30.06.2013 Views

Kathryn Johnston

Kathryn Johnston

Kathryn Johnston

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Stellar<br />

Halos and<br />

Satellite<br />

Systems in<br />

a Lambda<br />

CDM<br />

Universe<br />

<strong>Kathryn</strong> V <strong>Johnston</strong> (Wesleyan)<br />

James S Bullock (Irvine)<br />

Andreea Font (Wesleyan)<br />

Brant Robertson (Harvard)<br />

Bullock & <strong>Johnston</strong>, 2005<br />

Robertson et al, 2005<br />

Font et al, 2005


Given:<br />

Motivation<br />

– hierarchical structure formation;<br />

– properties of Local Group dwarfs<br />

What can we say about:<br />

– stellar halos<br />

– satellite systems<br />

– substructure in stellar halos<br />

(NGC5907, Shang et al 1999)<br />

(inspired by Majewski, Spaghetti, SDSS, Ibata et al, Guhathakurta....)<br />

Modeling (and observational) problem: low<br />

luminosity and surface brightness of objects<br />

and features we’re interested in.<br />

(related studies: Brook et al; Knebe et al; Rende et al; Abadi, Navarro,<br />

Steinmetz; Diemand, Madau, Moore....)


Dark matter<br />

modeled via<br />

merger tree.<br />

100,000-particle<br />

N-body model<br />

run for each<br />

luminous satellite<br />

accreted.<br />

Masses, orbits<br />

accretion times<br />

dictated by<br />

cosmology<br />

Methods - Our Approach<br />

time<br />

Light matter<br />

painted on<br />

subsequently<br />

to match<br />

properties of<br />

Local Group<br />

dwarfs today....


Methods - Sanity Checks<br />

- 11 satellites of Milky Way (similar number for M31)<br />

=> how many baryons to assign to each dark satellite (via<br />

“squelching” of low end of luminosity function due to re-ionization -<br />

see Bullock, Kravtsov & Weinberg, 2000)<br />

- field dwarfs have significant gas content (e.g. Grebel et al , 2003)<br />

=> how fast to turn baryons into stars (i.e. long timescale for star<br />

formation, consistent with earlier talks...)<br />

- field dwarfs follow well defined correlations in luminosity and core<br />

radius (e.g. Mateo, 1998)<br />

=> how to embed stars within halos<br />

In addition, the model fits:<br />

(i) stellar halo luminosity;<br />

(ii) Hernquist profile;<br />

(iii) distribution of satellite structural properties.


Model for Formation of a Halo<br />

Color bar 34-24 mag/arcsec 2<br />

Luminosity-weighted<br />

dark matter<br />

Embedded King models


Model for Formation of a Halo<br />

Color bar 38-23 mag/arcsec^2, boxsize 300kpc<br />

(cf: Pieter van Dokkum’s images)


Features<br />

brighter than<br />

30 mag/<br />

arcsec^2<br />

common


Brightest<br />

features<br />

generally<br />

correspond<br />

to rare,<br />

latedisruption<br />

events


Model for Formation of a Halo<br />

- Halo built inside<br />

out<br />

- Majority of halo<br />

from few most<br />

massive events<br />

- Surviving<br />

satellites accreted<br />

recently<br />

- Mostly smaller<br />

than those that<br />

built the halo


Abundance Patterns in Satellites vs<br />

Venn et al (2004)<br />

Halo<br />

The challenge for<br />

Lambda CDM:<br />

satellites look<br />

chemically different<br />

from the halo....<br />

(e.g. Unnavane,<br />

Wyse & Gilmore,<br />

1996)


Abundance Patterns in Satellites vs<br />

Halo<br />

You cannot get ....<br />

from....<br />

...*!@!!!!


Abundance Patterns in Satellites vs<br />

Created in SNII<br />

< 100 Myr timescale<br />

Created in SNII<br />

and SNIa<br />

> 1 Gyr timescale<br />

Halo


Abundance Patterns in Satellites<br />

vs Halo<br />

Test our timing/mass arguments:<br />

• Brant Robertson: leaky/accreting box chemical<br />

evolution code (Robertson, Bullock, Font, <strong>Johnston</strong> &<br />

Hernquist, 2005) requiring matches to<br />

- mass-metallicity relation for dwarfs today<br />

- low alpha-element abundances of dwarfs today<br />

• Andreea Font: combine this with our results to create<br />

phase-space plus abundance space models (Font,<br />

<strong>Johnston</strong>, Bullock & Robertson, 2005).


Boxsize:<br />

300kpc<br />

38-23<br />

mag/arcsec^2<br />

-2.5 < [Fe/H]<br />

< -0.5<br />

-0.1 < [alpha/Fe]<br />

< 0.2


Abundance Patterns in Satellites<br />

vs Halo


Abundance<br />

variations<br />

within<br />

stellar halos<br />

e.g M31 -<br />

Ferguson, Ibata,<br />

Irwin, Chapman,<br />

Lewis....<br />

(see also Guhathakurta;<br />

Brown et al; Mouchine et<br />

al...)


... only stars<br />

with [alpha/<br />

Fe]


Summary<br />

The BIG picture: (i) stellar halos are built inside<br />

out from a few massive dwarfs; (ii) bulk of halo<br />

accreted much earlier than surviving satellites.<br />

Natural consequences of Lambda CDM:<br />

=> features from recent events at ~30 mag/arcsec^2<br />

common<br />

=> these represent relatively rare, late-infall events<br />

=> abundance patterns in late accretions and<br />

surviving satellites different from rest of halo<br />

=> cuts in alpha-abundance will be sensitive to<br />

different accretion times

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!