27.06.2013 Views

Mono- and dicyclic unsaturated triterpenoid hydrocarbons in ...

Mono- and dicyclic unsaturated triterpenoid hydrocarbons in ...

Mono- and dicyclic unsaturated triterpenoid hydrocarbons in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Mono</strong>- <strong>and</strong> <strong>dicyclic</strong> <strong>unsaturated</strong> <strong>triterpenoid</strong> <strong>hydrocarbons</strong><br />

<strong>in</strong> sediments from Lake Masoko (Tanzania) widely extend<br />

the botryococcene family<br />

Roma<strong>in</strong> de Mesmay a,b , Pierre Metzger b, *, V<strong>in</strong>cent Grossi c , Sylvie Derenne b<br />

a<br />

Laboratoire de Microbiologie, Géochimie et Ecologie Mar<strong>in</strong>es, UMR CNRS 6117, Centre d’Océanologie de Marseille (OSU),<br />

Faculté des Sciences de Lum<strong>in</strong>y, case 901, 13288 Marseille cedex 09, France<br />

b<br />

Laboratoire de Chimie Bioorganique et Organique Physique, UMR CNRS 7618, BIOEMCO, Ecole Nationale Supérieure de Chimie de Paris,<br />

75231 Paris cedex 05, France<br />

c<br />

PaléoEnvironnements et PaléobioSphère, UMR CNRS 5125, Université Lyon 1, Campus de la DOUA, Bâtiment Géode, 69622 Villeurbanne cedex, France<br />

article <strong>in</strong>fo<br />

Article history:<br />

Received 23 July 2007<br />

Received <strong>in</strong> revised form 19 December 2007<br />

Accepted 4 January 2008<br />

Available onl<strong>in</strong>e 18 March 2008<br />

1. Introduction<br />

abstract<br />

Botryococcus braunii is a green colonial microalga, previously<br />

known as a member of Chlorophyceae but recently<br />

reclassified <strong>in</strong> the Trebouxiophyceae (Senousy et al.,<br />

2004). It is widely distributed <strong>in</strong> freshwater lakes, reservoirs<br />

or ponds, <strong>and</strong> <strong>in</strong> some brackish waters <strong>and</strong> ephemeral<br />

lakes. Isolated stra<strong>in</strong>s as well as wild populations are characterized<br />

by an unusual production of oil conta<strong>in</strong><strong>in</strong>g<br />

numerous <strong>hydrocarbons</strong> [see Metzger <strong>and</strong> Largeau (1999)<br />

for a review]. Accord<strong>in</strong>g to the type of <strong>hydrocarbons</strong> produced,<br />

three different races of B. braunii have been recog-<br />

* Correspond<strong>in</strong>g author. Tel.: +33 1 44 27 67 17; fax: +33 1 43 25 79 75.<br />

E-mail address: pierre-metzger@enscp.fr (P. Metzger).<br />

0146-6380/$ - see front matter Ó 2008 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.orggeochem.2008.01.024<br />

Organic Geochemistry 39 (2008) 879–893<br />

Contents lists available at ScienceDirect<br />

Organic Geochemistry<br />

journal homepage: www.elsevier.com/locate/orggeochem<br />

A mixture of C33–C37 botryococcenes <strong>and</strong> partially reduced derivatives was isolated from<br />

ca. 32,000 year old sediment from Lake Masoko, a freshwater crater lake <strong>in</strong> the Rungwe<br />

Range area (Tanzania). Botryococcenes <strong>and</strong> derivatives accounted for 246 lg/g dry sediment<br />

<strong>and</strong> for >92% of the hydrocarbon fraction; 1D <strong>and</strong> 2D nuclear magnetic resonance<br />

spectroscopy (NMR) <strong>and</strong> mass spectrometry allowed the structure of the dom<strong>in</strong>ant botryococcene<br />

(43% of hydrocarbon fraction) to be established, after purification us<strong>in</strong>g high performance<br />

liquid chromatography (HPLC). The compound is a novel tetra<strong>unsaturated</strong><br />

<strong>dicyclic</strong> C34 botryococcene <strong>and</strong> is named C34 masokocene. Overall, the structures of six<br />

other novel botryococcenes <strong>and</strong> four partially reduced derivatives were tentatively<br />

assigned. The structures of the new biomarkers, three <strong>dicyclic</strong> C34–C36 botryococcenes<br />

(or masokocenes) <strong>and</strong> seven monocyclic C34–C37 analogues are discussed along with their<br />

biosynthetic relationship. The high abundance of such poly<strong>unsaturated</strong> compounds preserved<br />

<strong>in</strong> 32,000 year old sediment from the lake <strong>in</strong>dicates an aquatic ecosystem dom<strong>in</strong>ated<br />

at the time by the green alga Botryococcus braunii, as well very good preservation<br />

of the organic matter.<br />

Ó 2008 Elsevier Ltd. All rights reserved.<br />

nized. Race A produces odd C 23–C 33 n-alkadienes <strong>and</strong><br />

trienes (Metzger et al., 1985a,1986), race B C30–C37 <strong>triterpenoid</strong><br />

<strong>hydrocarbons</strong> with the general formula C nH 2n-10,<br />

called botryococcenes (Metzger et al., 1985a, 1985b), <strong>and</strong><br />

race L synthesizes ma<strong>in</strong>ly the tetraterpene trans, translycopadiene<br />

(C40H78; Metzger <strong>and</strong> Casadevall, 1987; Zhang<br />

et al., 2007 <strong>and</strong> references there<strong>in</strong>). The respective hydrocarbon<br />

signatures of races A <strong>and</strong> L <strong>in</strong> sediments, crude oils<br />

<strong>and</strong> oil shales have only been clearly identified <strong>in</strong> some rare<br />

cases (e.g., Gatellier et al., 1993; Derenne et al., 1997; Grice<br />

et al., 1998; Adam et al., 2006; Zhang et al., 2007), while the<br />

contribution of race B is much more documented. This is<br />

certa<strong>in</strong>ly related to the one to one correspondence between<br />

botryococcenes <strong>and</strong> B. braunii race B. The precise structural<br />

identification of the typical biomarkers of B. braunii race B is


880 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

not always easy to perform due to the common co-occurrence<br />

of complex mixtures of analogues difficult to purify<br />

us<strong>in</strong>g HPLC. To date, among the fifty botryococcenes tentatively<br />

identified us<strong>in</strong>g gas chromatography-mass spectrometry<br />

(GC-MS) analysis of lipids of isolated stra<strong>in</strong>s of B.<br />

braunii or oils extracted from natural samples (e.g. Wake<br />

<strong>and</strong> Hillen, 1981; Metzger et al., 1985a,b, 1988; Okada<br />

et al., 1995; Metzger <strong>and</strong> Largeau, 1999 <strong>and</strong> references<br />

there<strong>in</strong>), only twenty structures have been fully characterized<br />

(Okada et al., 1997; Metzger <strong>and</strong> Largeau, 1999 <strong>and</strong> references<br />

there<strong>in</strong>). Likewise, a few botryococcenes <strong>and</strong><br />

botryococcanes of fossil orig<strong>in</strong> have been identified (Huang<br />

<strong>and</strong> Murray, 1995; Huang et al., 1995, 1996; Grice et al.,<br />

1998; Smittenberg et al., 2005). The reduced C34 botryococcane<br />

was first discovered <strong>in</strong> a Sumatran crude oil (Moldowan<br />

<strong>and</strong> Seifert, 1980) <strong>and</strong> then <strong>in</strong> Australian coastal<br />

bitumens (McKirdy et al., 1986). Some C31 <strong>and</strong> C33 botryococcanes<br />

were found <strong>in</strong> Maom<strong>in</strong>g Oil Shale, Ch<strong>in</strong>a (Brassell<br />

et al., 1986) <strong>and</strong> sulfurized cyclobotryococcanes <strong>in</strong> hypersal<strong>in</strong>e<br />

sediments from the Dead Sea Bas<strong>in</strong>, Israel (Grice et al.,<br />

1998); both cyclic <strong>and</strong> acyclic botryococcenes, together<br />

with partially reduced counterparts, were discovered <strong>in</strong><br />

sediments from crater lakes <strong>in</strong> Kenya (Huang et al., 1995,<br />

1996, 1999; Huang <strong>and</strong> Murray, 1995) <strong>and</strong> Ch<strong>in</strong>a (Fuhrmann<br />

et al., 2003) <strong>and</strong> several C34 botryococcenes were<br />

present <strong>in</strong> large amounts <strong>in</strong> recent sediments from a crater<br />

lake <strong>in</strong> Galápagos (Zhang et al., 2007).<br />

The C 30 botryococcene (m; letters <strong>in</strong> bold refer to the<br />

structures <strong>in</strong> the Appendix), the precursor of all botryococcenes<br />

<strong>and</strong> derivatives, is synthesized <strong>in</strong> the chloroplast<br />

via the non-mevalonate pathway (Sato et al., 2003; Okada<br />

et al., 2004). It arises from condensation of two farnesyl<br />

units via presqualene pyrophosphate, which is also a precursor<br />

for squalene. From this <strong>in</strong>termediate, rearrangement<br />

of the cyclopropyl cation (path a, Fig. 1) or r<strong>in</strong>g<br />

open<strong>in</strong>g of the cyclopropyl r<strong>in</strong>g (path b, Fig. 1) <strong>and</strong> subsequent<br />

reaction with NADPH, lead to the formation of squalene<br />

or C 30 botryococcene, respectively (Huang <strong>and</strong><br />

Poulter, 1989; Okada et al., 2004). Higher homologues of<br />

botryococcene <strong>and</strong> squalene are derived from their respective<br />

C30 precursors by successive methylation with S-adenosylmethion<strong>in</strong>e,<br />

as <strong>in</strong>dicated by bold arrows <strong>in</strong> Fig. 1 for<br />

C30 botryococcene (Metzger et al., 1987; Achitouv et al.,<br />

2004). Afterwards, botryococcenes are excreted to the outer<br />

walls, form<strong>in</strong>g a dense oily matrix (Metzger et al., 1987),<br />

whose structural element is a chemically resistant biopolymer,<br />

the algaenan derived from a polyacetal network bear<strong>in</strong>g<br />

polymethylsqualene derivatives (Metzger et al., 2007).<br />

Cyclization of the term<strong>in</strong>al moieties of botryococcenes may<br />

also occur (Metzger et al., 1985b; David et al., 1988; Huang<br />

et al., 1988; Huang <strong>and</strong> Poulter, 1988; Huang et al., 1995,<br />

1996). Accord<strong>in</strong>gly, the same central pattern exhibit<strong>in</strong>g 1)<br />

the quaternary C-10 bear<strong>in</strong>g a methyl <strong>and</strong> the D 26 exomethylene<br />

unsaturation, 2) the trans D 11 double bond<br />

<strong>and</strong> 3) the methyl group at C-13, is present <strong>in</strong> all botryococcenes.<br />

Moreover, while C31–C34 methylated squalenes<br />

are implicated via their diol derivatives <strong>in</strong> the synthesis<br />

of the structural element of the outer walls, the biological<br />

role of botryococcenes is not obvious. However, as their<br />

accumulation (account<strong>in</strong>g generally for 30–40% of the dry<br />

wt; Metzger et Largeau, 1999) ‘‘results <strong>in</strong> the colonies predom<strong>in</strong>at<strong>in</strong>g<br />

<strong>in</strong> the upper regions of the water column,<br />

where little <strong>in</strong>cident radiation is lost to the water mass”<br />

(Wake <strong>and</strong> Hillen, 1980), they may allow occupation of<br />

some ecological niches suitable for the algal growth.<br />

In the course of our study of the lipid biomarkers from a<br />

30 metre sediment core from Lake Masoko, southern Tanzania,<br />

prelim<strong>in</strong>ary analysis of a few samples revealed the<br />

presence of a wide variety of botryococcenes, most of unknown<br />

structure. We report here the structural identification<br />

of three <strong>dicyclic</strong> C 34–C 36 <strong>and</strong> seven monocyclic C 34–C 37<br />

botryococcenes <strong>and</strong> partially reduced counterparts isolated<br />

from a ca. 32,000 year old sediment layer. The possible<br />

<strong>in</strong>fluence of some physicochemical <strong>and</strong> environmental<br />

factors on the distribution <strong>and</strong> abundance of these algal<br />

biomarkers <strong>in</strong> Lake Masoko is currently be<strong>in</strong>g studied on<br />

a core section correspond<strong>in</strong>g to the last 32,000 years (de<br />

Mesmay et al., 2007b).<br />

OP P<br />

b<br />

a<br />

path a path b<br />

+ +<br />

3 7<br />

26<br />

10<br />

11<br />

16 20<br />

Squalene C 30 Botryococcene<br />

Fig. 1. Simplified scheme of squalene <strong>and</strong> C 30 botryococcene biosynthesis from presqualene diphosphate (adapted from Huang <strong>and</strong> Poulter, 1989) <strong>and</strong> sites<br />

of methylation (bold arrows).


2. Experimental<br />

2.1. Site description<br />

Lake Masoko is an oligotrophic Maar lake (9°20 0 S–<br />

33°45 0 E, 800 m above sea level, 36.5 m deep) <strong>in</strong> the Rungwe<br />

Range. Ow<strong>in</strong>g to its small catchment area <strong>and</strong> absence<br />

of river <strong>in</strong>put, it is strongly sensitive to climate change. It<br />

provides one of the most cont<strong>in</strong>uous Late Quaternary<br />

lacustr<strong>in</strong>e sedimentary records from Africa over the last<br />

45,000 yr (Williamson et al., 1999; Gibert et al., 2002; Garc<strong>in</strong><br />

et al., 2006a,b, 2007). Multidiscipl<strong>in</strong>ary studies have<br />

detailed the hydrology (Bergonz<strong>in</strong>i et al., 2001; Delal<strong>and</strong>e<br />

et al., 2005), sedimentary assemblage of charcoal (Thevenon<br />

et al., 2003), pollen (V<strong>in</strong>cens et al., 2003) <strong>and</strong> diatoms<br />

(Barker et al., 2003). Earlier studies of pigments <strong>and</strong> lign<strong>in</strong>derived<br />

phenol assemblages (Merdaci, 1998) outl<strong>in</strong>ed the<br />

remarkable preservation of organic matter <strong>in</strong> the sediments.<br />

More <strong>in</strong>formation on site description is given elsewhere<br />

(de Mesmay et al., 2007a <strong>and</strong> references there<strong>in</strong>).<br />

2.2. Sample description<br />

Three cores (30 m long <strong>in</strong> total, M96-A, -B <strong>and</strong> -C) were<br />

collected from the central area of Lake Masoko us<strong>in</strong>g a sedidrill-Mazier<br />

cable corer <strong>in</strong> order to comb<strong>in</strong>e the most cont<strong>in</strong>uous<br />

cored section <strong>and</strong> to construct a detailed composite<br />

lithostratigraphic record from the last 45,000 yr BP (Garc<strong>in</strong><br />

et al., 2006a). Cores were stored at 4 °C until analysis. Samples<br />

representative of different climatic <strong>and</strong> environmental<br />

periods were <strong>in</strong>vestigated for bulk <strong>and</strong> molecular content.<br />

We present here results from the sample conta<strong>in</strong><strong>in</strong>g the<br />

highest amount of botryococcenes (1856–1871 cm <strong>in</strong>terval;<br />

31.7–32.1 14 C cal. kyr BP). It corresponds to an organic-rich<br />

silty mud deposited dur<strong>in</strong>g the last glacial period<br />

between ca. 34,000 <strong>and</strong> 28,000 cal. yr BP. It consists primarily<br />

of silty organic mud, enriched <strong>in</strong> detrital titanomagnetite<br />

orig<strong>in</strong>at<strong>in</strong>g from the surround<strong>in</strong>g catchment soil <strong>and</strong><br />

littoral area (Williamson et al., 1999). The occurrence of<br />

numerous mm to cm scale turbidites conta<strong>in</strong><strong>in</strong>g few organic<br />

macrorests (plant tissue, charcoal fragments) <strong>and</strong> abundant<br />

herbaceous pollen po<strong>in</strong>t to relatively arid, low lakelevel<br />

conditions (Garc<strong>in</strong> et al., 2006a). The total organic carbon<br />

(TOC; 6% dry wt) <strong>and</strong> fossil pigment contents of this<br />

<strong>in</strong>terval suggest a relatively oligotrophic environment <strong>and</strong>/<br />

or oxic depositional environment (Merdaci, 1998). A C/N<br />

ratio of 21.9 suggests a mixture of terrestrial <strong>and</strong> aquatic<br />

sources (Tyson, 1995; Huang et al., 1999). Assum<strong>in</strong>g that<br />

all the iron occurs as pyrite, the sulfur <strong>and</strong> iron contents<br />

(total S 0.2% dry wt; Fe ca. 0.06%) may suggest the presence<br />

of some organosulfur compounds <strong>in</strong> the sample. However,<br />

it must be noted that molecular sulfur (S8) is present <strong>in</strong> TIC<br />

traces of sediment extracts. Very similar values for sulfur<br />

<strong>and</strong> iron contents were obta<strong>in</strong>ed for two more recent samples<br />

(13,000 <strong>and</strong> 500 yr).<br />

2.3. Lipid extraction <strong>and</strong> separation<br />

Fresh sediment (14 g) was ultrasonically extracted<br />

(10 m<strong>in</strong>.) with CH3OH (100 mL 2), CH3OH/CH2Cl2 (1:1, v/<br />

v, 100 mL 2) <strong>and</strong> CH 2Cl 2 (100 mL 4). Extracts were com-<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 881<br />

b<strong>in</strong>ed <strong>and</strong> evaporated under reduced pressure. The rema<strong>in</strong><strong>in</strong>g<br />

water was removed via azeotropic evaporation with<br />

CH 3OH. The dry extract (110 mg) was chromatographed<br />

over silica gel (Merck silica gel 60). Hydrocarbons, aromatic<br />

compounds, alcohols <strong>and</strong> polar compounds were eluted<br />

with n-hexane, n-hexane/CH2Cl2 (4:1, v/v), CH2Cl2/diethyl<br />

ether (9:1, v/v) <strong>and</strong> CH 3OH/CH 2Cl 2 (1:1, v/v), respectively.<br />

2.4. Hydrogenation<br />

Hydrogenation of an aliquot of the hydrocarbon fraction<br />

was carried out (18 h) <strong>in</strong> heptane under H2 (20 atm) <strong>in</strong> the<br />

presence of a catalyst (Rh/C 5%). The reaction mixture was<br />

centrifuged; the supernatant was collected <strong>and</strong> concentrated<br />

under a stream of N2 <strong>and</strong> analyzed us<strong>in</strong>g GC-MS.<br />

2.5. Ozonolysis<br />

An aliquot of the hydrocarbon fraction <strong>in</strong> 1 ml CS2 was<br />

reacted with ozone at 78 °C until the characteristic blue<br />

colour of O3 persisted. Excess O3 was elim<strong>in</strong>ated by bubbl<strong>in</strong>g<br />

N 2 through the cold solution. The ozonides were reduced<br />

by addition of 5 mg triphenylphosph<strong>in</strong>e <strong>and</strong> the<br />

reaction mixture was allowed to warm to room temperature.<br />

Solvent was evaporated under reduced pressure <strong>and</strong><br />

the compounds were analysed us<strong>in</strong>g GC-MS.<br />

2.6. GC <strong>and</strong> GC-MS<br />

GC was carried out with an Agilent 6890 gas chromatograph<br />

equipped with a flame ionisation detector (FID) <strong>and</strong> a<br />

RTX-5 Sil MS column (30 m 0.25 mm; 0.5 lm film thickness).<br />

The oven temperature was programmed from 60 to<br />

130 °C at20°C/m<strong>in</strong> <strong>and</strong> to 300 °C (35 m<strong>in</strong>) at 4 °C/m<strong>in</strong>. He<br />

was the carrier gas (constant flow, 24.2 ml/m<strong>in</strong>). Hydrocarbons<br />

were quantified via external calibration us<strong>in</strong>g squalane<br />

as st<strong>and</strong>ard. Hydrocarbons <strong>and</strong> their derivatives were<br />

identified us<strong>in</strong>g GC-MS with an Agilent 6890 N chromatograph<br />

equipped with a splitless <strong>in</strong>jector <strong>and</strong> coupled to an<br />

Agilent 5973 mass spectrometer operat<strong>in</strong>g at an ionization<br />

energy of 70 eV <strong>and</strong> a range of m/z 40–700. The chromatograph<br />

was equipped with the same capillary column as described<br />

for GC <strong>and</strong> the same temperature programme was<br />

used. The constant carrier gas flow (He) was 1 mL/m<strong>in</strong>.<br />

2.7. Purification of C34 botryococcene <strong>and</strong> spectroscopic<br />

analysis<br />

The hydrocarbon fraction was further purified us<strong>in</strong>g<br />

isocratic high performance liquid chromatography (HPLC)<br />

with a Waters 600E <strong>in</strong>strument fitted with a differential<br />

Waters 2414 refractometer thermostated at 30 °C. The<br />

mixture was fractionated <strong>in</strong>to three sub-fractions us<strong>in</strong>g a<br />

5 lm XTerra TM MS C18 column (4.6 250 mm) <strong>and</strong> repeated<br />

<strong>in</strong>jection (20 ll, 5% <strong>in</strong> CHCl 3) <strong>and</strong> elution with CH 3CN at a<br />

flow rate of 3 ml/m<strong>in</strong>. The first sub-fraction afforded C34<br />

dicyclobotryococcene c (t R 24 m<strong>in</strong>.). High resolution electron<br />

ionization mass spectrometry (HR-EIMS, 70 eV) analysis<br />

was performed with a Jeol MS 700 via direct <strong>in</strong>let.<br />

NMR spectra were recorded with a Bruker Avance 400<br />

spectrometer operat<strong>in</strong>g at 400.1 <strong>and</strong> 100.6 MHz for 1 H<br />

<strong>and</strong> 13 C, respectively. Spectra were recorded <strong>in</strong> CDCl3.


882 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

Chemical shifts were referenced relative to the residual<br />

proton signal (7.24 ppm) or the central l<strong>in</strong>e of the 13 C multiplet<br />

(77.0 ppm) of CDCl 3. Assignment of <strong>in</strong>dividual resonances<br />

was achieved us<strong>in</strong>g a comb<strong>in</strong>ation of 1D <strong>and</strong> 2D<br />

( 1 H- 1 H <strong>and</strong> 1 H- 13 C) experiments. Multiplicity of each 13 C<br />

nucleus was determ<strong>in</strong>ed us<strong>in</strong>g DEPT (enhanced polarisation<br />

transfer) spectra.<br />

3. Results <strong>and</strong> discussion<br />

3.1. Characterization of botryococcenes <strong>and</strong> reduced<br />

analogues<br />

3.1.1. Composition of hydrocarbon fraction<br />

Exam<strong>in</strong>ation of the hydrocarbon fraction isolated from<br />

the 1856–1871 cm depth sediment sample us<strong>in</strong>g GC-MS<br />

revealed a dom<strong>in</strong>ance (93% of total <strong>hydrocarbons</strong>; Table<br />

1; Fig. 2A) of botryococcenes (CnH2n-10) rang<strong>in</strong>g from C33<br />

to C37 <strong>and</strong> of partially reduced counterparts (CnH2n-8, CnH2n-6 <strong>and</strong> CnH2n-2), together with a m<strong>in</strong>or series of C17–C35<br />

n-alkanes. The botryococcenes <strong>and</strong> related compounds<br />

accounted for more than 246 lg/g dry sediment <strong>and</strong><br />

4 mg/g TOC (total organic carbon). The major compound<br />

was an unknown C34 component (c) account<strong>in</strong>g for ca.<br />

43% of the total <strong>hydrocarbons</strong>, each of the other components<br />

account<strong>in</strong>g for 87%).<br />

3.1.2. Characterization of C34 masokocene c<br />

The high resolution EI spectrum of the dom<strong>in</strong>ant botryococcene<br />

c displays M +. at m/z 466.4530, consistent with<br />

aC34H58 compound (calcd. 466.4522, D +0.8 mmu). The<br />

Table 1<br />

Composition, quantification <strong>and</strong> ozonolysis products of <strong>hydrocarbons</strong> from Lake Masoko sediment<br />

Hydrocarbon lg/g d.s. a<br />

Formula e<br />

MW Structure<br />

low resolution EI mass spectrum is characterised by a major<br />

ion at m/z 177, likely correspond<strong>in</strong>g to a fragmentation<br />

at the central quaternary carbon (Fig. 2B). Catalytic hydrogenation<br />

led to the formation of four botryococcanes<br />

C 34H 66 (H3, Fig. 3A) occurr<strong>in</strong>g <strong>in</strong> a 3/23/28/4 ratio, <strong>and</strong><br />

which exhibited identical mass <strong>and</strong> fragment ions<br />

(Fig. 3C). This <strong>in</strong>dicated the presence of two r<strong>in</strong>gs <strong>in</strong> c<br />

<strong>and</strong> suggested that stereochemical isomerisation occurred<br />

dur<strong>in</strong>g hydrogenation. The mass spectrum of H3 shows<br />

fragments at m/z 444/445 correspond<strong>in</strong>g to the loss of<br />

the C-10 ethyl, at m/z 236/237 correspond<strong>in</strong>g to loss of<br />

the long alkyl cha<strong>in</strong> at C-10 <strong>and</strong> at m/z 292/293 correspond<strong>in</strong>g<br />

to loss of the short alkyl cha<strong>in</strong> at C-10.<br />

Detailed <strong>in</strong>spection of the 1 H, 13 C, DEPT, COSY (correlation<br />

spectroscopy), HMQC (heteronuclear multiple quantum<br />

correlation) <strong>and</strong> HMBC (heteronuclear multiple bond<br />

correlation) NMR spectra of c (Table 2) <strong>and</strong> comparison<br />

with NMR data from other botryococcenes <strong>in</strong>dicated the<br />

presence of a term<strong>in</strong>al v<strong>in</strong>yl [dH 5.75 (H-26), 4.92 (H-<br />

27b), 4.90 (H-27a); d C 147.3 (C-26), 110.9 (C-27)] bound<br />

to the quaternary carbon C-10 (dC 41.8). The HMBC experiment<br />

further established that the latter quaternary carbon<br />

is correlated with an olef<strong>in</strong>ic proton (H-11, dH 5.26) of trans<br />

disubstituted unsaturation [J 11,12 = 16.0 Hz; H-12: d H 5.12].<br />

Moreover, long range correlations showed that a meth<strong>in</strong>e<br />

carbon (CH-13, d H 2.03, d C 37.1) bear<strong>in</strong>g a methyl (Me-<br />

28, dH 0.94, dC 21.2) is connected to this olef<strong>in</strong>. This C-10<br />

to C-13 substructure I (with methyls at C-10 <strong>and</strong> C-13<br />

<strong>and</strong> a v<strong>in</strong>yl at C-10, Fig. 4), is characteristic for all botryococcene<br />

structures (Metzger et al., 1985b); it arises from<br />

the 1’-3 condensation of two farnesyl units (Huang <strong>and</strong><br />

Poulter, 1989). The downfield region of the 1 H NMR spec-<br />

lg/g TOC b<br />

Relative% c<br />

Ozonolysis d<br />

C33H56 452 0.5 8.7 0.2<br />

C34H58 466 0.3 4.4 0.1<br />

C34H58 466 trace<br />

C34H66 474 a 0.8 13 0.3 O3 + O1<br />

C34H62 470 b 1.1 17 0.4 O11 + O1<br />

C34H58 466 c 114 1878 43.2 O11 + O9<br />

C34H58 466 d 12 191 4.4 O11 + O9<br />

C34H58 466 0.8 13 0.3<br />

C34H58 466 0.5 8.7 0.2<br />

C35H60 480 e 26 422 9.7 O11 + O10<br />

C36H62 494 f1, f2 5.8 96 2.2 O11 + O6<br />

C36H64 496 g1, g2 36 569 13.5 O11 + O4<br />

C36H62 494 0.5 8.7 0.2<br />

C37H64 508 h 10.6 174 4.0 O11 + O7<br />

C37H64 508 7.9 130 3.0 O11 + O7<br />

C37H66 510 i 18 291 6.7 O11 + O5<br />

C37H64 +C37H66 508/510 3.2 52 1.2<br />

C37H64 508 1.1 17 0.4<br />

C36H62 494 j 6.6 109 2.5 O11 + ?<br />

C37H66 510 0.3 4.4 0.1<br />

Other botryococcenes <strong>and</strong> n-alkanes 20 339 7.4<br />

R <strong>hydrocarbons</strong> 266 4346 100.0<br />

a Dry sediment.<br />

b Total organic carbon.<br />

c Composition determ<strong>in</strong>ed us<strong>in</strong>g GC.<br />

d Compounds from ozonolysis.<br />

e Compounds listed <strong>in</strong> elution order.


elative <strong>in</strong>tensity (%)<br />

100<br />

50<br />

0<br />

relative <strong>in</strong>tensity<br />

n-C 27<br />

40 42 44<br />

69<br />

33 34<br />

a b<br />

trum also shows a broad s<strong>in</strong>glet for two protons (d H 5.03)<br />

of two trisubstituted double bonds [dC 138.3 (quaternary<br />

carbons C-6 <strong>and</strong> C-17) <strong>and</strong> 132.7 (tertiary carbons C-24<br />

<strong>and</strong> C-29)] belong<strong>in</strong>g to two identical substructures II<br />

(Fig. 4). The HMBC correlations (Table 2 <strong>and</strong> Fig. 4) established<br />

that II conta<strong>in</strong> cyclohexenyl r<strong>in</strong>gs bear<strong>in</strong>g three<br />

methyls, of which two are gem<strong>in</strong>al [for example, <strong>in</strong> the left<br />

h<strong>and</strong> moiety of the molecule: Me-1 (dH 0.78, dC 23.4) <strong>and</strong><br />

Me-23 (d H 0.95, d C 29.5)] at C-2 (d C 34.5) <strong>and</strong> a third at<br />

C-3 [Me-31 (dH 0.86, dC 16.2)]. Such a trimethylated cyclohexenyl<br />

moiety was previously found <strong>in</strong> cyclobotryococcene<br />

k, isolated from a stra<strong>in</strong> of B. braunii from the Ivory<br />

Coast <strong>and</strong> grown under laboratory conditions (David<br />

et al., 1988). The relative stereochemistry of the methyls<br />

<strong>in</strong> c was deduced from the correlations observed <strong>in</strong> the<br />

NOESY (nuclear Overhauser enhancement spectroscopy)<br />

NMR spectra (Fig. 4), which suggested that Me-31 is pseudo-axial.<br />

The connection of each substructure II with the<br />

rest of the molecule was drawn from the HMBC experiment.<br />

So, <strong>in</strong> the ‘‘left” moiety of the molecule, cross peaks<br />

of H-7 <strong>and</strong> protons of Me-32 at C-7, to C-6 <strong>in</strong>dicated the<br />

connection C-6/C-7. Furthermore, the two bond HMBC correlations<br />

H-7/C-8, H-8/C-9, <strong>and</strong> H-9/C-10 <strong>and</strong> the long<br />

range correlations H-7/C-9 <strong>and</strong> H-25/C-9 allowed us to<br />

connect the ‘‘left” structural moiety of c to the quaternary<br />

95<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 883<br />

123<br />

c<br />

149<br />

n-C 28<br />

d<br />

177<br />

178<br />

34 34<br />

203<br />

n-C 29<br />

231<br />

e<br />

259<br />

g1<br />

f2<br />

f1<br />

36<br />

177 285<br />

123<br />

-2H<br />

-2H<br />

231<br />

h<br />

i<br />

j<br />

c<br />

259 -2H<br />

-2H 285<br />

n-C 31<br />

retention time (m<strong>in</strong>.)<br />

50 100 150 200 250 300 350 400 450<br />

g2<br />

285<br />

37 37*<br />

37<br />

37<br />

M+. -CH 3<br />

314 341 355 396 423<br />

123<br />

M +.<br />

451 466<br />

Fig. 2. (A) Total ion chromatogram of hydrocarbon fraction from 1856–1871 cm depth sediment <strong>in</strong>terval from Lake Masoko [C xx are n-alkanes with xx carbon<br />

atoms; numbers <strong>in</strong>dicate the carbon number of botryococcenes <strong>and</strong> reduced counterparts whose structures have not been established <strong>in</strong> this work, cf. Table<br />

1, * = coelution between one C37 botryococcene (C37H64) <strong>and</strong> one partially reduced counterpart (C37H66)], (B) EI mass spectrum of C34 masokocene c.<br />

m/z<br />

carbon C-10. In the right h<strong>and</strong> part of the molecule, 1 H<br />

NMR data <strong>and</strong> HMBC correlations showed that the cylohexenyl<br />

r<strong>in</strong>g is bound at C-17 to a tertiary meth<strong>in</strong>e carbon<br />

C-16 which bears the methyl group Me-33. F<strong>in</strong>ally, crosspeaks<br />

of H-15 to C-14 <strong>and</strong> C-13 allowed connection of<br />

the second cyclohexenyl moiety II. Major fragment ions<br />

at m/z 177 (base peak) <strong>and</strong> 123 <strong>in</strong> the mass spectrum of<br />

c support this structural pattern (Fig. 2B).<br />

Ozonolysis has proved to be a powerful tool for the structural<br />

determ<strong>in</strong>ation of botryococcenes <strong>and</strong> derivatives<br />

(Huang et al., 1996). Application to an aliquot of the total<br />

<strong>hydrocarbons</strong> resulted <strong>in</strong> two predom<strong>in</strong>at<strong>in</strong>g compounds:<br />

O9 (C 16H 28O 3)<strong>and</strong>O11 (C 17H 28O 4) result<strong>in</strong>g from oxidation<br />

of masokocene c (Table 1; Figs. 5 <strong>and</strong> 6A). Mass fragmentation<br />

patterns of O9 <strong>and</strong> O11 (Fig. 6E <strong>and</strong> G) were helpful for the<br />

characterization of other <strong>dicyclic</strong> <strong>triterpenoid</strong> <strong>hydrocarbons</strong><br />

(see below). The generic name masokocene is proposed for<br />

all these dicyclobotryococcenes. HPLC purification of c afforded<br />

a coelut<strong>in</strong>g m<strong>in</strong>or botryococcene d (ca. 10% of the mixture)<br />

which exhibited a mass spectrum identical to that of<br />

c. It is very likely that d is a stereoisomer of c.<br />

3.1.3. C 35 <strong>and</strong> C 36 masokocenes e <strong>and</strong> j<br />

GC-MS analysis of the <strong>in</strong>tact <strong>and</strong> the hydrogenated<br />

hydrocarbon fractions clearly <strong>in</strong>dicated that compounds e


884 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

relative <strong>in</strong>tensity<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

relative <strong>in</strong>tensity<br />

43<br />

33<br />

71<br />

C 28<br />

125<br />

85 111<br />

H1<br />

C 29<br />

H2<br />

42 44 46 48 retention time (m<strong>in</strong>.)<br />

125<br />

141 167<br />

236/237<br />

211<br />

<strong>and</strong> j are higher homologues of the C34 masokocene c (Figs.<br />

2 <strong>and</strong> 7). The EI mass spectrum of e is consistent with a<br />

C35H60 botryococcene (M +. at m/z 480; Fig. 7A). It exhibits<br />

prom<strong>in</strong>ent fragments at m/z 123 <strong>and</strong> 177, suggest<strong>in</strong>g the<br />

236<br />

294/295<br />

294<br />

446/447<br />

H2<br />

337 386 431 446<br />

M +. -C2H5 50 100 150 200 250 300 350 400 450 m/z<br />

H3<br />

H3<br />

%<br />

100<br />

50<br />

0<br />

H3<br />

H3<br />

C 31<br />

H4<br />

H4<br />

H5<br />

H6<br />

H6<br />

71<br />

85<br />

111<br />

43<br />

236<br />

141<br />

167<br />

197<br />

253<br />

322<br />

295 349 391 435 459 474<br />

69<br />

83<br />

125<br />

139<br />

43<br />

167<br />

236<br />

306<br />

195 277<br />

251 335363389 429 459<br />

125<br />

322/323<br />

474/475<br />

-C2H5 (on C-21)<br />

306/307 277<br />

458/459<br />

139<br />

125<br />

236/237<br />

125<br />

459<br />

H4<br />

236/237<br />

H5<br />

50 100 150 200 250 300 350<br />

M<br />

400 450 m/z 50 100 150 200 250 300 350 400 450 m/z<br />

+. %<br />

100<br />

50<br />

-C2H5 0<br />

M +. -C2H5 43<br />

71<br />

85<br />

111<br />

236<br />

141<br />

167<br />

197<br />

336<br />

267295 363 419 464 488<br />

125<br />

125<br />

236/237<br />

336/337<br />

488/489<br />

H6<br />

69<br />

111<br />

83 139<br />

125<br />

125<br />

153<br />

167<br />

236/237<br />

320/321<br />

472/473<br />

H7<br />

153<br />

473<br />

50 100 150 200 250 300 350 400 450 m/z<br />

43<br />

50 100 150<br />

195 236<br />

251<br />

200 250<br />

M<br />

293<br />

473<br />

320 363 388415<br />

300 350 400 450 m/z<br />

+. M -C2H5 +. %<br />

100<br />

50<br />

-C2H5 0<br />

43<br />

69<br />

83<br />

111<br />

125<br />

139 167<br />

125<br />

209<br />

236<br />

236/237<br />

H7<br />

-CH3 (on C-21)<br />

292/293 277<br />

444/445<br />

H3<br />

292<br />

277<br />

321349 379<br />

M<br />

445<br />

429<br />

+. -C2H5 50 100 150 200 250 300 350 400 450 m/z<br />

Fig. 3. (A) Total ion chromatogram of hydrogenated hydrocarbon fraction from 1856–1871 cm depth sediment <strong>in</strong>terval from Lake Masoko (C xx are<br />

n-alkanes with xx carbon atoms). (B–G) EI mass spectra of botryococcanes H2-H7.<br />

presence of a trimethyl substituted cyclohexenyl r<strong>in</strong>g <strong>in</strong><br />

the left h<strong>and</strong> part of the molecule, as <strong>in</strong> c. The presence<br />

of two r<strong>in</strong>gs <strong>in</strong> e is supported by the mass spectra of the<br />

several diastereomers of C35 botryococcanes H5 formed<br />

125


Table 2<br />

1 H [400 MHz; dH (J, Hz)] <strong>and</strong> 13 C [100 MHz; d C] NMR data of C 34<br />

masokocene c <strong>in</strong> CDCl 3 at 300 K<br />

Position<br />

1<br />

H(dH)<br />

13<br />

C(dC) HMBC (H ? C)<br />

1, 30 0.78 (6H, s) 23.4 2, 3, 23, 24 a<br />

2, 21 34.5<br />

3, 20 1.41 (2H, m) 38.5 1, 2, 4, 5, 23, 31 a<br />

4, 19 1.26-1.42 (4H, m) 28.1 6 a<br />

5, 18 1.86 (H-5a, H-18a, m) 24.9 3, 4, 6, 24 a<br />

1.78 (H-5b, H-18b, m) 3, 4, 6, 24 a<br />

6, 17 138.3<br />

7 1.90 (1H, m) 41.4 6, 8, 9, 32<br />

8 1.12-1.23 (2H, m) 29.6 7, 9, 10<br />

9 1.24 (2H, m) 39.0 8, 10, 11, 25, 26<br />

10 41.8<br />

11 5.26 (1H, d, 16.0) 135.8 9, 10, 12, 13, 25, 26<br />

12 5.12 (1H, dd, 16.0, 7.7) 133.9 10, 11, 13, 26, 28<br />

13 2.03 (1H, m) 37.1 11, 12, 14, 28<br />

14 1.10-1.25 (2H, m) 35.1 12, 13, 15, 16, 28, 33<br />

15 1.15-1.30 (2H, m) 32.7 13, 14, 16, 33<br />

16 1.94 (1H, m) 40.9 14, 15, 17, 18, 29, 33<br />

22, 23 0.95 (6H, s) 29.5 1, 2, 3, 24 a<br />

24, 29 5.03 (2H, s) 132.7 1, 2, 3, 5, 7, 23 a<br />

25 1.01 (3H, s) 23.8 9, 10, 11, 12, 26, 27<br />

26 5.75 (1H, dd, 17.3, 10.7) 147.3 9, 10, 11, 25<br />

27 4.90 (H-27a, dd, 17.3, 1.5) 110.9 10, 26<br />

4.92 (H-27b, dd, 10.7, 1.5) 10, 26<br />

28 0.94 (3H, d, 6.4) 21.2 11, 12, 13, 14, 15<br />

31, 34 0.86 (6H, d, 6.4) 16.2 2, 3, 4 a<br />

32 0.94 (3H, d, 6.4) 19.8 b<br />

5, 6, 7, 8<br />

33 0.94 (3H, d, 6.4) 19.9 b<br />

15, 16, 17, 18<br />

a<br />

Only correlations concern<strong>in</strong>g proton on the left h<strong>and</strong> part of molecule<br />

given.<br />

b<br />

Signals <strong>in</strong>terchangeable.<br />

25<br />

10<br />

27<br />

28<br />

13<br />

31<br />

substructure I substructure II<br />

2<br />

6<br />

24<br />

HMBC<br />

1<br />

3<br />

5<br />

23<br />

24<br />

7<br />

32<br />

by stereochemical isomerization dur<strong>in</strong>g hydrogenation<br />

(Fig. 3A <strong>and</strong> E). A fragment ion at m/z 458/459 (due to<br />

the loss of the ethyl at C-10) supports the presence of<br />

two r<strong>in</strong>gs <strong>in</strong> H5. Moreover, fragment ions at m/z 236/237<br />

<strong>and</strong> 306/307, orig<strong>in</strong>at<strong>in</strong>g from C-10/C-11 <strong>and</strong> C-9/C-10<br />

cleavage, respectively, <strong>in</strong>dicate the presence of one r<strong>in</strong>g<br />

<strong>in</strong> each side of H5. The ion at m/z 306/307 <strong>in</strong> the H5 spectrum<br />

<strong>in</strong>dicates that the additional carbon is situated on the<br />

right h<strong>and</strong> side of the molecule compared to H3. The position<br />

of this additional carbon <strong>in</strong> e was deduced from its<br />

ozonolysis products. Comparison of the mass spectrum of<br />

O10 (C17H30O3) with that of O9 (C16H28O3; Fig. 6E <strong>and</strong> F)<br />

<strong>in</strong>deed <strong>in</strong>dicates the presence of an ethyl <strong>in</strong> O10, (M +. -<br />

C2H5; fragment at m/z 253). McLafferty rearrangement<br />

lead<strong>in</strong>g to ion at m/z 86 <strong>in</strong>dicates that the ethyl group is<br />

likely carried by carbon C-21. In the mass spectrum of e<br />

(Fig. 7A), the loss of an ethyl is also suggested by an ion<br />

at m/z 451. Thus, on the basis of all these mass spectral<br />

data we propose structure e for the C35 masokocene.<br />

The EI spectrum of the C 36 botryococcene j (C 36H 62,M +. at<br />

m/z 494, Fig. 7B) exhibits an <strong>in</strong>tense ion at m/z 465 due to<br />

the loss of an ethyl. The hydrogenated fraction conta<strong>in</strong>s several<br />

C36 botryococcanes (C36H70, H7) with identical mass<br />

spectra (e.g. Fig. 3A <strong>and</strong> G). Diagnostic ions at m/z 236/237<br />

<strong>and</strong> 125 suggest the presence of a trimethylated cyclohexyl<br />

<strong>in</strong> the left moiety of the molecule as <strong>in</strong> H3 <strong>and</strong> H5. By comparison<br />

with H5, the ion at m/z 320/321 <strong>in</strong>dicates that the<br />

additional carbon is located <strong>in</strong> the right part of the molecule.<br />

An <strong>in</strong>tense peak at m/z 153 (57%) is consistent with a cyclohexane<br />

r<strong>in</strong>g substituted with one more carbon <strong>in</strong> H7 than <strong>in</strong><br />

H5. The mass spectrum of j exhibits a M + -Et fragment (m/z<br />

23 Me<br />

1<br />

Me<br />

Me<br />

31<br />

NOE<br />

Fig. 4. Selected HMBC <strong>and</strong> NOE correlations <strong>in</strong> NMR analysis of C 34 masokocene c.<br />

26<br />

10<br />

11<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 885<br />

12<br />

c<br />

16<br />

29<br />

17<br />

21<br />

O 3<br />

Fig. 5. Ozonolysis products of C 34 masokocene c.<br />

H<br />

O<br />

O<br />

12<br />

H<br />

16<br />

O<br />

+<br />

O<br />

H<br />

O9<br />

17 18<br />

24<br />

O11<br />

H<br />

O<br />

21 29<br />

26<br />

O<br />

2<br />

10<br />

24 11<br />

6<br />

O<br />

Me<br />

H<br />

H


886 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

relative <strong>in</strong>tensity<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

43<br />

57<br />

69<br />

86<br />

A<br />

relative <strong>in</strong>tensity<br />

O1<br />

O4<br />

O<br />

H<br />

113<br />

109 123<br />

O4 O5<br />

O2 O3<br />

40 60 80 100 120 140 160 180 200 220 240 m/z<br />

43<br />

55 71<br />

83<br />

95<br />

100<br />

113<br />

O7<br />

127<br />

141<br />

465) twice more <strong>in</strong>tense than the similar ion <strong>in</strong> the spectrum<br />

of e (35% <strong>in</strong>stead of 16%), suggest<strong>in</strong>g that more than<br />

one ethyl group occurs <strong>in</strong> j. Unfortunately, GC-MS analysis<br />

of the ozonolysis products did not allow identification of<br />

the compound result<strong>in</strong>g from the cleavage of the right half<br />

part of the molecule, likely due to coelution with triphenyl<br />

+H<br />

O6 O7 O8<br />

18 20 22 24 26 time (m<strong>in</strong>.)<br />

B C<br />

113<br />

226<br />

141<br />

141<br />

151 168 179 197<br />

O<br />

H<br />

155<br />

161<br />

240<br />

O<br />

57<br />

226<br />

236<br />

M +.<br />

254<br />

D E<br />

184<br />

225<br />

207<br />

197 240 M<br />

250<br />

+. -H2O 40 60 80 100 120 140 160 180 200 220 240 260 m/z<br />

55<br />

O10<br />

H<br />

O<br />

+H<br />

113<br />

+H<br />

113<br />

O<br />

184<br />

155<br />

225<br />

O<br />

+H 71<br />

100<br />

F G<br />

43<br />

69<br />

40 60 80 100 120 140 160 180 200 220 240 260 m/z<br />

85<br />

95 141<br />

123<br />

113<br />

151<br />

169<br />

267<br />

198 226<br />

253 M<br />

282<br />

+.<br />

+H +H<br />

+H<br />

86<br />

254 198<br />

141 141 254<br />

156<br />

M +. -CH3 M +. -C2H5 O<br />

+H<br />

169<br />

127<br />

156<br />

+H<br />

86<br />

+H<br />

21<br />

86<br />

O<br />

H<br />

43<br />

%<br />

100<br />

50<br />

0<br />

O9<br />

43<br />

55<br />

55<br />

71<br />

83<br />

O10<br />

100<br />

O11<br />

O5<br />

M +.<br />

109<br />

123<br />

179<br />

240<br />

137 155168 189 207 225 250 268<br />

113<br />

40 60 80 100 120 140 160 180 200 220 240 260 280<br />

43<br />

83<br />

127<br />

95<br />

109<br />

H<br />

O9<br />

H<br />

O<br />

+H<br />

156<br />

155<br />

141<br />

167<br />

M<br />

253<br />

184 212 240<br />

+. M -CH3 250<br />

+. -H2O M +.<br />

268<br />

40 60 80 100 120 140 160 180 200 220 240 260 m/z<br />

43<br />

55<br />

71<br />

72<br />

84<br />

95<br />

113<br />

109 127<br />

O11<br />

O<br />

phosph<strong>in</strong>e, the reagent used for the reduction of the polyozonides.<br />

However, taken with these mass spectral data,<br />

the strong structural relationship between the C34-C35 masokocenes<br />

<strong>and</strong> the C 36 analogue allows us to assign compound<br />

j as a C36 <strong>dicyclic</strong> botryococcene with two gem<strong>in</strong>al<br />

ethyls on carbon C-21.<br />

O<br />

113<br />

240<br />

113<br />

O<br />

155<br />

155<br />

225<br />

156<br />

+H<br />

O<br />

71<br />

+H<br />

100<br />

+H<br />

72<br />

O<br />

H<br />

+H +H<br />

240 184<br />

141 127<br />

+H<br />

240<br />

72<br />

H<br />

184<br />

+H +H<br />

+H<br />

H<br />

O<br />

141 197<br />

72<br />

137<br />

155<br />

169<br />

184<br />

222<br />

M<br />

281<br />

250<br />

40 60 80 100 120 140 160 180 200 220 240 260 m/z<br />

+. -CH3 296<br />

M+.<br />

Fig. 6. (A) Total ion chromatogram of ozonised hydrocarbon fraction from Lake Masoko sediment at 1856–1871 cm depth. (B-G) EI mass spectra of<br />

compounds O4, O5, O7, O9, O10 <strong>and</strong> O11.<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

O<br />

127<br />

155<br />

H<br />

197<br />

-H<br />

141<br />

O<br />

84<br />

43


elative <strong>in</strong>tensity<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

%<br />

100<br />

50<br />

0<br />

0<br />

43<br />

69<br />

109<br />

95 123<br />

149<br />

177<br />

50 100 150 200 250 300 350 400 450 m/z<br />

41<br />

41<br />

55<br />

A<br />

C<br />

137<br />

95<br />

109<br />

123<br />

149<br />

177<br />

123<br />

203<br />

231<br />

245 285 465<br />

451<br />

M<br />

299 480<br />

328355 423<br />

+.<br />

M +. -CH3 M +. -C2H5 123<br />

3.1.4. C34 partially reduced botryococcenes<br />

The occurrence of a C 34 octahydrobotryococcene a (Table<br />

1; Fig. 2A) is revealed by its mass spectrum (M +. m/z<br />

474). The correspond<strong>in</strong>g C 34 botryococcane (H1) was found<br />

<strong>in</strong> the hydrogenated sample. The exact molecular structure<br />

of H1 <strong>and</strong> its acyclic nature is given by comparison of its<br />

mass spectrum <strong>and</strong> retention time with an authentic st<strong>and</strong>ard<br />

prepared by catalytic hydrogenation of an acyclic C 34<br />

botryococcene (Metzger et al., 1985b). Comb<strong>in</strong>ation of the<br />

ozonolysis fragments O1 <strong>and</strong> O3, whose mass spectra are<br />

published (Huang et al., 1996), allows us to establish the<br />

position of the double bonds <strong>in</strong> a at C-11/C-12 <strong>and</strong> C-26/<br />

C-27. This compound is 1,6,17,21-octahydrobotryococcene<br />

previously isolated from Sacred Lake, Kenya (Huang <strong>and</strong><br />

177<br />

203<br />

231<br />

245 285 479<br />

M<br />

315 369 411 452<br />

494<br />

+.<br />

M +. -CH3 50 100 150 200 250 300 350 400 450 m/z<br />

E -2H<br />

F<br />

69<br />

95<br />

123<br />

149<br />

177<br />

123<br />

177<br />

177 299<br />

-2H -2H<br />

-2H<br />

231<br />

203<br />

231<br />

245 285<br />

-2H<br />

231<br />

-2H -2H<br />

285<br />

231<br />

-2H<br />

285<br />

-2H<br />

50 100 150 200 250 300 350 400 450 m/z<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 887<br />

259<br />

-2H<br />

285<br />

h<br />

e<br />

451<br />

f1<br />

137<br />

465<br />

M +.<br />

M +. -CH3 493<br />

329 369 397 427 465<br />

508<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

B<br />

43<br />

D<br />

41<br />

55<br />

55<br />

81<br />

123<br />

95 123<br />

163<br />

151<br />

149<br />

177<br />

123<br />

203<br />

177<br />

123<br />

203<br />

231<br />

245 285 313 343 381 435<br />

231<br />

177 313<br />

-2H -2H<br />

259 285 317344 385 426453<br />

M<br />

465<br />

+. -C2H5 M<br />

494<br />

+.<br />

50 100 150 200 250 300 350 400 450 m/z<br />

177<br />

231<br />

g1<br />

481 M<br />

496<br />

+.<br />

M +. -CH3 50 100 150 200 250 300 350 400 450 m/z<br />

69<br />

109<br />

123<br />

149<br />

177<br />

203<br />

123<br />

231<br />

Murray, 1995) <strong>and</strong> from upper sediments of lake Masoko<br />

(de Mesmay et al., 2007a).<br />

Although we failed to detect any monocyclic C34 botryococcene<br />

<strong>in</strong> the extract, two diastereomers of a C 34 monocyclic<br />

botryococcane were identified <strong>in</strong> the hydrogenated<br />

sample (compounds H2; Fig. 3A <strong>and</strong> C). The structure was<br />

assigned on the basis of co<strong>in</strong>jection <strong>and</strong> comparison with<br />

previous mass spectral data (David et al., 1988; Grice<br />

et al., 1998). These hydrogenated compounds might be derived<br />

from a partially reduced botryococcene (b) <strong>in</strong> the orig<strong>in</strong>al<br />

fraction (Fig. 2A) <strong>and</strong> whose mass spectrum is very<br />

similar to those of two partially reduced botryococcene isomers,<br />

C34H62 of undeterm<strong>in</strong>ed structures, detected <strong>in</strong> a Ch<strong>in</strong>ese<br />

lacustr<strong>in</strong>e sediment core (Fuhrmann et al., 2003). In<br />

231<br />

-2H<br />

177<br />

-2H<br />

231<br />

259<br />

j<br />

-2H<br />

465<br />

285<br />

-2H<br />

-2H -2H<br />

285<br />

-2H<br />

151<br />

43<br />

259<br />

287 331<br />

M<br />

510<br />

385 427 467<br />

50 100 150 200 250 300 350 400 450 m/z<br />

+.<br />

M<br />

495<br />

+. -CH3 Fig. 7. (A <strong>and</strong> B) EI mass spectra of C 35 <strong>and</strong> C 36 masokocenes e <strong>and</strong> j. (C <strong>and</strong> D) C 36 monocyclic botryococcene f1 <strong>and</strong> its partially reduced counterpart g1.<br />

(E <strong>and</strong> F) C 37 monocyclic botryococcene h <strong>and</strong> its partially reduced counterpart i.<br />

i<br />

467


888 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

the present case of b, the molecular ion at m/z 470 is consistent<br />

with a tetrahydrobotryococcene (C34H62). Fragment<br />

ions at m/z 123, 177 <strong>and</strong> 231 suggest the presence of a<br />

trimethylated cyclohexenyl r<strong>in</strong>g <strong>in</strong> the left half part of the<br />

molecule. In addition, a diagnostic ion at m/z 259 result<strong>in</strong>g<br />

from the cleavage of the C-12/C-13 bond <strong>in</strong>dicated that<br />

two additional unsaturations were present at C-11 <strong>and</strong><br />

C-26. The ozonides O11 <strong>and</strong> more especially O1, although<br />

not specific for the degradation of b (Table 1), also support<br />

structure b as an unprecedented tetrahydrogenated<br />

derivative of k (David et al., 1988), with the C-17/C-29<br />

<strong>and</strong> C-21/C-22 double bonds be<strong>in</strong>g hydrogenated.<br />

3.1.5. C36 <strong>and</strong> C37 monocyclic botryococcenes <strong>and</strong> partially<br />

reduced counterparts<br />

GC-MS analysis of the hydrogenated hydrocarbon fraction<br />

revealed, <strong>in</strong> addition to the aforementioned botryococcanes,<br />

the presence of two C 36 (H4) <strong>and</strong> two C 37 (H6)<br />

monocyclic botryococcanes (Fig. 3A). Each of these two couples<br />

exhibited strictly identical mass spectra, with diagnostic<br />

ions <strong>in</strong>dicative of the presence of a r<strong>in</strong>g <strong>in</strong> the left part of<br />

the molecule (ions at m/z 236/237, Fig. 3D <strong>and</strong> F). The mass<br />

spectra of H4 <strong>and</strong> H6 show similarities to that of H2. Two<br />

(respectively three) additional carbons are situated on the<br />

right h<strong>and</strong> moiety of the molecules (ions at m/z 322/323<br />

for H4, Fig. 3D <strong>and</strong> at m/z 336/337 for H6, Fig. 3F).<br />

C36 botryococcanes H4 probably result from the catalytic<br />

hydrogenation of two partially coelut<strong>in</strong>g C 36 botryococcenes<br />

(M +. at m/z 494, f1 <strong>and</strong> f2) with identical mass spectra<br />

(Figs. 2A <strong>and</strong> 7C) <strong>and</strong> two dihydrogenated counterparts (g1<br />

<strong>and</strong> g2), also partially coelut<strong>in</strong>g (Fig. 2A) with identical<br />

spectra (M +. at m/z 496; Fig. 7C). Fragments at m/z 123,<br />

177, 231 <strong>and</strong> 285 <strong>in</strong> f1, f2, g1 <strong>and</strong> g2 confirmed the occurrence<br />

of a trimethyl cyclohexenyl r<strong>in</strong>g <strong>in</strong> the left h<strong>and</strong> moeity<br />

<strong>and</strong> of two unsaturations at C-11 <strong>and</strong> C-26. The<br />

structures of the right h<strong>and</strong> parts of the compounds were<br />

deduced from the identification <strong>in</strong> the ozonolysis products<br />

of the di- <strong>and</strong> tri-oxygenated compounds O4 <strong>and</strong> O6, respectively<br />

(Table 1). The McLafferty fragment at m/z 86 <strong>in</strong> their<br />

spectra (e.g. Fig. 6B for O4) suggests the presence <strong>in</strong> the<br />

structure of an ethyl ketone exhibit<strong>in</strong>g a methyl group <strong>in</strong><br />

the a position. Consequently, an ethyl group would be present<br />

at ‘‘C-21” (numbered accord<strong>in</strong>g to botryococcene structures)<br />

<strong>in</strong> f1, f2, g1 <strong>and</strong> g2. Moreover, the molecular formulae<br />

of O4 <strong>and</strong> O6 (C16H30O2 <strong>and</strong> C16H26O3, respectively) established<br />

that a C2 moiety was lost from the right h<strong>and</strong> part<br />

dur<strong>in</strong>g ozonolysis, suggest<strong>in</strong>g the presence of a CH3CH=C<br />

pattern <strong>in</strong> the C36 botryococcenes f1 <strong>and</strong> f2, <strong>and</strong> the dihydro<br />

derivatives g1 <strong>and</strong> g2. F<strong>in</strong>ally, the McLafferty fragment at m/<br />

z 170 <strong>in</strong> the spectrum of O6 <strong>in</strong>dicates the presence of a ketone<br />

at ‘‘C-17” (data not shown), <strong>and</strong> the two discrete ions<br />

at m/z 113 <strong>and</strong> 141 <strong>in</strong> the spectrum of O4 show the presence<br />

of a methyl at ‘‘C-17” (Fig. 6B).<br />

These results allow us to tentatively assign f1 <strong>and</strong> f2 as<br />

monocylic C 36 botryococcenes <strong>and</strong> g1 <strong>and</strong> g2 as their dihydro<br />

derivatives. The occurrence of two pairs of isomers with<br />

identical mass spectra is probably due to the existence of<br />

stereoisomers with respect to the C-21/C-22 double bond<br />

stereochemistry. Based on semi-empirical topological<br />

methods for the prediction of the chromatographic retention<br />

of alkene isomers (He<strong>in</strong>zen et al., 1999; Junkes et al.,<br />

2002), it can be assumed that the stereochemistry of the<br />

C-21 double bond is E <strong>in</strong> f1 <strong>and</strong> g1 <strong>and</strong> Z <strong>in</strong> f2 <strong>and</strong> g2.<br />

Similarly, botryococcanes H6 were probably produced by<br />

the catalytic hydrogenation of C37 botryococcenes (C37H64,<br />

M +. at m/z 508) <strong>and</strong> dihydro counterparts (C 37H 66, M +. at<br />

m/z 510) (Table 1 <strong>and</strong> Fig. 3). Among the ozonolysis products,<br />

only the di- <strong>and</strong> tri-oxygenated O5 <strong>and</strong> O7, respectively<br />

(Table 1) could be related to C37 hydrocarbon<br />

precursors. MS comparisons showed that O5 (C 17H 32O 2)<br />

<strong>and</strong> O7 (C17H28O3) were higher homologues of O4 <strong>and</strong> O6,<br />

respectively. Moreover, a base peak at m/z 43 <strong>in</strong> the spectrum<br />

of O7 (Fig. 6D) suggested that the carbon skeleton<br />

probably has a term<strong>in</strong>al isopropyl group. The occurrence<br />

of an isopropyl group <strong>in</strong> O5, justas<strong>in</strong>h <strong>and</strong> i, was also supported<br />

by the presence <strong>in</strong> the spectra of significant ions at<br />

m/z [(M-43) + ; Figs. 6C <strong>and</strong> 7D, E]. The presence of a<br />

CH3CH=C pattern at C-21 <strong>in</strong> h <strong>and</strong> i is supported by the presence<br />

of a ketone a to the isopropyl group both <strong>in</strong> O5 <strong>and</strong> O7<br />

<strong>and</strong> by biogenetic considerations (see below). The comb<strong>in</strong>ation<br />

of O7 with O9,allowsustoproposeh as a higher homologue<br />

of f1 <strong>and</strong> f2 with one more carbon. The spectra of O5<br />

<strong>and</strong> O7 exhibit some identical fragments (m/z 100, 113, 155,<br />

225, 240), but an ion at m/z 184 <strong>in</strong> that of O7, due to McLafferty<br />

rearrangement, <strong>and</strong> two discrete ions at m/z 113 <strong>and</strong><br />

155 <strong>in</strong> that of O5, <strong>in</strong>dicate that O5 <strong>and</strong> O7 differ by way<br />

of the presence of a methyl group <strong>and</strong> a ketone, respectively.<br />

These data suggest that i <strong>and</strong> h only differ <strong>in</strong> the presence<br />

of an exomethylene <strong>and</strong> a methyl group at C-17,<br />

respectively. In contrast to the C36 homologues, h (respectively<br />

i) does not appear as a mixture of two compounds<br />

<strong>in</strong> the GC chromatogram. Nevertheless, h (respectively i)<br />

may occur as a mixture of stereoisomers that are not separated<br />

under the GC conditions used.<br />

3.2. Occurrence of masokocenes <strong>in</strong> ancient ecosystems<br />

Dicyclobotryococcenes have been recently reported to<br />

occur <strong>in</strong> sediments of a Norwegian fjord (Smittenberg<br />

et al., 2005) <strong>and</strong> <strong>in</strong> freshwater wetl<strong>and</strong>s of the Florida Everglades<br />

(Gao et al., 2007), but their structures were not<br />

unambiguously determ<strong>in</strong>ed. On the other h<strong>and</strong>, a hypothetical<br />

dicyclobotryococcene exhibit<strong>in</strong>g a planar structure<br />

similar to that of c had already been assumed to be the precursor<br />

of a major dicyclobotryococcane (tentatively assigned<br />

as H3) detected after Raney nickel desulfurisation<br />

of a polar lipid fraction from Miocene/Pliocene immature<br />

hypersal<strong>in</strong>e sediments (Sdom Formation near the Dead<br />

Sea; Grice et al., 1998). The authors supposed that c was<br />

<strong>in</strong>corporated <strong>in</strong>to a macromolecular matrix via sulfurisation.<br />

The lack of c among the extractable biomarkers of<br />

the Sdom formation was expla<strong>in</strong>ed by its ease of sulfurisation<br />

due to the presence of four double bonds. The strong<br />

dom<strong>in</strong>ance of <strong>in</strong>tact masokocene c <strong>in</strong> a ca. 32,000 year<br />

old sediment <strong>in</strong>dicates excellent conditions of preservation<br />

<strong>in</strong> Lake Masoko sediments, even though the compound<br />

might be sensitive to sulfurisation as well as to oxidative<br />

or reductive attack. Although B. braunii race B is known<br />

to produce large amounts of <strong>hydrocarbons</strong>, the lack of a<br />

hydrocarbon biomarker from other sources <strong>in</strong> Lake Masoko<br />

ca. 32000 years ago is a clue for an ecosystem dom<strong>in</strong>ated at<br />

the time by blooms of B. braunii. This situation strongly


contrasts with the present day, which shows a m<strong>in</strong>or contribution<br />

of botryococcenes to the sedimentary <strong>hydrocarbons</strong><br />

<strong>and</strong> a lack of masokocene c (de Mesmay et al., 2007b).<br />

3.3. Hypothetical biogenetic relationship between cyclic<br />

botryococcenes<br />

As <strong>in</strong> all botryococcenes, non-isoprenoid carbons (C-31<br />

to C-37) likely arise from successive methylation of the<br />

C30 botryococcene precursor m, by methyl transfer from<br />

S-adenosylmethione. In the C 35, C 36 <strong>and</strong> C 37 compounds,<br />

permethylation occurs on the same term<strong>in</strong>al isoprene unit<br />

(i.e. addition of two to four carbons), like that reported for<br />

two acyclic counterparts (Galbraith et al., 1983; Metzger<br />

l<br />

Me +<br />

+<br />

H<br />

pat h I<br />

pat h II<br />

+<br />

et al., 1985b). Two plausible biosynthetic pathways for<br />

the cyclisation lead<strong>in</strong>g to masokocene c may be proposed<br />

(Fig. 8). Cyclisation could be <strong>in</strong>itiated either by methylation<br />

(path I) or by protonation of a previously methylated<br />

precursor (path II), as suggested for the biosynthesis of<br />

monocyclic botryococcenes <strong>in</strong> some stra<strong>in</strong>s of B. braunii<br />

(Metzger et al., 1985b; David et al., 1988; Huang <strong>and</strong> Poulter,<br />

1988). Abiotic cyclisation of <strong>unsaturated</strong> <strong>hydrocarbons</strong><br />

(highly branched isoprenoids, HBIs) has been observed <strong>in</strong><br />

laboratory simulations of diagenetic reactions (Belt et al.,<br />

2000). In Lake Masoko sediments, abiotic cyclisation of<br />

botryococcenes cannot therefore be excluded entirely.<br />

Botryococcenes <strong>in</strong> Lake Masoko ca. 32,000 years ago can<br />

be divided <strong>in</strong>to three types: i) monocyclic botryococcenes<br />

+<br />

-H +<br />

Fig. 8. Plausible biosynthetic pathways for cyclisation lead<strong>in</strong>g to masokocene c.<br />

reduction<br />

methylation<br />

methylation<br />

methylation<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 889<br />

cyclisation<br />

cyclisation<br />

cyclisation<br />

cyclisation<br />

a<br />

methylation<br />

methylation<br />

methylation<br />

f1, f2<br />

h<br />

cyclisation<br />

reduction<br />

b<br />

cyclisation<br />

cyclisation<br />

reduction<br />

g1, g2<br />

reduction<br />

i<br />

Fig. 9. Hypothetical biogenetic relationship between acyclic, monocyclic <strong>and</strong> <strong>dicyclic</strong> botryococcenes <strong>and</strong> their reduced derivatives isolated from Lake<br />

Masoko sediment.<br />

k<br />

c,d<br />

e<br />

j


890 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

(f1, f2 <strong>and</strong> h), ii) masokocenes (i.e. <strong>dicyclic</strong> botryococcenes:<br />

c, d, e <strong>and</strong> j) <strong>and</strong> iii) partially reduced botryococcenes<br />

(a, b, g1, g2 <strong>and</strong> i, Fig. 9). It is noteworthy that all the<br />

monocyclic botryococcenes <strong>and</strong> their derivatives have a<br />

cyclohexenyl moiety <strong>in</strong> the left h<strong>and</strong> side of the molecule.<br />

No monocyclic compound with one r<strong>in</strong>g on the right side<br />

of the molecule has been characterized <strong>in</strong> Lake Masoko<br />

sediments, whereas the occurrence of <strong>dicyclic</strong> compounds<br />

<strong>in</strong>dicates that both sides of the molecule can be cyclized.<br />

Except for a, all the structures <strong>in</strong> Lake Masoko are cyclic,<br />

whereas botryococcenes found <strong>in</strong> sediments or pure stra<strong>in</strong><br />

cultures are mostly acyclic (Metzger <strong>and</strong> Largeau, 1999). B.<br />

braunii microalgae <strong>in</strong> Lake Masoko 32,000 years ago produced<br />

nearly exclusively cyclic botryococcenes, which is<br />

quite <strong>in</strong>trigu<strong>in</strong>g. The virtual lack <strong>in</strong> this sample of acyclic<br />

botryococcenes, likely to be the precursors of cyclic botryococcenes,<br />

suggests an efficient mechanism of cyclisation.<br />

The absence of compound k <strong>and</strong> of the monocyclic C 35 botryococcene,<br />

probable precursors for masokocenes c <strong>and</strong> e,<br />

respectively, means that the second cyclisation is also efficient.<br />

The occurrence of f1 <strong>and</strong> f2 suggests that their cyclisation<br />

to j is probably less efficient due to the steric effect<br />

of the methyl <strong>and</strong> ethyl groups on the C-21/C-22 double<br />

bond. The stronger steric effect <strong>in</strong> h may prevent further<br />

cyclisation to C37 masokocene.<br />

In all partially reduced botryococcenes <strong>in</strong> the sample (i.e.<br />

a, b, g1, g2 <strong>and</strong> i), the most easily reducible double bond (C-<br />

26/C-27) is left unchanged compared with the correspond<strong>in</strong>g<br />

botryococcene. Moreover, only one peak for each compound<br />

a <strong>and</strong> b was detected from GC analysis (Fig. 2A), suggest<strong>in</strong>g<br />

the formation of only one diastereoisomer for a <strong>and</strong> b via biotic<br />

reduction of parent botryococcenes. However, <strong>in</strong> the light<br />

of the recent work of Hebt<strong>in</strong>g et al. (2006) on the preservation<br />

pathway of sedimentary organic carbon, an abiotic process<br />

cannot be entirely excluded. For the other partially reduced<br />

botryococcenes g1 <strong>and</strong> g2, we attribute the occurrence of<br />

two stereoisomers to the Z <strong>and</strong> E stereochemistry of the C-<br />

21/C-22 double bond rather than to hypothetical diastereisomers<br />

that would be formed by an abiotic process (Hebt<strong>in</strong>g<br />

et al., 2006). We then assess that all partially reduced compounds<br />

<strong>in</strong> the ca. 32,000 year old sediments from Lake Masoko<br />

arise from a biotic process. Huang <strong>and</strong> Murray (1995)<br />

<strong>and</strong> Huang et al. (1996) reported similar observations on<br />

some reduced botryococcenes found <strong>in</strong> sediment from<br />

Sacred Lake (Kenya), <strong>and</strong> suggested that they could orig<strong>in</strong>ate<br />

either from a variant population of B. braunii race B or from a<br />

microbial reduction. Moreover, the possibility of a microbial<br />

reduction dur<strong>in</strong>g early diagenesis was recently proposed to<br />

expla<strong>in</strong> the occurrence of partially reduced cyclic <strong>and</strong> acyclic<br />

botryococcenes <strong>in</strong> soils of the Everglades wetl<strong>and</strong>s (Gao et al.,<br />

2007). In the present case, it is noteworthy that the only acyclic<br />

structure <strong>in</strong> this sample is the partially reduced C34 botryococcene<br />

a. This could suggest an <strong>in</strong> vivo competition<br />

between reduction <strong>and</strong> cyclisation dur<strong>in</strong>g biosynthesis. Cyclisation<br />

cannot occur after reduction of double bonds C-1/C-2,<br />

C-6/C-24, C-17/C-29 or C-21/C-30. Partial reduction of l to a<br />

prevents cyclisation occurr<strong>in</strong>g <strong>in</strong> the left h<strong>and</strong> moiety. Furthermore,<br />

<strong>in</strong>creas<strong>in</strong>g steric h<strong>in</strong>drance due to the successive<br />

effects of the methylation of the same isoprenoid unit results<br />

<strong>in</strong> a strong decrease <strong>in</strong> the proportion of <strong>dicyclic</strong> masokocenes<br />

(from 100% of C 35,downto14%ofC 36 <strong>and</strong> no C 37).<br />

4. Conclusions<br />

Biomarkers specific for the alga B. braunii race B are the<br />

ma<strong>in</strong> constituents of the hydrocarbon fraction extracted<br />

from a ca. 32,000 year old sediment <strong>in</strong>terval from Lake Masoko,<br />

Tanzania. Thanks to GC-MS <strong>and</strong> NMR <strong>and</strong> chemical<br />

degradation, ten new cyclic botryococcenes <strong>and</strong> partially<br />

reduced derivatives were identified. Three C34 to C36 dicyclobotryococcenes,<br />

named masokocenes, were characterized,<br />

along with seven C34 to C37 monocyclic compounds.<br />

The structures <strong>in</strong>dicate that the monocyclic botryococcenes<br />

(CnH2n-10) are likely <strong>in</strong>termediates <strong>in</strong> the biosynthesis of the<br />

<strong>dicyclic</strong> analogues, while the partially reduced botryococcenes<br />

(C nH 2n-2, C nH 2n-6 <strong>and</strong> C nH 2n-8) are likely end products.<br />

The study widely extends the number of molecular structures<br />

with<strong>in</strong> the botryococcene family.<br />

From a biogeographical po<strong>in</strong>t of view, the study also re<strong>in</strong>forces<br />

the idea that botryococcene-produc<strong>in</strong>g B. braunii<br />

would be a rather common colonizer of crater (Huang<br />

et al., 1999; Zhang et al., 2007) <strong>and</strong> maar (Fuhrmann et al.,<br />

2003) lakes, just like reservoirs (Wake <strong>and</strong> Hillen, 1981),<br />

dams (Metzger et al., 1985a; David et al., 1988; Metzger<br />

et al., 1988; Jaffé et al., 1995) <strong>and</strong> also water tanks (Wolf<br />

et al., 1985; Okada et al., 1995), under almost all latitudes<br />

<strong>and</strong> from the sea level up to alp<strong>in</strong>e zones. Known as a freshwater<br />

alga, race B of B. braunii has been also reported to be<br />

present <strong>in</strong> some mar<strong>in</strong>e environments (e.g. Grice et al.,<br />

1998; Smittenberg et al., 2005). Physical <strong>and</strong> chemical conditions<br />

favour<strong>in</strong>g its growth <strong>in</strong> some lakes, lead<strong>in</strong>g sometimes<br />

to endur<strong>in</strong>g blooms (e.g. Wake <strong>and</strong> Hillen, 1981; Metzger<br />

et al., 1985a; Townsend, 2001), are still poorly understood.<br />

Although the preference of B. braunii race B for acidic waters<br />

is often noted, the pH does not seem to be a critical parameter<br />

s<strong>in</strong>ce this microalga has been found <strong>in</strong> environments with<br />

pH up to 8.6. Besides, it would appear from the literature (e.g.<br />

Swale, 1968; Wake <strong>and</strong> Hillen, 1980, 1981; Metzger et al.,<br />

1985a; Huang et al., 1999; Reynolds, 2000; Townsend,<br />

2001; Zhang et al., 2007), that it generally grows <strong>in</strong> rather<br />

small oligotrophic lakes (ca 1–2 km 2 or less) with a small<br />

catchment area. However, the alga can be also present <strong>in</strong><br />

some great lakes like Michigan (Wolf <strong>and</strong> Cox, 1981). Studies<br />

are currently <strong>in</strong> progress to determ<strong>in</strong>e the physicochemical<br />

<strong>and</strong> environmental factors that could be at the orig<strong>in</strong> of the<br />

variation of the distribution <strong>and</strong> abundance of botryococcenes<br />

observed <strong>in</strong> the sediments of Lake Masoko.<br />

Acknowledgments<br />

M. Delal<strong>and</strong>e, D. Williamson <strong>and</strong> L. Bergonz<strong>in</strong>i are<br />

thanked for helpful comments <strong>and</strong> discussions. We also<br />

thank Yongsong Huang <strong>and</strong> Hans-Peter Nytoft reviews <strong>and</strong><br />

constructive comments. The work was supported by the<br />

Centre National de la Recherche Scientifique (CNRS) through<br />

the CLEHA research programme from ECLIPSE-INSU <strong>and</strong> by<br />

the Institute of Resource Assessment (IRA) at University of<br />

Dar es Salaam. We are grateful to C. Fosse (ENSCP, Paris)<br />

for exact mass determ<strong>in</strong>ation <strong>and</strong> to M.-N. Rager (ENSCP,<br />

Paris) for NMR spectral measurements. This paper is contribution<br />

2 of the Rungwe Environmental Science Observatory<br />

Network (RESON) <strong>and</strong> contribution 07.50 of UMR 5125 PEPS.


Appendix<br />

Associate Editor—S. Schouten<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 891


892 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

References<br />

Achitouv, E., Metzger, P., Rager, M.-N., Largeau, C., 2004. C 31-C 34<br />

methylated squalenes from a Bolivian stra<strong>in</strong> of Botryococcus braunii.<br />

Phytochemistry 65, 3159–3164.<br />

Adam, P., Schaeffer, P., Albrecht, P., 2006. C40 monoaromatic lycopane<br />

derivatives as <strong>in</strong>dicators of the contribution of the alga Botryococcus<br />

braunii race L to the organic matter of Messel oil shale (Eocene,<br />

Germany). Organic Geochemistry 37, 584–596.<br />

Barker, P., Williamson, D., Gasse, F., Gibert, E., 2003. Climatic <strong>and</strong> volcanic<br />

forc<strong>in</strong>g revealed <strong>in</strong> a 50,000-year diatom record from Lake Massoko,<br />

Tanzania. Quaternary Research 60, 368–376.<br />

Belt, S.T., Allard, W.G., R<strong>in</strong>tatalo, J., Johns, L.A., van Du<strong>in</strong>, A.C.T., Rowl<strong>and</strong>,<br />

S.J., 2000. Clay <strong>and</strong> acid catalysed isomerisation <strong>and</strong> cyclisation<br />

reactions of highly branched isoprenoid (HBI) alkenes: Implications<br />

for sedimentary reactions <strong>and</strong> distributions. Geochimica et<br />

Cosmochimica Acta 64, 3337–3345.<br />

Bergonz<strong>in</strong>i, L., Gibert, E., W<strong>in</strong>ckel, A., Merdaci, O., 2001. Water <strong>and</strong><br />

isotopic ( 18 O <strong>and</strong> 2 H) budget of Lake Massoko, Tanzania.<br />

Quantification of exchange between Lake <strong>and</strong> groundwater.<br />

Comptes Rendus de l’Academie des Sciences, Series IIA, Earth <strong>and</strong><br />

Planetary Science 333, 617–623.<br />

Brassell, S.C., Egl<strong>in</strong>ton, G., Fu, J.M., 1986. Biological marker compounds as<br />

<strong>in</strong>dicators of the depositional history of the Maom<strong>in</strong>g oil shale.<br />

Organic Geochemistry 10, 927–941.<br />

David, M., Metzger, P., Casadevall, E., 1988. Two cyclobotryococcenes<br />

from the B race of the green alga Botryococcus braunii. Phytochemistry<br />

27, 2863–2867.<br />

Delal<strong>and</strong>e, M., Bergonz<strong>in</strong>i, L., Beal, F., Garc<strong>in</strong>, Y., Majule, A., Williamson, D.,<br />

2005. Contribution to the detection of Lake Masoko (Tanzania)<br />

groundwater outflow: isotopic evidence ( 18 O,D). Hydrological<br />

Sciences Journal 50, 867–880.<br />

de Mesmay, R., Grossi, V., Williamson, D., Kajula, S., Derenne, S., 2007a.<br />

Novel mono-, di- <strong>and</strong> tri-<strong>unsaturated</strong> very long cha<strong>in</strong> (C 37 -C 43) n -<br />

alkenes <strong>in</strong> alkenone-free lacustr<strong>in</strong>e sediments (Lake Masoko,<br />

Tanzania). Organic Geochemistry 38, 323–333.<br />

de Mesmay, R., Grossi, V., Metzger, P., Williamson, D., Kajula, S., Derenne,<br />

S., 2007b. Abrupt biogeochemical <strong>and</strong> environmental changes dur<strong>in</strong>g<br />

the last 32,000 years <strong>in</strong> a tropical lake (Lake Masoko, Tanzania)<br />

<strong>in</strong>ferred from lipid biomarkers. 23rd International Meet<strong>in</strong>g on<br />

Organic Geochemistry, Torquay, UK. Book of Abstracts, pp. 1047-<br />

1048.<br />

Derenne, S., Largeau, C., Hetényi, M., Brukner-We<strong>in</strong>, A., Connan, J.,<br />

Lugardon, B., 1997. Chemical structure of the organic matter <strong>in</strong> a<br />

Pliocene maar-type shale: Implicated Botryococcus race stra<strong>in</strong>s <strong>and</strong><br />

formation pathways. Geochimica et Cosmochimica Acta 61, 1879–<br />

1889.<br />

Fuhrmann, A., M<strong>in</strong>gram, J., Lücke, A., Lu, H., Horsfield, B., Liu, J.,<br />

Negendank, J.F.W., Schleser, G.H., Wilkes, H., 2003. Variations <strong>in</strong><br />

organic matter composition <strong>in</strong> sediments from Lake Huguang Maar<br />

(Huguangyan), south Ch<strong>in</strong>a dur<strong>in</strong>g the last 68 ka: implications for<br />

environmental <strong>and</strong> climatic change. Organic Geochemistry 34, 1497–<br />

1515.<br />

Galbraith, M.N., Hillen, L.W., Wake, L.V., 1983. Darw<strong>in</strong>ene: a branched<br />

hydrocarbon from a green form of Botryococcus braunii.<br />

Phytochemistry 22, 1441–1443.<br />

Gao, M., Simoneit, B.R.T., Gantar, M., Jaffé, R., 2007. Occurrence <strong>and</strong><br />

distribution of novel botryococcene <strong>hydrocarbons</strong> <strong>in</strong> freshwater<br />

wetl<strong>and</strong>s of the Florida Everglades. Chemosphere 70, 224–236.<br />

Garc<strong>in</strong>, Y., Williamson, D., Taieb, M., V<strong>in</strong>cens, A., Mathe, P.-E., Majule, A.,<br />

2006a. Centennial to millennial changes <strong>in</strong> maar-lake deposition<br />

dur<strong>in</strong>g the last 45,000 years <strong>in</strong> tropical Southern Africa (Lake Masoko,<br />

Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology 239,<br />

334–354.<br />

Garc<strong>in</strong>, Y., V<strong>in</strong>cens, A., Williamson, D., Guiot, J., Buchet, G., 2006b. Wet<br />

phases <strong>in</strong> tropical southern Africa dur<strong>in</strong>g the last glacial period.<br />

Geophysical Research Letters 33, L07703.<br />

Garc<strong>in</strong>, Y., V<strong>in</strong>cens, A., Williamson, D., Buchet, G., Guiot, J., 2007. Abrupt<br />

resumption of the African Monsoon at the Younger Dryas-Holocene<br />

climatic transition. Quaternary Science Reviews 26, 690–704.<br />

Gatellier, J.-P., de Leeuw, J.W., S<strong>in</strong>n<strong>in</strong>ghe Damsté, J.S., Derenne, S., Largeau,<br />

C., Metzger, P., 1993. A comparative study of macromolecular<br />

substances of a Coorongite <strong>and</strong> cell walls of the extant alga<br />

Botryococcus braunii. Geochimica et Cosmochimica Acta 57, 2053–<br />

2068.<br />

Gibert, E., Bergonz<strong>in</strong>i, L., Massault, M., Williamson, D., 2002. AMS- 14 C<br />

chronology of 40.0 cal ka BP cont<strong>in</strong>uous deposits from a crater lake<br />

(Lake Massoko, Tanzania): modern water balance <strong>and</strong> environmental<br />

implications. Palaeogeography, Palaeoclimatology, Palaeoecology<br />

187, 307–322.<br />

Grice, K., Schouten, S., Nissenbaum, A., Charrach, J., S<strong>in</strong>n<strong>in</strong>ghe Damsté, J.S.,<br />

1998. A remarkable paradox: Sulfurised freshwater algal<br />

(Botryococcus braunii) lipids <strong>in</strong> an ancient hypersal<strong>in</strong>e eux<strong>in</strong>ic<br />

ecosystem. Organic Geochemistry 28, 195–216.<br />

Hebt<strong>in</strong>g, Y., Schaeffer, P., Behrens, A., Adam, P., Schmitt, G.,<br />

Schneckenburger, P., Bernasconi, S.M., Albrecht, P., 2006. Biomarker<br />

evidence for a major preservation pathway of sedimentary organic<br />

carbon. Science 312, 1627–1631.<br />

He<strong>in</strong>zen, V.E.F., Soares, M.F., Yunes, R.A., 1999. Semi-empirical topological<br />

method for the prediction of the chromatographic retention of cis<strong>and</strong><br />

trans-alkene isomers <strong>and</strong> alkanes. Journal of Chromatography A<br />

849, 495–496.<br />

Huang, Y., Murray, M., 1995. Identification of 1,6,17,21octahydrobotryococcene<br />

<strong>in</strong> a sediment. Journal of Chemical Society,<br />

Chemical Communications, 335–336.<br />

Huang, Y., Murray, M., Egl<strong>in</strong>ton, G., Metzger, P., 1995. Sacredicene, a novel<br />

monocyclic C 33 hydrocarbon from sediment of Sacred Lake, a tropical<br />

freshwater lake, Mount Kenya. Tetrahedron Letters 36, 5973–5976.<br />

Huang, Y., Murray, M., Metzger, P., Egl<strong>in</strong>ton, G., 1996. Novel <strong>unsaturated</strong><br />

<strong>triterpenoid</strong> <strong>hydrocarbons</strong> from sediments of Sacred Lake, Mt Kenya,<br />

Kenya. Tetrahedron 52, 6973–6982.<br />

Huang, Y., Street-Perrott, F.A., Perrott, R.A., Metzger, P., Egl<strong>in</strong>ton, G., 1999.<br />

Glacial-<strong>in</strong>terglacial environmental changes <strong>in</strong>ferred from molecular<br />

<strong>and</strong> compound-specific d 13 C analyses of sediments from Sacred Lake,<br />

Mt. Kenya. Geochimica et Cosmochimica Acta 63, 1383–1404.<br />

Huang, Z., Poulter, C.D., Wolf, F.R., Somers, T.C., White, J.D., 1988.<br />

Braunicene. A novel cyclic C 32 isoprenoid from Botryococcus braunii.<br />

Journal of the American Chemical Society 110, 3959–3964.<br />

Huang, Z., Poulter, C.D., 1988. Braunicene. Absolute Stereochemistry of<br />

the Cyclohexane R<strong>in</strong>g. Journal of Organic Chemistry 53, 4089–4094.<br />

Huang, Z., Poulter, C.D., 1989. Stereochemical studies of botryococcene<br />

biosynthesis: analogies between 1’-1 <strong>and</strong> 1’-3 condensations <strong>in</strong> the<br />

isoprenoid pathway. Journal of the American Chemical Society 111,<br />

2713–2715.<br />

Jaffé, R., Wolf, G.A., Cabrera, A.C., Carvajal-Chitty, H., 1995. The<br />

biogeochemistry of lipids <strong>in</strong> rivers of the Or<strong>in</strong>oco Bas<strong>in</strong>. Geochimica<br />

et Cosmochimica Acta 59, 4507–4522.<br />

Junkes, B.S., Amboni, R.D.M.C., He<strong>in</strong>zen, V.E.F., Yunes, R.A., 2002. Use of a<br />

semi-empirical topological method to predict the chromatographic<br />

retention of branched alkenes. Chromatographia 55, 75–81.<br />

McKirdy, D.M., Cox, R.E., Volkman, J.K., Howell, V.J., 1986. Botryococcane<br />

<strong>in</strong> a new class of Australian non-mar<strong>in</strong>e crude oils. Nature 320, 57–59.<br />

Merdaci, O., 1998. Changements climatiques au cours des derniers 30,000<br />

ans en Afrique Sud-Equatoriale (Tanzanie) par l’étude des pigments et<br />

phénols lacustres. PhD Thesis, University Aix-Marseille III.<br />

Metzger, P., Casadevall, E., 1987. Lycopadiene, a tetraterpenoid<br />

hydrocarbon from new stra<strong>in</strong>s of the green alga Botryococcus<br />

braunii. Tetrahedron Letters 28, 3931–3934.<br />

Metzger, P., Largeau, C., 1999. Chemicals of Botryococcus braunii. In:<br />

Cohen, Z. (Ed.), Chemicals from Microalgae. Taylor <strong>and</strong> Francis,<br />

London, pp. 205–260.<br />

Metzger, P., Berkaloff, C., Casadevall, E., Couté, A., 1985a. Alkadiene- <strong>and</strong><br />

botryococcene-produc<strong>in</strong>g races of wild stra<strong>in</strong>s of Botryococcus braunii.<br />

Phytochemistry 24, 2305–2312.<br />

Metzger, P., Casadevall, E., Pouet, M.J., Pouet, Y., 1985b. Structures of some<br />

botryococcenes: branched <strong>hydrocarbons</strong> from the B-race of the green<br />

alga Botryococcus braunii. Phytochemistry 24, 2995–3002.<br />

Metzger, P., Templier, J., Largeau, C., Casadevall, E., 1986. An n -alkatriene<br />

<strong>and</strong> some n -alkadienes from the A race of the green alga Botryococcus<br />

braunii. Phytochemistry 25, 1869–1872.<br />

Metzger, P., David, M., Casadevall, E., 1987. Biosynthesis of <strong>triterpenoid</strong><br />

<strong>hydrocarbons</strong> <strong>in</strong> the B-race of the green alga Botryococcus braunii.<br />

Sites of production <strong>and</strong> nature of the methylat<strong>in</strong>g agent.<br />

Phytochemistry 26, 129–134.<br />

Metzger, P., Casadevall, E., Couté, A., 1988. Botryococcene distribution <strong>in</strong><br />

stra<strong>in</strong>s of the green alga Botryococcus braunii. Phytochemistry 27,<br />

1383–1388.<br />

Metzger, P., Rager, M.-N., Largeau, C., 2007. Polyacetals based on<br />

polymethylsqualene diols, precursors of algaenan <strong>in</strong> Botryococcus<br />

braunii race B. Organic Geochemistry 38, 566–581.<br />

Moldowan, J.M., Seifert, W.K., 1980. First discovery of botryococcane <strong>in</strong><br />

petroleum. Journal of the Chemical Society, Chemical<br />

Communications, 912–914.<br />

Okada, S., Murakami, M., Yamaguchi, K., 1995. Hydrocarbon composition<br />

of newly isolated stra<strong>in</strong>s of the green microalga Botryococcus braunii.<br />

Journal of Applied Phycology 7, 555–559.


Okada, S., Murakami, M., Yamaguchi, K., 1997. Characterization of<br />

<strong>hydrocarbons</strong> from the Yayoi stra<strong>in</strong> of the green alga Botryococcus<br />

braunii. Phytochemical Analysis 8, 198–203.<br />

Okada, S., Devarenne, T.P., Murakami, M., Abe, H., Chapell, J., 2004.<br />

Characterization of botryococcene synthase enzyme activity, a<br />

squalene synthase-like activity from the green microalga<br />

Botryococcus braunii, race B. Archives of Biochemistry <strong>and</strong><br />

Biophysics 422, 110–118.<br />

Reynolds, C.S., 2000. Phytoplankton designer – or how to predict<br />

compositional responses to trophic-state change. Hydrobiologia<br />

424, 123–132.<br />

Sato, S., Ito, Y., Okada, S., Murakami, M., Abe, H., 2003. Biosynthesis of the<br />

<strong>triterpenoid</strong>s, botryococcenes <strong>and</strong> tetramethylsqualene <strong>in</strong> the B race<br />

of Botryococcus braunii via the non-mevalonate pathway. Tetrahedron<br />

Letters 44, 7035–7037.<br />

Senousy, H.H., Beakes, G.W., Hack, E., 2004. Phylogenetic placement<br />

of Botryococcus braunii (Trebouxiophyceae) <strong>and</strong> Botryococcus<br />

sudeticus isolate Utex 2629 (Chlorophyceae). Journal of<br />

Phycology 40, 412–423.<br />

Smittenberg, R.H., Baas, M., Schouten, S., S<strong>in</strong>n<strong>in</strong>ghe Damsté, J.S., 2005. The<br />

demise of the alga Botryococcus braunii from a Norwegian fjord was<br />

due to early eutrophication. The Holocene 15, 133–140.<br />

Swale, E.M.F., 1968. The phytoplankton of Oak Mere, Cheshire, 1963-<br />

1966. British Phycological Bullet<strong>in</strong> 3, 441–449.<br />

Thevenon, F., Williamson, D., V<strong>in</strong>cens, A., Taieb, M., Merdaci, O., Decobert,<br />

M., Buchet, G., 2003. A Late Holocene charcoal record from Lake<br />

Masoko, SW Tanzania: climatic <strong>and</strong> anthropologic implications. The<br />

Holocene 15, 785–792.<br />

Townsend, S.A., 2001. Perennial dom<strong>in</strong>ation of phytopankton by<br />

Botryococcus <strong>and</strong> Perid<strong>in</strong>ium <strong>in</strong> a discont<strong>in</strong>uously polymictic<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 893<br />

reservoir (tropical Australia). Archiv für Hydrobiologie 151, 529–<br />

548.<br />

Tyson, R.V., 1995. Sedimentary Organic Matter: Organic Facies <strong>and</strong><br />

Palynofacies. Chapman <strong>and</strong> Hall, London.<br />

V<strong>in</strong>cens, A., Williamson, D., Thevenon, F., Taieb, M., Buchet, G., Decobert,<br />

M., Thouveny, N., 2003. Pollen-based vegetation changes <strong>in</strong> southern<br />

Tanzania dur<strong>in</strong>g the last 4200 years: climate change <strong>and</strong>/or human<br />

impact. Palaeogeography, Palaeoclimatology, Palaeoecology 198,<br />

321–334.<br />

Wake, L.V., Hillen, L.W., 1980. Study of a bloom of the oil-rich alga<br />

Botryococcus braunii <strong>in</strong> the Darw<strong>in</strong> River Reservoir. Biotechnology <strong>and</strong><br />

Bioeng<strong>in</strong>eer<strong>in</strong>g 22, 1637–1656.<br />

Wake, L.V., Hillen, L.W., 1981. Nature <strong>and</strong> hydrocarbon content of blooms<br />

of the alga Botryococcus braunii occurr<strong>in</strong>g <strong>in</strong> Australian freshwater<br />

lakes. Australian Journal of Mar<strong>in</strong>e <strong>and</strong> Freshwater Research 32, 353–<br />

367.<br />

Williamson, D., Jackson, M.J., Banerjee, S.K., Marv<strong>in</strong>, J., Merdaci, O.,<br />

Thouveny, N., Decobert, M., Gibert-Massault, E., Massault, M.,<br />

Mazaudier, D., Taieb, M., 1999. Magnetic signatures of hydrological<br />

change <strong>in</strong> a tropical maar-lake (Lake Massoko, Tanzania): Prelim<strong>in</strong>ary<br />

results. Physics <strong>and</strong> Chemistry of the Earth Part A 24, 799–803.<br />

Wolf, F.R., Cox, E.R., 1981. Ultrastructure of active <strong>and</strong> rest<strong>in</strong>g colonies of<br />

Botryococcus braunii (Chlorophyceae). Journal of Phycology 17, 395–<br />

405.<br />

Wolf, F.R., Nonomura, A.M., Bassham, J.A., 1985. Growth <strong>and</strong> branched<br />

hydrocarbon production <strong>in</strong> a stra<strong>in</strong> of Botryococus braunii<br />

(Chlorophyta). Journal of Phycology 21, 388–396.<br />

Zhang, Z., Metzger, P., Sachs, J.P., 2007. Biomarker evidence for the cooccurrence<br />

of three races (A, B, <strong>and</strong> L) of Botryococcus braunii <strong>in</strong> El<br />

Junco Lake, Galápagos. Organic Geochemistry 38, 566–581.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!