29.06.2013 Views

SBRT&StereoscopicIGRT_2012 [Compatibility Mode]

SBRT&StereoscopicIGRT_2012 [Compatibility Mode]

SBRT&StereoscopicIGRT_2012 [Compatibility Mode]

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IGRT and SBRT Programs with<br />

Siemens Accelerators and ExacTrac<br />

ExacTrac<br />

Stereoscopic XX-ray<br />

XX-ray<br />

ray System<br />

System<br />

Dimitris Mihailidis Mihailidis, , Ph.D.<br />

Charleston Radiation Therapy, Charleston, West Virginia<br />

QUESTION:<br />

Can Stereoscopic x-Ray IG Technology convert a<br />

conventional Siemens (Primus or Oncor) linac into<br />

a “precision” IG - SBRT delivery machine ?<br />

Description of the Systems<br />

BrainLab ExacTrac System:<br />

Two X-ray tubes.<br />

Two amorphous silicon detectors (20x20 cm 2 ).<br />

Infrared Polaris system.<br />

Touch screen and arm.<br />

512x512 Matrix<br />

X-Ray phantom.<br />

ISO phantom.<br />

Rando pelvis phantom.<br />

Reference star or markers.<br />

Linear Accelerators with features<br />

specifically suitable for SBRT<br />

* Slide courtesy of Brian Kavanagh / University of Colorado<br />

Introduction and Purpose<br />

Implement Image Guidance (IG) on a<br />

Siemens Linac (Primus or Oncor).<br />

Necessary components to include for IG<br />

upgrade.<br />

<strong>Compatibility</strong> of components to provide an<br />

IG solution.<br />

Transition to an SBRT program.<br />

Siemens PRIMUS with ExacTrac System<br />

In-room monitor<br />

Infrared camera<br />

Imaging<br />

panels<br />

X-ray tube<br />

1


Siemens linac preparation<br />

Gantry rotation – radiation isocenter<br />

X-Jaws 1.02 mm<br />

Y-Jaws 0.06 mm<br />

TG-142 requirements for IMRT & SBRT:<br />

Mechanical and radiation isocenter verification:<br />

Gantry rotation (


Scan direction<br />

MLC picket fence test for Siemens<br />

center-to-center<br />

2 cm<br />

The Technology at CRTC for SBRT<br />

• Siemens Primus and Oncor Linacs.<br />

Scan direction<br />

• Philips large bore CT simulator (4D-CT capability).<br />

• Philips Pinnacle 3 Treatment Planning System.<br />

• BrainLab ExacTrac 6D-Stereoscopic X-ray Image<br />

Guidance System.<br />

Planning System Commissioning<br />

Philips Pinnacle Pinnacle3 v8.0m with with DMPO in in<br />

step step-and and-shoot shoot mode.<br />

Have strong<br />

and<br />

frequent engineering support !<br />

Move on with SBRT<br />

Utilize more accurate patient immobilization<br />

devices.<br />

Utilized 4D-CT simulation for appropriate sites<br />

(e.g., lung, liver, etc), ITV approach.<br />

Utilized highly conformal multi-beam treatment<br />

planning and intensity modulation.<br />

Utilized image guidance for patient daily setup.<br />

Utilized on-line patient surveillance and setup<br />

correction during treatment.<br />

Utilized 5 and 10 mm MLC width for delivery.<br />

Small field size measurements<br />

<strong>Mode</strong>l fit to the data<br />

BEAM MODEL<br />

3


DMPO<br />

1.00<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

Small field size measurements<br />

OUTPUT FACTORS<br />

0.1cc Scanning IC<br />

Diode Perp. (norm to 5x5)<br />

Microchamber<br />

XV Film<br />

Small fields-MLC shaped<br />

Pinnacle Hi Res<br />

Pinnacle Lo Res<br />

0.40<br />

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00<br />

Direct irect Machine achine Parameter arameter Optimization ptimization<br />

• DMPO produces final segments at the end of the<br />

optimization process. NO conversion is required.<br />

Automatically converts the ODM to MLC control<br />

points.<br />

• The MLC leaf positions and the weights of the<br />

segments are optimized at once (equivalent to DAO).<br />

• The time to prepare a plan is substantially reduced in<br />

DMPO.<br />

• You can filter the final control points according to<br />

area and monitor units.<br />

Dosimetric Comparison of MLC systems<br />

Linac MLC system MLC width<br />

Siemens Primus (X-jaws) Optifocus double-focused (divergent) - 58 leaves 10 mm<br />

Siemens Oncor (X-jaws) Double-focused (divergent)- 82 leaves 10 mm<br />

Siemens Artiste (X-jaws) 160MLC (rounded) - 160 leaves 5 mm<br />

Varian Trilogy (tertiary) Millennium (rounded) - 120 leaves 5 mm<br />

Elekta Synergy-S BM Beam Modulator (rounded) - 80 leaves 4 mm<br />

Elekta Synergy Elekta MLC (rounded) - 80 leaves 10 mm<br />

Novalis TX (tertiary) HD micro-MLC – 120 leaves 2.5 mm<br />

Detectors for small field measurements<br />

How important is the MLC system in<br />

multi multi-beam beam SBRT treatment planning?<br />

Method of comparison<br />

“RING”: A special ring-structure around the TV, 1 cm expansion of<br />

the TV – to evaluate the sparing of normal structures adjacent to TV.<br />

________________________________________________________________<br />

CONFORMITY INDEX:<br />

TV = target volume<br />

PIV = prescription isodose volume<br />

PVTV = is the TV included in PIV<br />

Paddick, J. Neurosurg. (Suppl. 3) 93:219-222, 2000<br />

CI = ( PIV / PVTV ) / ( PVTV / TV )<br />

CI = 1, perfect conformity<br />

Nakamura JL, et al., Int. J. Radiat. Oncol. Biol.<br />

Phys. 51, 1313-1319 (2001).<br />

The IL was chosen according to the criteria:<br />

(1) being the greatest IL that covers 95% of TV while<br />

(2) delivering ≥95% of the prescription dose to 99% of the TV.<br />

4


CI<br />

Comparison: Conformity Index<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Conformity Index (CI)<br />

4.64 (Lung-3D) 4.64(Lung-IM) 7.63(Brain-IM) 9.85(Lung-3D) 25.78(Spine-IM)<br />

Target Volume (cc)<br />

3D-CRT vs. Intensity Modulation<br />

Mihailidis, et al., AAPM 2009, Med. Phys. 36, (2009) 2660<br />

Oncor (10mm)<br />

Artiste (5mm)<br />

Varian (5mm)<br />

NovalisTX (2.5mm)<br />

Synergy (10mm)<br />

SynergyBM (4mm)<br />

Comparison: MLC systems<br />

Mihailidis, et al., AAPM 2009, Med. Phys. 36, (2009) 2660<br />

LUNG: 3D CRT<br />

Oncor: 10 mm Novalis TX: 2.5 mm<br />

4500 cGy<br />

3600 cGy<br />

Conclusions of comparisons<br />

4275 cGy<br />

Our study is the first to include the majority of today’s MLC<br />

systems in a comprehensive way and has shown no apparent<br />

indication that smaller MLCs can lead to optimal plans, if<br />

multi-field techniques (IMRT or 3D) are utilized in SBRT.<br />

However, we believe that small tumor volumes would benefit<br />

from small MLC widths and single fraction SRS, instead.<br />

Tanyi, JA, Radiation Oncology 4:22 (2009)<br />

5mm Varian<br />

2.5mm Novalis TX<br />

Mihailidis, et al., AAPM 2009, Med. Phys. 36, (2009) 2660<br />

Comparisons: 3D conformal vs. Intensity Modulation<br />

V olum e (% )<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Peri-tunoral Ring Volume<br />

4.64 cc Lung target<br />

50%(IM) 80%(IM) 90%(IM) 50%(3D) 80%(3D) 90%(3D)<br />

Isodose line<br />

Oncor (10mm)<br />

Artiste (5mm)<br />

Varian (5mm)<br />

NovalisTX (2.5mm)<br />

Synergy (10mm)<br />

SynergyBM (4mm)<br />

Mihailidis, et al., AAPM 2009, Med. Phys. 36, (2009) 2660<br />

Comparison: Lung IMRT- IMRT all MLC systems<br />

10mm<br />

5mm 2.5mm<br />

10mm 5mm<br />

4mm<br />

Mihailidis, et al., AAPM 2009, Med. Phys. 36, (2009) 2660<br />

SBRT – LUNG<br />

NO – GATING!<br />

WHY ?<br />

100% Rx<br />

90% Rx<br />

80% Rx<br />

50% Rx<br />

5


Patient Immobilization<br />

With arms over the head.<br />

Flat lung board with T-bar holder for the arms.<br />

Vacuum Bag<br />

Maximum Intensity Projection (MIP)<br />

CT data is acquired using a Bellows or RPM<br />

device that records a breathing wave.<br />

Maximum intensity values are assigned to pixels<br />

at locations where a tumor moves to over time.<br />

Are a derived dataset of images that show a<br />

“composite” of the tumor volume over the time<br />

period that the CT data was acquired.<br />

4D CT Simulation for LUNG SBRT<br />

CT Scanning procedure for moving target<br />

One free breathing scan – 3 mm slices, entire chest.<br />

One shorter, time-correlated scan – 3 mm slices, to<br />

include the tumor area.<br />

Breathing Waveform is acquired along with CT data<br />

using a Bellows or RPM device.<br />

The CT data acquired in one breath can be binned into<br />

10 equally spaced intervals along the waveform and<br />

reconstructed.<br />

The 10 intervals are called Phases.<br />

Moving Target virtual simulation - Fusion<br />

GTV<br />

MIP dataset<br />

Volume propagation from MIP dataset<br />

to<br />

free breathing dataset<br />

ITV<br />

Free Breathing<br />

dataset<br />

6


Treatment planning<br />

DMPO - optimization<br />

SBRT - LUNG<br />

Patient setup verification<br />

prior to treatment<br />

IMAGE GUIDANCE<br />

Multiple non-coplanar beams<br />

PTV=ITV + 5mm margin<br />

www.charlestonradiation.com<br />

WE HAVE NOTICED:<br />

2-3 segments allow for<br />

dose compensation due<br />

to lack of resolution of<br />

the 10mm leaf width.<br />

Mihailidis, et al., AAPM<br />

2009, Med. Phys. 36,<br />

(2009) 2660<br />

Allow for low low-level level Intensity Modulation<br />

Treatment Isocenter<br />

DVH results<br />

Step-and-shoot mode:<br />

• 2-3 segments per beam.<br />

• 50Gy in 5 fxs.<br />

• Optimization objectives<br />

-heart<br />

-ribs<br />

-normal tissues<br />

Mihailidis, et al., AAPM<br />

2009, Med. Phys. 36,<br />

(2009) 2660<br />

Ipsilateral lung<br />

ExacTrac setup for lung SBRT<br />

Virtual isocenter for IG<br />

ITV<br />

PTV 50Gy<br />

www.charlestonradiation.com<br />

ET reconstructed views<br />

7


ET x-ray<br />

DRR<br />

Before Fusion - misalignment<br />

After fusion – shifts to be implemented<br />

Match of x-ray and DRR<br />

SHIFTS<br />

Patient setup and immobilization<br />

ExacTrac IR markers<br />

www.charlestonradiation.com<br />

Excluded from fusion area<br />

Fusion preparation<br />

SBRT - Brain<br />

Fusion MRI – TP CT<br />

TP CT MRI<br />

Vargo J, Plants B, Welch C, Mihailidis D, et al., ASTRO 2010, IJROBP 78 (No. 3 Suppl), S279 (2010)<br />

8


SBRT brain positioning and planning<br />

Multiple non-coplanar beams<br />

Vargo J, Plants B, Welch C, Mihailidis D, et al., ASTRO 2010, IJROBP 78 (No. 3 Suppl), S279 (2010)<br />

DRR<br />

x-ray<br />

DRR<br />

SBRT - BRAIN<br />

Patient setup verification<br />

prior to treatment<br />

IMAGE GUIDANCE<br />

Fusion<br />

x-ray AFTER<br />

SHIFTS<br />

BEFORE<br />

www.charlestonradiation.com<br />

Prescription:<br />

40 Gy in 5 fxs<br />

788 MU<br />

Sample isodose and DVH<br />

PTV<br />

Vargo J, Plants B, Welch C, Mihailidis D, et al., ASTRO 2010, IJROBP 78 (No. 3 Suppl), S279 (2010)<br />

Patient setup with IR markers<br />

from TPS<br />

IR marker<br />

Continuous IG<br />

objectives<br />

www.charlestonradiation.com<br />

Allow for live patient survaillance with the IR<br />

camera and markers.<br />

Perform a second IG verification between<br />

treatment fields (residual shifts).<br />

Compare reference orthogonal treatment ports<br />

with orthogonal DRRs.<br />

Keep rotations to less than 3° if possible,<br />

otherwise…improvise.<br />

Wood Shims<br />

www.charlestonradiation.com<br />

9


6D-IGRT accuracy: Infrared vs. stereoscopic x-ray<br />

Conclusions<br />

ExacTrac Stereoscopic x-Ray IG system, in<br />

combination with other technologies, provides<br />

accurate IG that allows the implementation of an<br />

SBRT program,<br />

IF<br />

additional precautions are taken.<br />

6D-corrections and residual setup errors<br />

Comply with published recommendations:<br />

10


THANK YOU !<br />

NRAO Green Bank Observatory, West Virginia<br />

http://www.gb.nrao.edu/<br />

11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!