<br />

clay per 200g water to suspend <str<strong>on</strong>g>the</str<strong>on</strong>g> rock flour for <str<strong>on</strong>g>the</str<strong>on</strong>g> tests in <str<strong>on</strong>g>the</str<strong>on</strong>g> pipelines or a kaolin<br />

c<strong>on</strong>Centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> at least Cv =S%.


Chapter 3 Experimental Work Page 3.24<br />

is allowed to flow through <str<strong>on</strong>g>the</str<strong>on</strong>g> system for sufficient time so as to allow air in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> system to escape.<br />

3. The DPT is calibrated and slurry relative density tests performed.<br />

4. The data logging programme is loaded and initialised.<br />

5. The desired flow rate for a test is achieved by c<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> pump speed.<br />

The data logging routine is started and <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic flow meter and DPT<br />

outputs logged for three to five minutes (Sive, 1988). Check for drift.<br />

The calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetic flow meter is performed during a test run using timed weigh<br />

test samples at different time intervals.<br />

A test is completed by repeating <str<strong>on</strong>g>the</str<strong>on</strong>g> run at different pump speeds and <str<strong>on</strong>g>the</str<strong>on</strong>g> data collected is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n processed.<br />

When a test is performed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Mini Rig, slurry c<strong>on</strong>tinuously empties into <str<strong>on</strong>g>the</str<strong>on</strong>g> weigh tank<br />

and timed weigh test samples are taken at intervals during <str<strong>on</strong>g>the</str<strong>on</strong>g> test for <str<strong>on</strong>g>the</str<strong>on</strong>g> calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

magnetic flow meter.<br />

After a test set has been completed a slurry relative density test is performed again to ensure<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry density has remained c<strong>on</strong>stant.<br />

3.9 CONCLUSIONS<br />

The test apparatus used for <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental investigati<strong>on</strong> has been fully described and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calibrati<strong>on</strong> and test procedures to enable <str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> accurate pipeline data have been<br />

presented.<br />

The test results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian slurries that were tested using <str<strong>on</strong>g>the</str<strong>on</strong>g> apparatus and testing<br />

Jrocedures are presented in Appendix A. The results are reviewed in Chapter 4 and<br />

Jiscussi<strong>on</strong> arising from <str<strong>on</strong>g>the</str<strong>on</strong>g> results is presented in Chapter 5.


CHAPTER 4


Chapter 4 Results and Analysis Page 4.2<br />

Mo<strong>on</strong>ey (1931) (Secti<strong>on</strong> 2.6.2 - Figure 2.5) in that <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> shear stress<br />

and shear rate is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter in larninar flow. This was true for all tests<br />

c<strong>on</strong>ducted, where pipediameter had no influence <strong>on</strong> wall shear stress at a given pseudo-shear<br />

rate in <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar regime. This indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry properties were time independent.<br />

In larninar flow, <strong>on</strong> physical observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurries in <str<strong>on</strong>g>the</str<strong>on</strong>g> transparent secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pipeline, <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry <str<strong>on</strong>g>particle</str<strong>on</strong>g>s near <str<strong>on</strong>g>the</str<strong>on</strong>g> tube wall could be seen to be travelling in straight lines.<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity increased <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s took <strong>on</strong> a more random, swirling or eddy moti<strong>on</strong> and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> from larninar to <strong>turbulent</strong> flow could clearly be seen. The differential<br />

transducer output reading showe,d more variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> regi<strong>on</strong> and c<strong>on</strong>fIrms <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

physical observati<strong>on</strong>. This evidence also supports <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that true turbulence is occurring.<br />

Settling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s was not observed at any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s tested. The intersecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar and <strong>turbulent</strong> data can be taken as <str<strong>on</strong>g>the</str<strong>on</strong>g> critical point at which turbulence begins<br />

and hence <str<strong>on</strong>g>the</str<strong>on</strong>g> critical velocity can be determined.<br />

The 25mm pipeline <strong>on</strong>ly shows <str<strong>on</strong>g>the</str<strong>on</strong>g> first few data points for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence. This<br />

is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> back pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> l50mm pipeline was used as <str<strong>on</strong>g>the</str<strong>on</strong>g> driving force<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> 25mm pipe. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was insufficient driving force to enable <str<strong>on</strong>g>the</str<strong>on</strong>g> recording <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> full <strong>turbulent</strong> range. Low velocities were also recorded in <str<strong>on</strong>g>the</str<strong>on</strong>g> 200mm pipeline due to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> set-up <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipeline system. In a looped pipeline system <strong>on</strong>e is normally limited to two<br />

pipeline diameters due to <str<strong>on</strong>g>the</str<strong>on</strong>g> available head-capacity. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> looped pipeline system at<br />

UCT, testing was c<strong>on</strong>ducted using as wide a range <str<strong>on</strong>g>of</str<strong>on</strong>g> diameters as was possible <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e<br />

system, but in doing so low velocities in <str<strong>on</strong>g>the</str<strong>on</strong>g> 200mm pipeline were inevitable.<br />

4.2.1 Pipe Roughness<br />

There is quite a marked difference in <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe roughness for <str<strong>on</strong>g>the</str<strong>on</strong>g> three smaller pipelines as<br />

oPposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> 200mm pipeline (Table 3.II). The smaller pipelines (ie. 25mm, 80mm &<br />

lS0mm pipelines) are PVC tubing whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> 200mm pipeline is c<strong>on</strong>structed <str<strong>on</strong>g>of</str<strong>on</strong>g> steel. The<br />

inside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 200mm pipe was corroded thus accounting for <str<strong>on</strong>g>the</str<strong>on</strong>g> high pipe roughness value.


Chapter 4 Results and Analysis Page 4.12<br />

25rnm pipeline (as outlined in Chapter 2) and are presented in Table 4.II toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pseudo-shear diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> test sets for kaolin clay, mixture 1 and mixture<br />

2 in Figure 4.13 to Figure 4.15.<br />

The rheological parameters obtained were used to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> test data using <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical<br />

models menti<strong>on</strong>ed in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature review.<br />

* - Sive rheoloo ..y for kaolin <strong>on</strong>l<br />

Table 4.II: Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> Slurry Properties<br />

No Test Set Slurry c,,(%) TycPa) K(Pa.s O ) n S,<br />

I Sivel * Kaolin/Quartz 7,L 4,89 0,2991 0,4840 2,22<br />

3K 10 Kaolin 7,00 9,14 0,0676 0,645E 2,60<br />

4K 20 Kaolin 6,16 5,80 0,0176 0,8154 2,60<br />

5RF 10 Kaolin/Rock Flour 9,6, 3,68 0,0132 0,9474 2,60<br />

6RF_20 Kaolin/Rock Flour 11,00 3,91 0,0105 0,9720 2,60<br />

7RF_30 Kaolin/Rock Flour 13,29 5,53 0,0194 0,964E 2,60<br />

8S 10 Kaolin/Rock Flour/Sand 16,4, 5,82 0,1413 0,557, 2,65<br />

9S 20 Kaolin/Rock Flour/Sand 19,43 5,48 0,1239 0,6363 2,65<br />

10 S_30 Kaolin/Rock Flour/Sand 23,86 8,02 0,1350 0,5911 2,65<br />

4.4 VISCOUS SUB-LAYER<br />

y<br />

The viscous sub-layer thickness can be predicted using <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>ian approximati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Wils<strong>on</strong> & Thomas (1985,1987) and Slatter (1994) models. Figure 4.16 to Figure 4.18 show<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between wall shear stress and viscous sub-layer thickness for <str<strong>on</strong>g>the</str<strong>on</strong>g> first test<br />

sets <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay, mixture I and mixture 2 respectively. The Maude & Whitmore (1958)<br />

predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thickness has been included in <str<strong>on</strong>g>the</str<strong>on</strong>g> figures. Figure 4.18<br />

shows that at <str<strong>on</strong>g>the</str<strong>on</strong>g> higher wall shear stress values, <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thickness is less than<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> larger <str<strong>on</strong>g>particle</str<strong>on</strong>g>s. As discussed in Chapter 2, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s must <str<strong>on</strong>g>the</str<strong>on</strong>g>refore<br />

have an obstructing <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thus influencing <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow<br />

behaViour.


Chapter 4 Results and Analysis Page 4.21<br />

Overall <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model (APE - 13.9%, LSE - 0.0325) best modelled <str<strong>on</strong>g>the</str<strong>on</strong>g> test data.<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> Torrance model (19.15%) and <str<strong>on</strong>g>the</str<strong>on</strong>g> Wils<strong>on</strong> & Thomas model (19.66%) are both<br />

below an average percentage error <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 %, which is acceptable in engineering practice<br />

(Cheng, 1970), <str<strong>on</strong>g>the</str<strong>on</strong>g> fact still remains that <str<strong>on</strong>g>the</str<strong>on</strong>g>se models diverge from <str<strong>on</strong>g>the</str<strong>on</strong>g> data at higher shear<br />

stresses, indicating that <str<strong>on</strong>g>the</str<strong>on</strong>g>y do not accurately describe <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

solid-liquid suspensi<strong>on</strong>s.<br />

The <strong>turbulent</strong> model performance can also be seen in Figure 4.25 to Figure 4.29 which<br />

shows a log-log plot <str<strong>on</strong>g>of</str<strong>on</strong>g> TO ob' vs To'""" for <str<strong>on</strong>g>the</str<strong>on</strong>g> five <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models which were c<strong>on</strong>sidered.<br />

A 20 % error line is included in <str<strong>on</strong>g>the</str<strong>on</strong>g> plot. It can be seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> five figures that <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter<br />

model yields <str<strong>on</strong>g>the</str<strong>on</strong>g> best results with virtually all <str<strong>on</strong>g>the</str<strong>on</strong>g> data points within <str<strong>on</strong>g>the</str<strong>on</strong>g> 20% error lines.<br />

Large discrepancies for mixture 1 for all models can be seen.<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models (visual appraisal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model lines,<br />

average percentage error, log standard error and <str<strong>on</strong>g>the</str<strong>on</strong>g> log-log plots) it would appear that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Slatter model provides better predicti<strong>on</strong>s than <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r models for <str<strong>on</strong>g>the</str<strong>on</strong>g> slurries tested.<br />

1000,.---------------:'71,-----,<br />

o<br />

Kaolin<br />

..<br />

Ntxtu.-. 1<br />

+<br />

Nbcv. 2<br />

Figure 4.25: A log-log plot <str<strong>on</strong>g>of</str<strong>on</strong>g> TO"", vs To""" for <str<strong>on</strong>g>the</str<strong>on</strong>g> Dodge & Metzner<br />

model


Chapter 4 Results and Analysis Page 4.25<br />

5<br />

4.5<br />

4<br />

o 3.5<br />

t-<br />

O><br />

.2 3<br />

2.5<br />

2<br />

ITurbulenl Br<strong>on</strong>ches I<br />

>lE<br />

..<br />

D=207mm<br />

D<br />

D=141mm<br />

....<br />

0= BOmm<br />

-+-<br />

D= 22mm<br />

1.5 +---r--,---c----,---r----,.-----r--,---j<br />

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5<br />

log BY/0<br />

Figure 4.31: Turbulent flow predicti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> Bowen correlati<strong>on</strong> for test<br />

set K 20<br />

The Bowen c<strong>on</strong>stants for test set K_20, as shown in Figure 4.31, are k=lO.13 and b=0.22.<br />

4.8 DATA fROM THE LITERATURE<br />

Experimental data obtained by Sive (1988) were used in <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various models<br />

under c<strong>on</strong>siderati<strong>on</strong>. The tests c<strong>on</strong>ducted by Sive (1988) were d<strong>on</strong>e using a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g>kaolin<br />

clay and a relatively coarse quartz sand which resulted in a n<strong>on</strong>-homogeneous settling slurry<br />

with a high representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> using this data was to see if <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coarse, settling <str<strong>on</strong>g>particle</str<strong>on</strong>g>s c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow headloss, as proposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter<br />

modeL<br />

As can be seen from a typical result in Figure 4.32 taken from Sive (1988), Slatter's model<br />

Was unable to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> test data <str<strong>on</strong>g>of</str<strong>on</strong>g> Sive.


Chapter 4 Results and Analysis Page 4.27<br />

• At <str<strong>on</strong>g>the</str<strong>on</strong>g> higher wall shear stress values for mixture 2 <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thickness<br />

is less than <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> larger <str<strong>on</strong>g>particle</str<strong>on</strong>g>s.<br />

• An increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> caused an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> wall shear<br />

stress in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow regi<strong>on</strong>.<br />

• The Slatter model best predicted <str<strong>on</strong>g>the</str<strong>on</strong>g> test data and becomes more accurate with<br />

increasing <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>.<br />

• The Maude & Whitmore correlati<strong>on</strong> is unable to accurately predict <strong>turbulent</strong> flow<br />

behaviour.<br />

• The Bowen correlati<strong>on</strong> produces good results but does not provide an explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry.<br />

• Slarter's model is unable to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Sive data for<br />

a n<strong>on</strong>-homogeneous settling slurry.<br />

The results and analysis are discussed in Chapter 5.


CHAPTERS


5.1 INTRODUCTION<br />

CHAPTERS<br />

DISCUSSION<br />

This chapter deals with discussing <str<strong>on</strong>g>the</str<strong>on</strong>g> results and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> test data as presented in<br />

Chapter 4 and Appendix A.<br />

5.2 PARTICLE ROUGHNESS EFFECT<br />

In Figure 4.2 it is noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> data points for <str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin tend to lie <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> line for <str<strong>on</strong>g>the</str<strong>on</strong>g> law<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall for smooth pipes, with <str<strong>on</strong>g>the</str<strong>on</strong>g> rock flour data points lying to <str<strong>on</strong>g>the</str<strong>on</strong>g> left. The data<br />

points for <str<strong>on</strong>g>the</str<strong>on</strong>g> sand tend to lie <strong>on</strong> or near <str<strong>on</strong>g>the</str<strong>on</strong>g> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> Nikuradse. This is not in line with<br />

what Slatter's model anticipates. The data points according to <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model should lie<br />

<strong>on</strong> or near <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal asymptote (roughness functi<strong>on</strong> B=8,5) since <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

suSpensi<strong>on</strong>s that were tested were nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r fixed nor uniform in <str<strong>on</strong>g>size</str<strong>on</strong>g>, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y were for<br />

Nikuradse's experiments. And yet it can be seen from Figure 4.2 that <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s for mixture 2 is as great and even greater than for Nikuradse's<br />

experimental data.<br />

For smooth wall <strong>turbulent</strong> flow <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model predicts that <str<strong>on</strong>g>the</str<strong>on</strong>g> data should lie <strong>on</strong> or near<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> oblique asymptote (line for <str<strong>on</strong>g>the</str<strong>on</strong>g> law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall for smooth pipes) and for <str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin clay<br />

test sets this is certainly <str<strong>on</strong>g>the</str<strong>on</strong>g> case but yet <str<strong>on</strong>g>the</str<strong>on</strong>g> data points for mixture I lie to <str<strong>on</strong>g>the</str<strong>on</strong>g> left. In fact<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> data points lie well outside <str<strong>on</strong>g>the</str<strong>on</strong>g> two asymptotes which describe <str<strong>on</strong>g>the</str<strong>on</strong>g> limits <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

behaViour <str<strong>on</strong>g>of</str<strong>on</strong>g> Newt<strong>on</strong>ian <strong>turbulent</strong> flow. There are many reported instances <str<strong>on</strong>g>of</str<strong>on</strong>g> similarities<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> Newt<strong>on</strong>ian and n<strong>on</strong>-Newt<strong>on</strong>ian fluids (secti<strong>on</strong> 2.12) and<br />

Slatter'S findings c<strong>on</strong>firmed this trend. The data <str<strong>on</strong>g>of</str<strong>on</strong>g> Slatter (1994) matched <str<strong>on</strong>g>the</str<strong>on</strong>g> limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g>Newt<strong>on</strong>ian <strong>turbulent</strong> flow closely and hence for his correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness<br />

functi<strong>on</strong> for his model <str<strong>on</strong>g>the</str<strong>on</strong>g> two asymptotes were chosen. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>se test data points<br />

:<strong>on</strong>tradict <str<strong>on</strong>g>the</str<strong>on</strong>g> findings <str<strong>on</strong>g>of</str<strong>on</strong>g> Slatter and would indicate that d 85 <str<strong>on</strong>g>size</str<strong>on</strong>g> does not give <str<strong>on</strong>g>the</str<strong>on</strong>g> best<br />

representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>.


Chapter 5 Discussi<strong>on</strong> Page 5.2<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r investigati<strong>on</strong> needs to be c<strong>on</strong>ducted and a large data base established to determine<br />

whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> will:<br />

• follow <str<strong>on</strong>g>the</str<strong>on</strong>g> Nikuradse trend;<br />

• c<strong>on</strong>tinue increasing, following more closely <str<strong>on</strong>g>the</str<strong>on</strong>g> oblique asymptote;<br />

• or if it does follow <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal asymptote as proposed by Slatter.<br />

5.3 ROUGHNESS FUNCTION CORRELATION USING OPTIMUM PARTICLE<br />

SIZES<br />

If, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>s are used to plot <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness functi<strong>on</strong> correlati<strong>on</strong><br />

as shown in Figure 4.11 <str<strong>on</strong>g>the</str<strong>on</strong>g> data points for mixture 2 tend to lie just above <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal<br />

asymptote. On <str<strong>on</strong>g>the</str<strong>on</strong>g> whole <str<strong>on</strong>g>the</str<strong>on</strong>g> data points tend to follow more closely <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s <strong>on</strong><br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model is based. What this does bring into questi<strong>on</strong> is that <str<strong>on</strong>g>the</str<strong>on</strong>g> d S5 <str<strong>on</strong>g>size</str<strong>on</strong>g> does<br />

not necessarily give <str<strong>on</strong>g>the</str<strong>on</strong>g> best representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>. These optimum <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>s<br />

indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> will vary depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> PSD <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry<br />

being transported. In fact it would seem from Table 4.1, looking at <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum <str<strong>on</strong>g>size</str<strong>on</strong>g>s for<br />

kaolin clay and mixture 2, that a slurry with a steep PSD for <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller <str<strong>on</strong>g>particle</str<strong>on</strong>g>s (eg. kaolin<br />

clay test sets) would have a higher representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> than a slurry which has a PSD<br />

shape that is less steep from small to large <str<strong>on</strong>g>particle</str<strong>on</strong>g>s. In Table 4.1 <str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin clay test sets<br />

have an average <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> d x =d 91 as opposed to mixture 2 tests sets which have an<br />

average representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> d. =d 71 • Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g> higher fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> larger<br />

Particles present in <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry <str<strong>on</strong>g>the</str<strong>on</strong>g> lower <str<strong>on</strong>g>the</str<strong>on</strong>g> representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>, as <str<strong>on</strong>g>the</str<strong>on</strong>g> best<br />

representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> is reached at a lower d x value.<br />

5.4 SLURRY TEMPERATURE<br />

As reported in secti<strong>on</strong> 4.2.7 an increase in temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> between goC to 10°C made no<br />

significant difference and no temperature <str<strong>on</strong>g>effect</str<strong>on</strong>g>s were found. It is surprising to see this trend<br />

since this would cause a decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity for water <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 20%. This<br />

Could influence <str<strong>on</strong>g>the</str<strong>on</strong>g> rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry and might lead <strong>on</strong>e to questi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g>


Chapter 5 Discussi<strong>on</strong> Page 5.4<br />

Whatever <str<strong>on</strong>g>the</str<strong>on</strong>g> point is at which <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer breaks down <str<strong>on</strong>g>the</str<strong>on</strong>g> fact still remains that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer <str<strong>on</strong>g>of</str<strong>on</strong>g> a homogeneous slurry cannot exist if it is smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

which comprise <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry. As can be seen from Figure 4.18 (mixture 2) <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub­<br />

layer thickness is smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s which comprise <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry at higher waIl shear<br />

stresses. The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer for kaolin clay (Figure 4.16) is smaller than<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s which comprise <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry at higher shear stresses but a much smaller fracti<strong>on</strong><br />

than mixture 2. At <str<strong>on</strong>g>the</str<strong>on</strong>g>se higher wall shear stress values <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model best models <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

test data for <str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin clay and mixture 2 test sets. This could be ascribed to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that<br />

Slatter's model accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer.<br />

To c<strong>on</strong>firm that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s will affect <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer and are relevant for <strong>turbulent</strong><br />

flow analysis <str<strong>on</strong>g>the</str<strong>on</strong>g> number c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large <str<strong>on</strong>g>particle</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer was<br />

calculated. In order to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> number c<strong>on</strong>centrati<strong>on</strong> a few assumpti<strong>on</strong>s had to made.<br />

The assumpti<strong>on</strong>s were as follows:<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s comprising <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry are spherical in shape;<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> large <str<strong>on</strong>g>particle</str<strong>on</strong>g>s were taken to be greater than <strong>on</strong>e half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

viscous sub-layer in <strong>turbulent</strong> flow;<br />

• <strong>on</strong>e metre <str<strong>on</strong>g>of</str<strong>on</strong>g> pipe tubing was c<strong>on</strong>sidered for calculati<strong>on</strong>s;<br />

• an average radius is assumed for <str<strong>on</strong>g>the</str<strong>on</strong>g>" large <str<strong>on</strong>g>particle</str<strong>on</strong>g>s.<br />

From Figure 4.16 to Figure 4.18 we can determine <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer in<br />

<strong>turbulent</strong> flow. The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer for kaolin clay, mixture 1 and mixture<br />

2 is approximately 40JLm, 300JLm and 55JLm respectively. The percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> large <str<strong>on</strong>g>particle</str<strong>on</strong>g>s<br />

present in <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer can <str<strong>on</strong>g>the</str<strong>on</strong>g>refore be determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> PSD (ie. percentage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Particles greater than <strong>on</strong>e half <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thickness). From <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter and<br />

Viscous SUb-layer thickness <str<strong>on</strong>g>the</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer can be determined and<br />

knOWing <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> large <str<strong>on</strong>g>particle</str<strong>on</strong>g>s <str<strong>on</strong>g>the</str<strong>on</strong>g> volume taken up by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous<br />

Sub-layer can be calculated. The mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s can be obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> volume and<br />

jensityand similarly by c<strong>on</strong>sidering <strong>on</strong>e <str<strong>on</strong>g>particle</str<strong>on</strong>g> present in <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer, it's mass<br />

:an be calculated and hence <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s. The results obtained are shown in


Chapter 5<br />

Table 5.1.<br />

Discussi<strong>on</strong> Page 5.5<br />

Table 5.1: Number C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Large Particles in Viscous Sub-layer<br />

Test % Large No. Particles<br />

Particles per m 2<br />

KW 22 163<br />

K 20 20 296<br />

.<br />

RFlO 4 24<br />

RF 20 5 36<br />

RF 30 6 57<br />

S 10 47 336<br />

S 20 55 463<br />

S 30 62 540<br />

From Table 5.1 it can be seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> highest number <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>particle</str<strong>on</strong>g>s per square meter was 540.<br />

This indicates that if <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s were evenly spaced that approximately <strong>on</strong>e large <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

would be found every 5cm. This is fairly low for <strong>on</strong>e would expect for a <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness<br />

<str<strong>on</strong>g>effect</str<strong>on</strong>g> for <str<strong>on</strong>g>the</str<strong>on</strong>g>re to be at least <strong>on</strong>e large <str<strong>on</strong>g>particle</str<strong>on</strong>g> per millimetre (Slatter, 1996) and yet even<br />

with a low number c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re is evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>. In fact,<br />

Slatter (1994) detected a <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> even when testing slurries with a<br />

volumetric c<strong>on</strong>centrati<strong>on</strong> as low as 2 %. It would <str<strong>on</strong>g>the</str<strong>on</strong>g>refore appear from tests c<strong>on</strong>ducted by<br />

Slatter (1994) and test c<strong>on</strong>ducted for this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis tllat <str<strong>on</strong>g>the</str<strong>on</strong>g> large <str<strong>on</strong>g>particle</str<strong>on</strong>g>s have a dominant <str<strong>on</strong>g>effect</str<strong>on</strong>g><br />

<strong>on</strong> tUrbulence even when <str<strong>on</strong>g>the</str<strong>on</strong>g> number c<strong>on</strong>centrati<strong>on</strong> is extremely. This would indicate that<br />

:he Particle roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> mere fact that <str<strong>on</strong>g>particle</str<strong>on</strong>g>s are present in <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry per<br />

,e but it is strange that a small number produce <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>effect</str<strong>on</strong>g> as a large number.


Chapter 5 Discussi<strong>on</strong> Page 5.6<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>particle</str<strong>on</strong>g>s per square meter for <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture I test sets were c<strong>on</strong>siderably lower<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r test sets. This could be due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thickness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mixture I is relatively large compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin and mixture 2 viscous sub-layer thickness<br />

and hence <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> large <str<strong>on</strong>g>particle</str<strong>on</strong>g>s present (due to <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a large <str<strong>on</strong>g>particle</str<strong>on</strong>g>)<br />

is low. It is interesting to note that number <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>particle</str<strong>on</strong>g>s per meter square <str<strong>on</strong>g>of</str<strong>on</strong>g> viscous sub-layer<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> 25mm, 80mm, 150mm and 200mm pipelines is <str<strong>on</strong>g>the</str<strong>on</strong>g> same per test set due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number c<strong>on</strong>centrati<strong>on</strong> being independent <str<strong>on</strong>g>of</str<strong>on</strong>g> diameter.<br />

What would streng<str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> case bf <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness turbulence is if <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow<br />

headloss in a vertical test secti<strong>on</strong> was found to be <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal. There is<br />

evidence to suggest (eg. Maude & Whitmore, 1956, Wils<strong>on</strong>, 1996) that <str<strong>on</strong>g>particle</str<strong>on</strong>g>s have a<br />

tendency in vertical pipes to move inward away from <str<strong>on</strong>g>the</str<strong>on</strong>g> wall (ie. away from <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous<br />

sub-layer). If this is indeed <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>the</str<strong>on</strong>g>n it could affect <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>iveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r test should be c<strong>on</strong>ducted to c<strong>on</strong>firm if <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal headloss and<br />

vertical headloss are in agreement.<br />

5.6 INFLUE."iCE OF PARTICLE SIZE<br />

In Chapter 4, it was stated that an increase in wall shear stress with an increase in<br />

c<strong>on</strong>centrati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> 150mm pipeline tests" for mixture 2 was due to an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>. The d S5 <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> three 150mm pipeline tests were<br />

l37/tm, 158j.Lm and 170j.Lm and <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in wall shear stress can clearly be seen in Figure<br />

4.21. Slatter's model best predicted <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow data for mixture 2 as it is based <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> and is able to account for <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in wall shear stress. The<br />

greater <str<strong>on</strong>g>the</str<strong>on</strong>g> representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a homogeneous slurry <str<strong>on</strong>g>the</str<strong>on</strong>g> greater will be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> wall shear stress and <str<strong>on</strong>g>the</str<strong>on</strong>g> greater will be <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical<br />

models being unable to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow data.<br />

HOwever, this phenomen<strong>on</strong> could also be ascribed to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rheology and <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry. To c<strong>on</strong>firm that <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in wall shear stress is<br />

Jue to an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> sensitivity to changes in wall shear stress due to


Chapter 5 Discussi<strong>on</strong> Page 5.9<br />

5.7 THEORETICAL MODELS<br />

As stated Slatter's model was c<strong>on</strong>sistently <str<strong>on</strong>g>the</str<strong>on</strong>g> best model for <str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin test sets and for<br />

mixture 2 with increasing representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>. This is attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that his<br />

model is able to account for <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r models do not. Where<br />

Slarter's model fails to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture 1 test sets, it could be<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> following reas<strong>on</strong>s. Firstly, it should be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer thickness is<br />

relatively large in <strong>turbulent</strong> flow (± 300JLm) as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> possible <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe<br />

and <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>s. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer is suppressing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> and Slatter's model which is over predicting <str<strong>on</strong>g>the</str<strong>on</strong>g> shear stress values is over<br />

compensating for a roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> which is not that significant. It is interesting to note for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> test data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> large pipes (ie. 200mm pipes) for mixture 1, when <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g><br />

could be a factor, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model is fairly good - an average<br />

percentage error <str<strong>on</strong>g>of</str<strong>on</strong>g>2.59%, 2,98% and 15,48% for <str<strong>on</strong>g>the</str<strong>on</strong>g> three tests. Also, from Table 5.1 it<br />

can be seen that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are relatively fewer larger <str<strong>on</strong>g>particle</str<strong>on</strong>g>s present in <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer<br />

as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r test sets due to <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer (see secti<strong>on</strong><br />

5.5). Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r reas<strong>on</strong> is that <str<strong>on</strong>g>the</str<strong>on</strong>g> rheology is tending towards being a Bingham plastic (ie. <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

value for n is approaching n=l) and under <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model tends to over<br />

predict <str<strong>on</strong>g>the</str<strong>on</strong>g> shear stress values. At high shear rate values for a Bingham plastic as opposed<br />

to yield pseudoplastic <str<strong>on</strong>g>the</str<strong>on</strong>g> shear stress values will be greater as <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous forces<br />

predominate in this regi<strong>on</strong> for Bingham plastics.<br />

Although Slatter's model is <str<strong>on</strong>g>the</str<strong>on</strong>g> best model overall. <str<strong>on</strong>g>the</str<strong>on</strong>g> data presented <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

rOughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> (Figure 4.2) does bring into questi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s <strong>on</strong><br />

Which <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model is based. However, because Slatter's model is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> it proves very useful when undertaking for example scale-up from a smooth­<br />

Walled small bore (eg. PVC pipe) to a rough wall large-scale pipe (eg. galvanised ir<strong>on</strong>), or<br />

Vice versa. Normally, for example, if <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop in <strong>turbulent</strong> flow is predicted by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sCale-up method <str<strong>on</strong>g>of</str<strong>on</strong>g> Bowen, a corrected pressure gradient would have to be estimated for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

change in roughness. This could be d<strong>on</strong>e by using <str<strong>on</strong>g>the</str<strong>on</strong>g> Govier & Aziz (1972) approach <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mUltiplying <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted pressure gradient by a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> fricti<strong>on</strong> factors obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g>


Chapter 5 Discussi<strong>on</strong> Page 5.10<br />

Moody chart. This is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r downfall <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> Bowen method. However, if using <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter<br />

method you would simply select <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> for <str<strong>on</strong>g>the</str<strong>on</strong>g> Roughness Reynolds<br />

Number (ie. <str<strong>on</strong>g>the</str<strong>on</strong>g> representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> or <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe hydraulic roughness, whichever is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

greater). It is suggested however, that test work is first c<strong>on</strong>ducted in smooth pipes to ensure<br />

that <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness turbulence is indeed occurring. If testing takes place in a pipe with<br />

pipe hydraulic roughness higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness<br />

<str<strong>on</strong>g>effect</str<strong>on</strong>g> will not be detected.<br />

This investigati<strong>on</strong> does highlight <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> is valid for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

slurries tested and must be used in <strong>turbulent</strong> flow modelling. The <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g><br />

should be incorporated in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian slurries, as has been used<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for Slatter's analysis, to account for rough wall <strong>turbulent</strong> flow and to predict<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> change from smooth wall to rough wall <strong>turbulent</strong> flow.<br />

5.8 REYNOLDS NUMBER VS FRICTION FACTOR PLOTS<br />

Figure 5.3 to Figure 5.5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> plot <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynolds number vs fricti<strong>on</strong> factor, also called<br />

Moody plots, for <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>ian approximati<strong>on</strong> Reynolds Number, Metzner & Reed Reynolds<br />

Number, and a Reynolds number published by Slatter & Lazarus (1993) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

Re = 8 P V 2<br />

Ty"'K D<br />

[ 8V) n<br />

(5.1)<br />

which can be derived by c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>ian approximati<strong>on</strong> and substituting <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk<br />

shear rate in place <str<strong>on</strong>g>of</str<strong>on</strong>g> true shear rate (Slatter, 1994). Included in <str<strong>on</strong>g>the</str<strong>on</strong>g> plots are <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar<br />

flow line (ie. f=16/Re) and <str<strong>on</strong>g>the</str<strong>on</strong>g> Prandtlline (Newt<strong>on</strong>ian smooth wall).<br />

The Moody chart shows that for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> Newt<strong>on</strong>ian fluids, pipe roughness can<br />

have an appreciable <str<strong>on</strong>g>effect</str<strong>on</strong>g>. As can be seen from Figure 5.3 <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow data tends to<br />

lie in straight horiz<strong>on</strong>tal lines for <str<strong>on</strong>g>the</str<strong>on</strong>g> various slurries and does not follow <str<strong>on</strong>g>the</str<strong>on</strong>g> oblique Prandtl<br />

line as suggested by Kemblowski & Kolodziejski (1973). This indicates that f is c<strong>on</strong>stant<br />

with increasing Reynolds numbers and hence it is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> rheology. This trend is


Chapter 5 Discussi<strong>on</strong> Page 5.13<br />

5.7 CONCLUSIONS<br />

Experimental work has been c<strong>on</strong>ducted using homogeneous n<strong>on</strong>-Newt<strong>on</strong>ian slurries and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

analysis and discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results has been presented. As can be seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

Slatter's model best predicts <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models which were<br />

c<strong>on</strong>sidered. From <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence it can be c<strong>on</strong>cluded that <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> are justified in adopting <str<strong>on</strong>g>the</str<strong>on</strong>g> approach and in fact <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> which does exist should be c<strong>on</strong>sidered in <strong>turbulent</strong> flow analysis. There is<br />

room for improving <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r test work should be c<strong>on</strong>ducted to fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

vindicate or disprove <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <strong>on</strong> which <str<strong>on</strong>g>the</str<strong>on</strong>g> model is based but <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness<br />

<str<strong>on</strong>g>effect</str<strong>on</strong>g> is defmitely a viable starting point to c<strong>on</strong>sider in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneous<br />

n<strong>on</strong>-Newt<strong>on</strong>ian suspensi<strong>on</strong>s. The following c<strong>on</strong>clusi<strong>on</strong>s can be drawn from <str<strong>on</strong>g>the</str<strong>on</strong>g> discussi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> test data:<br />

• A <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> does exist.<br />

• Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r investigati<strong>on</strong> is required and a large data base should be established to<br />

accurately determine <str<strong>on</strong>g>the</str<strong>on</strong>g> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g><br />

• The d 85 <str<strong>on</strong>g>size</str<strong>on</strong>g> does not necessarily give <str<strong>on</strong>g>the</str<strong>on</strong>g> best representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> but will depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PSD.<br />

• The viscous sub-layer cannot exist if it is smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s which comprise<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> slurry and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuum approximati<strong>on</strong> must be compromised in <strong>turbulent</strong> flow<br />

analysis.<br />

• The viscous sub-layer breaks down for Re, > 3,32 which is at a viscous sub-layer<br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately" = 3*d 85 for <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter model. For <str<strong>on</strong>g>the</str<strong>on</strong>g> Maude &<br />

Whitmore (1956, 1958) correlati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer breaks down when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g> diameter is greater than half <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

investigati<strong>on</strong> is required to accurately predict <str<strong>on</strong>g>the</str<strong>on</strong>g> exact point at which <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-


Chapter 5 Discussi<strong>on</strong> Page 5.14<br />

layer does break down.<br />

• There are fewer large <str<strong>on</strong>g>particle</str<strong>on</strong>g>s present in <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous sub-layer per square meter than<br />

would be anticipated for a <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>.<br />

• Slatter's model can be used for scale-up <str<strong>on</strong>g>of</str<strong>on</strong>g>pipes with different roughnesses without<br />

having to use an estimated pressure gradient which a downfall <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Bowen method.<br />

• The fricti<strong>on</strong> factor is c<strong>on</strong>stant with increasing Reynolds Numbers and vindicates <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness approach adopted by Slatter.<br />

• The solids Particle Size Distributi<strong>on</strong> is an important property <str<strong>on</strong>g>of</str<strong>on</strong>g>a slurry for <strong>turbulent</strong><br />

flow behaviour and should be used to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>. The<br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> should be incorporated in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>­<br />

Newt<strong>on</strong>ian slurries.


CHAPTER 6


Chapter 6 Summary and C<strong>on</strong>clusi<strong>on</strong>s Page 6.4<br />

• The relevant literature <strong>on</strong> slurry flow has been reviewed, including a new approach<br />

based <strong>on</strong> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness turbulence.<br />

• An experimental investigati<strong>on</strong> covering wide ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> flow c<strong>on</strong>diti<strong>on</strong>s and slurry<br />

properties has been c<strong>on</strong>ducted and <str<strong>on</strong>g>the</str<strong>on</strong>g> results analyzed.<br />

• Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se results shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness turbulence approach<br />

adopted by Slatter (1994) bas been validated.<br />

• Recommendati<strong>on</strong>s for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r research have been made.


REFERENCES


REFERENCES<br />

ALVES G E (1949), Flow <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian suspensi<strong>on</strong>s, Chem. Eng., May, 107-109.<br />

ALVES G E, BOUCHER D F and PIGFORD R L (1952), Chem. Eng Progr., 48, 385.<br />

AUDE T C, COWPER N T, THOMPSON T L and WASP E J (1971), Slurry Piping<br />

Systems: Trends, Design Methods, Guidelines, Chem. Eng., June 28, 74-90.<br />

BENEDICT R P (1980), Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g>Pipe Flow, John Wiley & S<strong>on</strong>s, New York.<br />

BINDER R C and BUSHER J E (1946), J. Appl. Mech., 13, A1Ol.<br />

BLASIUS H (1913), Mitt. Forschungsarb, 131, 1.<br />

BOWEN R LeB (1961a), How to handle slurries, Chem. Eng., August 7, 129-132.<br />

BOWEN R LeB (1961b), Designing <strong>turbulent</strong> flow systems, Chem. Eng. 68 143-150.<br />

BS 1377 (1975), Methods <str<strong>on</strong>g>of</str<strong>on</strong>g>test for soils for civil engineering purposes, British Standards<br />

Instituti<strong>on</strong>, L<strong>on</strong>d<strong>on</strong>.<br />

BS 5168, British Standards Instituti<strong>on</strong>, L<strong>on</strong>d<strong>on</strong>.<br />

BUNKER H L (1954), Pipe Line Design, Fluid and Particle Mechanics, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Delaware Newark, Delaware, 161-170.<br />

CALDWELL D Hand BABBITT H E (1941), The flow <str<strong>on</strong>g>of</str<strong>on</strong>g> muds, sludges and suspensi<strong>on</strong>s<br />

in circular pipes, Trans. Am. Inst. Chem. Eng., 37, 237-266.<br />

CHARLES M E and KENCHINGTON J M (1976), Solid Pipeline Course, Banff, Alberta,<br />

Canada, May.


References Page R.3<br />

HANKS R W (1963), The laminar/<strong>turbulent</strong> transiti<strong>on</strong> for fluids with a yield stress, AIChE<br />

Journal, Vol 9 No 3.<br />

HANKS R W and RICKS B L (1974), Laminar-transiti<strong>on</strong> in flow <str<strong>on</strong>g>of</str<strong>on</strong>g>pseudoplastic fluids with<br />

yield stress, J. Hydr<strong>on</strong>aurics, Vo!. 8, No. 4.<br />

HANKS R W and RICKS B L (1975), Transiti<strong>on</strong>al and <strong>turbulent</strong> pipeflow <str<strong>on</strong>g>of</str<strong>on</strong>g> pseudoplastic<br />

fluids, J. Hydr<strong>on</strong>autics, Vo!..9, No. 1.<br />

HARRlS J (1967), Letter to <str<strong>on</strong>g>the</str<strong>on</strong>g> Editor, Chem. Engnr.(LN), Jan/Feb, 30.<br />

HARRlS J (1968), The correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newt<strong>on</strong>ian Turbulent pipeflow data, Rheol. Acta.,<br />

7, 3, 228-235.<br />

HARR1S J and QUADER A K M A (1971), Design procedures for pipelines transporting<br />

n<strong>on</strong>-Newt<strong>on</strong>ian fluids and solid liquid systems, Brit. Chem. Engrg., Vol 16 No 415.<br />

HARRlS J and WILKlNSON W L (1971), Momentum, heat and mass transfer in n<strong>on</strong>­<br />

Newt<strong>on</strong>ian <strong>turbulent</strong> flow in pipes, Chem. Engng, 16,301-311.<br />

HEDSTROM BOA (1952), Flow <str<strong>on</strong>g>of</str<strong>on</strong>g>plastics materials in pipes, Industrial and engineering<br />

chemistry, v.44 No.3.<br />

HERSCHEL W H and BULKLEY R (1926), Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sistency as applied to<br />

rubber-benzene soluti<strong>on</strong>s, Proc ASTM, 26 Part 2 621-633.<br />

HEYWOOD NI (1980), Pipeline Design for N<strong>on</strong>-Newt<strong>on</strong>ian Fluids, Interjlow 80, IChemE,<br />

33-53


References Page R.5<br />

METZNER A B (1956), N<strong>on</strong>-Newt<strong>on</strong>ian Technology: Fluid Mechanics, Mixing, and Heat<br />

Transfer, Advances in Chemical Engineering, Vo1 1, 77-153, Academic Press Inc, New<br />

York.<br />

METZNER A B and REED J C (1955), Flow <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian fluids - correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

laminar, transiti<strong>on</strong> and <strong>turbulent</strong> flow regi<strong>on</strong>s, AIChE Journal, v.1 nA.<br />

MICHIYOSm 1, MATSUMOTO R, MIZUNO K and NAKAI M (1966), Flow <str<strong>on</strong>g>of</str<strong>on</strong>g> slurry<br />

through a circular tube. Fricti<strong>on</strong> factor for tubes. Part II., Int Chem Eng, 6,2.<br />

MILLER R W (1989), Flow Engineering Handbook - Sec<strong>on</strong>d Editi<strong>on</strong>, McGraw-Hill<br />

Publishing Company, New York.<br />

MOODIE L, G S THORVALDSEN, PT SLATTER and F W PETERSEN, The Balanced<br />

Beam Tube Viscometer, Hydraulic C<strong>on</strong>veying Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>SA C<strong>on</strong>ference, 14 November,<br />

1994.<br />

MOODY L F (1944), Fricti<strong>on</strong> factors for pipe flow, Trans ASME, November, 1944.<br />

MOONEY M (1931), Explicit Formulas for Slip and Fluidity, J. Rheology, 2, 210-222.<br />

MUN R (1988), Turbulent pipe flow <str<strong>on</strong>g>of</str<strong>on</strong>g> yield stress fluids, M Eng Sci Thesis, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Melbourne.<br />

NEILL RIG (1988), The rheology and flow behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> high c<strong>on</strong>centrati<strong>on</strong> mineral<br />

slurries, Msc Dissertati<strong>on</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cape Town.<br />

NlKURADSE J (1932), Gesetzmassigkeiten der <strong>turbulent</strong>en Stromung in glatten Rohren,<br />

Forschungsheft No. 356, VDI Verlag, Berlin, 32.


References Page R.7<br />

ROBERTSON G (1996), Private Communicati<strong>on</strong>, GeoScience Laboratories, Cape Town,<br />

South Africa.<br />

RYAN N Wand JOHNSON M M (1959), Transiti<strong>on</strong> from 1aminar to <strong>turbulent</strong> flow in<br />

pipes, AIChE Journal, 5 433-435.<br />

SABERSKY RH and ACOSTA A J (1966), Fluid Flow in Fluid Mechanics: A First Course,<br />

Collier-Macmillan Limited, l.pnd<strong>on</strong>.<br />

SCHLICHTING H (1968), Boundary layer <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, 5th editi<strong>on</strong>, M'Graw-Hill, New York.<br />

SHOOK C A and ROCO M C (1991), Slurry flow: principles and practice, Butterworth­<br />

Heinemann.<br />

SIVE A W (1988), An analytical and experimental investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic transp<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>high c<strong>on</strong>centrati<strong>on</strong> mixed regime slurries, PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cape Town.<br />

SLATIER P T (1994), Transiti<strong>on</strong>al and Turbulent Flow <str<strong>on</strong>g>of</str<strong>on</strong>g>N<strong>on</strong>-Newt<strong>on</strong>ian Slurries in Pipes,<br />

PhD Thesis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cape Town. -<br />

SLATIER PT (1995), Private communicati<strong>on</strong>, Cape Technik<strong>on</strong>, Cape Town, South Africa.<br />

SLATIER PT (1996), Private communicati<strong>on</strong>, Cape Technik<strong>on</strong>, Cape Town, South Africa.<br />

SLATIER PT, LAZARUS J H (1993), Critical flow in slurry pipelines, 12 th Int. C<strong>on</strong>f. <strong>on</strong><br />

slurry handling and pipeline transport, HYDROTRANSPORT 12, BRR Group, p639.<br />

SLATIER PT, G S THORVALDSEN and F W PETERSEN (1996), Particle Roughness<br />

Turbulence, British Hydromechanics Research Group 13 th Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Slurry<br />

Handling and Pipeline Transport HYDROTRANSPORT 13, Johannesburg, 3-5 September,<br />

1996.


References Page R.8<br />

SPIEGEL M R (1972), Theory and problems <str<strong>on</strong>g>of</str<strong>on</strong>g>statistics in SI units, McGraw-Hill, New<br />

York.<br />

THOMAS AD (1976), Scale-up methods for pipeline transport <str<strong>on</strong>g>of</str<strong>on</strong>g>slurries, Int. J. Min. Proc,<br />

3,51-69.<br />

THOMAS A D (1983), Turbulent Pipe Flow <str<strong>on</strong>g>of</str<strong>on</strong>g> Bingham Plastics, Proc. 3'" Nat. C<strong>on</strong>go<br />

Rheol., Brit. Soc. RheoI.(Aust), Melbourne, 83-87.<br />

THOMAS D G (1963), N<strong>on</strong>-Newt<strong>on</strong>ian Suspensi<strong>on</strong>s Part II: Turbulent Transport<br />

Characteristics, Ind. Eng. Chem., 55, 12, 27-35.<br />

TOMITA Y (1959), A study <strong>on</strong> n<strong>on</strong>-Newt<strong>on</strong>ian flow in pipes, Bull JSME, Vol2 No 5.<br />

TORRANCE B M'K (1963), Fricti<strong>on</strong> factors for <strong>turbulent</strong> n<strong>on</strong>-Newt<strong>on</strong>ian flow in circular<br />

pipes, S. A. Mechanical Engineer, v.l3.<br />

VAUGHN R D (1956), PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis in Chemical Engineering, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Delaware,<br />

Newark.<br />

VON KARMEN T (1930), Nachr. Ges. Wiss. Gottingen. Math Physik. Kt., 58.<br />

\VELTMAN RN (1948), C<strong>on</strong>sistency and Temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> Oils and Printing inks at High<br />

Shearing Stresses, Ind. Eng. Chem., 40, February, 272-280.<br />

'\'ELTMAN R N (1956), Fricti<strong>on</strong> Factors for Flow <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>-Newt<strong>on</strong>ian Materials in<br />

y<br />

Jpelines, Ind. Eng. Chem., 48, 3, 386-387.<br />

,VILSON K C (1986), Modelling <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian and time-dependent slurry


References Page R.9<br />

behaviour, ](1' Int. C<strong>on</strong>! <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic transp<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>solids in pipes, Hydrotransport 10<br />

Paper n.<br />

WILSON K C (1996), Comments <strong>on</strong> paper "Particle Roughness Turbulence",<br />

HYDROTRANSPORT 13, Johannesburg, 3-5 September, 1996<br />

WILSON K C and THOMAS A D (1985), A new analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>­<br />

Newt<strong>on</strong>ian fluids. Can. J. Cllem. Eng., 63, 539-546.<br />

WILSON K C and WILSON K C (1987), New analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newt<strong>on</strong>ian flow- yield-power­<br />

law fluids, Can J Chem Eng, 65 335-338.<br />

XU J, GILLIES R, SMALL M and SHOOK CA (1993), Laminar and <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

kaolin slurries, IJ!i'Int. C<strong>on</strong>f. <strong>on</strong> slurry handling and pipeline transp<strong>on</strong>, Hydrotransport 12,<br />

BHR Group, p595.<br />

ZETTLEMOYER A C and LOWER G W (1955), Journal Colloid Sci, 10, 29.


APPENDICES


APPENDIX A


Appendix A Detailed Pipe Test Results<br />

A.I DETAUED PIPE TEST RESULTS<br />

The detailed pipe test results are presented in this secti<strong>on</strong>.<br />

Each test set (ie. 25mm, 8Omm, 150mm and 2oomm) is preceded by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g><br />

<str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> for that particular test set.<br />

A table <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> data points <str<strong>on</strong>g>of</str<strong>on</strong>g> wall shear stress and velocity precedes each pipeline test sheet.<br />

Each test sheet c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> test apparatus, material, slurry properties, <strong>turbulent</strong> model<br />

performance and <str<strong>on</strong>g>the</str<strong>on</strong>g> test data plotted <strong>on</strong> a pseudo-shear diagram.<br />

The test code (eg. SERSlO) indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

S This describes <str<strong>on</strong>g>the</str<strong>on</strong>g> material ie. sand (mixture 2)<br />

or K=kaolin or RF=rock flour (mixture 1)<br />

ER This describes <str<strong>on</strong>g>the</str<strong>on</strong>g> apparatus ie East Rig or Mini Rig<br />

S This indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe <str<strong>on</strong>g>size</str<strong>on</strong>g> = small, medium or large<br />

IO This indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> test identifier<br />

A.I


Appendix A Detailed Pipe Test Results<br />

TEST: KERSIO<br />

SLURRY: Water<br />

Kaolin Clay<br />

CRITICAL VELOCITY: 2.32 m/s<br />

EJ Wall Shear Stress<br />

[pa]<br />

Velocity<br />

fm/s]<br />

1. 68.82 5.55<br />

2. 53.50 4.88<br />

3. 42.89 4.34<br />

4. 34.48 3.84<br />

5. 27.30 3.36<br />

6. 20.09 2.84<br />

7. 15.64 2.34<br />

8. 13.01 1.87<br />

9. 12.03 1.52<br />

10. 11.38 1.04<br />

11. 10.99 0.80<br />

12. 10.56 0.54<br />

A.5


Appendix A Detailed Pipe Test Results<br />

TEST: KERMIO<br />

SLURRY: Water<br />

Kaolin Clay<br />

CRITICAL VELOCITY: 2.94 m/s<br />

EJI Wall Shear Stress<br />

[pa] I<br />

Velocity<br />

[m/s]<br />

1. 76.46 6.20<br />

2. 65.48 5.91<br />

3. 54.43 5.38<br />

4. 45.77 4.93<br />

5. 38.04 4.56<br />

6. 32.65 4.14<br />

7. 27.17 3.77<br />

8. 22.99 3.36<br />

9. 18.83 3.11<br />

10. 14.95 2.77<br />

11. 13.41 2.57<br />

12. 11.97 2.18<br />

13. 11.47 1.85<br />

14. 10.79 1.42<br />

IS. 10.16 1.15<br />

I<br />

A.7


Appendix A Detailed Pipe Test Results<br />

TEST: KERLIO<br />

SLURRY: Water<br />

Kaolin Clay<br />

CRITICAL VELOCITY: 2.21 m/s<br />

No.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

14.<br />

22.12<br />

20.03<br />

18.57<br />

16.30<br />

13.82<br />

13.19<br />

12.82<br />

11.88<br />

11.65<br />

10.89<br />

10.79<br />

10.54<br />

10.33<br />

9.33<br />

Velocity<br />

[m/s]<br />

2.98<br />

2.84<br />

2.76<br />

2.60<br />

2.36<br />

2.16<br />

2.00<br />

1.81<br />

1.63<br />

1.45<br />

1.24<br />

1.07<br />

0.91<br />

0.67<br />

A.9


Appendix A Detailed Pipe Test Results<br />

TEST: KMRL20<br />

SLURRY: Water<br />

Kaolin Clay<br />

CRITICAL VELOCITY: 1.67 m1s<br />

EJ Wall Shear Stress<br />

[pa]<br />

Velocity<br />

[m1s]<br />

I. 22.89 2.60<br />

2. 19.92 2.40<br />

3. 17.51 2.22<br />

4. 14.90 2.03<br />

5. 12.21 1.83<br />

6. 11.38 1.69<br />

7. 10.43 1.52<br />

8. 10.37 1.45<br />

9. 9.94 1.25<br />

10. 9.47 1.03<br />

11. 8.83 0.74<br />

12. 8.35 0.58<br />

13. 7.87 0.32<br />

14. 7.15 0.19<br />

A.12


Appendix A Detailed Pipe Test Results<br />

TEST: KERS20<br />

SLURRY: Water<br />

Kaolin Clay<br />

CRITICAL VELOCITY: 1.95 m/s<br />

I No. Wall Shear Stress<br />

[Pa] I<br />

Velocity<br />

[m/s]<br />

1. 84.69 5.42<br />

2. 71.01 5.14<br />

3. 61.12 4.92<br />

4. 51.53 4.49<br />

5. 40.97 4.03<br />

6. 34.38 3.61<br />

7. 26.94 3.14<br />

8. 17.60 2.64<br />

9. 13.58 2.25<br />

10. 8.44 1.69<br />

11. 7.95 1.21<br />

12. 7.00 0.75<br />

I<br />

A.14


Appendix A Detailed Pipe Test Results<br />

TEST:KERM20<br />

SLURRY: Water<br />

Kaolin Clay<br />

CRmCAL VELOCITY: 2.22 m1s<br />

EJI Wall Shear Stress<br />

[pa] I<br />

Velocity<br />

[m1s]<br />

1. 73.65 6.19<br />

2. 65.48 5.90<br />

3. 56.23 5.47<br />

4. 45.10 4.83<br />

5. 32.36 4.05<br />

6. 22.57 3.32<br />

7. 17.58 2.88<br />

8. 13.50 2.56<br />

9. 11.33 2.23<br />

10. 9.39 2.00<br />

11. 8.18 1.75<br />

12. 7.82 1.59<br />

13. 7.32 1.42<br />

I<br />

A.16


Appendix A Detailed Pipe Test Results<br />

TEST: KERL20<br />

SLURRY: Water<br />

Kaolin Clay<br />

CRITICAL VELOCITY: 1.55 m1s<br />

No. IWall Shear Stress<br />

[pa] I<br />

Velocity<br />

[m1s]<br />

1. 7.64 2.89<br />

2. 13.76 2.49<br />

3. 12.22 2.32<br />

4. 10.08 2.00<br />

5. 8.82 1.74<br />

6. 7.25 1.37<br />

7. 5.99 1.05<br />

8. 5.44 0.72<br />

I<br />

A.18


Appendix A Detailed Pipe Test Results<br />

TEST: RFMRL10<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRITICAL VELOCITY: 1.71 mfs<br />

No. Wall Shear Stress Velocity<br />

[pa] [mfs]<br />

1. 25.25 2.48<br />

2. 19.58 2.19<br />

3. 17.00 2.03<br />

4. 14.72 1.91<br />

5. 13.47 1.87<br />

6. 11.24 1.71<br />

7. 10.36 1.60<br />

8. 9.91 1.44<br />

9. 9.47 1.30<br />

10. 8.77 1.11<br />

11. 8.22 0.95<br />

12. 7.60 0.74<br />

13. 6.88 0.56<br />

14. 6.33 0.44<br />

A.22


Appendix A Detailed Pipe Test Results<br />

TEST: RFERSIO<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRITICAL VELOCITY: 1.96 mls<br />

EJI Wall Shear Stress<br />

[pa] I<br />

Velocity<br />

[mls]<br />

1. 87.50 5.43<br />

2. 78.45 5.13<br />

3. 64.13 4.86<br />

4. 51.25 4.39<br />

5. 44.36 4.02<br />

6. 39.63 3.71<br />

7. 30.61 3.35<br />

8. 24.78 2.94<br />

9. 21.17 2.65<br />

10. 13.84 2.20<br />

11. 9.31 1.78<br />

12. 5.88 1.30<br />

13. 4.91 0.68<br />

I<br />

A.24


Appendix A Detailed Pipe Test Results<br />

TEST: RFERMIO<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRITICAL VELOCITY: 2.24 rnIs<br />

No. IWaIl Shear Stress<br />

(pa] I<br />

Velocity<br />

[rnIs]<br />

1. 78.79 6.17<br />

2. 68.44 5.66<br />

3. 55.61 5.25<br />

4. 47.58 4.77<br />

5. 41.72 4.50<br />

6. 35.36 4.10<br />

7. 28.87 3.71<br />

8. 22.43 3.31<br />

9. 16.33 2.89<br />

10. 14.72 2.69<br />

11. 12.45 2.42<br />

12. 9.17 2.15<br />

13. 5.01 1.49<br />

14. 4.88 1.21<br />

I<br />

A.26


Appendix A Detailed Pipe Test Results<br />

TEST: RFERLIO<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRITICAL VELOCITY: 1.27 rnfs<br />

No.<br />

I<br />

Wall Shear Stress<br />

[pa] I<br />

Velocity<br />

[m1s]<br />

1. 21.22 2.79<br />

2. 16.23 2.40<br />

3. 13.40 2.16<br />

4. 10.11 1.83<br />

5. 8.69 1.63<br />

6. 6.47 1.34<br />

7. 4.97 0.91<br />

8. 4.62 0.71<br />

I<br />

A.28


Appendix A Detailed Pipe Test Results<br />

TEST: RFMRL20<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRITICAL VELOCITY: 1.81 rnIs<br />

No.<br />

I<br />

Wall Shear Stress<br />

[pa] I<br />

Velocity<br />

[rnIs]<br />

1. 24.49 2.64<br />

2. 19.49 2.36<br />

3. 16.78 2.17<br />

4. 14.98 2.05<br />

5. 11.40 1.82<br />

6. 10.12 1.52<br />

7. 9.05 1.19<br />

8. 8.63 1.02<br />

9. 7.89 0.82<br />

10. 7.35 0.70<br />

11. 6.65 0.46<br />

12. 5.97 0.35<br />

13. 5.39 0.25<br />

I<br />

A.32


Appendix A Detailed Pipe Test Results<br />

TEST: RFERS20<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRITICAL VELOCITY: 1.48 m1s<br />

No. IWaIl Shear Stress Velocity<br />

[pa] [m/s]<br />

1. 90.31 5.73<br />

2. 66.13 4.85<br />

3. 53.70 4.35<br />

4. 45.21 3.98<br />

5. 40.27 3.67<br />

6. 32.40 3.23<br />

7. 24.48 2.81<br />

8. 18.47 2.45<br />

9. 11.58 1.96<br />

10. 6.13 1.35<br />

11. 5.64 1.08<br />

I<br />

I<br />

A.34


Appendix A Detailed Pipe Test Results<br />

TEST:RFERM20<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRITICAL VELOCITY: 2.22 m/s<br />

No. IWall Shear Stress<br />

[pa] I<br />

Velocity<br />

[m/s]<br />

1. 77.92 6.14<br />

2. 66.64 5.53<br />

3. 55.30 5.06<br />

4. 42.66 4.51<br />

5. 35.04 4.07<br />

6. 27.36 3.57<br />

7. 19.49 3.07<br />

8. 14.07 2.64<br />

9. 10.45 2.28<br />

10. 8.53 2.01<br />

11. 4.95 1.63<br />

12. 4.76 1.39<br />

I<br />

A.36


Appendix A Detailed Pipe Test Results<br />

TEST: RFERL20<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRITICAL VELOCITY: 1.38 rnIs<br />

No. IWall Shear Stress<br />

[pa] I<br />

Velocity<br />

[rnIs]<br />

1. 22.93 2.76<br />

2. 19.47 2.56<br />

3. 15.61 2.32<br />

4. 13.61 2.13<br />

5. 11.21 1.94<br />

6. 9.03 1.71<br />

7. 7.59 1.51<br />

8. 6.49 1.15<br />

9. 5.68 0.88<br />

I<br />

A.38


Appendix A Detailed Pipe Test Results<br />

TEST: RFMRL30<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRlTICAL VELOCITY: 1.69 rnfs<br />

No. Wall Shear Stress Velocity<br />

[pa] [rnfs]<br />

1. 24.60 2.31<br />

2. 22.37 2.15<br />

3. 21.00 2.00<br />

4. 18.8 1.84<br />

5. 16.80 1.64<br />

6. 15.94 1.48<br />

7. 15.30 1.36<br />

8. 13.90 1.13<br />

9. 12.60 0.94<br />

10. 11.32 0.74<br />

11. 9.62 0.46<br />

A.42


Appendix A Detailed Pipe Test Results<br />

TEST: RFERS30<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRITICAL VELOCITY: 1.87 mls<br />

EJI Wall Shear Stress<br />

[pa] I<br />

Velocity<br />

[mls]<br />

I. 93.29 5.70<br />

2. 76.66 5.12<br />

3. 66.45 4.79<br />

4. 53.79 4.30<br />

5. 41.64 3.69<br />

6. 34.18 3.28<br />

7. 24.34 2.80<br />

8. 15.82 2.24<br />

9. 9.71 1.64<br />

10. 8.58 1.03<br />

11. 7.83 0.66<br />

I<br />

A.44


Appendix A Detailed Pipe Test Results<br />

TEST:RFERM30<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRITICAL VELOCITY: 2.26 rnIs<br />

No. Wall Shear Stress Velocity<br />

[pa] [rnIs]<br />

I. 77.82 6.02<br />

2. 62.69 5.26<br />

3. 45.36 4.46<br />

4. 37.51 4.10<br />

5. 29.93 3.70<br />

6. 23.89 3.33<br />

7. 18.06 2.86<br />

8. 14.09 2.65<br />

9. 11.22 2.38<br />

10. 10.00 2.16<br />

11. 7.81 1.70<br />

A.46


Appendix A Detailed Pipe Test Results<br />

TEST: RFERL30<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

CRITICAL VELOCITY: 1.42 m/s<br />

No. Wall Shear Stress Velocity<br />

[pa] [m/s]<br />

1. 26.58 2.71<br />

2. 22.94 2.62<br />

3. 20.00 2.53<br />

4. 17.60 2.36<br />

5. 15.39 2.15<br />

6. 11.97 1.86<br />

7. 10.30 1.59<br />

8. 8.65 1.22<br />

9. 6.89 0.92<br />

A.48


Appendix A Detailed Pipe Test Results<br />

TEST: SMRLIO<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

Silica Sand<br />

CRITICAL VELOCITY: 1.69 rnIs<br />

No. Wall Shear Stress Velocity<br />

[Pa] [rnIs]<br />

1. 22.78 2.23<br />

2. 19.86 2.10<br />

3. 16.87 1.96<br />

4. 14.99 1.80<br />

5. 13.57 1.70<br />

6. 12.24 1.51<br />

7. 11.85 1.29<br />

8. 11.52 1.13<br />

9. 11.00 0.88<br />

10. 10.41 0.70<br />

11. 9.97 0.56<br />

12. 9.27 0.39<br />

A.52


Appendix A Detailed Pipe Test Results<br />

TEST: SERSIO<br />

SLURRY; Water<br />

Kaolin Clay<br />

RockFIour<br />

Silica Sand<br />

CRITICAL VELOCITY: 2.10 m/s<br />

EJI I<br />

1. 95.43 5.42<br />

Wall Shear Stress Velocity<br />

[pa] fm/s]<br />

2. 86.31 5.15<br />

3. 76.92 4.86<br />

4. 65.80 4.55<br />

5. 55.38 4.19<br />

6. 46.20 3.73<br />

7. 37.72 3.27<br />

8. 26.76 2.83<br />

9. 17.03 2.24<br />

10. 10.42 1.57<br />

11. 9.10 0.99<br />

12. 8.76 0.65<br />

I<br />

A.54


Appendix A Detailed Pipe Test Results<br />

TEST: SERMIO<br />

SLURRY: Water<br />

Kaolin Clay<br />

RockFIour<br />

Silica Sand<br />

CRITICAL VELOCITY: 2.31 m/s<br />

No. Wall Shear Stress Velocity<br />

[pa] [m/s]<br />

1. 79.91 5.40<br />

2. 69.15 5.09<br />

3. 59.87 4.75<br />

4. 48.00 4.26<br />

5. 39.42 3.87<br />

6. 31.47 3.43<br />

7. 23.62 2.99<br />

8. 18.18 2.65<br />

9. 15.26 2.46<br />

10. 12.27 2.29<br />

11. 9.54 1.86<br />

12. 8.26 1.41<br />

A.56


Appendix A Detailed Pipe Test Results<br />

TEST: SERLIO<br />

SLURRY; Water<br />

Kaolin Clay<br />

Rock Flour<br />

Silica Sand<br />

CRITICAL VELOCITY: 1.27 mfs<br />

No. Wall Shear Stress Velocity<br />

[pal [mfsl<br />

1. 22.54 2.69<br />

2. 20.30 2.63<br />

3. 17.85 2.47<br />

4. 15.10 2.23<br />

5. 12.59 1.94<br />

6. 10.74 1.63<br />

7. 9.06 1.22<br />

8. 7.75 0.73<br />

A.58


Appendix A Detailed Pipe Test Results<br />

TEST: SMRL20<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

Silica Sand<br />

CRITICAL VELOCITY: 1.66 rnIs<br />

I<br />

No.<br />

I<br />

Wall Shear Stress<br />

[pa]<br />

Velocity<br />

[rnIs]<br />

1. 21.65 2.12<br />

2. 19.94 2.00<br />

3. 18.03 1.90<br />

4. 16.21 1.79<br />

5. 15.00 1.69<br />

6. 14.81 1.62<br />

7. 13.98 1.43<br />

8. 13.55 1.28<br />

9. 13.22 1.16<br />

10. 13.04 1.07<br />

11. 12.46 0.97<br />

12. 11.80 0.81<br />

13. 13.39 0.71<br />

I<br />

A.62


Appendix A Detailed Pipe Test Results<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

Silica Sand<br />

TEST:SERS20<br />

CRITICAL"VELOCITY: 2.02 m/s<br />

61 Wall Shear Stress<br />

[pa] I<br />

Velocity<br />

[m/5]<br />

I. 98.13 5.37<br />

2. 89.52 5.07<br />

3. 76.39 4.75<br />

4. 67.33 4.37<br />

5. 51.14 3.79<br />

6. 46.64 3.52<br />

7. 32.99 3.01<br />

8. 23.49 2.47<br />

9. 15.33 2.02<br />

10. 11.85 1.46<br />

lI. 10.68 0.96<br />

I<br />

A.64


Appendix A Detailed Pipe Test Results<br />

TEST:SERM20<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

Silica Sand<br />

CRITICAL"VELOCITY: 2.17 m/s<br />

No. Wall Shear Stress Velocity<br />

[pa] [m/s]<br />

1. 79.66 5.23<br />

2. 70.60 4.92<br />

3. 59.76 4.54<br />

4. 51.51 4.11<br />

5. 43.55 3.83<br />

6. 36.77 3.52<br />

7. 31.59 3.26<br />

8. 25.62 2.92<br />

9. 18.90 2.61<br />

10. 13.11 2.17<br />

11. 8.89 1.76<br />

12. 8.73 1.50<br />

A.66


Appendix A Detailed Pipe Test Results<br />

TEST: SERL20<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

Silica Sand<br />

CRITICAL VELOCITY: 1.55 mls<br />

EJI I<br />

1. 21.20 2.72<br />

Wall Shear Stress Velocity<br />

[pa] [m1s]<br />

2. 18.51 2.50<br />

3. 14.90 2.17<br />

4. 11.50 1.83<br />

5. 8.97 1.29<br />

6. 8.01 0.90<br />

,<br />

A.68


Appendix A Detailed Pipe Test Results<br />

TEST: SMRL30<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

Silica Sand<br />

CRITICAL VELOCITY: 1.68 rn/s<br />

No. Wall Shear Stress Velocity<br />

[pa] [rn/s]<br />

1. 22.78 2.02<br />

2. 20.87 1.95<br />

3. 19.09 1.82<br />

4. 17.60 1.73<br />

5. 16.18 1.57<br />

6. 15.48 1.35<br />

7. 14.61 1.05<br />

8. 13.96 0.81<br />

9. 13.18 0.61<br />

10. 12.36 0.44<br />

11. 11.60 0.28<br />

12. 10.47 0.13<br />

A.72


Appendix A Detailed Pipe Test Results<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

Silica Sand<br />

TEST: SERS30<br />

CRlTICAL'VELOCITY: 2.10 m1s<br />

No.<br />

I<br />

Wall Shear Stress<br />

[pal I<br />

Velocity<br />

[m/sl<br />

1. 101.92 5.19<br />

2. 77.39 4.53<br />

3. 64.57 4.24<br />

4. 54.48 3.88<br />

5. 41.09 3.33<br />

6. 29.37 2.75<br />

7. 16.10 1.93<br />

8. 12.17 1.01<br />

I<br />

A.74


Appendix A Detailed Pipe Test Results<br />

TEST: SERM30<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

Silica Sand<br />

CRITICAL VELOCITY: 2.13 m/s<br />

No. Wall Shear Stress Velocity<br />

[pa} [m/sJ<br />

1. 79.66 5.15<br />

2. 70.44 4.85<br />

3. 60.32 4.49<br />

4. 53.04 4.22<br />

5. 44.58 3.82<br />

6. 36.25 3.40<br />

7. 26.89 - 2.93<br />

8. 21.44 2.60<br />

9. 12.76 1.94<br />

10. 11.98 1.64<br />

A.76


Appendix A Detailed Pipe Test Results<br />

TEST: SERL30<br />

SLURRY: Water<br />

Kaolin Clay<br />

Rock Flour<br />

Silica Sand<br />

CRITICAL VELOCITY: 1.27 m1s<br />

EJ J. 20.94 2.56<br />

Wall Shear Stress Velocity<br />

[pa] fm/sI<br />

2. 17.96 2.29<br />

3. 14.90 1.87<br />

4. 12.36 1.48<br />

5. 11.05 1.19<br />

6. 10.42 0.94<br />

A.78


APPENDIXB


Appendix B C<strong>on</strong>ference Paper<br />

B.1 CONFERENCE PAPER - PARTICLE ROUGHNESS TURBULENCE<br />

The c<strong>on</strong>ference paper that was presented by <str<strong>on</strong>g>the</str<strong>on</strong>g> author at HYDROTRANSPORT 13 in<br />

support <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis is presented in this appendix.<br />

The details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ference paper are as follows:<br />

"Particle Roughness Turbulence", 13 th Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Slurry Handling and<br />

Pipeline Transport, Johannesburg, South Africa, September 1996, BRR Group C<strong>on</strong>ference<br />

Series - edited by J F Richards<strong>on</strong>, Mechanical Engineering Publicati<strong>on</strong> Limited, UK, pg 237­<br />

257.<br />

B.l


Appendix B C<strong>on</strong>ference Paper<br />

ABSTRACT<br />

PARTICLE ROUGHNESS<br />

TURBULENCE<br />

PT SLATTER, G S THORVALDSEN & F W PETERSEN<br />

Cape Technik<strong>on</strong>, Cape Town, South Africa<br />

The <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newt<strong>on</strong>ian slurries has remained a problem, despite much<br />

research in this area. The successful resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>this problem is vitally imp<strong>on</strong>anr not<br />

<strong>on</strong>ly for hydrotransp<strong>on</strong> applicati<strong>on</strong>s involving fine slurries, but also for mixed regime<br />

slurries, where <str<strong>on</strong>g>the</str<strong>on</strong>g> vehicle comp<strong>on</strong>ent is usually a n<strong>on</strong>-Newt<strong>on</strong>ian slurry. Two major<br />

problem areas are that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se slurries appears unrelated to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir laminar behaviour and yet has been found to be strikingly similar to Newt<strong>on</strong>ian<br />

<strong>turbulent</strong> behaviour, in spite <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> obvious difference in rheology.<br />

This paper explores <str<strong>on</strong>g>the</str<strong>on</strong>g>se and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r problem areas in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature and shows how<br />

previous <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models havefailed to address <str<strong>on</strong>g>the</str<strong>on</strong>g>m adequately. A new approach to<br />

turbulence modelling is reviewed which does address <str<strong>on</strong>g>the</str<strong>on</strong>g>se problem areas. This approach<br />

is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> panicle roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>, but is as yet relatively untested outside <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

range ojslurries and panicle <str<strong>on</strong>g>size</str<strong>on</strong>g>s <strong>on</strong> which it was originally evaluated.<br />

An experimentalprogramme has been initiated to investigate and accumulate a data base<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g>a wider range <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newt<strong>on</strong>ian slurries. including slurries with a<br />

bimodal panicle <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g>. These new data are analysed and <str<strong>on</strong>g>the</str<strong>on</strong>g> results are<br />

presented and discussed. It is c<strong>on</strong>cluded that <str<strong>on</strong>g>the</str<strong>on</strong>g> new approach to turbulence modelling<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g> panicle roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> is valid for <str<strong>on</strong>g>the</str<strong>on</strong>g> slurries tested.<br />

1. INTRODUCTION<br />

The predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>turbulent</strong> flow or pipe flow energy requirements from <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian suspensi<strong>on</strong>s has over <str<strong>on</strong>g>the</str<strong>on</strong>g> years been questi<strong>on</strong>ed by<br />

researchers. It has been found that <str<strong>on</strong>g>the</str<strong>on</strong>g> flow behaviour and rheology <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se suspensi<strong>on</strong>s<br />

is influenced by such factors as <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>, shape, weight and <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> (philipp<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

1944, Hedstrom 1952, Orr & Blocker 1955, Zettlemoyer & Lower 1955, Maude &<br />

Whitmore 1956, Thomas 1963, Thomas 1983, Mun 1988, Slatter 1994).<br />

The <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian suspensi<strong>on</strong>s is complex and is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>sidered<br />

problematic to design. However, in many situati<strong>on</strong>s it has beneficial characteristics,<br />

B.2


Appendix B C<strong>on</strong>ference Paper B.3<br />

preventing suspensi<strong>on</strong>s settling and enabling higher throughputs (Mun, 1988). Many<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models have <str<strong>on</strong>g>the</str<strong>on</strong>g>refore been proposed to try and explain and predict <strong>turbulent</strong><br />

flow behaviour. However, two major problem areas are that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>-Newt<strong>on</strong>ian slurries appears unrelated to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir laminar behaviour and yet has been<br />

found strikingly similar to Newt<strong>on</strong>ian <strong>turbulent</strong> flow behaviour, in spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> obvious<br />

difference in rheology.<br />

This paper explores <str<strong>on</strong>g>the</str<strong>on</strong>g>se and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r problem areas in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature and shows how<br />

previous models have failed to address <str<strong>on</strong>g>the</str<strong>on</strong>g>m adequately. Slatter's (1994) approach to<br />

turbulence modelling, based <strong>on</strong> his findings <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>, is reviewed.<br />

This model addresses <str<strong>on</strong>g>the</str<strong>on</strong>g>se problem areas - however <str<strong>on</strong>g>the</str<strong>on</strong>g> model was initially evaluated<br />

<strong>on</strong> a limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> slurries and <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>s.<br />

Experimental work was c<strong>on</strong>ducted at <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cape Town's (UCT)<br />

Hydrotransport Department, South Africa, using a pumped recirculating pipe test rig <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pipe diameters 25mm, 80mm, 150mm and 200mm. N<strong>on</strong>-Newt<strong>on</strong>ian slurries with varying<br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g>s (PSD's) were tested and analysed, and <str<strong>on</strong>g>the</str<strong>on</strong>g> results are presented<br />

and discussed.<br />

2. LITERATURE REVIEW<br />

2.1 The Yield Pseudoplastic Model<br />

N<strong>on</strong>-Newt<strong>on</strong>ian slurries can <str<strong>on</strong>g>of</str<strong>on</strong>g>ten be modelled as yield pseudoplastics (Govier & Aziz,<br />

1972 and Hanks, 1979) and <str<strong>on</strong>g>the</str<strong>on</strong>g> larninar flow <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> slurries tested have been<br />

successfully characterized using this model. The c<strong>on</strong>stitutive rheo10gical equati<strong>on</strong> is<br />

where Ty is <str<strong>on</strong>g>the</str<strong>on</strong>g> yield stress, K is fluid c<strong>on</strong>sistency index and n is <str<strong>on</strong>g>the</str<strong>on</strong>g> flow behaviour<br />

index.<br />

2.2 Laminar Pipe Flow<br />

For laminar pipe flow, volumetric discharge, Q, and average velocity, V, can be<br />

determined using <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong><br />

(1)<br />

(2)


Appendix B C<strong>on</strong>ference Paper<br />

where TO = DJip/4L and V=Q/A.<br />

2.3 Rheological Characterizati<strong>on</strong><br />

Rheological characterizati<strong>on</strong> involves choosing a rheological model which best fits <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

data (<str<strong>on</strong>g>the</str<strong>on</strong>g> yield pseudoplastic model is used for this study) and <str<strong>on</strong>g>the</str<strong>on</strong>g>n determining <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> T y , K and n for a particular slurry. The viscous flow data in <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar regi<strong>on</strong><br />

is coincident for <str<strong>on</strong>g>the</str<strong>on</strong>g> different tube diameters and <str<strong>on</strong>g>the</str<strong>on</strong>g> rheological c<strong>on</strong>stants (Ty, K and<br />

n) were determined using <str<strong>on</strong>g>the</str<strong>on</strong>g> method proposed by Lazarus & Slatter (1988) and Neill<br />

(1988).<br />

2.4 Turbulent Flow<br />

Turbulence is a natural form <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid moti<strong>on</strong> which is characterized by large, random<br />

swirling or eddy moti<strong>on</strong>s both parallel and transverse to <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main flow.<br />

Particle paths cross and velocity (both directi<strong>on</strong> and magnitude) and pressure, fluctuate<br />

<strong>on</strong> a c<strong>on</strong>tinuous random basis. The flow behaviour becomes extremely complex and full<br />

rigorous analysis becomes impossible (Tennekes & Lumley, 1972).<br />

The <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian slurries that were tested were modelled using<br />

Slatter's model as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> following models which are already well established in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

literature,<br />

- Newt<strong>on</strong>ian approximati<strong>on</strong><br />

- Dodge and Metzner (1959)<br />

- Torrance (1963)<br />

- Kemblowski & Kolodziejski (1973)<br />

- Wils<strong>on</strong> & Thomas (1985)<br />

2.4.1 Newt<strong>on</strong>ian Approximati<strong>on</strong><br />

In order to make use <str<strong>on</strong>g>of</str<strong>on</strong>g>standard Newt<strong>on</strong>ian <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, a value for <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid<br />

is required. Usually <str<strong>on</strong>g>the</str<strong>on</strong>g> term viscosity is meaningless <strong>on</strong>ce a n<strong>on</strong>-Newt<strong>on</strong>ian approach<br />

has been adopted. However, an apparent or secant viscosity (Holland, 1973 and Wils<strong>on</strong>,<br />

1986) can be defined as<br />

Note that JL' is not a c<strong>on</strong>stant for a given fluid and pipe diameter, but must be evaluated<br />

at a given value for TO.<br />

(3)<br />

B.4


Appendix B C<strong>on</strong>ference Paper B.7<br />

and can never be truly homogeneous. Treating <str<strong>on</strong>g>the</str<strong>on</strong>g>m as a c<strong>on</strong>tinuum is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore an<br />

approximati<strong>on</strong>, which works well in <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar regime. The term homogeneous, when<br />

applied to slurries is taken as meaning uniform, stable, spatial <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>particle</str<strong>on</strong>g>s.<br />

2.4.6.1 The Laminar Sub-layer<br />

Velocity comp<strong>on</strong>ents normal to <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe axis cannot exist at <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe wall, and<br />

turbulence is suppressed in this regi<strong>on</strong>. Viscous forces are dominant and a laminar sublayer<br />

exists for some finite thickness o. It has been shown (Slatter, 1994) that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar sub-layer is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude as <str<strong>on</strong>g>the</str<strong>on</strong>g> larger<br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> sluny over <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g>wall shear stresses found in <strong>turbulent</strong> flow. Since<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> larger <str<strong>on</strong>g>particle</str<strong>on</strong>g>s will be larger than <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar sub-layer at <str<strong>on</strong>g>the</str<strong>on</strong>g> higher<br />

wall shear stress values, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g>s must <str<strong>on</strong>g>the</str<strong>on</strong>g>refore have an obstructing <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shear in <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar sub-layer. The c<strong>on</strong>tinuum approximati<strong>on</strong> must <str<strong>on</strong>g>the</str<strong>on</strong>g>refore be<br />

compromised in this regi<strong>on</strong>.<br />

2.4.6.2 Wall Roughness and <str<strong>on</strong>g>the</str<strong>on</strong>g> Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Solid Particles<br />

Under microscopic investigati<strong>on</strong> it can be seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> inner wall <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe is not<br />

smooth but many protrusi<strong>on</strong>s exist. The term wall, pipe or surface roughness is used to<br />

describe <str<strong>on</strong>g>the</str<strong>on</strong>g> complex <str<strong>on</strong>g>size</str<strong>on</strong>g>, shape and spacing <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se protrusi<strong>on</strong>s. For a given fluid and<br />

velocity, roughness in a pipe increases <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop compared with c<strong>on</strong>diti<strong>on</strong>s<br />

existing in a "smooth" pipe (Bowen 1961, Cheng 1975). At low Reynolds numbers when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> laminar sub-layer is sufficiently thick to cover <str<strong>on</strong>g>the</str<strong>on</strong>g> protrusi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe wall, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

roughness will not be <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive. At high Reynolds numbers when <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar sub-layer<br />

is not sufficiently thick to cover <str<strong>on</strong>g>the</str<strong>on</strong>g> protrusi<strong>on</strong>s, roughness will be <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive. The<br />

progressive penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar sub-layer by <str<strong>on</strong>g>the</str<strong>on</strong>g> wall roughness will generate a<br />

wake <str<strong>on</strong>g>of</str<strong>on</strong>g> eddies, stimulating turbulence. This physical phenomen<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental<br />

importance to <str<strong>on</strong>g>the</str<strong>on</strong>g> understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> rough wall <strong>turbulent</strong> flow.<br />

Particles will also have a similar <str<strong>on</strong>g>effect</str<strong>on</strong>g> to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wall roughness, in causing a<br />

decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity gradient and should be taken into account in <strong>turbulent</strong> flow<br />

analysis.<br />

The change in velocity as <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe wall is approached is very rapid, <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity gradient<br />

being in <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> lmls over <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> a typical <str<strong>on</strong>g>particle</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pipe wall. Ifsolid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s are present in <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid <str<strong>on</strong>g>the</str<strong>on</strong>g>y will resist shear and impede such<br />

rapid changes in velocity.<br />

A roughness Reynolds number can be used to determine various regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbulent</strong><br />

flow in a pipe (Schlichting, 1960). The inadequate formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness<br />

Reynolds number for n<strong>on</strong>-Newt<strong>on</strong>ian slurries is a problem with previous models eg a<br />

formulati<strong>on</strong> excluding <str<strong>on</strong>g>the</str<strong>on</strong>g> yield stress (Torrance, 1963 and Hanks & Dadia, 1971).


Appendix B C<strong>on</strong>ference Paper<br />

2.4.6.3 Representative Particle Size<br />

The wall roughness and <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> was taken into account in <str<strong>on</strong>g>the</str<strong>on</strong>g> roughness Reynolds<br />

number as given by Slatter (1994).<br />

The <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> roughness <strong>on</strong> turbulence can be thought <str<strong>on</strong>g>of</str<strong>on</strong>g> as an aggravati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> wall<br />

which stimulates turbulence. Clearly <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> larger <str<strong>on</strong>g>particle</str<strong>on</strong>g>s will have a more dominant<br />

<str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> turbulence than <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller <str<strong>on</strong>g>particle</str<strong>on</strong>g>s. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g> larger <str<strong>on</strong>g>particle</str<strong>on</strong>g>s will shield <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

smaller <strong>on</strong>es, reducing <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>effect</str<strong>on</strong>g>iveness in stimulating turbulence (Colebrook, 1939).<br />

For all <str<strong>on</strong>g>the</str<strong>on</strong>g> slurries tested to date it was found that <str<strong>on</strong>g>the</str<strong>on</strong>g> d S5 <str<strong>on</strong>g>size</str<strong>on</strong>g> was a good representati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> roughness <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry ie


Appendix B C<strong>on</strong>ference Paper<br />

IfRe, < 3,32 <str<strong>on</strong>g>the</str<strong>on</strong>g>n smooth wall <strong>turbulent</strong> flow exists and <str<strong>on</strong>g>the</str<strong>on</strong>g> mean velocity is given by<br />

:.Y.- = 2,5 In [-!.] + 2,5 In Re + 1,75 .<br />

V. dss • '<br />

If Re,. > 3,32 <str<strong>on</strong>g>the</str<strong>on</strong>g>n fully developed rough wall <strong>turbulent</strong> flow exists and <str<strong>on</strong>g>the</str<strong>on</strong>g> mean<br />

velocity is given by<br />

Y.- [-!.] = 2,5 In +<br />

V. dss<br />

4,75 ,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> factor is c<strong>on</strong>stant.<br />

This correlati<strong>on</strong> produces a transiti<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> smooth to <str<strong>on</strong>g>the</str<strong>on</strong>g> rough flow c<strong>on</strong>diti<strong>on</strong> which<br />

is abrupt.<br />

Tests c<strong>on</strong>ducted by Slatter (1994) c<strong>on</strong>firmed <str<strong>on</strong>g>the</str<strong>on</strong>g> model to be more accurate than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Torrance (1963) model and Wils<strong>on</strong> & Thomas (1985, 1987) model, when evaluated<br />

against experimental data.<br />

2.4.7 Data from <str<strong>on</strong>g>the</str<strong>on</strong>g> Literature<br />

Experimental data obtained by Sive (1988) was used in <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various<br />

models under c<strong>on</strong>siderati<strong>on</strong>. The tests c<strong>on</strong>ducted by Sive (1988) were d<strong>on</strong>e using a<br />

mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay and a relatively coarse quartz sand, which resulted in a<br />

heterogeneous, settling slurry. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> using this data was to see if <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse,<br />

settling <str<strong>on</strong>g>particle</str<strong>on</strong>g>s c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow headloss, as proposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> Slatter<br />

model.<br />

3. EXPERIMENTAL WORK<br />

The test facility at ucr which was used had four different pipe diameters namely<br />

25mm, 80mm, 150mm and 200mm nominal bore and slurries were tested at mean<br />

velocities ranging from 0, Imls to 8m/s. Slurries tested included kaolin clay and mixture<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay and fine sand at varying ratios.<br />

(10)<br />

(11)<br />

(12)<br />

B.9


Appendix B C<strong>on</strong>ference Paper B.IO<br />

A test set c<strong>on</strong>ducted using <str<strong>on</strong>g>the</str<strong>on</strong>g> facility is defined as a set <str<strong>on</strong>g>of</str<strong>on</strong>g> tests using <str<strong>on</strong>g>the</str<strong>on</strong>g> four different<br />

pipe diameters but <str<strong>on</strong>g>the</str<strong>on</strong>g> same slurry.<br />

3.1 Test Facility<br />

Slurry to be used for a test run is collected in a steel hopper which has a capacity 2m 3 •<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g>re it is pumped by a four bladed Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>r and Plat! 8x6 solids handling pump,<br />

which is driven by a variable speed hydraulic drive, through <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe circuit. Directly<br />

after <str<strong>on</strong>g>the</str<strong>on</strong>g> pump <str<strong>on</strong>g>the</str<strong>on</strong>g> l50mm line splits up into a 90mm and l50mm pipeline. These two<br />

pipelines have a vertical inverted "U" secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l7m, <str<strong>on</strong>g>the</str<strong>on</strong>g> flowrate being measured in<br />

both downcomer secti<strong>on</strong>s by means <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic flux flow meters. A horiz<strong>on</strong>tal secti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 30m follows with <str<strong>on</strong>g>the</str<strong>on</strong>g> return pipelines passing through an in-line heat<br />

exchanger and pneumatic diverter valve before being re-routed back into <str<strong>on</strong>g>the</str<strong>on</strong>g> hopper.<br />

The l50mm horiz<strong>on</strong>tal return pipeline splits into a l50mm line and a 200mm pipeline<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> two joining toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r after l2m. The 80mm and 150mm pipelines are PVC with clear<br />

viewing and test secti<strong>on</strong>s located in <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal return pipelines. The 200mm line is<br />

steel.<br />

Flowrate can be calibrated by diverting <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry using <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pneumatic diverter valve<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> weigh tank which is located al<strong>on</strong>gside <str<strong>on</strong>g>the</str<strong>on</strong>g> hopper. The weigh tank, which has<br />

a capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,5m 3 and is placed <strong>on</strong> a 1750kg mass scale, is used to calibrate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

magnetic flux flow meters. After flowrate determinati<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry is directed back into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> looped circuit.<br />

In order to accurately determine <str<strong>on</strong>g>the</str<strong>on</strong>g> rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry a 25mm tube was used. A<br />

tapping is taken from <str<strong>on</strong>g>the</str<strong>on</strong>g> l50mm horiz<strong>on</strong>tal return pipeline and using <str<strong>on</strong>g>the</str<strong>on</strong>g> back pressure,<br />

slurry was circulated through <str<strong>on</strong>g>the</str<strong>on</strong>g> 25mm pipeline into <str<strong>on</strong>g>the</str<strong>on</strong>g> weigh tank. The flowrate was<br />

measured using a 25mm nominal bore Altometer magnetic flux flowmeter. The flowrate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry was checked by doing a calibrati<strong>on</strong> using <str<strong>on</strong>g>the</str<strong>on</strong>g> weigh tank during a 25mm<br />

pipe test.<br />

No external agitati<strong>on</strong> was required to maintain solids suspensi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> hopper for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

slurries which were tested.<br />

3.2 Measured Variables<br />

Readings <str<strong>on</strong>g>of</str<strong>on</strong>g> head loss were taken at varying velocities and <str<strong>on</strong>g>the</str<strong>on</strong>g> data obtained was used<br />

to plot a pseudo-shear diagram.<br />

3.3 Water Tests<br />

The hydraulic pipe roughness for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four pipe <str<strong>on</strong>g>size</str<strong>on</strong>g>s was first determined


Appendix B C<strong>on</strong>ference Paper B.Il<br />

through c<strong>on</strong>ducting clear water pipeline tests. Mean velocity and wall shear stress were<br />

measured for velocities over <str<strong>on</strong>g>the</str<strong>on</strong>g> test range and roughness was determined using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Colebrook / White (1939) equati<strong>on</strong>.<br />

3.3 Material Used<br />

The solids material used for testing purposes was kaolin clay and sand. Tests were<br />

c<strong>on</strong>ducted using kaolin clay and <str<strong>on</strong>g>the</str<strong>on</strong>g>n a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay and No. 2 Foundry Sand<br />

from C<strong>on</strong>sol at varying c<strong>on</strong>centrati<strong>on</strong>s.<br />

- Kaolin Clay<br />

Kaolin clay was obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> Serina Kaolin (Pty) Ltd which is currently mining a<br />

kaolin deposit at Brakkeklo<str<strong>on</strong>g>of</str<strong>on</strong>g>, Fish Reek, Cape Town, South Africa. The kaolin was<br />

delivered in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets and filter cakes. To obtain a homogenous slurry <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pellets or filter cake was thoroughly mixed with water using a recirculating pipe after<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pump back into <str<strong>on</strong>g>the</str<strong>on</strong>g> hopper before circulating <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry through <str<strong>on</strong>g>the</str<strong>on</strong>g> pipelines.<br />

- Sand<br />

Sand was obtained from C<strong>on</strong>sol in 25kg bags called No. 2 Foundry Sand. The <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

<str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sand was between 75 and 350 I'm.<br />

3.3.1 Mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> Kaolin Clay and Sand<br />

The sand used was found to form a settling slurry with water. In order to obtain a<br />

homogeneous slurry, kaolin clay was used as a suspending agent for <str<strong>on</strong>g>the</str<strong>on</strong>g> sand. Tests<br />

were <str<strong>on</strong>g>the</str<strong>on</strong>g>refore c<strong>on</strong>ducted to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin clay needed to suspend <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sand. It was found that kaolin clay at a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>at least Cv = 5% was required.<br />

3.4 Particle Size Distributi<strong>on</strong><br />

The <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>distributi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin clay/sand mixture was obtained by combining<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> PSD <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> kaolin clay (determined using a Malvern 2600/3600 Particle Sizer VF.6)<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> PSD <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sand determined through sieving. The dS5 was <str<strong>on</strong>g>the</str<strong>on</strong>g>n obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

combined PSD's as shown below in Figure 1.<br />

4. ANALYSIS & RESULTS<br />

The measured variables <str<strong>on</strong>g>of</str<strong>on</strong>g> head loss and velocity were used to plot pseudo-shear<br />

diagrams ie wall shear stress vs pseudo-shear rate. A typical pseudo-shear diagram is<br />

shown in Figure 2 and <str<strong>on</strong>g>the</str<strong>on</strong>g> improvement obtained using <str<strong>on</strong>g>the</str<strong>on</strong>g> new model, is clearly visible,<br />

as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models.


Appendix B C<strong>on</strong>ference Paper<br />

4.3.3 Kaolin Clay<br />

Four sets <str<strong>on</strong>g>of</str<strong>on</strong>g>kaolin clay tests were first c<strong>on</strong>ducted to c<strong>on</strong>firm <str<strong>on</strong>g>the</str<strong>on</strong>g> results already obtained<br />

by Slatter (1994). The results obtained supported <str<strong>on</strong>g>the</str<strong>on</strong>g> existing data set.<br />

4.3.4 Mixture Kaolin Clay & Sand<br />

Tests using a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g>kaolin clay and sand were c<strong>on</strong>ducted in order to obtain a higher<br />

representative <str<strong>on</strong>g>particle</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> and different PSD to <str<strong>on</strong>g>the</str<strong>on</strong>g> existing data set.<br />

4.3.5 Theoretical Models<br />

The <strong>turbulent</strong> flow performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models is tabulated in Table III<br />

showing <str<strong>on</strong>g>the</str<strong>on</strong>g> average percentage error from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> experimental data. Of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models under c<strong>on</strong>siderati<strong>on</strong> Slatter's model best predicted <str<strong>on</strong>g>the</str<strong>on</strong>g> test data. The<br />

WJ1s<strong>on</strong> & Thomas and Torrance models under-predicted head loss regularly. The<br />

Kemblowski & Kolodziejski model was also c<strong>on</strong>sidered, however it did not produce<br />

accurate results, significantly over-predicting <str<strong>on</strong>g>the</str<strong>on</strong>g> head loss.<br />

Table III : Turbulent Model Performance: - Average Percentage Error<br />

[;] Test ISlurry I D&M I Torr. I W&T I K&K I Slatter I<br />

1 KSMRLIO Kaolin/Sand 65.68 4.89 21.51 324.83 6.60<br />

2 KSERLlO Kaolin/Sand 26.18 18.05 30.27 232.41 17.78<br />

3 KSERMIO Kaolin/Sand 12.77 21.56 24.89 32.69 10.06<br />

4 KSERSIO Kaolin/Sand 31.85 34.66 38.46 12.99 4.86<br />

5 KSMRL20 Kaolin/Sand 7.22 11.60 12.54 286.07 4.18<br />

6 KSERL20 Kaolin/Sand 10.61 3.54 20.85 265.16 11.93<br />

7 KSERM20 Kaolin/Sand 6.55 12.01 14.95 33.64 6.63<br />

8 KSERS20 Kaolin/Sand 17.50 21.72 28.06 21.53 7.89<br />

9 KSMRL30 Kaolin/Sand 64.79 4.25 18.79 246.03 4.63<br />

10 KSERL30 Kaolin/Sand 23.56 12.54 26.56 245.00 24.69<br />

11 KSERM30 Kaolin/Sand 12.50 19.85 23.21 34.71 5.43<br />

12 KSERS30 Kaolin/Sand 24.94 27.55 35.32 44.25 8.32<br />

B.16


Appendix B C<strong>on</strong>ference Paper B.18<br />

This investigati<strong>on</strong> highlights <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> PSD is a vitally important property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

slurry and should be used for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian slurries, as<br />

has been used in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for <str<strong>on</strong>g>the</str<strong>on</strong>g> new analysis, to account for rough wall <strong>turbulent</strong><br />

flow and to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> change from smooth wall to rough wall <strong>turbulent</strong> flow.<br />

Park et al (1989) and Pokryvalio & Grozberg (1995) used very different slurries and<br />

experimental techniques, yet both reported significantly higher relative turbulence<br />

intensities in <str<strong>on</strong>g>the</str<strong>on</strong>g> wall regi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir slurries, when compared with air. This empirical<br />

evidence str<strong>on</strong>gly supports <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness turbulence.<br />

Where Slarter's model fails to -accurately predict Sive's data it is felt <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong> is that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> slurries tested by Sive were settling slurries and not homogenous slurries <strong>on</strong> which<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical model was originally based. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r investigati<strong>on</strong> is required to determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> could provide a more logical basis for vehicle/load cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f in<br />

mixed regime slurries than is used at present.<br />

Future <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newt<strong>on</strong>ian slurries should take into account both <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

PSD and <str<strong>on</strong>g>the</str<strong>on</strong>g> rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry.<br />

6. CONCLUSION<br />

Particle roughness turbulence does not apply to settling slurries (as tested by Sive,<br />

1988). Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r investigati<strong>on</strong> is required to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> limit <str<strong>on</strong>g>of</str<strong>on</strong>g>validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g><br />

roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g>, and this limit could well serve as <str<strong>on</strong>g>the</str<strong>on</strong>g> criteri<strong>on</strong> for vehic1elload cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

in mixed regime slurries.<br />

The <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness turbulence model is <str<strong>on</strong>g>the</str<strong>on</strong>g> first model to incorporate <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuum<br />

compromise which must arise as <str<strong>on</strong>g>the</str<strong>on</strong>g> laminar sub-layer thickness is limited, and it is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>ly model to explain <str<strong>on</strong>g>the</str<strong>on</strong>g> empirical evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> increased turbulence intensities in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

wall regi<strong>on</strong>.<br />

It can be c<strong>on</strong>cluded from <str<strong>on</strong>g>the</str<strong>on</strong>g> test data results that <str<strong>on</strong>g>the</str<strong>on</strong>g> new approach to turbulence<br />

modelling using <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>particle</str<strong>on</strong>g> roughness <str<strong>on</strong>g>effect</str<strong>on</strong>g> is valid and can be successfully adopted for<br />

n<strong>on</strong>-Newt<strong>on</strong>ian slurries.<br />

Acknowledgement<br />

The co-operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Mike de Kock for <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hydrotransport test facilities<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cape Town is gratefully acknowledged.


Appendix B C<strong>on</strong>ference Paper<br />

s solids<br />

v volumetric<br />

x representative <str<strong>on</strong>g>size</str<strong>on</strong>g><br />

REFERENCES<br />

BOWEN R LeB (1961), How to handle slurries, Chem. Eng., August 7, 129-132<br />

CALDWELL D H and BABBITI H E (1941), The flow <str<strong>on</strong>g>of</str<strong>on</strong>g> muds, sludges and<br />

suspensi<strong>on</strong>s in circular pipes, 'Trans. Am. Inst. Chem. Eng., 37, 237-266.<br />

CHENG D C-H (1975), Pipeline design for n<strong>on</strong>-Newt<strong>on</strong>ian fluids, Chem. Eng.,<br />

September, 525-532.<br />

COLEBROOK C F (1939), Turbulent flow in pipes, with particular reference to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

transiti<strong>on</strong> regi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> smooth and rough pipe laws, J. Insm. Civil Engrs., No.<br />

4, Paper 5204.<br />

DODGE D W and METZNER AB (1959), Turbulent flow <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian systems,<br />

AIChE Journal, Vol. 5, No. 2, 189-204.<br />

EDWARDS M F and SMITH R (1980), The <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newt<strong>on</strong>ian fluids in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g>anomalous wall <str<strong>on</strong>g>effect</str<strong>on</strong>g>s, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newr<strong>on</strong>ianfluid mechanics, 7,77-<br />

90. .<br />

GOVIER G W and AZIZ K (1972), The Flow <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Mixtures in Pipes, van<br />

Nostrand Reinhold Co.<br />

HANKS R W (1979), The axial laminar flow <str<strong>on</strong>g>of</str<strong>on</strong>g> yield-pseudoplastic fluids in a<br />

c<strong>on</strong>centric annulus, Ind Eng Chem Process Des Dev, 18, 3.<br />

HANKS R W and DADIA B H (1971), Theoretical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>-Newt<strong>on</strong>ian slurries in pipes, AlChE Journal, Vol 17 No 3, 554-557.<br />

HEDSTROM BOA (1952), Flow <str<strong>on</strong>g>of</str<strong>on</strong>g> plastics materials in pipes, Industrial and<br />

engineering chemistry, v.44 No.3.<br />

HERSCHEL W H and BULKLEY R (1926), Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>sistency as applied to<br />

rubber-benzene soluti<strong>on</strong>s, Proc ASTM, 26 Part 2 621-633.<br />

HOLLAND F A (1973), Fluid flow for chemical engineers, Edward Arnold, L<strong>on</strong>d<strong>on</strong>.<br />

B.20


Appendix B C<strong>on</strong>ference Paper<br />

IRELAND, J W (1971), Mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g>fluids, Butterworths.<br />

KEMBLOWSKI Z and KOLODZlEJSKI J (1973), Flow resistances <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian<br />

fluids in transiti<strong>on</strong>al and <strong>turbulent</strong> flow, Int. Chem. Eng. 13 265-279.<br />

LAZARUS J H and SLAITER P T (1988), A method for <str<strong>on</strong>g>the</str<strong>on</strong>g> Theological<br />

characterisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tube viscometer data, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>pipelines. v.7.<br />

MAUDE A D and WHlTMORE R L (1958), The <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g>suspensi<strong>on</strong>s in tubes,<br />

Trans. I. Chem Eng., 36296-310.<br />

METZNER A B and REED J C (1955), Flow <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newt<strong>on</strong>ian fluids - correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> laminar, transiti<strong>on</strong> and <strong>turbulent</strong> flow regi<strong>on</strong>s, AlChE Journal. v.1 nA.<br />

MICHIYOSHI I, MATSUMOTO R, MIZUNO K and NAKAI M (1966), Flow <str<strong>on</strong>g>of</str<strong>on</strong>g>slurry<br />

through a circular tube. Fricti<strong>on</strong> factor for tubes. Part n., Int Chem Eng, 6,2.<br />

MUN R (1988), Turbulent pipe flow <str<strong>on</strong>g>of</str<strong>on</strong>g>yield stress fluids, M Eng Sci Thesis, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Melbourne.<br />

NEILL RIG (1988), The rheology and flow behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> high c<strong>on</strong>centrati<strong>on</strong> mineral<br />

slurries, Msc Dissertati<strong>on</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cape Town.<br />

ORR C and BLOCKER HG (1955), Journal Colloid Sci, 10, 24.<br />

PARK J T, MANNHEIMER R J, GRIMLEY T A, MORROW T B (1989), Pipe flow<br />

measurements <str<strong>on</strong>g>of</str<strong>on</strong>g>a transparent n<strong>on</strong>-Newt<strong>on</strong>ian slurry, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>fluids engineering, Vol.<br />

111,331-336.<br />

PHlLIPPOFF W (1944), Viskositat Der KoIloide, Lithoprinted by J W Edwards, Ann<br />

Arbor, Mich.<br />

POKRYVAILO N A and GROZBERG Yu G (1995), Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>turbulent</strong> wall flow <str<strong>on</strong>g>of</str<strong>on</strong>g> clay suspensi<strong>on</strong> in channel with electrodiffusi<strong>on</strong> method, Proc.<br />

8th Int. Colif. <strong>on</strong> Transport and sedimentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s. Prague, Czech<br />

Republic.<br />

SCHLICHTING H (1960), Chapter XX in Boundary layer <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, 4th editi<strong>on</strong>, M'Graw­<br />

Hill, New York.<br />

SIVE A W (1988), An analytical and experimental investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic<br />

transport <str<strong>on</strong>g>of</str<strong>on</strong>g> high c<strong>on</strong>centrati<strong>on</strong> mixed regime slurries, PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cape<br />

Town.<br />

B.21


Appendix B C<strong>on</strong>ference Paper B.22<br />

SLATIER P T (1994), Transiti<strong>on</strong>al and <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian slurries in<br />

pipes, PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cape Town.<br />

SLATIER PT (1995), The <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newt<strong>on</strong>ian slurries in pipes, Proe. 8th<br />

Int. C<strong>on</strong>f. <strong>on</strong> Transport and sedimentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>solid <str<strong>on</strong>g>particle</str<strong>on</strong>g>s, Prague, Czech Republic.<br />

TENNEKES Hand LUMLEY J L (1972), A./irst course in turbulence, The MIT Press,<br />

Cambridge, Massachusetts.<br />

THOMAS A D (1983), Turbulent pipe flow <str<strong>on</strong>g>of</str<strong>on</strong>g> Bingham plastics, Proc. 3rd Nat. C<strong>on</strong>!<br />

Rheol., Brit. Soc. Rheol. (Aust), Melb., 83-87.<br />

THOMAS A D and WILSON KC (1987), New analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-Newt<strong>on</strong>ian flow- yieldpower-law<br />

fluids, Can J Chem Eng, 65 335-338.<br />

THOMAS D G (1963), N<strong>on</strong>-Newt<strong>on</strong>ian suspensi<strong>on</strong>s Part ill Turbulent transport<br />

characteristics, Industrial and engineering chemistry, Vo155, No. 12, December, 27-35.<br />

TOMITA Y (1959), A study <strong>on</strong> n<strong>on</strong>-Newt<strong>on</strong>ian flow in pipes, Bull JSME, Vo12 No 5.<br />

TORRANCE B Mere (1963), Fricti<strong>on</strong> factors for <strong>turbulent</strong> n<strong>on</strong>-Newt<strong>on</strong>ian flow in<br />

circular pipes, S. A. Mechanical Engineer, v.13.<br />

WILSON K C (1986), Modelling <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Newt<strong>on</strong>ian and time-dependent<br />

slurry behaviour, ](1' Int. C<strong>on</strong>! <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic transport <str<strong>on</strong>g>of</str<strong>on</strong>g> solids in pipes,<br />

Hydrotransport 10 Paper Jl.<br />

WILSON K C, ADDIE GRand CLIFf R (1992), Slurry transport using centrifugal<br />

pumps, Elsevier Science Publishers Ltd, Essex, England.<br />

WILSON K C and THOMAS A D (1985), A new analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>turbulent</strong> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>­<br />

Newt<strong>on</strong>ian fluids. Can. J. Chem. Eng., 63, 539-546.<br />

XU J, GILLIES R, SMALL M and SHOOK C A (1993), Laminar and <strong>turbulent</strong> flow<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> kaolin slurries, I?' Int. C<strong>on</strong>! <strong>on</strong> slurry handling and pipeline transport,<br />

Hydrotransport 12, BHR Group, p595.<br />

ZETfLEMOYER A C and LOWER G W (1955), Journal Colloid Sci, 10, 29.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!