29.06.2013 Views

Effect of copper on composition, structural and optical properties of ...

Effect of copper on composition, structural and optical properties of ...

Effect of copper on composition, structural and optical properties of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Research Article Adv. Mat. Lett. 2013, 4(3), 225-229 ADVANCED MATERIALS Letters<br />

(D) <str<strong>on</strong>g>of</str<strong>on</strong>g> the films is estimated using Debye Scherrer’s<br />

formula [23],<br />

k<br />

D (1)<br />

cos<br />

where, k is the c<strong>on</strong>stant = 0.94, - the wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

radiati<strong>on</strong>, - the full width half maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

corresp<strong>on</strong>ding peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the XRD pattern <strong>and</strong> - the<br />

diffracti<strong>on</strong> angle.<br />

The micro strain () <strong>and</strong> the dislocati<strong>on</strong> density () <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the as grown films were estimated using the equati<strong>on</strong>s [24,<br />

25]<br />

cos<br />

<br />

<br />

4 <br />

<strong>and</strong><br />

1<br />

(3)<br />

2<br />

D<br />

The grain size, strain <strong>and</strong> dislocati<strong>on</strong> density are<br />

presented in Table 2. From this table, an appreciable<br />

increase in grain size is observed when comparing to the<br />

pure ZnTe films [26]. The observed phenomen<strong>on</strong> is due to<br />

the thin <str<strong>on</strong>g>copper</str<strong>on</strong>g> layer, which is known to be a good<br />

stimulator for grain growth in ZnTe films [22]. The<br />

decrease in grain size by increasing the ZnTe film thickness<br />

may be due to the decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>copper</str<strong>on</strong>g> compositi<strong>on</strong> <strong>and</strong> as<br />

well as the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> ZnTe compositi<strong>on</strong>.<br />

Table 2. Structural parameters <strong>and</strong> b<strong>and</strong> gap energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>copper</str<strong>on</strong>g> doped<br />

ZnTe thin films <str<strong>on</strong>g>of</str<strong>on</strong>g> different thicknesses.<br />

Thicknes<br />

s (Å)<br />

650<br />

1000<br />

3300<br />

hkl Grain<br />

size<br />

D (Å)<br />

006<br />

009<br />

0010<br />

009<br />

0010<br />

111<br />

Optical <strong>properties</strong><br />

816<br />

1002<br />

1715<br />

532<br />

952<br />

196<br />

Strain <br />

10 -3 (lin -<br />

2 m 4 )<br />

0.425<br />

0.346<br />

0.202<br />

0.651<br />

0.364<br />

1.769<br />

Dislocatio<br />

n density<br />

<br />

10 14<br />

(lin/m 2 )<br />

1.502<br />

0.996<br />

0.340<br />

3.533<br />

1.103<br />

26.030<br />

(2)<br />

B<strong>and</strong><br />

gap<br />

energ<br />

y (eV)<br />

2.17<br />

2.15<br />

2.00<br />

Fig. 2 shows the transmittance spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>copper</str<strong>on</strong>g> doped<br />

ZnTe films. It is clearly observed that these films have very<br />

low transmittance when compared to the pure ZnTe films<br />

[26]. This decrease in the transmissi<strong>on</strong> can be attributed to<br />

the introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> impurity level between valance b<strong>and</strong><br />

<strong>and</strong> c<strong>on</strong>ducti<strong>on</strong> b<strong>and</strong> [27, 28]. The transmittance in the<br />

higher wavelength range is less than that <str<strong>on</strong>g>of</str<strong>on</strong>g> pure ZnTe<br />

films. This may be due to the fact that <str<strong>on</strong>g>copper</str<strong>on</strong>g> doped ZnTe<br />

films had higher carrier c<strong>on</strong>centrati<strong>on</strong> than pure ZnTe<br />

films, as absorpti<strong>on</strong> in the near-infrared regi<strong>on</strong> is mainly<br />

due to free carriers [29]. This is in good agreement with the<br />

earlier investigati<strong>on</strong> [30].<br />

The decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> transmittance at higher doping levels<br />

may be attributed to the increased scattering <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s by<br />

crystal defects created by doping. The free carrier<br />

absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong>s` may also c<strong>on</strong>tribute to the<br />

observed reducti<strong>on</strong> in the <strong>optical</strong> transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavily<br />

doped films [31-33].<br />

500 1000 1500 2000 2500<br />

Adv. Mat. Lett. 2013, 4(3), 225-229 Copyright © 2013 VBRI press.<br />

%T<br />

40<br />

30<br />

20<br />

10<br />

0<br />

W a v e l e n g t h ( n m )<br />

Fig. 2. Transmittance spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>copper</str<strong>on</strong>g> doped ZnTe films.<br />

Extincti<strong>on</strong> Coefficient (K f )<br />

1.5<br />

1.0<br />

0.5<br />

650 Å<br />

1000 Å<br />

3300 Å<br />

0.0<br />

400 500 600 700 800<br />

W a v e l e n g t h ( n m )<br />

650 Å<br />

1000 Å<br />

3300 Å<br />

Fig. 3. Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extincti<strong>on</strong> coefficient (k) <strong>on</strong> wavelength for <str<strong>on</strong>g>copper</str<strong>on</strong>g><br />

doped ZnTe films.<br />

The total absorpti<strong>on</strong> coefficient was calculated from<br />

transmittance measurements with the aid <str<strong>on</strong>g>of</str<strong>on</strong>g> the expressi<strong>on</strong><br />

[34]<br />

4kf = <br />

<br />

The extincti<strong>on</strong> co-efficient (k f ) can be calculated from<br />

the relati<strong>on</strong><br />

k<br />

f<br />

1<br />

2.303 log( )<br />

T0<br />

<br />

4<br />

t

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!