01.07.2013 Views

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

Effects of diabaticity on fusion of heavy nuclei in the dinuclear model ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>diabaticity</str<strong>on</strong>g> <strong>on</strong> fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong> <strong>in</strong> <strong>the</strong> d<strong>in</strong>uclear <strong>model</strong><br />

by<br />

Alexis Diaz Torres<br />

to <strong>the</strong> Naturwissenschaftiche Fakultät der Justus-Liebig-Universität Gießen<br />

Submitted<br />

21January 2000, <strong>in</strong> partial fulfillment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>on</strong><br />

Abstract<br />

for <strong>the</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

requirements<br />

Doctor<br />

Fusi<strong>on</strong>sprozeß schwerer Kerne wird unter Verwendung des Zweizentren-Schalen<strong>model</strong>ls<br />

Der<br />

für Two-Center Shell Model) untersucht. Zuerst werden diabatische Potentiale als<br />

(TCSM<br />

geometrischer Parameter und des sogenannten Neckparameters im Rahmen des TCSM<br />

Funkti<strong>on</strong><br />

verschiedene symmetrische und asymmetrische Systeme berechnet. Zur Berechnung der<br />

für<br />

wird die Methode der maximalen Symmetrie angewandt. Die diabatischen Po-<br />

Energieniveaus<br />

beh<strong>in</strong>den die Bewegung der Kerne zu ger<strong>in</strong>geren relativen Abständen und das Anwachtentiale<br />

des Necks. Sie ähneln den im d<strong>in</strong>uklearen Fusi<strong>on</strong>s<strong>model</strong>l verwendeten Kern-Kern- Potensen<br />

Die Abhängigkeit des diabatischen Potentials v<strong>on</strong> Temperatur und Massenasymmetialen.<br />

wird diskutiert. Die Isotopen-Abhängigkeit des im TCSM berechneten Potentials wird<br />

trie<br />

verschiedene schwere d<strong>in</strong>ukleare Systeme (DNS für D<strong>in</strong>uclear System) untersucht. E<strong>in</strong><br />

für<br />

wird aus zwei sich berührenden Kernen im M<strong>in</strong>imum des Kern-Kern-Potentials gebildet,<br />

DNS<br />

die <strong>in</strong>dividuellen Eigenschaften der beteiligten Kerne erhalten bleiben. Des weiteren wird<br />

wobei<br />

Potential des DNS als Funkti<strong>on</strong> der Massenasymmetrie mit anderen mikroskopischen und<br />

das<br />

Potentialen verglichen.<br />

phänomenologischen<br />

für die Variablen e<strong>in</strong>es DNS und e<strong>in</strong>es stark deformierten vere<strong>in</strong>igten<br />

Massenparameter<br />

werden mikroskopisch unter Verwendung der Breite der E<strong>in</strong>teilchen-Zustände bestimmt.<br />

Kerns<br />

die Beschreibung der Relativbewegung der Kerne und die Ausbildung des Necks zwischen<br />

Für<br />

Kernen werden die Massenparameter mit Basis-Zuständen des adiabatischen und diabatis-<br />

den<br />

TCSM berechnet. Die mikroskopischen Massenparameter erweisen sich größer als die nach<br />

chen<br />

hydrodynamischen Modell erhaltenen Parameter und verursachen e<strong>in</strong>e starke Beh<strong>in</strong>derung<br />

dem<br />

das Verschmelzen des DNS entlang der Kernverb<strong>in</strong>dungsachse. Das bedeutet, daß das DNS<br />

für<br />

lange Zeit lebt, die mit der Reakti<strong>on</strong>szeit für e<strong>in</strong>e Fusi<strong>on</strong> durch Nukle<strong>on</strong>en-Transfer ver-<br />

e<strong>in</strong>e<br />

ist. K<strong>on</strong>sequenzen dieses Effekts für den gesamten Fusi<strong>on</strong>sprozeß werden diskutiert.<br />

gleichbar<br />

zeitabhängige Übergang zwischen e<strong>in</strong>em diabatischen Wechselwirkungspotential im E<strong>in</strong>-<br />

Der<br />

und e<strong>in</strong>em adiabatischen Potential während des Fusi<strong>on</strong>sprozesses wird im Rahgangskanal<br />

des TCSM untersucht. Es wird e<strong>in</strong>e große Beh<strong>in</strong>derung für die Bewegung zu ger<strong>in</strong>geren<br />

men<br />

v<strong>on</strong> fast symmetrischen DNS gefunden. Der Vergleich der berechneten Energi-<br />

Kernabständen<br />

für die vollständige Fusi<strong>on</strong> <strong>in</strong> verschiedenen relevanten kollektiven Koord<strong>in</strong>aten zeigt,<br />

eschwellen<br />

das DNS vorzugsweise <strong>in</strong> der Massenasymmetrie-Koord<strong>in</strong>ate durch Nukle<strong>on</strong>en-Transfer zum<br />

daß<br />

Kern verschmilzt.<br />

vere<strong>in</strong>igten<br />

Prozeß der Quasi-Spaltung des DNS wird durch die Lösung e<strong>in</strong>er Transport-Mastergleichung<br />

Der<br />

den Austausch v<strong>on</strong> Nukle<strong>on</strong>en zwischen den Teilen des DNS behandelt, die auch den Zer-<br />

für<br />

2


des DNS entlang der Kernverb<strong>in</strong>dungsachse berücksichtigt. Die Quasi-Spaltung-<br />

fallsprozeß<br />

v<strong>on</strong> Fusi<strong>on</strong>sreakti<strong>on</strong>en werden korrekt beschrieben und stimmen mit den experi-<br />

Produkte<br />

Daten übere<strong>in</strong>. Es wird gezeigt, daß der Prozeß der Quasi-Spaltung e<strong>in</strong>er der entscheimentellen<br />

Faktoren ist, der die vollständige Fusi<strong>on</strong> schwerer Kerne beh<strong>in</strong>dert.<br />

denden<br />

3


1 Introducti<strong>on</strong> 6<br />

1.1 The DNS-c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

1.2 Goals <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2 The diabatic two-center shell <strong>model</strong> 17<br />

2.1General c<strong>on</strong>siderati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

2.2 C<strong>on</strong>structi<strong>on</strong> methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

3 Potentials <strong>in</strong> <strong>the</strong> diabatic TCSM 24<br />

3.1 The diabatic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

3.2 Results and discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

4 The potential <strong>in</strong> <strong>the</strong> mass asymmetry coord<strong>in</strong>ate 41<br />

4.1Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> driv<strong>in</strong>g potential . . . . . . . . . . . . . . . . . . . 42<br />

4.1.1 Phenomenological method . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

4.1.2 TCSM-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

4.1.3 Alternative microscopical method . . . . . . . . . . . . . . . . . . . . . . . 44<br />

4.2 Results and discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

4.2.1Isotopic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> driv<strong>in</strong>g potential . . . . . . . . . . . . . . . . . 45<br />

4.2.2 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> driv<strong>in</strong>g potentials calculated with different methods . . . . 52<br />

5 The mass parameters 57<br />

5.1Microscopical <strong>in</strong>ertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

5.1.1 Derivati<strong>on</strong> from collective resp<strong>on</strong>se functi<strong>on</strong> . . . . . . . . . . . . . . . . . 58<br />

4


5.1.2 Derivati<strong>on</strong> from Fermi’s golden rule . . . . . . . . . . . . . . . . . . . . . 62<br />

5.1.3 Derivati<strong>on</strong> from <strong>the</strong> mean—field crank<strong>in</strong>g formula . . . . . . . . . . . . . . 64<br />

5.2 Results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> calculati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

5.2.1The adiabatic two-center shell <strong>model</strong> . . . . . . . . . . . . . . . . . . . . . 65<br />

5.2.2 The diabatic two-center shell <strong>model</strong> . . . . . . . . . . . . . . . . . . . . . 71<br />

6 Melt<strong>in</strong>g or transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong>s <strong>in</strong> fusi<strong>on</strong>? 81<br />

6.1Results and discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

7 The quasi-fissi<strong>on</strong> process <strong>in</strong> <strong>the</strong> DNS 94<br />

7.1Results and discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96<br />

8 Summary and outlook 105<br />

8.1Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 08<br />

A The two-center shell <strong>model</strong> (TCSM) 110<br />

B The collective resp<strong>on</strong>se functi<strong>on</strong> 116<br />

5


Chapter 1<br />

The elements exist<strong>in</strong>g <strong>in</strong> nature are ordered accord<strong>in</strong>g to <strong>the</strong>ir atomic (chemical) properties<br />

<strong>in</strong> <strong>the</strong> periodic system which was developed by Mendeleev and Lothar Meyer. The heaviest<br />

element <str<strong>on</strong>g>of</str<strong>on</strong>g> natural orig<strong>in</strong> is uranium. The transuranium elements range from neptunium (Z=93)<br />

via californium (Z=98) and fermium (Z=100) up to lawrencium (Z=103). For <strong>the</strong> heaviest<br />

systems <strong>the</strong> Coulomb repulsi<strong>on</strong> between <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g number <str<strong>on</strong>g>of</str<strong>on</strong>g> prot<strong>on</strong>s grows faster than<br />

<strong>the</strong> attractive nuclear forces. The <strong>heavy</strong> nuclear systems are macroscopically <strong>in</strong>stable, <strong>the</strong>ir<br />

existence is determ<strong>in</strong>ed by shell effects. Theoretical nuclear physicists ([1], [2]) predicted that<br />

so-called closed prot<strong>on</strong> and neutr<strong>on</strong> shells should counteract <strong>the</strong> repell<strong>in</strong>g Coulomb forces.<br />

Atomic <strong>nuclei</strong> with <strong>the</strong>se special ”magic” prot<strong>on</strong> and neutr<strong>on</strong> numbers and <strong>the</strong>ir neighbours<br />

could aga<strong>in</strong> be ra<strong>the</strong>r stable. These magic prot<strong>on</strong> (Z) and neutr<strong>on</strong> (N) numbers were thought to<br />

be Z=114, N=184 or 196. Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shell structure <str<strong>on</strong>g>of</str<strong>on</strong>g> super<strong>heavy</strong> elements <strong>in</strong> <strong>the</strong> framework<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mes<strong>on</strong> field <strong>the</strong>ory and <strong>the</strong> Skyrme-Hartree-Fock approach have recently shown that <strong>the</strong><br />

magic shells <strong>in</strong> <strong>the</strong> super<strong>heavy</strong> regi<strong>on</strong> are very dependent <strong>on</strong> isotopes [3]. Accord<strong>in</strong>g to <strong>the</strong>se<br />

<strong>in</strong>vestigati<strong>on</strong>s, <strong>the</strong> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum stability may be near Z=120 or Z=126.<br />

The syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> new nuclear species relies <strong>on</strong> <strong>the</strong> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> premordial <strong>nuclei</strong><br />

available <strong>in</strong> nature. The available <strong>nuclei</strong> are limited <strong>in</strong> <strong>the</strong>ir neutr<strong>on</strong>-to-prot<strong>on</strong> ratio by <strong>the</strong><br />

beta decay and <strong>in</strong> size by charged-particle decay and fissi<strong>on</strong> due to <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g electrostatic<br />

repulsi<strong>on</strong> between <strong>the</strong> c<strong>on</strong>stituent prot<strong>on</strong>s. The first method used to produce transuranium<br />

elements, which is still used to syn<strong>the</strong>size larger quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> specific isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> elements from<br />

neptunium to e<strong>in</strong>ste<strong>in</strong>ium, was <strong>the</strong> c<strong>on</strong>secutive capture <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong>s by uranium isotopes and<br />

6


<strong>the</strong> subsequent β − decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> capture products <strong>in</strong> nuclear reactors or <strong>in</strong> nuclear explosi<strong>on</strong>s.<br />

However, <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>nuclei</strong> atta<strong>in</strong>able by this method is very limited. Isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> elements<br />

bey<strong>on</strong>d Mendelevium were syn<strong>the</strong>sized by fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong>. This nuclear reacti<strong>on</strong> was most<br />

successful <strong>in</strong> <strong>heavy</strong>-element producti<strong>on</strong>. The syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> elements Z=102-106 started from <strong>the</strong><br />

heaviest possible act<strong>in</strong>ide targets fused with light projectiles rang<strong>in</strong>g from 10 B to 26 Mg.This<br />

technique depends <strong>on</strong> <strong>the</strong> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> act<strong>in</strong>ides <strong>in</strong> microgram quantities, and was widely<br />

used with <strong>the</strong> accelerators <str<strong>on</strong>g>of</str<strong>on</strong>g> LBL and ORNL <strong>in</strong> <strong>the</strong> US and <str<strong>on</strong>g>of</str<strong>on</strong>g> JINR <strong>in</strong> Russia. The Berkeley<br />

and Dubna groups developed <strong>the</strong> pi<strong>on</strong>eer<strong>in</strong>g techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> us<strong>in</strong>g <strong>heavy</strong>-i<strong>on</strong> accelerators to fuse<br />

<strong>nuclei</strong> and detecti<strong>on</strong> systems to identify <strong>the</strong> new species [4].<br />

For <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong>, <strong>the</strong> cold fusi<strong>on</strong> reacti<strong>on</strong> with lead targets <strong>in</strong>troduced by<br />

Oganessian et al [5] successfully replaced <strong>the</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hot fusi<strong>on</strong> reacti<strong>on</strong> us<strong>in</strong>g act<strong>in</strong>ide<br />

targets. Based <strong>on</strong> <strong>the</strong> fragmentati<strong>on</strong> <strong>the</strong>ory, Gupta, Sandulescu and Gre<strong>in</strong>er [6] <strong>the</strong>oretically<br />

understood and substantiated <strong>the</strong> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> bombard<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> double magic lead <strong>nuclei</strong> with<br />

suitable projectiles. Cold fusi<strong>on</strong> necessitated <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> more powerful i<strong>on</strong> sources<br />

and accelerators for <strong>the</strong> heavier i<strong>on</strong>s needed <strong>in</strong> <strong>the</strong> reacti<strong>on</strong>s with lead. Chemical separati<strong>on</strong><br />

techniques and mechanical transport systems were replaced by electromagnetic recoil separators,<br />

which reduced <strong>the</strong> separati<strong>on</strong> time to a few microsec<strong>on</strong>ds. The resolv<strong>in</strong>g power <str<strong>on</strong>g>of</str<strong>on</strong>g> detectors<br />

was <strong>in</strong>creased and <strong>the</strong> <strong>in</strong>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong> sensitive detectors allowed for <strong>the</strong> observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> generic parent-daughter decays to <strong>the</strong> known isotopes over a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> half-lives. The<br />

electr<strong>on</strong>ic data acquisiti<strong>on</strong> systems were m<strong>in</strong>iaturized allow<strong>in</strong>g <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple parameter<br />

detector systems. The result<strong>in</strong>g large volume <str<strong>on</strong>g>of</str<strong>on</strong>g> data was analysed by fast computers. In cold<br />

fusi<strong>on</strong> reacti<strong>on</strong>s at <strong>the</strong> GSI, <strong>the</strong> isotopes were unambiguously identified by means <str<strong>on</strong>g>of</str<strong>on</strong>g> α − α<br />

correlati<strong>on</strong>s.<br />

Dur<strong>in</strong>g <strong>the</strong> last years <strong>the</strong> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> elements was extended by <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> el-<br />

ements up to Z=112. Here <strong>the</strong> group at <strong>the</strong> GSI was very successful utiliz<strong>in</strong>g cold fusi<strong>on</strong><br />

reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 208 Pb and 209 Bi targets with medium <strong>heavy</strong> projectiles like 40 Ar or 50 Ti [7]. The<br />

advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se reacti<strong>on</strong>s is that <strong>on</strong>ly slightly excited (E ∗ ≈ 10 − 20MeV) compound <strong>nuclei</strong><br />

at bombard<strong>in</strong>g energies close to <strong>the</strong> Bass barrier are produced. Low-excitati<strong>on</strong> energies were<br />

c<strong>on</strong>sidered to be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reas<strong>on</strong>s for <strong>the</strong> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> fragile <strong>heavy</strong> <strong>nuclei</strong> aga<strong>in</strong>st prompt fissi<strong>on</strong>.<br />

Produc<strong>in</strong>g <strong>the</strong> elements from Z=104 to Z= 112 <strong>in</strong> <strong>the</strong> cold fusi<strong>on</strong> reacti<strong>on</strong>s, <strong>the</strong> experimentalists<br />

7


observed <strong>the</strong> rapid fall-<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> evaporati<strong>on</strong> residue cross secti<strong>on</strong> (about four orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magni-<br />

with <strong>in</strong>creas<strong>in</strong>g Z <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compound nucleus ([4], [7], [8]). The measured cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tude)<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> element with Z=112 was 1 <strong>the</strong> +1.3<br />

−0.6 pb.<br />

The usual extrapolati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> exist<strong>in</strong>g data <strong>on</strong> <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> elements 110-112 <strong>in</strong>dicate that<br />

to reach still heavier elements will require orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <strong>in</strong>creases <strong>in</strong> accelerator beam<br />

currents and new target technologies. It has proven difficult to proceed bey<strong>on</strong>d element 112<br />

us<strong>in</strong>g cold fusi<strong>on</strong> reacti<strong>on</strong>s [9]. However, <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> element 293 118 by cold fusi<strong>on</strong><br />

reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 86 Kr with 208 Pb <strong>in</strong> <strong>the</strong> LBL [10] has recently been reported. The producti<strong>on</strong> cross<br />

was 2.2 secti<strong>on</strong> +2.6<br />

−0.8<br />

pb. This experiment has been repeated at <strong>the</strong> GSI, but unfortunately<br />

without positive results. Moreover, new experiments [11] <strong>on</strong> fissi<strong>on</strong> and quasi-fissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

super<strong>heavy</strong> element 293 118 produced by <strong>the</strong> same reacti<strong>on</strong> deny <strong>the</strong> producti<strong>on</strong> cross secti<strong>on</strong><br />

obta<strong>in</strong>ed <strong>in</strong> Berkeley.<br />

At <strong>the</strong> JINR, fur<strong>the</strong>r isotopes were produced us<strong>in</strong>g hot fusi<strong>on</strong> reacti<strong>on</strong>s <strong>in</strong>duced by 48 Ca<br />

i<strong>on</strong>s <strong>on</strong> <strong>heavy</strong> act<strong>in</strong>ide targets, such as 232 Th, 238 U and 244 Pu, with <strong>the</strong> evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 or<br />

4 neutr<strong>on</strong>s [12]. These reacti<strong>on</strong>s allow us <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> decay properties <str<strong>on</strong>g>of</str<strong>on</strong>g> more neutr<strong>on</strong> rich<br />

isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> transfermium elements, which are impossible to syn<strong>the</strong>size directly by cold fusi<strong>on</strong><br />

reacti<strong>on</strong>s, e.g. l<strong>on</strong>g lived isotopes with neutr<strong>on</strong> numbers close to N=162 and Z≥106. Very<br />

asymmetric systems fuse with a higher probability at <strong>the</strong> Coulomb barrier. Simultaneously<br />

however, <strong>the</strong> excitati<strong>on</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compound <strong>nuclei</strong> change from typically 10-20 MeV <strong>in</strong><br />

<strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> cold fusi<strong>on</strong> reacti<strong>on</strong>s to 30-50 MeV. This <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> excitati<strong>on</strong> energy reduces<br />

<strong>the</strong> survival probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> compound <strong>nuclei</strong>. At <strong>the</strong> same time <strong>the</strong> fusi<strong>on</strong> probability is<br />

much larger <strong>in</strong> <strong>the</strong>se reacti<strong>on</strong>s than <strong>in</strong> <strong>the</strong> Pb-based reacti<strong>on</strong>s.<br />

The presently produced <strong>heavy</strong> elements are ra<strong>the</strong>r neutr<strong>on</strong> deficient and close to <strong>the</strong> border<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> prot<strong>on</strong> <strong>in</strong>stability. Especially with stable targets and stable beams it is not possible to reach<br />

<strong>the</strong> <strong>in</strong>terest<strong>in</strong>g regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magic spherical <strong>nuclei</strong> with Z =110− 114 and N =180− 184. Here<br />

new possibilities can be opened up with neutr<strong>on</strong>-rich beams and targets [13]. One might expect<br />

that a neutr<strong>on</strong> sk<strong>in</strong> and larger radii <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong>-rich projectiles may lead to enhanced fusi<strong>on</strong><br />

cross secti<strong>on</strong>s. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> fast dissipative heat<strong>in</strong>g, when transfer<strong>in</strong>g loosely bound<br />

neutr<strong>on</strong>s from <strong>the</strong> projectile to <strong>the</strong> target, may lead to a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cross secti<strong>on</strong>s.<br />

Here improved <strong>model</strong>s for <strong>the</strong> reacti<strong>on</strong> mechanisms are required, which <strong>in</strong> comparis<strong>on</strong> with<br />

8


experiment have to be developed to describe <strong>the</strong> extremely small fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total cross<br />

secti<strong>on</strong> lead<strong>in</strong>g to fusi<strong>on</strong>. Predicti<strong>on</strong>s based <strong>on</strong> <strong>the</strong>se <strong>model</strong>s are useful <strong>in</strong> <strong>the</strong> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

next generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments. The macroscopic <strong>model</strong>s ([14], [15], [16]) do not reproduce <strong>the</strong><br />

excitati<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong>s used for <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> super<strong>heavy</strong> elements. Compensat-<br />

<strong>in</strong>g <strong>the</strong> dissipative losses <strong>in</strong> <strong>the</strong> relative moti<strong>on</strong>, <strong>the</strong> macroscopical dynamical <strong>model</strong> (MDM) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Swiatecki [16] and <strong>the</strong> surface fricti<strong>on</strong> <strong>model</strong> by Fröbrich [15] have to take an extra-extra-push<br />

energy <strong>in</strong>to account lead<strong>in</strong>g to an excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compound nucleus which results too<br />

large compared to <strong>the</strong> experimental data for super<strong>heavy</strong> elements [17]. In additi<strong>on</strong>, <strong>the</strong> MDM<br />

c<strong>on</strong>cept yields too large evaporati<strong>on</strong> residue cross secti<strong>on</strong>s as dem<strong>on</strong>strated for example for <strong>the</strong><br />

100 Mo + 100 Mo and 110 Pd + 110 Pd reacti<strong>on</strong>s [18] s<strong>in</strong>ce <strong>the</strong> MDM does not take <strong>in</strong>to account<br />

<strong>the</strong> competiti<strong>on</strong> between complete fusi<strong>on</strong> and quasi-fissi<strong>on</strong> processes. In <strong>the</strong> MDM, <strong>the</strong> follow-<br />

<strong>in</strong>g qualitative picture was c<strong>on</strong>sidered: i) after <strong>the</strong> capture, <strong>the</strong> neck between <strong>the</strong> <strong>nuclei</strong> grows<br />

quite quickly and a deformed united system is formed; (ii) <strong>the</strong> united system ei<strong>the</strong>r overcomes<br />

<strong>the</strong> saddle po<strong>in</strong>t and moves to <strong>the</strong> equilibrium state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compound nucleus or goes to <strong>the</strong><br />

quasi-fissi<strong>on</strong> channel. The choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> channel <str<strong>on</strong>g>of</str<strong>on</strong>g> complete fusi<strong>on</strong> or quasi-fissi<strong>on</strong> depends <strong>on</strong><br />

<strong>the</strong> <strong>in</strong>itial k<strong>in</strong>etic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> projectile.<br />

Ano<strong>the</strong>r method to calculate fusi<strong>on</strong> cross secti<strong>on</strong>s is based <strong>on</strong> <strong>the</strong> d<strong>in</strong>uclear system (DNS)<br />

c<strong>on</strong>cept [19]. With<strong>in</strong> this c<strong>on</strong>cept, calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> complete fusi<strong>on</strong> probability and optimal<br />

excitati<strong>on</strong> energy for <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> compound <strong>nuclei</strong> between Z=102 and Z=114 are <strong>in</strong><br />

agreement with <strong>the</strong> experimental data ([20], [21] and [22]). The <strong>model</strong> based <strong>on</strong> <strong>the</strong> DNS-<br />

c<strong>on</strong>cept gives an explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> cross secti<strong>on</strong>s by quasi-fissi<strong>on</strong> and<br />

can be used for <strong>the</strong> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> residue cross secti<strong>on</strong>s <strong>in</strong> <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong><br />

and super<strong>heavy</strong> elements by cold and hot fusi<strong>on</strong> reacti<strong>on</strong>s [22]. The ma<strong>in</strong> idea <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS-<br />

c<strong>on</strong>cept is <strong>the</strong> assumpti<strong>on</strong> that complete fusi<strong>on</strong> and deep <strong>in</strong>elastic transfer reacti<strong>on</strong>s are similar<br />

nuclear processes. Both <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>m are realized accord<strong>in</strong>g to similar scenarios. The scenario <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> complete fusi<strong>on</strong> process is as follows. At <strong>the</strong> capture stage, after full dissipati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

collisi<strong>on</strong> k<strong>in</strong>etic energy, <strong>the</strong> DNS is formed. The complete fusi<strong>on</strong> process is <strong>the</strong> DNS evoluti<strong>on</strong><br />

that proceeds via nucle<strong>on</strong> transfer, shell by shell from <strong>on</strong>e nucleus to <strong>the</strong> o<strong>the</strong>r. The DNS <strong>nuclei</strong><br />

reta<strong>in</strong> <strong>the</strong>ir <strong>in</strong>dividuality throughout <strong>the</strong>ir way to <strong>the</strong> compound nucleus. This peculiarity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> DNS evoluti<strong>on</strong> is <strong>the</strong> c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shell structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>.<br />

9


Figure 1-1 illustrates <strong>the</strong> compound nucleus formati<strong>on</strong> process <strong>in</strong> <strong>the</strong> framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> MDM<br />

and <strong>the</strong> DNS-c<strong>on</strong>cept. Reviews <strong>on</strong> <strong>the</strong> <strong>the</strong>oretical basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS-c<strong>on</strong>cept and <strong>on</strong> <strong>the</strong> <strong>model</strong><br />

treat<strong>in</strong>g <strong>the</strong> competiti<strong>on</strong> between fusi<strong>on</strong> and quasi-fissi<strong>on</strong> are given <strong>in</strong> Refs. [17], [21] and [23].<br />

Newer calculati<strong>on</strong>s based <strong>on</strong> <strong>the</strong> MDM <strong>model</strong> are <strong>the</strong> follow<strong>in</strong>g: In Japan an approach is<br />

be<strong>in</strong>g developed <strong>on</strong> <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> MDM <strong>model</strong> with <strong>the</strong> fluctuati<strong>on</strong>-dissipati<strong>on</strong> effects [24], for<br />

<strong>the</strong> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hot fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> symmetric systems lead<strong>in</strong>g to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> super<strong>heavy</strong><br />

elements. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> formati<strong>on</strong> cross secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> super<strong>heavy</strong> elements <strong>in</strong> <strong>the</strong> standard<br />

statistical <strong>model</strong> tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> limitati<strong>on</strong>s <strong>on</strong> fusi<strong>on</strong> from empirical systematics were<br />

made <strong>in</strong> Ref. [25]. In [26], a simple <strong>model</strong> for descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cold fusi<strong>on</strong> reacti<strong>on</strong>s based <strong>on</strong><br />

<strong>the</strong> doubly magic lead target nucleus was proposed. This <strong>model</strong> assumes that <strong>the</strong> compound<br />

nucleus is formed by quantal tunnel<strong>in</strong>g through <strong>the</strong> fusi<strong>on</strong> barrier. The <strong>model</strong> predicts that <strong>the</strong><br />

most promis<strong>in</strong>g reacti<strong>on</strong> for <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> super<strong>heavy</strong> <strong>nuclei</strong> is 208 Pb( 86 Kr,1n) 293 118, but<br />

<strong>the</strong> predicted cross secti<strong>on</strong> for this reacti<strong>on</strong> is c<strong>on</strong>siderably larger (670 pb) than <strong>the</strong> producti<strong>on</strong><br />

cross secti<strong>on</strong> obta<strong>in</strong>ed <strong>in</strong> Berkeley [10]. The <strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> based <strong>on</strong> <strong>the</strong> DNS-c<strong>on</strong>cept predicts<br />

a producti<strong>on</strong> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 −2 pb [27] for this reacti<strong>on</strong>.<br />

1-1: Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compound nucleus formati<strong>on</strong> <strong>in</strong> <strong>the</strong> framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> MDM and<br />

Figure<br />

DNS-c<strong>on</strong>cept.<br />

10


1.1 The DNS-c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong><br />

A special feature <str<strong>on</strong>g>of</str<strong>on</strong>g> deep-<strong>in</strong>elastic collisi<strong>on</strong>s is that <strong>the</strong>y lead to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a DNS [28].<br />

Dur<strong>in</strong>g <strong>the</strong> entire formati<strong>on</strong> and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>the</strong>re is a c<strong>on</strong>t<strong>in</strong>uous redistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nucle<strong>on</strong>s, excitati<strong>on</strong> energy and angular momentum between <strong>the</strong> <strong>nuclei</strong>. An unstable formati<strong>on</strong><br />

like a d<strong>in</strong>uclear system ”lives” for <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> a few 10 −21 s and decays before it achieves<br />

complete statistical equilibrium with respect to all degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom. The establishment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

equilibrium between <strong>the</strong> prot<strong>on</strong> and neutr<strong>on</strong> numbers [29] occurs practically <strong>in</strong>stantaneously<br />

<strong>in</strong> light systems and is a m<strong>on</strong>ot<strong>on</strong>ic c<strong>on</strong>t<strong>in</strong>uous process <strong>in</strong> <strong>heavy</strong> systems [30]. Nucle<strong>on</strong>s are<br />

exchanged slowly between <strong>the</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS. As it evolves, a DNS can <strong>in</strong> pr<strong>in</strong>ciple pass with<br />

some def<strong>in</strong>ite probability through many macroscopic c<strong>on</strong>figurati<strong>on</strong>s allowed by <strong>the</strong> c<strong>on</strong>servati<strong>on</strong><br />

laws for <strong>the</strong> particle number, charge and total energy. A DNS decays ei<strong>the</strong>r by <strong>the</strong> dom<strong>in</strong>ance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> forces <str<strong>on</strong>g>of</str<strong>on</strong>g> repulsi<strong>on</strong> between <strong>the</strong> <strong>in</strong>teract<strong>in</strong>g <strong>nuclei</strong> or by <strong>the</strong> coupl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> modes <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

Experimental data <strong>on</strong> <strong>the</strong> widths <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> charge (mass) distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong> products<br />

[29], <strong>the</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> yields <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>nuclei</strong> <strong>on</strong> <strong>the</strong>ir nucle<strong>on</strong> compositi<strong>on</strong> [31], and data <strong>on</strong> <strong>the</strong><br />

yields <str<strong>on</strong>g>of</str<strong>on</strong>g> light particles <strong>in</strong> collisi<strong>on</strong>s that lead to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> compound <strong>nuclei</strong> [32] <strong>in</strong>dicate<br />

that as d<strong>in</strong>uclear systems evolve, <strong>in</strong>dividual features <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> are preserved, and shell effects<br />

play an important part. A review <strong>on</strong> <strong>the</strong>se experimental evidences is given <strong>in</strong> Ref. [33]. The<br />

c<strong>on</strong>sidered experimental data c<strong>on</strong>firm <strong>the</strong> idea that <strong>the</strong> <strong>in</strong>dividuality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>teract<strong>in</strong>g <strong>nuclei</strong> is<br />

preserved even for a relatively high excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS and <strong>in</strong>dicate that shell effects<br />

play a fundamental role <strong>in</strong> <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS. The study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> shell effects is<br />

topical <strong>in</strong> c<strong>on</strong>necti<strong>on</strong> with planned experiments with radioactive beams, which will significantly<br />

extend <strong>the</strong> possibilities for <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear reacti<strong>on</strong>s [13].<br />

In <strong>the</strong> <strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> based <strong>on</strong> <strong>the</strong> DNS-c<strong>on</strong>cept, <strong>the</strong> fusi<strong>on</strong> process is c<strong>on</strong>sidered as <strong>the</strong><br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a DNS caused by <strong>the</strong> transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong>s from <strong>the</strong> light nucleus to <strong>the</strong> <strong>heavy</strong><br />

<strong>on</strong>e. The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS is c<strong>on</strong>sidered as a comb<strong>in</strong>ed diffusi<strong>on</strong> <strong>in</strong> <strong>the</strong> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass asymmetry η =(A1 − A2)/( A1 + A2) ( A1 and A2 are <strong>the</strong> mass numbers <strong>the</strong><br />

DNS <strong>nuclei</strong>) and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relative distance between <strong>the</strong> centers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>nuclei</strong> R describ<strong>in</strong>g <strong>the</strong> quasi-<br />

fissi<strong>on</strong> process (decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS), respectively (Fig.1-2). The potential barrier B ∗ fus<br />

a h<strong>in</strong>drance for <strong>the</strong> fusi<strong>on</strong>. The energy required to overcome <strong>the</strong> fusi<strong>on</strong> barrier B supplies ∗<br />

fus is<br />

<strong>in</strong> <strong>the</strong> DNS excitati<strong>on</strong> energy. As was found <strong>in</strong> [34], <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> B c<strong>on</strong>ta<strong>in</strong>ed ∗ can be much<br />

fus<br />

11<br />

<strong>in</strong> η


smaller than <strong>the</strong> extra-extra push energy predicted <strong>in</strong> <strong>the</strong> MDM. The DNS c<strong>on</strong>cept is based<br />

<strong>on</strong> <strong>the</strong> assumpti<strong>on</strong> that <strong>the</strong> <strong>nuclei</strong> keep <strong>the</strong>ir <strong>in</strong>dividuality near <strong>the</strong>ir touch<strong>in</strong>g distance. This<br />

assumpti<strong>on</strong> is justified by diabatic shell <strong>model</strong> effects [35] and <strong>the</strong> structural forbiddennes for<br />

fusi<strong>on</strong> [36], which h<strong>in</strong>der <strong>the</strong> <strong>nuclei</strong> to melt toge<strong>the</strong>r al<strong>on</strong>g <strong>the</strong> relative coord<strong>in</strong>ate R. These<br />

aspects are phenomenologically described with a double fold<strong>in</strong>g potential <strong>in</strong> frozen density<br />

approximati<strong>on</strong> which shows a m<strong>in</strong>imum near <strong>the</strong> touch<strong>in</strong>g distance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>. The <strong>nuclei</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> DNS are <strong>in</strong> <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> dur<strong>in</strong>g <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> system <strong>in</strong> <strong>the</strong> mass asymmetry<br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom and <strong>the</strong> decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system can <strong>on</strong>ly occur <strong>in</strong> <strong>the</strong> relative coord<strong>in</strong>ate. There<br />

is experimental evidence that <strong>the</strong> mass asymmetry degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom equilibrates more rapidly<br />

than <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system which allows to treat <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS by statistical<br />

<strong>model</strong>s. In order to calculate <strong>the</strong> probability for fusi<strong>on</strong> P CN, <strong>the</strong> Fokker-Planck equati<strong>on</strong> for<br />

<strong>the</strong> complete set <str<strong>on</strong>g>of</str<strong>on</strong>g> collective coord<strong>in</strong>ates and c<strong>on</strong>jugate momenta (η, pη,R,pR) was solved [34]<br />

with<strong>in</strong> <strong>the</strong> global momentum approach. The data obta<strong>in</strong>ed with this method are <strong>in</strong> agreement<br />

with <strong>the</strong> <strong>on</strong>es calculated <strong>in</strong> <strong>the</strong> approach based <strong>on</strong> <strong>the</strong> Kramers-type expressi<strong>on</strong> for <strong>the</strong> fusi<strong>on</strong><br />

rate through <strong>the</strong> <strong>in</strong>ner fusi<strong>on</strong> barrier <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS [34]. The ma<strong>in</strong> advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Kramers-type<br />

expressi<strong>on</strong> for <strong>the</strong> fusi<strong>on</strong> rate <strong>in</strong> c<strong>on</strong>trast to <strong>the</strong> statistical method [18] is <strong>the</strong> possibility to<br />

<strong>in</strong>clude nuclear viscosity <strong>in</strong> <strong>the</strong> fusi<strong>on</strong> process. In <strong>the</strong>se calculati<strong>on</strong>s <strong>the</strong> neck degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom<br />

that is important <strong>in</strong> <strong>the</strong> MDM is not c<strong>on</strong>sidered. As follows from Ref. [37], <strong>the</strong> extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> relevant collective variable set by <strong>the</strong> neck variable may be questi<strong>on</strong>able for <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R c<strong>on</strong>sidered <strong>in</strong> <strong>the</strong> DNS. For a small overlap <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> (that takes place <strong>in</strong> <strong>the</strong> DNS), <strong>the</strong><br />

neck size is close to <strong>the</strong> <strong>on</strong>e obta<strong>in</strong>ed by a simple superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> frozen density tails.<br />

The values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> probabilities obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> DNS-<strong>model</strong> are <strong>in</strong> agreement with <strong>the</strong><br />

values extracted from <strong>the</strong> experimental data for most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong>. Thus,<br />

<strong>the</strong> competiti<strong>on</strong> between <strong>the</strong> complete fusi<strong>on</strong> and quasi-fissi<strong>on</strong> processes is extremely important<br />

<strong>in</strong> <strong>the</strong> DNS evoluti<strong>on</strong>.<br />

The new <strong>model</strong> suggested <strong>in</strong> [18] and [34], yields a good agreement between <strong>the</strong> <strong>the</strong>oretical<br />

predicti<strong>on</strong>s and experimental data <strong>on</strong> <strong>the</strong> fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong>.<br />

12


Figure 1-2: Two ways <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS to quasi-fissi<strong>on</strong> and fusi<strong>on</strong>.<br />

With<strong>in</strong> this <strong>model</strong> <strong>the</strong> evaporati<strong>on</strong> residue cross-secti<strong>on</strong> can be written as<br />

Jmax<br />

=<br />

σER(Ec.m.)<br />

J=0<br />

σc(Ec.m.,J) · PCN(Ec.m.,J) · Wsur(Ec.m.,J). (1.1)<br />

The capture cross-secti<strong>on</strong> σc describes <strong>the</strong> transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> collid<strong>in</strong>g <strong>nuclei</strong> over <strong>the</strong> Coulomb<br />

barrier and <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS when <strong>the</strong> k<strong>in</strong>etic energy is transformed <strong>in</strong>to <strong>the</strong> excitati<strong>on</strong><br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS. This <strong>in</strong>itial stage <str<strong>on</strong>g>of</str<strong>on</strong>g> a collisi<strong>on</strong> was recently studied with a dynamical <strong>model</strong><br />

[38]. Calculati<strong>on</strong>s were performed for 48 Ca + 244 Pu and 74,76 Ge + 208 Pb reacti<strong>on</strong>s which could<br />

lead to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> super<strong>heavy</strong> element Z=114. It was shown that for <strong>the</strong> c<strong>on</strong>sidered<br />

reacti<strong>on</strong>s, <strong>the</strong>re is an energy w<strong>in</strong>dow for <strong>the</strong> bombard<strong>in</strong>g energy Ec.m. at which <strong>the</strong> capture<br />

cross-secti<strong>on</strong> σc is large enough to have a physical <strong>in</strong>terest. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> J max corresp<strong>on</strong>ds<br />

to Ec.m. and is larger than <strong>the</strong> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> J for <strong>the</strong> compound nucleus formati<strong>on</strong>.<br />

The probability <str<strong>on</strong>g>of</str<strong>on</strong>g> complete fusi<strong>on</strong> PCN depends <strong>on</strong> <strong>the</strong> competiti<strong>on</strong> between <strong>the</strong> complete<br />

13


fusi<strong>on</strong> and quasi-fissi<strong>on</strong> processes after <strong>the</strong> capture stage <strong>in</strong> <strong>the</strong> DNS. In <strong>the</strong>se reacti<strong>on</strong>s <strong>the</strong><br />

quasi-fissi<strong>on</strong> channel dom<strong>in</strong>ates and leads to a str<strong>on</strong>g reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong><br />

cross-secti<strong>on</strong>. The surviv<strong>in</strong>g probability Wsur estimates <strong>the</strong> competiti<strong>on</strong> between fissi<strong>on</strong> and<br />

neutr<strong>on</strong> evaporati<strong>on</strong> <strong>in</strong> <strong>the</strong> excited compound nucleus and may be calculated accord<strong>in</strong>g to <strong>the</strong><br />

statistical <strong>model</strong> [39] <strong>on</strong> <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> M<strong>on</strong>te Carlo method.<br />

1.2 Goals <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present work<br />

The basic microscopical <strong>model</strong> for <strong>the</strong> d<strong>in</strong>uclear system is <strong>the</strong> two-center shell <strong>model</strong> (TCSM)<br />

[40] (see Appendix). The usual parametrisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two-center potential c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

relative distance between <strong>the</strong> centers (or el<strong>on</strong>gati<strong>on</strong>), <strong>the</strong> mass (charge) asymmetry η =(A1 −<br />

A2)/(A1 + A2), <strong>the</strong> deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fragments β i and <strong>the</strong> neck coord<strong>in</strong>ate ε. The el<strong>on</strong>gati<strong>on</strong><br />

λ = l/(2R0) measures <strong>the</strong> length l <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system <strong>in</strong> units <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diameter 2R0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spherical<br />

compound nucleus. This variable can be used to describe <strong>the</strong> relative moti<strong>on</strong>. The mass ratio<br />

between <strong>the</strong> fragments and <strong>the</strong> transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucle<strong>on</strong>s through <strong>the</strong> neck are described by <strong>the</strong><br />

mass asymmetry η. The neck parameter ε = E0/E ′ is def<strong>in</strong>ed by <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> actual barrier<br />

height E0 to <strong>the</strong> barrier height E ′ <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two-center oscillator. The deformati<strong>on</strong>s β i = a i/b i<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> axial symmetric fragments are def<strong>in</strong>ed by <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir semiaxes. The neck grows with<br />

decreas<strong>in</strong>g ε (Fig.1-3). The potential energy surface (PES) <strong>in</strong> <strong>the</strong>se coord<strong>in</strong>ates is generally<br />

calculated with <strong>the</strong> Strut<strong>in</strong>sky method [41]. This is an adiabatic approach s<strong>in</strong>ce <strong>the</strong> nucle<strong>on</strong>s<br />

occupy <strong>the</strong> s<strong>in</strong>gle particle states up to <strong>the</strong> Fermi level <strong>in</strong> calculat<strong>in</strong>g <strong>the</strong> shell correcti<strong>on</strong>s.<br />

The adiabatic potential energy surfaces calculated as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

DNS and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck parameter were used to study classical trajectories for various <strong>heavy</strong> i<strong>on</strong><br />

reacti<strong>on</strong>s by us<strong>in</strong>g dissipative forces and mass parameters obta<strong>in</strong>ed with <strong>the</strong> Werner-Wheeler<br />

aproximati<strong>on</strong> [42]. The fusi<strong>on</strong> probabilities <strong>in</strong> <strong>the</strong> adiabatic TCSM are much larger than those<br />

obta<strong>in</strong>ed from experimental data and show an <strong>in</strong>correct isotopic dependence.<br />

The reacti<strong>on</strong>s c<strong>on</strong>sidered were for example <strong>the</strong> symmetric <strong>on</strong>es 90 Zr+ 90 Zr, 100 Mo+ 100 Mo,<br />

110 Pd+ 110 Pd, 124 Sn+ 124 Sn and 136 Xe+ 136 Xe and asymmetric <strong>on</strong>es. Therefore, it is c<strong>on</strong>cluded<br />

that a h<strong>in</strong>drance exists which prohibits <strong>the</strong> fast growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck and <strong>the</strong> moti<strong>on</strong> to smaller<br />

el<strong>on</strong>gati<strong>on</strong>s and allows <strong>the</strong> DNS to survive a time comparable with <strong>the</strong> reacti<strong>on</strong> time.<br />

14


Figure 1-3: Shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system 110 Pd+ 110 Pd as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ε and λ.<br />

Motivated by <strong>the</strong>se results, we started to <strong>in</strong>vestigate possible factors which h<strong>in</strong>der <strong>the</strong> DNS<br />

to melt toge<strong>the</strong>r <strong>in</strong> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ. We c<strong>on</strong>sider <strong>the</strong>se factors to be diabatic effects <strong>in</strong> <strong>the</strong><br />

potential energy surface [35] and a large mass parameter <strong>in</strong> <strong>the</strong> neck coord<strong>in</strong>ate ε [43]. In-<br />

vestigat<strong>in</strong>g <strong>the</strong>se factors, we try to f<strong>in</strong>d <strong>the</strong>oretical justificati<strong>on</strong>s for <strong>the</strong> basic assumpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> based <strong>on</strong> <strong>the</strong> DNS-c<strong>on</strong>cept. We would like to stress that <strong>the</strong> <strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fusi<strong>on</strong>, based <strong>on</strong> <strong>the</strong> DNS-c<strong>on</strong>cept, expla<strong>in</strong>s many experimental data c<strong>on</strong>cern<strong>in</strong>g <strong>the</strong> producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> super<strong>heavy</strong> elements and plays an important role for giv<strong>in</strong>g predicti<strong>on</strong>s for new experiments<br />

([22],[27]).<br />

In <strong>the</strong> present work, us<strong>in</strong>g <strong>the</strong> TCSM, we want to study <strong>the</strong> follow<strong>in</strong>g:<br />

• Diabatic potentials as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relevant collective variables <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS for <strong>heavy</strong>-<br />

i<strong>on</strong> systems.<br />

• Microscopic mass parameters for <strong>the</strong> relevant coord<strong>in</strong>ates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS formed <strong>in</strong> collisi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong> tak<strong>in</strong>g <strong>the</strong> width <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle-particle states <strong>in</strong>to account.<br />

• Whe<strong>the</strong>r <strong>the</strong> system has time for <strong>the</strong> grow<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck.<br />

• Whe<strong>the</strong>r <strong>the</strong> system has time for destroy<strong>in</strong>g <strong>the</strong> ”memory” <strong>on</strong> <strong>the</strong> diabatic (structural)<br />

forbiddenness for <strong>the</strong> fusi<strong>on</strong> <strong>in</strong> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ and to f<strong>in</strong>d <strong>the</strong> favorable fusi<strong>on</strong> channel.<br />

• With<strong>in</strong> which <strong>model</strong> it is possible to describe <strong>the</strong> experimental quasi-fissi<strong>on</strong> products <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fusi<strong>on</strong> reacti<strong>on</strong>s.<br />

15


In <strong>the</strong> present chapter we have presented an <strong>in</strong>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental and <strong>the</strong>oretical<br />

knowledge <strong>in</strong> <strong>the</strong> field <str<strong>on</strong>g>of</str<strong>on</strong>g> transuranium and super<strong>heavy</strong> elements. A brief review about <strong>the</strong><br />

<strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> based <strong>on</strong> <strong>the</strong> DNS-c<strong>on</strong>cept as well as a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this <strong>model</strong> with o<strong>the</strong>r<br />

<strong>the</strong>oretical <strong>model</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> have been presented.<br />

In chapter 2 we give a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ma<strong>in</strong> ideas about <str<strong>on</strong>g>diabaticity</str<strong>on</strong>g> <strong>in</strong> <strong>heavy</strong>-i<strong>on</strong> collisi<strong>on</strong>s.<br />

Moreover, <strong>the</strong> methods <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a diabatic basis <strong>in</strong> <strong>the</strong> TCSM are expla<strong>in</strong>ed. The<br />

potential energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relevant collective variables <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic<br />

TCSM is shown <strong>in</strong> chapters 3 and 4 for different <strong>heavy</strong> systems. In chapter 5 <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microscopical mass parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS formed <strong>in</strong> reacti<strong>on</strong>s with <strong>heavy</strong> <strong>nuclei</strong> is presented<br />

by us<strong>in</strong>g <strong>the</strong> adiabatic and diabatic TCSM and <strong>the</strong> width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle states. The<br />

competiti<strong>on</strong> between two possible fusi<strong>on</strong> channels <strong>in</strong> el<strong>on</strong>gati<strong>on</strong> λ and <strong>in</strong> mass asymmetry η is<br />

studied for various <strong>heavy</strong> systems <strong>in</strong> chapter 6. In chapter 7 <strong>the</strong> quasi-fissi<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

DNS is evaluated solv<strong>in</strong>g a transport master-equati<strong>on</strong> for <strong>the</strong> exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong>s between <strong>the</strong><br />

parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS, which also takes <strong>the</strong> decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>in</strong> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ <strong>in</strong>to account. A<br />

summary and <strong>the</strong> outlook <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> work are given <strong>in</strong> chapter 8.<br />

16


Chapter 2<br />

The study <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleus-nucleus collisi<strong>on</strong>s at energies <str<strong>on</strong>g>of</str<strong>on</strong>g> some few MeV/u above <strong>the</strong> <strong>in</strong>teracti<strong>on</strong><br />

barrier stimulated <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>oretical c<strong>on</strong>cepts for large-amplitude collective nuclear<br />

moti<strong>on</strong> [44]. We note <strong>in</strong> particular <strong>the</strong> <strong>in</strong>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transport <strong>the</strong>ories like <strong>the</strong> random-<br />

matrix approach [45], <strong>the</strong> <strong>on</strong>e-body dissipati<strong>on</strong> <strong>model</strong> [46, 47] and <strong>the</strong> l<strong>in</strong>ear resp<strong>on</strong>se <strong>the</strong>ory<br />

[48]. These <strong>the</strong>ories assume (ei<strong>the</strong>r explicitly or implicitly) a statistical equilibrium with<strong>in</strong> <strong>the</strong><br />

<strong>in</strong>tr<strong>in</strong>sic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom throughout <strong>the</strong> collisi<strong>on</strong> described by a few collective variables.<br />

Such a local equilibrium, however, is not expected to be realistic dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial stage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a nucleus-nucleus collisi<strong>on</strong>, a process which starts from <strong>the</strong> approach <str<strong>on</strong>g>of</str<strong>on</strong>g> two <strong>nuclei</strong> <strong>in</strong> <strong>the</strong>ir<br />

ground states. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> l<strong>on</strong>g mean free path, <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>dividual nucle<strong>on</strong>s dur<strong>in</strong>g<br />

<strong>the</strong> approach phase is governed by <strong>the</strong>ir self-c<strong>on</strong>sistent mean potential which evolves <strong>in</strong> time.<br />

Therefore, this stage should be well described by <strong>the</strong> time-dependent Hartree-Fock (TDHF)<br />

<strong>the</strong>ory [49]. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> from residual two-body collisi<strong>on</strong>s and <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g transiti<strong>on</strong> to local<br />

equilibrium were formulated <strong>in</strong> extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> TDHF [50]. An alternative <strong>model</strong> was <strong>in</strong>troduced<br />

<strong>in</strong> [51] by <strong>the</strong> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> dissipative diabatic dynamics (DDD) as a time-dependent shell-<strong>model</strong><br />

approach. This <strong>model</strong> takes <strong>in</strong>to account simultaneously <strong>the</strong> coherent and <strong>in</strong>coherent forms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucle<strong>on</strong>s <strong>in</strong> nucleus-nucleus collisi<strong>on</strong>s. For sufficiently large collective velocities<br />

(typically <strong>the</strong> collective k<strong>in</strong>etic energy per nucle<strong>on</strong> needs to be larger than 0.03 MeV) <strong>the</strong><br />

nucle<strong>on</strong>s no l<strong>on</strong>ger adjust <strong>the</strong>ir wave functi<strong>on</strong>s adiabatically but diabatically, <strong>the</strong>reby preserv<strong>in</strong>g<br />

<strong>the</strong> nodal structure (character) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wave functi<strong>on</strong>s. Adiabatic basis states are not always<br />

useful [52]. It was realized by Landau, Stueckelberg and Zener [53] that it is advantageous at<br />

17


higher collective velocities to replace <strong>the</strong> adiabatic basis states at pseudo-cross<strong>in</strong>gs by diabatic<br />

states [54]. Diabatic states bel<strong>on</strong>g to cross<strong>in</strong>g levels. This situati<strong>on</strong> is illustrated <strong>in</strong> Fig. 2-1.<br />

2-1: Diabatic and adiabatic levels at <strong>the</strong> Landau-Zener-Stückelberg (quasi-)cross<strong>in</strong>g. In<br />

Figure<br />

diabatic moti<strong>on</strong> <strong>the</strong> nucle<strong>on</strong> keeps <strong>the</strong> nodal structure (character) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wave functi<strong>on</strong>.<br />

<strong>the</strong><br />

Only for very small collective velocities, <strong>the</strong> nucle<strong>on</strong>s are able to adjust <strong>the</strong>ir wave functi<strong>on</strong>s<br />

adiabatically and follow <strong>the</strong> adiabatic levels. At higher collective velocities, a nucle<strong>on</strong> occupy<strong>in</strong>g<br />

<strong>the</strong> lower level before <strong>the</strong> cross<strong>in</strong>g with an unoccupied level will stay (while preserv<strong>in</strong>g <strong>the</strong><br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> its wave functi<strong>on</strong>) <strong>on</strong> <strong>the</strong> diabatic level and f<strong>in</strong>ds itself <strong>on</strong> <strong>the</strong> upper level after<br />

<strong>the</strong> cross<strong>in</strong>g. Quantitatively, this jump probability, which measures <strong>the</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>diabaticity</str<strong>on</strong>g>,<br />

is given by [53]<br />

where<br />

= exp(− J 1<br />

), (2.1)<br />

∆<br />

| ∂(ɛ1 − ɛ2)/∂q |·| ∆=¯h ·<br />

/2π | H q| ′<br />

12 |2 . (2.2)<br />

The quantity ∆ is proporti<strong>on</strong>al to <strong>the</strong> difference <strong>in</strong> <strong>the</strong> slopes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic levels and to<br />

18


collective velocity <strong>the</strong> ·<br />

and <strong>in</strong>versely proporti<strong>on</strong>al to <strong>the</strong> square <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> static coupl<strong>in</strong>g H q, ′<br />

between <strong>the</strong> diabatic states. A diabatic basis is advantageous if J>0.5 and hence, ∆ > 1.44.<br />

The expressi<strong>on</strong> (2.1) is obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> l<strong>in</strong>ear two-state Landau-Zener <strong>model</strong> [55] which assumes<br />

that <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system <strong>in</strong> <strong>the</strong> n<strong>on</strong>a<str<strong>on</strong>g>diabaticity</str<strong>on</strong>g> regi<strong>on</strong> is quasi-classical.<br />

In <strong>the</strong> adiabatic TCSM <strong>on</strong>e can observe <strong>the</strong> mutual repulsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> levels hav<strong>in</strong>g <strong>the</strong> same z-<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> total angular momentum j z, which prevents cross<strong>in</strong>gs. It is due to <strong>the</strong> n<strong>on</strong>cross<strong>in</strong>g<br />

rule obta<strong>in</strong>ed by Neumann and Wigner [56]. The n<strong>on</strong>cross<strong>in</strong>g rule reads [55]: <strong>the</strong> eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Hamilt<strong>on</strong>ian H(q), taken to be functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coord<strong>in</strong>ate q, do not cross if <strong>the</strong>y bel<strong>on</strong>g to<br />

<strong>the</strong> same irreducible representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> symmetry group <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Hamilt<strong>on</strong>ian. The eigenvalues<br />

corresp<strong>on</strong>d<strong>in</strong>g to different irreducible representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this symmetry group may cross. The<br />

pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> n<strong>on</strong>cross<strong>in</strong>g rule is based <strong>on</strong> <strong>the</strong> follow<strong>in</strong>g arguments: Let <strong>the</strong> Hamilt<strong>on</strong>ian H(q)<br />

have closely ly<strong>in</strong>g eigenvalues E1(q0) andE2(q0) corresp<strong>on</strong>d<strong>in</strong>g to <strong>the</strong> eigenfuncti<strong>on</strong>s | 1 >0and<br />

| 2 >0 at a certa<strong>in</strong> value q0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> collective coord<strong>in</strong>ate, e.g., relative distance R0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>.<br />

Treat<strong>in</strong>g <strong>the</strong> Hamilt<strong>on</strong>ian for q values close to q0 as a perturbed H(q0)<br />

=H(q0)+ H(q) ∂H<br />

∂q | q=q0 ·δq = H(q0) (2.3)<br />

+V,<br />

it can be readily seen that <strong>the</strong> difference between <strong>the</strong> energy eigenvalues at po<strong>in</strong>t q is<br />

∆E12(q) =<br />

<br />

+V11] − [E2(q0) +V22]} {[E1(q0) 2 V12 | +4| 2 1/2<br />

(2.4)<br />

,<br />

where V ik =0< i| V | k >0. In order that <strong>the</strong> terms cross, both terms <strong>in</strong> <strong>the</strong> radical <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(2.4) must go to zero simultaneously. If | 1 >0 and | 2 >0 bel<strong>on</strong>g to different irreducible<br />

representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> H(q) symmetry group, V12 = 0 and (2.4) can be c<strong>on</strong>verted to zero by <strong>the</strong><br />

proper choice <str<strong>on</strong>g>of</str<strong>on</strong>g> δq. But when | 1 >0 and | 2 >0 bel<strong>on</strong>g to <strong>the</strong> same irreducible representati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Hamilt<strong>on</strong>ian symmetry group, V12 = 0 and generally speak<strong>in</strong>g both terms <strong>in</strong> <strong>the</strong> radical<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> (2.4) cannot go to zero simultaneouly, s<strong>in</strong>ce <strong>the</strong>y are functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e parameter δq. The<br />

n<strong>on</strong>cross<strong>in</strong>g rule uses a complete symmetry group <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Hamilt<strong>on</strong>ian.<br />

19<br />

12


2.1 General c<strong>on</strong>siderati<strong>on</strong>s<br />

We want to deal with <strong>the</strong> s<strong>in</strong>gle-particle moti<strong>on</strong> <strong>in</strong> a time-dependent mean field U(x; q(t)), where<br />

x denotes positi<strong>on</strong>, sp<strong>in</strong> and isosp<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucle<strong>on</strong> and q ≡{q n(t)} a set <str<strong>on</strong>g>of</str<strong>on</strong>g> time-dependent<br />

collective parameters describ<strong>in</strong>g <strong>the</strong> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nuclear system. The soluti<strong>on</strong> Ψ β(t) <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong><br />

time-dependent Schröd<strong>in</strong>ger equati<strong>on</strong> with <strong>the</strong> Hamilt<strong>on</strong>ian<br />

can be expressed as an expansi<strong>on</strong> [57]<br />

| Ψβ(t) >=<br />

<br />

α<br />

c αβ (t) exp<br />

−i<br />

H = T + U = −− ¯h2 ∇ 2<br />

t<br />

0<br />

2m0<br />

dt ′<br />

ɛα(t ′<br />

m0W (x; q, ) − ·<br />

<br />

) q<br />

+ U (x, q) (2.5)<br />

/¯h<br />

<br />

| ψ α(x, q) >, (2.6)<br />

<strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> some orth<strong>on</strong>ormal stati<strong>on</strong>ary basis functi<strong>on</strong>s | ψ α(x, q) > with <strong>the</strong> <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong><br />

c αβ(t =0)=δ αβ. In additi<strong>on</strong> to <strong>the</strong> usual energy phase factor, a collective phase factor [58, 59]<br />

has been <strong>in</strong>troduced which is comm<strong>on</strong> to all states α. In atomic collisi<strong>on</strong>s, <strong>the</strong> velocity potential<br />

W [55] is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten allowed to depend <strong>on</strong> <strong>the</strong> atomic state α, so that <strong>the</strong> relative velocities can be<br />

accounted for <strong>in</strong> specific transfer reacti<strong>on</strong>s. Such a ref<strong>in</strong>ement can also become important<br />

for graz<strong>in</strong>g nucleus-nucleus collisi<strong>on</strong>s. However, for central collisi<strong>on</strong>s which lead to compact<br />

nuclear shapes, a comm<strong>on</strong> phase factor seems to be more appropriate [57]. This choice has <strong>the</strong><br />

advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> leav<strong>in</strong>g <strong>the</strong> stati<strong>on</strong>ary basis orthog<strong>on</strong>al and <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> collective velocity.<br />

Insert<strong>in</strong>g <strong>the</strong> expansi<strong>on</strong> (2.6) <strong>in</strong>to <strong>the</strong> Schröd<strong>in</strong>ger equati<strong>on</strong> and project<strong>in</strong>g <strong>on</strong>to <strong>the</strong> state<br />

ψ γ, we f<strong>in</strong>d <strong>the</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled first-order differential equati<strong>on</strong>s<br />

i¯h ·<br />

γβ= c <br />

α<br />

c αβ α<br />

0<br />

dt ′<br />

{ɛα(t ′<br />

− ɛγ(t ) ′<br />

)}/¯h<br />

with ɛα =< ψα | H | ψα > for <strong>the</strong> determ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> expansi<strong>on</strong> coefficients cαβ. The coupl<strong>in</strong>g<br />

terms are given by<br />

20<br />

<br />

(2.7)


U2 = 1<br />

H ′ H − H0 = H − = α<br />

U1 = −i¯h<br />

<br />

n<br />

2 m0(∇W ) 2 + m0<br />

·<br />

n∂/∂qn + q 1<br />

| ψα >ɛα (q) ,<br />

perturbati<strong>on</strong> <strong>the</strong>ory [60]. This can be immediately seen from <strong>the</strong> expressi<strong>on</strong> (2.1) for <strong>the</strong> jump<br />

probability if <strong>the</strong> <str<strong>on</strong>g>diabaticity</str<strong>on</strong>g> parameter is rewritten as<br />

|< χ2 ∆=2¯h | ∂/∂q | χ1 | · | >qc<br />

·<br />

| /π | H<br />

′ q<br />

12<br />

|, (2.11)<br />

where <strong>the</strong> dynamical coupl<strong>in</strong>g between <strong>the</strong> adiabatic states at <strong>the</strong> cross<strong>in</strong>g po<strong>in</strong>t q = q c enters<br />

<strong>in</strong>to <strong>the</strong> numerator. Thus, <strong>the</strong> jump probability (2.1) cannot be expanded <strong>in</strong> powers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

dynamical coupl<strong>in</strong>g matrix element. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this, <strong>the</strong> adiabatic basis is <strong>on</strong>ly c<strong>on</strong>venient for<br />

very small collective velocities so that <strong>the</strong> s<strong>in</strong>gle-particle moti<strong>on</strong> is purely adiabatic.<br />

For larger velocities it is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten more c<strong>on</strong>venient to choose basis states ψ α which have smaller<br />

21


coupl<strong>in</strong>gs. Diabatic basis states ψ dynamical diab ≡ φα are def<strong>in</strong>ed [57] by <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> that<br />

α<br />

<strong>the</strong> first-order dynamical coupl<strong>in</strong>g (2.9) vanishes. Introduc<strong>in</strong>g <strong>the</strong> decompositi<strong>on</strong> W = n<br />

wn(x, q), it is obta<strong>in</strong>ed [57]<br />

−(∂/∂qn) | φα >= 1<br />

2 [∆,wn] | φα >=<br />

as <strong>the</strong> <str<strong>on</strong>g>diabaticity</str<strong>on</strong>g> criteri<strong>on</strong> which is <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<br />

·∇+ (∇wn) 1<br />

2 (∆wn)<br />

<br />

·<br />

q n<br />

| φα > (2.12)<br />

·<br />

n and hence allows to def<strong>in</strong>e stati<strong>on</strong>ary<br />

q<br />

diabatic basis states. The relati<strong>on</strong> (2.12) ascribes <strong>the</strong> change <str<strong>on</strong>g>of</str<strong>on</strong>g> any diabatic state with q n to a<br />

collective displacement field ∇w n which scales all wave functi<strong>on</strong>s <strong>in</strong> <strong>the</strong> same way.<br />

The <str<strong>on</strong>g>diabaticity</str<strong>on</strong>g> criteri<strong>on</strong> (2.12) does not rigorously determ<strong>in</strong>e a diabatic representati<strong>on</strong><br />

because <strong>the</strong> velocity field is not uniquely def<strong>in</strong>ed. Therefore, <strong>the</strong> follow<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong><br />

0 (2.13)<br />

is added. This c<strong>on</strong>diti<strong>on</strong> is appropriate whenever <strong>the</strong> collective velocities are sufficiently smaller<br />

than <strong>the</strong> Fermi velocity. The supplementary c<strong>on</strong>diti<strong>on</strong> (2.13) <strong>the</strong>n suggests to c<strong>on</strong>struct <strong>the</strong> di-<br />

abatic basis states from adiabatic states by avoid<strong>in</strong>g <strong>the</strong> dramatic changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wave functi<strong>on</strong>s<br />

near pseudo-cross<strong>in</strong>gs.<br />

2.2 C<strong>on</strong>structi<strong>on</strong> methods<br />

In atomic physics, a large variety <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> methods for diabatic representati<strong>on</strong>s have<br />

been c<strong>on</strong>sidered [55, 61]. With<strong>in</strong> <strong>the</strong> TCSM, two methods for <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diabatic<br />

states were developed [57] for central nucleus-nucleus collisi<strong>on</strong>s. The method <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum<br />

overlap is based <strong>on</strong> <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cross<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> diabatic levels where pseudo-cross<strong>in</strong>gs occur<br />

<strong>in</strong> <strong>the</strong> adiabatic TCSM. The c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic states as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relative<br />

distance starts from <strong>the</strong> separated <strong>nuclei</strong> where adiabatic and diabatic states co<strong>in</strong>cide. A<br />

diabatic state at a smaller relative distance is obta<strong>in</strong>ed from a l<strong>in</strong>ear comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a few<br />

adiabatic states which maximizes <strong>the</strong> overlap with a diabatic state at somewhat larger relative<br />

distance. Us<strong>in</strong>g <strong>the</strong> so c<strong>on</strong>structed states, <strong>on</strong>e is able to obta<strong>in</strong> step by step <strong>the</strong> diabatic states<br />

for smaller relative distances. The method <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum symmetry elim<strong>in</strong>ates <strong>the</strong> symmetry-<br />

22


violat<strong>in</strong>g parts SV from <strong>the</strong> total Hamilt<strong>on</strong>ian H <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TCSM. Then <strong>the</strong> diabatic states are <strong>the</strong><br />

eigenstates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> difference H d = H − SV , which is taken as <strong>the</strong> diabatic TCSM-Hamilt<strong>on</strong>ian<br />

<strong>in</strong> <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> equal <strong>nuclei</strong> (symmetric system). S<strong>in</strong>ce <strong>the</strong> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> Hd is higher than<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> H, <strong>the</strong> irreducible representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Hd symmetry group appear to be, generally<br />

speak<strong>in</strong>g, reducible representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> H symmetry group. Thus two different irreducible<br />

representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Hd symmetry group can c<strong>on</strong>ta<strong>in</strong> <strong>the</strong> same irreducible representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> H symmetry group. Therefore, <strong>in</strong> <strong>the</strong> general case <strong>the</strong> Hd eigenvalues possess<strong>in</strong>g <strong>the</strong> same<br />

symmetry relative to <strong>the</strong> H symmetry group may cross. This cross<strong>in</strong>g will become an avoided<br />

cross<strong>in</strong>g if <strong>the</strong> perturbati<strong>on</strong> SV , which is n<strong>on</strong>diag<strong>on</strong>al <strong>in</strong> <strong>the</strong> quantum numbers specify<strong>in</strong>g <strong>the</strong><br />

Hd eigenvalues, is taken <strong>in</strong>to account. For slightly asymmetric systems, <strong>the</strong> diabatic states are<br />

def<strong>in</strong>ed by <strong>the</strong> expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> asymptotic states <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> such maximum symmetry states.<br />

Keep<strong>in</strong>g <strong>the</strong> expansi<strong>on</strong> coefficients fixed as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> collective coord<strong>in</strong>ate q, diabatic<br />

states are obta<strong>in</strong>ed with <strong>the</strong> desired property that <strong>the</strong>ir wave functi<strong>on</strong>s adjust to <strong>the</strong> shape <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> TCSM potential by a m<strong>in</strong>imum change <strong>in</strong> <strong>the</strong>ir structure. Diabatic levels obta<strong>in</strong>ed with<br />

this method agree with those from <strong>the</strong> maximum overlap procedure [57]. In <strong>the</strong> calculati<strong>on</strong>s we<br />

use <strong>the</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum symmetry because it turns out to be numerically easier to handle.<br />

23


Chapter 3<br />

The syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> transuranium and super<strong>heavy</strong> elements ([4], [7], [8]), <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> superde-<br />

formed <strong>nuclei</strong> and <strong>nuclei</strong> far from <strong>the</strong> l<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> stability stimulate <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> processes<br />

<strong>in</strong> <strong>heavy</strong> i<strong>on</strong> collisi<strong>on</strong>s at low energies (< 15 MeV/u). Exist<strong>in</strong>g <strong>the</strong>oretical <strong>model</strong>s can be<br />

dist<strong>in</strong>guished by <strong>the</strong> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relevant collective variables <strong>in</strong> which <strong>the</strong> fusi<strong>on</strong> occurs. The<br />

relative distance between <strong>the</strong> centers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>nuclei</strong> R (or el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> system) and <strong>the</strong> neck degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> freedom play an essential role <strong>in</strong> <strong>the</strong> macroscopic dynamical <strong>model</strong> (MDM) [16], which is<br />

based <strong>on</strong> an adiabatic approach to fusi<strong>on</strong>. Without regard<strong>in</strong>g <strong>the</strong> competiti<strong>on</strong> between complete<br />

fusi<strong>on</strong> and quasi-fissi<strong>on</strong>, this <strong>model</strong> overestimates <strong>the</strong> fusi<strong>on</strong> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong> [18].<br />

Attempts were made to improve this <strong>model</strong> by <strong>in</strong>clud<strong>in</strong>g <strong>the</strong>rmal fluctuati<strong>on</strong>s and <strong>the</strong> competi-<br />

ti<strong>on</strong> between complete fusi<strong>on</strong> and quasifissi<strong>on</strong> <strong>in</strong> [62], but an agreement with <strong>the</strong> experimental<br />

data was not achieved for <strong>the</strong> reacti<strong>on</strong>s treated <strong>in</strong> this study. Correcti<strong>on</strong>s to <strong>the</strong>se results could<br />

arise from nuclear structure effects <strong>in</strong> collisi<strong>on</strong>s with energies slightly above <strong>the</strong> Coulomb bar-<br />

rier. In a recent paper [42], <strong>the</strong> shell effects were <strong>in</strong>corporated by us<strong>in</strong>g <strong>the</strong> two-center shell<br />

<strong>model</strong> (TCSM) [40]. The study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> with<strong>in</strong> <strong>the</strong> adiabatic TCSM overes-<br />

timates <strong>the</strong> fusi<strong>on</strong> probabilities for most symmetric and near symmetric reacti<strong>on</strong>s. Moreover,<br />

<strong>the</strong> isotopic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> probability resulted <strong>in</strong>correctly. Therefore, h<strong>in</strong>drances<br />

for <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck and for <strong>the</strong> moti<strong>on</strong> to smaller values <str<strong>on</strong>g>of</str<strong>on</strong>g> R should be assumed to<br />

expla<strong>in</strong> <strong>the</strong> experimental data. This h<strong>in</strong>drance allows <strong>the</strong> d<strong>in</strong>uclear system (DNS) to keep a<br />

relatively small neck over a time comparable with <strong>the</strong> reacti<strong>on</strong> time. Then <strong>the</strong> fusi<strong>on</strong> proceeds<br />

as a moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>in</strong> mass asymmetry. Such a h<strong>in</strong>drance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> moti<strong>on</strong> to smaller R is<br />

24


explicitly assumed <strong>in</strong> <strong>the</strong> DNS <strong>model</strong> [34], which describes <strong>the</strong> experimental fusi<strong>on</strong> data quite<br />

well. The <strong>nuclei</strong> <strong>in</strong> <strong>the</strong> DNS could be h<strong>in</strong>dered to melt toge<strong>the</strong>r <strong>in</strong> R due to diabatic effects or<br />

due to a specific behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass parameters.<br />

In this chapter we study <strong>the</strong> diabatic potentials for <strong>heavy</strong> nuclear systems as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ, <strong>the</strong> neck coord<strong>in</strong>ate ε and <strong>the</strong> mass asymmetric η us<strong>in</strong>g <strong>the</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximum symmetry with<strong>in</strong> <strong>the</strong> generalized TCSM [35]. In <strong>the</strong> previous calculati<strong>on</strong>s [57] a<br />

simplified versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TCSM was used and <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck coord<strong>in</strong>ate was not taken <strong>in</strong>to<br />

account. We will compare our results with nucleus-nucleus potentials obta<strong>in</strong>ed by us<strong>in</strong>g a double<br />

fold<strong>in</strong>g procedure for <strong>the</strong> nuclear <strong>in</strong>teracti<strong>on</strong>. The calculati<strong>on</strong>s are performed for <strong>the</strong> symmetric<br />

systems 90 Zr+ 90 Zr, 96 Zr+ 96 Zr, 100 Mo+ 100 Mo, 110 Pd+ 110 Pd, 130 Xe+ 130 Xe and 136 Xe+ 136 Xe.<br />

The asymmetric systems 110 Pd+ 136 Xe, 86 Kr + 160 Gd and 48 Ca+ 198 Hg are also studied. The<br />

applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic method will be discussed for collisi<strong>on</strong>s near <strong>the</strong> Coulomb barrier.<br />

3.1 The diabatic potential<br />

In a diabatic descripti<strong>on</strong> <strong>the</strong> nucle<strong>on</strong>s do not occupy <strong>the</strong> lowest free s<strong>in</strong>gle-particle levels as <strong>in</strong><br />

<strong>the</strong> adiabatic case, but rema<strong>in</strong> <strong>in</strong> <strong>the</strong> diabatic levels dur<strong>in</strong>g <strong>the</strong> collective moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nuclear<br />

system. As a result, <strong>the</strong> diabatic potential energy surface is raised with respect to <strong>the</strong> adiabatic<br />

potential energy surface and new potential barriers for collective variables may appear. The<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se barriers can be also estimated by calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> structural forbiddenness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fusi<strong>on</strong> [36]. The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> structural forbiddenness is based <strong>on</strong> <strong>the</strong> difference created by acti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Pauli pr<strong>in</strong>ciple between <strong>the</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compound nucleus and <strong>the</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> separated<br />

<strong>heavy</strong> <strong>nuclei</strong> [63].<br />

The total diabatic potential is def<strong>in</strong>ed as<br />

V diab(q) =V adiab(q)+∆V diab(q), (3.1)<br />

where <strong>the</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g> collective coord<strong>in</strong>ates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system is denoted by q. The adiabatic potential<br />

energy<br />

=ELDM + VN + δEshell + δEpair − E Vadiab(q) CN<br />

LDM<br />

25<br />

(3.2)


is calculated with<strong>in</strong> <strong>the</strong> TCSM us<strong>in</strong>g <strong>the</strong> liquid drop energy ELDM, <strong>the</strong> Strut<strong>in</strong>sky prescripti<strong>on</strong><br />

for <strong>the</strong> shell correcti<strong>on</strong> δE shell, pair<strong>in</strong>g correcti<strong>on</strong> δEpair and <strong>the</strong> proximity nuclear potential<br />

VN to improve <strong>the</strong> adiabatic energy for large el<strong>on</strong>gati<strong>on</strong>s [42]. The adiabatic potential energy<br />

normalised to <strong>the</strong> liquid drop energy E is CN<br />

LDM<br />

The diabatic c<strong>on</strong>tributi<strong>on</strong> ∆V diab is expressed as<br />

∆V diab(q) = α<br />

= α<br />

≈ α<br />

ɛ diab<br />

(q)n α diab − α<br />

α<br />

ɛ diab<br />

α (q)(ndiab<br />

α<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spherical compound nucleus.<br />

ɛ adiab<br />

α<br />

(q)n adiab<br />

α<br />

n − adiab(q))<br />

+ α<br />

α<br />

(q)<br />

n adiab<br />

α<br />

(q)(ɛ diab<br />

α<br />

α<br />

(q) − ɛadiab<br />

(q))<br />

ɛ diab<br />

α (q)(ndiab − n α<br />

adiab(q)),<br />

(3.3)<br />

α<br />

where <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> from <strong>the</strong> sec<strong>on</strong>d term with (ɛ diab<br />

(q)−ɛ α adiab<br />

α<br />

(q)) is assumed to be negligible<br />

because <strong>the</strong> adiabatic and diabatic s<strong>in</strong>gle-particle levels differ <strong>on</strong>ly <strong>in</strong> <strong>the</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pseudo-<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> adiabatic states [57]. The diabatic occupati<strong>on</strong> probabilities n cross<strong>in</strong>gs diab<br />

α<br />

are determ<strong>in</strong>ed<br />

<strong>the</strong> c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> separated <strong>nuclei</strong>. The adiabatic occupati<strong>on</strong> probabilities n by adiab<br />

α<br />

with q accord<strong>in</strong>g to <strong>the</strong> ground-state c<strong>on</strong>figurati<strong>on</strong> where <strong>on</strong>ly <strong>the</strong> lowest levels are occupied.<br />

diabatic levels ɛ The diab are classified by <strong>the</strong> quantum numbers α = jz,lz,sz,nρ,nz <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

α<br />

eigenstates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic Hamilt<strong>on</strong>ian. We <strong>on</strong>ly used <strong>the</strong> diag<strong>on</strong>al elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> symmetry-<br />

violat<strong>in</strong>g parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> generalized TCSM Hamilt<strong>on</strong>ian. N<strong>on</strong>-diag<strong>on</strong>al elements arise <strong>on</strong>ly from<br />

<strong>the</strong> sp<strong>in</strong>-orbit potential V LS (A.3), <strong>the</strong> centrifugal potential V L 2 (A.4) and <strong>the</strong> neck potential<br />

H1 (A.16). The first two potentials c<strong>on</strong>ta<strong>in</strong> l x, l y, s x and s y. The diabatic Hamilt<strong>on</strong>ian is<br />

expressed as<br />

vary<br />

d = H0 + Vlz sz H + Vl 2 + H, (3.4)<br />

z<br />

where H0 is <strong>the</strong> Hamilt<strong>on</strong>ian <str<strong>on</strong>g>of</str<strong>on</strong>g> a two-center oscillator (A.15). The <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck<br />

parameter ε is taken <strong>in</strong>to account by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diag<strong>on</strong>al c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> difference<br />

H ≡ H1(ε) − H1(ε =1)=<br />

(ε − 1)<br />

2<br />

2<br />

z m0ω z ′2 cz (1+ ′<br />

dz + ′2 (3.5)<br />

),<br />

where <strong>the</strong> coefficients c and d are determ<strong>in</strong>ed by requir<strong>in</strong>g that <strong>the</strong> potential and its derivative<br />

26


are c<strong>on</strong>t<strong>in</strong>uous with respect to z at z =0. Forz0, <strong>the</strong> oscillator frequencies ωz<br />

must be determ<strong>in</strong>ed numerically from <strong>the</strong> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> volume-c<strong>on</strong>servati<strong>on</strong>. With <strong>the</strong> method<br />

suggested we can f<strong>in</strong>d <strong>the</strong> diabatic levels close to <strong>the</strong> adiabatic levels (Fig. 3-1). Differences<br />

take place <strong>on</strong>ly near <strong>the</strong> cross<strong>in</strong>g po<strong>in</strong>ts. In c<strong>on</strong>trast to Ref. [57], we can c<strong>on</strong>sider <strong>the</strong> diabatic<br />

effects for any neck parameter ε. This yields a better shape parametrisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS.<br />

3.2 Results and discussi<strong>on</strong><br />

In <strong>the</strong> calculati<strong>on</strong>s, we firstly c<strong>on</strong>sider symmetric collisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> spherical <strong>nuclei</strong> and <strong>the</strong>n analyse<br />

asymmetric entrance channels, <strong>the</strong>rmal and deformati<strong>on</strong> effects. The diabatic c<strong>on</strong>tributi<strong>on</strong><br />

∆V diab as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> is presented for <strong>the</strong> reacti<strong>on</strong> 100 Mo+ 100 Mo <strong>in</strong> Fig. 3-2.<br />

The <strong>nuclei</strong> are c<strong>on</strong>sidered as spherical with ε =0.74, which supplies realistic shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

DNS for λ = 1.5 − 1.6. ∆V diab c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>s from neutr<strong>on</strong>s and prot<strong>on</strong>s. The<br />

diabatic c<strong>on</strong>tributi<strong>on</strong> <strong>in</strong>creases with decreas<strong>in</strong>g λ or R because many diabatic levels cross <strong>the</strong><br />

Fermi level (Fig. 3-3). In general, <strong>the</strong> diabatic c<strong>on</strong>tributi<strong>on</strong> <strong>in</strong>creases with <strong>the</strong> mass number<br />

A <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> larger number <str<strong>on</strong>g>of</str<strong>on</strong>g> level cross<strong>in</strong>gs. The diabatic c<strong>on</strong>tributi<strong>on</strong><br />

∆V diab <str<strong>on</strong>g>of</str<strong>on</strong>g> many symmetric systems selected al<strong>on</strong>g <strong>the</strong> l<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> beta stability shows diabatic shell-<br />

structure effects [63, 64]. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se effects is dem<strong>on</strong>strated <strong>in</strong> Fig.3-4a by <strong>the</strong> diabatic<br />

c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong>s and prot<strong>on</strong>s for <strong>the</strong> systems 90 Zr+ 90 Zr and 96 Zr+ 96 Zr. While <strong>the</strong><br />

diabatic c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> prot<strong>on</strong>s are nearly <strong>the</strong> same <strong>in</strong> both <strong>the</strong> systems, <strong>the</strong> diabatic<br />

c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neutr<strong>on</strong>s are quite different. As a result, <strong>the</strong> total diabatic potential is<br />

more repulsive <strong>in</strong> <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 Zr+ 90 Zr (Fig. 3-4b).<br />

Fur<strong>the</strong>r diabatic potentials are presented <strong>in</strong> Figs.3-4c and 3-5 for <strong>the</strong> systems 130 Xe+ 130 Xe,<br />

136 Xe+ 136 Xe, 100 Mo+ 100 Mo and 110 Pd+ 110 Pd. The neck parameter is fixed at ε =0.74 and <strong>the</strong><br />

<strong>nuclei</strong> are c<strong>on</strong>sidered as spherical. Except<strong>in</strong>g <strong>the</strong> potentials with <strong>the</strong> Xe isotopes (Fig. 3-4c),<br />

<strong>the</strong> diabatic potentials for all <strong>the</strong>se systems have a pocket near to <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong><br />

(λ =1.58) <strong>in</strong> which <strong>the</strong> DNS could stand some time and evolve <strong>in</strong> mass asymmetry. For smaller<br />

el<strong>on</strong>gati<strong>on</strong>s, <strong>the</strong> diabatic potential is str<strong>on</strong>gly repulsive <strong>in</strong> all symmetric systems.<br />

The diabatic potential is similar to <strong>the</strong> <strong>on</strong>e calculated with <strong>the</strong> phenomenological double fold<strong>in</strong>g<br />

potential. In Fig. 3-5 we compare <strong>the</strong> diabatic potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system 110 Pd+ 110 Pd with <strong>the</strong><br />

27


E adiab (MeV)<br />

n<br />

E diab (MeV)<br />

n<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

λ<br />

100Mo + 100Mo<br />

1,1 1,2 1,3 1,4 1,5 1,6<br />

1,1 1,2 1,3 1,4 1,5 1,6<br />

3-1: Diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> adiabatic (upper part) and diabatic (lower part) neutr<strong>on</strong> levels with<br />

Figure<br />

z =1/2 for j 100Mo+ 100 as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> el<strong>on</strong>gati<strong>on</strong> λ. The <strong>nuclei</strong> are c<strong>on</strong>sidered as spherical<br />

Mo<br />

ε =0.74. The adiabatic levels are calculated with <strong>the</strong> generalized TCSM Hamilt<strong>on</strong>ian<br />

with<br />

and <strong>the</strong> diabatic levels with <strong>the</strong> diabatic Hamilt<strong>on</strong>ian (3.4) us<strong>in</strong>g <strong>the</strong> maximum symmetry<br />

(A.14)<br />

method.<br />

28<br />

λ


3-2: Diabatic c<strong>on</strong>tributi<strong>on</strong> ∆Vdiab as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> el<strong>on</strong>gati<strong>on</strong> λ for <strong>the</strong> system Figure 100Mo+ Mo (solid l<strong>in</strong>e). The neutr<strong>on</strong> and prot<strong>on</strong> diabatic c<strong>on</strong>tributi<strong>on</strong>s are shown by dotted and<br />

100<br />

dashed l<strong>in</strong>es, respectively. The <strong>nuclei</strong> are c<strong>on</strong>sidered spherical with ε =0.74.<br />

phenomenological double fold<strong>in</strong>g potential [65]. A discrepancy with <strong>the</strong> adiabatic potential is<br />

seen for small el<strong>on</strong>gati<strong>on</strong>s where <strong>the</strong> phenomenological potential is more repulsive than <strong>the</strong><br />

diabatic <strong>on</strong>e. The discrepancy becomes smaller if we take <strong>in</strong>to account a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> ε with<br />

decreas<strong>in</strong>g el<strong>on</strong>gati<strong>on</strong>. This is dem<strong>on</strong>strated for <strong>the</strong> system 110 Pd+ 110 Pd <strong>in</strong> Fig. 3-6, where <strong>the</strong><br />

diabatic potential is shown as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ε for c<strong>on</strong>stant values <str<strong>on</strong>g>of</str<strong>on</strong>g> λ. The m<strong>in</strong>imum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

diabatic potential moves to smaller values <str<strong>on</strong>g>of</str<strong>on</strong>g> ε with decreas<strong>in</strong>g values <str<strong>on</strong>g>of</str<strong>on</strong>g> λ (or R).<br />

Fig. 3-6 shows diabatic potentials for <strong>the</strong> systems 96 Zr+ 96 Zr and 90 Zr+ 90 Zr as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ε for λ =1.54 near to <strong>the</strong> m<strong>in</strong>imum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pocket <strong>in</strong> λ. The diabatic c<strong>on</strong>tributi<strong>on</strong> is smaller as<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ε for <strong>the</strong> 96 Zr+ 96 Zr system than for <strong>the</strong> 90 Zr+ 90 Zr system (lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 3-7).<br />

The reas<strong>on</strong> for this can be seen through an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle spectra (Fig. 3-8).<br />

In <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 Zr+ 90 Zr, more diabatic levels with larger slopes cross <strong>the</strong> Fermi-level at larger<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> ε. From Figs. 3-3 and 3-8 it follows that <strong>the</strong> diabatic c<strong>on</strong>tributi<strong>on</strong>s are larger with<br />

respect to <strong>the</strong> relative coord<strong>in</strong>ate than with respect to <strong>the</strong> neck coord<strong>in</strong>ate. This is expla<strong>in</strong>ed by<br />

<strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> cross<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> diabatic states <strong>in</strong> <strong>the</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both coord<strong>in</strong>ates. In most systems<br />

29


E diab (MeV)<br />

n<br />

60<br />

55<br />

50<br />

45<br />

40<br />

100Mo + 100Mo<br />

1,1 1,2 1,3 1,4 1,5 1,6<br />

3-3: Diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> diabatic neutr<strong>on</strong> levels with jz =1/2 near <strong>the</strong> Fermi level (squares) for<br />

Figure<br />

Mo +<br />

100 Mo as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> λ. The <strong>nuclei</strong> are c<strong>on</strong>sidered as spherical with ε =0.74. The<br />

100<br />

levels are calculated with <strong>the</strong> diabatic Hamilt<strong>on</strong>ian (3.4) us<strong>in</strong>g <strong>the</strong> maximum symmetry<br />

diabatic<br />

method.<br />

30<br />

λ


3-4: a) Diabatic c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> prot<strong>on</strong>s and neutr<strong>on</strong>s for <strong>the</strong> systems Figure 90 + Zr 90Zr l<strong>in</strong>e) and (solid 96 + Zr 96 (dotted l<strong>in</strong>es). Diabatic potentials for <strong>the</strong> systems b) Zr 90 + Zr 90Zr l<strong>in</strong>e) and (solid 96 + Zr 96 (dotted l<strong>in</strong>e) and c) Zr 130Xe+ 130 (solid l<strong>in</strong>e) and Xe 136Xe+ 136 Xe<br />

l<strong>in</strong>e). The <strong>nuclei</strong> are assumed as spherical with ε =0.74.<br />

(dotted<br />

31


3-5: Diabatic potentials for <strong>the</strong> systems Figure 100Mo+ 100 (dotted l<strong>in</strong>e) and Mo 110Pd+ 110 Pd<br />

l<strong>in</strong>e). The phenomenological double fold<strong>in</strong>g potential for <strong>the</strong> system (solid 110 + Pd 110 is Pd<br />

by <strong>the</strong> dashed-dotted l<strong>in</strong>e. The discrepancy between this potential and <strong>the</strong> diabatic<br />

shown<br />

becomes smaller if, by start<strong>in</strong>g at <strong>the</strong> m<strong>in</strong>imum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pocket, <strong>the</strong> neck parameter ε is<br />

<strong>on</strong>e<br />

dim<strong>in</strong>ished with decreas<strong>in</strong>g λ (dashed l<strong>in</strong>e for 110 Pd+ 110 Pd).<br />

3-6: Diabatic potentials as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ε for <strong>the</strong> system Figure 110Pd+ 110 at λ =1.34 and<br />

Pd<br />

1.56.<br />

32


c<strong>on</strong>sidered, <strong>the</strong> diabatic potential has a m<strong>in</strong>imum as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ε around ε =0.65 − 0.85.<br />

S<strong>in</strong>ce <strong>the</strong> mass parameter <strong>in</strong> ε has been shown to be large [43], it str<strong>on</strong>gly h<strong>in</strong>ders <strong>the</strong> growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck even for a small energy ga<strong>in</strong> from <strong>the</strong> diabatic c<strong>on</strong>tributi<strong>on</strong>s dur<strong>in</strong>g a variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> neck coord<strong>in</strong>ate.<br />

Fig. 3-9 shows diabatic potentials as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> λ for <strong>the</strong> asymmetric systems 110 Pd+ 136<br />

Xe, 86 Kr + 160 Gd and 48 Ca+ 198 Hg, which lead to <strong>the</strong> same compound nucleus 246 Fm. These<br />

diabatic potentials are also str<strong>on</strong>gly repulsive for smaller el<strong>on</strong>gati<strong>on</strong>s and <strong>the</strong> quasi-fissi<strong>on</strong> bar-<br />

rier <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pocket becomes larger with <strong>the</strong> <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass asymmetry η. In <strong>the</strong> upper<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 3-10, <strong>the</strong> diabatic c<strong>on</strong>tributi<strong>on</strong>s for <strong>the</strong> system 220 U( 110 Pd+ 110 Pd) are shown for<br />

η =0and0.5 atε =0.74. For an asymmetric clusterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 220 U, <strong>the</strong> diabatic h<strong>in</strong>drance<br />

for <strong>the</strong> moti<strong>on</strong> to smaller values <str<strong>on</strong>g>of</str<strong>on</strong>g> λ is smaller than for <strong>the</strong> symmetric c<strong>on</strong>figurati<strong>on</strong>. This<br />

means that <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> asymmetric DNS to <strong>the</strong> compound nucleus is more favored,<br />

which is supported by <strong>the</strong> experimental data. S<strong>in</strong>ce <strong>the</strong> diabatic effects are small near <strong>the</strong><br />

touch<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>, <strong>the</strong>y are not important for <strong>the</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

mass asymmetry at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>. The difussi<strong>on</strong> process <strong>in</strong> <strong>the</strong> mass<br />

asymmetry η at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> starts after <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial<br />

DNS at <strong>the</strong> pocket <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential <strong>in</strong> λ for a large fixed value <str<strong>on</strong>g>of</str<strong>on</strong>g> ε, e.g., ε =0.74. This slow<br />

difussi<strong>on</strong> process is studied us<strong>in</strong>g an adiabatic potential which will be presented <strong>in</strong> chapter 4.<br />

The dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic c<strong>on</strong>tributi<strong>on</strong> <strong>on</strong> <strong>the</strong> temperature is presented <strong>in</strong> <strong>the</strong> lower<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 3-10 for <strong>the</strong> system 220 U( 110 Pd+ 110 Pd). For this calculati<strong>on</strong>, we take <strong>the</strong> occupa-<br />

probabilities n ti<strong>on</strong> diab<br />

α<br />

given by <strong>the</strong> Fermi-distributi<strong>on</strong> at f<strong>in</strong>ite temperature for <strong>the</strong> touch<strong>in</strong>g<br />

c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>. This temperature could be related to <strong>the</strong> excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong><br />

<strong>in</strong> <strong>the</strong> approach<strong>in</strong>g phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> collisi<strong>on</strong>. The <strong>in</strong>itial excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system decreases<br />

<strong>the</strong> repulsive character <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic c<strong>on</strong>tributi<strong>on</strong> due to smaller occupati<strong>on</strong> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

diabatic states under <strong>the</strong> Fermi-level. If <strong>the</strong>se states are occupied and cross <strong>the</strong> Fermi-level from<br />

below, <strong>the</strong>y <strong>in</strong>crease <strong>the</strong> repulsive c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential, while occupied states above<br />

<strong>the</strong> Fermi-level, cross<strong>in</strong>g it from above with decreas<strong>in</strong>g λ, dim<strong>in</strong>ish <strong>the</strong> diabatic c<strong>on</strong>tributi<strong>on</strong>s.<br />

The diabatic c<strong>on</strong>tributi<strong>on</strong>s <strong>in</strong>crease with prolate deformati<strong>on</strong>s and decrease for oblate defor-<br />

mati<strong>on</strong>s (Fig. 3-11). However, <strong>in</strong> order to c<strong>on</strong>clude about an advantageous fusi<strong>on</strong> with oblate<br />

<strong>nuclei</strong>, <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g mass parameters should first be analysed.<br />

33


3-7: The same as <strong>in</strong> Fig. 3-6 for <strong>the</strong> systems Figure 90 + Zr 90 and Zr 96 + Zr 96 for λ =1.54,<br />

Zr<br />

is near to <strong>the</strong> m<strong>in</strong>imum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pocket <strong>in</strong> λ (upper part). The diabatic c<strong>on</strong>tributi<strong>on</strong>s for<br />

which<br />

<strong>the</strong>se systems are presented as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ε <strong>in</strong> <strong>the</strong> lower part.<br />

34


3-8: Diabatic neutr<strong>on</strong> s<strong>in</strong>gle-particle spectra as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ε for <strong>the</strong> systems Figure 90 Zr+ 90 Zr<br />

part) and (upper 96 Zr+ 96 (lower part) for λ =1.56, corresp<strong>on</strong>d<strong>in</strong>g roughly to <strong>the</strong> m<strong>in</strong>imum<br />

Zr<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pocket. The Fermi level is <strong>in</strong>dicated by triangles.<br />

35


The estimated collective velocities <strong>in</strong> λ and ε are large enough to c<strong>on</strong>sider diabatic effects<br />

<strong>in</strong> <strong>the</strong> DNS. We estimated <strong>the</strong> m<strong>in</strong>imal excitati<strong>on</strong> energy per nucle<strong>on</strong> ε ∗ for <strong>the</strong> applicability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> diabatic treatment. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> ε ∗ must fulfill <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>equality [52]<br />

ε ∗ ≥ (1.4 × 10 −22 MeV s)<br />

2π|Hαβ |2<br />

¯h|∂ɛαβ /∂ q|κ<br />

, (3.6)<br />

where κ is <strong>the</strong> mean distance <strong>in</strong> q between two subsequent cross<strong>in</strong>gs. The numerical factor <strong>in</strong><br />

(3.6) is obta<strong>in</strong>ed by us<strong>in</strong>g <strong>the</strong> Fermi-gas <strong>model</strong> for estimat<strong>in</strong>g <strong>the</strong> decay time due to residual<br />

two-body collisi<strong>on</strong>s [52]. From <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic and adiabatic levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> systems<br />

c<strong>on</strong>sidered, we obta<strong>in</strong>ed ε ∗ ≥0.03 MeV for <strong>the</strong> relative moti<strong>on</strong> <strong>in</strong> R and ε ∗ ≥ 0.07 MeV for<br />

<strong>the</strong> moti<strong>on</strong> <strong>in</strong> <strong>the</strong> neck coord<strong>in</strong>ate ε. Therefore, <strong>the</strong> diabatic effects are already important for<br />

relatively small excitati<strong>on</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> 6—14 MeV. For <strong>the</strong> relative moti<strong>on</strong>, <strong>the</strong> averange values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coupl<strong>in</strong>g |Hαβ| and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> difference |∂ɛαβ/∂R| <strong>in</strong> <strong>the</strong> slopes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cross<strong>in</strong>g levels are<br />

0.17 MeV and 1.52 MeV/fm, respectively. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> coupl<strong>in</strong>g |Hαβ| is estimated as <strong>the</strong><br />

half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> difference <str<strong>on</strong>g>of</str<strong>on</strong>g> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> adiabatic levels α, β at <strong>the</strong> pseudo-cross<strong>in</strong>g po<strong>in</strong>t. For<br />

<strong>the</strong> moti<strong>on</strong> <strong>in</strong> <strong>the</strong> neck coord<strong>in</strong>ate, we obta<strong>in</strong>ed |Hαβ| =0.2 MeV and |∂ɛαβ/∂ε| =0.77 MeV.<br />

S<strong>in</strong>ce <strong>in</strong> Ref. [52] <strong>the</strong> diabatic s<strong>in</strong>gle particle spectra were calculated with ano<strong>the</strong>r Hamilt<strong>on</strong>ian,<br />

a larger m<strong>in</strong>imal value <str<strong>on</strong>g>of</str<strong>on</strong>g> ε ∗ was obta<strong>in</strong>ed.<br />

In <strong>the</strong> present chapter we studied diabatic potentials as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> el<strong>on</strong>gati<strong>on</strong>, neck<br />

coord<strong>in</strong>ate and mass asymmetry for various <strong>heavy</strong> systems. The calculati<strong>on</strong>s were performed<br />

us<strong>in</strong>g <strong>the</strong> maximum symmetry method with <strong>the</strong> generalized TCSM. The diabatic effects give<br />

rise to h<strong>in</strong>drances for <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck and for <strong>the</strong> moti<strong>on</strong> to smaller relative distances.<br />

The diabatic potentials as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> are similar to <strong>the</strong> phenomenological<br />

double fold<strong>in</strong>g potentials used <strong>in</strong> <strong>the</strong> DNS <strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong>, which describes <strong>the</strong> experimental<br />

data quite well. For <strong>the</strong> asymmetric DNS, <strong>the</strong> diabatic h<strong>in</strong>drance for <strong>the</strong> moti<strong>on</strong> to smaller<br />

el<strong>on</strong>gati<strong>on</strong>s is smaller than for <strong>the</strong> symmetric DNS and, <strong>the</strong>refore, its evoluti<strong>on</strong> to <strong>the</strong> compound<br />

nucleus <strong>in</strong> λ is more favored. The quasi-fissi<strong>on</strong> barrier becomes larger with <strong>the</strong> <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

mass asymmetry <strong>in</strong> <strong>the</strong> entrance channel. The temperature decreases <strong>the</strong> repulsive character<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic potential. The diabatic TCSM supports <strong>the</strong> <strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> based <strong>on</strong> <strong>the</strong> DNS<br />

c<strong>on</strong>cept, where a h<strong>in</strong>drance for <strong>the</strong> moti<strong>on</strong> to smaller values <str<strong>on</strong>g>of</str<strong>on</strong>g> λ is assumed. The diabatic<br />

36


V diab (MeV)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

110Pd + 136Xe<br />

86Kr + 160Gd<br />

48Ca + 198Hg<br />

0<br />

1,2 1,3 1,4 1,5 1,6 1,7 1,8<br />

3-9: Diabatic potentials for <strong>the</strong> asymmetric systems Figure 110 Pd+ 136 (η =0.1, solid l<strong>in</strong>e),<br />

Xe<br />

Kr + 160 Gd (η =0.3, dashed l<strong>in</strong>e) and 48Ca + 198 Hg (η =0.6, dotted l<strong>in</strong>e) which lead to <strong>the</strong><br />

86<br />

same compound nucleus 246 Fm. The <strong>nuclei</strong> are c<strong>on</strong>sidered as spherical with ε =0.74.<br />

37<br />

λ


3-10: Diabatic c<strong>on</strong>tributi<strong>on</strong>s as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> λ for <strong>the</strong> mass asymmetries η = 0 (dotted<br />

Figure<br />

and 0.5 (solid l<strong>in</strong>e) <strong>in</strong> <strong>the</strong> system l<strong>in</strong>e) 110 Pd+ 110 at ε =0.74 (upper part). The dependence<br />

Pd<br />

temperature is shown for η =0<strong>in</strong><strong>the</strong>lowerpart. T =0MeV : solid l<strong>in</strong>e, T =1MeV : dotted<br />

<strong>on</strong><br />

l<strong>in</strong>e.<br />

38


ΔV diab (MeV)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

110Pd + 110Pd<br />

β = 0.9<br />

β = 1.1<br />

1,1 1,2 1,3 1,4 1,5 1,6 1,7<br />

3-11: Diabatic c<strong>on</strong>tributi<strong>on</strong>s as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> λ for oblate (β =0.9, solid l<strong>in</strong>e) and prolate<br />

Figure<br />

=1.1, dotted l<strong>in</strong>e) <strong>nuclei</strong> <strong>in</strong> <strong>the</strong> system (β 110Pd+ 110 The neck parameter ε is 0.74.<br />

Pd.<br />

39<br />

λ


effects give a justificati<strong>on</strong> for <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>in</strong> <strong>heavy</strong> i<strong>on</strong> collisi<strong>on</strong>s at low energies.<br />

40


Chapter 4<br />

The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear system (DNS) proceeds al<strong>on</strong>g a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> trajectories<br />

<strong>in</strong> <strong>the</strong> c<strong>on</strong>figurati<strong>on</strong> space. The mass (charge) asymmetry η =(A1 − A2)/(A1 + A2) (ηZ =<br />

(Z1 − Z2)/(Z1 + Z2)) (A1 (Z1) andA2 (Z2) are <strong>the</strong> mass (charge) numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> two <strong>nuclei</strong>) and<br />

<strong>the</strong> distance R between <strong>the</strong> centers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>nuclei</strong> (or <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system) are assumed to<br />

be <strong>the</strong> most important degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom <strong>in</strong> <strong>the</strong> DNS [18, 34]. The preferable fusi<strong>on</strong> channel <strong>in</strong><br />

<strong>the</strong> DNS <strong>model</strong> [18, 34] is <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS to a compound nucleus by nucle<strong>on</strong> transfer<br />

from a light nucleus to a <strong>heavy</strong> <strong>on</strong>e, <strong>the</strong> moti<strong>on</strong> to larger η at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <strong>nuclei</strong>. In this <strong>model</strong> <strong>the</strong> melt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>nuclei</strong> <strong>in</strong> <strong>the</strong> relative distance R is str<strong>on</strong>gly h<strong>in</strong>dered.<br />

This h<strong>in</strong>drance can be expla<strong>in</strong>ed by a structural forbiddenness effect [36], by diabatic effects<br />

for <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system to smaller relative distance [35, 66] and by a large microscopical<br />

mass parameter for <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck [43]. The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS is ruled by <strong>the</strong><br />

potential energy surface which depends <strong>on</strong> <strong>the</strong> isotope compositi<strong>on</strong>, <strong>on</strong> <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

fragments determ<strong>in</strong><strong>in</strong>g <strong>the</strong> transfer processes and collective excitati<strong>on</strong>s, and <strong>on</strong> <strong>the</strong> divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> excitati<strong>on</strong> energy between <strong>the</strong> <strong>nuclei</strong>.<br />

In this chapter, we compare <strong>the</strong> potential energy U as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> η at <strong>the</strong> touch<strong>in</strong>g<br />

c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> (driv<strong>in</strong>g potential) obta<strong>in</strong>ed with different methods. The value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R for <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> is determ<strong>in</strong>ed by η and by deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>nuclei</strong>.<br />

41


The similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential energy U as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> η at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>nuclei</strong> calculated with<strong>in</strong> different approaches can <strong>in</strong>dicate <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> results obta<strong>in</strong>ed<br />

<strong>in</strong> <strong>the</strong> DNS <strong>model</strong>.<br />

Us<strong>in</strong>g a small overlap <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>nuclei</strong>, <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> U is calculated as <strong>the</strong> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> asymptotic<br />

b<strong>in</strong>d<strong>in</strong>g energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> and <strong>the</strong> nucleus-nucleus potential [34, 65] <strong>in</strong> <strong>the</strong> phenomenological<br />

treatment. S<strong>in</strong>ce <strong>the</strong> DNS <strong>nuclei</strong> reta<strong>in</strong> <strong>the</strong>ir <strong>in</strong>dividual properties, <strong>in</strong> this approach <strong>the</strong> shell<br />

effects enter U through <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two <strong>nuclei</strong>.<br />

In <strong>the</strong> microscopical c<strong>on</strong>siderati<strong>on</strong>, <strong>the</strong> DNS potential energy as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> η can be<br />

calculated with<strong>in</strong> <strong>the</strong> adiabatic TCSM us<strong>in</strong>g <strong>the</strong> Strut<strong>in</strong>sky method. C<strong>on</strong>trary to <strong>the</strong> phenom-<br />

enological approach, <strong>in</strong> <strong>the</strong> TCSM-method we do not need <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucleus-nucleus<br />

<strong>in</strong>teracti<strong>on</strong>. There is an alternative microscopical method where <strong>the</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> η is calculated us<strong>in</strong>g <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong> transfer between <strong>the</strong> DNS<br />

<strong>nuclei</strong>. In this method, which we call ”alternative microscopical method” to dist<strong>in</strong>guish it from<br />

<strong>the</strong> TCSM-method, <strong>the</strong> energy c<strong>on</strong>ta<strong>in</strong>s not <strong>on</strong>ly <strong>the</strong> potential energy, but <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> from<br />

<strong>the</strong> k<strong>in</strong>etic energy. Therefore, this driv<strong>in</strong>g potential could deviate from <strong>the</strong> driv<strong>in</strong>g potentials<br />

calculated phenomenologically and with<strong>in</strong> <strong>the</strong> TCSM.<br />

In Sect. 4-1, methods <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> driv<strong>in</strong>g potential <strong>in</strong> <strong>the</strong> phenomenological ap-<br />

proach, with<strong>in</strong> <strong>the</strong> TCSM and <strong>in</strong> <strong>the</strong> alternative microscopical approach are presented. The<br />

isotopic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phenomenological driv<strong>in</strong>g potential was analysed <strong>in</strong> [67]. In Sect. 4-<br />

2, we check whe<strong>the</strong>r this dependence is <strong>the</strong> same for <strong>the</strong> driv<strong>in</strong>g potential calculated with<strong>in</strong> <strong>the</strong><br />

TCSM. The isotopic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> barrier <strong>in</strong> mass asymmetry is studied. The effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>nuclei</strong> <strong>on</strong> <strong>the</strong> potential energy is dem<strong>on</strong>strated.<br />

4.1 Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> driv<strong>in</strong>g potential<br />

4.1.1 Phenomenological method<br />

The phenomenological driv<strong>in</strong>g potential is calculated as <strong>in</strong> [34, 65]<br />

U(R, η, ηZ) =B1 + B2 + V (R, η, ηZ) − B12, (4.1)<br />

42


where B1, B2, andB12 are <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fragments and <strong>the</strong> compound nucleus,<br />

respectively, and are calculated with liquid-drop masses for large excitati<strong>on</strong> energies and with<br />

realistic masses [68] for small excitati<strong>on</strong> energies. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> U(R, η, ηZ) is normalised to <strong>the</strong><br />

b<strong>in</strong>d<strong>in</strong>g energy B12 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compound nucleus. The nucleus-nucleus potential V (R, η, ηZ) <strong>in</strong>(4.1)<br />

<strong>in</strong>cludes <strong>the</strong> Coulomb and nuclear terms. The nuclear part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucleus-nucleus potential is<br />

calculated us<strong>in</strong>g a double-fold<strong>in</strong>g procedure [65]. The phenomenological driv<strong>in</strong>g potential is<br />

obta<strong>in</strong>ed as U(η) =U(Rm,η,ηZ), where Rm = R1 + R2+0.5 fm (Ri is <strong>the</strong> radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>)<br />

is <strong>the</strong> distance between <strong>the</strong> centers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>teract<strong>in</strong>g <strong>nuclei</strong> corresp<strong>on</strong>d<strong>in</strong>g to <strong>the</strong> m<strong>in</strong>imum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

pocket <strong>in</strong> <strong>the</strong> nucleus-nucleus potential V (R, η, ηZ). For <strong>heavy</strong> systems and small values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

angular momentum, <strong>the</strong> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> rotati<strong>on</strong>al energy is negligible [34, 69]. Deformati<strong>on</strong><br />

effects are taken <strong>in</strong>to account <strong>in</strong> <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> V (R, η, η Z) [34]. The <strong>heavy</strong> <strong>nuclei</strong> <strong>in</strong> <strong>the</strong><br />

DNS, which are deformed <strong>in</strong> <strong>the</strong> ground state, are treated with <strong>the</strong> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> quadrupole<br />

deformati<strong>on</strong> taken from Refs. [70, 71]. The light <strong>nuclei</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS are assumed to be deformed<br />

<strong>on</strong>ly if <strong>the</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir 2 + state is smaller than 1.5 MeV. As known from experiments <strong>on</strong><br />

sub—barrier fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lighter <strong>nuclei</strong> [72], <strong>the</strong>se states are easily populated. For <strong>the</strong> collisi<strong>on</strong><br />

energies c<strong>on</strong>sidered here (above and near <strong>the</strong> Coulomb barrier), <strong>the</strong> relative orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>nuclei</strong> <strong>in</strong> <strong>the</strong> DNS follows <strong>the</strong> m<strong>in</strong>imum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential energy.<br />

4.1.2 TCSM-method<br />

The driv<strong>in</strong>g potential is calculated us<strong>in</strong>g <strong>the</strong> adiabatic TCSM (3.2) because <strong>the</strong> diabatic effects<br />

are small near <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>. S<strong>in</strong>ce we c<strong>on</strong>sider small excitati<strong>on</strong> ener-<br />

gies (20−30MeV), for which <strong>the</strong> shell effects rema<strong>in</strong> important, <strong>the</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> δU shell and<br />

δU pair <strong>on</strong> <strong>the</strong> temperature is disregarded here. The isotopic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> form<strong>in</strong>g<br />

<strong>the</strong> DNS is chosen with <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N/Z- equilibrium <strong>in</strong> <strong>the</strong> system. The deformati<strong>on</strong>s<br />

β i = a i/b i <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>nuclei</strong> are calculated from <strong>the</strong>ir semiaxes a i and b i (see Appendix). The<br />

semiaxes a i and b i <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> can be related to <strong>the</strong> parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> quadrupole deformati<strong>on</strong><br />

[70, 71] us<strong>in</strong>g <strong>the</strong> known expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nuclear surface <strong>in</strong> spherical functi<strong>on</strong>s. The neck<br />

parameter ε is 0.74, which supplies realistic shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS for <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> (λ =1.5 − 1.6) .<br />

43


4.1.3 Alternative microscopical method<br />

S<strong>in</strong>ce <strong>the</strong> isotopic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> form<strong>in</strong>g <strong>the</strong> DNS is chosen with <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> N/Z-equilibrium <strong>in</strong> <strong>the</strong> system, mass and charge evoluti<strong>on</strong>s (neutr<strong>on</strong>s and prot<strong>on</strong>s transfer)<br />

are related to each o<strong>the</strong>r. The charge number Z <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> light fragment is used <strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

charge asymmetry η Z. The potential is obta<strong>in</strong>ed by an iterati<strong>on</strong> procedure [33, 73]<br />

(Z +1)= Ũ (Z) +T · ln<br />

Ũ<br />

<strong>the</strong> microscopic transport coefficients ∆ where (±)<br />

[74] Z<br />

∆ (+)<br />

= Z 1<br />

∆t<br />

α,β<br />

| gαβ (R) | 2<br />

∆ (−)<br />

Z = 1 |<br />

<br />

gαβ (R) |<br />

∆t<br />

α,β<br />

2 n Z − n α(T )(1 Z<br />

⎛<br />

⎝∆(−) Z+1<br />

∆ (+)<br />

Z<br />

n Z<br />

(T )(1 − nZα<br />

β (T )) s<strong>in</strong>2 [∆t(˜ɛ Z − ˜ɛ α Z<br />

β (T)) s<strong>in</strong>2 [∆t(˜ɛ Z<br />

⎞<br />

, (4.2)<br />

⎠<br />

(˜ɛ Z − ˜ɛ α Z<br />

β )2 /4<br />

β )/2¯h]<br />

− ˜ɛ α Z<br />

β )/2¯h]<br />

(˜ɛ Z − ˜ɛ α Z<br />

β )2 /4<br />

, (4.3)<br />

characterise <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> prot<strong>on</strong> transfer from a <strong>heavy</strong> to a light nucleus<br />

(∆ (+)<br />

Z<br />

or <strong>in</strong> <strong>the</strong> opposite directi<strong>on</strong> (∆(−) Z ). The DNS temperature T is calculated us<strong>in</strong>g <strong>the</strong><br />

)<br />

Fermi-gas expressi<strong>on</strong> T = E ∗ /a with <strong>the</strong> excitati<strong>on</strong> energy E ∗ <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS and with level-<br />

density parameter a = Atot/12 MeV −1 , where A tot is <strong>the</strong> total mass number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system. In<br />

<strong>the</strong> expressi<strong>on</strong> (4.3), ”α” and”β” are <strong>the</strong> quantum numbers characteris<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gle-particle<br />

states <strong>in</strong> light and <strong>heavy</strong> <strong>nuclei</strong> respectively, n α(T) (n β(T )) are <strong>the</strong> temperature-dependent<br />

occupati<strong>on</strong> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle states <strong>in</strong> a light (<strong>heavy</strong>) nucleus, g αβ are <strong>the</strong> matrix<br />

elements for <strong>the</strong> nucle<strong>on</strong> transiti<strong>on</strong> from nucleus to nucleus because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mean<br />

fields <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong> partners [33, 73]. The time <strong>in</strong>terval ∆t =1.5 × 10 −22 s must be larger<br />

than <strong>the</strong> relaxati<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mean field but c<strong>on</strong>siderably smaller than <strong>the</strong> characteristic<br />

evoluti<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> macroscopic quantities. The mutual <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mean fields <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

reacti<strong>on</strong> partners leads to <strong>the</strong> renormalisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle energies ˜ɛα(β) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong><br />

[33, 73]. Peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>teract<strong>in</strong>g <strong>nuclei</strong> are explicitly taken <strong>in</strong>to account <strong>in</strong><br />

<strong>the</strong> transport coefficients (4.3), which are calculated us<strong>in</strong>g realistic schemes <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle particle<br />

levels. For <strong>the</strong> s<strong>in</strong>gle-particle spectrum, <strong>the</strong> spectrum for a spherically symmetric Woods-<br />

44


Sax<strong>on</strong> potential Vi(i =1, 2) that c<strong>on</strong>ta<strong>in</strong>s central, sp<strong>in</strong>-orbit and Coulomb (for <strong>the</strong> prot<strong>on</strong>s)<br />

<strong>in</strong>teracti<strong>on</strong>s is used. The s<strong>in</strong>gle-particle wave functi<strong>on</strong> ψi(i = α, β) is obta<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> same<br />

Woods-Sax<strong>on</strong> potential Vi(i =1, 2). The matrix elements gαβ(R) are presented <strong>in</strong> [75], where<br />

<strong>the</strong> analytical method <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir calculati<strong>on</strong> has been suggested (see also Appendix <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ref.<br />

[33]). The total s<strong>in</strong>gle-particle potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS [V 1(r)+V 2(r −R)] is used to calculate <strong>the</strong><br />

element for nucle<strong>on</strong> transfer gαβ(R) = matrix 1 <br />

drψ∗ β (r)[V1(r)+V2(r − R)]ψα(r − R).<br />

2<br />

The expressi<strong>on</strong> (4.2) is obta<strong>in</strong>ed <strong>in</strong> [33, 73] assum<strong>in</strong>g that <strong>the</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> different<br />

DNS c<strong>on</strong>figurati<strong>on</strong>s <strong>in</strong> Z is stati<strong>on</strong>ary and reaches a statistical equilibrium for a temperature<br />

T . In this approach, <strong>the</strong> decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS c<strong>on</strong>figurati<strong>on</strong>s <strong>in</strong> <strong>the</strong> relative distance R is not<br />

c<strong>on</strong>sidered when <strong>the</strong> system evolves <strong>in</strong> <strong>the</strong> variable Z.<br />

4.2 Results and discussi<strong>on</strong><br />

4.2.1 Isotopic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> driv<strong>in</strong>g potential<br />

Figs. 4-1to 4-5 show <strong>the</strong> isotopic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> driv<strong>in</strong>g potentials U(η) calculated with <strong>the</strong><br />

TCSM-method for <strong>the</strong> <strong>heavy</strong> systems Hg,Pb,Po,Thand Fm, respectively. From <strong>the</strong>se figures,<br />

we can see that <strong>the</strong> driv<strong>in</strong>g potential is sensitive to <strong>the</strong> mass number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear systems.<br />

Such behaviour was also observed <strong>in</strong> [73] for <strong>the</strong> potentials obta<strong>in</strong>ed with <strong>the</strong> alternative mi-<br />

croscopical method and with <strong>the</strong> phenomenological method. In general, it is observed that <strong>the</strong><br />

heavier <strong>the</strong> isotope, <strong>the</strong> larger is <strong>the</strong> fusi<strong>on</strong> barrier <strong>in</strong> η. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> characteristics<br />

are given by <strong>the</strong> static potential energy surface. It provides <strong>the</strong> <strong>in</strong>formati<strong>on</strong> about <strong>the</strong> energy<br />

threshold for fusi<strong>on</strong>, which determ<strong>in</strong>es <strong>the</strong> optimal bombard<strong>in</strong>g energy. In <strong>the</strong> DNS <strong>model</strong>, <strong>the</strong><br />

<strong>in</strong>ner fusi<strong>on</strong> barrier <strong>in</strong> mass asymmetry supplies <strong>the</strong> h<strong>in</strong>drance for complete fusi<strong>on</strong>. The top <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this barrier co<strong>in</strong>cides with <strong>the</strong> maximum (Bus<strong>in</strong>aro-Gall<strong>on</strong>e po<strong>in</strong>t) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS potential energy<br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass asymmetry. The fusi<strong>on</strong> barrier Bη <strong>in</strong> η for a reacti<strong>on</strong> under c<strong>on</strong>siderati<strong>on</strong><br />

is def<strong>in</strong>ed as <strong>the</strong> difference between <strong>the</strong> potential energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS<br />

<strong>in</strong> <strong>the</strong> Bus<strong>in</strong>aro-Gall<strong>on</strong>e maximum. If <strong>the</strong> excitati<strong>on</strong> energy is sufficient to overcome this bar-<br />

rier, <strong>the</strong>n <strong>the</strong> fusi<strong>on</strong> <strong>in</strong> <strong>the</strong> mass asymmetry degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom occurs. From <strong>the</strong>se Figures, we<br />

can also observe that <strong>the</strong> Bus<strong>in</strong>aro-Gall<strong>on</strong>e po<strong>in</strong>t moves towards larger asymmetries with <strong>the</strong><br />

<strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compound nucleus. From Fig. 4-5, we see that accord<strong>in</strong>g<br />

45


to <strong>the</strong> DNS c<strong>on</strong>cept [18, 34], cross secti<strong>on</strong>s for <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> heaviest elements <strong>in</strong> nearly<br />

symmetric reacti<strong>on</strong>s are very small due to large fusi<strong>on</strong> barriers <strong>in</strong> mass asymmetry and, corre-<br />

sp<strong>on</strong>d<strong>in</strong>gly, due to small fusi<strong>on</strong> probabilities, for example <strong>in</strong> <strong>the</strong> reacti<strong>on</strong>s 128 Sn+ 126 Sn→254 Fm<br />

and 132 Sn+ 132 Sn→264 Fm.<br />

4-1shows <strong>the</strong> fusi<strong>on</strong> barriers B Table TCSM<br />

η<br />

<strong>in</strong> η calculated with <strong>the</strong> TCSM-method for <strong>the</strong><br />

reacti<strong>on</strong>s which produce <strong>the</strong> systems <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Figs. 4-1to 4-5. These barriers are compared with<br />

<strong>the</strong> experimental surplus <str<strong>on</strong>g>of</str<strong>on</strong>g> energy ∆B exp = B exp −<br />

above <strong>the</strong> Bass barrier BBass [76].<br />

BBass<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> B The exp def<strong>in</strong>ed [4] as <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bombard<strong>in</strong>g energy for a fusi<strong>on</strong> probability<br />

is<br />

0.5. The Bass potential [77] is an empirical nucleus-nucleus potential derived from a geometric<br />

<strong>in</strong>terpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> data above <strong>the</strong> Coulomb barrier for systems with Z 1 ×<br />

2 =64−850. Z<br />

shown <strong>in</strong> Table 4-1, <strong>the</strong> isotopic trends <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> barrier, calculated with <strong>the</strong> TCSM-<br />

As<br />

method, agree with <strong>the</strong> experimental data. The experimentally observed h<strong>in</strong>drance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

fusi<strong>on</strong> roughly <strong>in</strong>creases with a grow<strong>in</strong>g Coulomb repulsi<strong>on</strong> between <strong>the</strong> collid<strong>in</strong>g <strong>nuclei</strong>, but<br />

also <strong>the</strong>ir shell structure and isotopic compositi<strong>on</strong> play a major role [78, 79, 80]. The energy<br />

thresholds for fusi<strong>on</strong> <strong>in</strong>crease and, corresp<strong>on</strong>d<strong>in</strong>gly, <strong>the</strong> fusi<strong>on</strong> probabilities decrease [79, 80]<br />

when <strong>the</strong> neutr<strong>on</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> projectile or target <strong>in</strong>creas<strong>in</strong>gly deviates from a magic number <strong>in</strong><br />

<strong>the</strong> reacti<strong>on</strong>s 90,96 Zr + 90,96 Zr, 90,96 Zr + 100 Mo, 94,100 Mo+ 100 Mo and 90,96 Zr + 124 Sn. This<br />

effect is simply expla<strong>in</strong>ed by <strong>the</strong> deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>itial DNS and <strong>in</strong> <strong>the</strong> DNS at<br />

<strong>the</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> barrier <strong>in</strong> η and by <strong>the</strong> shell effects <strong>in</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS potential energy <strong>on</strong><br />

η [34, 67]. In <strong>the</strong>se calculati<strong>on</strong>s, we did not average <strong>the</strong> <strong>in</strong>ner fusi<strong>on</strong> barrier <strong>in</strong> mass asymmetry<br />

over all possible orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> collid<strong>in</strong>g <strong>nuclei</strong> as we usually do <strong>in</strong> <strong>the</strong> calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> and<br />

evaporati<strong>on</strong> residue cross secti<strong>on</strong>s, tak<strong>in</strong>g <strong>the</strong> half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deformati<strong>on</strong> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong><br />

<strong>in</strong> <strong>the</strong> entrance channel. They are not always <strong>in</strong> good agreement with ∆B exp because <strong>the</strong>se<br />

data are not directly measurable but are obta<strong>in</strong>ed with <strong>model</strong> assumpti<strong>on</strong>s about <strong>the</strong> fusi<strong>on</strong>,<br />

<strong>the</strong> surviv<strong>in</strong>g probabilities and <strong>the</strong> Bass barrier.<br />

46


U (MeV)<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

90Zr + 90Zr<br />

96Zr + 96Zr<br />

192Hg<br />

180Hg<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6<br />

4-1: Driv<strong>in</strong>g potentials calculated with <strong>the</strong> TCSM-method for <strong>the</strong> systems Figure 180 (solid Hg<br />

and l<strong>in</strong>e) 192 (dotted l<strong>in</strong>e), which are produced by <strong>the</strong> reacti<strong>on</strong>s Hg 90Zr+ 90 and Zr 96Zr+ 96Zr, respectively. The <strong>in</strong>jecti<strong>on</strong> po<strong>in</strong>t for <strong>the</strong>se reacti<strong>on</strong>s is <strong>in</strong>dicated by an arrow.<br />

47<br />

η


U (MeV)<br />

28<br />

27<br />

26<br />

25<br />

24<br />

23<br />

22<br />

21<br />

20<br />

90Zr + 100Mo<br />

96Zr + 100Mo<br />

190Pb<br />

196Pb<br />

19<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6<br />

4-2: The same as <strong>in</strong> Fig. 4-1for <strong>the</strong> systems Figure 190 (solid l<strong>in</strong>e) and Pb 196 (dotted l<strong>in</strong>e),<br />

Pb<br />

are produced by <strong>the</strong> reacti<strong>on</strong>s which 90 + Zr 100 and Mo 96 + Zr 100 respectively.<br />

Mo,<br />

48<br />

η


U (MeV)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

94Mo + 100Mo<br />

100Mo + 100Mo<br />

194Po<br />

200Po<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6<br />

4-3: The same as <strong>in</strong> Fig. 4-1for <strong>the</strong> systems Figure 194 (solid l<strong>in</strong>e) and Po 200 (dotted l<strong>in</strong>e),<br />

Po<br />

are produced by <strong>the</strong> reacti<strong>on</strong>s which 94 + Mo 100 and Mo 100 + Mo 100 respectively.<br />

Mo,<br />

49<br />

η


U (MeV)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

90Zr + 124Sn<br />

96Zr + 124Sn<br />

214Th<br />

220Th<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8<br />

4-4: The same as <strong>in</strong> Fig. 4-1for <strong>the</strong> systems Figure 214 (solid l<strong>in</strong>e) and Th 220 (dotted l<strong>in</strong>e),<br />

Th<br />

are produced by <strong>the</strong> reacti<strong>on</strong>s which 90 + Zr 124 and Sn 96 + Zr 124 respectively.<br />

Sn,<br />

50<br />

η


U (MeV)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

128Sn + 126Sn<br />

132Sn + 132Sn<br />

254Fm<br />

264Fm<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7<br />

4-5: The same as <strong>in</strong> Fig. 4-1for <strong>the</strong> systems Figure 254 (solid l<strong>in</strong>e) and Fm 264 (dotted l<strong>in</strong>e),<br />

Fm<br />

are produced by <strong>the</strong> reacti<strong>on</strong>s which 128 + Sn 126 and Sn 132 + Sn 132 respectively.<br />

Sn,<br />

51<br />

η


4-1: Fusi<strong>on</strong> barriers B Table TCSM<br />

η<br />

are compared with <strong>the</strong> experimental<br />

surplus <str<strong>on</strong>g>of</str<strong>on</strong>g> energy ∆B exp above <strong>the</strong> Bass barrier.<br />

B Reacti<strong>on</strong>s TCSM(MeV<br />

) ∆B η exp (MeV)<br />

Zr + 90 Zr→180 Hg 4 0.0<br />

+0.5<br />

90<br />

−0.5<br />

Zr+<br />

96<br />

Zr→192 Hg 6 4.2<br />

+1.2<br />

96<br />

−1.2<br />

90 + 100<br />

Mo→190 Pb 5 5.1<br />

+1.0<br />

−1.0<br />

Zr<br />

96 + 100<br />

Mo→196 Pb 7 9.5<br />

+1.0<br />

−1.0<br />

Zr<br />

Mo+<br />

100<br />

Mo→194 Po1 0<br />

94<br />

6.3<br />

+1.0<br />

−1.0 1<br />

Mo+<br />

100<br />

Mo→200 100<br />

7 Po 2.2<br />

+0.5<br />

−0.5 1<br />

90 + 124<br />

Sn→214 Th 11 20.3<br />

+4.0<br />

−4.0<br />

Zr<br />

Zr + 124<br />

Sn→220 Th1 7 26.7<br />

+5.0<br />

96<br />

−3.0<br />

128 Sn+ 126 Sn → 254 Fm 22 -<br />

132 Sn + 132 Sn → 264 Fm 30 -<br />

4.2.2 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> driv<strong>in</strong>g potentials calculated with different methods<br />

Figs. 4-6 a) and 4-7 a) show <strong>the</strong> driv<strong>in</strong>g potential calculated with <strong>the</strong> TCSM-method, with <strong>the</strong><br />

phenomenological method and with <strong>the</strong> alternative microscopical method for <strong>the</strong> systems 180 Hg<br />

and 246 Fm, which are produced <strong>in</strong> <strong>the</strong> reacti<strong>on</strong>s 90 Zr + 90 Zr and 76 Ge + 170 Er, respectively.<br />

Here, <strong>the</strong> <strong>nuclei</strong> form<strong>in</strong>g <strong>the</strong> DNS are c<strong>on</strong>sidered as spherical and <strong>the</strong> driv<strong>in</strong>g potential calculated<br />

with <strong>the</strong> alternative microscopical method is shown for a temperature T =1MeV. The driv<strong>in</strong>g<br />

potentials are given as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> charge Z <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> light nucleus <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS. We can<br />

observe that <strong>the</strong> driv<strong>in</strong>g potential calculated with <strong>the</strong> TCSM-method is qualitatively similar to<br />

<strong>the</strong> driv<strong>in</strong>g potentials calculated with <strong>the</strong> phenomenological and <strong>the</strong> alternative microscopical<br />

methods.<br />

The phenomenological driv<strong>in</strong>g potential, where <strong>the</strong> shell effects are taken <strong>in</strong>to account <strong>on</strong>ly<br />

through <strong>the</strong> asymptotic b<strong>in</strong>d<strong>in</strong>g energies, reveals more structures [73] than <strong>the</strong> <strong>on</strong>es calculated<br />

with <strong>the</strong> TCSM-method or with <strong>the</strong> alternative microscopical method. Experiments ([28]-[32])<br />

c<strong>on</strong>firm <strong>the</strong> assumpti<strong>on</strong> that dur<strong>in</strong>g <strong>the</strong> collisi<strong>on</strong>, <strong>the</strong> <strong>in</strong>dividual properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> collid<strong>in</strong>g <strong>nuclei</strong><br />

are c<strong>on</strong>served and <strong>the</strong> shell effects play an essential role. For <strong>in</strong>stance, <strong>the</strong>re are local maxima<br />

corresp<strong>on</strong>d<strong>in</strong>g to <strong>the</strong> closed-shell <strong>nuclei</strong> [28] <strong>in</strong> <strong>the</strong> charge and mass distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong><br />

52


products. However, <strong>in</strong> <strong>the</strong> driv<strong>in</strong>g potential calculated with <strong>the</strong> phenomenological method <strong>the</strong><br />

peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>nuclei</strong> are not taken <strong>in</strong>to account explicitly.<br />

The shell effects <strong>in</strong> <strong>the</strong> driv<strong>in</strong>g potentials calculated with <strong>the</strong> TCSM-method and <strong>the</strong> alter-<br />

native microscopical method reflect <strong>the</strong> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle spectra<br />

near <strong>the</strong> Fermi surface <strong>on</strong> <strong>the</strong> nucle<strong>on</strong> exchange process. For this reas<strong>on</strong>, <strong>the</strong>se driv<strong>in</strong>g potentials<br />

can carry more <strong>in</strong>formati<strong>on</strong> about <strong>the</strong> DNS evoluti<strong>on</strong> <strong>in</strong> η than <strong>the</strong> driv<strong>in</strong>g potential calculated<br />

with <strong>the</strong> phenomenological method. It is obvious that <strong>the</strong> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial c<strong>on</strong>figurati<strong>on</strong><br />

η i def<strong>in</strong>es <strong>the</strong> evoluti<strong>on</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>in</strong> η. The driv<strong>in</strong>g potentials calculated with <strong>the</strong><br />

TCSM- and with <strong>the</strong> alternative microscopical methods have few local m<strong>in</strong>ima. The absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> local m<strong>in</strong>ima for some magic <strong>nuclei</strong> <strong>in</strong> <strong>the</strong> d<strong>in</strong>uclear system can be expla<strong>in</strong>ed by <strong>the</strong> shell<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>jugated nucleus and <strong>the</strong> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neutr<strong>on</strong> subsystem.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> <strong>on</strong> <strong>the</strong> driv<strong>in</strong>g potential is presented <strong>in</strong> Figs.<br />

4-6b) and 4-7b) for <strong>the</strong> d<strong>in</strong>uclear systems 180 Hg and 246 Fm, respectively. Here, <strong>the</strong> driv<strong>in</strong>g<br />

potential calculated with<strong>in</strong> <strong>the</strong> TCSM and <strong>the</strong> phenomenological potential are shown.We assume<br />

that <strong>the</strong> deformati<strong>on</strong>s take <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> polarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucleus <strong>in</strong>duced by <strong>the</strong> mean-field<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> o<strong>the</strong>r nucleus <strong>in</strong>to account. The potential energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS with prolate <strong>nuclei</strong> is<br />

smaller than <strong>the</strong> potential energy with spherical <strong>nuclei</strong> (Figs. 4-6a) and 4-7a) ) because <strong>the</strong><br />

Coulomb energy becomes larger for spherical <strong>nuclei</strong>. In this case, <strong>the</strong> fusi<strong>on</strong> barrier <strong>in</strong> η gets<br />

smaller than <strong>the</strong> <strong>on</strong>e obta<strong>in</strong>ed with spherical <strong>nuclei</strong>. For oblate deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>,<br />

<strong>the</strong> potential energy and <strong>the</strong> fusi<strong>on</strong> barrier <strong>in</strong> η are larger than for spherical <strong>nuclei</strong>. In reality,<br />

some averag<strong>in</strong>g over <strong>the</strong> orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> has to be carried out <strong>in</strong> <strong>the</strong> <strong>in</strong>itial DNS.<br />

The deformati<strong>on</strong> effects produce fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> barrier <strong>in</strong> η around <strong>the</strong><br />

value obta<strong>in</strong>ed for spherical <strong>nuclei</strong>. In <strong>the</strong> present versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TCSM, <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic symmetry<br />

axes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deformed <strong>nuclei</strong> lie al<strong>on</strong>g <strong>the</strong> <strong>in</strong>ternuclear axis. For arbitrary orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>in</strong>tr<strong>in</strong>sic symmetry axes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deformed <strong>nuclei</strong>, a more general TCSM [81] should be used.<br />

Calculati<strong>on</strong>s with <strong>the</strong> method suggested <strong>in</strong> [65] reveal a weak dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential <strong>on</strong><br />

<strong>the</strong> orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>. In order to completely take <strong>in</strong>to account <strong>the</strong> deformati<strong>on</strong> effect <strong>in</strong><br />

<strong>the</strong> driv<strong>in</strong>g potential calculated with <strong>the</strong> alternative microscopical method, <strong>the</strong> s<strong>in</strong>gle-particle<br />

levels should be taken for deformed <strong>nuclei</strong>. For <strong>the</strong> sake <str<strong>on</strong>g>of</str<strong>on</strong>g> simplicity, we use <strong>the</strong> s<strong>in</strong>gle-particle<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> spherical <strong>nuclei</strong> <strong>in</strong> <strong>the</strong> present calculati<strong>on</strong>s. However, <strong>the</strong> fit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Fermi surface by <strong>the</strong><br />

53


U (MeV)<br />

40<br />

30<br />

20<br />

10<br />

20<br />

10<br />

0<br />

a)<br />

b)<br />

90Zr + 90Zr<br />

10 20 30 40<br />

Z<br />

180Hg<br />

TCSM<br />

phen.<br />

micro.<br />

4-6: a) Driv<strong>in</strong>g potentials for <strong>the</strong> system Figure 180 as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> charge number<br />

Hg<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> light nucleus <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS: potential calculated with <strong>the</strong> TCSM-method (solid l<strong>in</strong>e),<br />

Z<br />

phenomenological potential (dashed l<strong>in</strong>e) and <strong>the</strong> potential calculated with <strong>the</strong> alternative<br />

<strong>the</strong><br />

method for T =1MeV (dotted l<strong>in</strong>e). The <strong>nuclei</strong> are c<strong>on</strong>sidered as spherical. The<br />

microscopical<br />

<strong>in</strong>dicates <strong>the</strong> reacti<strong>on</strong> arrow 90 + Zr 90 b) The same as <strong>in</strong> a) but with deformed <strong>nuclei</strong> <strong>in</strong><br />

Zr.<br />

driv<strong>in</strong>g potential calculated with <strong>the</strong> TCSM- and with <strong>the</strong> phenomenological methods. The<br />

<strong>the</strong><br />

deformati<strong>on</strong>s are taken from Refs. [70, 71]<br />

54


U (MeV)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

20<br />

10<br />

0<br />

-10<br />

a)<br />

b)<br />

76Ge +<br />

10 20 30 40 50<br />

10 20 30 40 50<br />

Z<br />

170Er 246Fm<br />

TCSM<br />

phen.<br />

micro.<br />

4-7: The same as <strong>in</strong> Fig. 4-6 for <strong>the</strong> system Figure 246 which is produced by <strong>the</strong> reacti<strong>on</strong><br />

Fm,<br />

Ge + 170 Er.<br />

76<br />

55


experimental separati<strong>on</strong> energy allows us to partly take <strong>the</strong> deformati<strong>on</strong> effects <strong>in</strong>to account <strong>in</strong><br />

<strong>the</strong> driv<strong>in</strong>g potential calculated with <strong>the</strong> alternative microscopical method.<br />

In this chapter, we have studied <strong>the</strong> isotopic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> driv<strong>in</strong>g potential <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

<strong>heavy</strong> DNS us<strong>in</strong>g <strong>the</strong> TCSM-method. The isotopic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> energy threshold for <strong>the</strong><br />

complete fusi<strong>on</strong> <strong>in</strong> mass asymmetry calculated with <strong>the</strong> TCSM-method agrees with <strong>the</strong> isotopic<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experimental surplus <str<strong>on</strong>g>of</str<strong>on</strong>g> energy ∆B exp above <strong>the</strong> Bass barrier. The similarity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> driv<strong>in</strong>g potentials calculated with <strong>the</strong> TCSM-method and with <strong>the</strong> phenomenological<br />

approach is dem<strong>on</strong>strated. The descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS evoluti<strong>on</strong> <strong>in</strong> η at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>-<br />

figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> weakly depends <strong>on</strong> <strong>the</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential energy.<br />

The structures <strong>in</strong> <strong>the</strong> driv<strong>in</strong>g potentials show <strong>the</strong> str<strong>on</strong>g <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shell effects <strong>on</strong> <strong>the</strong><br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS. In chapter 7, we will study <strong>the</strong> correlati<strong>on</strong> between <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quasi-fissi<strong>on</strong> products and <strong>the</strong> driv<strong>in</strong>g potential.<br />

56


Chapter 5<br />

The present fusi<strong>on</strong> <strong>model</strong>s can be dist<strong>in</strong>guished by <strong>the</strong> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relevant collective variables<br />

al<strong>on</strong>g which fusi<strong>on</strong> ma<strong>in</strong>ly occurs. While many <strong>model</strong>s study <strong>the</strong> fusi<strong>on</strong> <strong>in</strong> R at a practically<br />

fixed value <str<strong>on</strong>g>of</str<strong>on</strong>g> η, <strong>the</strong> DNS <strong>model</strong> [34] c<strong>on</strong>siders <strong>the</strong> DNS evoluti<strong>on</strong> <strong>in</strong> mass asymmetry by<br />

nucle<strong>on</strong> or cluster transfers as <strong>the</strong> ma<strong>in</strong> path to <strong>the</strong> compound nucleus. The DNS <strong>model</strong><br />

assumes basically that <strong>the</strong> neck degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom is fixed <strong>in</strong> <strong>the</strong> evoluti<strong>on</strong> <strong>in</strong> η and <strong>the</strong> <strong>nuclei</strong><br />

are h<strong>in</strong>dered from melt<strong>in</strong>g toge<strong>the</strong>r by a variati<strong>on</strong> <strong>in</strong> <strong>the</strong> relative distance R. In this chapter, we<br />

study dynamical restricti<strong>on</strong>s for <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck <strong>in</strong> <strong>the</strong> DNS and suggest proper methods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>in</strong>ertia tensor.<br />

There are various macroscopical and microscopical approaches to calculat<strong>in</strong>g <strong>the</strong> <strong>in</strong>ertia<br />

tensor [82]. The macroscopical approaches (see, for example, [16, 83]) are based <strong>on</strong> <strong>the</strong> hydro-<br />

dynamical <strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucleus. A calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>ertia tensor with a <strong>the</strong>ory for quantum<br />

fluid dynamics is suggested <strong>in</strong> Ref. [84]. By us<strong>in</strong>g a random-matrix <strong>model</strong> to describe <strong>the</strong><br />

coupl<strong>in</strong>g between a collective nuclear variable and <strong>in</strong>tr<strong>in</strong>sic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, and with <strong>the</strong><br />

help <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> functi<strong>on</strong>al <strong>in</strong>tegral approach, mass parameters are derived <strong>in</strong> Ref. [85]. In <strong>the</strong> l<strong>in</strong>ear<br />

resp<strong>on</strong>se <strong>the</strong>ory [86, 87] <strong>the</strong> <strong>in</strong>ertia tensor is found for fissi<strong>on</strong><strong>in</strong>g <strong>nuclei</strong>. The microscopical<br />

approaches ma<strong>in</strong>ly use <strong>the</strong> crank<strong>in</strong>g type expressi<strong>on</strong> and perform calculati<strong>on</strong>s <strong>in</strong> different s<strong>in</strong>gle<br />

particle bases apply<strong>in</strong>g adiabatic [40, 88] or diabatic [57] two-center shell <strong>model</strong>s. Difficulties <strong>in</strong><br />

<strong>the</strong> crank<strong>in</strong>g type calculati<strong>on</strong>s arise for collective moti<strong>on</strong>s with large amplitudes, for example, <strong>in</strong><br />

fusi<strong>on</strong> or fissi<strong>on</strong>, due to pseudo—cross<strong>in</strong>gs or cross<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> levels <strong>in</strong> <strong>the</strong> s<strong>in</strong>gle particle spectrum.<br />

Some publicati<strong>on</strong>s disregard <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong>s from <strong>the</strong> cross<strong>in</strong>gs (pseudo—cross<strong>in</strong>gs), which<br />

57


means a neglect <str<strong>on</strong>g>of</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> changes <strong>on</strong> <strong>the</strong> mass parameters dur<strong>in</strong>g <strong>the</strong> evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nuclear shape <strong>in</strong> spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fact that <strong>the</strong> collective <strong>in</strong>ertia is str<strong>on</strong>gly <strong>in</strong>fluenced by level<br />

cross<strong>in</strong>gs (pseudo—cross<strong>in</strong>gs) [89, 90]. In order to overcome this problem, two—body collisi<strong>on</strong>s<br />

should be regarded which lead to a width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle levels and an effective reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> level cross<strong>in</strong>g effects. For example, calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nuclear <strong>in</strong>ertia <strong>in</strong> a generalized<br />

crank<strong>in</strong>g <strong>model</strong> with pair<strong>in</strong>g correlati<strong>on</strong>s yielded masses <str<strong>on</strong>g>of</str<strong>on</strong>g> about <strong>on</strong>e order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude larger<br />

than <strong>the</strong> <strong>on</strong>es without pair<strong>in</strong>g [91].<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> aims <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter is to obta<strong>in</strong> analytical expressi<strong>on</strong>s for mass parameters<br />

us<strong>in</strong>g <strong>model</strong>s and methods which <strong>in</strong>clude residual <strong>in</strong>teracti<strong>on</strong> effects. In sect. 5.1, <strong>the</strong> mass<br />

parameters are obta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong> l<strong>in</strong>ear resp<strong>on</strong>se <strong>the</strong>ory, tak<strong>in</strong>g <strong>the</strong> fluctuati<strong>on</strong>-dissipati<strong>on</strong><br />

<strong>the</strong>orem and <strong>the</strong> width <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle particle states <strong>in</strong>to account. The same mass parameters are also<br />

derived by Fermi’s golden rule and by smooth<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gle particle spectrum <strong>in</strong> <strong>the</strong> mean—field<br />

crank<strong>in</strong>g formula. In sect. 5.2, <strong>the</strong> mass parameters for <strong>the</strong> relevant collective variables (mass<br />

asymmetry, el<strong>on</strong>gati<strong>on</strong>, neck and deformati<strong>on</strong> parameters) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS and str<strong>on</strong>gly deformed<br />

nuclear systems are evaluated <strong>in</strong> <strong>the</strong> two-center shell <strong>model</strong> with adiabatic and diabatic bases.<br />

5.1 Microscopical <strong>in</strong>ertia<br />

5.1.1 Derivati<strong>on</strong> from collective resp<strong>on</strong>se functi<strong>on</strong><br />

Let us c<strong>on</strong>sider a nuclear system described by a s<strong>in</strong>gle collective coord<strong>in</strong>ate Q and <strong>in</strong>tr<strong>in</strong>sic<br />

s<strong>in</strong>gle particle coord<strong>in</strong>ates x i (with <strong>the</strong> c<strong>on</strong>jugated momentum p i) and assume <strong>the</strong> follow<strong>in</strong>g<br />

effective Hamilt<strong>on</strong>ian [86]<br />

ˆH(xi,pi,Q)= ˆ H(xi,pi,Q0) +(Q − Q0) ˆ F (xi,pi,Q0)<br />

+ 1<br />

2 (Q − Q0) 2 < ∂2H(xi,pi,Q) ˆ<br />

∂Q2 . (5.1)<br />

>Q0,T0<br />

The shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nuclear mean field is changed with <strong>the</strong> collective coord<strong>in</strong>ate Q that <strong>in</strong>tro-<br />

duces <strong>the</strong> coupl<strong>in</strong>g between Q and <strong>the</strong> nucle<strong>on</strong>ic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom x i. Eq. (5.1) is obta<strong>in</strong>ed<br />

by expand<strong>in</strong>g <strong>the</strong> Hamilt<strong>on</strong>ian to sec<strong>on</strong>d order <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> Q0 (local harm<strong>on</strong>ic approx-<br />

58


imati<strong>on</strong>). In <strong>the</strong> sec<strong>on</strong>d order term <strong>the</strong> ”nucle<strong>on</strong>ic” part appears <strong>on</strong>ly as an average <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

corresp<strong>on</strong>d<strong>in</strong>g operator. C<strong>on</strong>sistently with <strong>the</strong> harm<strong>on</strong>ic approximati<strong>on</strong>, this average is to be<br />

built with that density operator for <strong>the</strong> nucle<strong>on</strong>s ρ qs(Q0) which <strong>in</strong> <strong>the</strong> quasi-static picture is to<br />

be calculated with <strong>the</strong> Hamilt<strong>on</strong>ian at Q0, namely, ˆ H(x i,p i,Q0). The operator ρ qs(Q0) is<strong>the</strong><br />

can<strong>on</strong>ical distributi<strong>on</strong> for <strong>the</strong> temperature T0. The coupl<strong>in</strong>g term between <strong>the</strong> collective and<br />

<strong>in</strong>tr<strong>in</strong>sic moti<strong>on</strong> is proporti<strong>on</strong>al to <strong>the</strong> first order <strong>in</strong> δQ = Q − Q0 with an operator ˆ F given by<br />

<strong>the</strong> derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mean field with respect to Q <strong>in</strong> <strong>the</strong> neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> Q0.<br />

The local moti<strong>on</strong> <strong>in</strong> <strong>the</strong> Q variable can be described <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> so-called collective<br />

resp<strong>on</strong>se functi<strong>on</strong> χ coll(ω) [86] (see Appendix). In <strong>the</strong> l<strong>in</strong>ear resp<strong>on</strong>se <strong>the</strong>ory [86], <strong>the</strong> mass<br />

coefficient for a slow collective moti<strong>on</strong> can be expressed as [86, 87, 92, 93]<br />

where<br />

= M(Q) 1<br />

2k2 ∂2 coll(ω)) (χ −1<br />

∂ω2 =(1+ |ω=0 C(0)<br />

χ(0) )2 [M cr + γ2 (0)<br />

M cr = 1<br />

2<br />

∂2χ(ω) ∂ω2 |ω=0 = 1<br />

2<br />

∂2χ ′<br />

(ω)<br />

∂ω 2<br />

|ω=0<br />

], (5.2)<br />

χ(0)<br />

is <strong>the</strong> <strong>in</strong>ertia <strong>in</strong> <strong>the</strong> zero-frequency limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sec<strong>on</strong>d derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic resp<strong>on</strong>se<br />

functi<strong>on</strong>. M cr can be shown to be similar to <strong>the</strong> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crank<strong>in</strong>g <strong>model</strong> [86]. Here a<br />

resp<strong>on</strong>se functi<strong>on</strong> χ(ω) for ”<strong>in</strong>tr<strong>in</strong>sic” moti<strong>on</strong> appears and measures how, at some given Q0<br />

temperature T0, <strong>the</strong> nucle<strong>on</strong>ic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom react to <strong>the</strong> coupl<strong>in</strong>g term ˆ FδQ. The<br />

and<br />

resp<strong>on</strong>se functi<strong>on</strong> χ(ω) =χ <strong>in</strong>tr<strong>in</strong>sic ′(ω) +iχ ′′<br />

(5.3)<br />

(ω) is written <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reactive χ ′(ω)<br />

dissipative χ and ′′<br />

parts [86]. χ(0) and C(0) are <strong>the</strong> zero-frequency limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic<br />

(ω)<br />

resp<strong>on</strong>se functi<strong>on</strong> and stiffness, respectively (see Appendix). For many applicati<strong>on</strong>s, <strong>the</strong> value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> C(0)/χ(0) ≪ 1. The additi<strong>on</strong>al term γ 2 (0)/χ(0) <strong>in</strong> Eq. (5.2) gives a positive c<strong>on</strong>tributi<strong>on</strong> to<br />

M where γ(0) is <strong>the</strong> fricti<strong>on</strong> coefficient def<strong>in</strong>ed as [86]<br />

= −i γ(0) ∂χ(ω)<br />

∂ω |ω=0 = ∂χ′′ (ω)<br />

∂ω |ω=0 = 1<br />

2T0 ψ′′<br />

(5.4)<br />

(0).<br />

dissipative part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic resp<strong>on</strong>se functi<strong>on</strong> χ The ′′<br />

is c<strong>on</strong>nected with <strong>the</strong> dissipative<br />

(ω)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> correlati<strong>on</strong> functi<strong>on</strong> ψ part ′′<br />

through <strong>the</strong> fluctuati<strong>on</strong>-dissipati<strong>on</strong> <strong>the</strong>orem [86]<br />

(ω)<br />

χ ′′<br />

= (ω) 1<br />

¯h<br />

¯hω<br />

tanh(<br />

2T0 )ψ′′<br />

(5.5)<br />

(ω).<br />

59


<strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>dependent particle <strong>model</strong>, <strong>the</strong> correlati<strong>on</strong> functi<strong>on</strong> ψ In ′′<br />

is expressed as [86]<br />

(ω)<br />

ψ ′′<br />

=π¯h (ω)<br />

<br />

|Fjk| j,k<br />

2 j)[1 − n(ɛk)][δ(¯hω − ɛkj)+δ(¯hω + ɛkj)]. (5.6)<br />

n(ɛ<br />

ɛkj = ɛk − ɛj is <strong>the</strong> difference <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle particle energies, n(ɛj) are <strong>the</strong> occupati<strong>on</strong> numbers<br />

Here,<br />

Fjk =< j| and ˆ|k ><strong>the</strong> s<strong>in</strong>gle particle matrix elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> operator F ˆ The ψ F. ′′<br />

s<strong>in</strong>gularity <str<strong>on</strong>g>of</str<strong>on</strong>g> δ—functi<strong>on</strong> type at ω =0<br />

ψ with ′′<br />

R<br />

ψ ′′<br />

=2πψ (ω) 0 δ(¯hω)+ψ ′′<br />

(ω) hasa<br />

R(ω), (5.7)<br />

be<strong>in</strong>g regular at ω =0. ψ′′ R (ω) is given by a sum like <strong>the</strong> <strong>on</strong>e <strong>in</strong> (5.6) but with <strong>the</strong><br />

(ω)<br />

restricti<strong>on</strong> j = k. At j = k, we f<strong>in</strong>d <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong>s from <strong>the</strong> diag<strong>on</strong>al matrix elements<br />

ψ 0 = k<br />

|Fkk| 2 n(ɛk)[1 − n(ɛk)] = T0<br />

<br />

<br />

<br />

<br />

k<br />

∂n(ɛ)<br />

∂ɛ<br />

<br />

<br />

<br />

<br />

ɛ=ɛk<br />

2 ∂ɛk<br />

∂Q<br />

. (5.8)<br />

The last part <strong>in</strong> (5.8) was derived with a Fermi distributi<strong>on</strong> for <strong>the</strong> occupati<strong>on</strong> numbers, which<br />

is characterized by <strong>the</strong> temperature T0. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> T0 does not effectively go to zero with<br />

decreas<strong>in</strong>g excitati<strong>on</strong> energy because each s<strong>in</strong>gle particle level has a width due to <strong>the</strong> two-<br />

body <strong>in</strong>teracti<strong>on</strong>. Indeed at zero excitati<strong>on</strong> energy, <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> occupati<strong>on</strong> num-<br />

deviates from a step functi<strong>on</strong> at least due to pair<strong>in</strong>g correlati<strong>on</strong>s. In order to obta<strong>in</strong> a<br />

bers<br />

correlati<strong>on</strong> functi<strong>on</strong> ψ smooth ′′<br />

(ω), we substitute <strong>the</strong> δ—functi<strong>on</strong>s <strong>in</strong> Eq (5.6) by <strong>the</strong> Lorentzian<br />

Γ/[π((¯hω ± ɛ kj) 2 +Γ 2 )]. The Lorentzian functi<strong>on</strong> with <strong>the</strong> double s<strong>in</strong>gle particle width 2Γ is<br />

applied because ¯hω is <strong>the</strong> transiti<strong>on</strong> energy between two s<strong>in</strong>gle particle states [86]. Then us<strong>in</strong>g<br />

Eqs. (5.4)-(5.8), we can write <strong>the</strong> fricti<strong>on</strong> coefficient <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g form<br />

where<br />

γ(0) = γ diag (0) + γ n<strong>on</strong>diag (0), (5.9)<br />

γ diag (0) = ¯h<br />

Γ<br />

<br />

<br />

<br />

k<br />

∂n(ɛ)<br />

∂ɛ<br />

<br />

<br />

ɛ=ɛk<br />

2 ∂ɛk<br />

∂Q<br />

. (5.10)<br />

For smaller temperatures T0 < 2 MeV, which are <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terest here, γ diag (0) is much larger than<br />

60


γ n<strong>on</strong>diag (0) [86]. The zero-frequency limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic resp<strong>on</strong>se functi<strong>on</strong> def<strong>in</strong>ed as [86]<br />

is expressed as follows<br />

where<br />

= lim<br />

χ(0)<br />

ɛ→0<br />

+∞<br />

−∞<br />

dω<br />

π<br />

χ ′′<br />

(ω)<br />

− iɛ ω =lim<br />

ɛ→0<br />

+∞<br />

−∞<br />

dω<br />

¯hπ<br />

tanh( ¯hω<br />

2T0 )ψ′′ (ω)<br />

ω − iɛ<br />

(5.11)<br />

χ(0) = χ diag (0) + χ n<strong>on</strong>diag (0), (5.12)<br />

χ diag (0) =<br />

<br />

<br />

k<br />

∂n(ɛ)<br />

∂ɛ<br />

<br />

<br />

<br />

ɛ=ɛk<br />

2 ∂ɛk<br />

∂Q<br />

. (5.13)<br />

With realistic assumpti<strong>on</strong>s γ diag (0) ≫ γ n<strong>on</strong>diag (0) and χ diag (0) ≫ χ n<strong>on</strong>diag (0) and neglect<strong>in</strong>g<br />

C(0)/χ(0), we can divide <strong>the</strong> mass parameter (5.2) as<br />

The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diag<strong>on</strong>al matrix elements <str<strong>on</strong>g>of</str<strong>on</strong>g> ˆF to M are<br />

M diag = (γdiag (0)) 2<br />

χdiag (0)<br />

M = M diag + M n<strong>on</strong>diag . (5.14)<br />

¯h2<br />

=<br />

Γ2 <br />

<br />

<br />

<br />

k<br />

∂n(ɛ)<br />

∂ɛ<br />

<br />

∂ɛk<br />

2 <br />

ɛ=ɛk<br />

∂Q<br />

. (5.15)<br />

If <strong>the</strong> s<strong>in</strong>gle particle widths are properly taken <strong>in</strong>to account, <strong>the</strong> n<strong>on</strong>diag<strong>on</strong>al c<strong>on</strong>tributi<strong>on</strong>s to<br />

<strong>the</strong> <strong>in</strong>ertia are [88]<br />

M n<strong>on</strong>diag = M cr =¯h 2 <br />

k=k ′<br />

|Fkk ′ |2<br />

ɛ 2<br />

kk ′ +Γ2 − n(ɛk ′ )<br />

n(ɛk)<br />

(5.16)<br />

.<br />

ɛ k ′ −<br />

ɛ k<br />

The ma<strong>in</strong> c<strong>on</strong>tributi<strong>on</strong> to M is <strong>the</strong> diag<strong>on</strong>al part M diag (e.g., ∼ 102 for<br />

<strong>the</strong> fissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 240 Pu [91]), because it dom<strong>in</strong>ates for collective variables which are resp<strong>on</strong>sible for<br />

changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nuclear shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system [89, 90, 91, 94]. Note that <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M diag<br />

is simpler than M n<strong>on</strong>diag . For <strong>the</strong> case that <strong>the</strong> pair<strong>in</strong>g residual <strong>in</strong>teracti<strong>on</strong> is regarded and<br />

<strong>on</strong>ly diag<strong>on</strong>al matrix elements <strong>in</strong> <strong>the</strong> crank<strong>in</strong>g formula are taken <strong>in</strong>to account, Eq. (5.16) was<br />

obta<strong>in</strong>ed with Γ = ∆ (∆ is <strong>the</strong> pair<strong>in</strong>g gap) <strong>in</strong> Ref. [91, 95]. Start<strong>in</strong>g with an equati<strong>on</strong> for <strong>the</strong><br />

61


s<strong>in</strong>gle particle density matrix extended with an approximate <strong>in</strong>corporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle collisi<strong>on</strong>s<br />

<strong>in</strong> <strong>the</strong> relaxati<strong>on</strong> time approach, <strong>the</strong> authors <str<strong>on</strong>g>of</str<strong>on</strong>g> Ref. [96] derived an expressi<strong>on</strong> similar to (5.16)<br />

(with Γ = ¯h/τ, τ is <strong>the</strong> relaxati<strong>on</strong> time) but with a negative sign. This negative sign arises from<br />

<strong>the</strong> fact that <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> self-c<strong>on</strong>sistency between collective and nucle<strong>on</strong>ic dynamics, which<br />

is important for a correct calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass parameters, was disregarded <strong>in</strong> [96]. It was<br />

<strong>in</strong> [86, 97] that with<strong>in</strong> <strong>the</strong> l<strong>in</strong>ear resp<strong>on</strong>se <strong>the</strong>ory <strong>the</strong> diag<strong>on</strong>al comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fricti<strong>on</strong><br />

stressed<br />

orig<strong>in</strong>ates from <strong>the</strong> ”heat pole” <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> correlati<strong>on</strong> functi<strong>on</strong> ψ parameter ′′<br />

(ω) and vanishes when<br />

<strong>the</strong> system is ergodic. As shown <strong>in</strong> Ref. [98], <strong>the</strong> well necked DNS-type c<strong>on</strong>figurati<strong>on</strong>s are not<br />

ergodic and stable aga<strong>in</strong>st chaos. Even at zero excitati<strong>on</strong> energy, <strong>the</strong> level cross<strong>in</strong>gs at <strong>the</strong><br />

surface lead to c<strong>on</strong>siderable mass flow [89, 90, 94] and <strong>the</strong> diag<strong>on</strong>al comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Fermi<br />

functi<strong>on</strong> ψ correlati<strong>on</strong> ′′<br />

(ω) (or mass parameter) does not vanish.<br />

Besides <strong>the</strong> mass and fricti<strong>on</strong> coefficients, <strong>the</strong> diffusi<strong>on</strong> coefficients D kl (k, l =(Q, P )) must<br />

also have a comp<strong>on</strong>ent diag<strong>on</strong>al <strong>in</strong> <strong>the</strong> matrix elements <str<strong>on</strong>g>of</str<strong>on</strong>g> ˆ F because <strong>the</strong>y are c<strong>on</strong>nected with<br />

correlati<strong>on</strong> functi<strong>on</strong>s. For example, <strong>the</strong> diffusi<strong>on</strong> coefficient <strong>in</strong> momentum is def<strong>in</strong>ed as [86]<br />

5.1.2 Derivati<strong>on</strong> from Fermi’s golden rule<br />

PP D = 1 ′′<br />

(ω =0)=T0γ(0). (5.17)<br />

ψ<br />

2<br />

By sett<strong>in</strong>g ˆ H I = (Q − Q0) ˆ F(xi,pi,Q0) as perturbati<strong>on</strong> (see Eq. (5.1)), <strong>the</strong> decay rate <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

collective state |n >with energy En to <strong>the</strong> collective state |m >with energy Em is given <strong>in</strong><br />

lowest order accord<strong>in</strong>g to Fermi’s golden rule<br />

→ m +¯hω) = w(n 2π<br />

¯h | | 2<br />

×<br />

d(¯hω)| < ¯hω| ˆ F |0 > | 2 δ(En − Em − ¯hω)ρqs(¯hω). (5.18)<br />

Here, <strong>the</strong> <strong>in</strong>tegral is taken over <strong>the</strong> f<strong>in</strong>al states <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic system with <strong>the</strong> density ρqs.<br />

|0 > and |¯hω > are <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic states associated with <strong>the</strong> collective states |n >and |m >,<br />

respectively.<br />

62


The half-decay width is obta<strong>in</strong>ed from Eq.(5.18) as<br />

=¯h<br />

<br />

Γn<br />

m<br />

w(n → m +¯hω). (5.19)<br />

With <strong>the</strong> fluctuati<strong>on</strong>-dissipati<strong>on</strong> <strong>the</strong>orem for small temperatures we have [99]<br />

< ¯hω| | ˆ > | F|0 2 = ρqs(¯hω)d(¯hω) 2 ¯hω<br />

(5.20)<br />

R(ω)dω<br />

with <strong>the</strong> relaxati<strong>on</strong> functi<strong>on</strong> def<strong>in</strong>ed as R(ω) =χ ′′<br />

χ functi<strong>on</strong> ′′<br />

[86] and a Taylor expansi<strong>on</strong><br />

(ω)<br />

= R(ω) χ′′ (ω)<br />

ω<br />

1<br />

=<br />

ω<br />

<br />

χ ′′<br />

=0)+ (ω ∂χ′′<br />

<br />

<br />

(ω)<br />

∂ω<br />

<br />

<br />

ω=0<br />

π<br />

2<br />

(ω)/ω. Us<strong>in</strong>g <strong>the</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> resp<strong>on</strong>se<br />

+ ω 1<br />

2<br />

(ω)<br />

∂ω2 ∂ 2 χ ′′<br />

<br />

<br />

<br />

<br />

<br />

ω=0<br />

ω 2 + ...<br />

<br />

, (5.21)<br />

we calculate <strong>the</strong> <strong>in</strong>tegral <strong>in</strong> (5.18). We <strong>the</strong>n replace w(n → m +¯hω) <strong>in</strong> (5.19) by (5.18).<br />

C<strong>on</strong>sider<strong>in</strong>g <strong>the</strong> standard formula for mass Mn (En = Em)<br />

Mn = ¯h2<br />

2 ( m | | 2 [En − Em ])<br />

−1 , (5.22)<br />

which is obta<strong>in</strong>ed from <strong>the</strong> relati<strong>on</strong> Mn =¯h 2 () −1 [94], we obta<strong>in</strong> by sett<strong>in</strong>g<br />

Γ=Γn and M = Mn<br />

= M ¯h ∂χ<br />

Γ<br />

′′<br />

(ω)<br />

∂ω | = ω=0 ¯h<br />

γ(0). (5.23)<br />

Γ<br />

Large temperatures <strong>in</strong> (5.20) effectively lead to a temperature dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ <strong>in</strong> (5.23). S<strong>in</strong>ce<br />

γ(0) <strong>in</strong> Eq. (5.9) c<strong>on</strong>ta<strong>in</strong>s <strong>the</strong> terms with <strong>the</strong> diag<strong>on</strong>al matrix elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> operator ˆ F,<strong>the</strong><br />

mass parameter M also has <strong>the</strong> diag<strong>on</strong>al comp<strong>on</strong>ent M diag (5.15). So, <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong>s to <strong>the</strong><br />

mass parameter can be aga<strong>in</strong> classified as those with diag<strong>on</strong>al and n<strong>on</strong>diag<strong>on</strong>al matrix elements,<br />

respectively.<br />

That <strong>the</strong> mass parameter is proporti<strong>on</strong>al to <strong>the</strong> fricti<strong>on</strong> coefficient (see Eq. (5.23)), has an<br />

analogy <strong>in</strong> <strong>the</strong> hydrodynamic <strong>model</strong>. For multipole moments ν <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucleus with ν>1,<strong>the</strong><br />

63


follow<strong>in</strong>g ratio <strong>in</strong> <strong>the</strong> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> an irrotati<strong>on</strong>al flow was derived <strong>in</strong> [100]<br />

M irr<br />

/γ ν<br />

irr<br />

= ν<br />

where β is <strong>the</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two-body viscosity and r0 =1.2 fm.<br />

3A2/3 1<br />

(5.24)<br />

,<br />

β 1)r0 − +1)(ν 8π(2ν<br />

5.1.3 Derivati<strong>on</strong> from <strong>the</strong> mean—field crank<strong>in</strong>g formula<br />

Us<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gle particle spectrum ɛα and <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g wave functi<strong>on</strong>s |α >, <strong>on</strong>e can<br />

obta<strong>in</strong> <strong>the</strong> mass parameter with <strong>the</strong> crank<strong>in</strong>g formula [94]<br />

M cr =¯h 2 α=β<br />

| |2 n(ɛα) n(ɛβ) −<br />

(5.25)<br />

.<br />

ɛα − ɛβ<br />

In reality <strong>the</strong> Hamilt<strong>on</strong>ian <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system c<strong>on</strong>ta<strong>in</strong>s a residual two-body <strong>in</strong>teracti<strong>on</strong> between <strong>the</strong><br />

nucle<strong>on</strong>s <strong>in</strong> additi<strong>on</strong> to <strong>the</strong> mean field. The residual coupl<strong>in</strong>g distributes <strong>the</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle<br />

particle states over more complicated states. This spectral smooth<strong>in</strong>g has <strong>the</strong> effect that <strong>the</strong><br />

sum over α and β appear<strong>in</strong>g <strong>in</strong> (5.25) also <strong>in</strong>cludes diag<strong>on</strong>al terms with α = β. Let us prove<br />

this statement.<br />

The Eq.(5.25) can be rewritten as<br />

M cr =¯h 2 <br />

α=β<br />

Next we use <strong>the</strong> follow<strong>in</strong>g replacements<br />

and <strong>the</strong> approximati<strong>on</strong><br />

<br />

dɛ1δ(ɛ1 <br />

dɛ2 − ɛα) δ(ɛ2 2 n(ɛ1) n(ɛ2) −<br />

(5.26)<br />

.<br />

ɛ1 − ɛ2<br />

Γ<br />

(ɛ − ɛk) 2 +(Γ/2) 2<br />

, (5.27)<br />

(5.28)<br />

D 2 2 k1k2 | ≈|F 2 (5.29)<br />

.<br />

Here, D =1/g is <strong>the</strong> average energy distance between s<strong>in</strong>gle particle states. We <strong>the</strong>n express<br />

64


<strong>the</strong> mass (5.26) as<br />

M cr = ¯h2 Γ 2<br />

4π 2<br />

<br />

α=β,k1,k2<br />

|Fk1k2 |2<br />

[ɛ 2 αk1 +(Γ/2)2 ][ɛ 2 βk2 +(Γ/2)2 ]<br />

n(ɛk1<br />

− n(ɛk2 )<br />

)<br />

(5.30)<br />

.<br />

ɛk2 − ɛk1<br />

The energy spread<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle states is taken <strong>in</strong>to account <strong>in</strong> Eq.(5.30). A l<strong>in</strong>e<br />

broaden<strong>in</strong>g happens if collisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particles and holes with <strong>the</strong> background result <strong>in</strong> s<strong>in</strong>gle<br />

particle and s<strong>in</strong>gle hole strength functi<strong>on</strong>s that are c<strong>on</strong>centrated around <strong>the</strong> orig<strong>in</strong>al s<strong>in</strong>gle<br />

particle energies. The quantity Dρk determ<strong>in</strong>es <strong>the</strong> average strength functi<strong>on</strong> for a particle <strong>in</strong><br />

state k [101]. In <strong>the</strong> limit ɛk1 = ɛk2 = ɛk, for ɛα ≈ ɛk and ɛβ ≈ ɛα, i.e. when two neighbor<strong>in</strong>g<br />

levels near <strong>the</strong> level k are c<strong>on</strong>sidered, and 8/π 2 ≈ 1, Eq.(5.30) leads to Eq.(5.15). Thus, diag<strong>on</strong>al<br />

terms <strong>in</strong> <strong>the</strong> mass parameters appear because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> f<strong>in</strong>ite width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle levels<br />

due to <strong>the</strong> residual <strong>in</strong>teracti<strong>on</strong>.<br />

5.2 Results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> calculati<strong>on</strong>s<br />

5.2.1 The adiabatic two-center shell <strong>model</strong><br />

S<strong>in</strong>ce collisi<strong>on</strong>s above <strong>the</strong> Coulomb barrier are discussed, we firstly c<strong>on</strong>sider spherical <strong>nuclei</strong><br />

with βi = 1and <strong>the</strong>n analyse <strong>the</strong> deformati<strong>on</strong> effects.<br />

In order to calculate <strong>the</strong> width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle states, we use <strong>the</strong> expressi<strong>on</strong> [86, 102]<br />

= Γk 1<br />

Γ0<br />

(ɛk − ɛ F ) 2 +(πT0) 2<br />

1+[(ɛ k − ɛ F ) 2 +(πT0) 2 ]/c 2 . (5.31)<br />

Here, ɛ F is <strong>the</strong> Fermi energy. Both parameters Γ0 and c are known from experience with <strong>the</strong><br />

optical <strong>model</strong> potential and <strong>the</strong> effective masses [86]. Their values are <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g ranges:<br />

0.030 MeV −1 ≤ Γ0 −1 ≤ 0.061MeV −1 , 15 MeV≤ c ≤ 30 MeV. The quadratic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

numerator can be obta<strong>in</strong>ed from <strong>the</strong> collisi<strong>on</strong> term <strong>in</strong> <strong>the</strong> Landau <strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Fermi liquid [103]<br />

and has been also verified with<strong>in</strong> a microscopic approach based <strong>on</strong> an effective <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Skyrme type [104]. S<strong>in</strong>ce each s<strong>in</strong>gle particle state has its own width, Eq. (5.15) is generalised<br />

as (Q i = λ, η, η Z,ε,β1,β2):<br />

M diag<br />

ij<br />

=¯h2 k<br />

65<br />

k f<br />

Γ2 ∂ɛ k<br />

∂Qi k<br />

∂ɛ k<br />

∂Q j<br />

. (5.32)


5-1: Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass parameter Mεε (lower part) and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shell correcti<strong>on</strong><br />

Figure<br />

(upper part) <strong>on</strong> ε for <strong>the</strong> system δU 110 + Pd 110 at λ =1.6. In <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mεε, an<br />

Pd<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 30MeV <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS and adiabatic s<strong>in</strong>gle-particle states are used. The mass<br />

excitati<strong>on</strong><br />

<strong>in</strong> <strong>the</strong> Werner-Wheeler approximati<strong>on</strong> is presented by a dashed<br />

calculated<br />

M parameter WW<br />

εε<br />

l<strong>in</strong>e <strong>in</strong> <strong>the</strong> lower part. Units: mfm 2 with m = nucle<strong>on</strong> mass.<br />

66


For <strong>the</strong> Fermi occupati<strong>on</strong> numbers n(ɛk), <strong>the</strong> functi<strong>on</strong><br />

= − fk dnk<br />

dɛk<br />

= 1<br />

cosh<br />

4T0<br />

−2<br />

<br />

ɛF − ɛk<br />

has a bell-like shape with a width T0 and is peaked at <strong>the</strong> Fermi energy ɛ F .<br />

2T0<br />

(5.33)<br />

Various calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass parameter for <strong>the</strong> moti<strong>on</strong> <strong>in</strong> λ were carried out with expres-<br />

si<strong>on</strong>s similar to Eq. (5.32), for example <strong>in</strong> [88, 91, 95]. When <strong>the</strong> system adiabatically moves<br />

towards <strong>the</strong> compound nucleus, <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> M λλ <strong>in</strong>creases approximately by a factor 10—15<br />

<strong>in</strong> our and o<strong>the</strong>r calculati<strong>on</strong>s. In this secti<strong>on</strong>, we c<strong>on</strong>centrate <strong>on</strong> <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass<br />

parameter M εε for <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck to test whe<strong>the</strong>r <strong>the</strong> DNS exists l<strong>on</strong>g enough with<br />

a relatively small neck. The dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> M εε <strong>on</strong> ε is presented <strong>in</strong> Fig. 5-1for <strong>the</strong> system<br />

110 Pd+ 110 Pd at λ =1.6, which corresp<strong>on</strong>ds to <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <strong>in</strong> this symmetric<br />

reacti<strong>on</strong>. The obta<strong>in</strong>ed values <str<strong>on</strong>g>of</str<strong>on</strong>g> M εε have <strong>the</strong> same order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude as <strong>in</strong> [88], where <strong>the</strong><br />

pair<strong>in</strong>g correlati<strong>on</strong>s were taken <strong>in</strong>to account. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> M εε <strong>in</strong>creases by a factor 2.5 when<br />

<strong>the</strong> system falls <strong>in</strong>to <strong>the</strong> fissi<strong>on</strong>-type valley [42]. This valley is observed <strong>in</strong> <strong>the</strong> adiabatic poten-<br />

tial energy surface for ε =0− 0.2 andλ =1.6 − 1.7. This <strong>in</strong>crease reflects <strong>the</strong> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

shell correcti<strong>on</strong> δU with ε towards ε → 0. Smaller values <str<strong>on</strong>g>of</str<strong>on</strong>g> δU corresp<strong>on</strong>d to larger masses<br />

because <strong>the</strong> mass parameter is proporti<strong>on</strong>al to some effective level density g eff at <strong>the</strong> Fermi<br />

The expressi<strong>on</strong> (5.15) could be written as M energy. diag ≈ ¯h2<br />

Γ2 <br />

∂ɛk<br />

∂Q<br />

density g eff is <strong>in</strong> <strong>in</strong>verse proporti<strong>on</strong> to <strong>the</strong> shell correcti<strong>on</strong> δU [95].<br />

2<br />

aver<br />

g eff. The effective level<br />

In order to obta<strong>in</strong> a nuclear shape for <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> similar to <strong>the</strong><br />

<strong>on</strong>e obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> DNS <strong>model</strong>, <strong>the</strong> neck parameter ε should be set about 0.75 [42]. With this<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> ε, <strong>the</strong> neck radius and <strong>the</strong> distance between <strong>the</strong> centers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> are approximately<br />

equal to <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g quantities <strong>in</strong> <strong>the</strong> DNS.<br />

For <strong>the</strong> parameter c <strong>in</strong> Eq. (5.31), we use <strong>the</strong> ”standard” value 20 MeV s<strong>in</strong>ce <strong>the</strong> masses<br />

depend <strong>on</strong>ly weakly <strong>on</strong> this parameter. Sett<strong>in</strong>g <strong>the</strong> parameter Γ (5.32) −1<br />

0<br />

and compar<strong>in</strong>g our results with M (5.32) WW<br />

ij<br />

=0.045 MeV−1 <strong>in</strong><br />

obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Werner-Wheeler approximati<strong>on</strong><br />

for a touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> with <strong>the</strong> excitati<strong>on</strong> energy 30MeV (T0 =1.3MeV ),<br />

f<strong>in</strong>d Mλλ = M we WW,<br />

Mεε ≈ (20 − 30)M λλ WW,<br />

Mλε ≈ 0.4M εε WW and Mλε/ λε √ λλMεε ≪ 1,<br />

M<br />

practically <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system. Therefore, we can c<strong>on</strong>clude that<br />

67


<strong>the</strong> microscopical mass parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck is much larger than <strong>the</strong> <strong>on</strong>e <strong>in</strong> <strong>the</strong> Werner-<br />

Wheeler approximati<strong>on</strong>, and <strong>the</strong> n<strong>on</strong>diag<strong>on</strong>al comp<strong>on</strong>ent M λε is small. S<strong>in</strong>ce at <strong>the</strong> touch<strong>in</strong>g<br />

c<strong>on</strong>figurati<strong>on</strong> <strong>the</strong> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle levels is small and changes slowly with decreas<strong>in</strong>g<br />

el<strong>on</strong>gati<strong>on</strong> λ, <strong>the</strong> microscopical mass parameter <strong>in</strong> λ is close to its smooth, hydrodynamical<br />

value. In c<strong>on</strong>trast, a large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>ternal reorganisati<strong>on</strong> occurs at <strong>the</strong> level cross<strong>in</strong>gs with<br />

decreas<strong>in</strong>g ε and leads to a large neck <strong>in</strong>ertia <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS. So, <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> M εε is larger<br />

than <strong>the</strong> <strong>on</strong>e <strong>in</strong> <strong>the</strong> hydrodynamical <strong>model</strong>, due to large values <str<strong>on</strong>g>of</str<strong>on</strong>g> ∂ɛ k/∂ε. The restricti<strong>on</strong><br />

for <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck may be understood by analys<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gle particle spectrum as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ε [42]. Well necked-<strong>in</strong> shapes with large ε have s<strong>in</strong>gle particle spectra with a good<br />

shell structure. The levels show a larger number <str<strong>on</strong>g>of</str<strong>on</strong>g> avoided level cross<strong>in</strong>gs with decreas<strong>in</strong>g ε.<br />

The time-dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck parameter calculated with <strong>the</strong> microscopical and Werner-<br />

Wheeler mass formulas are compared <strong>in</strong> <strong>the</strong> upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 5-2. The lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 5-2<br />

shows trajectories <strong>in</strong> <strong>the</strong> (ε, λ)-plane, calculated with microscopic and Werner-Wheeler masses.<br />

An adiabatic potential energy surface is used <strong>in</strong> all <strong>the</strong>se calculati<strong>on</strong>s [42]. S<strong>in</strong>ce <strong>the</strong>re are no<br />

suitable barriers at smaller values <str<strong>on</strong>g>of</str<strong>on</strong>g> λ and ε <strong>in</strong> <strong>the</strong> adiabatic potential which h<strong>in</strong>der a growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck, <strong>the</strong> neck parameter and system length decrease steadily to smaller values, faster <strong>in</strong><br />

<strong>the</strong> case with <strong>the</strong> Werner-Wheeler masses and much slower with <strong>the</strong> microscopical masses. The<br />

experiments <strong>on</strong> fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong> cannot be expla<strong>in</strong>ed as a melt<strong>in</strong>g with <strong>in</strong>creas<strong>in</strong>g neck<br />

toge<strong>the</strong>r with a decreas<strong>in</strong>g λ <strong>in</strong> an adiabatic potential [42]. It seems that <strong>the</strong>re is an <strong>in</strong>termediate<br />

situati<strong>on</strong> between <strong>the</strong> adiabatic and diabatic limits for <strong>the</strong> collective moti<strong>on</strong>. The study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> transiti<strong>on</strong> between diabatic and adiabatic regimes gives a potential energy surface which<br />

c<strong>on</strong>ta<strong>in</strong>s quite high barriers for <strong>the</strong> moti<strong>on</strong> to smaller λ and ε [35, 66]. Therefore, <strong>the</strong> dynamical<br />

calculati<strong>on</strong>s with <strong>the</strong> adiabatic potential energy show a maximal possible growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck.<br />

S<strong>in</strong>ce <strong>the</strong> moment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>ertia is large <strong>in</strong> <strong>heavy</strong> nuclear systems, we disregard <strong>the</strong> dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential energy <strong>on</strong> <strong>the</strong> angular momentum <strong>in</strong> dynamical calculati<strong>on</strong>s. Indeed, <strong>in</strong> <strong>the</strong><br />

fusi<strong>on</strong> reacti<strong>on</strong>s with massive <strong>nuclei</strong> <strong>the</strong> low angular momenta (< 20 ¯h ) <strong>on</strong>ly c<strong>on</strong>tribute to<br />

<strong>the</strong> evaporati<strong>on</strong> residue cross secti<strong>on</strong>s. The isotopic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong><strong>in</strong>g <strong>nuclei</strong> form<strong>in</strong>g<br />

a DNS is chosen by <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a N/Z-equilibrium <strong>in</strong> <strong>the</strong> system, and η z follows η [42].<br />

In processes develop<strong>in</strong>g <strong>in</strong> shorter times, η z could be c<strong>on</strong>sidered as an <strong>in</strong>dependent collective<br />

variable.<br />

68


5-2: Upper part: Time-dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck parameter ε for <strong>the</strong> system Figure 96 + Zr 96 Zr<br />

with microscopical (solid curve) and Werner-Wheeler (dashed curve) mass parame-<br />

calculated<br />

Lower part: Trajectories <strong>in</strong> <strong>the</strong> (λ, ε)-plane, calculated for <strong>the</strong> system ters. 136 + Xe 136 Xe<br />

microscopical mass parameters (solid curve) and with Werner-Wheeler mass parameters<br />

with<br />

curve). The end po<strong>in</strong>ts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> solid and dashed curves <strong>in</strong> <strong>the</strong> draw<strong>in</strong>g are at time<br />

(dashed<br />

=2× 10 t −21 and t =2× 10 s −22 respectively.<br />

s,<br />

69


5-3: Mass parameter Mεε as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> β, calculated for <strong>the</strong> system<br />

Figure<br />

Pd + 110 Pd at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> with excitati<strong>on</strong> energy 30MeV and adiabatic<br />

110<br />

s<strong>in</strong>gle-particle states. Units: mfm 2 with m = nucle<strong>on</strong> mass.<br />

70


As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 5-2, we f<strong>in</strong>d that <strong>the</strong> microscopical mass parameters keep <strong>the</strong> system<br />

near <strong>the</strong> entrance c<strong>on</strong>figurati<strong>on</strong> for a sufficient l<strong>on</strong>g time comparable with <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong><br />

even <strong>in</strong> an adiabatic potential. Therefore, this situati<strong>on</strong> justifies <strong>the</strong> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fixed neck<br />

as we assume it <strong>in</strong> <strong>the</strong> DNS <strong>model</strong> [34]. When <strong>the</strong> DNS c<strong>on</strong>figurati<strong>on</strong> exists a l<strong>on</strong>g time, <strong>the</strong>n<br />

<strong>the</strong>rmal fluctuati<strong>on</strong>s <strong>in</strong> <strong>the</strong> mass asymmetry coord<strong>in</strong>ate play <strong>the</strong> essential role <strong>in</strong> <strong>the</strong> fusi<strong>on</strong><br />

process. Indeed, <strong>the</strong>se fluctuati<strong>on</strong>s are resp<strong>on</strong>sible for <strong>the</strong> fusi<strong>on</strong> <strong>in</strong> <strong>the</strong> DNS <strong>model</strong>. Thus, <strong>the</strong><br />

dynamical restricti<strong>on</strong> for <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck can be caused partly by a large microscopical<br />

mass parameter for <strong>the</strong> neck moti<strong>on</strong>, partly by <strong>the</strong> potential energy surface <strong>in</strong>termediate between<br />

diabatic and adiabatic limits.<br />

In <strong>the</strong> adiabatic two-center shell <strong>model</strong>, <strong>the</strong> mass parameter M εε slightly <strong>in</strong>creases with <strong>the</strong><br />

deformati<strong>on</strong> parameters β i <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two <strong>nuclei</strong> <strong>in</strong> <strong>the</strong> symmetric system 110 Pd+ 110 Pd as shown <strong>in</strong><br />

Fig. 5-3. The small variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mεε is due to <strong>the</strong> shell structure. Therefore, <strong>the</strong> relatively large<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> M εε is a general result for collisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> both spherical and deformed <strong>nuclei</strong>. Fig. 5-4<br />

shows <strong>the</strong> mass parameter M εε at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> symmetric systems η = 0 with<br />

βi = 1as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass number A = A1 + A2 =2A1. The mass Mεε <strong>in</strong>creases with<br />

<strong>the</strong> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system. It slightly decreases with <strong>in</strong>creas<strong>in</strong>g mass asymmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS.<br />

5.2.2 The diabatic two-center shell <strong>model</strong><br />

Let us now c<strong>on</strong>sider <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass parameters (5.32) with <strong>the</strong> diabatic s<strong>in</strong>gle<br />

particle energies obta<strong>in</strong>ed with <strong>the</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum-symmetry <strong>in</strong> <strong>the</strong> diabatic two-center<br />

shell <strong>model</strong> [35, 57]. In <strong>the</strong> diabatic moti<strong>on</strong>, <strong>the</strong> nucle<strong>on</strong>s do not occupy <strong>the</strong> lowest s<strong>in</strong>gle<br />

particle states as <strong>in</strong> <strong>the</strong> adiabatic case, but rema<strong>in</strong> <strong>in</strong> <strong>the</strong>ir diabatic states. In comparis<strong>on</strong> to<br />

<strong>the</strong> calculati<strong>on</strong>s with <strong>the</strong> adiabatic s<strong>in</strong>gle particle levels, <strong>the</strong> numerical procedure with diabatic<br />

s<strong>in</strong>gle particle levels is much easier because each level has a complete set <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum numbers<br />

and <strong>the</strong> draw<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> levels as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a collective variable is simpler and unique.<br />

Due to <strong>the</strong> n<strong>on</strong>zero width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle states, <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle parti-<br />

cle strength over more complicated states is a Lorentzian distributi<strong>on</strong> ρk(ɛ) as <strong>in</strong>troduced <strong>in</strong><br />

(5.28) <strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> δ-functi<strong>on</strong> δ(ɛ − ɛk) [86]. The occupati<strong>on</strong> number n(ɛ k)<str<strong>on</strong>g>of</str<strong>on</strong>g>astatek<br />

Eq.<br />

energy ɛk and <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g value <str<strong>on</strong>g>of</str<strong>on</strong>g> fk with<br />

71<br />

are obta<strong>in</strong>ed, respectively, from functi<strong>on</strong>s


5-4: Mass parameter Mεε as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass number A = A1 + A2 =2A1 for<br />

Figure<br />

systems (η = 0) calculated with adiabatic s<strong>in</strong>gle-particle states for βi =1,λ =1.6,<br />

symmetric<br />

and ε =0.75. Units: mfm 2 with m = nucle<strong>on</strong> mass.<br />

72


n(ɛ) anddn(ɛ)/dɛ calculated with zero width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> levels<br />

n(ɛ k)=<br />

n(ɛ)ρk(ɛ)dɛ, (5.34)<br />

k = − f dn(ɛ)<br />

ρk(ɛ)dɛ. (5.35)<br />

dɛ<br />

The Lorentzian distributi<strong>on</strong> <strong>in</strong>creases <strong>the</strong> diffuseness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Fermi-distributi<strong>on</strong>. The Fermi<br />

distributi<strong>on</strong> which is given at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> <strong>in</strong> <strong>the</strong> DNS is destroyed<br />

if <strong>the</strong> fur<strong>the</strong>r moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system runs diabatically. To treat <strong>the</strong> diabatic case, we use <strong>the</strong><br />

follow<strong>in</strong>g functi<strong>on</strong> n(ɛ) for an arbitrary c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system<br />

n(ɛ) =<br />

N<br />

l=0<br />

a l (ϑ(ɛ − ɛ l) − ϑ(ɛ − ɛ l+1)) , (5.36)<br />

where ϑ(x) is <strong>the</strong> Heavyside’s functi<strong>on</strong> and ɛ l <strong>the</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle particle state l with <strong>the</strong><br />

occupati<strong>on</strong> number a l. Here, <strong>the</strong> numbers l =0,...,N count <strong>the</strong> s<strong>in</strong>gle particle states <strong>in</strong> <strong>the</strong><br />

regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Fermi level. The values ɛ0 and ɛ N+1 are <strong>the</strong> low and high limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle<br />

particle energies. For lower and higher energies, <strong>the</strong> occupati<strong>on</strong> numbers are <strong>on</strong>e and zero,<br />

respectively. Therefore, we assume a0 = 1and a N = 0 <strong>in</strong> (5.36). The derivative dn(ɛ)/dɛ is<br />

expressed as<br />

− dn(ɛ)<br />

dɛ =(1−a1)δ(ɛ ɛ1)+ −<br />

N−1<br />

<strong>the</strong>n obta<strong>in</strong> <br />

fk with (5.35) as follows<br />

We<br />

<br />

k =(1−a1)ρk(ɛ1)+ f N−1 <br />

(al−1 − al)δ(ɛ − ɛl)+aN−1δ(ɛ − ɛN ). (5.37)<br />

l=2<br />

l=2<br />

(a l−1 − a l)ρ k(ɛ l)+a N −1ρ k(ɛ N ). (5.38)<br />

In <strong>the</strong> calculati<strong>on</strong>s we assume <strong>the</strong> same average width for each Lorentzian ρ k(ɛ). The diabatic<br />

occupati<strong>on</strong> numbers a l are fixed at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system us<strong>in</strong>g a Fermi<br />

for a smaller temperature T distributi<strong>on</strong> ∗<br />

0 < T0. value <str<strong>on</strong>g>of</str<strong>on</strong>g> T The ∗<br />

0<br />

is chosen <strong>in</strong> such a way<br />

that <strong>the</strong> occupati<strong>on</strong> numbers n(ɛ k) (5.34) and <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> f k (5.35) obta<strong>in</strong>ed at <strong>the</strong> touch<strong>in</strong>g<br />

c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>, us<strong>in</strong>g ei<strong>the</strong>r <strong>the</strong> exact expresi<strong>on</strong>s (Fermi distributi<strong>on</strong> and (5.33)) or<br />

73


<strong>the</strong> approximate expressi<strong>on</strong>s (Eqs. (5.36) and (5.37)), are nearly equal <strong>in</strong> both cases.<br />

Similar results as <strong>in</strong> <strong>the</strong> adiabatic two-center shell <strong>model</strong> are obta<strong>in</strong>ed. The mass parameters<br />

M λλ and M εε depend weakly <strong>on</strong> <strong>the</strong> mass asymmetry η and <strong>on</strong> <strong>the</strong> deformati<strong>on</strong>s β <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong><br />

(β = β1 = β2 for 110 Pd+ 110 Pd) at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong>. This result is presented <strong>in</strong><br />

Fig. 5-5. One can observe a m<strong>in</strong>imum <str<strong>on</strong>g>of</str<strong>on</strong>g> M λλ as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> β <strong>in</strong> <strong>the</strong> reacti<strong>on</strong> 110 Pd+ 110 Pd<br />

around <strong>the</strong> ground state deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 110 Pd (β ≈ 1.2). S<strong>in</strong>ce we regard <strong>the</strong> widths <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle-<br />

particles states, <strong>the</strong> mass parameters depend more smoothly <strong>on</strong> <strong>the</strong> mass asymmetry η than<br />

<strong>the</strong> mean field crank<strong>in</strong>g masses. In comparis<strong>on</strong> to Ref. [84], where <strong>the</strong> hydrodynamical-type<br />

treatment was used, <strong>the</strong> shell effects are here more transparent <strong>in</strong> <strong>the</strong> present c<strong>on</strong>siderati<strong>on</strong><br />

because all peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle spectra are taken <strong>in</strong>to account. Let us c<strong>on</strong>sider<br />

<strong>the</strong> fragmentati<strong>on</strong> 86 Kr + 134 Ba (η =0.2) <strong>in</strong> <strong>the</strong> system 220 U where <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong>s<br />

<strong>in</strong> <strong>the</strong> fragments is close to <strong>the</strong> magic numbers 50 and 82, respectively, and <strong>the</strong> s<strong>in</strong>gle particle<br />

have a smaller slope with respect to λ than <strong>in</strong> <strong>the</strong> neighbour<strong>in</strong>g comb<strong>in</strong>ati<strong>on</strong>s. We f<strong>in</strong>d a<br />

levels<br />

c<strong>on</strong>tributi<strong>on</strong> to Mλλ from M smaller diag<br />

λλ and a local m<strong>in</strong>imum <strong>in</strong> <strong>the</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> M λλ <strong>on</strong> η<br />

(Fig. 5-5). For η0.7.<br />

Therefore, we cannot calculate M εε at <strong>the</strong> moment for such large mass asymmetries, where a<br />

str<strong>on</strong>g <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> M εε with η is expected <strong>in</strong> accordance with Ref. [84].<br />

The mass parameter M εε <strong>in</strong>creases about two times with decreas<strong>in</strong>g ε from 1.0 to0.5 or<br />

with <strong>in</strong>creas<strong>in</strong>g neck as shown <strong>in</strong> Fig. 5-6 and depends weakly <strong>on</strong> <strong>the</strong> mass number A. In<strong>the</strong><br />

reacti<strong>on</strong>s 110 Pd+ 110 Pd and 48 Ca+ 172 Hf, which lead to <strong>the</strong> same compound nucleus 220 U, <strong>the</strong><br />

difference between <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g values <str<strong>on</strong>g>of</str<strong>on</strong>g> M εε becomes larger for small values <str<strong>on</strong>g>of</str<strong>on</strong>g> ε. Such a<br />

behaviour correlates with <strong>the</strong> fact that <strong>the</strong> diabatic c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong> potential energy grows<br />

faster with decreas<strong>in</strong>g ε <strong>in</strong> symmetric c<strong>on</strong>figurati<strong>on</strong>s than <strong>in</strong> asymmetric <strong>on</strong>es [35].<br />

For fixed ε =0.75, <strong>the</strong> mass M λλ grows with decreas<strong>in</strong>g el<strong>on</strong>gati<strong>on</strong> λ <strong>on</strong> average as shown<br />

<strong>in</strong> Fig. 5-6 and is 5 times larger than <strong>the</strong> reduced mass at λ ≈ 1.3. The dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> M λλ<br />

<strong>on</strong> λ has fluctuati<strong>on</strong>s around an average upwards trend which are more pr<strong>on</strong>ounced with an<br />

<strong>in</strong>creas<strong>in</strong>g total mass number A <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system (Fig. 5-6) and at smaller temperatures (Fig. 5-7).<br />

The average trend is c<strong>on</strong>nected with an <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> average slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle levels<br />

with decreas<strong>in</strong>g λ or ε and with <strong>the</strong> enlarged number <str<strong>on</strong>g>of</str<strong>on</strong>g> cross<strong>in</strong>gs between <strong>the</strong> diabatic levels.<br />

74


a behaviour correlates with <strong>the</strong> diabatic c<strong>on</strong>tributi<strong>on</strong>s to <strong>the</strong> potential energy [35]. The<br />

Such<br />

arise from <strong>the</strong> factor fluctuati<strong>on</strong>s ˜<br />

k /Γ f 2 <strong>in</strong> Eq. (5.32) and are related to <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g number<br />

k<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cross<strong>in</strong>gs between <strong>the</strong> s<strong>in</strong>gle particle levels near <strong>the</strong> Fermi level with decreas<strong>in</strong>g λ [35].<br />

The choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle particle levels is crucial for <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> M diag <strong>in</strong><br />

<strong>the</strong> diabatic and adiabatic cases with<strong>in</strong> a reas<strong>on</strong>able variati<strong>on</strong>. If <strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ both −1<br />

0 =0.045<br />

MeV−1 <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ , −1<br />

is taken as 0.03 MeV 0 −1 <strong>the</strong> lower limit , <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> Mεε becomes<br />

at<br />

times smaller, but rema<strong>in</strong>s larger than M 2.25 WW<br />

εε<br />

about <strong>on</strong>e order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude. For larger<br />

by<br />

<strong>the</strong> average width Γ <strong>in</strong>creases and <strong>the</strong> functi<strong>on</strong> temperatures, ˜<br />

k /Γ f 2<br />

k<br />

becomes smoo<strong>the</strong>r. The<br />

mass parameter M εε depends <strong>on</strong> temperature T0 ma<strong>in</strong>ly due to <strong>the</strong> width Γ k <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-<br />

levels ( Γk ∼ T particle 2 0 ). The value <str<strong>on</strong>g>of</str<strong>on</strong>g> M decreases with T εε −4<br />

. One- and two-body <strong>in</strong>ter-<br />

0<br />

acti<strong>on</strong>s [96] c<strong>on</strong>tribute to <strong>the</strong> n<strong>on</strong>diag<strong>on</strong>al and diag<strong>on</strong>al parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass parameter, respec-<br />

tively. Whereas <strong>the</strong> <strong>on</strong>e-body c<strong>on</strong>tributi<strong>on</strong> to mass (n<strong>on</strong>diag<strong>on</strong>al part) is relatively <strong>in</strong>sensitive<br />

to <strong>the</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system, <strong>the</strong> two-body c<strong>on</strong>tributi<strong>on</strong> to mass (diag<strong>on</strong>al part) <strong>in</strong>creases<br />

str<strong>on</strong>gly with decreas<strong>in</strong>g temperature. The two-body <strong>in</strong>teracti<strong>on</strong> is c<strong>on</strong>sidered <strong>in</strong> our calcu-<br />

lati<strong>on</strong>s us<strong>in</strong>g <strong>the</strong> width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle levels [86]. So, we can observe <strong>in</strong> Fig. 5-7 that<br />

M diag<br />

εε<br />

=1MeV )/M (T0 diag(T0<br />

=1.5MeV) ∼ 5 <strong>on</strong> average for <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> ε =0.5− εε<br />

. We 1<br />

that <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diag<strong>on</strong>al part M found diag to Mεε is <strong>the</strong> largest at quite a high<br />

εε<br />

excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 30MeV (T0 =1.3MeV ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>in</strong> fusi<strong>on</strong> reacti<strong>on</strong>s. For comparis<strong>on</strong>,<br />

<strong>the</strong> excitati<strong>on</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS are smaller than 20MeV (T0 < 1.0MeV )<strong>in</strong>Pb− and<br />

Bi− based cold fusi<strong>on</strong> reacti<strong>on</strong>s. Hot fusi<strong>on</strong> reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong> have excitati<strong>on</strong> energies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS smaller than 40MeV (T0 =1.5MeV ) and a rapid decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> survival<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compound nucleus with <strong>in</strong>creas<strong>in</strong>g excitati<strong>on</strong> energy. F<strong>in</strong>ally, we should stress<br />

that <strong>the</strong> mass parameter M εε rema<strong>in</strong>s always much larger (e.g., 20−30 times for T0 =1.3MeV)<br />

<strong>in</strong> fusi<strong>on</strong> reacti<strong>on</strong>s than <strong>the</strong> mass calculated with <strong>the</strong> hydrodynamical Werner-Wheeler approx-<br />

imati<strong>on</strong> for T0 =1− 1.5MeV.<br />

The mass parameters at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> are <strong>the</strong> same <strong>in</strong> <strong>the</strong> adia-<br />

batic and diabatic descripti<strong>on</strong>s because <strong>the</strong> s<strong>in</strong>gle particle levels and occupati<strong>on</strong> numbers are<br />

practically <strong>the</strong> same <strong>in</strong> <strong>the</strong>se two limits. It is known that <strong>the</strong> mass parameters are smaller <strong>in</strong><br />

<strong>the</strong> diabatic case for a zero width <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle particle levels than <strong>in</strong> <strong>the</strong> adiabatic case [57]. We<br />

found values for <strong>the</strong> mass parameters M λλ and M εε with<strong>in</strong> <strong>the</strong> diabatic TCSM which are closer<br />

75


(10 3 m fm 2)<br />

M , M<br />

λλ εε<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0,0<br />

30<br />

0,1 0,2 0,3 η 0,4 0,5 0,6<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0,9 1,0 1,1 1,2 1,3 1,4<br />

5-5: Upper part: Mass parameters Mλλ (solid l<strong>in</strong>e) and Mεε (dotted l<strong>in</strong>e) as functi<strong>on</strong>s<br />

Figure<br />

mass asymmetry η at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> for DNS which leads to <strong>the</strong> same compound<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nucleus 220 The value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck coord<strong>in</strong>ate is ε =0.75, and <strong>the</strong> excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

U.<br />

is 30MeV. The calculati<strong>on</strong> is d<strong>on</strong>e with spherical <strong>nuclei</strong>. Lower part: The same as <strong>in</strong> <strong>the</strong><br />

DNS<br />

part, but as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> β for <strong>the</strong> reacti<strong>on</strong> upper 110Pd+ 110 (η = 0). Diabatic<br />

Pd<br />

states are used. Units: mfm s<strong>in</strong>gle-particle 2 m = nucle<strong>on</strong> mass.<br />

with<br />

76<br />

β


to <strong>the</strong> <strong>on</strong>es obta<strong>in</strong>ed <strong>in</strong> adiabatic calculati<strong>on</strong>s because we took <strong>the</strong> width Γ k <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle-particle<br />

states <strong>in</strong>to c<strong>on</strong>siderati<strong>on</strong>. This is observed <strong>in</strong> Figs. 5-1and 5-6 compar<strong>in</strong>g <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> M εε<br />

at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> for <strong>the</strong> reacti<strong>on</strong> 110 Pd+ 110 Pd. Due to <strong>the</strong> effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle states, <strong>the</strong> occupati<strong>on</strong> probabilities for s<strong>in</strong>gle-particle levels<br />

with zero widths are distributed over more levels. This effect partially destroys <strong>the</strong> difference<br />

between <strong>the</strong> <str<strong>on</strong>g>diabaticity</str<strong>on</strong>g> and a<str<strong>on</strong>g>diabaticity</str<strong>on</strong>g> at cross<strong>in</strong>gs (or pseudo-cross<strong>in</strong>gs) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle<br />

levels. We want to stress that <strong>the</strong> differences between <strong>the</strong> diabatic and adiabatic s<strong>in</strong>gle-particle<br />

levels appear <strong>on</strong>ly near <strong>the</strong> cross<strong>in</strong>g po<strong>in</strong>ts. Moreover, <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic occupa-<br />

ti<strong>on</strong> numbers n(ɛ k) and <strong>the</strong> derivatives f k approaches <strong>the</strong> <strong>on</strong>es obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> adiabatic case<br />

for fixed values <str<strong>on</strong>g>of</str<strong>on</strong>g> ε, λ and excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system (Fig. 5-8). S<strong>in</strong>ce we showed <strong>the</strong><br />

similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data obta<strong>in</strong>ed with adiabatic and diabatic levels us<strong>in</strong>g <strong>the</strong> same width, we can<br />

use diabatic s<strong>in</strong>gle particle states <strong>in</strong> fur<strong>the</strong>r calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mass parameters <strong>in</strong> order to simplify<br />

<strong>the</strong> numerical procedure.<br />

The obta<strong>in</strong>ed mass parameter for <strong>the</strong> neck degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom is much larger than <strong>the</strong> <strong>on</strong>e<br />

obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> hydrodynamical <strong>model</strong> with <strong>the</strong> Werner-Wheeler approximati<strong>on</strong>. By apply<strong>in</strong>g<br />

<strong>the</strong> microscopical mass parameters we f<strong>in</strong>d a relatively stable neck dur<strong>in</strong>g <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>.<br />

In additi<strong>on</strong>, a large energy threshold due to <strong>the</strong> diabatic (structural) forbiddenness effect [35, 36]<br />

h<strong>in</strong>ders <strong>the</strong> moti<strong>on</strong> to smaller <strong>in</strong>ternuclear distances. Therefore, <strong>the</strong> DNS c<strong>on</strong>figurati<strong>on</strong> exists<br />

l<strong>on</strong>g enough, and <strong>the</strong>rmal fluctuati<strong>on</strong>s <strong>in</strong> <strong>the</strong> mass asymmetry coord<strong>in</strong>ate could develop and<br />

lead to fusi<strong>on</strong> and quasifissi<strong>on</strong>, which are <strong>the</strong> essential reacti<strong>on</strong>s <strong>in</strong> <strong>the</strong> DNS c<strong>on</strong>cept.<br />

77


(10 3 m fm 2)<br />

M εε<br />

M (10<br />

λλ<br />

4 m fm2) 12 96 Zr + 96 Zr<br />

8<br />

4<br />

6<br />

4<br />

2<br />

0,5 0,6 0,7 ε 0,8 0,9 1,0<br />

1,3 1,4 1,5 1,6<br />

λ<br />

110 Pd + 110 Pd<br />

136 Xe + 136 Xe<br />

48 Ca + 172 Hf<br />

5-6: Upper part: Mεε as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck coord<strong>in</strong>ate ε at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong><br />

Figure<br />

<strong>the</strong> reacti<strong>on</strong>s: for 96 + Zr 96 (solid l<strong>in</strong>e), Zr 110Pd+ 110 (dashed l<strong>in</strong>e), Pd 136 + Xe 136 (dotted<br />

Xe<br />

and l<strong>in</strong>e) 48 + Ca 172 (dashed-dotted l<strong>in</strong>e). The excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>in</strong> <strong>the</strong>se<br />

Hf<br />

is 30MeV . Lower part: The same as <strong>in</strong> <strong>the</strong> upper part, but for Mλλ as a functi<strong>on</strong><br />

reacti<strong>on</strong>s<br />

<strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ. Diabatic s<strong>in</strong>gle-particle states are used. Units: mfm <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 m = nucle<strong>on</strong><br />

with<br />

mass.<br />

78


5-7: Mass parameter Mεε as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ε at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <strong>in</strong> <strong>the</strong><br />

Figure<br />

Pd + 110 Pd reacti<strong>on</strong> for temperatures 110 =1MeV (solid l<strong>in</strong>e) and 1.5MeV (dashed l<strong>in</strong>e).<br />

T0<br />

Diabatic s<strong>in</strong>gle-particle states are used. Units: mfm 2 with m = nucle<strong>on</strong> mass.<br />

79


~<br />

f k (MeV -1)<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

adiab.<br />

diab.<br />

ε = 0.52<br />

λ = 1.60<br />

30 40 50 60 70<br />

ε k (MeV)<br />

Figure 5-8: Derivatives ∼ f k <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> adiabatic (solid l<strong>in</strong>e) and diabatic (dashed l<strong>in</strong>e) neutr<strong>on</strong> occu-<br />

numbers pati<strong>on</strong> ñ (ɛ as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle energies ɛk for <strong>the</strong> system k) 110 Pd+ 110 Pd<br />

moves <strong>in</strong> <strong>the</strong> neck coord<strong>in</strong>ate ε. The <strong>nuclei</strong> are <strong>in</strong> <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> (λ =1.6)<br />

which<br />

and are c<strong>on</strong>sidered as spherical. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> ε is 0.52.<br />

80


Chapter 6<br />

In most reacti<strong>on</strong>s studied <strong>in</strong> chapter 3 [35] <strong>the</strong> diabatic potential has a m<strong>in</strong>imum <strong>in</strong> <strong>the</strong> neck<br />

parameter ε around ε = 0.65—0.85. Due to <strong>the</strong> large <strong>in</strong>ertia and fricti<strong>on</strong> coefficient <strong>in</strong> <strong>the</strong> neck<br />

coord<strong>in</strong>ate ε obta<strong>in</strong>ed <strong>in</strong> chapter 5 [43], <strong>the</strong> DNS c<strong>on</strong>figurati<strong>on</strong>s with fixed neck parameters have<br />

a l<strong>on</strong>g lifetime <strong>in</strong> comparis<strong>on</strong> to <strong>the</strong> reacti<strong>on</strong> time. In c<strong>on</strong>trast to <strong>the</strong> Ref. [42], where <strong>the</strong> fusi<strong>on</strong><br />

probability through <strong>the</strong> fissi<strong>on</strong>-type valley with small ε was c<strong>on</strong>sidered, fusi<strong>on</strong> probabilities P CN<br />

obta<strong>in</strong>ed for fixed large ε depend correctly <strong>on</strong> <strong>the</strong> <strong>in</strong>itial value <str<strong>on</strong>g>of</str<strong>on</strong>g> η <strong>in</strong> <strong>the</strong> entrance channel [34].<br />

As <strong>in</strong> Ref. [42], <strong>the</strong> adiabatic treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> <strong>in</strong> λ yields fusi<strong>on</strong> probabilities which are<br />

c<strong>on</strong>siderably overestimated <strong>in</strong> comparis<strong>on</strong> to <strong>the</strong> experimental data although a fixed large neck<br />

ε is c<strong>on</strong>sidered. The reas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this overestimate is clearly seen <strong>in</strong> Fig. 6-1, where <strong>the</strong> adiabatic<br />

potentials for different fragmentati<strong>on</strong>s lead<strong>in</strong>g to <strong>the</strong> same compound nucleus 246 Fm are shown<br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> λ at ε = 0.75. In c<strong>on</strong>trast to experiment <strong>the</strong> h<strong>in</strong>drance <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> <strong>in</strong> <strong>the</strong>se<br />

potentials is practically absent (P CN ≈ 1) because <strong>the</strong>re is no fusi<strong>on</strong> barrier for <strong>the</strong> moti<strong>on</strong><br />

to smaller el<strong>on</strong>gati<strong>on</strong>s λ. The diabatic effects <strong>in</strong> <strong>the</strong> entrance phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> collisi<strong>on</strong> studied <strong>in</strong><br />

chapter 3 str<strong>on</strong>gly h<strong>in</strong>der <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system to smaller el<strong>on</strong>gati<strong>on</strong>s λ. The study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

transiti<strong>on</strong> from <strong>the</strong> diabatic potential to <strong>the</strong> adiabatic <strong>on</strong>e <strong>in</strong> <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system <strong>in</strong> λ<br />

dur<strong>in</strong>g <strong>the</strong> lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear system allows us to c<strong>on</strong>clude whe<strong>the</strong>r <strong>the</strong> fusi<strong>on</strong> is possible<br />

<strong>in</strong> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> coord<strong>in</strong>ate.<br />

81


V (MeV)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

110Pd+ 136Xe<br />

86Kr+ 160Gd<br />

76Ge+ 170Er<br />

1,2 1,3 1,4 1,5 1,6 1,7 1,8<br />

6-1: Adiabatic potentials as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> λ calculated with<strong>in</strong> <strong>the</strong> TCSM for differ-<br />

Figure<br />

comb<strong>in</strong>ati<strong>on</strong>s lead<strong>in</strong>g to <strong>the</strong> same compound nucleus ent 246 The <strong>nuclei</strong> are c<strong>on</strong>sidered as<br />

Fm.<br />

spherical and <strong>the</strong> neck parameter ε =0.75. The crosses denote <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong>s.<br />

82<br />

λ


It will be <strong>in</strong>terest<strong>in</strong>g to study <strong>the</strong> competiti<strong>on</strong> between two possible fusi<strong>on</strong> channels. The<br />

first <strong>on</strong>e (λ—channel) describes <strong>the</strong> transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two <strong>nuclei</strong> <strong>in</strong>to <strong>the</strong> compound nucleus with a<br />

decreas<strong>in</strong>g el<strong>on</strong>gati<strong>on</strong> and assumes a fixed mass asymmetry η dur<strong>in</strong>g <strong>the</strong> fusi<strong>on</strong>. The sec<strong>on</strong>d<br />

channel, named η—channel, describes <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS to <strong>the</strong> compound nucleus as a<br />

change <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass asymmetry η by nucle<strong>on</strong> transfer from <strong>the</strong> light nucleus to <strong>the</strong> <strong>heavy</strong> <strong>on</strong>e<br />

at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>. Nuclei are c<strong>on</strong>sidered as spherical with ε = 0.74<br />

which corresp<strong>on</strong>ds to realistic shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS for λ =1.5—1.6. The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong><br />

probability calculated <strong>in</strong> both channels will allow us to f<strong>in</strong>d <strong>the</strong> favorable fusi<strong>on</strong> channel.<br />

In <strong>the</strong> present chapter we will study whe<strong>the</strong>r <strong>the</strong> system has time for destroy<strong>in</strong>g <strong>the</strong> ”mem-<br />

ory” about <strong>the</strong> diabatic h<strong>in</strong>drance [35, 36]. This time is necessary to reorganize <strong>the</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> system for <strong>the</strong> transiti<strong>on</strong> from <strong>the</strong> <strong>in</strong>itial diabatic potential V diab(λ) to <strong>the</strong> adiabatic <strong>on</strong>e<br />

V adiab(λ). The time dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential can be related to <strong>the</strong> effective<br />

relaxati<strong>on</strong> time τ(λ, t) [105, 106]<br />

t<br />

(λ, t) =Vdiab(λ) exp(−<br />

V<br />

0<br />

dt<br />

(λ, t) τ )+V − exp(−<br />

adiab(λ)[1<br />

t<br />

0<br />

dt<br />

τ(λ, t) )]. (6.1)<br />

A time-dependent dynamical potential V (λ, t) was orig<strong>in</strong>ally <strong>in</strong>troduced <strong>in</strong> Refs.[105, 106]<br />

from a phenomenological ansatz and applied to study <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> local equilibrium <strong>in</strong> dissi-<br />

pative <strong>heavy</strong>-i<strong>on</strong> collisi<strong>on</strong>s. Eq. (6.1) may be rewritten as<br />

∆Vdiab(λ, t) =(Vdiab(λ) − Vadiab(λ)) exp(− with t <br />

V (λ, t) =V adiab(λ)+∆V diab(λ, t) (6.2)<br />

0<br />

dt<br />

τ (λ,t) ). The additi<strong>on</strong>al part ∆V diab(λ, t) can<br />

be microscopically obta<strong>in</strong>ed from <strong>the</strong> diabatic excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle-hole states<br />

α<br />

∆V diab(λ, t) ≈ <br />

α<br />

ɛ diab<br />

α<br />

(λ)[ndiab(λ,<br />

t) − nadiab<br />

α<br />

α (λ)], (6.3)<br />

<strong>the</strong> ɛ where diab<br />

are diabatic s<strong>in</strong>gle—particle energies as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(λ)<br />

TCSM. The adiabatic occupati<strong>on</strong> numbers n <strong>the</strong> adiab(λ)<br />

vary with λ accord<strong>in</strong>g to a Fermi<br />

α<br />

distributi<strong>on</strong> with a temperature T (λ) = E ∗ (λ)/a (a = A/12MeV −1 ), where <strong>the</strong> excitati<strong>on</strong><br />

energy E ∗ (λ) is determ<strong>in</strong>ed from total energy c<strong>on</strong>servati<strong>on</strong>. The exp<strong>on</strong>ential factor <strong>in</strong> (6.1) is<br />

83


to <strong>the</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic occupati<strong>on</strong> probabilities n due diab <strong>on</strong> time expressed by <strong>the</strong><br />

α<br />

relaxati<strong>on</strong> equati<strong>on</strong>s [51, 52, 57]<br />

dndiab(λ, t)<br />

α<br />

dt<br />

t) τ(λ, [ndiab<br />

α<br />

= − 1<br />

(λ, t) − n adiab<br />

α (λ)], (6.4)<br />

which is known <strong>in</strong> <strong>the</strong> relaxati<strong>on</strong>-time approximati<strong>on</strong>. Due to <strong>the</strong> residual two-body <strong>in</strong>ter-<br />

acti<strong>on</strong>s, <strong>the</strong> diabatic occupati<strong>on</strong> probabilities approach a local (fixed λ) equilibrium with an<br />

average relaxati<strong>on</strong> time<br />

τ(λ, t) =<br />

2¯h<br />

< Γ(λ, t) > . (6.5)<br />

The factor 2 assumes that two subsequent collisi<strong>on</strong>s are sufficient to establish equilibrium for<br />

fixed values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> collective variable λ (local equilibrium). Here, we use a m<strong>in</strong>imal value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this factor (or m<strong>in</strong>imal possible value <str<strong>on</strong>g>of</str<strong>on</strong>g> τ) <strong>in</strong> comparis<strong>on</strong> to Refs. [51, 52, 57] where this factor<br />

was chosen as 3—4. From <strong>the</strong> (6.1) it is clear that <strong>the</strong> effective time τ necessary to reorganize<br />

<strong>the</strong> densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system corresp<strong>on</strong>ds to a mean value <str<strong>on</strong>g>of</str<strong>on</strong>g> various relaxati<strong>on</strong> times associated<br />

with <strong>the</strong> shape degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system. This effective relaxati<strong>on</strong> time τ is larger than<br />

average s<strong>in</strong>gle-particle decay time ( <strong>the</strong> ¯h ) due to <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-c<strong>on</strong>sistency between<br />

<br />

collective and <strong>in</strong>tr<strong>in</strong>sic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom [86, 107]. The width <strong>in</strong> Eq. (6.5)<br />

Γ(λ, t) >= < <br />

α<br />

n diab<br />

α (λ, t)Γα(λ)/ an average width <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> particle-states above <strong>the</strong> Fermi level (n is diab<br />

α<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hole-states under <strong>the</strong> Fermi level (n and diab<br />

α<br />

<br />

α<br />

n diab<br />

(λ, t) (6.6)<br />

α<br />

ndiab<br />

α =<br />

ndiab<br />

α for ɛ =1− diab ≤ ɛF ).<br />

α<br />

ɛ for diab<br />

α<br />

>ɛ F )<br />

For <strong>the</strong> widths Γ α, <strong>the</strong> expressi<strong>on</strong> (5.31) is used. In <strong>the</strong> calculati<strong>on</strong>s we take <strong>the</strong> standard<br />

c=20 MeV and c<strong>on</strong>sider <strong>the</strong> cases with two extreme values <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ value −1<br />

0 : 0.030MeV−1and 0.061MeV −1 . The results depend weakly <strong>on</strong> <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> parameter c. From (5.31), <strong>on</strong>e<br />

see that for very large free energies ɛ can diab − ɛF <strong>the</strong> broaden<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle-particle widths<br />

α<br />

due to <strong>in</strong>tr<strong>in</strong>sic excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system plays no essential role <strong>in</strong> c<strong>on</strong>trast to <strong>the</strong> case<br />

when <strong>the</strong> excited system is near <strong>the</strong> equilibrium state [108]. Although <strong>on</strong>e may def<strong>in</strong>e a local<br />

excitati<strong>on</strong> energy dur<strong>in</strong>g <strong>the</strong> decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic potential to <strong>the</strong> adiabatic <strong>on</strong>e, <strong>the</strong> c<strong>on</strong>cept<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> temperature is less mean<strong>in</strong>gful as <strong>the</strong> system is not locally equilibrated or <strong>the</strong>rmalized [109].<br />

84


More detailed <strong>in</strong>vestigati<strong>on</strong>s are required to clarify <strong>the</strong>se po<strong>in</strong>ts. In <strong>the</strong> calculati<strong>on</strong>s, we do not<br />

c<strong>on</strong>sider <strong>the</strong>rmal effects <strong>in</strong> <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ α.<br />

The adiabatic potential energy V adiab is calculated us<strong>in</strong>g <strong>the</strong> expressi<strong>on</strong> (3.2), but tak<strong>in</strong>g<br />

<strong>in</strong>to account <strong>the</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shell correcti<strong>on</strong> and <strong>the</strong> pair<strong>in</strong>g correcti<strong>on</strong> <strong>on</strong> <strong>the</strong> excitati<strong>on</strong><br />

energy E ∗ (λ). Shell effects are damped exp<strong>on</strong>entially δU shell = δU shell(E ∗ = 0) exp(−ζE ∗ )<br />

if <strong>the</strong> system is excited with <strong>the</strong> excitati<strong>on</strong> energy E ∗ . The parameter ζ is chosen as ζ −1 =<br />

5.48A 1<br />

/(1+ 1.3A− 1<br />

3 ) MeV [110]. The pair<strong>in</strong>g correcti<strong>on</strong>s are taken as follows δUpair = 0<br />

3<br />

for E ∗ ≥ E c and δU pair=δU pair(E ∗ = 0)[1 − E ∗ /E c] 2 for E ∗ < E c [78] with E c =10MeV.<br />

We neglect <strong>the</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> potential energy <strong>on</strong> <strong>the</strong> angular momentum <strong>in</strong> <strong>the</strong> reacti<strong>on</strong>s<br />

c<strong>on</strong>sidered [18, 20, 22, 34, 38] because <strong>in</strong> fusi<strong>on</strong> reacti<strong>on</strong>s with <strong>heavy</strong> <strong>nuclei</strong> <strong>on</strong>ly low angular<br />

momenta (< 20 − 30 ¯h) c<strong>on</strong>tribute [78, 111].<br />

The potential energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>in</strong> <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> was calculated<br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass asymmetry η with<strong>in</strong> <strong>the</strong> adiabatic TCSM because <strong>the</strong> diabatic effects<br />

are very small near this c<strong>on</strong>figurati<strong>on</strong> [35]. The diabatic potential practically co<strong>in</strong>cides with <strong>the</strong><br />

adiabatic <strong>on</strong>e <strong>in</strong> <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>. Therefore, <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong><br />

barrier <strong>in</strong> <strong>the</strong> η-channel and <strong>the</strong> quasi-fissi<strong>on</strong> barrier are practically <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> time. Indeed,<br />

<strong>the</strong> moti<strong>on</strong> <strong>in</strong> η proceeds with nucle<strong>on</strong> exchanges between <strong>the</strong> levels near <strong>the</strong> Fermi surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> DNS <strong>nuclei</strong>. For smaller el<strong>on</strong>gati<strong>on</strong>s (λ


where <strong>the</strong> lifetime t 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS is obta<strong>in</strong>ed with <strong>the</strong> c<strong>on</strong>diti<strong>on</strong><br />

t0<br />

0<br />

[Λλ fus (t)+Λη fus (t)+Λλ (t)]dt =1. (6.8)<br />

qf<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> probability Λ The λ (t) through <strong>the</strong> external barrier <strong>in</strong> λ determ<strong>in</strong>es <strong>the</strong> quasi-fissi<strong>on</strong><br />

qf<br />

(<strong>the</strong> decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system). The height B process λ<br />

qf<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this barrier m<strong>on</strong>ot<strong>on</strong>ically decreases<br />

with <strong>the</strong> mass asymmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS because <strong>the</strong> Coulomb repulsi<strong>on</strong> <strong>in</strong>creases with decreas<strong>in</strong>g<br />

η and leads to very shallow pockets <strong>in</strong> <strong>the</strong> nucleus-nucleus potential for <strong>the</strong> near symmetric<br />

c<strong>on</strong>figurati<strong>on</strong>s. Therefore, <strong>the</strong> quasi-fissi<strong>on</strong> probability for a symmetric and near symmetric<br />

DNS is much larger than for an asymmetric <strong>on</strong>e. The reacti<strong>on</strong>s c<strong>on</strong>sidered <strong>in</strong> this chapter are<br />

symmetrical or near symmetrical and, corresp<strong>on</strong>d<strong>in</strong>gly, <strong>the</strong>ir <strong>in</strong>itial DNS c<strong>on</strong>figurati<strong>on</strong>s are <strong>in</strong><br />

or near <strong>the</strong> m<strong>in</strong>imum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> systems as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> λ and η. In this<br />

case <strong>the</strong> ma<strong>in</strong> c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong> quasi-fissi<strong>on</strong> channel comes from <strong>the</strong> <strong>in</strong>itial or near <strong>in</strong>itial<br />

which have approximately <strong>the</strong> same quasi-fissi<strong>on</strong> barrier B c<strong>on</strong>figurati<strong>on</strong>s λ . Indeed, <strong>in</strong> reacti<strong>on</strong>s<br />

qf<br />

with <strong>heavy</strong> <strong>nuclei</strong> <strong>the</strong> experimental data do not show relaxati<strong>on</strong> <strong>in</strong> η and have <strong>the</strong>ir maximal<br />

yields <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> quasi-fissi<strong>on</strong> products near <strong>the</strong> <strong>in</strong>itial DNS [112, 113]. All <strong>the</strong>se facts allow us<br />

to calculate <strong>the</strong> quasi-fissi<strong>on</strong> rate for <strong>the</strong> <strong>in</strong>itial DNS with a Kramers-type expressi<strong>on</strong>. It was<br />

proved <strong>in</strong> calculati<strong>on</strong>s with <strong>the</strong> multidimensi<strong>on</strong>al Fokker-Planck equati<strong>on</strong> that <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

B value λ<br />

qf<br />

for <strong>the</strong> <strong>in</strong>itial DNS is a good approximati<strong>on</strong> even for asymmetric reacti<strong>on</strong>s [34]. The<br />

quasi-fissi<strong>on</strong> decay process <strong>in</strong> λ determ<strong>in</strong>es <strong>the</strong> lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS ma<strong>in</strong>ly because <strong>the</strong> barrier<br />

B λ<br />

qf<br />

smaller than <strong>the</strong> barrier Bη<br />

fus is <strong>in</strong> η. The lifetimes t0 for <strong>the</strong> reacti<strong>on</strong>s c<strong>on</strong>sidered<br />

obta<strong>in</strong>ed<br />

are comparable with <strong>the</strong> experimentally extracted characteristic fusi<strong>on</strong> times <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 −21 − 10 −20 s<br />

[114]. S<strong>in</strong>ce <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transient times for stati<strong>on</strong>ary rates <str<strong>on</strong>g>of</str<strong>on</strong>g> probability over <strong>the</strong> fusi<strong>on</strong><br />

quasi-fissi<strong>on</strong> barriers is weak [34] and <strong>the</strong>ir c<strong>on</strong>tributi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

and<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> barrier heights, we use <strong>the</strong> <strong>on</strong>e-dimensi<strong>on</strong>al Kramers expressi<strong>on</strong> [115] ( calculati<strong>on</strong> Kr Λ j<br />

i =”fus”or”qf ”andj =”λ” or”η”) which is a quasi—stati<strong>on</strong>ary soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Fokker-Planck<br />

equati<strong>on</strong> for <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g rate <str<strong>on</strong>g>of</str<strong>on</strong>g> probability<br />

j Kr<br />

i Λ =<br />

ωj<br />

j<br />

i B 2πω<br />

⎛<br />

( ⎝ Γ<br />

2¯h )2 +(ω<br />

86<br />

j<br />

i ) B<br />

2 − Γ<br />

2¯h<br />

⎞<br />

exp(− ⎠ Bj<br />

i<br />

i ,<br />

T (λ t) ). (6.9)


B Here, j<br />

i<br />

<strong>the</strong> height <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> barriers Bλ<br />

fus (t) andBη fus , and quasi-fissi<strong>on</strong> barrier<br />

denotes<br />

B λ . The values <str<strong>on</strong>g>of</str<strong>on</strong>g> Bη<br />

fus qf<br />

Bλ<br />

qf and<br />

are practically <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> time. The <strong>in</strong>itial DNS <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> reacti<strong>on</strong>s c<strong>on</strong>sidered here are <strong>in</strong> or near <strong>the</strong> m<strong>in</strong>imum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total potential energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

system as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> λ and η. Moreover, <strong>the</strong>y are <strong>in</strong> <strong>the</strong>rmodynamic equilibrium because<br />

<strong>the</strong> diabatic and adiabatic potentials practically co<strong>in</strong>cide. The temperature T (λ t) is calculated<br />

us<strong>in</strong>g <strong>the</strong> expressi<strong>on</strong> T (λ t)= E ∗ (λ t)/a where λ t is <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> touch<strong>in</strong>g <strong>nuclei</strong>, i.e.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS. In <strong>the</strong> calculati<strong>on</strong>s we assume that <strong>the</strong> excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS<br />

is E ∗ (λ t)=30 MeV <strong>in</strong> all reacti<strong>on</strong>s c<strong>on</strong>sidered. In (6.9), ω B j<br />

i is <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>verted<br />

harm<strong>on</strong>ic oscillator approximat<strong>in</strong>g <strong>the</strong> potential <strong>in</strong> <strong>the</strong> variable j <strong>on</strong> <strong>the</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> or<br />

barriers B quasifissi<strong>on</strong> j<br />

i ,andω is <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> harm<strong>on</strong>ic oscillator approximat<strong>in</strong>g <strong>the</strong><br />

j<br />

j<br />

<strong>the</strong> variable j for <strong>the</strong> <strong>in</strong>itial DNS. The frequencies ωB i and ωj are calculated us<strong>in</strong>g<br />

<strong>in</strong> potential<br />

<strong>the</strong> absolute values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sec<strong>on</strong>d derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential with respect to <strong>the</strong> variable j (<strong>on</strong><br />

top <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> barrier B <strong>the</strong> j<br />

i<br />

j<br />

Mjj (e.g, ωB i = mass parameter |∂2V/∂j2 i B |<br />

and for <strong>the</strong> <strong>in</strong>itial DNS, respectively) as well as <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g<br />

j<br />

/Mjj ). The method <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass<br />

parameters Mηη and M λλ is presented <strong>in</strong> chapter 5 [43]. The microscopical values <str<strong>on</strong>g>of</str<strong>on</strong>g> Mηη and<br />

Mλλ are close to <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g hydrodynamical values [84] at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <strong>nuclei</strong> (see chapter 5). In our calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> probabilities, <strong>the</strong> follow<strong>in</strong>g values<br />

B λ<br />

η<br />

qf ≈ B<br />

0.8—1.0 MeV, ¯hω fus ≈ 1.5—2.0 MeV, ¯hωλ ≈ 1.5—2.0 MeV and ¯hωη ≈ 0.8—1.0<br />

¯hω used are<br />

B<br />

λ<br />

reacti<strong>on</strong>s c<strong>on</strong>sidered. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯hω fus at <strong>the</strong> <strong>in</strong>ner fusi<strong>on</strong> barrier <strong>in</strong> λ is about<br />

<strong>the</strong> for MeV<br />

0.5—0.6 MeV and agrees with <strong>the</strong> <strong>on</strong>e obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fissi<strong>on</strong> [116] at <strong>the</strong> saddle<br />

po<strong>in</strong>t. The fricti<strong>on</strong> coefficients ((5.9) and (5.23)) <strong>in</strong> λ and <strong>in</strong> η obta<strong>in</strong>ed with Γ=2 MeV at<br />

<strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> λt have <strong>the</strong> same order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude as <strong>the</strong> <strong>on</strong>es calculated with<strong>in</strong><br />

<strong>the</strong> <strong>on</strong>e-body dissipati<strong>on</strong> <strong>model</strong>s [34]. The values obta<strong>in</strong>ed for P λ(η)<br />

fus<br />

ra<strong>the</strong>r weakly <strong>on</strong><br />

depend<br />

Γ <strong>in</strong> (6.9)[34]. The possibility to apply <strong>the</strong> Kramers expressi<strong>on</strong> to relatively small barriers<br />

(B j<br />

/T > 0.5) was dem<strong>on</strong>strated <strong>in</strong> [117].<br />

i<br />

6.1 Results and discussi<strong>on</strong><br />

The time-dependent diabatic potentials for <strong>the</strong> reacti<strong>on</strong>s 110 Pd+ 110 Pd and 124 Sn+ 124 Sn are<br />

<strong>in</strong> Figs. 6-2a and 6-2b. The time-dependent <strong>in</strong>ner fusi<strong>on</strong> barrier B presented λ<br />

fus<br />

87<br />

<strong>in</strong> λ appears


6-2: a) Time-dependent dynamical potential V (λ, t) as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> el<strong>on</strong>gati<strong>on</strong> λ for <strong>the</strong><br />

Figure<br />

system 110 + Pd 110 The <strong>in</strong>itial diabatic potential V (λ, t =0)=Vdiab(λ) and <strong>the</strong> adiabatic<br />

Pd.<br />

Vadiab(λ) are shown by solid and dotted curves, respectively. The diabatic potential<br />

potential<br />

(λ, t = t0) at <strong>the</strong> lifetime t0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS is presented by a dashed curve. The <strong>nuclei</strong> are<br />

V<br />

spherical with <strong>the</strong> neck parameter ε =0.74. The parameter Γ c<strong>on</strong>sidered −1<br />

0 =0.030MeV−1 is<br />

<strong>in</strong> <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> s<strong>in</strong>gle-particle widths. The fusi<strong>on</strong> B used λ<br />

Bλ qf<br />

fus (t = t0) and quasi-fissi<strong>on</strong><br />

<strong>in</strong> λ are <strong>in</strong>dicated. These barriers are measured with respect to <strong>the</strong> m<strong>in</strong>imum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

barriers<br />

potential. b) The same as <strong>in</strong> a) but for <strong>the</strong> system <strong>the</strong> 124 + Sn 124 Sn.<br />

88


due to <strong>the</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relaxati<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic potential <strong>on</strong> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ as<br />

shown <strong>in</strong> Fig. 6-3 for <strong>the</strong> 110 Pd+ 110 Pd reacti<strong>on</strong>. The decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> < Γ > <strong>in</strong> time causes a slower<br />

transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic potential to <strong>the</strong> adiabatic potential when this potential approaches <strong>the</strong><br />

adiabatic limit. In <strong>the</strong> calculati<strong>on</strong>s, we use two extreme values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> parameter Γ asymptotic −1<br />

0<br />

because we c<strong>on</strong>sider how fast <strong>the</strong> transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic to <strong>the</strong> adiabatic potential occurs.<br />

The structures <strong>in</strong> <strong>the</strong> vanish<strong>in</strong>g diabatic potential (Fig. 6-2a) are caused by <strong>the</strong> structures <strong>in</strong><br />

< Γ > as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> λ (Fig.6-3) which disappear <strong>in</strong> time more rapidly than <strong>the</strong> structures<br />

<strong>the</strong> diabatic potential. Fig. 6-4a shows <strong>the</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> B <str<strong>on</strong>g>of</str<strong>on</strong>g> λ<br />

fus<br />

<strong>on</strong> time for <strong>the</strong> reacti<strong>on</strong>s<br />

110 Pd+ 110 Pd (η=0) and 56 Cr+ 164 Er (η=0.5) which produce <strong>the</strong> same compound nucleus 220 U.<br />

The <strong>in</strong>ner fusi<strong>on</strong> barrier <strong>in</strong> λ for <strong>the</strong> asymmetric DNS is pr<strong>on</strong>ounced smaller than <strong>the</strong> <strong>on</strong>e for <strong>the</strong><br />

DNS and decreases slower <strong>in</strong> time. The smaller values <str<strong>on</strong>g>of</str<strong>on</strong>g> B symmetric λ<br />

fus<br />

for <strong>the</strong> asymmetric<br />

DNS can be expla<strong>in</strong>ed by <strong>the</strong> <strong>in</strong>itial diabatic h<strong>in</strong>drance for <strong>the</strong> moti<strong>on</strong> to smaller values <str<strong>on</strong>g>of</str<strong>on</strong>g> λ<br />

which is smaller than <strong>the</strong> h<strong>in</strong>drance <strong>in</strong> <strong>the</strong> symmetric case (Fig. 3-10) [35]. The lifetime t0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

formed <strong>in</strong> both reacti<strong>on</strong>s is about 8 · 10 DNS −21 and <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> B s λ<br />

at this time are larger<br />

fus<br />

than <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g fusi<strong>on</strong> barriers B η<br />

fus<br />

<strong>in</strong> η (see Fig. 6-4b and Table 6-1). So, <strong>the</strong> fusi<strong>on</strong><br />

P probability λ<br />

η<br />

λ is smaller than Pfus <strong>in</strong> η (Table 6-2). This is also dem<strong>on</strong>strated <strong>in</strong> Tables<br />

<strong>in</strong> fus<br />

6-1and 6-2 for <strong>the</strong> reacti<strong>on</strong>s 123 Sn+ 123 Sn, 110 Pd+ 136 Xe, 86 Kr+ 160 Gd and 76 Ge+ 170 Er which<br />

lead to <strong>the</strong> same compound nucleus 246 Fm. The calculated values <str<strong>on</strong>g>of</str<strong>on</strong>g> P η<br />

fus<br />

are <strong>in</strong> agreement<br />

with fusi<strong>on</strong> probabilities extracted from <strong>the</strong> experimental data [118]. The fusi<strong>on</strong> barrier al<strong>on</strong>g<br />

mass asymmetry does not depend <strong>on</strong> time because <strong>the</strong> diabatic potential energy at <strong>the</strong> touch<strong>in</strong>g<br />

c<strong>on</strong>figurati<strong>on</strong>s with different η is very close to <strong>the</strong> adiabatic potential energy. From Tables 6-1<br />

6-2 <strong>on</strong>e can see that <strong>the</strong> fusi<strong>on</strong> probability P and λ<br />

<strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g mass asymmetry<br />

fus<br />

<strong>in</strong> <strong>the</strong> entrance channel. It follows from our analysis that <strong>in</strong> <strong>the</strong> λ-channel as well as <strong>in</strong> <strong>the</strong><br />

η-channel <strong>the</strong> complete fusi<strong>on</strong> <strong>in</strong> symmetric reacti<strong>on</strong>s yields smaller cross secti<strong>on</strong>s <strong>in</strong> comparis<strong>on</strong><br />

with asymmetric comb<strong>in</strong>ati<strong>on</strong>s.<br />

89


Table 6-1: Quasi-fissi<strong>on</strong> and <strong>in</strong>ner fusi<strong>on</strong> barriers <strong>in</strong> η and λ calculated with<strong>in</strong> <strong>the</strong> TCSM<br />

for various symmetric and asymmetric reacti<strong>on</strong>s. The <strong>in</strong>ner fusi<strong>on</strong> barriers <strong>in</strong> λ are given<br />

for <strong>the</strong> lifetimes t0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS formed <strong>in</strong> <strong>the</strong>se reacti<strong>on</strong>s. The notati<strong>on</strong>s 1) and 2)<br />

that values <str<strong>on</strong>g>of</str<strong>on</strong>g> B mean <strong>the</strong> λ<br />

fus (t0) with Γ are calculated −1<br />

−1 MeV =0.030 0<br />

B Reacti<strong>on</strong>s λ<br />

qf<br />

and 0.061 MeV −1 , respectively.<br />

B η<br />

fus<br />

t 0<br />

1) λ<br />

fus<br />

B (t0) 2) λ<br />

fus<br />

B (t0) [MeV ] [MeV ] [1 0 −21 s] [MeV ] [MeV ]<br />

90 Zr + 90 Zr →180 Hg 2.9 6 20 10 4<br />

100 Mo + 100 Mo→100 Po 2.2 8 15 12 5<br />

110 Pd+ 110 Pd→220 U 1.3 12 8 36 14<br />

56 Cr + 164 Er →246 Fm 2.6 2 8 14 4<br />

76 Ge + 170 Er →246 Fm 0.4 10 5 53 27<br />

86 Kr + 160 Gd →246 Fm 0.2 12 4 65 39<br />

110 Pd+ 136 Xe →246 Fm 0.1 15 3 91 54<br />

123 Sn + 123 Sn→246 Fm 0.1 16 3 112 67<br />

136 Xe + 136 Xe →272 Hs 0 22 2 237 154<br />

fus<br />

Table 6-2: Fusi<strong>on</strong> probabilities P λ,η<br />

<strong>in</strong> <strong>the</strong> λ − and η − channels calculated<br />

for <strong>the</strong> reacti<strong>on</strong>s presented <strong>in</strong> <strong>the</strong> Table 6-1are compared with known<br />

values P experimental exp<br />

[34, 42, 78, 118].<br />

fus<br />

The notati<strong>on</strong>s 1) and 2) are <strong>the</strong> same as <strong>in</strong> Table 6-1.<br />

Reacti<strong>on</strong>s<br />

P λ 1)<br />

fus<br />

90 Zr + 90 Zr →180 Hg 2·10 −4<br />

100 Mo + 100 Mo → 200 Po 9·10 −6<br />

110 Pd+ 110 Pd → 220 U 7·10 −15<br />

56 Cr + 164 Er → 220 U 1·10 −6<br />

76 Ge + 170 Er → 246 Fm 9·10 −22<br />

86 Kr + 160 Gd → 246 Fm 4·10 −26<br />

90<br />

P λ 2)<br />

fus<br />

2·10 −2<br />

3·10 −3<br />

4·10 −7<br />

2·10 −3<br />

3·10 −12<br />

2·10 −16<br />

P η<br />

fus<br />

P exp .<br />

fus<br />

2·10 −1 ∼10 −1<br />

2·10 −2<br />

5·10 −2<br />

3·10 −4 ∼10 −4<br />

6·10 −1<br />

6·10 −4<br />

7·10 −5<br />

8·10 −4<br />

5·10 −5


shown <strong>in</strong> Figs. 6-2a and 6-2b, <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> B As λ<br />

fus (t0) <strong>the</strong> reacti<strong>on</strong> for 124 Sn+ 124 is Sn<br />

larger than <strong>the</strong> value for 110 Pd+ 110 Pd. The <strong>in</strong>creas<strong>in</strong>g mass number A <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system generally<br />

causes an <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> repulsive character <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial diabatic potential [35] and decreases<br />

<strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> quasifissi<strong>on</strong> barrier which ma<strong>in</strong>ly determ<strong>in</strong>es <strong>the</strong> DNS lifetime t0. The same<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> probability P behaviour λ<br />

fus is obta<strong>in</strong>ed for <strong>the</strong> symmetric reacti<strong>on</strong>s 90 + Zr 90Zr, 100 Mo + 100 Mo, 110 Pd + 110 Pd, 123,124 Sn + 123,124 Sn and 136 Xe + 136 Xe as well (Table 6-2).<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> str<strong>on</strong>g decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> B Despite λ<br />

fus with <strong>the</strong> change <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> parameter Γ0 <strong>the</strong> maximal to<br />

from<br />

<strong>the</strong> m<strong>in</strong>imal value, <strong>the</strong> fusi<strong>on</strong> probabilities obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> λ—channel rema<strong>in</strong> to be much smaller<br />

than <strong>the</strong> fusi<strong>on</strong> probabilities obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> η—channel which are similar to <strong>the</strong> experimental<br />

values [78, 118] (see Table 6-2). In <strong>the</strong> heavier system <strong>the</strong> difference between <strong>the</strong> fusi<strong>on</strong> barriers<br />

and probabilities <strong>in</strong> both channels is larger and <strong>the</strong> λ—channel is practically closed. This means<br />

a dom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> <strong>in</strong> <strong>the</strong> mass asymmetry degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom which is <strong>the</strong> fundamental<br />

assumpti<strong>on</strong> <strong>in</strong> <strong>the</strong> DNS c<strong>on</strong>cept .<br />

The time—dependent transiti<strong>on</strong> between diabatic and adiabatic potentials is a slower process<br />

than <strong>the</strong> quasi-fissi<strong>on</strong> <strong>on</strong>e and <strong>the</strong> system has not enough time for destroy<strong>in</strong>g ”memory” <strong>on</strong> <strong>the</strong><br />

diabatic (structural) forbiddenness that is <strong>in</strong> agreement with c<strong>on</strong>clusi<strong>on</strong>s <strong>in</strong> Ref. [36]. As <strong>the</strong><br />

result, a large h<strong>in</strong>drance for <strong>the</strong> moti<strong>on</strong> to smaller el<strong>on</strong>gati<strong>on</strong>s λ <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS is obta<strong>in</strong>ed. The<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> calculated energy thresholds for <strong>the</strong> complete fusi<strong>on</strong> <strong>in</strong> <strong>the</strong> λ— andη—channels<br />

shows that <strong>the</strong> DNS favorably evolves to <strong>the</strong> compound nucleus <strong>in</strong> mass asymmetry.<br />

91


6-3: Time-dependent average width < Γ(λ, t) > as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> el<strong>on</strong>gati<strong>on</strong> λ for <strong>the</strong><br />

Figure<br />

system 110 + Pd 110 The dependences < Γ(λ, t =0)> and < Γ(λ, t = t0) > are shown by<br />

Pd.<br />

solid and dashed curves, respectively.<br />

92


6-4: a) Inner fusi<strong>on</strong> barriers B Figure λ<br />

(t) <strong>in</strong> λ as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time for <strong>the</strong> systems<br />

fus<br />

Pd + 110<br />

Pd (solid curve) and 56<br />

Cr + 164<br />

Er (dashed curve) which produce <strong>the</strong> same com-<br />

110<br />

nucleus pound 220 The <strong>nuclei</strong> are c<strong>on</strong>sidered spherical with ε = 0.74. The parameter<br />

U.<br />

Γ −1<br />

0 = 0.030MeV−1 used <strong>in</strong> <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle-particle widths. For times smaller<br />

is<br />

6 × 10 than −21 and 8 × 10 s −21 for η =0and0.5, respectively, <strong>the</strong> potential V (λ, t) is <strong>on</strong>ly re-<br />

s<br />

and has no barrier (see Fig. 6-2). b) Calculated adiabatic potential energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS<br />

pulsive<br />

<strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass asymmetry η for reacti<strong>on</strong>s<br />

<strong>in</strong><br />

to <strong>the</strong> same compound nucleus lead<strong>in</strong>g 220 The potential is calculated with<strong>in</strong> <strong>the</strong> adiabatic<br />

U.<br />

TCSM with (solid curve) and without (dashed curve) shell correcti<strong>on</strong>s. The fusi<strong>on</strong> barrier B η<br />

<strong>in</strong> η for <strong>the</strong> system 110 Pd+ 110 Pd is shown.<br />

93<br />

fus


Chapter 7<br />

In <strong>the</strong> quasi-fissi<strong>on</strong> process, <strong>the</strong> large mass rearrangements between <strong>the</strong> <strong>in</strong>teract<strong>in</strong>g <strong>heavy</strong> i<strong>on</strong>s<br />

occur at a short time scale [11, 112]. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experimental signatures [113] <str<strong>on</strong>g>of</str<strong>on</strong>g> this process<br />

is <strong>the</strong> large width <str<strong>on</strong>g>of</str<strong>on</strong>g> mass distributi<strong>on</strong>s, <strong>in</strong>compatible with compound nucleus fissi<strong>on</strong>. C<strong>on</strong>-<br />

ceptually, <strong>the</strong> quasi-fissi<strong>on</strong> bridges <strong>the</strong> gap [106] between <strong>the</strong> deep-<strong>in</strong>elastic collisi<strong>on</strong>s, where<br />

<strong>the</strong> reacti<strong>on</strong> partners get <strong>in</strong>to sufficiently close c<strong>on</strong>tact to exchange many particles practically<br />

without alter<strong>in</strong>g <strong>the</strong>ir average mass and charge [33], and <strong>the</strong> complete fusi<strong>on</strong> process, where<br />

<strong>the</strong> reacti<strong>on</strong> partners completely lose <strong>the</strong>ir identity by transformati<strong>on</strong> <strong>in</strong>to a compound nucleus<br />

[113]. All <strong>the</strong>se types <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> are organically c<strong>on</strong>nected and are derived from <strong>the</strong> evolu-<br />

ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a d<strong>in</strong>uclear system (DNS) [18, 34] which is formed <strong>in</strong> <strong>the</strong> entrance channel dur<strong>in</strong>g <strong>the</strong><br />

capture stage <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>, after <strong>the</strong> dissipati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> collisi<strong>on</strong> k<strong>in</strong>etic energy. The decay <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> DNS when it evolves <strong>in</strong> <strong>the</strong> mass asymmetry coord<strong>in</strong>ate predest<strong>in</strong>es <strong>the</strong> charge and mass<br />

distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong> products. The competiti<strong>on</strong> between <strong>the</strong> complete fusi<strong>on</strong> and <strong>the</strong><br />

quasi-fissi<strong>on</strong> process occurs <strong>in</strong> reacti<strong>on</strong>s with massive <strong>nuclei</strong> at low bombard<strong>in</strong>g energies (< 15<br />

MeV/u) [34].<br />

In this chapter, <strong>the</strong> quasi-fissi<strong>on</strong> process is described as <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>in</strong> <strong>the</strong> Z<br />

(A) coord<strong>in</strong>ate by nucle<strong>on</strong>s transfer between <strong>nuclei</strong> tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> DNS decay <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>ternuclear distance R (or el<strong>on</strong>gati<strong>on</strong> λ). Here, Z (A) denotes <strong>the</strong> charge (mass) number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

light fragment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS. For <strong>the</strong> sake <str<strong>on</strong>g>of</str<strong>on</strong>g> simplicity, we will use <strong>the</strong> variables Z(A) <strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

charge (mass) asymmetry η (ηZ). S<strong>in</strong>ce <strong>the</strong> isotopic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> form<strong>in</strong>g <strong>the</strong> DNS<br />

94


is chosen with <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> N/Z-equilibrium <strong>in</strong> <strong>the</strong> system, mass and charge evoluti<strong>on</strong>s<br />

are described analogously. A diffusi<strong>on</strong> process leads to <strong>the</strong> exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong>s between <strong>the</strong><br />

two touch<strong>in</strong>g fragments, thus generat<strong>in</strong>g a time-dependent distributi<strong>on</strong> <strong>in</strong> <strong>the</strong> Z(A) variables <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> DNS. This process can be described by a master-equati<strong>on</strong> [33, 44, 73, 119] for <strong>the</strong> probability<br />

PZ(t) <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> system at <strong>the</strong> time t <strong>in</strong> <strong>the</strong> c<strong>on</strong>figurati<strong>on</strong> with <strong>the</strong> charge number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

light fragment Z. The asymmetric DNS evolves to a compound nucleus or to a symmetric DNS.<br />

The melt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS <strong>nuclei</strong> <strong>in</strong> variable R is str<strong>on</strong>gly h<strong>in</strong>dered [35, 36, 42, 66]. The decay<br />

<strong>in</strong> R affects <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system <strong>in</strong> Z. In order to take <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS decay <strong>in</strong>to<br />

c<strong>on</strong>siderati<strong>on</strong>, we can rewrite <strong>the</strong> known master-equati<strong>on</strong> for PZ(t) [33, 44, 73, 119] as follows<br />

∂PZ(t)<br />

∂t =∆(−) (Z+1) P (Z+1)(t)+∆ (+)<br />

(Z−1) P − (∆ (Z−1)(t) (+)<br />

Z +∆(−) Z<br />

+Λqf<br />

Z ) P (7.1)<br />

Z(t),<br />

where <strong>the</strong> microscopically calculated transport coefficients ∆ (±)<br />

Λ and qf<br />

Z<br />

Z<br />

given by <strong>the</strong> expressi<strong>on</strong> (4.3)<br />

are<br />

is <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> decay probability <strong>in</strong> R. In <strong>the</strong> right side <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (7.1), <strong>on</strong>ly <strong>the</strong> transiti<strong>on</strong>s<br />

Z ⇀↽ Z + 1and Z ⇀↽ Z − 1are taken <strong>in</strong>to account <strong>in</strong> <strong>the</strong> spirit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>dependent-particle<br />

<strong>model</strong>.<br />

For decay, <strong>the</strong> DNS should overcome <strong>the</strong> potential barrier B qf, which co<strong>in</strong>cides with <strong>the</strong><br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pocket <strong>in</strong> <strong>the</strong> double-fold<strong>in</strong>g nucleus-nucleus potential as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R. The<br />

bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> this pocket corresp<strong>on</strong>ds to <strong>the</strong> distance Rm = R1+R2+0.5fm (Ri is <strong>the</strong> radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>nuclei</strong>). The values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> quasifissi<strong>on</strong> barriers B qf which depend <strong>on</strong> Z are ma<strong>in</strong>ly resp<strong>on</strong>sible<br />

<strong>the</strong> lifetime t0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS. Dur<strong>in</strong>g this time, <strong>the</strong> DNS evolves <strong>in</strong> <strong>the</strong> variables Z. The decay<br />

for<br />

<strong>the</strong> DNS <strong>in</strong> R is treated us<strong>in</strong>g <strong>the</strong> <strong>on</strong>e-dimensi<strong>on</strong>al Kramers rate <str<strong>on</strong>g>of</str<strong>on</strong>g> probability Λ <str<strong>on</strong>g>of</str<strong>on</strong>g> qf<br />

Z<br />

(6.9). In<br />

our calculati<strong>on</strong>s, <strong>the</strong> values ¯hω Bqf =1.0 MeV and ¯hω =2.0 MeV are used for <strong>the</strong> reacti<strong>on</strong>s<br />

c<strong>on</strong>sidered.<br />

The measurable quasi-fissi<strong>on</strong> charge (mass) yield is expressed through <strong>the</strong> formati<strong>on</strong> prob-<br />

PZ(t) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS c<strong>on</strong>figurati<strong>on</strong> with charge (mass) asymmetry Z and <strong>the</strong> decay probaability<br />

<strong>in</strong> R described by <strong>the</strong> Kramers rate Λ bility qf<br />

Z<br />

Z(t0) =Λ Y qf<br />

Z<br />

95<br />

t0<br />

0<br />

PZ(t)dt. (7.2)


The value <str<strong>on</strong>g>of</str<strong>on</strong>g> t0 is determ<strong>in</strong>ed <strong>in</strong> <strong>the</strong> soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Eq. (7.1). The decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS with<br />

Z > ZBG (ZBG corresp<strong>on</strong>ds to <strong>the</strong> barrier <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS potential energy as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

asymmetry) ma<strong>in</strong>ly c<strong>on</strong>tributes to <strong>the</strong> quasi-fissi<strong>on</strong> yield, and <strong>the</strong> lifetime t0 is calculated<br />

charge<br />

<br />

<strong>the</strong> c<strong>on</strong>diti<strong>on</strong> from <br />

Λ<br />

Z>ZBG<br />

qf<br />

Z<br />

t0<br />

PZ(t)dt ≈ 1. It is assumed that <strong>the</strong> DNS with Z


7-2). In <strong>the</strong> reacti<strong>on</strong>s lead<strong>in</strong>g to <strong>the</strong> <strong>nuclei</strong> 286 112 and 292 114, <strong>the</strong> decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> more symmetric<br />

DNS c<strong>on</strong>figurati<strong>on</strong>s becomes more pr<strong>on</strong>ounced. The moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS to more asym-<br />

metric c<strong>on</strong>figurati<strong>on</strong>s (mass asymmetry channel <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong>) <strong>in</strong> <strong>the</strong> reacti<strong>on</strong> 48 Ca+ 208 Pb is more<br />

favourable than <strong>in</strong> <strong>the</strong> reacti<strong>on</strong>s 48 Ca+ 238 Uand 48 Ca+ 244 Pu, where <strong>the</strong> distributi<strong>on</strong>s show<br />

similar features for Z 48, around <strong>the</strong> <strong>nuclei</strong> 78 Zn and 32 Ge, respectively, for <strong>the</strong><br />

light fragment with <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g <strong>heavy</strong> fragment 208 Pb. The height <str<strong>on</strong>g>of</str<strong>on</strong>g> this peak is 6 (3)<br />

times larger than <strong>the</strong> height <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peak <strong>in</strong> <strong>the</strong> symmetric mass regi<strong>on</strong> <strong>in</strong> <strong>the</strong> reacti<strong>on</strong> 48 Ca+ 238 U<br />

( 48 Ca+ 244 Pu). One can see that <strong>the</strong> results are <strong>in</strong> good agreement with <strong>the</strong> available experi-<br />

mental data, which were extracted from Ref.[11]. This experimental mass distributi<strong>on</strong> <strong>in</strong>cludes<br />

<strong>the</strong> quasi-fissi<strong>on</strong> events <strong>in</strong> all angles measured. It should be noted that near <strong>the</strong> <strong>in</strong>itial DNS<br />

c<strong>on</strong>figurati<strong>on</strong>, <strong>the</strong> quasi-fissi<strong>on</strong> events overlapp<strong>in</strong>g with <strong>the</strong> products <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r reacti<strong>on</strong> channels<br />

(elastic and quasi-elastic peaks) were not taken <strong>in</strong>to account <strong>in</strong> <strong>the</strong> experimental data because<br />

<strong>the</strong>y cannot be clearly dist<strong>in</strong>guish. In our calculati<strong>on</strong>s we assume that <strong>the</strong> DNS is formed <strong>in</strong><br />

all reacti<strong>on</strong>s c<strong>on</strong>sidered. In general, <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS also depends <strong>on</strong> <strong>the</strong> capture<br />

probability, which is determ<strong>in</strong>ed by <strong>the</strong> dynamical aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> approach stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong><br />

and by <strong>the</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pocket <strong>in</strong> <strong>the</strong> nucleus-nucleus <strong>in</strong>teracti<strong>on</strong> potential <strong>in</strong> <strong>the</strong> entrance<br />

channel [38].<br />

The excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS <strong>in</strong> all reacti<strong>on</strong>s c<strong>on</strong>sidered is E ∗ =10 MeV and<br />

<strong>the</strong> lifetime t0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS is about (3 − 4)× 10 −20 s. The <strong>in</strong>itial excitati<strong>on</strong> energy E ∗ can be<br />

97


Y Z<br />

Y A<br />

0,10<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

0,00<br />

0<br />

0,10<br />

10 20 Z 30 40 50 60<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

48Ca + 238U<br />

th.<br />

exp.<br />

0,00<br />

0 20 40 60 80 100 120 140<br />

A<br />

286112<br />

E * = 5 MeV<br />

E * = 15 MeV<br />

7-1: Charge (upper part) and mass (lower part) distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> quasi-fissi<strong>on</strong> products<br />

Figure<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> charge Z and mass A numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> light fragments, respectively, for <strong>the</strong><br />

as<br />

fusi<strong>on</strong> reacti<strong>on</strong> hot 48 + Ca 238 → U 286 The charge distributi<strong>on</strong> is calculated for two values<br />

112.<br />

<strong>the</strong> excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS: E <str<strong>on</strong>g>of</str<strong>on</strong>g> ∗ (dotted l<strong>in</strong>e) and E =5MeV ∗ (solid<br />

=15MeV<br />

The mass distributi<strong>on</strong> is compared with <strong>the</strong> experimental data [11] (open po<strong>in</strong>ts) for<br />

l<strong>in</strong>e).<br />

E ∗ .<br />

=10MeV<br />

98


Y Z<br />

Y A<br />

0,10<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

0,00<br />

0<br />

0,10<br />

10 20 Z 30 40 50 60<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

48Ca + 244Pu<br />

th.<br />

exp.<br />

0,00<br />

0 20 40 60 80 100 120 140<br />

A<br />

292114<br />

7-2: The same as <strong>in</strong> Fig. 7-1for <strong>the</strong> hot fusi<strong>on</strong> reacti<strong>on</strong> Figure 48 + Ca 244 Pu→ 292 The 114.<br />

mass distributi<strong>on</strong> (open po<strong>in</strong>ts) is taken from <strong>the</strong> Ref. [11]. The excitati<strong>on</strong> energy<br />

experimental<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS is E ∗ =10MeV (upper and lower parts).<br />

99


estimated from <strong>the</strong> difference between <strong>the</strong> bombard<strong>in</strong>g energy Ec.m. <strong>in</strong> <strong>the</strong> system <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> center<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mass and <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucleus-nucleus potential for R corresp<strong>on</strong>d<strong>in</strong>g to <strong>the</strong> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

pocket for <strong>the</strong> <strong>in</strong>itial c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS. The charge (mass) quasi-fissi<strong>on</strong> distributi<strong>on</strong>s<br />

slightly <strong>on</strong> <strong>the</strong> excitati<strong>on</strong> energy E depend ∗ <strong>the</strong> <strong>in</strong>itial DNS (Fig. 7-1). This is due to <strong>the</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transport coefficients ∆ weak (±)<br />

<strong>the</strong> temperature [33]. With an <strong>in</strong>creas<strong>in</strong>g<br />

<strong>on</strong><br />

temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system, <strong>the</strong> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shell effects <strong>on</strong> <strong>the</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong> transfer<br />

decreases more slowly than <strong>the</strong> exp<strong>on</strong>ential decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shell correcti<strong>on</strong> <strong>in</strong> <strong>the</strong> potential<br />

energy [33]. It was experimentally found [113] <strong>in</strong> <strong>the</strong> quasifissi<strong>on</strong> reacti<strong>on</strong>s 238 U+ 16 O, 26 Mg,<br />

27 Al, 32 S, 35 Cl, 40,48 Ca and nat Zn at several bombard<strong>in</strong>g energies, that <strong>the</strong> mass asymmetry<br />

moti<strong>on</strong> is dom<strong>in</strong>ated by <strong>the</strong> <strong>on</strong>e-body dissipati<strong>on</strong> which is <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature. The<br />

observed relaxati<strong>on</strong> times for <strong>the</strong> mass asymmetry mode <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>the</strong> systems c<strong>on</strong>sidered were <strong>in</strong><br />

agreement with <strong>the</strong> wall dissipati<strong>on</strong> picture [113].<br />

Z<br />

Fig. 7-3 shows <strong>the</strong> quasi-fissi<strong>on</strong> charge and mass distributi<strong>on</strong>s for <strong>the</strong> cold fusi<strong>on</strong> reacti<strong>on</strong>s<br />

with <strong>the</strong> projectiles 50 Ti, 64 Ni and 76 Ge <strong>on</strong> <strong>the</strong> target 208 Pb, which lead to <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

elements 258 104, 272 110 and 284 114, respectively, with an excitati<strong>on</strong> energy about 11-16 MeV [7,<br />

8]. The ratio between <strong>the</strong> drifts <str<strong>on</strong>g>of</str<strong>on</strong>g> mass and charge toward symmetric c<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS<br />

and toward more asymmetric <strong>on</strong>es becomes c<strong>on</strong>siderably larger with <strong>the</strong> <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> charge<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> super<strong>heavy</strong> element. Due to this fact, <strong>the</strong> complete fusi<strong>on</strong> probability <strong>in</strong> <strong>the</strong> mass<br />

asymmetry degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom decreases from <strong>the</strong> nucleus 258 104 to 272 110. For <strong>the</strong> reacti<strong>on</strong><br />

76 Ge+ 208 Pb→ 284 114, we found that <strong>the</strong> quasi-fissi<strong>on</strong> products are practically associated with<br />

fragmentati<strong>on</strong>s near <strong>the</strong> <strong>in</strong>itial DNS due to small values <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-fissi<strong>on</strong> barriers B qf. Compar<strong>in</strong>g<br />

Fig. 7-3 with Fig.7-2, we see that <strong>the</strong> mass and charge yields <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> quasi-fissi<strong>on</strong> products for<br />

nearly symmetric c<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS are larger for <strong>the</strong> hot fusi<strong>on</strong> reacti<strong>on</strong> 48 Ca+ 244 Pu<br />

than for <strong>the</strong> cold fusi<strong>on</strong> reacti<strong>on</strong> 76 Ge+ 208 Pb. The quasi-fissi<strong>on</strong> barrier B qf <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS<br />

becomes larger with decreas<strong>in</strong>g Z, and <strong>the</strong> nucle<strong>on</strong> transfer plays a larger role <strong>in</strong> <strong>the</strong> evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this DNS than <strong>the</strong> decay process. This is c<strong>on</strong>sistent with <strong>the</strong> c<strong>on</strong>clusi<strong>on</strong> that <strong>the</strong> hot fusi<strong>on</strong><br />

reacti<strong>on</strong> 48 Ca+ 244 Pu→ 292 114 is preferable for <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> element 114, although <strong>the</strong><br />

survival probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compound nucleus decreases with <strong>in</strong>creas<strong>in</strong>g excitati<strong>on</strong> energy [20,<br />

22]. In <strong>the</strong> cold fusi<strong>on</strong> reacti<strong>on</strong>s, <strong>the</strong> quasi-fissi<strong>on</strong> is an important factor decreas<strong>in</strong>g <strong>the</strong> complete<br />

fusi<strong>on</strong> cross secti<strong>on</strong>s with <strong>in</strong>creas<strong>in</strong>g atomic number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> super<strong>heavy</strong> element. Produc<strong>in</strong>g <strong>the</strong><br />

100


Y Z<br />

Y A<br />

0,12<br />

0,10<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

0,00<br />

0 10 20 30 40 50<br />

0,12<br />

0,10<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

Z<br />

0,00<br />

0 20 40 60 80 100 120 140<br />

A<br />

7-3: The same as <strong>in</strong> Fig. 7-2 for <strong>the</strong> fusi<strong>on</strong> reacti<strong>on</strong> Figure 48 + Ca 208 Pb→256 (solid l<strong>in</strong>e)<br />

102<br />

for <strong>the</strong> cold fusi<strong>on</strong> reacti<strong>on</strong>s and 50 Ti+ 208 Pb→ 258 (dashed l<strong>in</strong>e), 104 64 + Ni 208 Pb→ 272 110<br />

(dotted l<strong>in</strong>e) and 76 Ge + 208 Pb→ 284 114 (dashed-dotted l<strong>in</strong>e).<br />

101


elements from Z=104 to Z=112 <strong>in</strong> <strong>the</strong> cold fusi<strong>on</strong> reacti<strong>on</strong>s, <strong>the</strong> experimentalists observed a<br />

rapid fall-<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> evaporati<strong>on</strong> residue cross secti<strong>on</strong>s (about four orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude) with<br />

<strong>in</strong>creas<strong>in</strong>g charge number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compound nucleus [7, 8]. In <strong>the</strong> <strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> based <strong>on</strong> <strong>the</strong><br />

DNS-c<strong>on</strong>cept, <strong>the</strong> fusi<strong>on</strong> cross secti<strong>on</strong>s and excitati<strong>on</strong> functi<strong>on</strong>s for <strong>the</strong> cold fusi<strong>on</strong> reacti<strong>on</strong>s<br />

lead<strong>in</strong>g to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> super<strong>heavy</strong> elements are obta<strong>in</strong>ed <strong>in</strong> good agreement with <strong>the</strong><br />

experimental data [20].<br />

The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass (charge) distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> quasi-fissi<strong>on</strong> products well corresp<strong>on</strong>ds<br />

to <strong>the</strong> peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> driv<strong>in</strong>g potential (<strong>the</strong> DNS potential energy as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass<br />

(charge) asymmetry) shown <strong>in</strong> chapter 4. In order to illustrate <strong>the</strong> c<strong>on</strong>necti<strong>on</strong> between <strong>the</strong><br />

quasi-fissi<strong>on</strong> product yield and <strong>the</strong> driv<strong>in</strong>g potential, Fig. 7-4 shows <strong>the</strong> quasi-fissi<strong>on</strong> charge dis-<br />

tributi<strong>on</strong> for <strong>the</strong> reacti<strong>on</strong>s 110 Pd+ 136 Xe (η=0.1), 86 Kr+ 160 Gd (η=0.3) and 76 Ge+ 170 Er (η=0.4),<br />

which lead to <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same compound nucleus 246 Fm. The distributi<strong>on</strong>s reveal<br />

large widths and <strong>on</strong>e can observe a notable drift <strong>in</strong> charge (mass) away from <strong>the</strong> <strong>in</strong>itial charge<br />

(mass) asymmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>teract<strong>in</strong>g <strong>nuclei</strong>. The product masses are substantially different<br />

from <strong>the</strong> target—projectile masses. It is seen that <strong>the</strong> symmetric fragments can be formed<br />

<strong>in</strong> <strong>the</strong> quasi-fissi<strong>on</strong> process if <strong>the</strong> entrance DNS is an asymmetric <strong>on</strong>e. We can observe that<br />

<strong>the</strong> ma<strong>in</strong> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> distributi<strong>on</strong>s is around <strong>the</strong> <strong>in</strong>itial c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DNS. Compar-<br />

<strong>in</strong>g Fig. 7-4 with Fig. 4-7a), we observe that <strong>the</strong>re is a correlati<strong>on</strong> between <strong>the</strong> peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

quasi-fissi<strong>on</strong> distributi<strong>on</strong> and <strong>the</strong> m<strong>in</strong>ima <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> driv<strong>in</strong>g potential. The <strong>in</strong>ner fusi<strong>on</strong> barrier Bη<br />

<strong>in</strong>creases with decreas<strong>in</strong>g mass asymmetry η (Figs. 4-1to 4-7b)), while <strong>the</strong> quasi-fissi<strong>on</strong> bar-<br />

rier B qf becomes smaller because <strong>the</strong> Coulomb repulsi<strong>on</strong> <strong>in</strong>creases with decreas<strong>in</strong>g η and leads<br />

to very shallow pockets <strong>in</strong> <strong>the</strong> nucleus-nucleus potential for nearly symmetric c<strong>on</strong>figurati<strong>on</strong>s.<br />

Therefore, <strong>the</strong> decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS dom<strong>in</strong>ates <strong>in</strong> symmetric or nearly symmetric collisi<strong>on</strong>s.<br />

The experimental fusi<strong>on</strong> probability becomes larger with <strong>the</strong> <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass asymmetry<br />

η <strong>in</strong> <strong>the</strong> entrance channel [118]. This experimental evidence for a h<strong>in</strong>drance <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> has been<br />

ma<strong>in</strong>ly c<strong>on</strong>cluded from <strong>the</strong> impossibility to produce fermium evaporati<strong>on</strong> residues with nearly<br />

symmetric projectile-target comb<strong>in</strong>ati<strong>on</strong>s [118].<br />

The ma<strong>in</strong> c<strong>on</strong>clusi<strong>on</strong>s are: 1) The quasi-fissi<strong>on</strong> products <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> reacti<strong>on</strong>s are correctly<br />

described with<strong>in</strong> <strong>the</strong> DNS <strong>model</strong>: diffusi<strong>on</strong> <strong>in</strong> charge (mass) asymmetry and <strong>in</strong> relative distance<br />

(<strong>the</strong> DNS decay) coord<strong>in</strong>ates c<strong>on</strong>tributes to <strong>the</strong> yield <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-fissi<strong>on</strong> products. 2) The quasi-<br />

102


Y Z<br />

0,14<br />

0,12<br />

0,10<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

110Pd + 136Xe<br />

86Kr + 160Gd<br />

76Ge + 170Er<br />

0,00<br />

0 10 20 30 40 50<br />

7-4: Charge distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> quasi-fissi<strong>on</strong> products for <strong>the</strong> reacti<strong>on</strong>s Figure 110 Pd+ 136 Xe<br />

=0.1, solid l<strong>in</strong>e), (η 86 + Kr 160 (η =0.3, dashed l<strong>in</strong>e) and Gd 76 + Ge 170 (η =0.4, dotted<br />

Er<br />

which lead to <strong>the</strong> same compound nucleus l<strong>in</strong>e) 246 The arrows denote <strong>the</strong> <strong>in</strong>itial DNS.<br />

Fm.<br />

excitati<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>itial DNS formed <strong>in</strong> <strong>the</strong>se reacti<strong>on</strong>s is E The ∗ =20MeV.<br />

Z<br />

103


fissi<strong>on</strong> process is an important factor which reduces <strong>the</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> complete fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong><br />

<strong>nuclei</strong>. S<strong>in</strong>ce <strong>the</strong> quasi-fissi<strong>on</strong> dom<strong>in</strong>ates <strong>in</strong> <strong>the</strong> cold and hot fusi<strong>on</strong> reacti<strong>on</strong>s, <strong>the</strong> comparis<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>the</strong>oretical and experimental data is a critical test for <strong>the</strong> exist<strong>in</strong>g fusi<strong>on</strong> <strong>model</strong>s.<br />

104


Chapter 8<br />

8.1 Summary<br />

Depend<strong>in</strong>g <strong>on</strong> <strong>the</strong> ma<strong>in</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom used for <strong>the</strong> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong>, two different types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>model</strong>s for fusi<strong>on</strong> can be dist<strong>in</strong>guished. The first type <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>model</strong>s assumes a melt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>nuclei</strong><br />

al<strong>on</strong>g <strong>the</strong> <strong>in</strong>ternuclear distance (or el<strong>on</strong>gati<strong>on</strong> λ) [15, 16]. The sec<strong>on</strong>d type is <strong>the</strong> d<strong>in</strong>uclear<br />

system <strong>model</strong> [17, 34]. Models describ<strong>in</strong>g <strong>the</strong> fusi<strong>on</strong> process as an <strong>in</strong>ternuclear melt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nu-<br />

clei <str<strong>on</strong>g>of</str<strong>on</strong>g>ten use adiabatic potential energy surfaces. These potentials are calculated with <strong>the</strong><br />

macroscopic-microscopic method <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Strut<strong>in</strong>sky formalism. Without regard<strong>in</strong>g <strong>the</strong> competi-<br />

ti<strong>on</strong> between complete fusi<strong>on</strong> and quasi-fissi<strong>on</strong>, <strong>the</strong> first type <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>model</strong>s overestimates <strong>the</strong> fusi<strong>on</strong><br />

cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong> [18]. However, <strong>the</strong> d<strong>in</strong>uclear system <strong>model</strong> describes <strong>the</strong> experi-<br />

mental fusi<strong>on</strong> data quite well. In this <strong>model</strong>, <strong>the</strong> fusi<strong>on</strong> process is c<strong>on</strong>sidered as <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a d<strong>in</strong>uclear system caused by <strong>the</strong> transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong>s from <strong>the</strong> light nucleus to <strong>the</strong> <strong>heavy</strong> <strong>on</strong>e.<br />

The d<strong>in</strong>uclear system c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two touch<strong>in</strong>g <strong>nuclei</strong>, which c<strong>on</strong>serve <strong>the</strong>ir <strong>in</strong>dividuality, and<br />

evolves <strong>in</strong> <strong>the</strong> mass asymmetry η to a compound nucleus or decays <strong>in</strong> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ. The<br />

<strong>model</strong> assumes that <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear system to smaller el<strong>on</strong>gati<strong>on</strong>s λ is str<strong>on</strong>gly h<strong>in</strong>-<br />

dered. This is phenomenologically described with a double fold<strong>in</strong>g potential <strong>in</strong> frozen density<br />

approximati<strong>on</strong> which shows a m<strong>in</strong>imum near <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>.<br />

We have <strong>in</strong>vestigated <strong>the</strong> fusi<strong>on</strong> and quasi-fissi<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong> us<strong>in</strong>g <strong>the</strong> two-center<br />

shell <strong>model</strong> (TCSM). The diabatic potential energy surfaces as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ,<br />

105


<strong>the</strong> neck coord<strong>in</strong>ate ε and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass asymmetry η were calculated for <strong>the</strong> entrance phase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

collisi<strong>on</strong>s between spherical <strong>heavy</strong> <strong>nuclei</strong>. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

temperature <strong>on</strong> <strong>the</strong> diabatic potential energy as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ was analysed.<br />

In a diabatic descripti<strong>on</strong> <strong>the</strong> nucle<strong>on</strong>s do not occupy <strong>the</strong> lowest free s<strong>in</strong>gle-particle levels as<br />

<strong>in</strong> <strong>the</strong> adiabatic case, but rema<strong>in</strong> <strong>in</strong> <strong>the</strong> diabatic levels dur<strong>in</strong>g <strong>the</strong> collective moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

nuclear system. As a result, <strong>the</strong> diabatic potential energy surface is raised with respect to<br />

<strong>the</strong> adiabatic potential energy surface and new potential barriers for collective variables may<br />

appear. From <strong>the</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diabatic s<strong>in</strong>gle-particle spectrum, we obta<strong>in</strong>ed that <strong>the</strong> diabatic<br />

effects for <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system <strong>in</strong> λ and <strong>in</strong> ε are already important for relatively small<br />

excitati<strong>on</strong> energies <str<strong>on</strong>g>of</str<strong>on</strong>g> 6—14 MeV. Diabatic TCSM levels do not show avoided level cross<strong>in</strong>gs.<br />

Avoided level cross<strong>in</strong>gs can be removed from <strong>the</strong> adiabatic TCSM by elim<strong>in</strong>at<strong>in</strong>g <strong>the</strong> symmetry-<br />

violat<strong>in</strong>g parts from <strong>the</strong> adiabatic Hamilt<strong>on</strong>ian <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TCSM. S<strong>in</strong>ce <strong>the</strong> diabatic effects are<br />

small near <strong>the</strong> touch<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>, <strong>the</strong>y are not important for <strong>the</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear<br />

system as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass asymmetry η at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong>.<br />

The isotopic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass asymmetry coord<strong>in</strong>ate η<br />

at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> calculated with<strong>in</strong> <strong>the</strong> adiabatic TCSM us<strong>in</strong>g <strong>the</strong><br />

Strut<strong>in</strong>sky method was studied for various <strong>heavy</strong> d<strong>in</strong>uclear systems. Moreover, this potential<br />

was compared with <strong>the</strong> potentials calculated with a phenomenological method and with ano<strong>the</strong>r<br />

alternative microscopical method. The phenomenological method uses <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <strong>nuclei</strong> and <strong>the</strong> nucleus-nucleus potential which <strong>in</strong>cludes <strong>the</strong> Coulomb and nuclear terms.<br />

The nuclear part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nucleus-nucleus potential is calculated us<strong>in</strong>g a double-fold<strong>in</strong>g procedure.<br />

With <strong>the</strong> alternative microscopical method, <strong>the</strong> potential energy is calculated us<strong>in</strong>g <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong> transfer between <strong>the</strong> <strong>nuclei</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear system.<br />

Mass parameters as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ, <strong>the</strong> neck coord<strong>in</strong>ate ε, <strong>the</strong> mass asym-<br />

metry η and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deformati<strong>on</strong> β i for <strong>heavy</strong> d<strong>in</strong>uclear systems were evaluated <strong>in</strong> <strong>the</strong> TCSM.<br />

Formulas for <strong>the</strong> masses are derived with<strong>in</strong> <strong>the</strong> l<strong>in</strong>ear resp<strong>on</strong>se <strong>the</strong>ory by tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong><br />

fluctuati<strong>on</strong>-dissipati<strong>on</strong> <strong>the</strong>orem and <strong>the</strong> width <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle particle states, and by o<strong>the</strong>r methods<br />

as Fermi’s golden rule and a spectral smooth<strong>in</strong>g <strong>in</strong> <strong>the</strong> mean—field crank<strong>in</strong>g formula.<br />

In order to study whe<strong>the</strong>r <strong>the</strong> fusi<strong>on</strong> is possible <strong>in</strong> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> coord<strong>in</strong>ate λ, we c<strong>on</strong>sidered<br />

<strong>the</strong> transiti<strong>on</strong> from <strong>the</strong> diabatic potential to <strong>the</strong> adiabatic <strong>on</strong>e <strong>in</strong> <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system <strong>in</strong><br />

106


λ dur<strong>in</strong>g <strong>the</strong> lifetime t 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear system. The competiti<strong>on</strong> between two possible fusi<strong>on</strong><br />

channels was studied. The λ—channel describes <strong>the</strong> transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two <strong>nuclei</strong> <strong>in</strong>to <strong>the</strong> compound<br />

nucleus with <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> coord<strong>in</strong>ate λ for a fixed mass asymmetry η dur<strong>in</strong>g <strong>the</strong> fusi<strong>on</strong>.<br />

The sec<strong>on</strong>d channel, named η—channel, describes <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear system to <strong>the</strong><br />

compound nucleus as a change <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass asymmetry η by nucle<strong>on</strong> transfer from <strong>the</strong> light<br />

nucleus to <strong>the</strong> <strong>heavy</strong> <strong>on</strong>e.<br />

The quasi-fissi<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear system was studied solv<strong>in</strong>g a transport master-<br />

equati<strong>on</strong> for <strong>the</strong> exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> nucle<strong>on</strong>s between <strong>the</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear system, which also<br />

takes <strong>the</strong> decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear system <strong>in</strong> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ <strong>in</strong>to account.<br />

In this work, we have obta<strong>in</strong>ed <strong>the</strong> follow<strong>in</strong>g results:<br />

• The diabatic effects <strong>in</strong> <strong>the</strong> entrance phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reacti<strong>on</strong> give rise to h<strong>in</strong>drances for <strong>the</strong><br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neck and for <strong>the</strong> moti<strong>on</strong> to smaller relative distances.<br />

• The diabatic potentials as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ are similar to <strong>the</strong> phenomeno-<br />

logical double fold<strong>in</strong>g potentials used <strong>in</strong> <strong>the</strong> d<strong>in</strong>uclear system <strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong>.<br />

• For <strong>the</strong> asymmetric d<strong>in</strong>uclear system, <strong>the</strong> diabatic h<strong>in</strong>drance for <strong>the</strong> moti<strong>on</strong> to smaller<br />

el<strong>on</strong>gati<strong>on</strong>s λ is smaller than for <strong>the</strong> symmetric d<strong>in</strong>uclear system. Therefore, its evoluti<strong>on</strong> to<br />

<strong>the</strong> compound nucleus <strong>in</strong> λ is more favored.<br />

• The potentials as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mass asymmetry η at <strong>the</strong> touch<strong>in</strong>g c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <strong>nuclei</strong> calculated with<strong>in</strong> <strong>the</strong> TCSM are similar to <strong>the</strong> <strong>on</strong>es calculated us<strong>in</strong>g o<strong>the</strong>r methods.<br />

• The isotopic dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fusi<strong>on</strong> barrier <strong>in</strong> η, calculated with<strong>in</strong> <strong>the</strong> TCSM, agrees<br />

with <strong>the</strong> isotopic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experimental surplus <str<strong>on</strong>g>of</str<strong>on</strong>g> energy ∆B exp = B exp − BBass above<br />

<strong>the</strong> Bass barrier BBass.The value <str<strong>on</strong>g>of</str<strong>on</strong>g> B exp is def<strong>in</strong>ed as <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bombard<strong>in</strong>g energy for<br />

a fusi<strong>on</strong> probability 0.5.<br />

• The adiabatic and diabatic microscopical mass parameters for <strong>the</strong> neck degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom<br />

ε are much larger than <strong>the</strong> <strong>on</strong>e obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> hydrodynamical <strong>model</strong> with <strong>the</strong> Werner-Wheeler<br />

approximati<strong>on</strong>. By apply<strong>in</strong>g <strong>the</strong> microscopical mass parameters, we f<strong>in</strong>d a relatively stable neck<br />

dur<strong>in</strong>g <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>.<br />

• The d<strong>in</strong>uclear system is stable aga<strong>in</strong>st a melt<strong>in</strong>g <strong>in</strong> λ and ε. The diabatic effects and <strong>the</strong><br />

microscopic mass parameters give a justificati<strong>on</strong> for <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear system <strong>in</strong> <strong>heavy</strong><br />

i<strong>on</strong> collisi<strong>on</strong>s at low energies.<br />

107


• The time-dependent transiti<strong>on</strong> between <strong>the</strong> diabatic and adiabatic potentials is a slower<br />

process than <strong>the</strong> quasi-fissi<strong>on</strong> process and <strong>the</strong> system has no time for destroy<strong>in</strong>g <strong>the</strong> ”nuclear<br />

memory” about <strong>the</strong> diabatic (structural) forbiddeness for <strong>the</strong> moti<strong>on</strong> to smaller el<strong>on</strong>gati<strong>on</strong>s λ.<br />

• The fusi<strong>on</strong> probabilities obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> λ-channel are much smaller than <strong>the</strong> probabilities<br />

obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> η-channel <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong>, which are similar to <strong>the</strong> experimental values. The heavier<br />

<strong>the</strong> system, <strong>the</strong> greater is <strong>the</strong> difference between <strong>the</strong> fusi<strong>on</strong> barriers and probabilities <strong>in</strong> both<br />

channels <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong>. The λ-channel is practically closed.<br />

• The fusi<strong>on</strong> <strong>in</strong> <strong>the</strong> mass asymmetry degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom c<strong>on</strong>sidered <strong>in</strong> <strong>the</strong> d<strong>in</strong>uclear system<br />

c<strong>on</strong>cept dom<strong>in</strong>ates <strong>the</strong> complete fusi<strong>on</strong> process for <strong>heavy</strong> systems.<br />

• Us<strong>in</strong>g a transport master-equati<strong>on</strong> to describe <strong>the</strong> nucle<strong>on</strong> transfer between <strong>the</strong> <strong>nuclei</strong><br />

form<strong>in</strong>g a d<strong>in</strong>uclear system, which takes <strong>the</strong> decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> d<strong>in</strong>uclear system <strong>in</strong> <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> λ<br />

<strong>in</strong>to account, <strong>the</strong> quasi-fissi<strong>on</strong> products <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> reacti<strong>on</strong>s are correctly described and are <strong>in</strong><br />

agreement with <strong>the</strong> experimental data.<br />

• The quasi-fissi<strong>on</strong> process is an important factor which reduces <strong>the</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> complete<br />

fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong> <strong>nuclei</strong>.<br />

8.2 Outlook<br />

The search <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fissi<strong>on</strong> path <strong>in</strong> <strong>the</strong> multi-dimensi<strong>on</strong>al space <str<strong>on</strong>g>of</str<strong>on</strong>g> collective variables is still an<br />

open problem. The fissi<strong>on</strong> process is usually c<strong>on</strong>sidered as an adiabatic process where <strong>the</strong><br />

relevant collective variables are <strong>the</strong> el<strong>on</strong>gati<strong>on</strong>, <strong>the</strong> mass asymmetry, <strong>the</strong> neck coord<strong>in</strong>ate and<br />

<strong>the</strong> deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fragments [94]. In additi<strong>on</strong> to <strong>the</strong> potential energy, <strong>the</strong> fricti<strong>on</strong> and<br />

<strong>the</strong> mass tensor play an important role <strong>in</strong> <strong>the</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fissi<strong>on</strong><strong>in</strong>g system. There is not<br />

yet a fissi<strong>on</strong> <strong>model</strong> <strong>in</strong> which it is possible to expla<strong>in</strong> all experimental observables <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fissi<strong>on</strong><br />

process, e.g., mass and charge distributi<strong>on</strong>s, total k<strong>in</strong>etic energy distributi<strong>on</strong>, two-dimensi<strong>on</strong>al<br />

mass-total k<strong>in</strong>etic energy distributi<strong>on</strong>, angular distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fragments, etc. The most<br />

promis<strong>in</strong>g <strong>model</strong> is <strong>the</strong> Brosa <strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> multi-modal fissi<strong>on</strong> ([121], [122]).<br />

It will be <strong>in</strong>terest<strong>in</strong>g to study as a possible fissi<strong>on</strong> path <strong>the</strong> <strong>in</strong>verse path used by <strong>the</strong> d<strong>in</strong>uclear<br />

system <strong>model</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong>. The fissi<strong>on</strong> phenomen<strong>on</strong> could be treated as a two-step process: a<br />

light nucleus (α-particle) is created with<strong>in</strong> <strong>the</strong> diffuse edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fissi<strong>on</strong><strong>in</strong>g nucleus; <strong>the</strong>n this<br />

108


nucleus grows, ga<strong>in</strong><strong>in</strong>g nucle<strong>on</strong>s from its partner nucleus till <strong>the</strong> d<strong>in</strong>uclear system dissociates.<br />

Prelim<strong>in</strong>ary estimati<strong>on</strong>s show that <strong>the</strong> heights <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> barriers for <strong>the</strong> asymmetric and symmetric<br />

fissi<strong>on</strong>s as well as <strong>the</strong> competiti<strong>on</strong> between asymmetric and symmetric fissi<strong>on</strong> channels and <strong>the</strong><br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> charge, mass, energetic distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fissi<strong>on</strong> products are reproduced <strong>in</strong> this<br />

approach. The sp<strong>on</strong>taneous fissi<strong>on</strong> process could be c<strong>on</strong>sidered as a tunnel<strong>in</strong>g process <strong>in</strong> <strong>the</strong><br />

mass asymmetry degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom η. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> and fricti<strong>on</strong> <strong>in</strong> <strong>the</strong> tunnel<strong>in</strong>g <strong>in</strong> η<br />

for <strong>the</strong> d<strong>in</strong>uclear system could be c<strong>on</strong>sidered us<strong>in</strong>g <strong>the</strong> L<strong>in</strong>dblad axiomatic approach for open<br />

quantum systems [123, 124]. Changes <strong>in</strong> <strong>the</strong> deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>nuclei</strong> dur<strong>in</strong>g <strong>the</strong> tunnel<strong>in</strong>g<br />

process could also be taken <strong>in</strong>to account. The <strong>nuclei</strong> Fm and Cf are especially attractive for<br />

this study.<br />

Us<strong>in</strong>g <strong>the</strong> structural forbiddenness c<strong>on</strong>cept [63], we could study <strong>the</strong> h<strong>in</strong>drances for <strong>the</strong><br />

fragmentati<strong>on</strong> process <strong>in</strong> λ and η degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom. The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> calculated energy<br />

thresholds (fissi<strong>on</strong> barriers) for <strong>the</strong> fissi<strong>on</strong> <strong>in</strong> λ and η variables could provide <strong>the</strong> answer about<br />

<strong>the</strong> favorable fissi<strong>on</strong> path.<br />

109


Appendix A<br />

For describ<strong>in</strong>g nucleus-nucleus collisi<strong>on</strong>s, we use <strong>the</strong> TCSM [40] as a s<strong>in</strong>gle-particle <strong>model</strong>. The<br />

Hamilt<strong>on</strong>ian <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>model</strong> is<br />

H = − ¯h2 ∇ 2<br />

2m0<br />

+ V (ρ,z)+V LS(r, p, s)+V L 2(r, l), (A.1)<br />

<strong>in</strong> cyl<strong>in</strong>der coord<strong>in</strong>ates z, ρ and ϕ. The momentum-<strong>in</strong>dependent part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential may be<br />

expressed as<br />

V (ρ, z) = f0<br />

2 m0ω 2 z ′2 (1+ cz ′<br />

The momentum-dependent parts are<br />

with <strong>the</strong> abbreviati<strong>on</strong> z ′<br />

V LS = −<br />

¯hκ<br />

L2 = − V 1<br />

<br />

¯hκµ<br />

2<br />

m0ω 3 0<br />

, l<br />

dz + ′2 )+ 1<br />

2 m0α 2 gz (1+ ′2 )ρ 2 (A.2)<br />

.<br />

m0ω0<br />

, (∇V × p) · s<br />

<br />

<br />

, (A.3)<br />

N (N +3)<br />

δif , (A.4)<br />

+¯hκµω0<br />

= z − zi . The positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> centers are denoted by z1 and z2,<br />

z1 ≤ 0 ≤ z2. The behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> V (ρ, z) al<strong>on</strong>g <strong>the</strong> z-axis can be seen from Fig. A-1, where <strong>the</strong><br />

potential is plotted below <strong>the</strong> associated nuclear surface. To <strong>the</strong> left <str<strong>on</strong>g>of</str<strong>on</strong>g> z1 and to <strong>the</strong> right <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

z2 <strong>the</strong> potential (A.2) is simply that <str<strong>on</strong>g>of</str<strong>on</strong>g> a deformed oscillator. Between <strong>the</strong> centers, however,<br />

<strong>the</strong>re are c<strong>on</strong>siderable deviati<strong>on</strong>s caused by a variable barrier and by <strong>the</strong> need <str<strong>on</strong>g>of</str<strong>on</strong>g> jo<strong>in</strong><strong>in</strong>g <strong>the</strong><br />

110<br />

2


fragments c<strong>on</strong>t<strong>in</strong>uously.<br />

A-1: The potential al<strong>on</strong>g <strong>the</strong> z-axis and <strong>the</strong> associated nuclear shape. The designati<strong>on</strong>s<br />

Figure<br />

<strong>the</strong> geometrical quantities have been <strong>in</strong>dicated and <strong>the</strong> quantities for <strong>the</strong> def<strong>in</strong>iti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameter ε = E0/E ′ are shown.<br />

The c<strong>on</strong>stants are listed <strong>in</strong> Table A and l =(∇V × p)/m0ω 2 0 . In <strong>the</strong>se formulas, {A, B} =<br />

AB + BA denotes <strong>the</strong> anticommutator <str<strong>on</strong>g>of</str<strong>on</strong>g> A and B and δif is <strong>the</strong> Kr<strong>on</strong>ecker symbol. The<br />

quantity N should be chosen such that it approaches <strong>the</strong> usual pr<strong>in</strong>cipal quantum number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> spherical oscillator <strong>in</strong> <strong>the</strong> limit<strong>in</strong>g cases <str<strong>on</strong>g>of</str<strong>on</strong>g> a s<strong>in</strong>gle sphere and that <str<strong>on</strong>g>of</str<strong>on</strong>g> two separate fragments<br />

with a large separati<strong>on</strong>.<br />

The coefficients g, c and d are determ<strong>in</strong>ed by requir<strong>in</strong>g that <strong>the</strong> potential and its derivative<br />

with respect to z is c<strong>on</strong>t<strong>in</strong>uous at z =0.<br />

The oscillator frequencies, ω and α, must be determ<strong>in</strong>ed numerically from <strong>the</strong> assumpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> volume-c<strong>on</strong>servati<strong>on</strong> <strong>in</strong>side <strong>the</strong> equipotential surface V (ρ, z) =V0 with<br />

111


where<br />

The volume is<br />

V0 = 1<br />

2 m0ϖ 2 R 2<br />

0<br />

. (A.5)<br />

= W0 4π<br />

3 R2<br />

(A.6)<br />

,<br />

R0 = 1.2249fm · A 1/3<br />

¯hϖ = 41MeV · A −1/3<br />

The coord<strong>in</strong>ates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> centers, z1 and z2, are calculated with <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> that <strong>the</strong> barrier<br />

must have <strong>the</strong> same positi<strong>on</strong> <strong>on</strong> <strong>the</strong> z-axis as <strong>in</strong> <strong>the</strong> two-center oscillator [125]<br />

E ′ = 1<br />

2 m0ω 2 z 2<br />

= 0 1<br />

2<br />

0<br />

2<br />

z1 m0ω z2<br />

= 1 1<br />

2<br />

2<br />

z2 m0ω z2.<br />

(A.7)<br />

2<br />

The c<strong>on</strong>stants g, c, d, ω, α, z 1 and z 2 depend <strong>on</strong> <strong>the</strong> nuclear shapes, which are def<strong>in</strong>ed by<br />

<strong>the</strong> collective coord<strong>in</strong>ates: el<strong>on</strong>gati<strong>on</strong> λ, mass asymmetry η, neck parameter ε and deformati<strong>on</strong>s<br />

βi <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> axial symmetric fragments.<br />

The parameters κ, µ and ω 0 are determ<strong>in</strong>ed by a c<strong>on</strong>venient <strong>in</strong>terpolati<strong>on</strong> method regard<strong>in</strong>g<br />

<strong>the</strong>se parameters as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> extrapolated masses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fragments <strong>in</strong> order to achieve <strong>the</strong><br />

correct transiti<strong>on</strong> from <strong>the</strong> system <str<strong>on</strong>g>of</str<strong>on</strong>g> two separate <strong>nuclei</strong> to <strong>the</strong> compound-system c<strong>on</strong>figura-<br />

ti<strong>on</strong>. The additi<strong>on</strong>al undef<strong>in</strong>ed quantity f 0 has little <strong>in</strong>fluence <strong>on</strong> <strong>the</strong> total energy for a wider<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> values, and from liquid drop <strong>model</strong> calculati<strong>on</strong>s it was found that f0 =4ε isagood<br />

approximati<strong>on</strong> to <strong>the</strong> value giv<strong>in</strong>g m<strong>in</strong>imal energy.<br />

112


Table A<br />

Symbol z


ϕ nz(z) =<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

C−1 z1 U (−nz1 − 1<br />

2 ,− (z − z1 )) if z< 0<br />

2kz1<br />

C−1 z2 U (−n − z2 1<br />

2 , z2 2k (z − z2)) z>0 if<br />

⎫<br />

⎪⎬<br />

⎪⎭ , (A.11)<br />

with normalizati<strong>on</strong> factors Cz1 and Cz2 . The quantum number nz assumes different values <strong>on</strong><br />

both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> orig<strong>in</strong>, too. As <strong>the</strong> energy<br />

=¯hω(nz + E 1<br />

2 )+¯hωρ(2nρ+ lz | +1) (A.12)<br />

|<br />

should not depend <strong>on</strong> z, <strong>the</strong> values nz1 and nz2 are related by<br />

+ ωz1(nz1 1<br />

2 )=ωz2(nz2 + 1<br />

). (A.13)<br />

2<br />

U(a, x) denotes a parabolic cyl<strong>in</strong>der functi<strong>on</strong> [40]. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> nz must be determ<strong>in</strong>ed<br />

numerically from assur<strong>in</strong>g <strong>the</strong> c<strong>on</strong>t<strong>in</strong>uity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> logarithmic derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> (A.11) <strong>in</strong> z =0.<br />

The Hamilt<strong>on</strong>ian (A.1) can be split <strong>in</strong>to several parts which are treated separately<br />

H0 is <strong>the</strong> Hamilt<strong>on</strong>ian <str<strong>on</strong>g>of</str<strong>on</strong>g> a two-center oscillator<br />

and H1 is given by<br />

H1 = f0<br />

H = H0 + H1 + V LS + V L 2 . (A.14)<br />

H0 = − ¯h2 ∇ 2<br />

2m0<br />

2 m0ω 2 z ′2 (cz ′<br />

dz + ′2 )+ (f0 1) −<br />

2<br />

+ 1<br />

2 m0ω 2 z ′2 + 1<br />

m0ω 2 z ′2 + 1<br />

m0ω<br />

2<br />

ρ<br />

2 ρ2 (A.15)<br />

,<br />

2 m0<br />

<br />

α 2 gz (1+ ′2 − ω ) 2<br />

<br />

ρ 2 (A.16)<br />

,<br />

ωρ is an optimal value between ωρ = m<strong>in</strong>(ωρ1,ωρ2) andωρ = where 1<br />

2 (ωρ1 ωρ2). +<br />

Dur<strong>in</strong>g <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix elements it turns out to be advantageous to <strong>in</strong>troduce<br />

ano<strong>the</strong>r quantum number<br />

Nρ =2nρ+ | lz | (A.17)<br />

114<br />

ρ


<strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> nρ, and to multiply <strong>the</strong> basic functi<strong>on</strong>s with a phase factor . So <strong>the</strong> functi<strong>on</strong>s actually<br />

used are<br />

| nzNρlzsz >= (−1) 1<br />

The matrix elements are presented <strong>in</strong> [40].<br />

2 (lz+|lz |) | nz, Nρ− |lz |<br />

115<br />

2<br />

,lz > ·|sz >. (A.18)


Appendix B<br />

The collective resp<strong>on</strong>se functi<strong>on</strong> [86] can be derived by <strong>in</strong>troduc<strong>in</strong>g a (hypo<strong>the</strong>tical) external<br />

force ˆ F fext(t) and by evaluat<strong>in</strong>g how <strong>the</strong> deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> < ˆ F >ω from some properly chosen<br />

static value reacts to this external field <strong>in</strong> l<strong>in</strong>ear order<br />

δ< ˆ F>ω= − χ coll(ω) · f ext(ω). (B.1)<br />

The collective resp<strong>on</strong>se functi<strong>on</strong> can be brought to <strong>the</strong> form [86]<br />

coll(ω) = χ χ(ω)<br />

. (B.2)<br />

1+kχ(ω)<br />

Here, χ(ω) is <strong>the</strong> Fourier transform <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> resp<strong>on</strong>se functi<strong>on</strong> for <strong>in</strong>tr<strong>in</strong>sic moti<strong>on</strong>. Its time-<br />

dependent versi<strong>on</strong> reads<br />

˜<br />

(t − s) =ϑ(t − s) χ i<br />

¯h<br />

tr<br />

<br />

qs(Q0,T0) ρ <br />

<br />

ˆ F(s) (t), ˆF<br />

, (B.3)<br />

where ϑ(x) is <strong>the</strong> Heavyside’s functi<strong>on</strong>. In <strong>the</strong> expressi<strong>on</strong> (B.3) <strong>the</strong> time development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

field operators is def<strong>in</strong>ed by <strong>the</strong> same Hamilt<strong>on</strong>ian ˆ H(xi,p i,Q) which appears <strong>in</strong> <strong>the</strong> density<br />

ρ qs.<br />

The coupl<strong>in</strong>g c<strong>on</strong>stant k is written <strong>in</strong> <strong>the</strong> form<br />

−k −1 =< ∂2H(xi,pi,Q) ˆ<br />

∂Q2 >Q0,T0= ∂2 S0) E(Q,<br />

∂Q2 + χ(ω =0)=C(0) + χ(0) (B.4)<br />

|Q0<br />

116


with χ(0) and C(0) be<strong>in</strong>g <strong>the</strong> static <strong>in</strong>tr<strong>in</strong>sic resp<strong>on</strong>se and stiffness, respectively. S<strong>in</strong>ce <strong>the</strong><br />

c<strong>on</strong>stant k is entirely determ<strong>in</strong>ed by quasi-static properties, it is no surprise that E is <strong>the</strong> <strong>in</strong>ternal<br />

energy at a given entropy S0 or <strong>the</strong> free energy at a given temperature T0. The structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Eq.(B.2) reflects self—c<strong>on</strong>sistency between <strong>the</strong> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> collective and microscopic dynamics.<br />

It expresses <strong>the</strong> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>teract<strong>in</strong>g nucle<strong>on</strong>s <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>in</strong>dividual nucle<strong>on</strong>s.<br />

In <strong>the</strong> local harm<strong>on</strong>ic approximati<strong>on</strong> [86], <strong>the</strong> <strong>in</strong>verse <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> collective resp<strong>on</strong>se functi<strong>on</strong><br />

χ −1<br />

(ω) is c<strong>on</strong>sidered as <strong>the</strong> <strong>in</strong>verse <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> damped oscillator resp<strong>on</strong>se functi<strong>on</strong> χ−1<br />

osc (ω) which<br />

coll<br />

is expressed as<br />

χ −1<br />

osc (ω) =C F iγ − F − M ω F ω 2 (B.5)<br />

,<br />

where C F , γ F and M F are related to <strong>the</strong> derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effective collective potential, calcu-<br />

lated <strong>in</strong> l<strong>in</strong>earized form, to a fricti<strong>on</strong> force and to an <strong>in</strong>ertial <strong>on</strong>e, respectively. The associated<br />

”transport coefficients” have been marked by a superscript F to <strong>in</strong>dicate that <strong>the</strong>y are asso-<br />

ciated with <strong>the</strong> quantity δ< ˆ F >. The transport coefficients T¸= M,γ,C <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Q-mode are<br />

related to <strong>the</strong> transport coefficients T¸ F = M F ,γ F ,C F <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> δ< ˆ F >-mode by <strong>the</strong> relati<strong>on</strong><br />

T¸ F k = 2 [86]. An expressi<strong>on</strong> like (B.5) may be obta<strong>in</strong>ed by expand<strong>in</strong>g χ T¸ −1<br />

(ω) (B.2) to sec<strong>on</strong>d<br />

coll<br />

order <strong>in</strong> ω. In this way <strong>on</strong>e gets<br />

C ≈<br />

γ ≈ 1<br />

1<br />

k 2 χ coll (ω)<br />

k 2<br />

M ≈ 1<br />

2k 2<br />

∂χ −1<br />

coll (ω)<br />

| ω=0,<br />

∂ω<br />

∂2χ −1<br />

coll (ω)<br />

117<br />

∂ω 2<br />

|ω=0, (B.6)<br />

|ω=0 .


[1] S.G.Nilss<strong>on</strong> et al., Phys. Lett. B28 (1969) 458; Nucl. Phys. A 131 (1969) 1.<br />

[2] U.Mosel and W. Gre<strong>in</strong>er, Z. Phys. 217 (1968) 256; 222 (1968) 261.<br />

[3] K.Rutz et al., Phys. Rev. C 56 (1997) 238.<br />

[4] P.Armbruster, Ann. Rev. Nucl. Part. Sci. 35 (1985) 135; IL Nuovo Cim. A110 (1997)<br />

1111.<br />

[5] Yu.Ts.Oganessian et al., Nucl. Phys. A 239 (1975) 353.<br />

[6] R.K.Gupta, C.Parvulescu and A.Sandulescu, Z. Phys. A 283 (1977) 217; Z. Naturforsch.<br />

32a (1977) 704.<br />

[7] S.H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann et al., Z. Phys. A 350 (1995) 277; A 350 (1995) 281; A 354 (1996) 229;<br />

S.H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann, Rep. Prog. Phys. 61(1998) 639.<br />

[8] G.Münzenberg, Rep. Prog. Phys. 51(1988) 57.<br />

[9] S.H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann and G.Münzenberg, Rev. Mod. Phys. (to be published).<br />

[10] V.N<strong>in</strong>ov et al, Phys. Rev. Lett. 83 (1999) 1104.<br />

[11] M.G.Itkis et al, <strong>in</strong> Sec<strong>on</strong>d Int. C<strong>on</strong>f. <strong>on</strong> Fissi<strong>on</strong>, St. Andrews, June 28-July 2, 1999.<br />

[12] Yu.Ts.Oganessian et al., Eur. Phys. J.A5(1999)63;Nature400(1999)242;A.V.Yerem<strong>in</strong>,<br />

V.K.Uty<strong>on</strong>kov and Yu.Ts.Oganessian, <strong>in</strong> Proc.Tours Symposium <strong>on</strong> Nuclear Physics III,<br />

Tours, 1997, eds. M. Arnould et al. (AIP,New York, 1998) p.16.<br />

[13] G.Münzenberg et al, <strong>in</strong> MAFF Collaborati<strong>on</strong>-Meet<strong>in</strong>g, München-November 27, 1998.<br />

118


[14] A.S.Ilj<strong>in</strong>ov, Yu.Ts.Oganessian and E.A.Cherepanov, Sov. J. Nucl. Phys. 36 (1982) 118.<br />

[15] P.Fröbrich, Phys. Rep. 116 (1984) 337.<br />

[16] W.J. Swiatecki, Progr. Part. Nucl. Phys. 4 (1980) 383; Phys.Scripta 24 (1981) 113; S.<br />

Bjornholm and W.J.Swiatecki, Nucl. Phys. A 391 (1982) 471.<br />

[17] N.V.Ant<strong>on</strong>enko, G.G.Adamian, A.Diaz-Torres, V.V.Volkov and W.Scheid, <strong>in</strong> Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Predeal Int. Summer School ”Structure and Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Nucle<strong>on</strong> and Nuclear Systems”,<br />

Predeal, August 24-September 5, 1998, eds. A.A.Raduta, S.Stoica and I.I.Ursu (Word<br />

Scientific,1999) p. 209.<br />

[18] N.V.Ant<strong>on</strong>enko, E.A.Cherepanov, A.K.Nasirov, V.B.Permjakov and V.V.Volkov, Phys.<br />

Lett. B 319 (1993) 425; Phys. Rev. C 51 (1995) 2635.<br />

[19] V.V. Volkov, <strong>in</strong> Proc. Int. School-Sem<strong>in</strong>ar <strong>on</strong> Heavy I<strong>on</strong> Physics, Dubna, 1986 (JINR,<br />

Dubna, 1987) p.528; Izv. AN SSSR ser. fiz. 50 (1986) 1879; <strong>in</strong> Proc. Int. C<strong>on</strong>f. <strong>on</strong> Nuclear<br />

reacti<strong>on</strong> Mechanisms, Varenna, 1991, ed. E. Gadioli (Ricerca Scientifica,1991) p.39.<br />

[20] G.G.Adamian, N.V.Ant<strong>on</strong>enko, W.Scheid and V.V.Volkov, Nucl. Phys. A 633 (1998) 409.<br />

[21] N.V.Ant<strong>on</strong>enko, G.G.Adamian, W.Scheid and V.V.Volkov, IL Nuovo Cim. A110 (1997)<br />

1143.<br />

[22] E.A.Cherepanov, Pramana J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Phys. 23 (1999) 1.<br />

[23] V.V.Volkov, G.G.Adamian, N.V.Ant<strong>on</strong>enko, E.A.Cherepanov and A.K.Nasirov, IL Nuovo<br />

Cim. A110 (1997) 1127.<br />

[24] Y.Abe, Y.Aritomo, T.Wada and M.Ohta, J. Phys. G 23 (1997) 1275; Phys. Rev. C 59<br />

(1999) 796.<br />

[25] B.I.Pustylnik, <strong>in</strong> Book VI Int. School-Sem<strong>in</strong>ar Heavy I<strong>on</strong> Physics 22-27 September 1998,<br />

Dubna, Russia, Word Scientific, p.431.<br />

[26] R.Smolańczuk, Phys. Rev. C 59 (1999) 2634.<br />

119


[27] N.V.Ant<strong>on</strong>enko et al., <strong>in</strong> 1 st Int. C<strong>on</strong>f. <strong>on</strong> <strong>the</strong> Chem. and Phys. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Transact<strong>in</strong>ide<br />

Elements, September 26-30, 1999, Seeheim, Germany.<br />

[28] V.V.Volkov, Phys. Rep. 44 (1978) 93.<br />

[29] H.H.Freiesleben and J.V.Kratz, Phys. Rep. 106 (1984) 1.<br />

[30] R.T.Souza et al., Phys. Rev. C 39 (1989) 114.<br />

[31] R.V.Jolos et al., Sov. J. Nucl. Phys. 50 (1989) 239.<br />

[32] V.V.Volkov, Izv. Akad. Nauk SSSR, Ser. Fiz. 50 (1986) 1879.<br />

[33] G.G.Adamian, A.K.Nasirov, N.V.Ant<strong>on</strong>enko and R.V.Jolos, Phys. Part. Nucl. 25 (1994)<br />

583.<br />

[34] G.G.Adamian, N.V.Ant<strong>on</strong>enko and W. Scheid, Nucl. Phys. A 618 (1997) 176; A 627<br />

(1997) 361.<br />

[35] A.Diaz-Torres, N.V.Ant<strong>on</strong>enko and W.Scheid, Nucl. Phys. A 652 (1999) 61.<br />

[36] G.G.Adamian, N.V.Ant<strong>on</strong>enko and Yu.M.Tchuvil’sky, Phys. Lett. B451(1999) 289.<br />

[37] G.G.Adamian, N.V.Ant<strong>on</strong>enko, R.V.Jolos and W.Scheid, Nucl. Phys. A 619 (1997) 241.<br />

[38] R.V.Jolos, A.I.Mum<strong>in</strong>ov and A.K.Nasirov, Eur. Phys. J. A 4 (1999) 245.<br />

[39] E.A.Cherepanov, <strong>in</strong> Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> Int. Symposium <strong>on</strong> I<strong>on</strong>-Beam Nucl. Spectroscopy, Debrecen,<br />

Hungary, 1984, Budapest, 1984, p. 499.<br />

[40] J.Maruhn and W. Gre<strong>in</strong>er, Z. Phys. 251(1972) 431.<br />

[41] V.M.Strut<strong>in</strong>sky, Nucl. Phys. A 95 (1967) 420; A 112 (1968) 1.<br />

[42] G.G.Adamian, N.V.Ant<strong>on</strong>enko, S.P.Ivanova and W.Scheid, Nucl. Phys. A 646 (1999) 29.<br />

[43] G.G.Adamian, N.V.Ant<strong>on</strong>enko, A.Diaz-Torres and W.Scheid, Nucl. Phys. A (<strong>in</strong> press)<br />

[44] W.Nörenberg and H.A.Weidenmüller, <strong>in</strong> Introducti<strong>on</strong> to <strong>the</strong> <strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>heavy</strong>-i<strong>on</strong> collisi<strong>on</strong>s<br />

(Spr<strong>in</strong>ger, Heidelberg, 1980)<br />

120


[45] W.Nörenberg, Z. Phys. A 274 (1975) 241; 276 (1976) 84.<br />

[46] D.H.Gross, Nucl. Phys. A 240 (1975) 472.<br />

[47] J.Blocki et al, Ann. <str<strong>on</strong>g>of</str<strong>on</strong>g> Phys. 113 (1978) 330.<br />

[48] H.H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann and P.J.Siemens, Nucl. Phys. A 257 (1976) 165; A 275 (1977) 464.<br />

[49] J.W.Negele, Rev. Mod. Phys. 54 (1982) 913.<br />

[50] S.Ayik, Z. Phys. A 298 (1980) 83; Nucl. Phys. A 370 (1981) 317.<br />

[51] W.Nörenberg, Phys. Lett. B 104 (1981) 107; S.Ayik and W.Nörenberg, Z. Phys. A 309<br />

(1982) 121; W.Cass<strong>in</strong>g and W.Nörenberg, Nucl. Phys. A 401(1983) 467; W.Nörenberg,<br />

Nucl. Phys. A 409 (1983) 191c.<br />

[52] W.Cass<strong>in</strong>g and W.Nörenberg, Nucl. Phys. A 433 (1985) 467.<br />

[53] L.Landau, Phys. Z. Sowjetuni<strong>on</strong> 1 (1932) 88; 2 (1932) 46; E.C.G.Stueckelberg, Helv. Phys.<br />

Acta 5 (1932) 369; C.Zener, Proc. Roy. Soc. A 137 (1932) 696.<br />

[54] W.Lichten, Phys. Rev. 131 (1963) 229; 164 (1967) 131.<br />

[55] E.E.Nikit<strong>in</strong> and S. Ya. Umanskii, <strong>in</strong> Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Slow Atomic Collisi<strong>on</strong>s, (Spr<strong>in</strong>ger, Heidel-<br />

berg, 1984).<br />

[56] J.v.Neumann and E.Wigner, Z. Phys. 30 (1929) 467.<br />

[57] A.Lukasiak, W.Cass<strong>in</strong>g and W.Nörenberg, Nucl. Phys. A 426 (1984)181.<br />

[58] D.L.Hill and J.A.Wheeler, Phys. Rev. 89 (1953) 1102.<br />

[59] H.C.Pauli and L.Wilets, Z. Phys. A 277 (1976) 83.<br />

[60] G.Schütte, Phys. Rep. 80 (1981) 113.<br />

[61] J.B.Delos, Rev. Mod. Phys. 53 (1981) 287.<br />

[62] C.E. Aguiar, V.C. Barbosa and R. D<strong>on</strong>angelo, Nucl. Phys. A 517 (1990) 205;T. Tokuda,<br />

K. Okazaki,T. Wada,M. Ohta and Y. Abe, <strong>in</strong> Proc.Tours Symposium <strong>on</strong> Nuclear Physics<br />

III, Tours, 1997, eds. M. Arnould et al. (AIP,New York, 1998) p.171.<br />

121


[63] Yu.F.Smirnov and Yu.M.Tchuvil’sky, Phys. Lett. B 134 (1984) 25; O.F. Nemec,<br />

V.G.Neudach<strong>in</strong>, A.T.Rudchik, Yu.F.Smirnov and Yu.M.Tchuvil’sky, Nucle<strong>on</strong> associati<strong>on</strong>s<br />

<strong>in</strong> <strong>the</strong> atomic <strong>nuclei</strong> and nuclear reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mult<strong>in</strong>ucle<strong>on</strong> transfers, Naukova Dumka,<br />

Kiev (1988).<br />

[64] A.Lukasiak and W.Nörenberg, <strong>in</strong> Int. C<strong>on</strong>f. <strong>on</strong> Heavy-I<strong>on</strong> Physics and Nuclear Physics,<br />

Catania, March 21-26, 1983, p.128.<br />

[65] G.G.Adamian, N.V.Ant<strong>on</strong>enko, R.V.Jolos, S.P.Ivanova and O.I.Melnikova, Int. J. Mod.<br />

Phys.E5(1996)191.<br />

[66] A. Diaz-Torres, G.G. Adamian, N.V. Ant<strong>on</strong>enko and W. Scheid, Phys. Lett. B (submitted<br />

for publicati<strong>on</strong>).<br />

[67] G.G.Adamian, N.V.Ant<strong>on</strong>enko and W.Scheid, Nucl. Phys. A (submitted for publicati<strong>on</strong>)<br />

[68] A.M.Wapstra and G. Audi, Nucl. Phys. A 440 (1985) 327.<br />

[69] P.Gippner et al, Phys. Lett. B 252 (1990) 198.<br />

[70] S.Raman et al, At. Data and Nucl. Tables 36 (1987) 18.<br />

[71] P.Möller, J.R.Nix,W.D.Myers and W.J.Swiatecki, At. Data and Nucl. Tables 59 (1995)<br />

185.<br />

[72] W.Reisdorf, J. Phys. G 20 (1994) 1297.<br />

[73] G.G.Adamian, N.V.Ant<strong>on</strong>enko, R.V.Jolos and A.K.Nasirov, Nucl. Phys. A 551(1993)<br />

321.<br />

[74] N.V.Ant<strong>on</strong>enko and R.V.Jolos, Phys. Scr. T32 (1990) 27.<br />

[75] G.G.Adamian, R.V.Jolos and A.K.Nasirov, Sov. J. Nucl. Phys. 55 (1992) 660.<br />

[76] D.Berdichevsky, A.Lukasiak, W.Nörenberg and P.Rozmej, Nucl. Phys. A 499 (1989) 609.<br />

[77] R.Bass, Phys. Rev. Lett. 39 (1977) 265; <strong>in</strong> Lecture Notes <strong>in</strong> Physics 117 (Berl<strong>in</strong>: Spr<strong>in</strong>ger,<br />

1980) p. 281.<br />

122


[78] K.H.Schmidt and W.Morawek, Rep. Prog. Phys. 54 (1991) 919.<br />

[79] A.B.Qu<strong>in</strong>t et al., Z. Phys. A 346 (1993) 119.<br />

[80] C.C.Sahm et al., Z. Phys. A 319 (1984) 113; Nucl. Phys. A 441 (1985) 316.<br />

[81] G.Nuhn, W.Scheid and J.Y.Park, Phys. Rev. C 35 (1987) 2146.<br />

[82] G. Bertsch, <strong>in</strong> Fr<strong>on</strong>tiers and borderl<strong>in</strong>es <strong>in</strong> many—particles physics, Enrico Fermi School<br />

(CIV, Corso, 1988) p.41.<br />

[83] W.U. Schröder and J.R. Huizenga, <strong>in</strong> Treatise <strong>on</strong> <strong>heavy</strong>-i<strong>on</strong> science. Ed. D.A. Bromley<br />

(Plenum, New York, 1984) vol. 2., p. 115.<br />

[84] G.G.Adamian, N.V.Ant<strong>on</strong>enko and R.V.Jolos, Nucl. Phys. A 584 (1995) 205.<br />

[85] J. Richert, T. Sami and H.A. Weidenmüller, Phys. Rev. C 26 (1982) 1018.<br />

[86] H. H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann, Phys. Rep. 284 (1997) 139.<br />

[87] F.A. Ivanyuk et al., Phys. Rev. C 55 (1997) 1730.<br />

[88] V. Schneider, J.Maruhn and W.Gre<strong>in</strong>er, Z. Phys. A 323 (1986) 111.<br />

[89] J.R. Primack, Phys. Rev. Lett. 17 (1966) 539.<br />

[90] J.J. Griff<strong>in</strong>, Nucl. Phys. A 170 (1971) 395.<br />

[91] T. Lederberger and H.C. Pauli, Nucl. Phys. A 207 (1973) 1.<br />

[92] V.M. Kolomietz and P.J. Siemens, Nucl. Phys. A 314 (1979) 141.<br />

[93] S. Yamaji, F.A. Ivanyuk and H. H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann, Nucl.Phys. A 612 (1997) 1.<br />

[94] W. Gre<strong>in</strong>er and J.A. Maruhn, Nuclear Models (Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>/Heidelberg, 1996).<br />

[95] M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strut<strong>in</strong>sky and C.Y. W<strong>on</strong>g, Rev.<br />

Mod. Phys. 44 (1972) 320.<br />

[96] F.A. Ivanyuk, Z. Phys. A 334 (1989) 69.<br />

123


[97] H. H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann et al, Nucl. Phys. A 598 (1996) 187.<br />

[98] X. Wu et al., Phys. Rev. Lett. 79 (1997) 4542.<br />

[99] K. Fujikawa and H. Terashima, Phys. Rev. E 58 (1998) 7063.<br />

[100] J. Schirmer, S. Knaak and G. Güssmann, Nucl. Phys. A 199 (1973) 31.<br />

[101] A.Bohr and B.R.Mottels<strong>on</strong>, Nuclear Structure, vol. 1 (W.A. Benjam<strong>in</strong>, INC., Massa-<br />

chusetts, 1975).<br />

[102] A.S.Jensen, P.J.Siemens and H.H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann, <strong>in</strong> Nucle<strong>on</strong>-nucle<strong>on</strong> <strong>in</strong>teracti<strong>on</strong> and <strong>the</strong> many-<br />

body problem, Eds.: S.S.Wu and T.T.S.Kuo, World Scientific (1984).<br />

[103] D.P<strong>in</strong>es, P. Nozieres, <strong>in</strong> The Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum Liquids, vol. 1, (W.A. Benjam<strong>in</strong>, New<br />

York, 1966).<br />

[104] W.Nörenberg, Nucl. Phys. A 459 (1986) 77.<br />

[105] W.Nörenberg and C.Riedel, Z. Phys. A 290 (1979) 335; H. L. Yadav and W.Nörenberg,<br />

Phys. Lett. B 115 (1982) 179.<br />

[106] C.Gregoire, C.Ngo, B.Remaud, Phys. Lett. B 99 (1981) 17; Nucl. Phys. A 383 (1982) 392.<br />

[107] A.B.Lari<strong>on</strong>ov et al., Nucl. Phys. A 648 (1999) 157.<br />

[108] G.F.Bertsch, P.F.Bortign<strong>on</strong> and R.A.Broglia, Rev. Mod. Phys. 55 (1983) 287.<br />

[109] H.S.Köhler, Nucl. Phys. A 378 (1982) 159; Nucl. Phys. A 378 (1982) 181.<br />

[110] A.Ignatyuk et al., Sov. J. Nucl. Phys. 21 (1975) 612.<br />

[111] P.Reiter et al., Phys. Rev. Lett. 82 (1999) 509.<br />

[112] B. Heusch et al., Z. Phys. A 288 (1978) 391; C. Lebrun et al., Nucl. Phys. A 321 (1979)<br />

207; B. Borderie et al., Z. Phys. A 299 (1981) 263; B. B. Back et al., Phys. Rev. Lett. 46<br />

(1981) 1063; 50 (1983) 818; R. Bock et al., Nucl. Phys. A 388 (1982) 334; M. B. Tsang et<br />

al., Phys. Lett. B 129 (1983) 18; Z. Zheng et al., Nucl. Phys. A 422 (1984) 447; J. Töke<br />

et al., Nucl. Phys. A 440 (1985) 327.<br />

124


[113] W.Q.Shen et al., Phys. Rev. C 36 (1987) 115.<br />

[114] M.Thoennessen et al., Phys. Rev. Lett. 70 (1993) 4055; P.Paul and M.Thoennessen, Ann.<br />

Rev. Nucl. Part. Sci. 44 (1994) 65.<br />

[115] H.A.Kramers, Physica VII 4 (1940) 284; V.M.Strut<strong>in</strong>sky, Phys. Lett. B 47 (1973) 121;<br />

P.Grangé, Li Jun-Q<strong>in</strong>g and H.A.Weidenmüller, Phys. Rev. C 27 (1983) 2063; H. A. Wei-<br />

denmüller and J<strong>in</strong>g-Shang Zhang, J. Stat. Phys. 34 (1984) 191; P.Grangé,Nucl. Phys. A<br />

428 (1984) 37c; P.Fröbrich and G.R.Tillack, Nucl. Phys. A 540 (1992) 353.<br />

[116] S.Yamaji, F.A.Ivanyuk and H.H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann, Nucl.Phys. A 612 (1997) 1.<br />

[117] I.I.G<strong>on</strong>char and G.I.Kosenko, Sov. J. Nucl. Phys. 53 (1991) 133.<br />

[118] H.Gäggeler et al., Z. Phys. A 316 (1984) 291.<br />

[119] L.G.Moretto and J.S.Sventek, Phys. Lett. B58 (1975) 26.<br />

[120] N.V.Ant<strong>on</strong>enko, S.P.Ivanova, R.V.Jolos and W.Scheid, Phys. Rev. C 50 (1994) 2063;<br />

N.V.Ant<strong>on</strong>enko and R.V.Jolos, Z. Phys. A 341 (1992) 459.<br />

[121] U.Brosa, S. Großman and A. Müller, Phys. Rep. 197 (1990) 167.<br />

[122] S.Oberstedt, F.-J. Hambsch and F. Vives, Nucl. Phys. A 644 (1998) 289.<br />

[123] G.L<strong>in</strong>dblad, Comm. Math. Phys. 48 (1976) 119; Rep. <strong>on</strong> Math. Phys. 10 (1976) 393.<br />

[124] G.G.Adamian, N.V.Ant<strong>on</strong>enko and W.Scheid, Phys. Lett. A 244 (1998) 482.; Nucl. Phys.<br />

A 645 (1999) 376.; Phys. Lett. A 260 (1999) 39.<br />

[125] P.Holzer, U.Mosel and W.Gre<strong>in</strong>er, Nucl. Phys. A 138 (1969) 241.<br />

125

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!