30.06.2013 Views

Format of final… • 50 multiple choice questions • 5 not-short-answer ...

Format of final… • 50 multiple choice questions • 5 not-short-answer ...

Format of final… • 50 multiple choice questions • 5 not-short-answer ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Format</strong> <strong>of</strong> <strong>final…</strong><br />

<strong>•</strong> <strong>50</strong> <strong>multiple</strong> <strong>choice</strong> <strong>questions</strong><br />

<strong>•</strong> 5 <strong>not</strong>-<strong>short</strong>-<strong>answer</strong> problems<br />

! probably 4 “math-oriented”<br />

! substantial partial credit for knowing what equation(s)<br />

to use to solve the problem<br />

! one observing-oriented<br />

<strong>•</strong> Some extra-credit<br />

<strong>•</strong> You may use a calculator<br />

<strong>•</strong> You DO NOT need scantrons<br />

Three main areas <strong>of</strong> focus…<br />

<strong>•</strong> Tools <strong>of</strong> astronomy<br />

! coordinate systems<br />

! light (and other forms <strong>of</strong> electromagnetic radiation)<br />

! telescopes<br />

<strong>•</strong> “Backyard” observations<br />

! and what they tell you about the universe<br />

<strong>•</strong> More complex observations<br />

! and what they can tell us about the universe


Some basics…<br />

<strong>•</strong> Stars, planets, galaxies….<br />

The Celestial Sphere<br />

<strong>•</strong> no depth<br />

perception<br />

<strong>•</strong> measuring<br />

distances is<br />

difficult


Celestial sphere appears to turn…<br />

<strong>•</strong> around celestial poles<br />

! in one sidereal day<br />

<strong>•</strong> constellations move as<br />

fixed patterns on the sky<br />

Different places on Earth give different view…<br />

Santa Cruz<br />

North Pole<br />

Equator


Distances on celestial sphere measured as angles…<br />

<strong>•</strong> degrees, arcminutes, arcseconds<br />

Celestial sphere locations described by constellations…


Or by Right Ascension and Declination<br />

<strong>•</strong> analogous to longitude and latitude on Earth<br />

Precession <strong>of</strong> the poles/equinox<br />

<strong>•</strong> Tug <strong>of</strong> other solar system bodies causes<br />

Earth’s axis to precess<br />

<strong>•</strong> Poles (and coordinate system) move<br />

slowly with respect to constellations


The local view: altitude and azimuth<br />

Ecliptic, zodiac


Seasons<br />

<strong>•</strong> Equinox, solstice<br />

<strong>•</strong> Length <strong>of</strong> day changes<br />

Time scales<br />

<strong>•</strong> Atomic Time<br />

<strong>•</strong> Apparent (True) Solar Time, Mean Solar Time<br />

! equation <strong>of</strong> time<br />

<strong>•</strong> Local Time,<br />

Universal Time<br />

<strong>•</strong> Sidereal Time


The Moon<br />

Eclipses<br />

<strong>•</strong> Lunar eclipses<br />

! only at Full Moon<br />

! but <strong>not</strong> every Full Moon


Eclipse seasons and the saros cycle<br />

<strong>•</strong> Lunar eclipses<br />

<strong>•</strong> Solar eclipses


Planets: What’s really out there…<br />

Planets: terminology<br />

<strong>•</strong> Inferior, superior<br />

<strong>•</strong> Elongation<br />

! conjunction, opposition,<br />

quadrature<br />

<strong>•</strong> Synodic, sidereal period


Inferior planets show phases…<br />

<strong>•</strong> And only seen near sunrise, sunset<br />

All planets show retrograde motion…<br />

Kepler’s Laws:<br />

<strong>•</strong> The orbits <strong>of</strong> the planets are ellipses…<br />

<strong>•</strong> The line joining a planet to the Sun<br />

sweeps out equal areas in equal times.


Kepler’s 3rd Law:<br />

<strong>•</strong> The square <strong>of</strong> a planet's orbital period is proportional to the<br />

cube <strong>of</strong> its semi-major axis…<br />

Virtually everything we know<br />

about mass in the universe is<br />

derived from this law<br />

Comets<br />

<strong>•</strong> Small chunks <strong>of</strong> rock and ice<br />

<strong>•</strong> Long period, highly elliptical orbits<br />

<strong>•</strong> Tail formed by evaporation,<br />

solar wind


Meteor showers<br />

<strong>•</strong> As Earth passes debris left by evaporating comet...<br />

! small chunks <strong>of</strong> rock burn up in Earth atmosphere<br />

<strong>•</strong> Tend to come from one direction in sky -- radiant<br />

Light: basics <strong>of</strong> how we see:


The electromagnetic spectrum<br />

Multiwavelength observing<br />

<strong>•</strong> Visible light<br />

! hot objects (stars)<br />

! blocked by dust<br />

<strong>•</strong> Infrared<br />

! warm objects (stars,<br />

protostars)<br />

! can penetrate dust<br />

<strong>•</strong> Radio<br />

! cold gas<br />

! magnetic<br />

processes<br />

<strong>•</strong> X-ray, gamma-ray<br />

! very high energy processes


Light as a particle…<br />

<strong>•</strong> Travels at 300,000 km/sec…<br />

Light as wave…<br />

Lenses, mirrors and telescopes<br />

<strong>•</strong> Cameras are the simplest “artificial” eyes...


<strong>•</strong> xx<br />

An optical telescope A radio telescope<br />

Angular resolution and diffraction limit<br />

<strong>•</strong> Diffraction limit:<br />

! " 70! (# / D)


Telescopes: magnification and focal ratio<br />

<strong>•</strong> View through eyepiece increases apparent angular size <strong>of</strong><br />

object<br />

M = f telescope /f eyepiece<br />

Atmosphere: absorption and “seeing”<br />

<strong>•</strong> Blocks many<br />

wavelengths<br />

<strong>•</strong> Limits angular resolution <strong>of</strong> ground based observations at<br />

optical wavelengths


Better seeing in space or with adaptive optics<br />

<strong>•</strong> Best seeing on Earth is a fraction <strong>of</strong> an<br />

Apparent arcsecond brightness, Intensity, Luminosity…<br />

<strong>•</strong> Inverse square law: L = (4 $ d<br />

<strong>•</strong> Even small telescopes in space<br />

are useful<br />

2 ) x I<br />

<strong>•</strong> Magnitude scale:<br />

! apparent (m)<br />

! absolute (M)<br />

m = M + 5log 10 (d pc /10)


Parallax<br />

Masses stars:<br />

<strong>•</strong> Can only measure a star’s mass if something orbits it…<br />

<strong>•</strong> Generalized form <strong>of</strong> Kepler's 3rd Law...


Blackbody Spectra:<br />

<strong>•</strong> Wien’s Law:<br />

! # peak = 0.003/T<br />

Kelvin temperature scale<br />

<strong>•</strong> Stefan-Boltzmann Law:<br />

! I = 6 x 10 %8 T 4<br />

<strong>•</strong> Temperature proportional to internal energy


Sizes <strong>of</strong> stars from temperature and luminosity<br />

Hertzprung-Russell diagram…<br />

<strong>•</strong> Main sequence<br />

! powered by hydrogen fusion<br />

! high mass = hot, bright low mass= cool, faint<br />

<strong>•</strong> Red giants<br />

! large, cool,<br />

luminous<br />

! late stage <strong>of</strong><br />

evolution<br />

<strong>•</strong> White dwarfs<br />

! small, hot, faint<br />

! dead, no fusion<br />

! supported by<br />

“degeneracy pressure”


Evolution and ages:<br />

middle-aged cluster<br />

Spectroscopy<br />

<strong>•</strong> xxx<br />

young cluster<br />

old cluster<br />

Emission and absorption<br />

in hydrogen


Spectral types<br />

<strong>•</strong> A<strong>not</strong>her way <strong>of</strong> talking about temperature


What stars are made <strong>of</strong>…<br />

<strong>•</strong> Absorption lines in stellar spectra tell a star’s composition…<br />

<strong>•</strong> Sun’s composition (by mass):<br />

! 72% H<br />

! 21% He<br />

! 1% O<br />

! 0.3% C<br />

! 0.2% Ne<br />

! 0.1% N<br />

! 5% everything<br />

else<br />

Doppler shift…<br />

wavelength<br />

you see<br />

“rest” wavelength <strong>of</strong> light<br />

(or other EM radiation)<br />

the speed <strong>of</strong> light<br />

speed <strong>of</strong> light source<br />

(relative to you)<br />

<strong>•</strong> negative V means source is coming toward you.<br />

<strong>•</strong> positive V means source is going away from you.


Doppler shift and spectral lines<br />

<strong>•</strong> Spectral lines make the doppler<br />

effect useful…<br />

Spectroscopic binaries and planet hunting<br />

A relativistic aside:<br />

A moving blackbody<br />

looks like a blackbody -but<br />

with a changed<br />

temperature<br />

<strong>•</strong> Some binary stars are identified by their changing spectra


What makes stars shine…<br />

<strong>•</strong> Fusion <strong>of</strong> hydrogen to helium via proton-proton chain…<br />

<strong>•</strong> Neutrinos from Sun have been detected on Earth<br />

! allow us to “see” Sun’s core<br />

Supernova<br />

<strong>•</strong> Type II -- massive stars explode<br />

when iron core collapse under<br />

star’s weight<br />

<strong>•</strong> Type I -- white dwarf accretes<br />

matter from a close binary<br />

companion star undergoes<br />

“carbon detonation”


Milky Way<br />

<strong>•</strong> 100 billion (10 11 ) stars in a spiral-like disk<br />

Our place in the Milky Way<br />

Our approximate location in<br />

the Galaxy, shown in<br />

galaxies <strong>not</strong> our own


Rotation curves and galaxy masses<br />

<strong>•</strong> A<strong>not</strong>her way <strong>of</strong> looking at<br />

Kepler’s 3rd Law<br />

<strong>•</strong> Flat rotation curves indicate significant mass in outer regions<br />

<strong>of</strong> galaxies<br />

Milky Way's rotation curve<br />

<strong>•</strong> If most <strong>of</strong> the mass <strong>of</strong> the Galaxy were in the “bulge”..<br />

! its rotation curve would drop <strong>of</strong>f at large distances...<br />

! as the Solar System curve does.<br />

<strong>•</strong> Instead you see a fairly<br />

“flat” rotation curve...<br />

! stars at edge <strong>of</strong> disk<br />

! have velocities<br />

similar to Sun's...


Dark Matter<br />

<strong>•</strong> Galaxies contain about 5 - 10 times as much mass as<br />

can be seen<br />

<strong>•</strong> Appears to be distributed<br />

in spherical halo<br />

<strong>•</strong> MACHO’s or WIMP’s<br />

Hubble’s Law<br />

<strong>•</strong> Relationship between galaxy redshift (velocity) and distance<br />

! V=Hd<br />

<strong>•</strong> Current best estimate…<br />

! H !70 km/sec/Mpc<br />

<strong>•</strong> Provides rough estimate<br />

<strong>of</strong> time since Big Bang<br />

! 1/H ~ 14 billion years


Hubble's Law revisited...<br />

<strong>•</strong> If we plot redshift vs. distance out to very large distances...<br />

! we don't expect a straight line...<br />

<strong>•</strong> Expect evidence <strong>of</strong> faster<br />

expansion at large<br />

distances...<br />

<strong>•</strong> Since we see distant<br />

galaxies as they were<br />

far in the past<br />

<strong>•</strong> Simple GR models predict<br />

! q 0 > 0<br />

Measuring distance to galaxies is hard<br />

<strong>•</strong> Hubble Law plots involve redshift and distance…<br />

! measuring redshifts is “easy”<br />

! measuring distances is <strong>not</strong>.<br />

<strong>•</strong> Uncertainties in Hubble constant<br />

! and in whether or <strong>not</strong><br />

there is acceleration...<br />

! due to uncertain distance<br />

measurements.


Measuring distances to galaxies is hard…<br />

<strong>•</strong> Rely on standard candles<br />

<strong>•</strong> Cepheid variables<br />

Looking back in time…<br />

<strong>•</strong> Looking out into space means<br />

looking back in time…<br />

<strong>•</strong> The farthest back we can see*<br />

is the era that produced<br />

the 3K cosmic background<br />

cosmic background<br />

blackbody spectrum<br />

<strong>•</strong> Type I supernovae

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!