01.07.2013 Views

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

is calculated with<strong>in</strong> <strong>the</strong> TCSM us<strong>in</strong>g <strong>the</strong> liquid drop energy ELDM, <strong>the</strong> Strut<strong>in</strong>sky prescripti<strong>on</strong><br />

for <strong>the</strong> shell correcti<strong>on</strong> δE shell, pair<strong>in</strong>g correcti<strong>on</strong> δEpair and <strong>the</strong> proximity nuclear potential<br />

VN to improve <strong>the</strong> adiabatic energy for large el<strong>on</strong>gati<strong>on</strong>s [42]. The adiabatic potential energy<br />

normalised to <strong>the</strong> liquid drop energy E is CN<br />

LDM<br />

The diabatic c<strong>on</strong>tributi<strong>on</strong> ∆V diab is expressed as<br />

∆V diab(q) = α<br />

= α<br />

≈ α<br />

ɛ diab<br />

(q)n α diab − α<br />

α<br />

ɛ diab<br />

α (q)(ndiab<br />

α<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spherical compound nucleus.<br />

ɛ adiab<br />

α<br />

(q)n adiab<br />

α<br />

n − adiab(q))<br />

+ α<br />

α<br />

(q)<br />

n adiab<br />

α<br />

(q)(ɛ diab<br />

α<br />

α<br />

(q) − ɛadiab<br />

(q))<br />

ɛ diab<br />

α (q)(ndiab − n α<br />

adiab(q)),<br />

(3.3)<br />

α<br />

where <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> from <strong>the</strong> sec<strong>on</strong>d term with (ɛ diab<br />

(q)−ɛ α adiab<br />

α<br />

(q)) is assumed to be negligible<br />

because <strong>the</strong> adiabatic and diabatic s<strong>in</strong>gle-particle levels differ <strong>on</strong>ly <strong>in</strong> <strong>the</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pseudo-<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> adiabatic states [57]. The diabatic occupati<strong>on</strong> probabilities n cross<strong>in</strong>gs diab<br />

α<br />

are determ<strong>in</strong>ed<br />

<strong>the</strong> c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> separated <strong>nuclei</strong>. The adiabatic occupati<strong>on</strong> probabilities n by adiab<br />

α<br />

with q accord<strong>in</strong>g to <strong>the</strong> ground-state c<strong>on</strong>figurati<strong>on</strong> where <strong>on</strong>ly <strong>the</strong> lowest levels are occupied.<br />

diabatic levels ɛ The diab are classified by <strong>the</strong> quantum numbers α = jz,lz,sz,nρ,nz <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

α<br />

eigenstates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic Hamilt<strong>on</strong>ian. We <strong>on</strong>ly used <strong>the</strong> diag<strong>on</strong>al elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> symmetry-<br />

violat<strong>in</strong>g parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> generalized TCSM Hamilt<strong>on</strong>ian. N<strong>on</strong>-diag<strong>on</strong>al elements arise <strong>on</strong>ly from<br />

<strong>the</strong> sp<strong>in</strong>-orbit potential V LS (A.3), <strong>the</strong> centrifugal potential V L 2 (A.4) and <strong>the</strong> neck potential<br />

H1 (A.16). The first two potentials c<strong>on</strong>ta<strong>in</strong> l x, l y, s x and s y. The diabatic Hamilt<strong>on</strong>ian is<br />

expressed as<br />

vary<br />

d = H0 + Vlz sz H + Vl 2 + H, (3.4)<br />

z<br />

where H0 is <strong>the</strong> Hamilt<strong>on</strong>ian <str<strong>on</strong>g>of</str<strong>on</strong>g> a two-center oscillator (A.15). The <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck<br />

parameter ε is taken <strong>in</strong>to account by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diag<strong>on</strong>al c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> difference<br />

H ≡ H1(ε) − H1(ε =1)=<br />

(ε − 1)<br />

2<br />

2<br />

z m0ω z ′2 cz (1+ ′<br />

dz + ′2 (3.5)<br />

),<br />

where <strong>the</strong> coefficients c and d are determ<strong>in</strong>ed by requir<strong>in</strong>g that <strong>the</strong> potential and its derivative<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!