01.07.2013 Views

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The half-decay width is obta<strong>in</strong>ed from Eq.(5.18) as<br />

=¯h<br />

<br />

Γn<br />

m<br />

w(n → m +¯hω). (5.19)<br />

With <strong>the</strong> fluctuati<strong>on</strong>-dissipati<strong>on</strong> <strong>the</strong>orem for small temperatures we have [99]<br />

< ¯hω| | ˆ > | F|0 2 = ρqs(¯hω)d(¯hω) 2 ¯hω<br />

(5.20)<br />

R(ω)dω<br />

with <strong>the</strong> relaxati<strong>on</strong> functi<strong>on</strong> def<strong>in</strong>ed as R(ω) =χ ′′<br />

χ functi<strong>on</strong> ′′<br />

[86] and a Taylor expansi<strong>on</strong><br />

(ω)<br />

= R(ω) χ′′ (ω)<br />

ω<br />

1<br />

=<br />

ω<br />

<br />

χ ′′<br />

=0)+ (ω ∂χ′′<br />

<br />

<br />

(ω)<br />

∂ω<br />

<br />

<br />

ω=0<br />

π<br />

2<br />

(ω)/ω. Us<strong>in</strong>g <strong>the</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> resp<strong>on</strong>se<br />

+ ω 1<br />

2<br />

(ω)<br />

∂ω2 ∂ 2 χ ′′<br />

<br />

<br />

<br />

<br />

<br />

ω=0<br />

ω 2 + ...<br />

<br />

, (5.21)<br />

we calculate <strong>the</strong> <strong>in</strong>tegral <strong>in</strong> (5.18). We <strong>the</strong>n replace w(n → m +¯hω) <strong>in</strong> (5.19) by (5.18).<br />

C<strong>on</strong>sider<strong>in</strong>g <strong>the</strong> standard formula for mass Mn (En = Em)<br />

Mn = ¯h2<br />

2 ( m | | 2 [En − Em ])<br />

−1 , (5.22)<br />

which is obta<strong>in</strong>ed from <strong>the</strong> relati<strong>on</strong> Mn =¯h 2 () −1 [94], we obta<strong>in</strong> by sett<strong>in</strong>g<br />

Γ=Γn and M = Mn<br />

= M ¯h ∂χ<br />

Γ<br />

′′<br />

(ω)<br />

∂ω | = ω=0 ¯h<br />

γ(0). (5.23)<br />

Γ<br />

Large temperatures <strong>in</strong> (5.20) effectively lead to a temperature dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ <strong>in</strong> (5.23). S<strong>in</strong>ce<br />

γ(0) <strong>in</strong> Eq. (5.9) c<strong>on</strong>ta<strong>in</strong>s <strong>the</strong> terms with <strong>the</strong> diag<strong>on</strong>al matrix elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> operator ˆ F,<strong>the</strong><br />

mass parameter M also has <strong>the</strong> diag<strong>on</strong>al comp<strong>on</strong>ent M diag (5.15). So, <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong>s to <strong>the</strong><br />

mass parameter can be aga<strong>in</strong> classified as those with diag<strong>on</strong>al and n<strong>on</strong>diag<strong>on</strong>al matrix elements,<br />

respectively.<br />

That <strong>the</strong> mass parameter is proporti<strong>on</strong>al to <strong>the</strong> fricti<strong>on</strong> coefficient (see Eq. (5.23)), has an<br />

analogy <strong>in</strong> <strong>the</strong> hydrodynamic <strong>model</strong>. For multipole moments ν <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucleus with ν>1,<strong>the</strong><br />

63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!