01.07.2013 Views

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

imati<strong>on</strong>). In <strong>the</strong> sec<strong>on</strong>d order term <strong>the</strong> ”nucle<strong>on</strong>ic” part appears <strong>on</strong>ly as an average <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

corresp<strong>on</strong>d<strong>in</strong>g operator. C<strong>on</strong>sistently with <strong>the</strong> harm<strong>on</strong>ic approximati<strong>on</strong>, this average is to be<br />

built with that density operator for <strong>the</strong> nucle<strong>on</strong>s ρ qs(Q0) which <strong>in</strong> <strong>the</strong> quasi-static picture is to<br />

be calculated with <strong>the</strong> Hamilt<strong>on</strong>ian at Q0, namely, ˆ H(x i,p i,Q0). The operator ρ qs(Q0) is<strong>the</strong><br />

can<strong>on</strong>ical distributi<strong>on</strong> for <strong>the</strong> temperature T0. The coupl<strong>in</strong>g term between <strong>the</strong> collective and<br />

<strong>in</strong>tr<strong>in</strong>sic moti<strong>on</strong> is proporti<strong>on</strong>al to <strong>the</strong> first order <strong>in</strong> δQ = Q − Q0 with an operator ˆ F given by<br />

<strong>the</strong> derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mean field with respect to Q <strong>in</strong> <strong>the</strong> neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> Q0.<br />

The local moti<strong>on</strong> <strong>in</strong> <strong>the</strong> Q variable can be described <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> so-called collective<br />

resp<strong>on</strong>se functi<strong>on</strong> χ coll(ω) [86] (see Appendix). In <strong>the</strong> l<strong>in</strong>ear resp<strong>on</strong>se <strong>the</strong>ory [86], <strong>the</strong> mass<br />

coefficient for a slow collective moti<strong>on</strong> can be expressed as [86, 87, 92, 93]<br />

where<br />

= M(Q) 1<br />

2k2 ∂2 coll(ω)) (χ −1<br />

∂ω2 =(1+ |ω=0 C(0)<br />

χ(0) )2 [M cr + γ2 (0)<br />

M cr = 1<br />

2<br />

∂2χ(ω) ∂ω2 |ω=0 = 1<br />

2<br />

∂2χ ′<br />

(ω)<br />

∂ω 2<br />

|ω=0<br />

], (5.2)<br />

χ(0)<br />

is <strong>the</strong> <strong>in</strong>ertia <strong>in</strong> <strong>the</strong> zero-frequency limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sec<strong>on</strong>d derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic resp<strong>on</strong>se<br />

functi<strong>on</strong>. M cr can be shown to be similar to <strong>the</strong> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crank<strong>in</strong>g <strong>model</strong> [86]. Here a<br />

resp<strong>on</strong>se functi<strong>on</strong> χ(ω) for ”<strong>in</strong>tr<strong>in</strong>sic” moti<strong>on</strong> appears and measures how, at some given Q0<br />

temperature T0, <strong>the</strong> nucle<strong>on</strong>ic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom react to <strong>the</strong> coupl<strong>in</strong>g term ˆ FδQ. The<br />

and<br />

resp<strong>on</strong>se functi<strong>on</strong> χ(ω) =χ <strong>in</strong>tr<strong>in</strong>sic ′(ω) +iχ ′′<br />

(5.3)<br />

(ω) is written <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reactive χ ′(ω)<br />

dissipative χ and ′′<br />

parts [86]. χ(0) and C(0) are <strong>the</strong> zero-frequency limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic<br />

(ω)<br />

resp<strong>on</strong>se functi<strong>on</strong> and stiffness, respectively (see Appendix). For many applicati<strong>on</strong>s, <strong>the</strong> value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> C(0)/χ(0) ≪ 1. The additi<strong>on</strong>al term γ 2 (0)/χ(0) <strong>in</strong> Eq. (5.2) gives a positive c<strong>on</strong>tributi<strong>on</strong> to<br />

M where γ(0) is <strong>the</strong> fricti<strong>on</strong> coefficient def<strong>in</strong>ed as [86]<br />

= −i γ(0) ∂χ(ω)<br />

∂ω |ω=0 = ∂χ′′ (ω)<br />

∂ω |ω=0 = 1<br />

2T0 ψ′′<br />

(5.4)<br />

(0).<br />

dissipative part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic resp<strong>on</strong>se functi<strong>on</strong> χ The ′′<br />

is c<strong>on</strong>nected with <strong>the</strong> dissipative<br />

(ω)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> correlati<strong>on</strong> functi<strong>on</strong> ψ part ′′<br />

through <strong>the</strong> fluctuati<strong>on</strong>-dissipati<strong>on</strong> <strong>the</strong>orem [86]<br />

(ω)<br />

χ ′′<br />

= (ω) 1<br />

¯h<br />

¯hω<br />

tanh(<br />

2T0 )ψ′′<br />

(5.5)<br />

(ω).<br />

59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!