01.07.2013 Views

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>the</strong> mass (5.26) as<br />

M cr = ¯h2 Γ 2<br />

4π 2<br />

<br />

α=β,k1,k2<br />

|Fk1k2 |2<br />

[ɛ 2 αk1 +(Γ/2)2 ][ɛ 2 βk2 +(Γ/2)2 ]<br />

n(ɛk1<br />

− n(ɛk2 )<br />

)<br />

(5.30)<br />

.<br />

ɛk2 − ɛk1<br />

The energy spread<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle states is taken <strong>in</strong>to account <strong>in</strong> Eq.(5.30). A l<strong>in</strong>e<br />

broaden<strong>in</strong>g happens if collisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particles and holes with <strong>the</strong> background result <strong>in</strong> s<strong>in</strong>gle<br />

particle and s<strong>in</strong>gle hole strength functi<strong>on</strong>s that are c<strong>on</strong>centrated around <strong>the</strong> orig<strong>in</strong>al s<strong>in</strong>gle<br />

particle energies. The quantity Dρk determ<strong>in</strong>es <strong>the</strong> average strength functi<strong>on</strong> for a particle <strong>in</strong><br />

state k [101]. In <strong>the</strong> limit ɛk1 = ɛk2 = ɛk, for ɛα ≈ ɛk and ɛβ ≈ ɛα, i.e. when two neighbor<strong>in</strong>g<br />

levels near <strong>the</strong> level k are c<strong>on</strong>sidered, and 8/π 2 ≈ 1, Eq.(5.30) leads to Eq.(5.15). Thus, diag<strong>on</strong>al<br />

terms <strong>in</strong> <strong>the</strong> mass parameters appear because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> f<strong>in</strong>ite width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle levels<br />

due to <strong>the</strong> residual <strong>in</strong>teracti<strong>on</strong>.<br />

5.2 Results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> calculati<strong>on</strong>s<br />

5.2.1 The adiabatic two-center shell <strong>model</strong><br />

S<strong>in</strong>ce collisi<strong>on</strong>s above <strong>the</strong> Coulomb barrier are discussed, we firstly c<strong>on</strong>sider spherical <strong>nuclei</strong><br />

with βi = 1and <strong>the</strong>n analyse <strong>the</strong> deformati<strong>on</strong> effects.<br />

In order to calculate <strong>the</strong> width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle states, we use <strong>the</strong> expressi<strong>on</strong> [86, 102]<br />

= Γk 1<br />

Γ0<br />

(ɛk − ɛ F ) 2 +(πT0) 2<br />

1+[(ɛ k − ɛ F ) 2 +(πT0) 2 ]/c 2 . (5.31)<br />

Here, ɛ F is <strong>the</strong> Fermi energy. Both parameters Γ0 and c are known from experience with <strong>the</strong><br />

optical <strong>model</strong> potential and <strong>the</strong> effective masses [86]. Their values are <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g ranges:<br />

0.030 MeV −1 ≤ Γ0 −1 ≤ 0.061MeV −1 , 15 MeV≤ c ≤ 30 MeV. The quadratic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

numerator can be obta<strong>in</strong>ed from <strong>the</strong> collisi<strong>on</strong> term <strong>in</strong> <strong>the</strong> Landau <strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Fermi liquid [103]<br />

and has been also verified with<strong>in</strong> a microscopic approach based <strong>on</strong> an effective <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Skyrme type [104]. S<strong>in</strong>ce each s<strong>in</strong>gle particle state has its own width, Eq. (5.15) is generalised<br />

as (Q i = λ, η, η Z,ε,β1,β2):<br />

M diag<br />

ij<br />

=¯h2 k<br />

65<br />

k f<br />

Γ2 ∂ɛ k<br />

∂Qi k<br />

∂ɛ k<br />

∂Q j<br />

. (5.32)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!