01.07.2013 Views

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

collective velocity <strong>the</strong> ·<br />

and <strong>in</strong>versely proporti<strong>on</strong>al to <strong>the</strong> square <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> static coupl<strong>in</strong>g H q, ′<br />

between <strong>the</strong> diabatic states. A diabatic basis is advantageous if J>0.5 and hence, ∆ > 1.44.<br />

The expressi<strong>on</strong> (2.1) is obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> l<strong>in</strong>ear two-state Landau-Zener <strong>model</strong> [55] which assumes<br />

that <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system <strong>in</strong> <strong>the</strong> n<strong>on</strong>a<str<strong>on</strong>g>diabaticity</str<strong>on</strong>g> regi<strong>on</strong> is quasi-classical.<br />

In <strong>the</strong> adiabatic TCSM <strong>on</strong>e can observe <strong>the</strong> mutual repulsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> levels hav<strong>in</strong>g <strong>the</strong> same z-<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> total angular momentum j z, which prevents cross<strong>in</strong>gs. It is due to <strong>the</strong> n<strong>on</strong>cross<strong>in</strong>g<br />

rule obta<strong>in</strong>ed by Neumann and Wigner [56]. The n<strong>on</strong>cross<strong>in</strong>g rule reads [55]: <strong>the</strong> eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Hamilt<strong>on</strong>ian H(q), taken to be functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coord<strong>in</strong>ate q, do not cross if <strong>the</strong>y bel<strong>on</strong>g to<br />

<strong>the</strong> same irreducible representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> symmetry group <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Hamilt<strong>on</strong>ian. The eigenvalues<br />

corresp<strong>on</strong>d<strong>in</strong>g to different irreducible representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this symmetry group may cross. The<br />

pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> n<strong>on</strong>cross<strong>in</strong>g rule is based <strong>on</strong> <strong>the</strong> follow<strong>in</strong>g arguments: Let <strong>the</strong> Hamilt<strong>on</strong>ian H(q)<br />

have closely ly<strong>in</strong>g eigenvalues E1(q0) andE2(q0) corresp<strong>on</strong>d<strong>in</strong>g to <strong>the</strong> eigenfuncti<strong>on</strong>s | 1 >0and<br />

| 2 >0 at a certa<strong>in</strong> value q0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> collective coord<strong>in</strong>ate, e.g., relative distance R0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>.<br />

Treat<strong>in</strong>g <strong>the</strong> Hamilt<strong>on</strong>ian for q values close to q0 as a perturbed H(q0)<br />

=H(q0)+ H(q) ∂H<br />

∂q | q=q0 ·δq = H(q0) (2.3)<br />

+V,<br />

it can be readily seen that <strong>the</strong> difference between <strong>the</strong> energy eigenvalues at po<strong>in</strong>t q is<br />

∆E12(q) =<br />

<br />

+V11] − [E2(q0) +V22]} {[E1(q0) 2 V12 | +4| 2 1/2<br />

(2.4)<br />

,<br />

where V ik =0< i| V | k >0. In order that <strong>the</strong> terms cross, both terms <strong>in</strong> <strong>the</strong> radical <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(2.4) must go to zero simultaneously. If | 1 >0 and | 2 >0 bel<strong>on</strong>g to different irreducible<br />

representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> H(q) symmetry group, V12 = 0 and (2.4) can be c<strong>on</strong>verted to zero by <strong>the</strong><br />

proper choice <str<strong>on</strong>g>of</str<strong>on</strong>g> δq. But when | 1 >0 and | 2 >0 bel<strong>on</strong>g to <strong>the</strong> same irreducible representati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Hamilt<strong>on</strong>ian symmetry group, V12 = 0 and generally speak<strong>in</strong>g both terms <strong>in</strong> <strong>the</strong> radical<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> (2.4) cannot go to zero simultaneouly, s<strong>in</strong>ce <strong>the</strong>y are functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e parameter δq. The<br />

n<strong>on</strong>cross<strong>in</strong>g rule uses a complete symmetry group <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Hamilt<strong>on</strong>ian.<br />

19<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!