30.06.2013 Views

ดาวน์โหลด All Proceeding - AS Nida

ดาวน์โหลด All Proceeding - AS Nida

ดาวน์โหลด All Proceeding - AS Nida

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

51<br />

การประชุมวิชาการดานการวิจัยดําเนินงานแหงชาติ ประจําป 2554<br />

วันที่<br />

8-9 กันยายน 2554 ณ โรงแรม เอส ดี อเวนิว กรุงเทพฯ<br />

Flexible Printed Circuit Process Improvement via<br />

Interchangeable Linear Constrained Response Surface Optimisation Models<br />

Pichpimon Kanchanasuttisang 1 and Pongchanun Luangpaiboon 2<br />

1, 2<br />

Industrial Statistics and Operational Research Unit (ISO-RU),<br />

Department of Industrial Engineering, Faculty of Engineering, Thammasat University, Pathumthani, Thailand<br />

Tel: 025643002-9 Ext 3081 Fax: 025643017 E-mail: 1 pichpimon@hotmail.com, 2 lpongch@engr.tu.ac.th<br />

Abstract<br />

This paper presents a collection of experimental design and<br />

mathematical programming techniques for quality improvement in<br />

automotive electronic parts. The quality performance of interest is<br />

measured via the relationship of the etched rate of acid solution and<br />

circuit width, one of the key failure and break down to LED of lighting<br />

vehicles. With lower levels from monitoring the product quality the<br />

manufacturer has spent a lot of cost and time for product verification<br />

procedures. This brings the production with higher levels of waste and<br />

lead time. To validate on processing and to sustain finished goods with<br />

the permanent prevention, the precisely etched condition should be<br />

optimised. The proper factorial experiments, multiple regression and<br />

mathematical programming approaches are applied to investigate the<br />

preferable levels of significant process variables in order to improve the<br />

quality of etched rate. The interchangeable constrained response surface<br />

optimisation models provide the new operating conditions. The<br />

experimental results in each part with less than twenty five lines showed<br />

that the first model decreases the bottom circuit width deviation from<br />

0.0026 to 0.0024 and the latter model decreases the etching rate from<br />

2.033 to 1.124.<br />

Keywords: Flexible Printed Circuit Process, Circuit Width, Etched<br />

Rate, Response Surface Methodology, Multiple Regression,<br />

Steepest Descent<br />

1. INTRODUCTION<br />

In the field of an electronic circuitry, the flexible printed<br />

circuits (FPC) have been developed for lighting automotive vehicles by<br />

assembling with the LED. The emission light and optical properties are<br />

mainly relied on the width of an FPC circuit line. An existing process to<br />

confirm the correct width of a lead line in an electronic field is a<br />

damaged part investigation. The process obviously causes the high<br />

quality cost in FPC manufacturers.<br />

Currently, the circuit width of the FPC is with lower process<br />

capability (Cpk) at -3.03 on the top circuit width and 0.85 on the bottom<br />

circuit width that comparing to the minimal target at 1.33 as shown in<br />

Fig. 1. In this case, the deep details of an etching process should be<br />

investigated so that the optimal working condition would be determined<br />

as a standard process.<br />

LS L<br />

Process Data<br />

0.09<br />

Target 0.1<br />

USL 0.11<br />

Sample M ean 0.0740333<br />

Sample N 60<br />

StD ev (Within) 0.00175612<br />

StD ev (O v erall) 0.00173661<br />

O bserv ed P erform ance<br />

P P M < LSL 1000000.00<br />

PPM > USL 0.00<br />

P P M Total 1000000.00<br />

LS L<br />

P rocess D ata<br />

0.09<br />

Target 0.1<br />

USL 0.11<br />

Sample M ean 0.09655<br />

Sample N 60<br />

StD ev (Within) 0.00257149<br />

StD ev (O v erall) 0.00256062<br />

O bserv ed P erform ance<br />

PPM < LSL 0.00<br />

PPM > USL 0.00<br />

PPM Total 0.00<br />

Process Capability of Top circuit width<br />

LSL Target USL<br />

0.072 0.078 0.084 0.090 0.096 0.102<br />

Exp. Within Performance<br />

P P M < LSL 1000000.00<br />

PPM > USL 0.00<br />

P P M Total 1000000.00<br />

Exp. O verall Performance<br />

P P M < LSL 1000000.00<br />

PPM > USL 0.00<br />

P P M Total 1000000.00<br />

0.108<br />

Process Capability of Bottom circuit width<br />

LSL Target USL<br />

0.0900 0.0936 0.0972 0.1008 0.1044<br />

Exp. Within Performance<br />

PPM < LSL 5430.21<br />

PPM > USL 0.08<br />

PPM Total 5430.30<br />

E xp. O v erall P erform ance<br />

PPM < LSL 5264.21<br />

PPM > USL 0.07<br />

PPM Total 5264.28<br />

0.1080<br />

Within<br />

Overall<br />

P otential (Within) C apability<br />

C p 1.90<br />

C P L -3.03<br />

CPU 6.83<br />

C pk -3.03<br />

O v erall C apability<br />

P p 1.92<br />

PPL -3.06<br />

P P U 6.90<br />

P pk -3.06<br />

Cpm 0.13<br />

Within<br />

Overall<br />

P otential (Within) C apability<br />

C p 1.30<br />

CPL 0.85<br />

CPU 1.74<br />

Cpk 0.85<br />

O v erall C apability<br />

Pp 1.30<br />

PPL 0.85<br />

PPU 1.75<br />

Ppk 0.85<br />

Cpm 0.77<br />

Fig.1 Current Performance on Top and Bottom Circuit Widths.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!