28.06.2013 Views

Nano-Photonics and Plasmonics in COMSOL Multiphysics

Nano-Photonics and Plasmonics in COMSOL Multiphysics

Nano-Photonics and Plasmonics in COMSOL Multiphysics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nano</strong>-<strong>Photonics</strong> <strong>and</strong> <strong>Plasmonics</strong> <strong>in</strong><br />

<strong>COMSOL</strong> <strong>Multiphysics</strong><br />

Speaker: Dr. Thierry Luthy (<strong>COMSOL</strong> GmbH, Zurich)<br />

Credits: Dr. Yaroslav Urzhumov (<strong>COMSOL</strong> Inc, Los Angeles)<br />

ETH Zürich<br />

08.07.2009


Outl<strong>in</strong>e<br />

<strong>COMSOL</strong> product overview: company, product <strong>and</strong> RF module<br />

DEMO: An illustrated surface plasmon example<br />

Deal<strong>in</strong>g with periodicity, dispersion <strong>and</strong> <strong>in</strong>f<strong>in</strong>ity<br />

Customiz<strong>in</strong>g equations<br />

Equation-based model<strong>in</strong>g<br />

complexity


Introduction <strong>COMSOL</strong><br />

Basic concepts<br />

Product structure<br />

The RF module


The <strong>Multiphysics</strong> perspective<br />

Mechanics<br />

Fluid Dynamics<br />

Electrodynamics Heat<br />

<strong>Multiphysics</strong><br />

Chemical Reactions Acoustics<br />

User def<strong>in</strong>ed PDE<br />

Beneficial for both s<strong>in</strong>gle- <strong>and</strong> multi-field analysis:<br />

Reality, Flexibility, Synergy, Openness


<strong>COMSOL</strong> - the <strong>Multiphysics</strong> people<br />

Sp<strong>in</strong>-off of KTH Stockholm (1986)<br />

Science & Eng<strong>in</strong>eer<strong>in</strong>g Software<br />

today 16 branch offices<br />

worldwide net of distributors<br />

12’500 licenses <strong>and</strong> 50’000 users<br />

annual growth <strong>in</strong> CH ~36%


<strong>COMSOL</strong> <strong>Multiphysics</strong> Product Structure


<strong>Plasmonics</strong> model challenges <strong>and</strong> their <strong>COMSOL</strong><br />

solutions<br />

Large field discont<strong>in</strong>uities, currents <strong>and</strong> charges on<br />

curved boundaries<br />

Automatically <strong>and</strong> accurately h<strong>and</strong>led by Vector Element FEM;<br />

both FD <strong>and</strong> TD<br />

Accurate spectra, effective medium parameters Parametric sweeps, or solve once for one wavelength<br />

Temporal dispersion model FEFD method needs only ε c (ω)<br />

Light scatter<strong>in</strong>g Scattered field formulation<br />

Inf<strong>in</strong>itely extended doma<strong>in</strong>s <strong>and</strong> objects Scatter<strong>in</strong>g/Matched b.c., PMLs, Impedance b.c.<br />

Radiation <strong>and</strong> scatter<strong>in</strong>g cross-sections Far Field <strong>in</strong>tegral; S-parameters<br />

Launch<strong>in</strong>g specific wave forms Port b.c., Boundary Mode Analysis<br />

Resolv<strong>in</strong>g plasmonic sk<strong>in</strong> depth Boundary layer mesh; Impedance b.c.<br />

Nonl<strong>in</strong>ear effects FETD formulations<br />

You name it!.. We have probably seen it…


Overview of Analysis Types<br />

<strong>Photonics</strong><br />

Frequency-Doma<strong>in</strong> Time-Doma<strong>in</strong><br />

Driven Eigenfrequency Eigenmode<br />

Total-field<br />

Scattered-field<br />

Paraxial<br />

Quadratic Eigenvalue<br />

Nonl<strong>in</strong>ear Eigenvalue<br />

Perpendicular<br />

Periodic<br />

Three levels of difficulty:<br />

i. Fully predef<strong>in</strong>ed <strong>in</strong> <strong>COMSOL</strong><br />

ii. M<strong>in</strong>imum changes to the predef<strong>in</strong>ed equations<br />

iii. Equation-based model<strong>in</strong>g: maximum flexibility<br />

L<strong>in</strong>ear Nonl<strong>in</strong>ear<br />

Non-dispersive<br />

Trivial dispersion<br />

Drude-Lorentz


Levels of work<strong>in</strong>g with <strong>COMSOL</strong><br />

• Ready-to-use <strong>in</strong>terface for st<strong>and</strong>ard problems<br />

– Fully-predef<strong>in</strong>ed equations <strong>and</strong> BND conditions<br />

– Powerful draw<strong>in</strong>g <strong>and</strong> mesh<strong>in</strong>g <strong>in</strong>terface<br />

– Solver defaults<br />

– Help, Report Generator etc.<br />

• Customiz<strong>in</strong>g <strong>COMSOL</strong>-def<strong>in</strong>ed equations<br />

– Slight modifications of exist<strong>in</strong>g equations<br />

– e.g. magneto-electric (chiral) media<br />

– e.g. Bloch-Floquet eigenmode analysis of dispersive<br />

periodic structures<br />

• Fully equation-based model<strong>in</strong>g<br />

– Full flexibility<br />

– Time doma<strong>in</strong> models of dispersive media


DEMO – Surface Plasmons<br />

Draw <strong>and</strong> Mesh<br />

Perfectly matched layers (PMLs)<br />

Modification of expressions (<strong>in</strong>cident angle)<br />

Parametric solver<br />

Resolution of sk<strong>in</strong>-depth vs. Impedance BND conditions


Surface Plasmons Demo<br />

4 μm<br />

H field perpendicular to the „wall“<br />

Wavelength 600 nm<br />

Metal<br />

Air


Surface Plasmons Demo<br />

4 μm<br />

Perfectly Matched Layer (PML)<br />

Metal<br />

Air


Surface Plasmons Demo<br />

4 μm<br />

Perfectly Matched Layer (PML)<br />

Metal<br />

Air


Surface Plasmons Demo<br />

Impedance Boundary Condition<br />

Perfectly Matched Layer (PML)<br />

Air


The 5 Steps of Model<strong>in</strong>g


Deal<strong>in</strong>g with periodicity, dispersion <strong>and</strong><br />

<strong>in</strong>f<strong>in</strong>ity<br />

Periodic boundary conditions<br />

Periodic meshes<br />

Dispersive media <strong>in</strong> the frequency doma<strong>in</strong><br />

Scattered field analysis<br />

Unlimited Mesh functionality


Periodic boundary conditions<br />

Goal of simulation: f<strong>in</strong>d eigenmodes of a honeycomb lattice<br />

photonic crystal, <strong>and</strong> view them <strong>in</strong> a large doma<strong>in</strong><br />

This lattice is a common motif <strong>in</strong> carbon-based crystals<br />

(graphite, graphene) <strong>and</strong> organic polymers (C6 r<strong>in</strong>gs).<br />

Honeycomb lattices have been used <strong>in</strong> design of photovoltaic<br />

cells, photonic crystal fibers <strong>and</strong> negative-<strong>in</strong>dex super-lenses


Periodic boundary conditions<br />

Irreducible unit cell: solution space Larger doma<strong>in</strong>, multiple periods<br />

?<br />

Example: honeycomb lattice crystal


Visualiz<strong>in</strong>g the Bloch wave<br />

Periodicity tools even more powerful <strong>in</strong> 3D


Reflection/transmission<br />

spectra of a periodic<br />

structure<br />

Goal: calculate normalized<br />

reflectance, transmittance <strong>and</strong><br />

absorbance of a perforated nano-film<br />

(photonic crystal slab)<br />

Set-up tricks:<br />

double-periodic boundary conditions,<br />

user-def<strong>in</strong>ed port boundaries,<br />

S-parameters.<br />

<strong>in</strong>cident<br />

reflected<br />

transmitted<br />

Applications:<br />

Optical characterization<br />

of nanostructures<br />

Extract<strong>in</strong>g effective<br />

medium parameters of<br />

metamaterials<br />

20


Air<br />

Above: a generic geometry (hole array)<br />

Draw any unit cell for your own metamaterial design!<br />

Dielectric film<br />

Air-filled hole<br />

21


Periodic mesh generation: Node identity!<br />

1. Select boundaries 2 <strong>and</strong> 5 (the first equivalent pair).<br />

2. Click Copy Mesh button (red double triangle).<br />

3. Go to the Mesh Mode to see that the boundary mesh<br />

has been translated.


Dielectric film may have dispersive<br />

permittivity<br />

Just enter the relation!<br />

2<br />

ν p<br />

ε ( ν ) =<br />

εb<br />

−<br />

ν ( ν − iγ<br />

)<br />

Three <strong>COMSOL</strong> ways of enter<strong>in</strong>g<br />

material data:<br />

Analytic expression (Global,<br />

Scalar, Subdoma<strong>in</strong>, etc.)<br />

Interpolation function – provide<br />

ASCII file with a lookup table<br />

Reference to external m-function<br />

(MATLAB <strong>in</strong>terface)


S-parameters <strong>and</strong> metamaterial characterization<br />

transmitted<br />

reflected<br />

absorbed<br />

Port boundary: easy way to launch a<br />

specific wave form<br />

Provides complex-valued S-parameter<br />

matrix<br />

S11=r=reflectance (1 1)<br />

S21=t=transmittance (1 2)<br />

Effective medium approximation: use<br />

Fresnel-Airy formulas for a f<strong>in</strong>itethickness<br />

slab<br />

Metamaterial analysis: <strong>in</strong>vert those<br />

formulas to extract effective medium<br />

parameters from S-parameters<br />

{S11,S21} -> {Z eff , n eff } -> {ε eff , μ eff }<br />

Reference: Smith D. R., Schultz S.,<br />

Markos P. <strong>and</strong> Soukoulis C. M. 2002,<br />

Phys. Rev. B 65 195104


Scattered-Field Formulation<br />

Basic idea:<br />

Instead of solv<strong>in</strong>g<br />

solve<br />

L [u] = 0,<br />

L [u <strong>in</strong> + u sc] = 0<br />

<br />

L [u sc] = - L [u <strong>in</strong>]<br />

Illustration: cloak of <strong>in</strong>visibility on<br />

human head


Customized Scattered-Field formulations<br />

Problem: A s<strong>in</strong>gle particle (or group of<br />

particles) on <strong>in</strong>f<strong>in</strong>itely extended<br />

substrate<br />

Set-up issue: PML can only be<br />

perfectly matched to one medium<br />

(either air/solvent or the substrate)<br />

Air Glass<br />

Avoid<strong>in</strong>g artificial reflections on the<br />

boundary between two PMLs may be<br />

difficult<br />

Particle<br />

Solution: modify “<strong>in</strong>cident” field<br />

<br />

expressions<br />

If the “<strong>in</strong>cident” field is an exact<br />

solution without the particle, then the<br />

Air-matched PML Glass-matched PML<br />

“scattered” field is small at some<br />

distance away from the particle.<br />

Plot of the “scattered” field<br />

For <strong>in</strong>f<strong>in</strong>ite metallic doma<strong>in</strong>s don’t use<br />

PMLs but scatter<strong>in</strong>g BND condition.


Far Field – Antenna - Scatter<strong>in</strong>g<br />

near field radiation pattern<br />

phi component of the electric field far field<br />

Far Field feature:<br />

Used for calculat<strong>in</strong>g radiation pattern <strong>and</strong> differential<br />

scatter<strong>in</strong>g cross-section


Unlimited 3D Mesh<strong>in</strong>g Functionality


Free comb<strong>in</strong>ation of mesh types


Customiz<strong>in</strong>g <strong>COMSOL</strong> equations<br />

Modify<strong>in</strong>g constitutive relations:<br />

Magneto-electric (chiral) media<br />

Modify<strong>in</strong>g built-<strong>in</strong> equations:<br />

Time-doma<strong>in</strong> model<strong>in</strong>g of lossless plasma with<br />

dispersive permittivity


Model<strong>in</strong>g chiral (magneto-electric) media<br />

The most general dispersion relation for a l<strong>in</strong>ear medium <strong>in</strong>cludes 4<br />

electromagnetic response tensors: r r t r<br />

t<br />

D=<br />

εE+<br />

ζ<br />

r t r t<br />

B = μH<br />

+ ζ<br />

For an isotropic medium consist<strong>in</strong>g on non-centrosymmetric unit cells<br />

(crystals or metamaterials):<br />

Chirality parameter χ controls polarization rotation<br />

DH<br />

BE<br />

r r r<br />

D=<br />

εE<br />

−iχH<br />

r r r<br />

B = μH<br />

+ iχE<br />

H<br />

r<br />

E


Geometry<br />

Geometry consists of 5 adjacent<br />

rectangular blocks, each 1x1<br />

“meter” <strong>in</strong> cross-section (could be<br />

1 micron as well – only the ratio<br />

wavelength/size matters)<br />

Physical doma<strong>in</strong>: 3m long<br />

PML 1 <strong>and</strong> 2: thickness 0.2m,<br />

centered at x1=-1.6 <strong>and</strong> x2=1.6<br />

Chiral slab: thickness L=1m,<br />

centered at the orig<strong>in</strong> (x=y=z=0)<br />

PML<br />

Air<br />

Chiral<br />

Chiral medium


Modify<strong>in</strong>g built-<strong>in</strong> constitutive relations<br />

<strong>in</strong> chiral medium<br />

r r χ r<br />

D =<br />

εE<br />

−i<br />

H<br />

c<br />

r r χ r<br />

B = μH<br />

+ i E<br />

c


Results: polarization rotation<br />

Click Solve<br />

Open Postprocess<strong>in</strong>g Plot<br />

Parameters, enable Slice <strong>and</strong><br />

Arrow plots<br />

Slice tab: type expression<br />

atan(abs(Ey)/abs(Ez))/pi<br />

This is polarization rotation angle <strong>in</strong><br />

fractions of pi radian<br />

Arrow tab: choose “Electric field”<br />

from “Predef<strong>in</strong>ed quantities”<br />

Electric field polarization is clearly<br />

rotated by 45 degrees (or 0.25*pi<br />

radian)


Negative refraction of circular polarized<br />

wave<br />

For circularly polarized waves,<br />

effective <strong>in</strong>dices are n±=1±χ<br />

Sufficiently large chirality<br />

parameter rotates properly<br />

h<strong>and</strong>ed waves so much as to fully<br />

compensate (<strong>and</strong> w<strong>in</strong> over)<br />

natural rotation of the circular<br />

polarization<br />

Backward waves => Negative<br />

refraction!<br />

Reference: J.B. Pendry, “A chiral<br />

route to negative refraction”,<br />

Science 306, 1353 (2004).<br />

k<br />

clockwise<br />

clockwise<br />

counterclockwise<br />

To excite this wave,<br />

use surface current<br />

Js=[0 –i 1]


Time-doma<strong>in</strong> model<strong>in</strong>g of lossless plasma<br />

with dispersive permittivity<br />

F<strong>in</strong>ite Element Time Doma<strong>in</strong> (FETD) analysis <strong>in</strong> <strong>COMSOL</strong> is<br />

implemented <strong>in</strong> terms of vector potential A us<strong>in</strong>g the V=0 gauge:<br />

It satisfies equation<br />

r r r r<br />

E = −∂r<br />

t A,<br />

B = r ∇×<br />

r<br />

A r<br />

−1<br />

∂ ε ∂ + σ∂<br />

A−∂<br />

P+<br />

∇×<br />

μ ∇×<br />

A=<br />

0<br />

t<br />

tA<br />

t t<br />

The most general isotropic dielectric function that can be modeled<br />

without additional degrees of freedom:<br />

2<br />

b c<br />

iσ<br />

ω p<br />

ε ( ω ) = a + + = ε 0 ( ε<br />

2<br />

∞ − − 2<br />

ω ω<br />

ω ω<br />

The f<strong>in</strong>al equation after factoriz<strong>in</strong>g ε 0 ,μ 0 this becomes <strong>in</strong> SI units:<br />

μ ∂ ε ε ∂<br />

0<br />

t<br />

0<br />

∞<br />

r<br />

r<br />

2<br />

tA<br />

+ μ0σ∂<br />

tA<br />

+ kp<br />

r<br />

r<br />

−1<br />

A+<br />

∇×<br />

μ ∇×<br />

A = 0<br />

)<br />

Plasmonic term


Implementation<br />

The major part of the equation is predef<strong>in</strong>ed <strong>in</strong> <strong>COMSOL</strong> st<strong>and</strong>ard GUI.<br />

You only need to enter the plasmonic term<br />

μ ∂ ε ε ∂<br />

0<br />

t<br />

0<br />

∞<br />

r<br />

r<br />

2<br />

tA<br />

+ μ0σ∂<br />

tA<br />

+ kp<br />

r<br />

r<br />

−1<br />

A+<br />

∇×<br />

μ ∇×<br />

A = 0<br />

Plasmonic term


Results: plasma echo <strong>in</strong> l<strong>in</strong>ear electron density<br />

gradient


<strong>COMSOL</strong> Equation-based model<strong>in</strong>g<br />

Non-l<strong>in</strong>ear Eigenvalue problems<br />

classical Eigenvalue Problem (EP)<br />

Quadratic Eigenvalue Problem (QEP)<br />

Generalized Eigenvalue Differential Equation (GEDE)<br />

Bloch-Floquet-Eigenmode<br />

Surface charge <strong>in</strong>tegral equations (SCIE)


Examples of non-l<strong>in</strong>ear eigenvalue<br />

problems<br />

The resonance <strong>in</strong> PEC waveguides is a<br />

classical eigenvalue problem (EP). If the<br />

walls are not PEC but lossy (us<strong>in</strong>g<br />

Impedance BC.) the waveguide becomes<br />

dispersive, the EP nonl<strong>in</strong>ear<br />

Dispersive photonic b<strong>and</strong> structures<br />

Eigenvalue problem becomes quadratic (QEP)<br />

regardless of the complexity of temporal<br />

dispersion, ε(ω)<br />

Surface Plasmon Resonances (e.g. of <strong>Nano</strong>holes)<br />

as Electrostatic Eigenvalues <br />

Generalized Eigenvalue Differential Equation<br />

(GEDE)<br />

− ∇<br />

2<br />

E<br />

z<br />

2<br />

= ε ( ω)<br />

ω E<br />

∇( θ ∇ϕ<br />

) = λ ∇<br />

r r<br />

n<br />

n<br />

2<br />

ϕ<br />

n<br />

z


<strong>COMSOL</strong> approach of treat<strong>in</strong>g nonl<strong>in</strong>ear EP<br />

Traditionally, nonl<strong>in</strong>ear eigenvalue problems are hard to solve.<br />

– Iterative approach to nonl<strong>in</strong>ear eigenvalue problems requires a good<br />

<strong>in</strong>itial guess; convergence is not guaranteed.<br />

– One can only obta<strong>in</strong> a s<strong>in</strong>gle eigenmode at a time, from a given <strong>in</strong>itial<br />

guess.<br />

QEP [1] <strong>and</strong> GEDEs [3,4] are easily implemented <strong>in</strong><br />

<strong>COMSOL</strong>'s weak mode.<br />

[1] Credit: Dr. Marcelo Davanco, Univ. of Michigan, 2007, Published <strong>in</strong>:<br />

Davanco, Urzhumov, Shvets, Opt. Express 15, p.9681 (2007).<br />

[2] Bergman D., PRB 19, 2359 (1979); Bergman D., Stroud D., Solid State<br />

Phys. 46, 147 (1992);<br />

Stockman M., Faleev S., Bergman D., PRL 87, 167401 (2001).<br />

[3] Shvets, Urzhumov, PRL 93, p. 243902 (2004).


<strong>COMSOL</strong> access to the weak form<br />

PDE equations are easily converted<br />

to the “weak form”<br />

– multiply with the test function<br />

(u_test)<br />

– <strong>in</strong>tegration by parts (Gauss-<br />

Stokes theorems)<br />

r<br />

2Example:<br />

Laplace 2operator<br />

u = 0 → ( ∇ u)<br />

utestdV<br />

= ( −)<br />

( ∇u)<br />

⋅(<br />

∇utest<br />

∇ ∫ ∫<br />

Weak term:<br />

Example GEDE<br />

n<br />

r<br />

∇( θ ∇ϕ<br />

) = λ ∇<br />

r r<br />

n<br />

r<br />

r<br />

) dV<br />

ux*ux_test + uy*uy_test + uz*uz_test<br />

2<br />

ϕ<br />

n<br />

=<br />

0


<strong>COMSOL</strong> Implementation<br />

weak = ux*test(ux)+uy*test(uy)+uz*test(uz)<br />

dweak= -(uxt*test(ux)+uyt*test(uy)+uzt*test(uz))<br />

Note: -ut is the same as lambda*u<br />

Enter weak terms just as you write them on paper!<br />

r<br />

2<br />

∇ u = λ ∇<br />

n<br />

n<br />

2<br />

u<br />

n


Example Surface Plasmon Resonance (GEDE)<br />

Sample surface plasmon resonances of a plasmonic tetramer<br />

1st <strong>and</strong> 20th eigenvalue


Emerg<strong>in</strong>g field: plasmonic metafluids<br />

Manoharan et al.: colloidal solutions<br />

with clusters of various symmetric<br />

forms [Science, 2003]<br />

Some clusters are useful as build<strong>in</strong>g<br />

blocks for photonic crystals<br />

Others may be useful even <strong>in</strong> solution<br />

Resonances of plasmonic clusters<br />

modify electromagnetic properties of<br />

liquids<br />

Manipulate electric permittivity,<br />

magnetic permeability, chirality of<br />

liquids<br />

Electric dipole<br />

resonance<br />

Magnetic dipole<br />

resonance<br />

fcc<br />

block


Plasmonic crystal superlens (doable with QEP)<br />

<strong>Nano</strong>structured<br />

super-lens*<br />

Magnetic field beh<strong>in</strong>d plane<br />

wave illum<strong>in</strong>ated double-slit:<br />

D = λ/5, separation 2D<br />

Hot spots at the<br />

super-lens<br />

Shvets, Urzhumov, PRL 93, 243902 (2004);<br />

Davanco, Urzhumov, Shvets, Opt. Express 15, p.9681 (2007).<br />

Electric field profiles<br />

Blue w/w p = 0.6, X = -0.2l<br />

Red w/w p = 0.6, X = 0.8 λ no damp<strong>in</strong>g<br />

Black same as red, but with damp<strong>in</strong>g<br />

Dotted w/w p = 0.606 (outside of the<br />

left-h<strong>and</strong>ed b<strong>and</strong>)


Surface charge <strong>in</strong>tegral equations (SCIE)<br />

Surface <strong>in</strong>tegral eigenvalue equation for surface charge [3]:<br />

∫ K ( s,<br />

s')<br />

u(<br />

s')<br />

dS'<br />

= λu(<br />

s)<br />

Input as -u_time<br />

Fredholm <strong>in</strong>tegral = Boundary Integration Variable<br />

Usage of this variable (sigma<strong>in</strong>t) <strong>in</strong> the weak mode<br />

Quadrupole plasmon<br />

resonance of a<br />

nanor<strong>in</strong>g<br />

[3] Mayergoyz I.D., Fredk<strong>in</strong> D.R., Zhang Z., Phys. Rev. B 72, 155412 (2005)


Outl<strong>in</strong>e<br />

<strong>COMSOL</strong> product overview: company, product <strong>and</strong> RF module<br />

DEMO: An illustrated surface plasmon example<br />

Deal<strong>in</strong>g with periodicity, dispersion <strong>and</strong> <strong>in</strong>f<strong>in</strong>ity<br />

Customiz<strong>in</strong>g equations<br />

Equation-based model<strong>in</strong>g<br />

complexity


Conclud<strong>in</strong>g remarks<br />

<strong>COMSOL</strong> covers the majority of st<strong>and</strong>ard simulation tasks <strong>in</strong> <strong>Plasmonics</strong><br />

<strong>and</strong> <strong>Nano</strong>-<strong>Photonics</strong><br />

Frequency-doma<strong>in</strong>, time-doma<strong>in</strong>, modal analyses<br />

Unprecedented flexibility comb<strong>in</strong>ed with hi-end numerical analysis tools<br />

Users can <strong>in</strong>vent new types of analysis; creativity is welcomed<br />

Every new version br<strong>in</strong>gs more powerful features! E.g. In Release 3.5:<br />

New time-dependent solvers (generalized-alpha, segregated)<br />

Optimization <strong>and</strong> sensitivity analysis<br />

Parametric sweeps wrapped around eigenmode or time-dependent<br />

analysis


How to get started?<br />

Tell us about your plans,<br />

requirements, models.<br />

Order your free trial version: www.comsol.com/<br />

support@comsol.com<br />

Get: - support from an <strong>in</strong>ternational team<br />

- free <strong>in</strong>troductory kits to various applications<br />

- free conference proceed<strong>in</strong>gs<br />

- free m<strong>in</strong>icourses<br />

- Intensive tra<strong>in</strong><strong>in</strong>g courses<br />

AC/DC, Chem. Eng<strong>in</strong>eer<strong>in</strong>g, Mechanics, RF


Jo<strong>in</strong> the Leaders <strong>in</strong> <strong>Multiphysics</strong> Simulation<br />

• H<strong>and</strong>s-on M<strong>in</strong>icourses<br />

• Keynote Talks <strong>and</strong> User Presentations<br />

• Exhibition <strong>and</strong> Poster Session<br />

• Demo Stations<br />

• Tutorial Presentations<br />

• Awards Banquet<br />

www.comsol.eu/conference2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!