01.07.2013 Views

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

is chosen with <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> N/Z-equilibrium <strong>in</strong> <strong>the</strong> system, mass and charge evoluti<strong>on</strong>s<br />

are described analogously. A diffusi<strong>on</strong> process leads to <strong>the</strong> exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong>s between <strong>the</strong><br />

two touch<strong>in</strong>g fragments, thus generat<strong>in</strong>g a time-dependent distributi<strong>on</strong> <strong>in</strong> <strong>the</strong> Z(A) variables <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> DNS. This process can be described by a master-equati<strong>on</strong> [33, 44, 73, 119] for <strong>the</strong> probability<br />

PZ(t) <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> system at <strong>the</strong> time t <strong>in</strong> <strong>the</strong> c<strong>on</strong>figurati<strong>on</strong> with <strong>the</strong> charge number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

light fragment Z. The asymmetric DNS evolves to a compound nucleus or to a symmetric DNS.<br />

The melt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>nuclei</strong> <strong>in</strong> variable R is str<strong>on</strong>gly h<strong>in</strong>dered [35, 36, 42, 66]. The decay<br />

<strong>in</strong> R affects <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system <strong>in</strong> Z. In order to take <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS decay <strong>in</strong>to<br />

c<strong>on</strong>siderati<strong>on</strong>, we can rewrite <strong>the</strong> known master-equati<strong>on</strong> for PZ(t) [33, 44, 73, 119] as follows<br />

∂PZ(t)<br />

∂t =∆(−) (Z+1) P (Z+1)(t)+∆ (+)<br />

(Z−1) P − (∆ (Z−1)(t) (+)<br />

Z +∆(−) Z<br />

+Λqf<br />

Z ) P (7.1)<br />

Z(t),<br />

where <strong>the</strong> microscopically calculated transport coefficients ∆ (±)<br />

Λ and qf<br />

Z<br />

Z<br />

given by <strong>the</strong> expressi<strong>on</strong> (4.3)<br />

are<br />

is <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> decay probability <strong>in</strong> R. In <strong>the</strong> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (7.1), <strong>on</strong>ly <strong>the</strong> transiti<strong>on</strong>s<br />

Z ⇀↽ Z + 1and Z ⇀↽ Z − 1are taken <strong>in</strong>to account <strong>in</strong> <strong>the</strong> spirit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>dependent-particle<br />

<strong>model</strong>.<br />

For decay, <strong>the</strong> DNS should overcome <strong>the</strong> potential barrier B qf, which co<strong>in</strong>cides with <strong>the</strong><br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pocket <strong>in</strong> <strong>the</strong> double-fold<strong>in</strong>g nucleus-nucleus potential as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R. The<br />

bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> this pocket corresp<strong>on</strong>ds to <strong>the</strong> distance Rm = R1+R2+0.5fm (Ri is <strong>the</strong> radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>nuclei</strong>). The values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> quasifissi<strong>on</strong> barriers B qf which depend <strong>on</strong> Z are ma<strong>in</strong>ly resp<strong>on</strong>sible<br />

<strong>the</strong> lifetime t0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS. Dur<strong>in</strong>g this time, <strong>the</strong> DNS evolves <strong>in</strong> <strong>the</strong> variables Z. The decay<br />

for<br />

<strong>the</strong> DNS <strong>in</strong> R is treated us<strong>in</strong>g <strong>the</strong> <strong>on</strong>e-dimensi<strong>on</strong>al Kramers rate <str<strong>on</strong>g>of</str<strong>on</strong>g> probability Λ <str<strong>on</strong>g>of</str<strong>on</strong>g> qf<br />

Z<br />

(6.9). In<br />

our calculati<strong>on</strong>s, <strong>the</strong> values ¯hω Bqf =1.0 MeV and ¯hω =2.0 MeV are used for <strong>the</strong> reacti<strong>on</strong>s<br />

c<strong>on</strong>sidered.<br />

The measurable quasi-fissi<strong>on</strong> charge (mass) yield is expressed through <strong>the</strong> formati<strong>on</strong> prob-<br />

PZ(t) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS c<strong>on</strong>figurati<strong>on</strong> with charge (mass) asymmetry Z and <strong>the</strong> decay probaability<br />

<strong>in</strong> R described by <strong>the</strong> Kramers rate Λ bility qf<br />

Z<br />

Z(t0) =Λ Y qf<br />

Z<br />

95<br />

t0<br />

0<br />

PZ(t)dt. (7.2)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!