01.07.2013 Views

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.1.3 Alternative microscopical method<br />

S<strong>in</strong>ce <strong>the</strong> isotopic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> form<strong>in</strong>g <strong>the</strong> DNS is chosen with <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> N/Z-equilibrium <strong>in</strong> <strong>the</strong> system, mass and charge evoluti<strong>on</strong>s (neutr<strong>on</strong>s and prot<strong>on</strong>s transfer)<br />

are related to each o<strong>the</strong>r. The charge number Z <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> light fragment is used <strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

charge asymmetry η Z. The potential is obta<strong>in</strong>ed by an iterati<strong>on</strong> procedure [33, 73]<br />

(Z +1)= Ũ (Z) +T · ln<br />

Ũ<br />

<strong>the</strong> microscopic transport coefficients ∆ where (±)<br />

[74] Z<br />

∆ (+)<br />

= Z 1<br />

∆t<br />

α,β<br />

| gαβ (R) | 2<br />

∆ (−)<br />

Z = 1 |<br />

<br />

gαβ (R) |<br />

∆t<br />

α,β<br />

2 n Z − n α(T )(1 Z<br />

⎛<br />

⎝∆(−) Z+1<br />

∆ (+)<br />

Z<br />

n Z<br />

(T )(1 − nZα<br />

β (T )) s<strong>in</strong>2 [∆t(˜ɛ Z − ˜ɛ α Z<br />

β (T)) s<strong>in</strong>2 [∆t(˜ɛ Z<br />

⎞<br />

, (4.2)<br />

⎠<br />

(˜ɛ Z − ˜ɛ α Z<br />

β )2 /4<br />

β )/2¯h]<br />

− ˜ɛ α Z<br />

β )/2¯h]<br />

(˜ɛ Z − ˜ɛ α Z<br />

β )2 /4<br />

, (4.3)<br />

characterise <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> prot<strong>on</strong> transfer from a <strong>heavy</strong> to a light nucleus<br />

(∆ (+)<br />

Z<br />

or <strong>in</strong> <strong>the</strong> opposite directi<strong>on</strong> (∆(−) Z ). The DNS temperature T is calculated us<strong>in</strong>g <strong>the</strong><br />

)<br />

Fermi-gas expressi<strong>on</strong> T = E ∗ /a with <strong>the</strong> excitati<strong>on</strong> energy E ∗ <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS and with level-<br />

density parameter a = Atot/12 MeV −1 , where A tot is <strong>the</strong> total mass number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system. In<br />

<strong>the</strong> expressi<strong>on</strong> (4.3), ”α” and”β” are <strong>the</strong> quantum numbers characteris<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gle-particle<br />

states <strong>in</strong> light and <strong>heavy</strong> <strong>nuclei</strong> respectively, n α(T) (n β(T )) are <strong>the</strong> temperature-dependent<br />

occupati<strong>on</strong> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle states <strong>in</strong> a light (<strong>heavy</strong>) nucleus, g αβ are <strong>the</strong> matrix<br />

elements for <strong>the</strong> nucle<strong>on</strong> transiti<strong>on</strong> from nucleus to nucleus because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mean<br />

fields <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong> partners [33, 73]. The time <strong>in</strong>terval ∆t =1.5 × 10 −22 s must be larger<br />

than <strong>the</strong> relaxati<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mean field but c<strong>on</strong>siderably smaller than <strong>the</strong> characteristic<br />

evoluti<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> macroscopic quantities. The mutual <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mean fields <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

reacti<strong>on</strong> partners leads to <strong>the</strong> renormalisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle energies ˜ɛα(β) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong><br />

[33, 73]. Peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>teract<strong>in</strong>g <strong>nuclei</strong> are explicitly taken <strong>in</strong>to account <strong>in</strong><br />

<strong>the</strong> transport coefficients (4.3), which are calculated us<strong>in</strong>g realistic schemes <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle particle<br />

levels. For <strong>the</strong> s<strong>in</strong>gle-particle spectrum, <strong>the</strong> spectrum for a spherically symmetric Woods-<br />

44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!