29.06.2013 Views

Comparative Hydrocarbon Analysis of Cosdenol 180, RB Solvent ...

Comparative Hydrocarbon Analysis of Cosdenol 180, RB Solvent ...

Comparative Hydrocarbon Analysis of Cosdenol 180, RB Solvent ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FINAL REPORT<br />

PROTECTED BUSINESS INFORMATION<br />

COMPARATIVE HYDROCA<strong>RB</strong>ON ANALYSIS OF COSDENOL <strong>180</strong>,<br />

<strong>RB</strong> SOLVENT 200B, AND CPCHEM NAPHTHALENE SAMPLES<br />

R. Gieleciak, C. Fairbridge, C. Lay and D. Hager<br />

CanmetENERGY–DEVON<br />

Work performed for:<br />

CanmetENERGY, Natural Resources Canada<br />

Fuels for Advanced Combustion Engines Working Group<br />

APRIL 2011<br />

DIVISION REPORT DEVON 2011-044-INT<br />

© Natural Resources Canada, 2011. Published by Coordinating Research Council, Inc. All rights reserved.


CanmetENERGY–Devon<br />

DISCLAIMER<br />

i PROTECTED BUSINESS INFORMATION<br />

This report and its contents, the project in respect <strong>of</strong> which it is submitted, and<br />

the conclusions and recommendations arising from it do not necessarily reflect the<br />

views <strong>of</strong> the Government <strong>of</strong> Canada, its <strong>of</strong>ficers, employees, or agents.


CanmetENERGY–Devon<br />

ii PROTECTED BUSINESS INFORMATION<br />

EXECUTIVE SUMMARY<br />

CanmetENERGY was approached by the Coordinating Research Council<br />

(CRC) Fuels for Advanced Combustion Engines (FACE) Working Group and asked<br />

to provide advanced analytical characterization <strong>of</strong> a sample tagged as a CPChem<br />

Naphthalenes.<br />

This report provides detailed chemical and structural hydrocarbon type<br />

information for the aromatic hydrocarbon streams. The results presented in this report<br />

consist <strong>of</strong> data obtained using the following analytical techniques: GC-FIMS (gas<br />

chromatography-field ionization mass spectrometry) and GCxGC (comprehensive<br />

two-dimensional gas chromatography) with both SCD/FID and TOFMS. A summary<br />

<strong>of</strong> the analyses is reported and the detailed analytical results are provided.<br />

In addition, comparative studies <strong>of</strong> previously analyzed samples, <strong>Cosdenol</strong><br />

<strong>180</strong> and <strong>RB</strong> solvent 200, and a proposed new stream were performed. Diesel samples<br />

characterized in this report will be used for FACE research diesel fuel testing.<br />

This report is an extension <strong>of</strong> a report previously released on the CRC<br />

website: http://www.crcao.org/news/FACE/index.html.


CanmetENERGY–Devon<br />

iii PROTECTED BUSINESS INFORMATION<br />

CONTENTS<br />

DISCLAIMER ..................................................................................................................... i<br />

EXECUTIVE SUMMARY ................................................................................................ ii<br />

1.0 INTRODUCTION .................................................................................................. 1<br />

2.0 EXPERIMENTAL.................................................................................................. 1<br />

2.1 SIMULATED DISTILLATION............................................................................. 1<br />

2.2 GAS CHROMATOGRAPHY–FIELD IONIZATION MASS<br />

SPECTROMETRY (GC-FIMS) ............................................................................. 2<br />

2.3 COMPREHENSIVE TWO-DIMENSIONAL GAS<br />

CHROMATOGRAPHY (GC×GC) ........................................................................ 3<br />

3.0 RESULTS AND DISCUSSION............................................................................. 6<br />

3.1 SIMULATED DISTILLATION............................................................................. 6<br />

3.2 GC-FIMS ................................................................................................................ 7<br />

3.3 COMPREHENSIVE TWO-DIMENSIONAL GAS<br />

CHROMATOGRAPHY ....................................................................................... 11<br />

3.3.1 GC×GC-SCD/FID ................................................................................................ 12<br />

3.3.2 GC×GC-TOFMS/FID........................................................................................... 20<br />

4.0 CONCLUSIONS................................................................................................... 28<br />

5.0 ACKNOWLEDGEMENTS.................................................................................. 29<br />

APPENDIX A: SIMDIS AST 2887................................................................................. 30<br />

APPENDIX B: GC-FIMS................................................................................................ 33<br />

APPENDIX C: GCxGC-SCD/FID GROUP TYPE ANALYSIS.................................... 35<br />

TABLES<br />

Table 1 – Sample names, sample tags, and some known properties for<br />

samples analyzed in this report a) ............................................................................ 1<br />

Table 2 – Operating conditions for GC×GC-FID/SCD analysis ........................................ 5<br />

Table 3 – Operating conditions for GC×GC-TOFMS/FID analysis................................... 5<br />

Table 4 – GC-FIMS hydrocarbon type analysis ................................................................. 7<br />

Table 5 – Operating conditions for GC×GC-FID/SCD analysis. ..................................... 12


CanmetENERGY–Devon<br />

iv PROTECTED BUSINESS INFORMATION<br />

Table 6 – Operating conditions for GC×GC-TOFMS/FID analysis................................. 12<br />

Table 7 – Quantitative group type results <strong>of</strong> GC×GC-FID separation ............................. 13<br />

Table A 1 – Simulated distillation data............................................................................. 31<br />

Table B 1 – GC-FIMS data for CPChem Naphthalene sample ........................................ 34<br />

Table C 1 – GCxGC –SCD/FID hydrocarbon type analysis ............................................ 36<br />

FIGURES<br />

Figure 1 – Chromatagram illustrating alignment <strong>of</strong> subsequent<br />

simultaneous response <strong>of</strong> dual detectors TIC (orange) and FID<br />

(green)..................................................................................................................... 4<br />

Figure 2 – Simulated distillation curves for <strong>Cosdenol</strong><strong>180</strong>, <strong>RB</strong> <strong>Solvent</strong>, and<br />

CPChem Naphthalenes streams (based on ASTM D2887 method) ....................... 6<br />

Figure 3 – Graphic version <strong>of</strong> GC-FIMS data presented in Table 4. Details<br />

in text. ..................................................................................................................... 8<br />

Figure 4 – GC-FIMS hydrocarbon types by carbon number for <strong>Cosdenol</strong><br />

<strong>180</strong> sample .............................................................................................................. 9<br />

Figure 5 – GC-FIMS hydrocarbon types by carbon number for <strong>RB</strong> <strong>Solvent</strong><br />

200B sample.......................................................................................................... 10<br />

Figure 6 – GC-FIMS hydrocarbon types by carbon number for CPChem<br />

Naphthalene sample.............................................................................................. 10<br />

Figure 7 – GC-FIMS collective contour plot for <strong>Cosdenol</strong> <strong>180</strong>, <strong>RB</strong> <strong>Solvent</strong><br />

200B, and CPChem Naphthalene samples............................................................ 11<br />

Figure 8 – Schematic example <strong>of</strong> compound class distribution using<br />

traditional column set combination. Meaning <strong>of</strong> symbols: a6 – 6<br />

carbon aromatics, A5 – 5 carbon ring aliphatic, A6 – 6 carbon ring<br />

aliphatic................................................................................................................. 14<br />

Figure 9 – Magnification <strong>of</strong> n-Paraffinic, iso-Paraffinic, and<br />

Monocycloparaffinic/olefinic regions................................................................... 14<br />

Figure 10 – Examples <strong>of</strong> compounds assigned to groups used in GC×GC-<br />

FID typing............................................................................................................. 15


CanmetENERGY–Devon<br />

v PROTECTED BUSINESS INFORMATION<br />

Figure 11 – Graphic results <strong>of</strong> GC×GC-FID speciation ................................................... 16<br />

Figure 12 – Example <strong>of</strong> column overloading by biphenyl compounds in<br />

<strong>RB</strong> <strong>Solvent</strong> sample................................................................................................ 17<br />

Figure 13 – GC×GC-FID bubble plot chromatograms <strong>of</strong> <strong>Cosdenol</strong> <strong>180</strong><br />

with selected classification groups........................................................................ 18<br />

Figure 14 – GC×GC-FID bubble plot chromatograms <strong>of</strong> <strong>RB</strong> <strong>Solvent</strong> 200B<br />

with selected classification groups........................................................................ 18<br />

Figure 15 – GC×GC-FID bubble plot chromatograms <strong>of</strong> CPChem<br />

Naphthalenes with selected classification groups................................................. 19<br />

Figure 16 – Chromatograms <strong>of</strong> analyzed samples obtained by GC×GC-<br />

SCD, with two sulfur classes found in the CPChem sample ................................ 20<br />

Figure 17 – Examples <strong>of</strong> GC×GC-TOFMS/FID chromatograms: (a)<br />

‘normal’ column combination (b) ‘reversed’ column combination...................... 21<br />

Figure 18 – The GC×GC-TOFMS/FID chromatograms with selected<br />

hydrocarbon group types: (a) <strong>Cosdenol</strong> <strong>180</strong>, (b) <strong>RB</strong> <strong>Solvent</strong> 200B,<br />

(c) CPChem Naphthalenes. Region meanings: 1:<br />

Tetraethylbenzene, 2: 1,1’-diphenylethane, 3: C2-C3 1,1’diphenylethanes,<br />

4: dimethylbenzene, 5: C11-alkylbenzenes, 6:<br />

C2-C5 1,1’-diphenylethanes, 7: i+n-paraffines, 8: naphthalene,<br />

9:methylnaphthalenes, 10: C2 alkylnaphthalenes, 11: C3-C5<br />

alkylnaphthalenes.................................................................................................. 22<br />

Figure 19 – Examples <strong>of</strong> mass spectra for selected species. On the left:<br />

diphenyl, acenaphthene and 2-ethenyl naphthalene.............................................. 23<br />

Figure 20 – Selected ion chromatograms (SIC) for analyzed samples.<br />

Columns (from left): <strong>Cosdenol</strong> <strong>180</strong>, <strong>RB</strong> <strong>Solvent</strong> 200B, CRChem<br />

Naphthalenes. Rows (from top): selected ions: 57+71, 55+69+97,<br />

133, and 91.The color scale is maintained in the same range for all<br />

the chromatograms................................................................................................ 24<br />

Figure 21 – Examples <strong>of</strong> mass spectra <strong>of</strong> selected multi-branch<br />

alkylbenzene isomers (on the left) and lower-branch alkylbenzenes<br />

(on the right). ........................................................................................................ 25


CanmetENERGY–Devon<br />

vi PROTECTED BUSINESS INFORMATION<br />

Figure 22 – Mass spectral filters applied to show C1–C4 alkyl-substituted<br />

naphthalenes in the analyzed samples................................................................... 26<br />

Figure 23 – Examples <strong>of</strong> mass spectra <strong>of</strong> selected isomers <strong>of</strong> naphthalenes:<br />

a) naphthalene, b) 1-methyl naphthalene, c) 1-propyl naphthalene,<br />

d) 2,3,6-trimethyl naphthalene, e) 1-butyl-naphthalene, and f) 2-<br />

methyl-1-propyl naphthalene................................................................................ 27<br />

Figure C 1 – Two- and three-dimensional representations <strong>of</strong> GCxGC-FID<br />

chromatograms <strong>of</strong> analyzed samples .................................................................... 39


1.0 INTRODUCTION<br />

1<br />

PROTECTED BUSINESS INFORMATION<br />

This year CPChem is proposing to substitute a new naphthalenes source <strong>of</strong><br />

aromatics to replace the heavy aromatics from the <strong>Cosdenol</strong><strong>180</strong> and <strong>RB</strong> <strong>Solvent</strong> 200<br />

in FACE diesel fuels such as #7 and #8. This substitution was necessary to supply the<br />

FACE diesel fuels to Europe since previously proposed stream <strong>RB</strong>Solv200 did not<br />

have REACH Certification.<br />

A description <strong>of</strong> samples provided for analysis is presented in Table 1.<br />

Table 1 – Sample names, sample tags, and some known properties for samples<br />

analyzed in this report a)<br />

<strong>Cosdenol</strong> <strong>180</strong> <strong>RB</strong> <strong>Solvent</strong> 200B<br />

CPChem<br />

Naphthalenes<br />

CanmetENERGY ID 10-1042 10-1043 LCO<br />

CAS# 64742-94-5 147952-37-2 64741-59-9<br />

Physical state liquid liquid liquid<br />

Flash point 82.2°C 136.1°C 107°C<br />

Specific gravity (water = 1.00) 0.98 0.978 0.92<br />

Boiling/condensation point 236-318°C 232°C 162-364°C<br />

a) Taken from Material Safety Data Sheet<br />

2.0 EXPERIMENTAL<br />

2.1 SIMULATED DISTILLATION<br />

Firstly, simulated distillation analysis (ASTM D2887), which provides the<br />

boiling point distribution <strong>of</strong> petroleum products for the boiling range between C5<br />

(35°C) and C44 (538°C), is performed on each sample. The distillation method is<br />

simulated by the use <strong>of</strong> gas chromatography (in this case, an Analytical Control<br />

Systems, Inc., Simulated Distillation Custom Analyzer based on the HP-6890 series<br />

gas chromatograph), whereby a nonpolar capillary column is used to elute the<br />

hydrocarbon components <strong>of</strong> the sample in order <strong>of</strong> increasing boiling point.<br />

CanmetENERGY–Devon


2<br />

PROTECTED BUSINESS INFORMATION<br />

2.2 GAS CHROMATOGRAPHY–FIELD IONIZATION MASS<br />

SPECTROMETRY (GC-FIMS)<br />

Samples are characterized by GC-FIMS, which characterizes hydrocarbon<br />

types in the boiling range <strong>of</strong> 200 to 343°C (392 to 649°F). This method provides<br />

detailed characterization for saturates (including iso-paraffins, n-paraffins, and<br />

cylcoparaffins), aromatics (mono, di, and polyaromatics), and two aromatic<br />

thiophenotypes. It does not require pre-separation <strong>of</strong> the sample. The results are<br />

reported for the total product and by carbon number (up to C21 for the diesel range)<br />

and/or by boiling point distribution. A full GC-FIMS report also consists <strong>of</strong> a series<br />

<strong>of</strong> reports by carbon number in selected temperature intervals (usually 10°C<br />

intervals). The analysis is performed using an Agilent 6890 gas chromatograph<br />

configured with GCT Micromass Multi-Channel Plate detector. A semi-polar DB-<br />

5HT capillary column (30 m long × 0.25 mm internal diameter × 0.10 μm film<br />

thickness) is used for separation <strong>of</strong> the peaks, and identification <strong>of</strong> the components is<br />

based on accurate measurements <strong>of</strong> the masses.<br />

For the diesel components boiling below 200°C (392°F), the sample is<br />

injected into a PIONA analyzer (Analytical Control PIONA Analyzer-Reformulizer)<br />

and run according to ASTM D5443 and ASTM D6839 so that the data can be<br />

presented by carbon number. The instrument has been equipped with a prefractionator<br />

to vent <strong>of</strong>f any material that boils above 200°C (392°F). The PIONA data reported for<br />

the fraction that boils below 200°C are then combined with the GC-FIMS data for the<br />

fraction that boils above 200°C to produce reports that capture the full boiling range<br />

<strong>of</strong> the diesel fuel.<br />

Two assumptions were made in presenting the PIONA data: cycloparaffins<br />

were all monocycloparaffins and aromatics were all alkylbenzenes. Similarly, diesel<br />

components boiling below 200°C (392°F) were also analyzed by Detailed<br />

<strong>Hydrocarbon</strong> <strong>Analysis</strong> (DHA, ASTM D6730) operated with a prefractionator to<br />

eliminate hydrocarbons that boil above 200°C (392°F).<br />

CanmetENERGY–Devon


2.3 COMPREHENSIVE TWO-DIMENSIONAL GAS<br />

CHROMATOGRAPHY (GC×GC)<br />

3<br />

PROTECTED BUSINESS INFORMATION<br />

Comprehensive two-dimensional gas chromatography (GC×GC) is a<br />

hyphenated technique in which two different chromatographic separation mechanisms<br />

act in series to greatly improve component separation and identification. The system<br />

contains a jet-cool modulator between two chromatographic columns having different<br />

selectivities. The modulator repeatedly focuses a small portion <strong>of</strong> the first column<br />

eluate and injects it into the second column. All <strong>of</strong> the effluents out <strong>of</strong> the second<br />

column enter the detector. The main factors contributing to the usefulness <strong>of</strong> this<br />

method are high chromatographic resolution, high peak capacity, analyte<br />

detectability, and chemical compound class ordering on the chromatogram.<br />

The second-dimension separation is very rapid (usually 2 to 6 s); peaks are<br />

narrow, typically, 0.1 to 0.5 s. Detectors used in this system must be characterized by<br />

small internal volumes, short rise times, and high data acquisition rates. One <strong>of</strong> the<br />

detectors meeting these demands and used in CanmetENERGY GC×GC instruments,<br />

is the flame ionization detector (FID). The FID response is linear over a very wide<br />

range <strong>of</strong> concentrations and proportional to the mass flow rate <strong>of</strong> carbon. It therefore<br />

may be considered a general hydrocarbon detector. All quantitative analysis provided<br />

in this report was based on the FID.<br />

When structural information has to be provided to enable compound<br />

identification, a mass spectrometer can be used as a detector. The TOFMS (time–<strong>of</strong>flight<br />

mass spectrometer) instrument can acquire up to 500 spectra per second, which<br />

is more than enough for the accurate reconstruction <strong>of</strong> second-dimension peaks and<br />

the deconvolution <strong>of</strong> overlapping peaks. The Leco ChromaTOF s<strong>of</strong>tware allows<br />

direct presentation <strong>of</strong> total ion current (TIC) and analytical ion current, and extractedion<br />

two-dimensional chromatograms, which assists the interpretation process. In<br />

addition to the mass spectrometer detector, the CanmetENERGY GC×GC-TOFMS is<br />

equipped with an FID. After matching the TOFMS and FID signals, both qualitative<br />

and quantitative results can be obtained simultaneously. An example <strong>of</strong> such a<br />

chromatogram is shown in Figure 1.<br />

CanmetENERGY–Devon


4<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 1 – Chromatagram illustrating alignment <strong>of</strong> subsequent simultaneous response<br />

<strong>of</strong> dual detectors TIC (orange) and FID (green)<br />

One <strong>of</strong> the main benefits <strong>of</strong> orthogonal GC×GC separation is that the<br />

chromatogram obtained is structurally ordered (i.e., on the GC map, continuous<br />

clusters for related homologues, congeners, and isomers are easily visible). Examples<br />

<strong>of</strong> such structured chromatograms are presented in this report.<br />

The GC×GC instruments were provided by Leco Instruments and utilized a<br />

cryogenically cooled modulator. The column features and the operating conditions for<br />

both GC×GC-FID/SCD and GC×GC-TOFMS/FID experiments are listed in Table 2<br />

and Table 3, respectively. Detectors used in the analysis are as follows: FID, SCD<br />

(sulfur chemiluminescence detector), and TOFMS.<br />

CanmetENERGY–Devon


5<br />

PROTECTED BUSINESS INFORMATION<br />

Table 2 – Operating conditions for GC×GC-FID/SCD analysis<br />

1 st column Varian Factor 4 VF5-HT, 30 m x 0.32 mm DF: 0.1<br />

Main oven program 50C (1) to 350C (0) at 3C/min<br />

2 nd column BPX-50, 1.0 m x 0.1 DF: 0.1<br />

Secondary oven program 10C <strong>of</strong>fset from main oven<br />

Inlet temperature 350C<br />

Injection size 1 L<br />

Split ratio 50:1<br />

Carrier gas He, constant flow, 1.5 mL/min<br />

Modulator temperature 55C <strong>of</strong>fset from main oven<br />

Detector FID, 350°C with SCD adapter, 800°C<br />

Acquisition rate 100 Hz<br />

Modulation period 6 s<br />

Table 3 – Operating conditions for GC×GC-TOFMS/FID analysis<br />

1 st column Varian factor 4 VF17-MS, 30 m x 0.32 mm DF: 0.1<br />

Main oven program 50C (0.2) to 330C (9.8) at 3C/min<br />

2 nd column Varian factor 4 VF5-HT,1.5 m x 0.1 DF: 0.2<br />

Secondary oven program 20C <strong>of</strong>fset from main oven<br />

Inlet temperature 350C<br />

Injection size 0.2 L<br />

Split ratio 20:1<br />

Carrier gas He, constant flow, 1.5 mL/min<br />

Modulator temperature 55C <strong>of</strong>fset from main oven<br />

Detector TOFMS and FID<br />

Acquisition rate 200 Hz<br />

Modulation period 10 s<br />

Data handling, such as contour plotting, GC×GC peak collection, retention<br />

time measurements, and peak volume calculations were performed using ChromaTOF<br />

s<strong>of</strong>tware provided by Leco Instruments. Chemical compounds in the samples were<br />

identified by searching for matching spectra in NIST mass spectral information. The<br />

quantities <strong>of</strong> each compond are shown as a percentage <strong>of</strong> the total area <strong>of</strong> the<br />

quantified peaks. All quantitative analysis was based on FID output.<br />

CanmetENERGY–Devon


3.0 RESULTS AND DISCUSSION<br />

3.1 SIMULATED DISTILLATION<br />

6<br />

PROTECTED BUSINESS INFORMATION<br />

The simulated distillation analyses are presented in Figure 2 and a tabulated<br />

version is provided in Appendix A. Such data generally show the same trends as the<br />

distillation curves obtained from ASTM D86 analysis. Trends obtained during<br />

simulated distillation revealed similarities among analyzed samples. Clearly,<br />

<strong>Cosdenol</strong> <strong>180</strong> and <strong>RB</strong> <strong>Solvent</strong> 200B exhibit distillation curves that are higher than<br />

that <strong>of</strong> CPChem Naphthalenes. It was observed that the CPChem Naphthalenes are<br />

characterized by a milder, more regular simulated distillation curve run than the other<br />

samples. Both <strong>RB</strong> <strong>Solvent</strong> 200B and CPChem Naphthalenes have the same T10s. On<br />

the other hand, the T90s for <strong>Cosdenol</strong> and <strong>RB</strong> <strong>Solvent</strong> are the same, whereas T90 for<br />

CPChem Naphthalenes is about 25°C lower. Both <strong>RB</strong> <strong>Solvent</strong> 200B and <strong>Cosdenol</strong><br />

<strong>180</strong> contain more heavier fractions boiling close to or above 400°C, whereas CPChem<br />

Naphthalenes distillation is finished below 350°C.<br />

Figure 2 – Simulated distillation curves for <strong>Cosdenol</strong><strong>180</strong>, <strong>RB</strong> <strong>Solvent</strong>, and CPChem<br />

Naphthalenes streams (based on ASTM D2887 method)<br />

CanmetENERGY–Devon


3.2 GC-FIMS<br />

7<br />

PROTECTED BUSINESS INFORMATION<br />

The GC-FIMS hydrocarbon analysis for <strong>Cosdenol</strong> <strong>180</strong> and <strong>RB</strong> <strong>Solvent</strong> was<br />

reported previously and wasn’t repeated for these samples for the purposes <strong>of</strong> this<br />

report. The GC-FIMS data for analyzed CPChem Naphthalenes as well as <strong>Cosdenol</strong><br />

and <strong>RB</strong> solvent are presented in Table 4. The detailed GC-FIMS data for CPChem<br />

Naphthalenes sample is provided in tabulated form in Appendix B. Figure 3<br />

illustrates the GC-FIMS results in Table 4.<br />

Table 4 – GC-FIMS hydrocarbon type analysis<br />

<strong>Cosdenol</strong><br />

<strong>180</strong><br />

HC Type / #C IBP-FBP<br />

<strong>RB</strong> Solv CPChem<br />

200B<br />

IBP-<br />

Naphthalenes<br />

FBP IBP-FBP<br />

Saturates 0.37 0 26.87<br />

i+ n-Paraffins 0 0 13.44<br />

iso-Paraffins 0 0 10.01<br />

n-Paraffins 0 0 3.43<br />

Cycloparaffins 0.37 0 13.43<br />

Monocycloparaffins 0.37 0 5.94<br />

Dicycloparaffins 0 0 4.13<br />

Polycycloparaffins 0 0 3.36<br />

Aromatics 99.63 100 73.13<br />

Monoaromatics 32.73 35.98 13.75<br />

Benzenes 20.57 35.08 4.09<br />

Indanes/tetralins 4.81 0.74 6.52<br />

Indenes/benzocycloalkane 7.35 0.15 3.13<br />

Diaromatics 63.2 63.72 57.90<br />

Naphthalenes 2.01 4.29 51.10<br />

Acenaphthenes/biphenyls 56.1 59.43 4.48<br />

Acenaphthalenes/fluorenes 5.09 0 2.32<br />

Triaromatics 2.94 0.3 1.30<br />

Phenanthrenes/anthracenes 0.78 0.3 1.30<br />

Cyclopentanophenanthrenes 2.17 0 0.01<br />

Tetraaromatics 0.24 0 0.02<br />

Pyrenes/fluoranthenes 0.24 0 0.02<br />

Chrysenes/benzoanthracenes 0 0 0.00<br />

Aromatic sulfur 0.52 0 0.16<br />

Benzothiophenes 0.16 0 0.08<br />

Dibenzothiophenes 0.35 0 0.08<br />

Naphthobenzothiophenes 0.02 0 0.00<br />

CanmetENERGY–Devon


8<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 3 – Graphic version <strong>of</strong> GC-FIMS data presented in Table 4. Details in text.<br />

The layout <strong>of</strong> consecutive bar plots on Figure 3 was created intentionally to<br />

show a zoom-in representation <strong>of</strong> hydrocarbon types found in analyzed samples. The<br />

CanmetENERGY–Devon


9<br />

PROTECTED BUSINESS INFORMATION<br />

first bar plot shows a clear difference between the aromatic and saturate contents for<br />

the older streams (<strong>Cosdenol</strong> and <strong>RB</strong> <strong>Solvent</strong>) and CPChem Naphthalenes. However,<br />

in many cases such information is not sufficient. Following further subdivision <strong>of</strong><br />

major hydrocarbon types into more detailed groups we can see true discrepancies<br />

between the analytes. The last plot in Figure 3 highlights the crucial differences<br />

between CPChem Naphthalenes and the other two samples.<br />

A more detailed comparison can be achieved by plotting GC-FIMS data in the<br />

form <strong>of</strong> the distribution <strong>of</strong> hydrocarbon types by carbon number. Such visual outputs<br />

for all streams are presented and explained in Figure 4–Figure 6. Figure 7 shows one<br />

contour plot with the same unified color scale for all samples.<br />

Figure 4 – GC-FIMS hydrocarbon types by carbon number for <strong>Cosdenol</strong> <strong>180</strong> sample<br />

CanmetENERGY–Devon


10<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 5 – GC-FIMS hydrocarbon types by carbon number for <strong>RB</strong> <strong>Solvent</strong> 200B<br />

sample<br />

Figure 6 – GC-FIMS hydrocarbon types by carbon number for CPChem<br />

Naphthalenes sample<br />

CanmetENERGY–Devon


11<br />

PROTECTED BUSINESS INFORMATION<br />

<strong>Cosdenol</strong> <strong>180</strong> <strong>RB</strong> <strong>Solvent</strong> 200B CPChem Naphthalenes<br />

Figure 7 – GC-FIMS collective contour plot for <strong>Cosdenol</strong> <strong>180</strong>, <strong>RB</strong> <strong>Solvent</strong> 200B, and<br />

CPChem Naphthalene samples<br />

3.3 COMPREHENSIVE TWO-DIMENSIONAL GAS<br />

CHROMATOGRAPHY<br />

Two-dimensional gas chromatography was used for both quantitative and<br />

qualitative analyses. The following pages present the advanced characterization <strong>of</strong><br />

aromatic samples in more detail and include two-dimensional chromatograms from<br />

both the GC×GC-SCD/FID and GC×GC-TOFMS/FID instruments.<br />

Recently, some parameters <strong>of</strong> the CanmetENERGY GC×GC-SCD/FID<br />

instrument were changed. Details <strong>of</strong> changed operating conditions are listed in Table<br />

5 and Table 6. For the sake <strong>of</strong> completeness, we repeated all the GC×GC experiments<br />

for both <strong>Cosdenol</strong> <strong>180</strong> as well as <strong>RB</strong> <strong>Solvent</strong> using the new setup.<br />

CanmetENERGY–Devon


12<br />

PROTECTED BUSINESS INFORMATION<br />

Table 5 – Operating conditions for GC×GC-FID/SCD analysis (the most important<br />

discrepancies between previously reported and recent column conditions are<br />

marked in red).<br />

1 st column Varian factor 4 VF5-HT, 30 m x 0.32 mm DF: 0.1<br />

Main oven program 50C (1) to 350C (0) at 3C/min<br />

2 nd column BPX-50, 1.0 m x 0.1 DF: 0.1<br />

Secondary oven program 10C <strong>of</strong>fset from main oven<br />

Inlet temperature 350C<br />

Injection size 1 L<br />

Split ratio 50:1<br />

Carrier gas He, constant flow, 1.5 mL/min<br />

Modulator temperature 55C <strong>of</strong>fset from main oven<br />

Detector FID, 350°C with SCD adapter, 800°C<br />

Acquisition rate 100 Hz<br />

Modulation period 6 s<br />

Table 6 – Operating conditions for GC×GC-TOFMS/FID analysis (the most<br />

important discrepancies between previously reported and recent column<br />

conditions are marked in red).<br />

1 st column Varian factor 4 VF17-MS, 30 m x 0.32 mm DF:0.1<br />

Main oven program 50C (0.2) to 330C (9.8) at 3C/min<br />

2 nd column Varian Factor 4 VF5-HT,1.5 m x 0.1 DF:0.2<br />

Secondary oven program 20C <strong>of</strong>fset from main oven<br />

Inlet temperature 350C<br />

Injection size 0.2L<br />

Split ratio 20:1<br />

Carrier gas He, constant flow, 1.5 mL/min<br />

Modulator temperature 55C <strong>of</strong>fset from main oven<br />

Detector TOFMS and FID<br />

Acquisition rate 200 Hz<br />

Modulation period 10 s<br />

3.3.1 GC×GC-SCD/FID<br />

The CanmetENERGY GC×GC-FID instrument is equipped with a<br />

‘traditional’ column set combination (see Table 5). The first column is nonpolar and<br />

the second column is polar. Using this column combination, the first-dimension<br />

separation is governed by volatility and, consequently, a boiling point separation is<br />

CanmetENERGY–Devon


13<br />

PROTECTED BUSINESS INFORMATION<br />

obtained. The separation on the second column is dependent on specific relationships<br />

between the stationary phase and the analytes. This setup provides a structured group<br />

separation. Classifications <strong>of</strong> hydrocarbon type regions were created and are shown in<br />

Figure 8 and Figure 9. The ordered structures enable rapid pr<strong>of</strong>iling and<br />

quantification. Selected representatives from compound classes are shown in Figure<br />

10.<br />

All GC×GC-FID results presented in this report were based on neat<br />

(undiluted) samples. The compound classes presented in Figure 8 and Figure 10 were<br />

used for reporting the results <strong>of</strong> group type separations for all analyzed samples.<br />

Table 7 gives information on group type content obtained after GC×GC-FID<br />

analysis. The detailed tabulated quantitative and structural results are presented in<br />

Appendix C. Figure 11 –presents results from Table 7 in graphic form.<br />

Table 7 – Quantitative group type results <strong>of</strong> GC×GC-FID separation<br />

<strong>Cosdenol</strong> <strong>RB</strong> Solv CPChem<br />

Class<br />

<strong>180</strong><br />

200B Naphthalenes<br />

n-Paraffins 0.61 0.03 6.31<br />

iso-Paraffins 0.01 0.02 8.29<br />

Monocycloparaffins 0.14 0.04 4.18<br />

a6 13.73 33.26 5.92<br />

a6A5/a6A6 12.69 7.85 5.01<br />

a6a6 67.78 57.19 61.91<br />

a6A5a6 3.10 0.92 7.60<br />

a6a6a6 1.68 0.64 0.77<br />

a6a6a6a5 0.23 0.06 0.00<br />

a6a6a6a6 0.03 0.00 0.00<br />

LUMP 0.00 0.00 0.00<br />

CanmetENERGY–Devon


14<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 8 – Schematic example <strong>of</strong> compound class distribution using traditional<br />

column set combination. Meaning <strong>of</strong> symbols: a6 – 6 carbon aromatics, A5 –<br />

5 carbon ring aliphatic, A6 – 6 carbon ring aliphatic.<br />

Figure 9 – Magnification <strong>of</strong> n-Paraffinic, iso-Paraffinic, and<br />

Monocycloparaffinic/olefinic regions<br />

CanmetENERGY–Devon


15<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 10 – Examples <strong>of</strong> compounds assigned to groups used in GC×GC-FID typing<br />

CanmetENERGY–Devon


Figure 11 – Graphic results <strong>of</strong> GC×GC-FID speciation<br />

16<br />

PROTECTED BUSINESS INFORMATION<br />

Running neat (undiluted) samples creates some problems connected with<br />

column and/or detector overloading. The example presented on Figure 12 for <strong>RB</strong><br />

<strong>Solvent</strong> 200B sample shows this situation. Such phenomena can result in significant<br />

shifting <strong>of</strong> the peak into different classification regions. It may be necessary to<br />

monitor such peaks and shift classification regions. On the other hand, samples can be<br />

diluted. However, running the GC after sample dilution can cause the loss <strong>of</strong><br />

information about less-concentrated species in the sample.<br />

CanmetENERGY–Devon


17<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 12 – Example <strong>of</strong> column overloading by biphenyl compounds in <strong>RB</strong> <strong>Solvent</strong><br />

sample<br />

Peak areas obtained after preprocessing with ChromaTOF s<strong>of</strong>tware were<br />

transferred into MATLAB ® and subjected to further processing. The first-dimension<br />

retention time was converted into a temperature scale using a correlation established<br />

between boiling point <strong>of</strong> n-paraffins and their retention time. This exercise allowed<br />

for presentation <strong>of</strong> GC×GC-FID maps in the boiling point domain. Additionally,<br />

component peaks found in chromatograms were presented in bubble plot form, where<br />

the size <strong>of</strong> the bubble is related to the component concentration. This type <strong>of</strong><br />

visualization was used in a previous report for <strong>Cosdenol</strong> <strong>180</strong> and <strong>RB</strong> <strong>Solvent</strong> 200B.<br />

However, due to chromatographic condition changes we present new results in Figure<br />

13, Figure 14, and Figure 15. Most <strong>of</strong> the hydrocarbon species fall into the diaromatic<br />

region <strong>of</strong> the chromatographic map (green bubbles). At this level <strong>of</strong> analysis,<br />

however, the exact natures <strong>of</strong> the chemical species are not clear. GC×GC–TOFMS<br />

and GC-FIMS experiments confirmed that the CPChem sample consists <strong>of</strong> alkylated<br />

naphthalenes. On the other hand, the diaromatic region in the <strong>Cosdenol</strong> <strong>180</strong> and <strong>RB</strong><br />

<strong>Solvent</strong> samples consists mostly <strong>of</strong> biphenyls and/or diphenyl alkanes.<br />

CanmetENERGY–Devon


18<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 13 – GC×GC-FID bubble plot chromatograms <strong>of</strong> <strong>Cosdenol</strong> <strong>180</strong> with selected<br />

classification groups<br />

Figure 14 – GC×GC-FID bubble plot chromatograms <strong>of</strong> <strong>RB</strong> <strong>Solvent</strong> 200B with<br />

selected classification groups<br />

CanmetENERGY–Devon


19<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 15 – GC×GC-FID bubble plot chromatograms <strong>of</strong> CPChem Naphthalenes with<br />

selected classification groups<br />

Based on GC×GC-SCD analysis we could detect different kinds <strong>of</strong> sulfur<br />

classes in analyzed samples. It can be seen from Figure 16 that there are significant<br />

differences in the sulfur contents <strong>of</strong> the streams. The first samples, <strong>Cosdenol</strong> <strong>180</strong> and<br />

<strong>RB</strong> <strong>Solvent</strong> 200, contain no sulfur or negligible amounts, whereas the CPChem<br />

Naphthalenes sample contains almost 400 ppm sulfur, distributed mostly between two<br />

groups, benzothiophenes and dibenzothiophenes.<br />

CanmetENERGY–Devon


20<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 16 – Chromatograms <strong>of</strong> analyzed samples obtained by GC×GC-SCD, with<br />

two sulfur classes found in the CPChem sample<br />

3.3.2 GC×GC-TOFMS/FID<br />

The CanmetENERGY GC×GC-TOFMS/FID instrument is equipped with a<br />

‘reversed’ column set combination (see Table 6), where first column is a long polar<br />

column and the second is a short nonpolar column. In this case, separation will be<br />

primarily governed by the specific interactions between analytes and the column’s<br />

polar stationary phase. Figure 17 provides a quick reference illustrating distinctions<br />

between chromatograms obtained using the ‘normal’ and ‘reversed’ column setups.<br />

CanmetENERGY–Devon


CanmetENERGY–Devon<br />

21<br />

PROTECTED BUSINESS INFORMATION<br />

Saturates<br />

Aromatics<br />

a) b)<br />

Figure 17 – Examples <strong>of</strong> GC×GC-TOFMS/FID chromatograms: (a) ‘normal’ column<br />

combination (b) ‘reversed’ column combination<br />

The previous report 1 contained a detailed description <strong>of</strong> GC×GC-TOFMS<br />

results for <strong>Cosdenol</strong> <strong>180</strong> and <strong>RB</strong> <strong>Solvent</strong> 200B. However, in Figure 18 the GC×GC-<br />

TOFMS/FID chromatograms for all samples are presented with key regions selected.<br />

The circled areas enable the reader to quickly determine important differences<br />

between all these samples. Images were digitally enhanced and the color scale was<br />

unified.<br />

1<br />

http://www.crcao.org/news/FACE/HC%20Characterization%20<strong>of</strong>%20FACE%20Fairbridge201<br />

0.pdf


22<br />

PROTECTED BUSINESS INFORMATION<br />

a) b)<br />

Figure 18 – The GC×GC-TOFMS/FID chromatograms with selected hydrocarbon<br />

group types: (a) <strong>Cosdenol</strong> <strong>180</strong>, (b) <strong>RB</strong> <strong>Solvent</strong> 200B, (c) CPChem<br />

Naphthalenes. Region meanings: 1: Tetraethylbenzene, 2: 1,1’diphenylethane,<br />

3: C2-C3 1,1’-diphenylethanes, 4: dimethylbenzene, 5: C11alkylbenzenes,<br />

6: C2-C5 1,1’-diphenylethanes, 7: i+n-paraffines, 8:<br />

naphthalene, 9:methylnaphthalenes, 10: C2 alkylnaphthalenes, 11: C3-C5<br />

alkylnaphthalenes<br />

The GC×GC-TOFMS provides a large amount <strong>of</strong> structural information on<br />

compounds present in the sample. Species are usually identified by searching for<br />

matching spectra in the U.S. National Institute <strong>of</strong> Standards and Technology (NIST)<br />

mass spectral libraries. The main difficulty after library searching is connected with<br />

authentication <strong>of</strong> the results obtained. In many cases, accurate name attribution <strong>of</strong> a<br />

detected peak was impossible owing to the small quantity <strong>of</strong> analyte, the absence <strong>of</strong><br />

an appropriate mass spectrum in the spectrometry library, or mass spectrum<br />

similarities between isomers. As an example, we had to assign hydrocarbon<br />

CanmetENERGY–Devon<br />

c)


23<br />

PROTECTED BUSINESS INFORMATION<br />

compounds to peaks found in <strong>Cosdenol</strong> <strong>180</strong> and <strong>RB</strong> <strong>Solvent</strong> 200B, which were<br />

recognized after analysis as diphenyls. Figure 19 (on the left) shows mass spectra that<br />

look the same for three different chemical compounds (biphenyl, acenaphthene, 2ethenyl<br />

naphthalene).<br />

Figure<br />

19 – Examples <strong>of</strong> mass spectra for selected species. On the left: diphenyl,<br />

acenaphthene and 2-ethenyl naphthalene.<br />

Total ion chromatography (TIC) provides information similar to that obtained<br />

using other GC detectors (see Figure 18). However, very <strong>of</strong>ten (but not always) we<br />

can obtain more structural, convenient, and easier-to-interpret results by extracting<br />

selected ion chromatograms (SIC). An example <strong>of</strong> such a methodology applied to<br />

samples in this report is presented in Figure 20. The first row <strong>of</strong> Figure 20 clearly<br />

shows paraffinic hydrocarbons in the CPChem Naphthalenes sample (selected ions:<br />

57 and 71). The second row shows olefinic and/or naphthene species; the third row,<br />

multi-branch alkylbenzenes; and the last row (selected ion 91 as well as 105), lower-<br />

CanmetENERGY–Devon


24<br />

PROTECTED BUSINESS INFORMATION<br />

branch alkylbenzenes, and straight-chain diphenylalkanes. Mass spectra used in<br />

differentiation <strong>of</strong> multi- or lower-branch alkylbenzenes are presented in Figure 21.<br />

<strong>Cosdenol</strong> <strong>180</strong><br />

57, 71<br />

55, 69, 97<br />

133<br />

91<br />

<strong>RB</strong> solvent 200B CPChem<br />

Figure 20 – Selected ion chromatograms (SIC) for analyzed samples. Columns (from<br />

left): <strong>Cosdenol</strong> <strong>180</strong>, <strong>RB</strong> <strong>Solvent</strong> 200B, CRChem Naphthalenes. Rows (from<br />

top): selected ions: 57+71, 55+69+97, 133, and 91.The color scale is<br />

maintained in the same range for all the chromatograms.<br />

CanmetENERGY–Devon


25<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 21 – Examples <strong>of</strong> mass spectra <strong>of</strong> selected multi-branch alkylbenzene isomers<br />

(on the left) and lower-branch alkylbenzenes (on the right).<br />

Figure 22 shows a sum <strong>of</strong> mass 128 and a set <strong>of</strong> monoisotopic masses 141,<br />

155, 169, 183, 197 and 211. Such mass combination exemplifies m/z values that are<br />

characteristic <strong>of</strong> the naphthalene group (ion selection was based on retrospective<br />

analysis <strong>of</strong> mass spectra <strong>of</strong> isomers <strong>of</strong> alkyl naphthalenes presented in part in Figure<br />

23). Therefore, we can now visually identify the position in the two-dimensional<br />

space that belongs to naphthalenes and distinguish them from biphenyls. <strong>Cosdenol</strong><br />

<strong>180</strong> includes intense peaks for selected ions, but peak position as well as mass spectra<br />

for these peaks exclude them as naphthalenes. On the other hand, the selected ions<br />

chromatogram for <strong>RB</strong> <strong>Solvent</strong> in Figure 22 clearly indicates a low concentration <strong>of</strong><br />

naphthalene compounds in the sample.<br />

CanmetENERGY–Devon


26<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 22 – Mass spectral filters applied to show C1–C4 alkyl-substituted<br />

naphthalenes in the analyzed samples<br />

CanmetENERGY–Devon


27<br />

PROTECTED BUSINESS INFORMATION<br />

Figure 23 – Examples <strong>of</strong> mass spectra <strong>of</strong> selected isomers <strong>of</strong> naphthalenes: a)<br />

naphthalene, b) 1-methyl naphthalene, c) 1-propyl naphthalene, d) 2,3,6trimethyl<br />

naphthalene, e) 1-butyl-naphthalene, and f) 2-methyl-1-propyl<br />

naphthalene<br />

CanmetENERGY–Devon


4.0 CONCLUSIONS<br />

28<br />

PROTECTED BUSINESS INFORMATION<br />

This work provides advanced hydrocarbon characterization <strong>of</strong> the CPChem<br />

Naphthalenes stream and comparisons <strong>of</strong> the chemistries <strong>of</strong> a newly proposed fuel<br />

and older streams: <strong>Cosdenol</strong> <strong>180</strong> and <strong>RB</strong> <strong>Solvent</strong> 200B. The results presented in this<br />

report consist <strong>of</strong> data obtained using the following analytical techniques: GC-FIMS<br />

(gas chromatography–field ionization mass spectrometry) and GC×GC<br />

(comprehensive two-dimensional gas chromatography) with both SCD/FID and<br />

TOFMS. Detailed results including GC-FIMS and GCxGC-FID analyses are<br />

presented in the appendices.<br />

This report confirms that:<br />

- Both <strong>RB</strong> <strong>Solvent</strong> 200B and CPChem Naphthalenes have the same T10. On<br />

the other hand, the T90s for <strong>Cosdenol</strong> <strong>180</strong> and <strong>RB</strong> <strong>Solvent</strong> 200Bis the<br />

same, whereas the T90 for CPChem Naphthalenes is about 25°C lower.<br />

- There are significant differences in hydrocarbon contents <strong>of</strong> old and new<br />

streams.<br />

- Differences appear in the diaromatic region. The CPChem Naphthalenes<br />

sample consists mostly naphthalene while <strong>Cosdenol</strong> <strong>180</strong> and <strong>RB</strong> <strong>Solvent</strong><br />

200Bconsist mostly <strong>of</strong> diphenyls/biphenyls.<br />

- The saturates content (~27%) <strong>of</strong> CPChem Naphthalenes is high in<br />

comparison with the other two samples.<br />

- The CPChem Naphthalenes sample contains a meaningful concentration<br />

<strong>of</strong> organic sulfur, while <strong>Cosdenol</strong> <strong>180</strong> and <strong>RB</strong> <strong>Solvent</strong> 200Bcontain no<br />

sulfur at all.<br />

The diaromatics, in the form <strong>of</strong> naphthalenes like those in the newly proposed<br />

fuel source, provide good representation <strong>of</strong> the aromatic compounds found in<br />

commercial ULSDs. However, the concern is that these two groups <strong>of</strong> compounds<br />

(naphthalenes and diphenyls) could have considerably different physical properties or<br />

have different effects on engine combustion characteristics.<br />

CanmetENERGY–Devon


29<br />

PROTECTED BUSINESS INFORMATION<br />

We can not speculate on that in this report. The autoignition temperature, for<br />

example, for naphthalene and biphenyl is close, 530°C and 570°C, respectively.<br />

5.0 ACKNOWLEDGEMENTS<br />

The authors would like to acknowledge partial funding support from the<br />

Government <strong>of</strong> Canada’s Interdepartmental Program <strong>of</strong> Energy Research and<br />

Development, PERD 1.1.3. Petroleum Conversion for Cleaner Air.<br />

CanmetENERGY–Devon


CanmetENERGY–Devon<br />

30<br />

APPENDIX A: SIMDIS AST 2887<br />

PROTECTED BUSINESS INFORMATION


Table A 1 – Simulated distillation data<br />

31<br />

PROTECTED BUSINESS INFORMATION<br />

ID 100001041 100001044 LCO ID 100001041 100001044 LCO<br />

Client ID<br />

ASTM<br />

D2887<br />

Recovery<br />

Fraction<br />

COSDENOL<br />

<strong>180</strong><br />

<strong>RB</strong><br />

SOLVENT<br />

200B<br />

CRChem<br />

NAPHTHALENES Client ID<br />

Temperature Temperature Temperature<br />

ASTM D2887<br />

Recovery<br />

Fraction<br />

COSDENOL<br />

<strong>180</strong><br />

<strong>RB</strong><br />

SOLVENT<br />

200B<br />

CRChem<br />

NAPHTHALENES<br />

Temperature Temperature Temperature<br />

(wt%) (°C) (°C) (°C) (wt%) (°C) (°C) (°C)<br />

0.5 219 142.4 147.2 51 279.4 297.2 270.2<br />

1 222.4 142.4 170 52 280 297.2 271.4<br />

2 230.8 143.2 192.4 53 280.8 297.8 272.2<br />

3 239.6 172.2 207.6 54 282 298.4 272.8<br />

4 240.4 205 216.2 55 285.4 299.8 272.8<br />

5 241.8 210.4 227.8 56 289.4 300.4 273.4<br />

6 245.2 213.6 233.2 57 293.2 301.8 274<br />

7 249.2 219 233.8 58 294.6 302.4 274.8<br />

8 252.6 223.8 233.8 59 295.2 303 275.4<br />

9 254 228 234.6 60 295.2 303 276<br />

10 254.8 231.4 234.6 61 295.8 303.6 276.8<br />

11 254.8 234.2 236.6 62 295.8 304.4 277.4<br />

12 255.4 237.6 237.2 63 295.8 304.4 277.4<br />

13 255.4 242.4 237.2 64 295.8 305 278<br />

14 256 249.2 240.6 65 296.6 305.6 279.4<br />

15 256 256.8 244.8 66 296.6 307.6 280<br />

16 256 258 248 67 296.6 308.8 280.6<br />

17 257.4 262 250.8 68 297.2 310 281.2<br />

18 258.8 268 252.2 69 297.8 312 282<br />

19 263.4 272 252.8 70 299.8 312.6 282.6<br />

20 266 274 253.6 71 300.4 313.2 283.2<br />

21 268 275.4 254.2 72 300.4 313.2 284.6<br />

22 268.8 276.8 254.8 73 301 314 285.8<br />

23 268.8 278 254.8 74 301 314 287.2<br />

24 269.4 279.4 255.6 75 301.8 314.6 287.8<br />

25 269.4 280.8 255.6 76 302.4 315.2 287.8<br />

26 270 281.4 255.6 77 304.4 315.8 288.4<br />

27 270 282.8 256.2 78 305.6 316.6 289<br />

28 270 284 256.2 79 307.6 317.2 289.8<br />

29 270 284.8 256.8 80 308.8 317.8 290.4<br />

30 270 286 257.6 81 310.8 318.6 291.6<br />

31 270.8 286.8 257.6 82 312.6 320 292.4<br />

32 270.8 287.4 258.2 83 315.2 320.6 293.6<br />

33 270.8 288 258.2 84 316.6 321.4 295.6<br />

34 270.8 288.8 258.8 85 317.2 321.4 296.8<br />

35 270.8 289.4 258.8 86 320 322 298.8<br />

36 271.4 289.4 258.8 87 321.4 322 300.6<br />

CanmetENERGY–Devon


32<br />

PROTECTED BUSINESS INFORMATION<br />

37 271.4 290 258.8 88 322.6 322 302<br />

38 271.4 290 259.6 89 325.4 322.6 303.2<br />

39 271.4 290.6 259.6 90 327.6 322.6 303.8<br />

40 271.4 291.4 259.6 91 330.2 324 304.4<br />

41 271.4 292 259.6 92 333 324.8 305.8<br />

42 271.4 292.6 260.8 93 335.8 325.4 307.6<br />

43 272 293.2 261.6 94 339.8 326.8 309.6<br />

44 272 294 262.2 95 346.6 328.2 312.8<br />

45 272 295.2 262.2 96 351.8 328.8 315.2<br />

46 272 295.2 263.6 97 360.4 333 318<br />

47 273.4 295.8 264.2 98 376.2 346 322.8<br />

48 275.4 296.6 265.6 99 397.8 369.6 330.2<br />

49 277.4 296.6 267.6 99.5 412.2 389.4 337<br />

50 278 296.6 268.8<br />

CanmetENERGY–Devon


CanmetENERGY–Devon<br />

33<br />

APPENDIX B: GC-FIMS<br />

PROTECTED BUSINESS INFORMATION


Table B 1 – GC-FIMS data for CPChem Naphthalene sample<br />

CanmetENERGY–Devon<br />

34<br />

PROTECTED BUSINESS INFORMATION


35<br />

PROTECTED BUSINESS INFORMATION<br />

APPENDIX C: GCXGC-SCD/FID GROUP TYPE ANALYSIS<br />

CanmetENERGY–Devon


Table C 1 – GCxGC –SCD/FID hydrocarbon type analysis<br />

36<br />

COSDENOL <strong>180</strong> <strong>RB</strong> SOLVENT 200B<br />

PROTECTED BUSINESS INFORMATION<br />

CRChem<br />

NAPHTHALENES<br />

Area<br />

Area<br />

Area<br />

Class Area (%) Area (%) Area (%)<br />

Cyc-C10 2630 0.00 3863 0.00 14715 0.00<br />

Cyc-C11 4629 0.00 10232 0.00 37307 0.01<br />

Cyc-C12 41853 0.01 10605 0.00 493258 0.08<br />

Cyc-C13 296941 0.04 93926 0.01 1359730 0.21<br />

Cyc-C14 512879 0.07 1452 0.00 3070597 0.47<br />

Cyc-C15 99883 0.01 53532 0.01 6675286 1.02<br />

Cyc-C16 10648 0.00 8121 0.00 5271918 0.81<br />

Cyc-C17 4581 0.00 6376 0.00 5175330 0.79<br />

Cyc-C18 10941 0.00 1472 0.00 3360283 0.52<br />

Cyc-C19 2322 0.00 566 0.00 1460671 0.22<br />

Cyc-C20 1869 0.00 103 0.00 304061 0.05<br />

Cyc-C21 0 0.00 0 0.00 32994 0.01<br />

Cyc-C22 0 0.00 110 0.00 1339 0.00<br />

Cyc-C23 0 0.00 1751 0.00 387 0.00<br />

Cyc-C24 0 0.00 77 0.00 0 0.00<br />

Cyc-C25 0 0.00 10409 0.00 0 0.00<br />

Cyc-C26 0 0.00 11588 0.00 0 0.00<br />

Cyc-C27 0 0.00 9630 0.00 0 0.00<br />

Cyc-C28 0 0.00 9360 0.00 0 0.00<br />

Cyc-C29 0 0.00 7110 0.00 0 0.00<br />

Cyc-C30 0 0.00 5144 0.00 0 0.00<br />

Cyc-C31<br />

Monocycloparaffins<br />

0 0.00 794 0.00 0 0.00<br />

(total) 989176 0.14 246219 0.04 27257878 4.18<br />

LUMP 22044 0.00 15020 0.00 10671 0.00<br />

a6-C1 50579 0.01 28375 0.00 326876 0.05<br />

a6-C2 209329 0.03 18442982 2.76 1877277 0.29<br />

a6-C3 4609 0.00 1345167 0.20 4565915 0.70<br />

a6-C4 601159 0.09 3901900 0.58 5574508 0.85<br />

a6-C5 268174 0.04 19274120 2.89 4495525 0.69<br />

a6-C6 13388999 1.93 20589533 3.08 5786895 0.89<br />

a6-C7 71373826 10.28 14452513 2.16 6902450 1.06<br />

a6-C8 6332174 0.91 8762788 1.31 4866007 0.75<br />

a6-C9 2598310 0.37 63613504 9.53 2258053 0.35<br />

a6-C10 369723 0.05 71445454 10.70 1055589 0.16<br />

a6-C11 85587 0.01 219563 0.03 714657 0.11<br />

a6-C12 0 0.00 494 0.00 213838 0.03<br />

a6-C13 0 0.00 78 0.00 0 0.00<br />

a6-C14 0 0.00 288 0.00 0 0.00<br />

a6-C15 0 0.00 40714 0.01 0 0.00<br />

a6-C16 0 0.00 1774 0.00 0 0.00<br />

a6 (total) 95282468 13.73 222119247 33.26 38637591 5.92<br />

CanmetENERGY–Devon


37<br />

PROTECTED BUSINESS INFORMATION<br />

a6A5/a6A6-1 38119952 5.49 25356196 3.80 25200580 3.86<br />

a6A5/a6A6-2 49945512 7.19 26974746 4.04 7503313 1.15<br />

a6A5/a6A6-3 0 0.00 70199 0.01 0 0.00<br />

a6A5/a6A6 (total) 88065464 12.69 52401141 7.85 32703894 5.01<br />

a6A5a6-1 28 0.00 32 0.00 0 0.00<br />

a6A5a6-2 2319 0.00 7690 0.00 1959487 0.30<br />

a6A5a6-3 733756 0.11 130072 0.02 17852640 2.74<br />

a6A5a6-4 491113 0.07 4591 0.00 19852246 3.04<br />

a6A5a6-5 5402642 0.78 47679 0.01 8420561 1.29<br />

a6A5a6-6 13933122 2.01 5879639 0.88 1482472 0.23<br />

a6A5a6-7 972979 0.14 93000 0.01 0 0.00<br />

a6A5a6 (total) 21535958 3.10 6162703 0.92 49567406 7.60<br />

a6a6-C0 2039 0.00 643700 0.10 2773679 0.43<br />

a6a6-C1 483188 0.07 4042520 0.61 46239851 7.09<br />

a6a6-C2 3697499 0.53 10674035 1.60 162065502 24.85<br />

a6a6-C3 201226798 28.99 18494963 2.77 121819665 18.68<br />

a6a6-C4 94742234 13.65 78875999 11.81 51606560 7.91<br />

a6a6-C5-C14 170237522 24.52 268920281 40.27 19279971 2.96<br />

a6a6-C15+ 112554 0.02 285428 0.04 0 0.00<br />

a6a6 (total) 470501834 67.78 381936927 57.19 403785227 61.91<br />

a6a6a6-1 30551 0.00 31026 0.00 3001479 0.46<br />

a6a6a6-2 306985 0.04 177600 0.03 1677542 0.26<br />

a6a6a6-3 625300 0.09 933529 0.14 337865 0.05<br />

a6a6a6-4 1113702 0.16 1529115 0.23 19418 0.00<br />

a6a6a6-5 9553818 1.38 16<strong>180</strong>15 0.24 0 0.00<br />

a6a6a6 (total) 11630356 1.68 4289285 0.64 5036303 0.77<br />

a6a6a6a5-1 0 0.00 61 0.00 0 0.00<br />

a6a6a6a5-2 20 0.00 22 0.00 0 0.00<br />

a6a6a6a5-3 98302 0.01 6550 0.00 1400 0.00<br />

a6a6a6a5-4 177108 0.03 32094 0.00 0 0.00<br />

a6a6a6a5-5 412067 0.06 46859 0.01 0 0.00<br />

a6a6a6a5-6 258707 0.04 150809 0.02 0 0.00<br />

a6a6a6a5-7 441461 0.06 93004 0.01 0 0.00<br />

a6a6a6a5-8 208756 0.03 57349 0.01 0 0.00<br />

a6a6a6a5 (total) 1596421 0.23 386747 0.06 1400 0.00<br />

a6a6a6a6 241765 0.03 4151 0.00 0 0.00<br />

iP-C7 0 0.00 11674 0.00 193366 0.03<br />

iP-C8 45188 0.01 6244 0.00 369914 0.06<br />

iP-C9 12381 0.00 1366 0.00 677395 0.10<br />

iP-C10 5955 0.00 39775 0.01 1036975 0.16<br />

iP-C11 3458 0.00 7479 0.00 1164127 0.18<br />

iP-C12 5933 0.00 165 0.00 1539904 0.24<br />

iP-C13 1925 0.00 713 0.00 <strong>180</strong>9764 0.28<br />

iP-C14 443 0.00 1785 0.00 8851369 1.36<br />

iP-C15 56 0.00 237 0.00 13162047 2.02<br />

iP-C16 867 0.00 5393 0.00 10838251 1.66<br />

iP-C17 409 0.00 510 0.00 7164292 1.10<br />

iP-C18 2766 0.00 3260 0.00 4533738 0.70<br />

CanmetENERGY–Devon


38<br />

PROTECTED BUSINESS INFORMATION<br />

iP-C19 9725 0.00 1834 0.00 2052548 0.31<br />

iP-C20 1705 0.00 575 0.00 581223 0.09<br />

iP-C21 1435 0.00 422 0.00 78086 0.01<br />

iP-C22 30 0.00 3603 0.00 10648 0.00<br />

iP-C23 0 0.00 7046 0.00 3938 0.00<br />

iP-C24 0 0.00 9636 0.00 935 0.00<br />

iP-C26 0 0.00 2347 0.00 0 0.00<br />

iP-C27 0 0.00 <strong>180</strong>5 0.00 0 0.00<br />

iP-C28 0 0.00 1788 0.00 0 0.00<br />

iP-C30 0 0.00 505 0.00 0 0.00<br />

iso-Paraffins (total) 92274 0.01 108162 0.02 54068520 8.29<br />

n-C5 650971 0.09 10883 0.00 88577 0.01<br />

n-C6 3550992 0.51 10673 0.00 591133 0.09<br />

n-C8 0 0.00 838 0.00 115118 0.02<br />

n-C9 0 0.00 118364 0.02 256917 0.04<br />

n-C7 0 0.00 5241 0.00 54632 0.01<br />

n-C10 521 0.00 4663 0.00 143099 0.02<br />

n-C11 0 0.00 263 0.00 227959 0.03<br />

n-C12 350 0.00 2312 0.00 76622 0.01<br />

n-C13 441 0.00 1418 0.00 1147242 0.18<br />

n-C14 92 0.00 1318 0.00 6721253 1.03<br />

n-C15 625 0.00 1056 0.00 9247804 1.42<br />

n-C16 944 0.00 1472 0.00 8934301 1.37<br />

n-C17 1923 0.00 1301 0.00 7204100 1.10<br />

n-C18 6275 0.00 1520 0.00 4464225 0.68<br />

n-C19 1462 0.00 456 0.00 1497537 0.23<br />

n-C20 882 0.00 598 0.00 330514 0.05<br />

n-C21 419 0.00 1148 0.00 44646 0.01<br />

n-C22 208 0.00 1408 0.00 853 0.00<br />

n-C23 252 0.00 2945 0.00 383 0.00<br />

n-C24 0 0.00 3966 0.00 0 0.00<br />

n-C25 0 0.00 2634 0.00 0 0.00<br />

n-C26 0 0.00 4864 0.00 0 0.00<br />

n-C27 0 0.00 2676 0.00 0 0.00<br />

n-C28 0 0.00 2956 0.00 0 0.00<br />

n-C29 0 0.00 1775 0.00 0 0.00<br />

n-C30 0 0.00 899 0.00 0 0.00<br />

n-Paraffins (total) 4216357 0.61 187646 0.03 41146914 6.31<br />

CanmetENERGY–Devon


CanmetENERGY–Devon<br />

39<br />

PROTECTED BUSINESS INFORMATION<br />

Figure C 1 – Two- and three-dimensional representations <strong>of</strong> GCxGC-FID<br />

chromatograms <strong>of</strong> analyzed samples

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!