29.06.2013 Views

2006 Seed Size Increase as a Marker of Domestication in Squash

2006 Seed Size Increase as a Marker of Domestication in Squash

2006 Seed Size Increase as a Marker of Domestication in Squash

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction<br />

Among the most b<strong>as</strong>ic questions surround<strong>in</strong>g the orig<strong>in</strong> <strong>of</strong><br />

any plant or animal domesticate are the identity <strong>of</strong> its wild<br />

ancestor and the temporal, spatial, and cultural context <strong>of</strong><br />

its <strong>in</strong>itial domestication. Inherent <strong>in</strong> these questions <strong>of</strong> where<br />

and when a domesticate first emerged is the issue <strong>of</strong> whether<br />

the domestication w<strong>as</strong> a s<strong>in</strong>gle isolated development, or if<br />

multiple <strong>in</strong>dependent domestications <strong>of</strong> a species occurred<br />

at different times <strong>in</strong> different places. The geographical extent<br />

and degree <strong>of</strong> <strong>in</strong>ternal partition<strong>in</strong>g <strong>of</strong> the range <strong>of</strong> a wild<br />

ancestor obviously is an important factor <strong>in</strong> whether s<strong>in</strong>gle<br />

or multiple domestications take place. A s<strong>in</strong>gle orig<strong>in</strong>, for<br />

example, h<strong>as</strong> long been proposed for a number <strong>of</strong> the Near<br />

E<strong>as</strong>tern cereals whose wild ancestors had quite restricted and<br />

<strong>in</strong>ternally unpartitioned geographical ranges (Zohary 1996).<br />

Contrary to Lentz’s recent proposition (Lentz et al. 2001: 375),<br />

such s<strong>in</strong>gle orig<strong>in</strong>s for some cereal domesticates should<br />

not be considered <strong>as</strong> evidence that plant domestication <strong>in</strong><br />

general <strong>in</strong>volves s<strong>in</strong>gle domestication events followed by<br />

diffusion. Multiple domestications are always a possibility<br />

where wild plant or animal progenitor populations extend<br />

across a broad and varied geographical range.<br />

In the Americ<strong>as</strong>, Cucurbita pepo squ<strong>as</strong>h (pumpk<strong>in</strong>s, acorn,<br />

and summer varieties), is, along with Chenopodium (Chapter 4),<br />

one <strong>of</strong> the best-documented species to have been domesticated<br />

more than once from wild ancestor populations hav<strong>in</strong>g<br />

a broad geographical range. More than 10 different taxa<br />

<strong>of</strong> wild Cucurbita gourds have overlapp<strong>in</strong>g geographical<br />

distributions that today extend from northern South America<br />

up <strong>in</strong>to the mid-latitude e<strong>as</strong>tern United States (Nee 1990). A<br />

half-dozen domesticated squ<strong>as</strong>hes were developed out <strong>of</strong><br />

these wild Cucurbita taxa (i.e., C. maxima, C. moschata,<br />

C. ficafolia, C. argyrosperma, C. equadorensis, C. pepo: Rob<strong>in</strong>son<br />

and Decker-Walters 1997; Piperno and Stothert 2003; Sanjur<br />

et al. 2002, 2004). Among these, Cucurbita pepo w<strong>as</strong> <strong>in</strong>dependently<br />

domesticated twice—first <strong>in</strong> south central Mexico about<br />

10,000 years ago and then aga<strong>in</strong>, on the b<strong>as</strong>is <strong>of</strong> currently<br />

available archaeological evidence, <strong>in</strong> the mid-latitude e<strong>as</strong>tern<br />

woodlands <strong>of</strong> North America by about 5,000 years ago (Smith<br />

1997, 2000, 2002). In both Mexico and the e<strong>as</strong>tern United<br />

States, this <strong>in</strong>dependent domestication <strong>of</strong> C. pepo squ<strong>as</strong>h is<br />

<strong>in</strong>dicated by clear changes <strong>in</strong> the morphology <strong>of</strong> C. pepo<br />

C HAPTER 3<br />

<strong>Seed</strong> <strong>Size</strong> <strong>Incre<strong>as</strong>e</strong> <strong>as</strong> a <strong>Marker</strong> <strong>of</strong> <strong>Domestication</strong> <strong>in</strong> Squ<strong>as</strong>h<br />

(Cucurbita pepo)<br />

BRUCE D. SMITH<br />

recovered from human habitation layers <strong>in</strong> archaeological<br />

sites. These morphological changes dist<strong>in</strong>guish the early<br />

domesticated crop plants from all <strong>of</strong> their related wild taxa,<br />

<strong>in</strong>clud<strong>in</strong>g their direct wild ancestors, and they have also<br />

been l<strong>in</strong>ked to a specific set <strong>of</strong> causative human behaviors—<br />

the deliberate and susta<strong>in</strong>ed plant<strong>in</strong>g <strong>of</strong> stored seed stock.<br />

Morphological <strong>Marker</strong>s <strong>of</strong> <strong>Domestication</strong><br />

In the 1960s and 1970s, Harlan, de Wet, and Price published<br />

a series <strong>of</strong> articles that outl<strong>in</strong>ed a clear set <strong>of</strong> morphological<br />

criteria for dist<strong>in</strong>guish<strong>in</strong>g between wild and domesticated<br />

seed plants b<strong>as</strong>ed on changes <strong>in</strong> reproductive propagules<br />

result<strong>in</strong>g from the storage, plant<strong>in</strong>g, and harvest<strong>in</strong>g <strong>of</strong> seed<br />

stock over a number <strong>of</strong> years (Harlan and de Wet 1965;<br />

Harlan et al. 1973; de Wet and Harlan 1975). These morphological<br />

changes, which reflect responses by the now managed<br />

plants to new sets <strong>of</strong> selective pressures, both <strong>in</strong> the seedbed<br />

and at harvest, are automatic and <strong>in</strong>dependent <strong>of</strong> any<br />

deliberate or directed selection on the part <strong>of</strong> humans; they<br />

have collectively been termed “the adaptive syndrome<br />

<strong>of</strong> domestication” (Chapter 1, 2; Smith 1998, 2002). Those<br />

plants with seeds tightly clustered and tightly held at the<br />

term<strong>in</strong>al ends <strong>of</strong> their stalks, for example, would have a<br />

selective advantage at harvest <strong>in</strong> that they would be more<br />

likely to be seen and successfully collected and thus to<br />

contribute to next year’s plant<strong>in</strong>g. Similarly, seeds that sprout<br />

quickly because <strong>of</strong> reduced germ<strong>in</strong>ation dormancy (th<strong>in</strong>ner<br />

seed coat—see Chapter 4) and that grow rapidly (greater<br />

stored start-up energy, larger seed) <strong>in</strong> seedbeds would have<br />

a selective advantage <strong>in</strong> terms <strong>of</strong> compet<strong>in</strong>g for sunlight and<br />

surviv<strong>in</strong>g to be harvested.<br />

Unfortunately, most <strong>of</strong> the morphological changes <strong>in</strong> seed<br />

plants identified by Harlan and others <strong>as</strong> result<strong>in</strong>g from<br />

deliberate human plant<strong>in</strong>g and harvest<strong>in</strong>g are difficult to<br />

document <strong>in</strong> archaeobotanical <strong>as</strong>semblages. One <strong>of</strong> the most<br />

obvious, and most archaeologically visible, <strong>of</strong> these changes<br />

that mark <strong>in</strong>itial domestication is an <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> seed size <strong>in</strong><br />

response to seedbed selective pressures.<br />

In order to use seed size <strong>as</strong> a criterion for differentiat<strong>in</strong>g<br />

between the seeds <strong>of</strong> wild and domesticated C. pepo squ<strong>as</strong>h,<br />

a comprehensive standard, or b<strong>as</strong>el<strong>in</strong>e, <strong>of</strong> comparison <strong>of</strong> seed<br />

me<strong>as</strong>urements for wild Cucurbita taxa is needed. Figures 3.1<br />

SEED SIZE INCREASE OF SQUASH 25


10<br />

8<br />

6<br />

4<br />

Phillips Spr<strong>in</strong>g<br />

a<br />

2<br />

0<br />

6 7 8 9 10 11 12 13 14<br />

10<br />

8<br />

6<br />

4<br />

Page-Ladson<br />

b<br />

2<br />

0<br />

6 7 8 9 10 11 12 13 14<br />

20<br />

15<br />

10<br />

5<br />

C. pep ssp. ovifera var. ozarkana<br />

c 0<br />

6 7 8 9 10 11 12 13 14<br />

10<br />

8<br />

6<br />

4<br />

C. pepo ssp. ovifera var. texana<br />

d<br />

2<br />

0<br />

6 7 8 9 10 11 12 13 14<br />

10<br />

8<br />

6<br />

4<br />

C. fraterna<br />

e<br />

2<br />

0<br />

6 7 8 9 10 11 12 13 14<br />

<strong>Seed</strong> Length (mm)<br />

FIGURE 3.1 The size <strong>of</strong> Cucurbita pepo seeds from<br />

archaeological and paleontological sites <strong>in</strong> North America<br />

compared to three taxa <strong>of</strong> modern wild C. pepo gourds.<br />

(a) Phillip Spr<strong>in</strong>g (n = 45, mean = 10.5); (b) Page-Ladson<br />

(n = 35, mean = 9.9); (c) C. pepo ssp. ovifera var. ozarkana<br />

(n = 100, mean = 9.2); (d) C. pepo ssp. ovifera var. texana<br />

(n = 42, mean = 8.9); (e) C. pepo ssp. ovifera var. fraterna<br />

(n = 13, mean = 7.9).<br />

and 3.2 provide such a general wild Cucurbita gourd seed<br />

pr<strong>of</strong>ile. More than 700 seeds from 63 separate accessions,<br />

represent<strong>in</strong>g 12 modern species, subspecies, or varieties <strong>of</strong><br />

wild Cucurbita gourds were me<strong>as</strong>ured. With the exception<br />

<strong>of</strong> C. pedatifolia and C. galeottii, all known North American<br />

(Mexican and U.S.) wild Cucurbita species are represented <strong>in</strong><br />

Figures 3.1 and 3.2 (see Nee 1990: 58). In addition to the 12<br />

modern taxa <strong>in</strong>cluded <strong>in</strong> Figures 3.1 and 3.2, seed length<br />

<strong>in</strong>formation is also presented for the Page-Ladson seed<br />

<strong>as</strong>semblage (Figure 3.1b), a collection <strong>of</strong> late Pleistocene seeds<br />

<strong>of</strong> a wild Cucurbita gourd recovered from American M<strong>as</strong>todon<br />

(Mammut americanum) dung deposits <strong>in</strong> north Florida<br />

(Newsom et al. 1993). Of the more than 700 modern seeds<br />

me<strong>as</strong>ured, the smallest w<strong>as</strong> 7.0 mm long (Figures 3.1c and e,<br />

Figure 3.2g), while the largest w<strong>as</strong> 11.9 mm <strong>in</strong> length<br />

(Figure 3.2b). The largest seeds <strong>in</strong> 10 <strong>of</strong> the 13 different taxa<br />

exceeded 10 mm <strong>in</strong> length, but none were larger than 12 mm<br />

long (only 6 <strong>of</strong> the 717 seeds were longer than 11 mm and<br />

only 1 me<strong>as</strong>ured more than 11.5 mm <strong>in</strong> length). These<br />

maximum-length values provide a strong b<strong>as</strong>is for def<strong>in</strong><strong>in</strong>g<br />

the upper size-range ceil<strong>in</strong>g for seeds <strong>of</strong> North American<br />

wild Cucurbita gourds at 11–12 mm <strong>in</strong> length.<br />

At the species level <strong>of</strong> comparison, the three C. pepo taxa<br />

listed <strong>in</strong> Figure 3.1c–e (C. pepo ssp. ovifera var. ozarkana,<br />

C. pepo ssp. ovifera var. texana, C. pepo ssp. fraterna) provide<br />

26 ARCHAEOLOGY AND PLANT DOMESTICATION<br />

10<br />

8<br />

6<br />

4<br />

2<br />

a 0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

b 0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

c 0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

d 0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

e 0<br />

f<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Level D<br />

Level C<br />

Level B<br />

6 7 8 9 10 11 12 13 14<br />

6 7 8 9 10 11 12 13 14<br />

C. okeechobeenis<br />

C. mart<strong>in</strong>ezii<br />

6 7 8 9 10 11 12 13 14<br />

C. gracilior<br />

C. cordata<br />

Guilá Naquitz<br />

C. palmata<br />

C. okeechobeensis<br />

C. mart<strong>in</strong>ezii<br />

C. gracilior<br />

C. cordata<br />

6 7 8 9 10 11 12 13 14<br />

C. argyrosperma ssp. sororia<br />

6 7 8 9 10 11 12 13 14<br />

C. lundelliana<br />

6 7 8 9 10 11 12 13 14<br />

10<br />

8<br />

6<br />

4<br />

C. foetidissima<br />

C. digitata<br />

C. foetidissima<br />

C. digitata<br />

2<br />

g 0<br />

6 7 8 9 10 11 12 13 14<br />

<strong>Seed</strong> Length (mm)<br />

FIGURE 3.2 The size <strong>of</strong> Cucurbita pepo seeds from Guilá<br />

Naquitz compared to six taxa <strong>of</strong> modern wild Cucurbita<br />

gourds. (a) Guilá Naquitz, Levels B, C, and D (n = 15);<br />

(b) C. palmata (n = 75, mean = 10.2); (c) C. okeechobeensis<br />

(n = 20, mean = 9.9) and C. mart<strong>in</strong>ezii (n = 46, mean = 9.9);<br />

(d) C. gracilior (n = 10, mean = 10.7) and C. cordata (n = 10,<br />

mean = 9.5); (e) C. argyrosperma ssp. sororia (n = 75,<br />

mean = 9.7); (f) C. lundelliana (n = 50, mean = 9.0);<br />

(g) C. foetidissima (n = 55, mean = 8.7) and C. digitata<br />

(n = 20, mean = 8.8).<br />

a smaller, taxonomically tighter, reference cl<strong>as</strong>s, with their<br />

upper limit for seed length (ca. 11 mm) represent<strong>in</strong>g a more<br />

closely drawn wild/domesticated boundary l<strong>in</strong>e than the<br />

12-mm seed length ceil<strong>in</strong>g derived from the 13-taxa<br />

reference cl<strong>as</strong>s. These three modern taxa <strong>of</strong> wild, or “freeliv<strong>in</strong>g,”<br />

Cucurbita gourds actually represent an even tighter,<br />

more focused reference cl<strong>as</strong>s <strong>in</strong> that recent genetic research<br />

(Sanjur et al. 2002, 2004) h<strong>as</strong> identified them <strong>as</strong> not<br />

only closely related to each other, but also <strong>as</strong> a group<br />

represent<strong>in</strong>g the present-day descendants <strong>of</strong> the wild<br />

progenitor populations <strong>of</strong> Cucurbita gourds that gave rise to<br />

the “e<strong>as</strong>tern” l<strong>in</strong>eage <strong>of</strong> domesticated squ<strong>as</strong>h (C. pepo. ssp.<br />

ovifera) about 5,000 years ago. A previous study (Decker-<br />

Walters et al. 1993) had identified one <strong>of</strong> these three—the<br />

wild Ozark gourd (C. pepo ssp. ovifera var. ozarkana)—<strong>as</strong><br />

the progenitor <strong>of</strong> the C. pepo ssp. ovifera domesticate


Huitzo<br />

Etla<br />

ETLA SUBVALLEY<br />

Zaachila<br />

Rio Aloyac<br />

Zimatlan<br />

Oaxaca<br />

Ocollán<br />

LOCATION OF VALLEY OF OAXACA<br />

Ab<strong>as</strong>olo<br />

Tlacolula<br />

Rio Salado<br />

ZAACHILA-ZIMATLAN SUBVALLEY<br />

FIGURE 3.3 The location <strong>of</strong> Guilá Naquitz Cave <strong>in</strong> the<br />

Valley <strong>of</strong> Oaxaca (after Flannery 1986: Figure 3.1).<br />

l<strong>in</strong>eage, but the progenitor pool and the geographical range<br />

with<strong>in</strong> which domestication occurred h<strong>as</strong> now been<br />

expanded. Unfortunately, present-day populations <strong>of</strong> the<br />

wild ancestor <strong>of</strong> the Mexican domesticated C. pepo squ<strong>as</strong>h<br />

l<strong>in</strong>eage have yet to be located. S<strong>in</strong>ce the seeds <strong>of</strong> modern<br />

cultivars <strong>of</strong> the “e<strong>as</strong>tern” l<strong>in</strong>eage <strong>of</strong> C. pepo are smaller than<br />

those <strong>of</strong> the Mexican l<strong>in</strong>eage, this size difference could also<br />

have existed, some scholars have suggested, <strong>in</strong> the wild<br />

ancestor populations (Rob<strong>in</strong>son and Decker-Walters 1997: 7).<br />

As a result, although 11 mm represents a good m<strong>in</strong>imum<br />

length boundary for identify<strong>in</strong>g domesticated C. pepo seeds<br />

<strong>in</strong> e<strong>as</strong>tern United States archaeological contexts, the larger<br />

reference cl<strong>as</strong>s value <strong>of</strong> 12 mm provides a more prudent<br />

m<strong>in</strong>imum seed-length boundary for the designation <strong>of</strong> domesticated<br />

C. pepo <strong>in</strong> Mexico, at le<strong>as</strong>t until the wild progenitor<br />

<strong>of</strong> the Mexican C. pepo l<strong>in</strong>eage h<strong>as</strong> been identified.<br />

Given these m<strong>in</strong>imum seed-length values <strong>of</strong> 11 mm and<br />

12 mm for establish<strong>in</strong>g the <strong>in</strong>itial appearance <strong>of</strong> domesticated<br />

C. pepo squ<strong>as</strong>h <strong>in</strong> the e<strong>as</strong>tern United States and Mexico, we<br />

can turn to consideration <strong>of</strong> the archaeological sites and<br />

human habitation layers that have yielded the oldest seeds<br />

exceed<strong>in</strong>g these seed-length thresholds.<br />

The Cucurbita pepo <strong>Seed</strong> and Peduncle<br />

Assemblage <strong>of</strong> Guilá Naquitz Cave<br />

TLACOLULA SUBVALLEY<br />

Guilá Naquitz<br />

Mitla<br />

0 5 10<br />

km<br />

Situated <strong>in</strong> a small tributary canyon <strong>of</strong> the Rio Mitla <strong>in</strong> the<br />

Valley <strong>of</strong> Oaxaca (Figure 3.3), Guilá Naquitz Cave w<strong>as</strong><br />

excavated by Kent Flannery <strong>in</strong> 1966 (Flannery 1986). The<br />

small 8- by 10-m cave open<strong>in</strong>g at the b<strong>as</strong>e <strong>of</strong> the canyon wall<br />

w<strong>as</strong> found to conta<strong>in</strong> a 20-cm-thick habitation layer (Zone<br />

A) dat<strong>in</strong>g to AD 620–740, and below this, a number <strong>of</strong> much<br />

+<br />

N<br />

FIGURE 3.4 Cucurbita pepo seeds from Guilá Naquitz Cave<br />

yield<strong>in</strong>g AMS dates <strong>in</strong> the Early Archaic. (a) seed from Square<br />

C11, Zone B2 (INAH 5) me<strong>as</strong>ur<strong>in</strong>g 12.5 mm <strong>in</strong> length and<br />

yield<strong>in</strong>g an AMS radiocarbon date <strong>of</strong> 6475 cal. BC; (b) seed<br />

from Square E9, Zone C (INAH 14) me<strong>as</strong>ur<strong>in</strong>g 13.8 mm <strong>in</strong><br />

length and yield<strong>in</strong>g an AMS radiocarbon date <strong>of</strong> 7975 cal<br />

BC; (c) seed from Square E11, Zone B1 (INAH 23) me<strong>as</strong>ur<strong>in</strong>g<br />

13.2 mm <strong>in</strong> length and yield<strong>in</strong>g an AMS radiocarbon date <strong>of</strong><br />

8025 cal. BC; (d) <strong>Seed</strong> from Square C11, Zone B1, me<strong>as</strong>ur<strong>in</strong>g<br />

12.1 mm <strong>in</strong> length and yield<strong>in</strong>g an AMS radiocarbon date <strong>of</strong><br />

6265 cal. BC (Table 3.1).<br />

earlier habitation layers (Zones B, C, D, E) result<strong>in</strong>g from a<br />

series <strong>of</strong> <strong>in</strong>termittent short-term se<strong>as</strong>onal occupations by<br />

small family groups that dated between about 8,000 and<br />

10,500 years ago.<br />

These early occupation layers at Guilá Naquitz Cave (Zones<br />

B1, B2, B3, C, D) yielded more than 250 Cucurbita r<strong>in</strong>d<br />

fragments, a half-dozen fruit stems or peduncles, and<br />

17 seeds that were <strong>as</strong>signed to the genus Cucurbita by Thom<strong>as</strong><br />

Whitaker and Hugh Cutler (Whitaker and Cutler 1971, 1986).<br />

In their <strong>in</strong>itial analysis <strong>of</strong> the Guilá Naquitz Cucurbita<br />

<strong>as</strong>semblage, Whitaker and Cutler did not have the benefit<br />

<strong>of</strong> be<strong>in</strong>g able to determ<strong>in</strong>e the age <strong>of</strong> seeds directly through<br />

accelerator m<strong>as</strong>s spectrometer (AMS) small sample radiocarbon<br />

14 dat<strong>in</strong>g; <strong>in</strong> addition, clear standards for establish<strong>in</strong>g<br />

the domesticated status <strong>of</strong> archaeological squ<strong>as</strong>h specimens<br />

had not yet been fully formulated.<br />

The Guilá Naquitz Cucurbita seeds reanalyzed <strong>in</strong> 1996–1997<br />

were all identified <strong>as</strong> C. pepo, b<strong>as</strong>ed on a number <strong>of</strong> dist<strong>in</strong>ctive<br />

morphological characteristics (e.g., uniform color, prom<strong>in</strong>ent<br />

marg<strong>in</strong>al ridge, short marg<strong>in</strong> hairs, naked marg<strong>in</strong> [see<br />

Figure 3.4]; Smith 1997, 2000). N<strong>in</strong>e <strong>of</strong> these seeds fell below<br />

SEED SIZE INCREASE OF SQUASH 27


TABLE 3.1<br />

Direct Accelerator M<strong>as</strong>s Spectrometer Radiocarbon Dates on Early Cucurbita pepo <strong>Seed</strong>s <strong>in</strong> the Americ<strong>as</strong>:<br />

Guilá Naquitz and Phillips Spr<strong>in</strong>g<br />

<strong>Seed</strong><br />

Length Laboratory Site and Dendrocalibrated<br />

(mm) Sample Location Conventional Age a Age b<br />

10.8 ß47293 Phillips Spr<strong>in</strong>g Unit K2 4440 ± 75 5025 ± 75<br />

(ISM#1502)<br />

11.4 ß91404 Guilá Naquitz C11/B1 7720 ± 60 8430 ± 60<br />

12.0 ß91406 Guilá Naquitz C11/B1 7610 ± 60 8375 ± 60<br />

12.1 ß91405 Guilá Naquitz C11/B1 7690 ± 50 8415 ± 50<br />

12.5 ß100763 Guilá Naquitz C11/B2 7710 ± 50 8425 ± 50<br />

13.2 ß100766 Guilá Naquitz E11/B1 8990 ± 60 9975 ± 60<br />

13.8 ß100764 Guilá Naquitz E9/C 8910 ± 50 9925 ± 50<br />

a In radiocarbon years before present.<br />

b Intercept <strong>in</strong> calendar years before present.<br />

the 12-mm seed-length boundary l<strong>in</strong>e for dist<strong>in</strong>guish<strong>in</strong>g<br />

between the seeds <strong>of</strong> wild and domesticated C. pepo (compare<br />

Figure 3.2a with Figure 3.1c–e and Figure 3.2b–g), <strong>in</strong>dicat<strong>in</strong>g<br />

the cont<strong>in</strong>u<strong>in</strong>g use <strong>of</strong> wild Cucurbita gourds throughout the<br />

early occupations <strong>of</strong> the cave. In contr<strong>as</strong>t, six seeds fell at or<br />

above the 12-mm divid<strong>in</strong>g l<strong>in</strong>e, <strong>in</strong>dicat<strong>in</strong>g the cultivation <strong>of</strong><br />

domesticated C. pepo plants by the early <strong>in</strong>habitants <strong>of</strong> Guilá<br />

Naquitz. The fruit stems, or peduncles, and fruit end r<strong>in</strong>d<br />

fragments hav<strong>in</strong>g peduncle scars, recovered from the early<br />

occupation levels at Guilá Naquitz provide further evidence<br />

that the <strong>in</strong>habitants <strong>of</strong> this cave both harvested wild Cucurbita<br />

gourds and cultivated domesticated C. pepo squ<strong>as</strong>h. Ten<br />

<strong>of</strong> the peduncle scars and peduncles conformed to the wild<br />

gourd morphotype <strong>in</strong> terms <strong>of</strong> form and size (maximum<br />

b<strong>as</strong>al diameter 13 mm and roughly circular outl<strong>in</strong>e). A<br />

second group <strong>of</strong> seven peduncles and peduncle scars, <strong>in</strong><br />

contr<strong>as</strong>t, were considerably larger than the wild morphotype<br />

pr<strong>of</strong>ile (maximum b<strong>as</strong>al diameter 14.7–23.6 mm), and<br />

all had a dist<strong>in</strong>ctive angular pentagonal outl<strong>in</strong>e at the po<strong>in</strong>t<br />

<strong>of</strong> attachment to the fruit. A characteristic 10-ridge lob<strong>in</strong>g<br />

pattern also identifies them <strong>as</strong> C. pepo (Smith 1997).<br />

While the recovery <strong>of</strong> C. pepo seeds that are substantially<br />

larger than those produced by wild Cucurbita gourds <strong>in</strong> the<br />

early habitation layers <strong>of</strong> the cave provides good evidence<br />

for the adaptive syndrome <strong>of</strong> domestication—an automatic<br />

adaptive response by squ<strong>as</strong>h plants to new seed bed selective<br />

pressures <strong>as</strong>sociated with deliberate and susta<strong>in</strong>ed plant<strong>in</strong>g—<br />

the size <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> peduncles reflects deliberate human<br />

selection for larger fruits. Such evidence <strong>of</strong> <strong>in</strong>tentional<br />

selection for desired characteristics follows more than a thousand<br />

years after an <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> seed size <strong>in</strong>dicates deliberate<br />

plant<strong>in</strong>g and <strong>in</strong>itial domestication.<br />

A total <strong>of</strong> 40 radiocarbon dates have been obta<strong>in</strong>ed on plant<br />

rema<strong>in</strong>s from Guilá Naquitz Cave (Smith 2000; Piperno<br />

and Flannery 2001), <strong>in</strong>clud<strong>in</strong>g four direct AMS dates on<br />

C. pepo peduncles and six direct AMS dates on C. pepo seeds<br />

(Table 3.1). The five directly dated C. pepo seeds that fall<br />

28 ARCHAEOLOGY AND PLANT DOMESTICATION<br />

above the 12-mm maximum length for the wild morphotype<br />

reference cl<strong>as</strong>s, and which can be considered <strong>as</strong> represent<strong>in</strong>g<br />

domesticated plants, are all more than 8,400 years old, with<br />

the two oldest <strong>of</strong> the dated seeds <strong>in</strong>dicat<strong>in</strong>g that the familysized<br />

groups that were se<strong>as</strong>onally occupy<strong>in</strong>g Guilá Naquitz<br />

were cultivat<strong>in</strong>g a large-seeded C. pepo squ<strong>as</strong>h <strong>as</strong> early <strong>as</strong><br />

10,000 years ago. In contr<strong>as</strong>t, the first peduncles to fall above<br />

the 13-mm upper boundary for wild morphotype Cucurbita<br />

gourds do not appear until 8,400 years ago, and they show<br />

a subsequent steady size <strong>in</strong>cre<strong>as</strong>e over time (Figure 3.5).<br />

The C. pepo <strong>Seed</strong> and Peduncle Assemblage<br />

from the Phillips Spr<strong>in</strong>g Site<br />

Located adjacent to an artesian spr<strong>in</strong>g on a terrace <strong>of</strong> the<br />

Pomme de Terre River <strong>in</strong> west central Missouri (Figure 3.6),<br />

the water-saturated habitation layers <strong>of</strong> the Phillips Spr<strong>in</strong>g<br />

site yielded abundant and well-preserved plant rema<strong>in</strong>s when<br />

excavated <strong>in</strong> the 1970s (Kay et al. 1980), <strong>in</strong>clud<strong>in</strong>g uncarbonized<br />

r<strong>in</strong>d fragments, seeds, and fruit stems <strong>as</strong>signable to<br />

the genus Cucurbita. The earliest habitation zone at Phillips<br />

Spr<strong>in</strong>g, Unit K2, sealed beneath a large rock-l<strong>in</strong>ed hearth,<br />

yielded three standard radiocarbon dates (4310 ± 70, 4222 ±<br />

57, 4240 ± 80 BP radiocarbon years), along with approximately<br />

125 whole seeds and fragments identified <strong>as</strong> C. pepo<br />

(Kay et al. 1980: 814; K<strong>in</strong>g 1980: 218, 1985: 81). When<br />

<strong>in</strong>itially analyzed, 62 <strong>of</strong> the C. pepo seeds from Unit K2 (the<br />

“squ<strong>as</strong>h and gourd zone”) provided both length and width<br />

me<strong>as</strong>urements. They ranged <strong>in</strong> length from 8.3 to 12.2 mm,<br />

with a mean length <strong>of</strong> 10.5 mm (K<strong>in</strong>g 1985: 82). Fifteen<br />

years later, reanalysis <strong>of</strong> the Phillips Spr<strong>in</strong>g K2 Cucurbita<br />

<strong>as</strong>semblage produced the same results, even though length<br />

and width me<strong>as</strong>urements could be obta<strong>in</strong>ed on only 45 seeds<br />

(Figure 3.1a; Smith 2000: 54). Assignment <strong>of</strong> the Unit K2<br />

Cucurbita seeds to C. pepo w<strong>as</strong> also confirmed (b<strong>as</strong>ed on<br />

marg<strong>in</strong>al ridge and hair morphology), <strong>as</strong> w<strong>as</strong> the temporal<br />

placement <strong>of</strong> the “squ<strong>as</strong>h and gourd zone.” A direct AMS


FIGURE 3.5 <strong>Incre<strong>as</strong>e</strong> <strong>in</strong> the size <strong>of</strong> peduncles <strong>of</strong><br />

domesticated Cucurbita pepo <strong>in</strong> preceramic habitation zones<br />

<strong>of</strong> Guilá Naquitz Cave between ca. 6500 and 5800 BC<br />

(see Smith 2000: 40).<br />

radiocarbon date <strong>of</strong> 4440 ± 75 BP radiocarbon years (5025<br />

calibrated calendar years BP) w<strong>as</strong> obta<strong>in</strong>ed on one <strong>of</strong> the Unit<br />

K2 seeds (Table 3.1; Smith 2000: 58).<br />

Generally accepted <strong>as</strong> represent<strong>in</strong>g an early stage <strong>of</strong> domesticated<br />

C. pepo <strong>in</strong> the e<strong>as</strong>tern United States, the Unit K2<br />

Phillips Spr<strong>in</strong>g seed <strong>as</strong>semblage h<strong>as</strong> a mean length value<br />

larger than all but one <strong>of</strong> the 13 wild Cucurbita gourd<br />

reference taxa listed <strong>in</strong> Figures 3.1 and 3.2. Significantly,<br />

although only two Phillips Spr<strong>in</strong>g seeds met or exceeded<br />

the 12.0-mm domestication boundary employed for the<br />

Guilá Naquitz <strong>as</strong>semblage, 12 <strong>of</strong> the 45 Unit K2 C. pepo<br />

seeds me<strong>as</strong>ured for the present study exceeded the 11.0-mm<br />

wild seed length ceil<strong>in</strong>g proposed for the e<strong>as</strong>tern United<br />

States, provid<strong>in</strong>g strong evidence for deliberate plant<strong>in</strong>g,<br />

an adaptive response to seedbed selective pressure, and<br />

the <strong>in</strong>dependent domestication <strong>of</strong> C. pepo ssp. ovifera <strong>in</strong> the<br />

e<strong>as</strong>tern United States.<br />

The four fruit-end fragment peduncle scars <strong>in</strong> the Unit K2<br />

Cucurbita <strong>as</strong>semblage, <strong>in</strong> contr<strong>as</strong>t, show no <strong>in</strong>dication <strong>of</strong><br />

morphological changes beyond the parameters <strong>of</strong> the wild<br />

morphotype gourd pr<strong>of</strong>ile. They compare closely to the<br />

wild Ozark gourd (C. pepo ssp. ovifera var. ozarkana) <strong>in</strong> both<br />

diameter and circular outl<strong>in</strong>e, and they appear to be from<br />

small globular fruits. As is the c<strong>as</strong>e <strong>in</strong> the developmental<br />

sequence for the Mexican l<strong>in</strong>eage <strong>of</strong> domesticated C. pepo,<br />

a wide range <strong>of</strong> changes <strong>in</strong> fruit morphology <strong>in</strong>dicative<br />

<strong>of</strong> deliberate and susta<strong>in</strong>ed human selection also appears<br />

<strong>in</strong> the 2,000-year span follow<strong>in</strong>g the 5000 BP Unit K2<br />

Phillips Spr<strong>in</strong>g <strong>as</strong>semblage and its evidence for <strong>in</strong>itial domestication<br />

<strong>of</strong> C. pepo <strong>in</strong> the e<strong>as</strong>tern United States. These changes<br />

Osage<br />

Missouri<br />

River<br />

Warsaw<br />

Pomme<br />

FIGURE 3.6 The location <strong>of</strong> the Phillips Spr<strong>in</strong>g archaeological<br />

site <strong>in</strong> south central Missouri.<br />

<strong>in</strong>clude a diversification <strong>of</strong> fruit forms, surface lob<strong>in</strong>g<br />

and wart<strong>in</strong>g, and an <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> both fruit size and r<strong>in</strong>d<br />

thickness (Cowan 1997: 73).<br />

Discussion—Future Research Directions<br />

Fristoe<br />

Boney Spr<strong>in</strong>g<br />

Rodgers Shelter<br />

Wheatland<br />

N 0 5 km<br />

Phillips Spr<strong>in</strong>g<br />

This chapter marshals archaeological evidence <strong>in</strong> support<br />

<strong>of</strong> the proposition that pepo squ<strong>as</strong>h (Cucurbita pepo) w<strong>as</strong><br />

<strong>in</strong>dependently domesticated twice <strong>in</strong> the Americ<strong>as</strong>: the<br />

pumpk<strong>in</strong> l<strong>in</strong>eage (Cucurbita pepo ssp. pepo <strong>in</strong> Mexico by<br />

10,000 years ago, and the acorn–summer squ<strong>as</strong>h l<strong>in</strong>eage<br />

(Cucurbita pepo ssp. ovifera) <strong>in</strong> the e<strong>as</strong>tern United States by<br />

5,000 years ago. For each <strong>of</strong> these separate domestication<br />

processes, the support<strong>in</strong>g arguments rest on an observed<br />

morphological change—an <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> the size <strong>of</strong> pepo squ<strong>as</strong>h<br />

seeds recovered from an archaeological context beyond what<br />

h<strong>as</strong> been documented <strong>in</strong> modern reference cl<strong>as</strong>s taxa <strong>of</strong><br />

wild Cucurbita gourds. It is important to keep <strong>in</strong> m<strong>in</strong>d that,<br />

while the evidence compiled to date and presented here<br />

constitutes a good beg<strong>in</strong>n<strong>in</strong>g—an <strong>in</strong>itial general spatial and<br />

temporal outl<strong>in</strong>e <strong>of</strong> domestication <strong>in</strong> this species—there is<br />

SEED SIZE INCREASE OF SQUASH 29<br />

Terre<br />

River<br />

Blackwell Cave<br />

Hermitage


still considerable room for strengthen<strong>in</strong>g the support<strong>in</strong>g<br />

arguments, and for expand<strong>in</strong>g the context and scope <strong>of</strong><br />

consideration <strong>of</strong> C. pepo domestication.<br />

The most obvious way <strong>in</strong> which these support<strong>in</strong>g<br />

arguments can be strengthened is through enlarg<strong>in</strong>g the<br />

modern reference cl<strong>as</strong>s <strong>of</strong> seed size me<strong>as</strong>urements, thereby<br />

ensur<strong>in</strong>g that the full range <strong>of</strong> taxonomic and geographical<br />

variation <strong>in</strong> seed size for all <strong>of</strong> the present-day wild taxa<br />

<strong>of</strong> Cucurbita gourds is encomp<strong>as</strong>sed. This is particularly<br />

true for the three modern wild taxa that have the greatest<br />

genetic similarity to the e<strong>as</strong>tern acorn–summer squ<strong>as</strong>h<br />

l<strong>in</strong>eage. While two <strong>of</strong> the three taxa that compose the C. pepo<br />

ssp. ovifera wild progenitor gourd complex—the Ozark and<br />

Tex<strong>as</strong> wild gourds (C. pepo ssp. ovifera varieties texana and<br />

ozarkana)—have been studied to some extent throughout<br />

their geographical range, and have yielded re<strong>as</strong>onably large<br />

and representative samples <strong>of</strong> seeds for modern comparison<br />

collections, the third (C. pepo ssp. ovifera var. fraterna)<br />

is still relatively poorly documented <strong>in</strong> terms <strong>of</strong> both seed<br />

size and natural habitat. B<strong>as</strong>ed on the apparent strong<br />

selective pressures controll<strong>in</strong>g seed and fruit size <strong>in</strong> all <strong>of</strong><br />

the present-day taxa <strong>of</strong> wild morphotype Cucurbita gourds,<br />

however, any expansion <strong>of</strong> modern reference cl<strong>as</strong>s seed size<br />

values beyond that already documented would not be<br />

expected.<br />

Of even more importance, <strong>in</strong> terms <strong>of</strong> strengthen<strong>in</strong>g<br />

our modern reference cl<strong>as</strong>s <strong>of</strong> wild Cucurbita taxa, will be<br />

to identify <strong>in</strong> Mexico, if they are still extant, modern descendant<br />

populations <strong>of</strong> the wild progenitor <strong>of</strong> the Mexican<br />

pumpk<strong>in</strong> l<strong>in</strong>eage <strong>of</strong> domesticated pepo squ<strong>as</strong>h. If such<br />

modern populations <strong>of</strong> the wild gourd that gave rise to<br />

Cucurbita pepo ssp. pepo more than 10,000 years ago still<br />

survive somewhere <strong>in</strong> Mexico, they have not yet been located<br />

and documented, <strong>in</strong> spite <strong>of</strong> fairly substantial field survey<br />

coverage for wild Cucurbita taxa.<br />

At the same time, it will be just <strong>as</strong> important to expand the<br />

reference cl<strong>as</strong>s <strong>of</strong> ancient collections <strong>of</strong> wild Cucurbita taxa<br />

recovered from human contexts and from natural deposits<br />

(e.g., Page-Ladson, Figure 3.1b) over broad spatial and<br />

temporal ranges. It is important to be able to document<br />

that the same strong selective pressures operat<strong>in</strong>g to control<br />

seed size <strong>in</strong> modern wild Cucurbita gourds were also present<br />

<strong>in</strong> the p<strong>as</strong>t, and that wild gourds <strong>in</strong> the early Holocene<br />

did not produce seeds that were larger than their present-day<br />

descendant populations. This ancient reference cl<strong>as</strong>s <strong>of</strong><br />

Cucurbita represents an important <strong>as</strong>pect <strong>of</strong> any support<strong>in</strong>g<br />

argument for domestication. A claim <strong>of</strong> domesticated<br />

status for squ<strong>as</strong>h seeds recovered from an archaeological<br />

context b<strong>as</strong>ed on seed size <strong>in</strong>cre<strong>as</strong>e is considerably strengthened<br />

if the candidate for early domesticate seeds can be<br />

shown not only to be larger than those produced by modern<br />

wild taxa, but also to be larger than seeds produced by<br />

presumably wild gourd taxa <strong>of</strong> the p<strong>as</strong>t. The ideal support<strong>in</strong>g<br />

argument <strong>in</strong> this regard would be a rich and well-documented<br />

deep-time-depth regional archaeobotanical record <strong>of</strong><br />

30 ARCHAEOLOGY AND PLANT DOMESTICATION<br />

human use <strong>of</strong> a small-seeded wild Cucurbita gourd, lead<strong>in</strong>g<br />

up to the appearance <strong>of</strong> a larger seeded (domesticated) form<br />

<strong>in</strong>the archaeological sequence. Support<strong>in</strong>g evidence <strong>of</strong> this<br />

k<strong>in</strong>d does exist to some extent <strong>in</strong> both Mexico (Figure 3.2)<br />

and e<strong>as</strong>tern North America (Figure 3.1) <strong>in</strong> the form <strong>of</strong> small<br />

squ<strong>as</strong>h seeds, likely from wild taxa, occ<strong>as</strong>ionally be<strong>in</strong>g<br />

recovered from scattered archaeological contexts that predate<br />

the appearance <strong>of</strong> large seeds from early domesticates. This<br />

reference cl<strong>as</strong>s, however, needs to be substantially improved<br />

<strong>in</strong> terms <strong>of</strong> both overall seed count and temporal and<br />

spatial coverage.<br />

Another obvious area <strong>of</strong> future research regard<strong>in</strong>g the early<br />

history <strong>of</strong> domesticated pepo squ<strong>as</strong>h <strong>in</strong> the Americ<strong>as</strong> will<br />

<strong>in</strong>volve trac<strong>in</strong>g the tim<strong>in</strong>g <strong>of</strong> <strong>in</strong>troduction <strong>of</strong> the Mexican<br />

pumpk<strong>in</strong> l<strong>in</strong>eage <strong>of</strong> pepo squ<strong>as</strong>h <strong>in</strong>to e<strong>as</strong>tern North America<br />

from the Southwest, and the subsequent manner <strong>in</strong> which<br />

it w<strong>as</strong> variously added <strong>in</strong>to the exist<strong>in</strong>g <strong>in</strong>digenous food<br />

production economies <strong>of</strong> different regions <strong>of</strong> the E<strong>as</strong>t. There<br />

h<strong>as</strong> been considerable recent research on the <strong>in</strong>itial <strong>in</strong>troduction<br />

<strong>of</strong> other crop plants from Mexico, <strong>in</strong>clud<strong>in</strong>g other species<br />

<strong>of</strong> squ<strong>as</strong>h (e.g., Fritz 1994), and it should be possible to<br />

dist<strong>in</strong>guish <strong>in</strong> the archaeological record between the <strong>in</strong>digenous<br />

acorn–summer squ<strong>as</strong>h l<strong>in</strong>eage (C. pepo ssp. ovifera) and<br />

the <strong>in</strong>troduced Mexican pumpk<strong>in</strong> l<strong>in</strong>eage (C. pepo ssp. pepo)<br />

on the b<strong>as</strong>is <strong>of</strong> genetic pr<strong>of</strong>iles <strong>as</strong> well <strong>as</strong> seed, fruit, and<br />

peduncle morphology.<br />

F<strong>in</strong>ally, at the same time that there is considerable room for<br />

strengthen<strong>in</strong>g and expand<strong>in</strong>g the support<strong>in</strong>g arguments<br />

for when and where domestication <strong>of</strong> this important crop<br />

plant took place, there is also a great deal to be learned regard<strong>in</strong>g<br />

the role <strong>of</strong> this species <strong>in</strong> the low-level food production<br />

economies <strong>of</strong> the human societies that first domesticated it<br />

<strong>in</strong> Mexico and the e<strong>as</strong>tern United States so long ago, and<br />

the extent to which it represented a significant change, or if<br />

it <strong>in</strong>itially at le<strong>as</strong>t w<strong>as</strong> just a modest supplement to an<br />

otherwise stable and relatively secure way <strong>of</strong> life.<br />

References<br />

Cowan, C. W. 1997. Evolutionary changes <strong>as</strong>sociated with the<br />

domestication <strong>of</strong> Cucurbita pepo: Evidence from e<strong>as</strong>tern<br />

Kentucky. In People, plants, and landscapes, K. Gremillion (ed.),<br />

pp. 63–85. Tuscaloosa: University <strong>of</strong> Alabama Press.<br />

Decker-Walters, D., T. Walters, C. W. Cowan, and B. D. Smith.<br />

1993. Isozyme characterization <strong>of</strong> wild populations <strong>of</strong> Cucurbita<br />

pepo. Journal <strong>of</strong> Ethnobiology 13: 55–72.<br />

de Wet, J. M. J. and J. R. Harlan. 1975. Weeds and domesticates:<br />

Evolution <strong>in</strong> the man-made habitat. Economic Botany 29:<br />

99–107.<br />

Flannery, K. 1986. Guilá Naquitz. Archaic forag<strong>in</strong>g and early<br />

agriculture <strong>in</strong> Oaxaca, Mexico. New York: Academic Press.<br />

Fritz, G. 1994. Precolumbian Cucurbita argyrosperma ssp.<br />

argyrosperma <strong>in</strong> the western woodlands <strong>of</strong> e<strong>as</strong>tern North<br />

America. Economic Botany 48: 280–292.<br />

Harlan, J. and J. M. J. deWet. 1965. Some thoughts on weeds.<br />

Economic Botany 18: 16–22.


Harlan, J. J., M. J. deWet, and E. G. Price. 1973. Comparative<br />

evolution <strong>of</strong> cereals. Evolution 27: 311–325.<br />

Kay, M., F. B. K<strong>in</strong>g, and C. K. Rob<strong>in</strong>son. 1980. Cucurbits from<br />

Phillips Spr<strong>in</strong>g: New evidence and <strong>in</strong>terpretation. American<br />

Antiquity 45: 806–822.<br />

K<strong>in</strong>g, F. B. 1980. Plant rema<strong>in</strong>s from Phillips Spr<strong>in</strong>g, a multicomponent<br />

site <strong>in</strong> the western Ozark highland <strong>of</strong> Missouri. Pla<strong>in</strong>s<br />

Anthropologist 25: 217–227.<br />

———. 1985. Early cultivated Cucurbits <strong>in</strong> e<strong>as</strong>tern North America.<br />

In Prehistoric Food Production <strong>in</strong> North America, R. I. Ford (ed.),<br />

pp. 73–98. Ann Arbor, Mich.: Museum <strong>of</strong> Anthropology,<br />

University <strong>of</strong> Michigan, Anthropological Papers No. 75.<br />

Lentz, D. W., M. E. D. Pohl, K. O. Pope, and A. R. Wyatt. 2001.<br />

Prehistoric sunflower (Helianthus annuus L.) domestication <strong>in</strong><br />

Mexico. Economic Botany 55: 370–376.<br />

Nee, M. 1990. The domestication <strong>of</strong> Cucurbita (Cucurbitaceae).<br />

Economic Botany 44 (supplement): 56–69.<br />

Newsom, L., S. D. Webb, and J. S. Dunbar. 1993. History and<br />

geographic distribution <strong>of</strong> Cucurbita pepo gourds <strong>in</strong> Florida.<br />

Journal <strong>of</strong> Ethnobiology 13: 75–79.<br />

Piperno, D. and K. Flannery. 2001. The earliest archaeological<br />

maize (Zea mays L.) from highland Mexico: New accelerator<br />

m<strong>as</strong>s spectrometry dates and their implications. Proceed<strong>in</strong>gs <strong>of</strong><br />

the National Academy <strong>of</strong> Sciences 98: 1324–1326.<br />

Piperno, D. and K. Stothert. 2003. Phytolith evidence for Early<br />

Holocene Cucurbita domestication <strong>in</strong> southwest Ecuador.<br />

Science 299: 1054–1057.<br />

Rob<strong>in</strong>son, R. W. and D. Decker-Walters. 1997. Cucurbits. New York:<br />

CAB International.<br />

Sanjur, O., D. Piperno, T. Andres, and L. Wessel-Beaver. 2002.<br />

Phylogenetic relationships among domesticated and wild<br />

species <strong>of</strong> Cucurbita <strong>in</strong>ferred from a mitochondrial gene:<br />

Implications for crop plant evolution and are<strong>as</strong> <strong>of</strong> orig<strong>in</strong>.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the National Academy <strong>of</strong> Sciences, USA 99: 535–540.<br />

———. 2004. Us<strong>in</strong>g molecular markers to study plant domestication:<br />

The c<strong>as</strong>e <strong>of</strong> Cucurbita. In Biomolecular archaeology:<br />

Genetic approaches to the p<strong>as</strong>t. D. M. Reed (ed.), pp. 128–<br />

150. Occ<strong>as</strong>ional Paper No. 32 <strong>of</strong> the Center for Archaeological<br />

Investigations, Southern Ill<strong>in</strong>ois University, Carbondale.<br />

Carbondale, Ill.: CAI, Southern Ill<strong>in</strong>ois University, Carbondale.<br />

Smith, B. D. 1997. The <strong>in</strong>itial domestication <strong>of</strong> Cucurbita<br />

pepo <strong>in</strong> the Americ<strong>as</strong> 10,000 years ago. Science 276: 932–934.<br />

———. 1998. The emergence <strong>of</strong> agriculture. New York: W.H.<br />

Freeman.<br />

———. 2000. Guilá Naquitz revisited. In Cultural evolution:<br />

Contemporary viewpo<strong>in</strong>ts, G. Fe<strong>in</strong>man and L. Manzanilla (eds.),<br />

pp. 15–59. New York: Kluwer Academic/Plenum Publishers.<br />

———. 2002. Rivers <strong>of</strong> change (paperback edition). W<strong>as</strong>h<strong>in</strong>gton,<br />

D.C.: Smithsonian Institution Press.<br />

Whitaker, T. and H. Cutler. 1971. Prehistoric cucurbits from the<br />

Valley <strong>of</strong> Oaxaca. Economic Botany 25: 123–127.<br />

———. 1986. Cucurbits from preceramic levels at Guilá Naquitz.<br />

In Guilá Naquitz: Archaic forag<strong>in</strong>g and early agriculture <strong>in</strong> Oaxaca,<br />

Mexico, K. Flannery (ed.), pp. 275–279. New York: Academic Press.<br />

Zohary, D. 1996. The founder crops <strong>of</strong> southwest Asian agriculture.<br />

In The orig<strong>in</strong>s and spread <strong>of</strong> agriculture and p<strong>as</strong>toralism <strong>in</strong><br />

Eur<strong>as</strong>ia, D. Harris (ed.), pp. 142–158. W<strong>as</strong>h<strong>in</strong>gton, D.C.:<br />

Smithsonian Institution Press.<br />

SEED SIZE INCREASE OF SQUASH 31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!