30.06.2013 Views

Temperature and humidity control in greenhouses ... - Automatica

Temperature and humidity control in greenhouses ... - Automatica

Temperature and humidity control in greenhouses ... - Automatica

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Proceed<strong>in</strong>gs of the 2006 IEEE<br />

International Conference on Control Applications<br />

Munich, Germany, October 4-6, 2006<br />

<strong>Temperature</strong> <strong>and</strong> <strong>humidity</strong> <strong>control</strong> <strong>in</strong> <strong>greenhouses</strong> us<strong>in</strong>g the<br />

Takagi-Sugeno fuzzy model<br />

Abstract— The <strong>control</strong> of air temperature <strong>and</strong> <strong>humidity</strong><br />

concentration <strong>in</strong> <strong>greenhouses</strong> is described by means of simultaneous<br />

ventilation <strong>and</strong> heat<strong>in</strong>g systems. To solve the problem<br />

of bi-l<strong>in</strong>earity of greenhouse models, this paper proposes the<br />

construction of a Takagi-Sugeno (T-S) fuzzy model from a<br />

simplified nonl<strong>in</strong>ear dynamic model of the greenhouse climate.<br />

Us<strong>in</strong>g this T-S fuzzy model, the stability analysis <strong>and</strong> <strong>control</strong> design<br />

problems can be reduced to sufficient conditions expressed<br />

as l<strong>in</strong>ear matrix <strong>in</strong>equalities (LMIs). This paper shows that it is<br />

possible to successfully <strong>control</strong> the greenhouse climate by us<strong>in</strong>g<br />

T-S fuzzy models <strong>and</strong> the parallel distributed compensation<br />

(PDC) concept. Simulation results for several tests show<strong>in</strong>g the<br />

good performance <strong>and</strong> stability obta<strong>in</strong>ed with the proposed<br />

design methodology are presented.<br />

Key-words: <strong>greenhouses</strong>, Takagi-Sugeno fuzzy model, stability,<br />

Lyapunov function, LMIs.<br />

I. INTRODUCTION<br />

As is well known, <strong>greenhouses</strong> are structures that allow<br />

the creation of an <strong>in</strong>door microclimate for crop development,<br />

protect<strong>in</strong>g it from adverse outdoor conditions. This microclimate<br />

is <strong>control</strong>led by artificial actuation such as heat<strong>in</strong>g <strong>and</strong><br />

ventilation to provide the best environmental conditions for<br />

the crops.<br />

To obta<strong>in</strong> this objective, many <strong>greenhouses</strong> use a conventional<br />

PID <strong>control</strong>, but this <strong>control</strong> strategy may not be<br />

suitable to guarantee the desired performance due to the<br />

<strong>in</strong>teraction between the different variables <strong>in</strong> the greenhouse<br />

<strong>and</strong> that constra<strong>in</strong>ts are not considered. Motivated by these<br />

disadvantages, <strong>in</strong>herent <strong>in</strong> l<strong>in</strong>ear <strong>control</strong> methods, several<br />

techniques, which use advanced <strong>control</strong>, have been proposed<br />

to deal with climate <strong>control</strong> problems <strong>in</strong> <strong>greenhouses</strong>. Optimal<br />

<strong>and</strong> predictive <strong>control</strong> have provided <strong>control</strong> strategies<br />

<strong>in</strong> greenhouse climate systems to decide about heat<strong>in</strong>g <strong>and</strong><br />

ventilation <strong>and</strong> produce <strong>control</strong> actions that regulate air<br />

temperature <strong>and</strong> CO2 concentration [5], [6], [12], [14].<br />

Most techniques are not designed specifically <strong>in</strong> order to<br />

enable simultaneous <strong>control</strong> of air temperature <strong>and</strong> <strong>humidity</strong><br />

concentration <strong>in</strong> the <strong>greenhouses</strong> [1], [7], [11]. However,<br />

<strong>humidity</strong> <strong>control</strong> has an important role <strong>in</strong> economic optimal<br />

This work is supported by the research center CNRST under the grant<br />

Protars II nP52/27<br />

The first author would like to thank MCYT-CICYT for an FPI grant<br />

l<strong>in</strong>ked to the project DPI2004-07444-C04-02<br />

†are with Dpto. de Ingenieria de Sistemas y <strong>Automatica</strong>, Facultad<br />

de Ciencias, Prado de la Magdalena s/n, 47005 Valladolid,<br />

Universidad de Valladolid, Spa<strong>in</strong> m−nachidi@autom.uva.es,<br />

fern<strong>and</strong>o@autom.uva.es<br />

††is with Research Unit: Constra<strong>in</strong>ed <strong>and</strong> Robust Regulation, Department<br />

of Physics, Faculty of Science Semlalia, P.B. 2390, University Cadi Ayyad,<br />

Marrakech, Morocco benzaouia@ucam.ac.ma<br />

M. Nachidi†, A.Benzaouia††, F. Tadeo†<br />

0-7803-9796-7/06/$20.00 ©2006 IEEE 2150<br />

greenhouse climate management, <strong>and</strong> has a great effect on<br />

crop growth <strong>and</strong> production.<br />

Recently, Lafont <strong>and</strong> Balmat (2004) have used fuzzy<br />

<strong>control</strong> theory for identification <strong>and</strong> <strong>control</strong> of greenhouse<br />

systems, based on <strong>in</strong>put-output data, to construct Takagi-<br />

Sugeno fuzzy models (T-S). The Majority of the fuzzy <strong>control</strong><br />

techniques available, which deal with climate regulation<br />

<strong>in</strong> the <strong>greenhouses</strong>, do not present tests to ensure the stability<br />

of the fuzzy <strong>control</strong>ler <strong>and</strong> no constra<strong>in</strong>ts are imposed on the<br />

<strong>control</strong> [2].<br />

This work focuses on the physical behavior of an empty<br />

greenhouse: it can be considered as a first step for the<br />

design of <strong>control</strong>lers that use the models that <strong>in</strong>clude the<br />

crops. Then, we propose to derive a Takagi-Sugeno (T-S)<br />

fuzzy model from a given nonl<strong>in</strong>ear dynamic model of an<br />

empty greenhouse system, s<strong>in</strong>ce this nonl<strong>in</strong>ear system can<br />

be readily obta<strong>in</strong>ed. We will show that this representation,<br />

under the form of a valid l<strong>in</strong>ear model on a restricted doma<strong>in</strong><br />

[9], [16], offers an easier <strong>in</strong>terpretation of the behavior of<br />

the greenhouse system <strong>and</strong> consequently allows a better<br />

resolution of the <strong>control</strong> problem. Then, the concept of<br />

parallel distributed compensation (PDC) [4], [9], [10] will be<br />

used to design a fuzzy <strong>control</strong>ler from the greenhouse T-S<br />

fuzzy model. The stability of the obta<strong>in</strong>ed T-S fuzzy model is<br />

determ<strong>in</strong>ed by check<strong>in</strong>g a common Lyapunov function for all<br />

the subsystems described by the Takagi-Sugeno (T-S) fuzzy<br />

model [15], [16].<br />

This paper is organized as follows: Section 2 presents<br />

prelim<strong>in</strong>ary results for the T-S Fuzzy model<strong>in</strong>g of a nonl<strong>in</strong>ear<br />

dynamic system <strong>and</strong> the stability of the result<strong>in</strong>g feedback<br />

system. In section 3, a fuzzy model of the greenhouse is<br />

derived from its orig<strong>in</strong>al dynamic model. Simulation results<br />

<strong>and</strong> conclusions are given <strong>in</strong> sections 4 <strong>and</strong> 5.<br />

II. PRELIMINARY RESULTS<br />

A. T-S Fuzzy Model<strong>in</strong>g<br />

The use of Takagi-Sugeno fuzzy models (T-S) for the<br />

representation of the nonl<strong>in</strong>ear systems, is generally justified<br />

because, thanks to this approach, a nonl<strong>in</strong>ear problem can be<br />

decomposed <strong>in</strong>to several l<strong>in</strong>ear problems which describe the<br />

dynamics of a nonl<strong>in</strong>ear system <strong>in</strong> different ”local” regions.<br />

Typically, the Takagi-Sugeno fuzzy system is described as<br />

asetofNrules us<strong>in</strong>g membership functions F i<br />

l <strong>and</strong> fuzzy<br />

variables zl(k) as follows:<br />

Rule i: IF z1(k) is F i 1 <strong>and</strong> ... <strong>and</strong> zl(k) is F i<br />

l<br />

THEN<br />

<br />

x(k +1)=Aix(k)+Biu(k),<br />

y(k) =Cix(k),<br />

ThC08.4<br />

(1)


where Ai, Bi <strong>and</strong> Ci are constant matrices of appropriate<br />

size, x(·) ∈ Rn is the state, u(·) ∈ Rm is the <strong>control</strong> <strong>and</strong><br />

y(·) ∈ Rp is the output. It has been shown <strong>in</strong> [16] that the<br />

overall global model can be structured as follows:<br />

⎧<br />

N<br />

⎪⎨ x(k +1)= αi(z(k))(Aix(k)+Biu(k)),<br />

i=1<br />

N<br />

(2)<br />

⎪⎩ y(k) = αi(z(k))Cix(k),<br />

i=1<br />

where αi(z(k))’s are the so-called normalized activation<br />

function <strong>in</strong> relation with sub-model ith such that: αi(z(k)) =<br />

l<br />

j=1<br />

N<br />

i=1 j=1<br />

F i j (zj(k))<br />

l<br />

F i j (zj(k))<br />

, αi(z(k)) ≥ 0.<br />

B. Stability analysis<br />

We will use the concept of parallel distributed compensation<br />

(PDC) [4], [9], [10] to design fuzzy regulators for the<br />

discrete-time T-S fuzzy system (2). In the PDC approach,<br />

each <strong>control</strong> rule is designed from a correspend<strong>in</strong>g rule of<br />

a T-S fuzzy system. The fuzzy <strong>control</strong>ler shares the same<br />

fuzzy sets with the T-S fuzzy system (1).<br />

Rule i: IF z1(k) is F i 1 <strong>and</strong> ... <strong>and</strong> zl(k) is F i<br />

l<br />

THEN u(k) =−Kix(k), (3)<br />

where i = 1...N <strong>and</strong> N is the number of IF-THEN<br />

rules. The fuzzy <strong>control</strong>ler is given by the follow<strong>in</strong>g fuzzy<br />

<strong>in</strong>terpolation of local <strong>control</strong>lers:<br />

N<br />

u(k) = αi(z(k))Kix(k), (4)<br />

i=1<br />

where u(k) is the nonl<strong>in</strong>ear feedback <strong>control</strong>ler.<br />

Hence, by substitut<strong>in</strong>g (4) <strong>in</strong> (2), the closed-loop system is<br />

as follows:<br />

N N<br />

x(k +1)= αi(z(k))αj(z(k))(Ai − BiKj)x(k) (5)<br />

i=1 j=1<br />

The stability of system (5) is guaranteed by the follow<strong>in</strong>g<br />

relaxed stability conditions [9].<br />

Theorem 2.1: The fuzzy <strong>control</strong> system of the T-S model<br />

(5) is stabilizable <strong>in</strong> the large if there exists a P>0, M ≥ 0<br />

<strong>and</strong> Yi,i =1, 2,...,N, 1 0,i=1...N,<br />

AiX − BiYi X<br />

1 X + M<br />

∗ X<br />

2 (XAT i + XAT j<br />

− Y T<br />

i BT j<br />

− Y T<br />

j BT i )<br />

<br />

≥ 0,<br />

i


a4 = tsτ<br />

, a5 =<br />

Ccap,q<br />

ts<br />

,a6 =<br />

Ccap,h<br />

tshw<br />

.<br />

Ccap,h<br />

Equations (8) <strong>and</strong> (9) can be written as:<br />

<br />

a3<br />

0<br />

<br />

Ta(k +1) 1 − a1 0<br />

=<br />

wa(k +1) 0 1−a6 <br />

a2(T0 − Ta) Eh a1 a4<br />

+<br />

a5(w0 − wa) V 0 0<br />

<br />

Ta(k)<br />

+<br />

wa(k)<br />

<br />

0<br />

a6<br />

⎡<br />

⎣ T0<br />

⎤<br />

S0 ⎦ .<br />

Consider<strong>in</strong>g the solar radiation, outside temperature <strong>and</strong><br />

absolute <strong>humidity</strong> as disturbances, the model without disturbances<br />

is as follows:<br />

<br />

Ta(k +1) 1 − a1 0 Ta(k)<br />

=<br />

+<br />

wa(k +1) 0 1−a6wa(k) <br />

a3 a2(T0 − Ta) Eh<br />

.<br />

0 a5(w0 − wa) V<br />

In this model, there are two nonl<strong>in</strong>ear terms: a2V (T0 − Ta)<br />

<strong>and</strong> a5V (w0 − wa). Thus, to prevent the <strong>control</strong> system<br />

from work<strong>in</strong>g <strong>in</strong> unfavorable conditions for crop growth<br />

<strong>and</strong> development, we impose limitations on the <strong>in</strong>side<br />

temperature Ta <strong>and</strong> absolute <strong>humidity</strong> wa. These bounds<br />

are represented by the l<strong>in</strong>ear <strong>in</strong>equality constra<strong>in</strong>t,<br />

Ta,m<strong>in</strong> ≤ Ta ≤ Ta,max,wa,m<strong>in</strong> ≤ wa ≤ wa,max. Then, for<br />

the nonl<strong>in</strong>ear terms, we def<strong>in</strong>e z1(k) =a2(T0 − Ta) <strong>and</strong><br />

z2(k) =a5(w0 − wa), which can be written as:<br />

z1(k) =M1β + M2β <strong>and</strong> z2(k) =N1α + N2α,<br />

where β ≤ z1(k) ≤ β, α ≤ z2(k) ≤ α,<br />

M1 + M2 =1, <strong>and</strong> N1 + N2 =1. In the end, we arrive at<br />

the follow<strong>in</strong>g T-S fuzzy model:<br />

If z1(k) is M1 <strong>and</strong> z2(k) is N1<br />

Then x(k +1)=A1x(k)+B1u,<br />

<br />

1 − a1<br />

A1 =<br />

0<br />

0<br />

1−a6 <br />

,<br />

<br />

a3<br />

B1 =<br />

0<br />

β<br />

α<br />

If z1(k) is M1 <strong>and</strong> z2(k) is N2<br />

Then x(k +1)=A2x(k)+B2u,<br />

A2 = A1,<br />

<br />

a3<br />

B2 =<br />

0<br />

β<br />

α<br />

If z1(k) is M2 <strong>and</strong> z2(k) is N1<br />

Then x(k +1)=A3x(k)+B3u,<br />

A3 = A1,<br />

<br />

a3<br />

B3 =<br />

0<br />

β<br />

α<br />

If z1(k) is M2 <strong>and</strong> z2(k) is N2<br />

Then x(k +1)=A4x(k)+B4u,<br />

A4 = A1,<br />

<br />

a3<br />

B4 =<br />

0<br />

β<br />

α<br />

<br />

.<br />

<br />

.<br />

<br />

.<br />

<br />

.<br />

w0<br />

2152<br />

The closed loop system is given by:<br />

x(k +1)=<br />

4<br />

i=1 j=1<br />

4<br />

hi(z(k))hj(z(k))(Ai + BiKj)x(k). (10)<br />

Remark 3.1: As we have mentioned already, <strong>in</strong> this paper,<br />

the fuzzy model is derived from a simplified nonl<strong>in</strong>ear model,<br />

where the canopy transpiration <strong>in</strong> the water vapor balance<br />

has been ignored (empty greenhouse) <strong>and</strong> has been limited<br />

to two state variables (Ta, wa). However, if we try to<br />

construct the T-S fuzzy model for the nonl<strong>in</strong>ear greenhouse<br />

system which conta<strong>in</strong>s more state variables <strong>and</strong> take <strong>in</strong>to<br />

account the transpiration <strong>and</strong> photosynthesis of the crop, a<br />

large number of rules are required to exactly represent the<br />

nonl<strong>in</strong>ear dynamics of the greenhouse. Reduc<strong>in</strong>g the number<br />

of rules offers the possibility to m<strong>in</strong>imize the effort <strong>in</strong> the<br />

analysis <strong>and</strong> design of <strong>control</strong> systems. It has already been<br />

proved that this approach is useful <strong>in</strong> practice [8], [13].<br />

D. Constra<strong>in</strong>ts on the outputs<br />

To ensure an optimal climate <strong>in</strong> <strong>greenhouses</strong>, we propose<br />

consider<strong>in</strong>g constra<strong>in</strong>ts on the outputs. For this, the follow<strong>in</strong>g<br />

conditions are added to those of Theorem 2.1 to ensure the<br />

optimal climate <strong>in</strong> the greenhouse.<br />

Theorem 3.1: Assume that the <strong>in</strong>itial condition x(0) is<br />

known. The constra<strong>in</strong>t y(t) 2≤ λ is enforced at all times<br />

t ≥ 0 if the LMIs<br />

<br />

′ 1 x(0)<br />

≥ 0,<br />

x(0) X<br />

<br />

′ X XC i<br />

CiX λ2 i I<br />

<br />

≥ 0,<br />

hold, where X = P −1 .<br />

Proof: The proof is given <strong>in</strong> [9].<br />

In this work, we consider air temperature Ta <strong>and</strong> <strong>humidity</strong><br />

concentration wa as outputs:<br />

<br />

y1(k) 1 0 Ta<br />

=<br />

y2(k) 0 1<br />

wa<br />

IV. SIMULATION RESULTS AND DISCUSSION<br />

In the follow<strong>in</strong>g, we present some simulations to show<br />

the applicability of the proposed method, with various outside<br />

climates (considered constant) <strong>and</strong> from several <strong>in</strong>itial<br />

conditions. Dur<strong>in</strong>g the night, the system was able to achieve<br />

the desired climatic condition <strong>and</strong> the imposed constra<strong>in</strong>ts<br />

were fulfilled, because there is no disturbance com<strong>in</strong>g from<br />

the sun. However, the solar radiation effect can be observed<br />

dur<strong>in</strong>g the day <strong>and</strong> a stationary error can also be observed<br />

<strong>in</strong> ”Fig. 5” <strong>and</strong> ”Fig.6”.<br />

Exp. T0 w0 S0 T<strong>in</strong>it w<strong>in</strong>it<br />

t1 0 90 0 14 60<br />

t2 4 85 0 10 57<br />

t3 7 88 0 14 65<br />

t4 0 95 0 6 55<br />

t5 0 90 0 18 55


The constra<strong>in</strong>ts on outputs are imposed as follows:<br />

• Ta(k) is constra<strong>in</strong>ed so as not to surpass the 1 ◦ C b<strong>and</strong><br />

around the optimal reference 24 ◦ C.<br />

• wa(k) is constra<strong>in</strong>ed so as not to surpass the 5% b<strong>and</strong><br />

around the optimal reference 75%.<br />

”Fig.1”, ”Fig.2”, ”Fig.3” <strong>and</strong> ”Fig.4” show the behavior<br />

of the <strong>control</strong>led greenhouse’s climate dur<strong>in</strong>g night. The<br />

most important result of this <strong>control</strong> strategy is that the<br />

fuzzy <strong>control</strong>ler can guarantee the stability of the greenhouse<br />

system; moreover, there were no energy losses by ventilation.<br />

”Fig.4” shows that the ventilation system was stopped when<br />

the heat<strong>in</strong>g system had to provide the heat.<br />

The resolution of the (LMIs) <strong>in</strong> Theorem 2.1, for test (t1),<br />

leads to the follow<strong>in</strong>g:<br />

<br />

−94 −58151<br />

−94 −58151<br />

K1 =<br />

,K2 =<br />

,<br />

0 −3<br />

0 −3<br />

<br />

−94 66542<br />

−94 66542<br />

K3 =<br />

,K4 =<br />

,<br />

0 −3<br />

0 −3<br />

<br />

0.1024 0<br />

P =<br />

.<br />

0 0.1063<br />

<strong>Temperature</strong> [°C]<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0 50 100 150 200 250<br />

Time [mn]<br />

300 350 400 450 500<br />

Fig. 1. Evolution of the air temperature<br />

V. CONCLUSION<br />

In this work, a fuzzy <strong>control</strong>ler has been proposed for temperature<br />

<strong>and</strong> <strong>humidity</strong> regulation <strong>in</strong> a greenhouse, tak<strong>in</strong>g <strong>in</strong>to<br />

account the presence of constra<strong>in</strong>ts <strong>in</strong> the output variables.<br />

The five cases studied <strong>in</strong> this paper, <strong>and</strong> others tests (not<br />

shown here) that have been performed, show that the robust<br />

fuzzy <strong>control</strong>ler effectively achieves the desired climate conditions<br />

<strong>in</strong> a greenhouse, which shows the importance of the<br />

use of a T-S fuzzy model <strong>in</strong> the regulation of a very complex<br />

process with high nonl<strong>in</strong>earity such as a greenhouse climate.<br />

In the next work, we will test the stability <strong>and</strong> robustness of<br />

the fuzzy <strong>control</strong>ler for a more detailed greenhouse model<br />

with more variables which represent the real state of a<br />

greenhouse.<br />

2153<br />

Heat<strong>in</strong>g supply [W/m²]<br />

Relative <strong>humidity</strong> [%]<br />

Ventilation rate [(m³/s)/m²]<br />

<strong>Temperature</strong> [°C]<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

t 4<br />

t 1<br />

t<br />

2<br />

t<br />

3<br />

t<br />

5<br />

0<br />

0 50 100 150 200 250<br />

Time [mn]<br />

300 350 400 450 500<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

Fig. 2. Evolution of the heat<strong>in</strong>g supply<br />

45<br />

0 50 100 150 200 250<br />

Time [mn]<br />

300 350 400 450 500<br />

x 10−3<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Fig. 3. Evolution of the relative <strong>humidity</strong><br />

0<br />

0 2 4 6 8 10<br />

Time [mn]<br />

12 14 16 18 20<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

Fig. 4. Evolution of the ventilation rate<br />

14<br />

0 100 200 300<br />

Time [mn]<br />

400 500 600<br />

Fig. 5. Evolution of the air temperature, (S0 = 400Wm −2 )


Relative <strong>humidity</strong> [%]<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

0 100 200 300<br />

Time [mn]<br />

400 500 600<br />

Fig. 6. Evolution of the relative <strong>humidity</strong>, (S0 = 400Wm −2 )<br />

TABLE I<br />

LISTOFSYMBOLS, VALUES AND UNITS<br />

Ccap,q heat capacity of greenhouse air (Nom<strong>in</strong>al value = 30000),<br />

Jm−2◦C−1 Ccap,q,v heat capacity per volume unit of greenhouse<br />

air,(Nom<strong>in</strong>al value = 1290), Jm−3◦C−1 Ccap,h volumetric capacity of greenhouse air for<br />

<strong>humidity</strong> (Nom<strong>in</strong>al value =4.1), m<br />

hT heat transmission coefficient through the<br />

greenhouse cover (Nom<strong>in</strong>al value =6.1), Wm−2◦C−1 hw leakage air exchange through greenhouse<br />

cover (Nom<strong>in</strong>al value =0.75x10−4 ), ms−1 τ heat load coefficient due to solar radiation<br />

(Nom<strong>in</strong>al value =0.2)<br />

ts sampl<strong>in</strong>g time, s<br />

S0 outside solar radiation, Wm−2 Ta greenhouse air temperature, C<br />

T0 outside temperature, C<br />

wa <strong>humidity</strong> concentration <strong>in</strong> greenhouse,<br />

kgm−3 w0 outside <strong>humidity</strong> concentration, kgm−3 w<strong>in</strong>it <strong>in</strong>itial <strong>humidity</strong> concentration <strong>in</strong> greenhouse,<br />

kgm−3 T<strong>in</strong>it <strong>in</strong>itial greenhouse air temperature, C<br />

V ventilation rate, m3s−1m−2 Eh energy supply by heat<strong>in</strong>g system, Wm−2 Ec energy exchange by transmission through<br />

the cover, Wm−2 Ev energy exchange by ventilation, Wm−2 Es heat load by solar radiation, Wm−2 Wv exchange of <strong>humidity</strong> by ventilation,<br />

kgm−3s−1 Wc exchange of <strong>humidity</strong> through the<br />

cover, kgm−3s−1 REFERENCES<br />

[1] A. Chotai, P. C. Young, P. David <strong>and</strong> Z. S. Chalabi, ”True digital <strong>control</strong><br />

of greenhouse systems”, Proceed<strong>in</strong>gs of the 1 st IFAC/ISHS Workshop on<br />

Mathematical <strong>and</strong> Control Applications <strong>in</strong> Agriculture <strong>and</strong> Horculture,<br />

1991, pp. 41-45.<br />

[2] F. Lafont <strong>and</strong> J.-F. Balmat, Optimized fuzzy <strong>control</strong> of a greenhouse,<br />

Fuzzy Sets <strong>and</strong> Systems, vol. 128, 2002, pp. 47-59.<br />

[3] F. Lafont <strong>and</strong> J.-F. Balmat, Fuzzy logic to the identification <strong>and</strong> the<br />

comm<strong>and</strong>e of the multidimensional systems, International Journal of<br />

Computational Cognition (ISSN 1542-5908), vol. 2, 2004, pp. 21-47.<br />

[4] H. O. Wang, K. Tanaka, <strong>and</strong> M. Griff<strong>in</strong>, An approach to fuzzy <strong>control</strong><br />

of nonl<strong>in</strong>ear systems: Stability <strong>and</strong> design issues, IEEE Trans. on Fuzzy<br />

Syst., vol. 4, 1996, pp. 14 - 23.<br />

[5] I. Islovish, P. O. Gutman <strong>and</strong> I. Seg<strong>in</strong>er, A non-l<strong>in</strong>ear optimal green-<br />

2154<br />

house <strong>control</strong> problem with heat<strong>in</strong>g <strong>and</strong> ventillation, Optimal Control<br />

Applications <strong>and</strong> Methods, vol. 17, (1996), pp. 157-169.<br />

[6] I. Islovish, I. Seg<strong>in</strong>er, P. O. Gutman <strong>and</strong> M. Borshchevsky, Sub-optimal<br />

CO2 enrichment of Greenhouses, Journal of Agriculture Eng<strong>in</strong>eer<strong>in</strong>g<br />

Research, 1995, pp. 117-136.<br />

[7] K. Chao, R. S. Gates,Design of switch<strong>in</strong>g <strong>control</strong> systems for ventilated<br />

<strong>greenhouses</strong>, Transactions of the ASAE, vol. 39, 1996, pp. 1513-1523.<br />

[8] K.Tanaka, T. Taniguch <strong>and</strong> H. O. Wang, ”Trajectory Control of a<br />

Vehicule with Triple Trailers”, IEEE International Conference on Control<br />

Application, vol. 2, 1999.<br />

[9] K. Tanaka, H.O. Wang, Fuzzy Control Systems Design <strong>and</strong> Analysis: A<br />

L<strong>in</strong>ear Matrix Inequality Approach, J. Wiley <strong>and</strong> Sons Inc., 2001.<br />

[10] M.Tanaka, M.Sugeno, Stability analysis <strong>and</strong> design of fuzzy <strong>control</strong><br />

systems, Fuzzy Sets <strong>and</strong> Systems, vol. 45, 1992, pp. 135-156.<br />

[11] M. Tchamitchian <strong>and</strong> H.-J. Tantau, ”Optimal <strong>control</strong> of the daily<br />

greenhouse climate: physical approach”, Procced<strong>in</strong>gs of 13 th IFAC<br />

World Congress, San Francisco, USA, 1996, pp. 471-475.<br />

[12] M. Y. EL Ghoumari, H.-J. Tantau, D. Megas, J. Serrano, ”Realtime<br />

non l<strong>in</strong>ear constra<strong>in</strong>ed model predictive <strong>control</strong> of a greenhouse”,<br />

Procced<strong>in</strong>gs of 15 th IFAC World Congress, Barcelona, Spa<strong>in</strong>, 2002.<br />

[13] P. P. Mohanlal, M. R., Kaimal, ”Exact fuzzy model<strong>in</strong>g <strong>and</strong> optimal<br />

<strong>control</strong> of the <strong>in</strong>verted pendulum on cart”, Procced<strong>in</strong>gs of the 41 st IEEE<br />

Conference on Decision <strong>and</strong> Control, Las Vegas, Nevada, USA, 2002.<br />

[14] R. L<strong>in</strong>ker, I. Seg<strong>in</strong>er, <strong>and</strong> P. O. Gutman, Optimal Control of CO2 <strong>in</strong><br />

a greenhouse modelled with neural networks, Computer <strong>and</strong> Electronics<br />

<strong>in</strong> Agriculture, 1998, pp. 289-310.<br />

[15] S. Boyd, L. El Ghaoui, E. Feron <strong>and</strong> V. Balakrishnan, L<strong>in</strong>ear matrix<br />

<strong>in</strong>equalities <strong>in</strong> system <strong>and</strong> <strong>control</strong> theory. SIAM, Philadelphia, PA, 1994.<br />

[16] T. Takagi <strong>and</strong> M. Sugeno, Fuzzy identification of systems <strong>and</strong> its<br />

applications to model<strong>in</strong>g <strong>and</strong> <strong>control</strong>, IEEE Trans. on Systems Man <strong>and</strong><br />

Cybernetics, vol. 15, 1985, pp. 116-132.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!