30.06.2013 Views

Priscilla Cushman - Fermilab Center for Particle Astrophysics

Priscilla Cushman - Fermilab Center for Particle Astrophysics

Priscilla Cushman - Fermilab Center for Particle Astrophysics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Direct Dark Matter Experiments:<br />

Current Technologies and Future Directions<br />

<strong>Priscilla</strong> <strong>Cushman</strong><br />

University of Minnesota<br />

<strong>Fermilab</strong> Comic Frontier Symposium<br />

March 23-­‐26, 2011<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


(Roszkowski 2004)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

The Requisite Anti-­‐Hubris Plot<br />

HUGE σ - m space<br />

Our Favorite candidate<br />

Weakly Interacting Massive <strong>Particle</strong><br />

neutralino: weak interaction scale,<br />

suppressed by mixing angles in<br />

the neutralino couplings<br />

m χ > 70 GeV from LEP<br />

> few GeV from Ω χ h 2 < 1<br />

< 300TeV from unitarity<br />

tens – 100’s GeV fine tuning arguments<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


(Roszkowski 2004)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Dark Matter Candidates<br />

L<br />

K<br />

P<br />

Kaluza-­‐Klein modes<br />

LKP is also a WIMP<br />

m ~ 400 – 1200 GeV Relic Density<br />

m > 300 GeV Compactification Scale R -­‐1<br />

mass splitting can be small m n = n/R<br />

coannihilation large<br />

may be difficult signature <strong>for</strong> LHC<br />

many models:<br />

UED, MUED, warped dimensions<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


(Roszkowski 2004)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Dark Matter Candidates<br />

Our NEXT Favorite candidate<br />

Axions<br />

m < 0.01 eV<br />

lab searches, stellar cooling, SN 1987A<br />

Very weak: not in thermal equilibrium with<br />

early universe.<br />

Born non-­‐relativistic (cold dark matter)<br />

Thermally produced in stars<br />

strong astrophysics limits<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Region we<br />

will<br />

have probe already over the<br />

excluded next decade<br />

(Roszkowski 2004)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

L<br />

K<br />

P<br />

Most Searches<br />

concentrate on WIMPs<br />

log pb<br />

-5<br />

-8<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Kathryn Zurek’s lamp post<br />

(in a happy frame of mind)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Low Mass Hints<br />

or The Drunkard’s Walk<br />

WIMP Miracle<br />

LHC October<br />

Surprise<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Direct Detection of WIMPs<br />

1. <strong>Particle</strong> Physics: Interaction cross section with target material<br />

WIMPs elastically scatter off nuclei in targets, producing nuclear recoils.<br />

!<br />

R " N # $N<br />

m $<br />

v esc<br />

% $<br />

vmin f (v)dv<br />

v<br />

(a) Spin-independent interaction µA 2<br />

( large λ dB è coherent interaction )<br />

(b) Spin-dependent needs target with net spin<br />

2. <strong>Astrophysics</strong>: WIMP distribution in our galaxy<br />

Isothermal, spherical halo and M-B velocity dist:<br />

v 0 ~ 230 km/s v esc ~ 550 km/s<br />

ρ χ = 0.3 GeV / cm 3<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

&<br />

χ<br />

H,h,Z<br />

χ<br />

q q<br />

galactic center<br />

Sun 230 km/s<br />

χ χ<br />

q~<br />

q q<br />

June<br />

<strong>Priscilla</strong> <strong>Cushman</strong><br />

Dec.


WIMP Spectrum in a Detector<br />

Results in a Featureless Exponential Recoil spectrum<br />

Energies in the tens of keV è Need Very Sensitive Detectors<br />

Rate of < .1 evt/kg/yr è Need Very Low Background<br />

Details and Fall-off depend on Nuclear Physics of Target Material<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Recoil Energy (keV)<br />

Ar: A = 40<br />

Ge: A = 73<br />

Xe: A = 131<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Signal<br />

χ<br />

γ<br />

Choose your Technique<br />

nuclear recoil=NR<br />

v/c ~ 7 x 10 -4<br />

Count nuclear recoils annual flux variation<br />

Background<br />

electron recoil=ER<br />

v/c ~ 0.3<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

β,γ discriminate between ER vs NR<br />

-or- eliminate sensitivity to ER<br />

-or- self-shielding<br />

n multiple scatters<br />

σ varies with target<br />

diurnal directional<br />

modulation<br />

go deep<br />

shielding<br />

α much higher energy deposit.<br />

problem <strong>for</strong> threshold devices, trackers<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Avoiding Neutrons: Worldwide Underground Labs<br />

with Dark Matter Experiments<br />

San<strong>for</strong>d<br />

(4100)<br />

WIPP<br />

(1600)<br />

Aqua Negra<br />

(4500)<br />

SNOLab<br />

(6000)<br />

Soudan<br />

(2100)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Boulby<br />

(2800)<br />

Canfranc<br />

(2450)<br />

Modane<br />

(4800)<br />

LNGS<br />

(3600)<br />

IceCube<br />

(2450)<br />

JinPing<br />

(7500)<br />

Yangyang<br />

(2100)<br />

<strong>Priscilla</strong> <strong>Cushman</strong><br />

Kamioka<br />

(2700)


Avoiding Neutrons<br />

(poorly understood processes)<br />

YangYang<br />

IceCube<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Canfranc<br />

~ 200 GeV<br />

~ 250 GeV<br />

San<strong>for</strong>d<br />

Andes<br />

~ 350 GeV<br />

DUSEL 7400 level CJPL<br />

neutron flux<br />

E n > 10 MeV<br />

6 x 10 -9 cm -2 s -1<br />

trackers, mod exp.<br />

neutron veto<br />

MC benchmarking<br />

1 x 10 -9 cm -2 s -1<br />

water shields<br />

muon veto<br />

1 x 10 -11 cm -2 s -1<br />

relaxed shielding<br />

but ?<br />

penetrating n’s<br />

high multiplicity evts<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Removing Electromagnetic Backgrounds<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

M. Attisha<br />

Exploit media with a<br />

different response to<br />

NR: Nuclear Recoils<br />

and<br />

ER: Electron Recoils<br />

to distinguish between<br />

WIMPs and background<br />

Two-channel strategy:<br />

One signal with NR/ER < 1<br />

Another to normalize<br />

energy scale<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Counting Nuclear Recoils: Types of Signals<br />

heat, vibration<br />

light charge<br />

NaI, CsI, CaWO 4<br />

Liquid Ar, Xe<br />

high pressure Xe<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Germanium, Silicon<br />

CaWO 4 , sapphire<br />

Germanium, Silicon<br />

Liquid Ne, Ar, Xe<br />

Gas: Ne, Xe, Ar,<br />

C 2 H 6 , CF 4 etc…<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Counting Nuclear Recoils: Experiments<br />

two signals are better than one<br />

scintillation<br />

KIMS, ANAIS, Tokyo<br />

NAIAD, DAMA<br />

CLEAN, DEAP<br />

Zeplin I, XMASS<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

phonon, bolometric<br />

ROSEBUD<br />

CRESST II<br />

COUPP, Picasso, SIMPLE<br />

CRESST I<br />

EURECA<br />

WARP, ArDM<br />

Xenon-10, 100<br />

ZEPLIN II, III<br />

Darkside<br />

Panda-X<br />

LUX<br />

CDMS<br />

Edelweiss<br />

ionization<br />

HDMS,<br />

GENIUS, IGEX,<br />

CoGeNT, TEXONO<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Cryogenic Techniques at mK Temperatures<br />

Need sensitivity (big ΔT) <strong>for</strong> small ΔE, so run at T


Cryogenic Techniques at mK: the other channel<br />

+ Ionization + Scintillation<br />

CDMS II (Soudan) EDELWEISS (Modane) CRESST II (Gran Sasso)<br />

charge + guard ring<br />

Al electrodes + FETs<br />

Ge (250g) or<br />

Si (100g)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

charge + guard ring<br />

Al electrodes + FETs<br />

NTD<br />

Ge<br />

(320g)<br />

SQUID<br />

Array<br />

light from CaWO 4 via<br />

sapphire-silicon sensor<br />

W-TES on Al 2 O 3 + SQUIDs<br />

Al 2 O 3<br />

CaWO 4<br />

300g<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Cryogenic Techniques at mK: the other channel<br />

+ Ionization + Scintillation<br />

CDMS II (Soudan) EDELWEISS (Modane) CRESST II (Gran Sasso)<br />

Charge to Phonon ratio<br />

NR Quenched by factor ~ 3<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Data from radioactive source calibration<br />

Charge to Heat ratio<br />

Light to Phonon ratio<br />

Q(O) ~ 9 ER/NR from CaO<br />

Q(W) ~ 40 è insensitive to n<br />

but big A 2 effect <strong>for</strong> WIMPs<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Cryogenic Techniques at mK: Surface Events<br />

CDMS II (Soudan) EDELWEISS (Modane) CRESST II (Gran Sasso)<br />

Ionization to Phonon ratio<br />

Ionization to Heat ratio<br />

Incomplete charge collection <strong>for</strong> low energy β<br />

Ionization ratio droops into NR band<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Data from radioactive source calibration<br />

Light to Phonon ratio<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


)<br />

CDMS II<br />

phonon pulse shape<br />

gives another handle<br />

Rejecting Surface Events: Timing<br />

Phonons created near surface travel<br />

faster through crystal (ballistic)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Data from WIMP Search<br />

Timing Parameter<br />

linear combination of risetime and delay<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Rejecting Surface Events: Interleaved Electrodes<br />

Charge near surface is collected by electrodes on only one side<br />

EDELWEISS II SuperCDMS Soudan<br />

‘a’ electrodes (+4V)<br />

collecting ‘b’ electrodes (-1.5V)<br />

field shapping<br />

‘c’ (-4V) ‘d’ (+1.5V)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

fiducial<br />

volume<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Cryogenic Techniques at mK: Improved Detectors<br />

SuperCDMS (Soudan)<br />

Improved Surface Event rejections via Larger Detectors<br />

New interleaved electrodes è surface event rejection<br />

Ge (640g)<br />

phonon and charge<br />

on both sides<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

EDELWEISS II (Modane) CRESST II (Gran Sasso)<br />

Ge (400g and 800g)<br />

2 NTD, 6 electrodes<br />

new cryostat – up to 40 kg<br />

More mass & multiple targets<br />

Composite detector design<br />

(simplified TES)<br />

Improve clamps to reduce bkgd<br />

mechanical (dark evts)<br />

scint veto ( 210 Pb α,NR)<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Underground Labs with Cryogenic Solid State<br />

SuperCDMS<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Edelweiss<br />

CRESST<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Snapshot: All three have unexplained<br />

backgrounds … WIMP hint?<br />

CDMS II<br />

Blind analysis gave 2 evts<br />

bkgd of 0.8 ± 0.1(stat) ± 0.2(sys)<br />

23% probability to observe ≥ 2 evts<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

EDELWEISS II (interleaved)<br />

Blind analysis gave 5 evts<br />

bkgd studies still proceeding<br />

Expected < 3 evts<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


FNAL Cosmic Frontier Mar 25, 2011<br />

Snapshot: All three have unexplained<br />

backgrounds … Set Limits<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Snapshot: All three have unexplained<br />

backgrounds … WIMP hint?<br />

one crystal out of 9<br />

signal<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

CRESST II oxygen events<br />

210 Pb on crystal, clamps<br />

M W = 12 GeV/c 2 @ 5.4 σ<br />

564 kg-d from 9 CaWO 4 crystals<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Main issues are<br />

Complexity and Scaling up<br />

Material cost (e.g. Ge $20/g)<br />

Cryogenic demands<br />

Challenges <strong>for</strong> Cryogenic Phonon<br />

For new Ge detectors, bkgd challenge largely met!<br />

Surface contamination (betas) è Fiducial cut using<br />

Phonon timing<br />

Interleaved electrodes<br />

should be good enough <strong>for</strong> ton scale experiment<br />

CRESST II More exposure (more neutron multiples to benchmark)<br />

Reduce alphas (contamination and clamps)<br />

Improve light collection and lower threshold<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Counting Nuclear Recoils: Experiments<br />

two signals are better than one<br />

scintillation<br />

KIMS, ANAIS, Tokyo<br />

NAIAD, DAMA<br />

CLEAN, DEAP<br />

Zeplin I, XMASS<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

phonon, bolometric<br />

ROSEBUD<br />

CRESST II<br />

COUPP, Picasso, SIMPLE<br />

CRESST I<br />

EURECA<br />

WARP, ArDM<br />

Xenon-10, 100<br />

ZEPLIN II, III<br />

Darkside<br />

Panda-X<br />

LUX<br />

CDMS<br />

Edelweiss<br />

ionization<br />

HDMS,<br />

GENIUS, IGEX,<br />

CoGeNT, TEXONO<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Ionization + Scintillation: Two-Phase Noble Liquids<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Time Projection Chamber technology<br />

60 Co and 241 AmBe calibration data<br />

ER<br />

NR<br />

XENON100: Aprile et al. arXiv:1005.0380v3<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Ionization + Scintillation: Two-Phase Noble Liquids<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Choose your working fluid<br />

Argon Xenon<br />

A = 40 A = 131, <strong>for</strong>m factor<br />

reduction at higher E r<br />

λ = 128 nm (λ-shifter) λ = 125 nm (UV PMT)<br />

$2/kg $800/kg<br />

100% even-even nuclei 50% odd-n nuclei<br />

39 Ar (1Bq/kg in Nat Ar)<br />

new sources from wells<br />

85 Kr (removed via<br />

filter or distillation)<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Ionization + Scintillation: Two-Phase Noble Liquids<br />

Lots of experiments !<br />

Liq Xenon Location Tot (Fid) kg<br />

Xenon10 LNGS 15 (5.4) finished<br />

Xenon100 LNGS 170 (65) running<br />

Zeplin II Boulby 31 (7.2) finished<br />

Zeplin III Boulby 12 (6.5) running<br />

LUX San<strong>for</strong>d 300 (100) testing<br />

Panda-X JinPing 120 (25) testing<br />

Liq. Argon Location Tot (Fid) kg<br />

WArP LNGS 3.2 finished<br />

WArP LNGS 8T (140) running<br />

ArDM CERN/Canfranc 850 kg testing<br />

Darkside LNGS 50 kg prototype testing<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Snapshot: XENON100 poised to<br />

reject (confirm) WIMP hints<br />

Dotted: Limits with 2 L eff choices<br />

Solid: New likelihood analysis (v esc , L eff )<br />

90% CL<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

arXiv:1103.0303<br />

0 candidates in Xenon100 (11d)<br />

Expect x 10 more exposure<br />

revealed in a few weeks?<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Results from the others expected<br />

in the next couple years<br />

WArP-140 is currently running<br />

ZEPLIN III final run will end this spring<br />

~1500 kg-d with neutron veto<br />

new PMTs (18x bkgd reduction)<br />

LUX surface testing now<br />

Underground Spring 2012<br />

Large water tank<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Panda-X<br />

complete by Fall 2011<br />

Deep! no active shield<br />

ZEPLIN III (2008)<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


scintillation<br />

KIMS, ANAIS, Tokyo<br />

NAIAD, DAMA<br />

CLEAN, DEAP<br />

Zeplin I, XMASS<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Counting Nuclear Recoils:<br />

Sometimes one mode is enough<br />

phonon, bolometric<br />

ROSEBUD<br />

CRESST II<br />

COUPP, Picasso, SIMPLE<br />

CRESST I<br />

EURECA<br />

WARP, ArDM<br />

Xenon-10, 100<br />

ZEPLIN II, III<br />

Darkside<br />

Panda-X<br />

LUX<br />

CDMS<br />

Edelweiss<br />

ionization<br />

HDMS,<br />

GENIUS, IGEX,<br />

CoGeNT, TEXONO<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Scintillation: Single Phase Noble Liquids<br />

Liquid Xenon: Large self-shielded mass, remove all contaminants, fiducial cuts<br />

54 2-inch PMTs<br />

XMASS (Kamioka)<br />

100 kg prototype è 800 kg<br />

Liquid Argon: Exploit pulse-shape discrimination against ER<br />

DEAP/CLEAN (SNOLab)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

MgF 2 window<br />

Liq. Xe<br />

(31cm) 3<br />

ratio of fast (6ns) to slow (1.6us)<br />

scint. components is larger <strong>for</strong> NR<br />

miniCLEAN<br />

DEAP-3600<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


DEAP/CLEAN<br />

Snapshot: Single Phase Noble Liquids<br />

R&D microCLEAN (4 kg) LAr/LNe scintillation, PSD, NR quenching<br />

DEAP-1 (7 kg) PSD rejection of 4.7 x 10 -8 <strong>for</strong> 25-86 keV ee<br />

WIMP search starts 2012<br />

MiniCLEAN (500 kg) LAr/LNe to ~ 10 -45 cm 2<br />

Max light collection/sensitivity (> 6 pe/keV)<br />

DEAP-3600 (3600 kg) LAr/DAr to ~ 10 -46 cm 2<br />

eventually<br />

CLEAN 10-100 Tons ~ 2 x 10 -47 cm 2<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

XMASS has extraordinary purity and lowrad PMTs<br />

100 kg is running now, 800 kg expected in 2012<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Challenges <strong>for</strong> Noble Liquids<br />

Argon: 39 Ar (1 Bq/kg) in atmospheric argon<br />

Depleted argon underground sources (x20)<br />

Good PSD against β-decay<br />

Xenon: 85 Kr cryo distillation to < 50 ppt (Xenon100 goal)<br />

XMASS at 3 ppt 85 Kr (mass spec), U/Th 10 -13 g/g<br />

Backgrounds<br />

Gammas reduced by self-shielding (less reliance on ER:NR)<br />

PMT neutrons: New lowrad H8778, APDPMTs (e.g. QUPIDs)<br />

Wire readout (LEMS in ArDM)<br />

Surfaces: Fiducial cuts<br />

Single phase: Max light collection in 4π<br />

Dual phase: drift time discrimination<br />

Scaling up<br />

Cryogenics less demanding than bolometers<br />

Single phase much easier than dual<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

WArP is triple<br />

discrimination<br />

(like CDMS)<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


LUX<br />

Underground Labs with Noble Liquid DM<br />

DEAP<br />

CLEAN<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

2-phase<br />

1-phase<br />

ZEPLIN III<br />

ArDM<br />

Xenon 100<br />

Darkside<br />

WArP<br />

xenon<br />

argon<br />

PandaX<br />

XMASS<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


scintillation<br />

KIMS, ANAIS, Tokyo<br />

NAIAD, DAMA<br />

CLEAN, DEAP<br />

Zeplin I, XMASS<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Counting Nuclear Recoils:<br />

Sometimes one mode is enough<br />

phonon, bolometric<br />

ROSEBUD<br />

CRESST II<br />

COUPP, Picasso, SIMPLE<br />

CRESST I<br />

EURECA<br />

WARP, ArDM<br />

Xenon-10, 100<br />

ZEPLIN II, III<br />

Darkside<br />

Panda-X<br />

LUX<br />

CDMS<br />

Edelweiss<br />

ionization<br />

HDMS,<br />

GENIUS, IGEX,<br />

CoGeNT, TEXONO<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


High Purity Germanium<br />

* Excellent energy resolution<br />

* Mostly used <strong>for</strong> neutrino experiments<br />

* Also can do neutrinoless double beta decay detectors<br />

Use energy resolution<br />

to beat down background<br />

No evt by evt ER vs NR discrimination<br />

Some pulse shape discrimination<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


High Purity Germanium<br />

* Excellent energy resolution<br />

* Mostly used <strong>for</strong> neutrino experiments<br />

* Also can do neutrinoless double beta decay detectors<br />

Use energy resolution<br />

to beat down background<br />

No evt by evt ER vs NR discrimination<br />

Some pulse shape discrimination<br />

Window of opportunity: can go to<br />

very low thresholds with new<br />

low capacitance configurations<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Underground Labs with low threshold HPGe<br />

CoGeNT<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

CDEX<br />

TEXONO<br />

<strong>Priscilla</strong> <strong>Cushman</strong><br />

KIMS


SONGS<br />

Soudan<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

High Purity Germanium: CoGeNT<br />

Continue to develop the P-type point contact HPGe<br />

ββ0ν (Majorana)<br />

ν detector<br />

DM detector<br />

Aalseth et al., arXiv:1002.4703<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


High Purity Germanium: CDEX/TEXONO<br />

CDEX (China Dark matter EXperiment) at new Jin-Ping Lab<br />

Merging of collaborations and technologies<br />

TEXONO (Taiwan EXperiment On neutrinO) at Kuo Sheng Reactor<br />

ULB-HPGe (1 kg)<br />

CsI(Tl) (200 kg)<br />

ULE-ULB-HPGe (20g)<br />

DM search moves to JinPing (China, India, Turkey, TEXONO, KIMS)<br />

4 x 5g ULEGe 500g and 900g PCGe detector<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Ethr (50% eff) 200-300 eV.<br />

Eventual exposure up to 100 kg-d<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


CoGeNT sees<br />

exponential<br />

excess at low<br />

energies<br />

So does TEXONO è not yet ready<br />

to do DM run at newer deeper site<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Snapshot: improved HPGe technology<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


New Kids on the Block<br />

China Jin-Ping Underground Laboratory<br />

(CJPL)<br />

DAMIC<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Low threshold<br />

HPGe Lab<br />

LBNL full depletion CCD (DECam)<br />

high resistivity silicon tracker<br />

1 g/CCD @ 0.036 keVee thresh<br />

Dual phase<br />

LXe TPC Lab<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Why all the excitement?<br />

Low mass WIMPs promise DAMA compatibility<br />

Manzur et al. arXiv:0909.1063<br />

XENON10<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

ZEPLIN-III<br />

Low energies more vulnerable to<br />

Uncertainties in astrophysics<br />

Uncertainties in L eff<br />

Uncertainties in Energy Scale<br />

Co-rotating disk<br />

Bruch et al. arXiv:0804.2896<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


New CDMS & XENON low energy threshold<br />

analyses make it less likely<br />

Relaxing the NR discrimination<br />

CDMS gives up ionization signal<br />

(except <strong>for</strong> “drift heating” correction)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

CDMS Ge<br />

low thresh<br />

const L eff<br />

XENON gives up prompt scint (S1)<br />

fiducial cuts via S2 width<br />

lower L eff<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


New CDMS & XENON limits make it less likely<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Relaxing the NR discrimination<br />

CDMS Ge<br />

low thresh<br />

const L eff<br />

lower L eff<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


scintillation<br />

KIMS, ANAIS, Tokyo<br />

NAIAD, DAMA<br />

CLEAN, DEAP<br />

Zeplin I, XMASS<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Counting Nuclear Recoils:<br />

Sometimes one mode is enough<br />

phonon, bolometric<br />

ROSEBUD<br />

CRESST II<br />

COUPP, Picasso, SIMPLE<br />

CRESST I<br />

EURECA<br />

WARP, ArDM<br />

Xenon-10, 100<br />

ZEPLIN II, III<br />

Darkside<br />

Panda-X<br />

LUX<br />

CDMS<br />

Edelweiss<br />

ionization<br />

HDMS,<br />

GENIUS, IGEX,<br />

CoGeNT, TEXONO<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Threshold Detectors: Insensitive to ER altogether!<br />

Nucleation Threshold determined by T, P è insensitivity to γ, β<br />

Fill with a flurocarbon: Emphasis on spin-dependent limits via 19 F<br />

Neutron dosimeter technology Bubble Chamber<br />

SIMPLE (Bas Bruit)<br />

1-4 % suspension of<br />

superheated C 2 ClF 5<br />

droplets in gel.<br />

shielded pool, shallow<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

PICASSO (SNOLab)<br />

0.5% C 4 F 10 droplets<br />

in water-based gel<br />

piezoelectric transducers<br />

MIP Multiple NR Single NR<br />

COUPP (SNOLab)<br />

Superheated bubble chamber<br />

CF 3 I, multiple targets<br />

CCD camera (+ acoustic)<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Scattering Cross Sections<br />

Spin Independent vs Spin Dependent<br />

In general, a Lorentz invariant Lagrangian L has S, P, V, A interactions.<br />

The WIMPs can be a fermion or a boson or a scalar particle<br />

However, galactic WIMPs are non-relativistic è divide into two categories<br />

(a) L S+V : Scalar interaction as µA 2<br />

( large λ dB è coherent interaction )<br />

(b) L A Spin-spin interaction couples<br />

to net nuclear spin J N<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

f and a are effective<br />

couplings and <br />

gives the spin content<br />

χ χ<br />

p p<br />

f p or a p <br />

<strong>Priscilla</strong> <strong>Cushman</strong>


SIMPLE pulls ahead<br />

x10 reduction in acoustic noise<br />

piezoelectric transducer è high-quality electret microphone<br />

and adaptive electronics.<br />

New SD limits (14.1 kg-d ) using<br />

15 superheated droplet detectors with total active mass of 0.208 kg.<br />

| a p | < 0.32, |a n | < 0.17 <strong>for</strong> 50 GeV/c 2 WIMP<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

needs Xenon10<br />

to achieve this.<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


COUPP & PICASSO right behind<br />

new installations with water shields at SNOLab<br />

COUPP 4 kg CF 3 I chamber moved from FNAL<br />

Stable running @ 79% livetime since Nov 2010<br />

>98% acoustic α rejection<br />

….. stay tuned!<br />

COUPP 60 kg bubble chamber<br />

undergoing tests.<br />

Running in NUMI (FNAL)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

PICASSO: 32 detector modules<br />

with an active mass of 2.6 kg<br />

Extensive bubble <strong>for</strong>mation &<br />

acoustic discrimination studies<br />

COUPP 4-Kg Chamber (2011)<br />

Neutrons<br />

2% spillover<br />

from alpha to<br />

neutron<br />

region<br />

Alphas<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Challenges <strong>for</strong> Threshold Detectors<br />

Backgrounds: alphas and neutrons<br />

Alphas from materials and radon plateout on vessels<br />

Make a Fiducial cut: spatial localization<br />

arrays of microphones or CCD cameras<br />

Improving α:n discrimination<br />

SIMPLE: α bkgd < 0.5 evt/kg/d.<br />

U/Th contaminations in the gel, measured at ~ 0.1 ppb<br />

COUPP α bkgd ~5.3 evt/kg/d ( 222 Rn from leaky valve? can be reduced)<br />

1 n/day from 8 piezoelectric transducers (replace this summer)<br />

Scaling up<br />

Bubble chambers can deploy larger masses more easily than SDD<br />

But who will win the acoustic discrimination contest?<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Signal<br />

χ<br />

γ<br />

Choose your Technique<br />

nuclear recoil=NR<br />

v/c ~ 7 x 10 -4<br />

Count nuclear recoils annual flux variation<br />

Background<br />

electron recoil=ER<br />

v/c ~ 0.3<br />

β,γ discriminate between ER vs NR<br />

-or- eliminate sensitivity to ER<br />

-or- self-shielding<br />

n multiple scatters<br />

σ varies with target<br />

diurnal directional<br />

modulation<br />

Doesn’t require event by event background rejection,<br />

go deep<br />

shielding<br />

but WITHOUT it, detailed systematics studies required<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

α much higher energy deposit.<br />

problem <strong>for</strong> threshold devices, trackers<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Diurnal Directional Modulation<br />

Robust Signature – Promises WIMP astronomy!<br />

large modulation (20-50%), rather than 3% <strong>for</strong> annual<br />

sidereal – hard to fake it with bkgd<br />

To see tracks or head-tail difference è gas target<br />

But gas targets need to be big (compared to solid)<br />

DRIFT II (running – Boulby)<br />

Competitive SD limits<br />

Negative ion TPC w/ MWPC readout<br />

CS 2 molecule (less diffusion)<br />

NEWAGE (test cell at Kamioka)<br />

Ar + C 2 H 6 micro-TPC<br />

microdot charge readout<br />

MIMAC (test chamber CEA- Saclay)<br />

3 He or CF 4 micro-TPC<br />

DMTPC (test chamber – MIT, WIPP)<br />

CF 4 low pressure TPC with optical readout<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

DRIFT<br />

DMTPC head-tail<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


FNAL Cosmic Frontier Mar 25, 2011<br />

Snapshot:<br />

SD Limits and Diurnal Mod. Hopes<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Coherent neutrino Thescattering Ultimate Background<br />

limits<br />

Solar ν<br />

atmospheric<br />

100 GeV WIMP<br />

1E-47 cm 2<br />

1E-48 cm 2<br />

diffuse SN<br />

Strigari arXiv:0903.3630<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

The Ultimate Limit in<strong>for</strong>ms<br />

technology choices<br />

Reduced sensitivity to<br />

low mass WIMPs<br />

Or call it a solar neutrino experiment<br />

Directionality and<br />

Modulation will become<br />

our only handles<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Annual Flux Variation<br />

DAMA/LIBRA exposure = 1.17 ton-years of NaI(Tl) at LNGS<br />

25 crystals, each 9.5 kg, running <strong>for</strong> 6 y in LIBRA (13 yrs total)<br />

Amplitude of a few percent Phase Max on June 2 Significance of 8.9 σ<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


FNAL Cosmic Frontier Mar 25, 2011<br />

Annual Flux Variation<br />

integrated spectrum<br />

of single hits<br />

modulation amplitude is only<br />

significant at low energy<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Finally, a worldwide ef<strong>for</strong>t to check DAMA<br />

Borexino (Gran Sasso)<br />

NaI crystals surrounded<br />

by ultra-clean LS<br />

Same Lab<br />

Study backgrounds<br />

Requires crystals purities < 1 ct/keV/day<br />

St Gobain has exclusive contract with DAMA<br />

New R&D on NaI purity w/ St Gobain<br />

DM-Ice (South Pole)<br />

250 kg NaI<br />

Different Systematics<br />

and environ.<br />

ANAIS (Canfranc)<br />

250 kg NaI inside<br />

lead/poly shield<br />

DAMA-size array in<br />

Different Lab<br />

If DAMA signal is astrophysicalè a 5-sigma measurement in 2 years<br />

with 250 kg and comparable background to DAMA.<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Different Crystal<br />

But Wait! There’s More!<br />

KIMS (Yangyang Lab, Korea)<br />

Published 2007 Limit<br />

four 8.7 kg CsI(Tl) crystals <strong>for</strong> 3409 kg-d<br />

pulse shape discrimination<br />

liquid scint veto, 1 dru bkgd<br />

Reduce 137Cs in processing (water)<br />

Reduce 87Rb via repeated recrystallization<br />

Everyone can look, but it requires a low threshold<br />

(if DAMA is being checked)<br />

2009<br />

2007<br />

(100kg)<br />

2005<br />

Expect results soon from Xenon-100, CDMS<br />

Requires relaxation of ER:NR discrimination<br />

Background subtraction may be useful<br />

If higher mass WIMP, then signal itself can be observed modulating.<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


But Wait! There’s More!<br />

Cogent C4 at Soudan. Four 0.9 kg detectors, with an estimated combined<br />

fiducial mass of 2.5 kg will not only be capable of detecting the presence of a<br />

modulation, but will be sensitive to the energy spectrum of the 2009 modulation<br />

1 year of<br />

running<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

0.33 kg<br />

2.5 kg<br />

2007<br />

(100kg)<br />

2005<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Concentrating on Annual Modulation Reach<br />

scintillation<br />

KIMS, ANAIS, Tokyo<br />

NAIAD, DAMA<br />

CLEAN, DEAP<br />

Zeplin I, XMASS<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

phonon, bolometric<br />

ROSEBUD<br />

CRESST II<br />

COUPP, Picasso, SIMPLE<br />

CRESST I<br />

EURECA<br />

WARP, ArDM<br />

Xenon-10, 100<br />

ZEPLIN II, III<br />

Darkside<br />

Panda-X<br />

LUX<br />

CDMS<br />

Edelweiss<br />

ionization<br />

HDMS,<br />

GENIUS, IGEX,<br />

CoGeNT, TEXONO<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Technology depends on type of axions<br />

Can be produced by<br />

Sun<br />

Axion helioscopes: Kyoto, CAST<br />

Bragg Scatter enhancement : Crystals<br />

SOLAX, COSME, DAMA, CDMS<br />

Big Bang relics<br />

Axion Haloscopes: ADMX, CARRACK<br />

Laboratory<br />

Laser production<br />

Vacuum birefringence<br />

PVLAS, ALPS, OSQAR, BMV<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Axion Searches do NOT need underground lab<br />

or ultrapure materials or massive collaborations<br />

So why do we care?<br />

Shared collaborators (interested in same physics)<br />

Some experiments & techniques can do double duty<br />

Solar axions via Bragg Scatter Relics: Low energy ER data can<br />

works <strong>for</strong> crystals with known orientation limit axio-electric coupling g aee<br />

upper limits on g aγγ<br />

CDMS, GERDA, solid xenon,NaI limits by CDSM, CoGeNT<br />

Its presence (subdominant?) will count toward Ω DM<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Axion Searches do NOT need underground lab<br />

or ultrapure materials or massive collaborations<br />

Axion Mass range: either meV-10 meV or 3 eV- 20 eV<br />

Solar<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

axion-like particles (ALPs)<br />

Aalseth arXiv:1002.4703v<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


FNAL Cosmic Frontier Mar 25, 2011<br />

The Future<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Shared technologies despite competition<br />

New low radioactivity PMTs<br />

Interleaved Electrodes<br />

Depleted argon, underground sources<br />

New screening tech: ICPMS, radiochemistry, NAA<br />

Neutron veto technologies and active shields<br />

R8520-06-Al<br />

Gd-loaded<br />

poly<br />

Observe capture γ in surrounding scintillator<br />

60% rejection of n-induced WIMP-like NR<br />

DARKSIDE<br />

(Borexino CTF)<br />

Borated LS<br />

QUPID<br />

>99.8% rejection<br />

<strong>for</strong> radiogenic neutrons<br />

But no easy way to narrow down technologies<br />

after the R&D stage<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Friends with Benefits<br />

EDELWEISS + SuperCDMS (GEODM)<br />

COUPP + Picasso<br />

DEAP/CLEAN<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Four Weddings<br />

Formal Engagements<br />

EURECA = Edelweiss + CRESST + Rosebud<br />

DARWIN = WARP + ArDM + XENON-100<br />

Dowry by ASPERA<br />

LZ = LUX + ZEPLIN<br />

Dowry by DUSEL<br />

CDEX = Asian ménage à quatre<br />

Dowry by China<br />

and a Funeral<br />

DUSEL provided both resources (S4)<br />

and the promise of infrastructure<br />

Who will provide the Dowry now ??<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Eureca is an Experiment<br />

n EURECA goal : 10 -10 pb, 500 kg to 1 T cryogenic experiment, multi-target<br />

n Joint European collaboration of teams from EDELWEISS, CRESST, ROSEBUD<br />

n 60 000 m 2 ULISSE extension of present LSM (4 µ/m 2 /d) - 2011-2012 ?<br />

n Collaboration agreement with SuperCDMS & GeoDM <strong>for</strong> common studies<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


FNAL Cosmic Frontier Mar 25, 2011<br />

DARWIN is an Infrastructure<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Infrastructure Models <strong>for</strong> Future Organization<br />

Requires Resources!<br />

ILIAS: European Underground Infrastructure was a GREAT SUCCESS<br />

ILIAS Next (tried in 2009, again in 2010) not funded.<br />

websites not maintained, interlab coordination slowed,<br />

cosmo/radiogenic neutron studies halted, etc.<br />

DUSEL S4 Program – only 1 more year of funding<br />

Individual DM initiatives coordinated within engineering context<br />

AARM S4 = Assay and Acquisition of Radiopure Materials<br />

DUSEL-specific engineering<br />

But also fruitful integration ef<strong>for</strong>ts in<br />

Cosmogenic simulation and benchmarking<br />

Common databases <strong>for</strong> material screening<br />

LRT Workshop:<br />

Good venue <strong>for</strong> sharing in<strong>for</strong>mation<br />

No resources <strong>for</strong> following through<br />

AARM is providing resources now, requesting help from<br />

Underground Lab directors get in the act?<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Infrastructure Models <strong>for</strong> Future Organization<br />

Wedding Planner (might be difficult)<br />

Requires Management!<br />

Infrastructure<br />

Historically National Labs have provided this to HEP across experiment<br />

SLAC<br />

Fermi (LAT)<br />

LSST<br />

SuperCDMS<br />

EXO<br />

CMB<br />

CTA<br />

FNAL<br />

SuperCDMS<br />

COUPP<br />

DAMIC,Darkside<br />

GammeV<br />

DES, LSST<br />

Auger<br />

LBNL<br />

DayaBay<br />

EXO<br />

SN Factory<br />

DE missions<br />

ANL<br />

Double Chooz<br />

Veritas/CTA<br />

DE, CMB proposed<br />

BNL<br />

Daya Bay<br />

DE studies<br />

e.g. Formal cooperation/management agreements with SNOLab + US labs<br />

A PAC to evaluate and approve experiments<br />

Joint NUMI-Soudan screening and prototype facility<br />

Integrated program of bkgd measurements at various depths<br />

(including cosmo n benchmarking)<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


Complementarity in Multi-­‐Ton Gen3 DM<br />

Different Technologies<br />

New territory è unexplained backgroundsè checks and balance<br />

No signal yet è scalability or WIMP signal è many handles<br />

Different targets & Different Sensitivities<br />

Distinguish neutrons from WIMPs<br />

Avoid astrophysical uncertainties<br />

Measure WIMP mass, cross section, explore interaction & astrophysics<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Figure of Merit:<br />

(95% contour) -1<br />

in log 10 m χ – σ SI<br />

Pato et al., arXiv:1012.3458 <strong>Priscilla</strong> <strong>Cushman</strong>


Complementarity in Cost and Complexity<br />

e.g. tradeoff between low threshold and rapid scale-­‐up<br />

The previous study assumed 3 rd generation multi-ton TPCs with<br />

all bells and whistles. LAr Single Phase relies on a rapid,<br />

inexpensive scale up to cover the preferred MSUGRA space<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

<strong>Priscilla</strong> <strong>Cushman</strong>


For SORMA-2006, I updated 2000 Gaitskell plot.<br />

60 GeV WIMP Scalar Cross Section Limits (cm 2 )<br />

10 -40<br />

10 -41<br />

10 -42<br />

10 -43<br />

10 -44<br />

10 -45<br />

10 -46<br />

10 -47<br />

Oroville<br />

H-M 94<br />

UKDMC<br />

Edelweiss 98<br />

Homestake<br />

IGEX<br />

DAMA signal (stars)<br />

H-M 98<br />

CDMS(SUF)99<br />

DAMA limit 96<br />

Edelweiss 01 CDMS(SUF)02<br />

WArP<br />

Edelweiss 03 CRESST<br />

Technology<br />

blue Cryo<br />

green Ge<br />

red liquid Ar/Xe<br />

orange NaI<br />

dark = limits<br />

light = projections<br />

ZEPLIN 1<br />

ZEPLIN II<br />

XENON-10kg<br />

Edelweiss II<br />

CRESST-II<br />

CDMS(Soudan)04<br />

XENON-100kg<br />

WArP-140kg<br />

CDMS(Soudan)05<br />

CDMS(Soudan)-5kg<br />

SuperCDMS(SNOLab)-25kg<br />

WArP-1400kg<br />

Majorana (AnMod)<br />

XENON/ZEPLIN-1T<br />

SuperCDMS 150kg<br />

Eureka = CRESST+Edelweiss<br />

1985 1990 1995 2000 2005 2010 2015<br />

Year<br />

FNAL Cosmic Frontier Mar 25, 2011<br />

Why I no longer predict limits<br />

Hopelessly out of date 5 yrs later<br />

then now<br />

<strong>Priscilla</strong> <strong>Cushman</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!