27.06.2013 Views

effects of storage and processing on pesticide residues in ... - IUPAC

effects of storage and processing on pesticide residues in ... - IUPAC

effects of storage and processing on pesticide residues in ... - IUPAC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Pure & Appl. Chem., Vol. 66, No. 2, pp. 335-356, 1994.<br />

Pr<strong>in</strong>ted <strong>in</strong> Great Brita<strong>in</strong>.<br />

@ 1994 <strong>IUPAC</strong><br />

INTERNATIONAL UNION OF PURE<br />

AND APPLIED CHEMISTRY<br />

APPLIED CHEMISTRY DIVISION<br />

COMMISSION ON AGROCHEMICALS*<br />

<strong>IUPAC</strong> Reports <strong>on</strong> Pesticides (31)<br />

EFFECTS OF STORAGE AND PROCESSING ON<br />

PESTICIDE RESIDUES IN PLANT PRODUCTS<br />

(Technical Report)<br />

Prepared for publicati<strong>on</strong> by<br />

P. T. HOLLAND1, D. HAMILTON', B. OHLIN3 <str<strong>on</strong>g>and</str<strong>on</strong>g> M. W. SKIDMORE4<br />

'HortResearch Institute NZ Ltd., Ruakura Research Centre, Hamilt<strong>on</strong>, New Zeal<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

*Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Primary Industries, Indooroopilly, Queensl<str<strong>on</strong>g>and</str<strong>on</strong>g>, Australia<br />

3Nati<strong>on</strong>al Food Adm<strong>in</strong>istrati<strong>on</strong>, Uppsala, Sweden<br />

4Zeneca, Jealott's Hill, Bracknell, Berks., UK<br />

*Membership <str<strong>on</strong>g>of</str<strong>on</strong>g> the Commissi<strong>on</strong> dur<strong>in</strong>g the preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this report (1989-93) was as follows:<br />

Chairman: 1989-93 E. Dorn (FRG); Secretary: 1989-93 P. T. Holl<str<strong>on</strong>g>and</str<strong>on</strong>g> (New Zeal<str<strong>on</strong>g>and</str<strong>on</strong>g>); Titular<br />

Members: A. Ambrus (Hungary; 1983-91); S. Z. Cohen (USA; 1991-93); L. A. Golovleva<br />

(Russia; 1985-91); R. M. Holl<strong>in</strong>gworth (USA; 1989-93); N. Kurihara (Japan; 1989-93);<br />

G. D. Pauls<strong>on</strong> (USA; 1989-93); R. D. Wauchope (USA; 1991-93); Associate Members: S. Z.<br />

Cohen (USA; 1985-91); B. D<strong>on</strong>zel (Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>; 1987-93); C. V. Eadsforth (UK; 1989-93);<br />

R. Graney (USA; 1989-93); D. Hamilt<strong>on</strong> (Australia; 1991-93); A. W. Kle<strong>in</strong> (FRG; 1989-93);<br />

J. Kovacikova (Czechoslovakia; 1991-93); W. J. Murray (Canada; 1991-93); B. Ohl<strong>in</strong><br />

(Sweden; 1989-93); S. Otto (FRG; 1983-91); M. W. Skidmore (UK; 1991-93); B. W. Zeeh<br />

(FRG; 1991-93); Nati<strong>on</strong>al Representatives: R. Greenhalgh (Canada; 1985-93); Z-M. Li (Ch<strong>in</strong>a;<br />

1985-93); J. Kovacikova (Czechoslovakia; 1985-91); J. Iwan (FRG; 1986-91); A. Ambrus<br />

(Hungary; 1991-93); A. V. Rama Rao (India; 1989-93); J. Miyamoto (Japan; 1985-93); H. S.<br />

Tan (Malaysia; 1987-93); Ir. D. Medema (Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s; 1989-93); K. P. Park (Rep. Korea;<br />

1989-93); T. Erk (Turkey; 1989-93); T. R. Roberts (UK; 1989-91); P. C. Kearney (USA;<br />

1989-93); S. Lj. VitoroviC (Yugoslavia).<br />

Corresp<strong>on</strong>dence <strong>on</strong> the report should be addressed to the Secretary <str<strong>on</strong>g>of</str<strong>on</strong>g> the Commissi<strong>on</strong>, Dr.<br />

P. T. Holl<str<strong>on</strong>g>and</str<strong>on</strong>g>, at the address given above.<br />

Names <str<strong>on</strong>g>of</str<strong>on</strong>g> countries given after Members' names are <strong>in</strong> accordance with the <strong>IUPAC</strong> H<str<strong>on</strong>g>and</str<strong>on</strong>g>book<br />

1991-93; changes will be effected <strong>in</strong> the 1994-95 editi<strong>on</strong>.<br />

Republicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this report is permitted without the need for formal <strong>IUPAC</strong> permissi<strong>on</strong> <strong>on</strong> c<strong>on</strong>diti<strong>on</strong> that an<br />

acknowledgement, with full reference together with <strong>IUPAC</strong> copyright symbol (0 1994 <strong>IUPAC</strong>), is pr<strong>in</strong>ted.<br />

Publicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a translati<strong>on</strong> <strong>in</strong>to another language is subject to the additi<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prior approval from the<br />

relevant <strong>IUPAC</strong> Nati<strong>on</strong>al Adher<strong>in</strong>g Organizati<strong>on</strong>.


Pesticides report 31 : Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> <strong>in</strong> plant products<br />

(Tech n ica I Report)<br />

Abstract<br />

Residues <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong>s <strong>in</strong> food are <strong>in</strong>fluenced by the <str<strong>on</strong>g>storage</str<strong>on</strong>g>, h<str<strong>on</strong>g>and</str<strong>on</strong>g>l<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> that<br />

occurs between harvest<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> raw agricultural commodities <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prepared<br />

foodstuffs. Review<strong>in</strong>g the extensive literature showed that <strong>in</strong> most cases these steps lead to<br />

large reducti<strong>on</strong>s <strong>in</strong> residue levels <strong>in</strong> the prepared food, particularly through trimm<strong>in</strong>g,<br />

wash<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> cook<strong>in</strong>g operati<strong>on</strong>s. Residues <str<strong>on</strong>g>of</str<strong>on</strong>g> post harvest <strong>in</strong>secticide treatment <strong>on</strong> stored<br />

staples such as cereal gra<strong>in</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> oil seeds generally decl<strong>in</strong>e <strong>on</strong>ly rather slowly. However<br />

<str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>in</strong>to foods aga<strong>in</strong> results <strong>in</strong> large losses except for unref<strong>in</strong>ed oils. The behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>residues</strong> <strong>in</strong> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> can be rati<strong>on</strong>alised <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the physico-chemical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>pesticide</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the process. EBDC fungicides are exam<strong>in</strong>ed <strong>in</strong><br />

more detail as a class <str<strong>on</strong>g>of</str<strong>on</strong>g> fungicides <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern due to the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the toxic breakdown<br />

product ETU. Recommendati<strong>on</strong>s are provided for the c<strong>on</strong>duct <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> or <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g><br />

studies <strong>on</strong> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong> <strong>residues</strong> <strong>in</strong> food so that data obta<strong>in</strong>ed is relevant, comparable <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

may be extrapolated to other situati<strong>on</strong>s.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

INTRODUCTION<br />

CONTENTS<br />

MECHANISMS FOR POST HARVEST ALTERATION<br />

OF RESIDUES IN FOOD<br />

EFFECTS OF STORAGE ON RESIDUES<br />

3.1 Cereal Gra<strong>in</strong>s<br />

3.2 Fruit <str<strong>on</strong>g>and</str<strong>on</strong>g> Vegetables<br />

PROCESSING<br />

4.1 Process<strong>in</strong>g Systems<br />

4.2 Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Process<strong>in</strong>g<br />

4.2.1 Wash<strong>in</strong>g<br />

4.2.2 Peel<strong>in</strong>g, hull<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> trimm<strong>in</strong>g<br />

4.2.3 Juic<strong>in</strong>g<br />

4.2.4 Comm<strong>in</strong>uti<strong>on</strong><br />

4.2.5 Cook<strong>in</strong>g<br />

4.2.6 Cann<strong>in</strong>g<br />

4.2.7 Mill<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> other <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gra<strong>in</strong>s<br />

4.2.8 Process<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetable oils <str<strong>on</strong>g>and</str<strong>on</strong>g> fats<br />

4.2.9 Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alcoholic beverages<br />

METABOLITES<br />

DITHIOCARB AMATE FUNGICIDES<br />

RECOMMENDED APPROACHES TO STUDY AND<br />

REGULATION OF RESIDUES IN PROCESSED FOOD<br />

7.1 Scope <str<strong>on</strong>g>of</str<strong>on</strong>g> Studies<br />

7.2 Study Protocols<br />

ACKNOWLEDGErnNTS<br />

REFERENCES<br />

336<br />

337<br />

338<br />

338<br />

340<br />

348<br />

349<br />

349<br />

353<br />

353


1. INTRODUCTION<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> 337<br />

A large gap exists between c<strong>on</strong>sumer <str<strong>on</strong>g>and</str<strong>on</strong>g> scientific percepti<strong>on</strong>s <strong>on</strong> the risks that <strong>pesticide</strong> <strong>residues</strong> <strong>in</strong><br />

food pose to human health relative to other dietary risks. One cause <str<strong>on</strong>g>of</str<strong>on</strong>g> this misc<strong>on</strong>cepti<strong>on</strong> has been<br />

the emphasis placed <strong>on</strong> "worst case" evaluati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> extrapolati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> available data e.g. assum<strong>in</strong>g<br />

that all crops are treated with <strong>pesticide</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> that the result<strong>in</strong>g <strong>residues</strong> <strong>in</strong> food as c<strong>on</strong>sumed are at<br />

maximum permitted levels (Ref. 1,2, 3,4, 5).<br />

C<strong>on</strong>trols <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> <strong>in</strong> crops are generally based <strong>on</strong> Maximum Residue Limits (MRL's)<br />

which are set us<strong>in</strong>g field trial data for a particular <strong>pesticide</strong> to arrive at the highest residue levels<br />

expected under use accord<strong>in</strong>g to Good Agricultural Practice (GAP). Primary residue studies <strong>on</strong> food<br />

crops are ma<strong>in</strong>ly carried out <strong>on</strong> samples that have received m<strong>in</strong>imal post harvest h<str<strong>on</strong>g>and</str<strong>on</strong>g>l<strong>in</strong>g except for<br />

perhaps m<strong>in</strong>or trimm<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> that have been stored deep frozen prior to analysis. Although MRL's are<br />

a credible <str<strong>on</strong>g>and</str<strong>on</strong>g> useful means <str<strong>on</strong>g>of</str<strong>on</strong>g> enforc<strong>in</strong>g acceptable <strong>pesticide</strong> use, they are <strong>in</strong>adequate as a guide to<br />

human health risks from <strong>residues</strong>. Total diet studies have c<strong>on</strong>sistently shown that us<strong>in</strong>g MRL's as a<br />

basis for calculat<strong>in</strong>g human dietary c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong>s over-estimate actual <strong>in</strong>takes by <strong>on</strong>e to<br />

three orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude (Ref. 2,3). A previous <strong>IUPAC</strong> report (Ref. 5) has recommended a stepwise<br />

approach to evaluat<strong>in</strong>g risks from <strong>pesticide</strong> <strong>residues</strong> <strong>in</strong> food which <strong>in</strong>cludes allowance for losses <strong>in</strong><br />

<str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g>.<br />

An important factor lead<strong>in</strong>g to reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any <strong>residues</strong> left <strong>on</strong> crops at harvest are <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g><br />

treatments such as wash<strong>in</strong>g, peel<strong>in</strong>g, cann<strong>in</strong>g or cook<strong>in</strong>g that the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> foods receive prior to<br />

c<strong>on</strong>sumpti<strong>on</strong>. These can <str<strong>on</strong>g>of</str<strong>on</strong>g>ten substantially reduce the residue levels <strong>on</strong> or <strong>in</strong> food that has been<br />

treated with <strong>pesticide</strong>s. For example, a study track<strong>in</strong>g chlorothal<strong>on</strong>il <strong>on</strong> crops from field to table<br />

showed that normal h<str<strong>on</strong>g>and</str<strong>on</strong>g>l<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh cabbage, celery, cucumbers <str<strong>on</strong>g>and</str<strong>on</strong>g> tomatoes led to<br />

large reducti<strong>on</strong>s <strong>in</strong> residue levels (Ref. 6). The actual exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> US c<strong>on</strong>sumers to chlorothal<strong>on</strong>il<br />

through diet was calculated to be <strong>on</strong>ly 2% <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum theoretical level estimated from MRL's.<br />

However <strong>in</strong> some special cases more toxic by-products or metabolites can be formed dur<strong>in</strong>g<br />

<str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g>. A much studied example is the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ethylenethiourea (ETU) from ethylene-<br />

bisdithiocarbamate fungicides (Ref. 7). Unit processes <strong>on</strong> food can also result <strong>in</strong> <strong>residues</strong> be<strong>in</strong>g<br />

redistributed or c<strong>on</strong>centrated <strong>in</strong> various separated fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> food or feed.<br />

In pr<strong>in</strong>ciple, the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>effects</str<strong>on</strong>g> can be predicted for particular <strong>pesticide</strong>s from<br />

physico-chemical parameters such as solubility, hydrolytic rate c<strong>on</strong>stants, volatility, octanol-water<br />

partiti<strong>on</strong> coefficients <str<strong>on</strong>g>and</str<strong>on</strong>g> the actual physical locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong>. In practice lack <str<strong>on</strong>g>of</str<strong>on</strong>g> detailed data,<br />

particularly <strong>on</strong> the <strong>in</strong>teracti<strong>on</strong>s with food comp<strong>on</strong>ents, means a more empirical approach has been<br />

followed. More research is required <strong>on</strong> some <str<strong>on</strong>g>of</str<strong>on</strong>g> these fundamental physico-chemical processes with<br />

<strong>pesticide</strong>s <strong>in</strong> the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> food <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g>. However the general <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> may be<br />

rati<strong>on</strong>alised by us<strong>in</strong>g these c<strong>on</strong>siderati<strong>on</strong>s.<br />

Regulatory authorities are <strong>in</strong>creas<strong>in</strong>gly <strong>in</strong>terested <strong>in</strong> such data. Studies <strong>in</strong>to <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

some commercial <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> techniques <strong>on</strong> <strong>residues</strong> <strong>in</strong> food are a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the registrati<strong>on</strong> requirements<br />

for <strong>pesticide</strong>s <strong>in</strong> many countries. The Jo<strong>in</strong>t FAOWHO meet<strong>in</strong>g <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> (JMPR)<br />

c<strong>on</strong>siders <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> as part <str<strong>on</strong>g>of</str<strong>on</strong>g> their reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> residue data for particular <strong>pesticide</strong>s. Some<br />

member governments are also c<strong>on</strong>sider<strong>in</strong>g the <strong>in</strong>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> formal protocols to evaluate <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

typical domestic food preparati<strong>on</strong>. Data <strong>on</strong> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> is c<strong>on</strong>sidered necessary to reassure c<strong>on</strong>sumers<br />

as to the actual versus hypothetical (from MRL's) exposure to <strong>residues</strong> <strong>in</strong> food. The Delaney<br />

amendment <strong>in</strong> the USA govern<strong>in</strong>g carc<strong>in</strong>ogenic food additives also has had significant ramificati<strong>on</strong>s<br />

for registrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certa<strong>in</strong> <strong>pesticide</strong>s particularly where <strong>residues</strong> have been found to c<strong>on</strong>centrate <strong>in</strong><br />

particular food fracti<strong>on</strong>s (Ref. 1).<br />

Several reviews have appeared over the last 15 years <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong><br />

<strong>in</strong> food (Ref. 8, 9, 10). The emphasis has been ma<strong>in</strong>ly <strong>on</strong> the organochlor<strong>in</strong>e <strong>in</strong>secticides. The US<br />

food <strong>in</strong>dustry has published some data show<strong>in</strong>g large reducti<strong>on</strong>s <strong>in</strong> residue levels dur<strong>in</strong>g commercial<br />

<str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetables (Ref. 11) <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>in</strong>dustry has established a database for <strong>residues</strong> <strong>in</strong><br />

processed foods (Ref. 12). The use <str<strong>on</strong>g>of</str<strong>on</strong>g> radiotracers <strong>in</strong> <strong>pesticide</strong> residue studies <strong>in</strong> stored products has<br />

been the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>ference proceed<strong>in</strong>gs (Ref. 13). Persistence <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

post harvest applied agrochemicals <strong>in</strong> fresh fruits <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetables have been the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> a recent<br />

thorough review (Ref. 14).<br />

This paper exam<strong>in</strong>es recent data <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> or <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> with a<br />

view to rati<strong>on</strong>alis<strong>in</strong>g the <strong>in</strong>formati<strong>on</strong> <strong>on</strong> modem <strong>pesticide</strong>s. Relevant <strong>in</strong>formati<strong>on</strong> has been extracted<br />

from the literature <str<strong>on</strong>g>and</str<strong>on</strong>g> from the <strong>in</strong>-depth reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong> residue data undertaken annually by<br />

JMPR <str<strong>on</strong>g>and</str<strong>on</strong>g> published by the Plant Producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Protecti<strong>on</strong> divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FAO. These reports c<strong>on</strong>ta<strong>in</strong><br />

detailed company data that is not otherwise readily accessible. However, there have been limitati<strong>on</strong>s


338 COMMISSION ON AGROCHEMICALS<br />

<strong>in</strong> the experimental designs or <strong>in</strong> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> data collected from many <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> studies.<br />

Recommendati<strong>on</strong>s are developed for approaches to research <strong>in</strong>to <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>residues</strong>.<br />

2. MECHANISMS FOR POST-HARVEST ALTERATION OF RESIDUES IN<br />

FOOD<br />

Basic processes act<strong>in</strong>g <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> <strong>in</strong> the field can c<strong>on</strong>t<strong>in</strong>ue to operate after crops are<br />

harvested. These <strong>in</strong>clude:<br />

volatilisati<strong>on</strong><br />

hydrolysis<br />

penetrati<strong>on</strong><br />

metabolism, enzymatic transformati<strong>on</strong><br />

oxidati<strong>on</strong><br />

Photodegradati<strong>on</strong> generally ceases or is greatly reduced <strong>on</strong>ce a crop is removed from the field<br />

situati<strong>on</strong>.<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> various physical unit processes <strong>on</strong> crops such as wash<strong>in</strong>g, trimm<strong>in</strong>g, peel<strong>in</strong>g or juic<strong>in</strong>g<br />

apporti<strong>on</strong>s <strong>residues</strong> between various processed food fracti<strong>on</strong>s. This <str<strong>on</strong>g>of</str<strong>on</strong>g>ten leads to direct reducti<strong>on</strong>s <strong>in</strong><br />

the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> <strong>in</strong> rema<strong>in</strong><strong>in</strong>g edible porti<strong>on</strong>s. However lipophilic <strong>pesticide</strong>s tend to c<strong>on</strong>centrate<br />

<strong>in</strong> tissues rich <strong>in</strong> lipids <str<strong>on</strong>g>and</str<strong>on</strong>g> thus residue levels can <strong>in</strong>crease <strong>in</strong> fracti<strong>on</strong>s such as vegetable oils.<br />

Processes <strong>in</strong>volv<strong>in</strong>g heat or chemicals can <strong>in</strong>crease volatilisati<strong>on</strong>, hydrolysis or other chemical<br />

degradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> thus reduce residue levels. However dry<strong>in</strong>g processes may result <strong>in</strong> higher<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> due to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture.<br />

3. EFFECTS OF STORAGE ON RESIDUES<br />

3.1 Cereal Gra<strong>in</strong>s<br />

Gra<strong>in</strong>s are frequently stored l<strong>on</strong>g term (3 - 36 m<strong>on</strong>ths) at ambient temperatures <strong>in</strong> bulk silos where<br />

<strong>in</strong>secticides may be applied post-harvest to reduce losses from <str<strong>on</strong>g>storage</str<strong>on</strong>g> pests (Ref. 15, JMPR 1981).<br />

Gra<strong>in</strong> based foods therefore have the potential to be a major source <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> <strong>in</strong> the diet for these<br />

<strong>in</strong>secticides. Analytical methods for <strong>residues</strong> <strong>in</strong> gra<strong>in</strong>s have been reviewed ( Ref. 16).<br />

Studies <strong>on</strong> gra<strong>in</strong> follow<strong>in</strong>g post-harvest treatments with <strong>in</strong>secticides have generally shown that<br />

<strong>residues</strong> <strong>on</strong>ly decl<strong>in</strong>e rather slowly (Ref. 15, 17, 18). Residues <str<strong>on</strong>g>of</str<strong>on</strong>g> the more lipophilic materials tend<br />

to rema<strong>in</strong> <strong>on</strong> the seed coat although a proporti<strong>on</strong> can migrate through to the bran <str<strong>on</strong>g>and</str<strong>on</strong>g> germ which<br />

c<strong>on</strong>ta<strong>in</strong> high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> triglyceride (Ref. 19). Storage fungi may assist <strong>in</strong> the degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>secticides (Ref. 19). Typical results are those for malathi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pirimiphos-methyl <strong>in</strong> rape seed<br />

(Ref. 20). Residues generally showed little decrease over 32 weeks at 2OOC <str<strong>on</strong>g>and</str<strong>on</strong>g> 50-70% relative<br />

humidity. At 3OoC malathi<strong>on</strong> <strong>residues</strong> decreased by 30-40% while pirimiphos-methyl <strong>residues</strong><br />

rema<strong>in</strong>ed c<strong>on</strong>stant. Organochlor<strong>in</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> synthetic pyrethroid <strong>residues</strong> are also very stable under silo<br />

c<strong>on</strong>diti<strong>on</strong>s (Ref. 18, 21). Data for <strong>in</strong>secticides <strong>in</strong> stored cereal gra<strong>in</strong>s have been reviewed (JMPR<br />

1981). Quite a high proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>residues</strong> can be associated with the dust <str<strong>on</strong>g>and</str<strong>on</strong>g> other f<strong>in</strong>e detritus<br />

which is removed when the wheat is cleaned before mill<strong>in</strong>g. For example deltamethr<strong>in</strong> levels <strong>on</strong><br />

stored gra<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.52 m ag were reduced to 0.42 m ag after clean<strong>in</strong>g (JMPR 1992).<br />

Persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> several <strong>in</strong>secticides <strong>in</strong> gra<strong>in</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> beans stored under typical c<strong>on</strong>diti<strong>on</strong>s have been<br />

studied <strong>in</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> countries us<strong>in</strong>g radiotracer techniques (Ref. 13). Extractable <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parent<br />

maldis<strong>on</strong> after <str<strong>on</strong>g>storage</str<strong>on</strong>g> periods <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 - 9 m<strong>on</strong>ths ranged from 16-65% <str<strong>on</strong>g>of</str<strong>on</strong>g> the applied doses.<br />

C<strong>on</strong>siderable amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrolysis products were also present <str<strong>on</strong>g>and</str<strong>on</strong>g> bound <strong>residues</strong> (radioactivity<br />

unextractable by the solvent used) comprised 520% <str<strong>on</strong>g>of</str<strong>on</strong>g> the applied dose. Chlorpyrifos-methyl,<br />

fenvalerate <str<strong>on</strong>g>and</str<strong>on</strong>g> pirimiphos-methyl were generally more persistent than malathi<strong>on</strong>. High proporti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the term<strong>in</strong>al <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorpyrifos-methyl <str<strong>on</strong>g>and</str<strong>on</strong>g> fenvalerate were found to be <strong>in</strong> the bound form (ca<br />

20% <str<strong>on</strong>g>of</str<strong>on</strong>g> the applied dose) compared to <strong>on</strong>ly 1-2% for pirimiphos-methyl, FAOAAEA has published<br />

model protocols for c<strong>on</strong>duct <str<strong>on</strong>g>of</str<strong>on</strong>g> studies <strong>on</strong> <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protectant <strong>in</strong>secticides <str<strong>on</strong>g>and</str<strong>on</strong>g> methyl bromide<br />

fumigant <strong>in</strong> stored foods us<strong>in</strong>g radioactive tracer techniques (Annexes 1 & 2, Ref. 13).<br />

Australian workers have developed predictive models for the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> dissipati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>secticides <strong>in</strong> gra<strong>in</strong> stored under stable c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> humidity (Ref. 22, 23). The<br />

first order rate c<strong>on</strong>stant for degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fenitrothi<strong>on</strong> <strong>in</strong> various gra<strong>in</strong>s was dependent <strong>on</strong><br />

temperature, follow<strong>in</strong>g an Arrhenius equati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> was proporti<strong>on</strong>al to the water activity. The later<br />

parameter can be calculated from moisture c<strong>on</strong>tents us<strong>in</strong>g empirical equati<strong>on</strong>s for each gra<strong>in</strong> type


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> 339<br />

(Ref. 24). The model has been extended to a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> other <strong>in</strong>secticides <str<strong>on</strong>g>of</str<strong>on</strong>g> the 0-P, carbamate <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

pyrethroid classes (Ref. 25,26). The mechanism proposed was that <strong>in</strong>secticides adsorbed to the gra<strong>in</strong><br />

are desorbed by water <str<strong>on</strong>g>and</str<strong>on</strong>g> becomes available for degradati<strong>on</strong> by enzymes, metal i<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> other active<br />

molecules. Table 1 summarises the half-lives <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature coefficients for degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

protectants <strong>in</strong> wheat under reference c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 3OOC <str<strong>on</strong>g>and</str<strong>on</strong>g> 50% relative humidity.<br />

Table 1: Half lives <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature coefficients for degradati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>secticides <strong>in</strong> wheat stored at 300,50% rel. humidity.<br />

In (f0.S) = K.T + C<br />

Insecticide Half-life, Temperature coefficient, K<br />

(weeks) (OC-1)<br />

bioresmethr<strong>in</strong><br />

carbaryl<br />

cyfluthr<strong>in</strong><br />

chlorpyrifos-methyl<br />

deltamethr<strong>in</strong><br />

dichlorvos<br />

fenitrothi<strong>on</strong><br />

fenvalerate<br />

malathi<strong>on</strong><br />

permethr<strong>in</strong><br />

pirimiphos-methyl<br />

pyrethr<strong>in</strong>s<br />

3.2 Fruit <str<strong>on</strong>g>and</str<strong>on</strong>g> Vegetables<br />

38<br />

21<br />

70<br />

19<br />

>50<br />

2<br />

14<br />

>50<br />

12<br />

30<br />

70<br />

55<br />

0.03 1<br />

0.03 1<br />

0.040<br />

0.036<br />

0.050<br />

small<br />

0.022<br />

- not established<br />

From the work <str<strong>on</strong>g>of</str<strong>on</strong>g> Desmarchelier et al (Ref. 22,23,24,25,26).<br />

Most high moisture unprocessed foods must be held <strong>in</strong> chillers or refrigerators (0 to 5OC) for short to<br />

medium <str<strong>on</strong>g>storage</str<strong>on</strong>g> or deep frozen (-10 to -2OOC) for l<strong>on</strong>ger periods. Studies <strong>on</strong> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong>s <strong>on</strong><br />

whole food-stuffs under cool or frozen <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten have shown that <strong>residues</strong> are stable or decay <strong>on</strong>ly<br />

slowly (Ref. 14,27, 28). For example a study <str<strong>on</strong>g>of</str<strong>on</strong>g> field <strong>in</strong>curred <strong>residues</strong> <strong>on</strong> kiwifruit stored at 0 to l0C<br />

for 3 m<strong>on</strong>ths found less than 20% decl<strong>in</strong>e <strong>in</strong> <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorpyrifos, diaz<strong>in</strong><strong>on</strong>, permethr<strong>in</strong>, phosmet,<br />

pirimiphos-methyl, iprodi<strong>on</strong>e or v<strong>in</strong>clozol<strong>in</strong> (Holl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Malcolm, unpublished data). Similarly<br />

<strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several fungicides applied as dips to apples were relatively stable at <str<strong>on</strong>g>storage</str<strong>on</strong>g> temperatures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0 - 2OC (Ref. 29). After 140-150 days <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> benomyl, carbendazim, methyl thiophanate <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

thiabendazole were 36% - 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>itial dose. Penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> from the sk<strong>in</strong> <strong>in</strong>to the outer<br />

flesh was significant. However <strong>on</strong>ly traces <str<strong>on</strong>g>of</str<strong>on</strong>g> thiabendazole penetrated to the pulp <strong>in</strong> dipped citrus.<br />

Thiabendazole <strong>residues</strong> were highly stable <strong>in</strong> potatoes held at ambient temperature with less than 10%<br />

reducti<strong>on</strong> after 56 days (JMPR 1977). The temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> is important for less stable or more<br />

volatile compounds. For example <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the carbamate thiodicarb were stable at -1OOC but there<br />

were losses at 4.5OC. The highly volatile dichlorvos dissipated rapidly from kiwifruit or asparagus<br />

held at 1OC.<br />

For the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> estimat<strong>in</strong>g dietary <strong>in</strong>take <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong>s through raw food, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particular trial data, the c<strong>on</strong>servative assumpti<strong>on</strong> must be that there is negligible reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>curred<br />

<strong>residues</strong> dur<strong>in</strong>g <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> whole foodstuffs. Although there is little support<strong>in</strong>g data, particularly for<br />

n<strong>on</strong>-frozen <str<strong>on</strong>g>storage</str<strong>on</strong>g>, the assumpti<strong>on</strong> also is that there is no change <strong>in</strong> residue compositi<strong>on</strong>.


340 COMMISSION ON AGROCHEMICALS<br />

4. PROCESSING<br />

4.1 Process<strong>in</strong>g Systems<br />

A variety <str<strong>on</strong>g>of</str<strong>on</strong>g> unit operati<strong>on</strong>s are used <strong>in</strong> commercial or domestic food <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g>.<br />

summarised <strong>in</strong> Table 2.<br />

Table 2: Representative unit operati<strong>on</strong>s used <strong>in</strong> food <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g>.<br />

Process C<strong>on</strong>diti<strong>on</strong>s<br />

Wash<strong>in</strong>g<br />

Peel<strong>in</strong>g<br />

Husk<strong>in</strong>g<br />

Hull<strong>in</strong>g<br />

Shell<strong>in</strong>g<br />

Trimm<strong>in</strong>g<br />

Comm<strong>in</strong>uti<strong>on</strong><br />

Juic<strong>in</strong>g<br />

Cook<strong>in</strong>g<br />

C<strong>on</strong>centrati<strong>on</strong><br />

Jam Preserv<strong>in</strong>g<br />

cold water<br />

hot water (blanch<strong>in</strong>g)<br />

chemical baths 6<br />

(caustic, acid,<br />

detergent, hypochlorite)<br />

blend<strong>in</strong>g<br />

chopp<strong>in</strong>g<br />

m<strong>in</strong>c<strong>in</strong>g<br />

press<strong>in</strong>g<br />

clarify<strong>in</strong>g<br />

steam<strong>in</strong>g<br />

boil<strong>in</strong>g<br />

bak<strong>in</strong>g<br />

fry<strong>in</strong>g<br />

grill<strong>in</strong>g<br />

microwave<br />

boil<strong>in</strong>g<br />

vacuum<br />

reverse osmosis<br />

Process C<strong>on</strong>diti<strong>on</strong>s<br />

Pickl<strong>in</strong>g<br />

Pasteurisati<strong>on</strong><br />

Oil Producti<strong>on</strong><br />

Irradiati<strong>on</strong><br />

Dry<strong>in</strong>g<br />

Gra<strong>in</strong> Mill<strong>in</strong>g<br />

Infusi<strong>on</strong><br />

Fermentati<strong>on</strong><br />

Distillati<strong>on</strong> direct<br />

~ ~~<br />

press<strong>in</strong>g<br />

solvent extracti<strong>on</strong><br />

clarificati<strong>on</strong><br />

deodorisati<strong>on</strong><br />

hydrogenati<strong>on</strong><br />

oven<br />

solar<br />

spray<br />

freeze<br />

These are<br />

hull<strong>in</strong>g<br />

polish<strong>in</strong>g<br />

gr<strong>in</strong>d<strong>in</strong>g - whole flour<br />

- white flour<br />

- bran<br />

- germ<br />

tea, c<str<strong>on</strong>g>of</str<strong>on</strong>g>fee<br />

beer<br />

w<strong>in</strong>e<br />

soy products<br />

sauerkraut<br />

spirits<br />

steam - essential oils<br />

In many cases a raw commodity will undergo a series <str<strong>on</strong>g>of</str<strong>on</strong>g> unit processes to form a food. For example,<br />

a range <str<strong>on</strong>g>of</str<strong>on</strong>g> specialised processes are used <strong>in</strong> cann<strong>in</strong>g tomatoes. The whole fruit is generally<br />

comm<strong>in</strong>uted dur<strong>in</strong>g producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> canned juices, purees <str<strong>on</strong>g>and</str<strong>on</strong>g> ketchups whereas canned whole tomatoes<br />

are lye peeled. There may be <strong>in</strong>termediate <str<strong>on</strong>g>storage</str<strong>on</strong>g> periods before processed foods are f<strong>in</strong>ally<br />

c<strong>on</strong>sumed. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> various unit steps <strong>on</strong> residue levels <str<strong>on</strong>g>of</str<strong>on</strong>g> parent <strong>pesticide</strong> are likely to be<br />

additive although the quantitative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> any transformati<strong>on</strong> products may not be so<br />

evident.<br />

4.2 Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Process<strong>in</strong>g<br />

4.2.1 Wash<strong>in</strong>g.<br />

The key elements <strong>in</strong> the effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> wash<strong>in</strong>g <strong>in</strong> remov<strong>in</strong>g <strong>residues</strong> are:<br />

i) The Jocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the residue. Surface <strong>residues</strong> are amenable to simple wash<strong>in</strong>g operati<strong>on</strong>s whereas<br />

systemic <strong>residues</strong> present <strong>in</strong> tissues will be little affected. For example, the highly polar <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

systemic methamidaphos was the <strong>on</strong>ly <strong>pesticide</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a number tested whose <strong>residues</strong> could not be<br />

removed from field tomatoes by wash<strong>in</strong>g (Ref. 31).


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> 34 1<br />

ii) The <str<strong>on</strong>g>of</str<strong>on</strong>g> the residue. There is evidence for a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> crops <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>pesticide</strong>s that the<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> residue that can be removed by wash<strong>in</strong>g decl<strong>in</strong>es with time (Ref. 32, 33, 34, 35).<br />

This has been <strong>in</strong>terpreted as be<strong>in</strong>g due to <strong>residues</strong> tend<strong>in</strong>g to move <strong>in</strong>to cuticular waxes or deeper<br />

layers. For example the fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fenitrothi<strong>on</strong> or methidathi<strong>on</strong> <strong>residues</strong> <strong>on</strong> cauliflower that<br />

could be removed by wash<strong>in</strong>g or blanch<strong>in</strong>g were <strong>in</strong>versely proporti<strong>on</strong>al to the days after spray<br />

applicati<strong>on</strong> (Ref. 34, 35). These post-harvest observati<strong>on</strong>s match those made <strong>on</strong> ra<strong>in</strong>-fastness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>pesticide</strong> deposits <strong>on</strong> fruit or leaves <strong>in</strong> the field.<br />

iii) The water sol ubility <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>pesticide</strong>. Polar, water soluble <strong>pesticide</strong>s such as carbaryl are more<br />

readily removed than low polarity materials (Ref. 11). This probably reflects not <strong>on</strong>ly their<br />

higher solubility <strong>in</strong> the wash but also their reduced propensity to move <strong>in</strong>to waxy layers.<br />

iv) The tempe rature <str<strong>on</strong>g>and</str<strong>on</strong>g> tvw <str<strong>on</strong>g>of</str<strong>on</strong>g> wash. Hot wash<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> blanch<strong>in</strong>g are more effective than cold<br />

wash<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> the effectiveness may be further improved by detergent (Ref. 11, 31, 32). Blanch<strong>in</strong>g<br />

removed 8247% <str<strong>on</strong>g>of</str<strong>on</strong>g> methidathi<strong>on</strong> <strong>residues</strong> from cauliflower <str<strong>on</strong>g>and</str<strong>on</strong>g> did not show an effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

withhold<strong>in</strong>g period as compared to the lower proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> removable by wash<strong>in</strong>g (Ref.<br />

35). Domestic r<strong>in</strong>s<strong>in</strong>g is less effective compared to thorough commercial wash<strong>in</strong>g. Hot caustic<br />

washes (Ref. 36) used <strong>in</strong> some commercial peel<strong>in</strong>g operati<strong>on</strong>s can efficiently remove <str<strong>on</strong>g>and</str<strong>on</strong>g> degrade<br />

<strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrolysable <strong>pesticide</strong>s.<br />

A range <str<strong>on</strong>g>of</str<strong>on</strong>g> literature data is summarised <strong>in</strong> Table 3. Unfortunately many trials did not specify the age<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the residue. In some cases where a high reducti<strong>on</strong> <strong>in</strong> residue was achieved the <strong>pesticide</strong> had been<br />

applied by a post-harvest dip. Simple wash treatments are likely to be <str<strong>on</strong>g>of</str<strong>on</strong>g> lower effectiveness <strong>in</strong><br />

reduc<strong>in</strong>g term<strong>in</strong>al <strong>residues</strong> <strong>on</strong> field sprayed crops harvested at comm<strong>on</strong> withhold<strong>in</strong>g periods <str<strong>on</strong>g>of</str<strong>on</strong>g> 7 - 28<br />

days.<br />

Table 3: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> wash<strong>in</strong>g or blanch<strong>in</strong>g <strong>on</strong> <strong>pesticide</strong> residue levels <strong>in</strong> fruit <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetables.<br />

Residue<br />

Pesticide Crop Process reducti<strong>on</strong> % Reference<br />

az<strong>in</strong>phos-methyl lem<strong>on</strong><br />

orange<br />

carbaryl broccoli<br />

sp<strong>in</strong>ach<br />

tomatoes<br />

carbosulfan oranges<br />

chlorothal<strong>on</strong>il peaches<br />

tomatoes<br />

cypermethr<strong>in</strong> egg Plant<br />

green gram<br />

DDT<br />

diaz<strong>in</strong><strong>on</strong><br />

fenbutat<strong>in</strong> oxide<br />

fenvalerate<br />

green beans<br />

potatoes<br />

sp<strong>in</strong>ach<br />

tomatoes<br />

peach 1<br />

sp<strong>in</strong>ach<br />

tomatoes<br />

apples<br />

egg Plant<br />

green gram<br />

wash<br />

wash<br />

detergent wash<br />

blanch, wash<br />

detergent wash<br />

detergent wash<br />

wash<br />

alkal<strong>in</strong>e wash<br />

wash<br />

detergent dip<br />

detergent dip<br />

blanch<br />

wash<br />

15% lye<br />

detergent wash<br />

blanch<br />

wash<br />

detergent wash<br />

detergent wash<br />

detergent wash<br />

wash<br />

wash<br />

detergent dip<br />

detergent dip<br />

blanch<br />

63<br />

84<br />

77<br />

90<br />

87<br />

97<br />

50<br />

97<br />

94<br />

50-60<br />

44-45<br />

50<br />

20<br />

90<br />

48<br />

60<br />

91<br />

73<br />

29<br />

0<br />

88<br />

60<br />

50-60<br />

34-47<br />

50-5 1<br />

37<br />

37<br />

36<br />

36<br />

36<br />

JMPR, 1984<br />

JMPR, 1977<br />

JMPR, 1977<br />

38<br />

39<br />

36<br />

36<br />

36<br />

36<br />

40<br />

36<br />

36<br />

JMPR, 1977<br />

38<br />

39


342 COMMISSION ON AGROCHEMICALS<br />

Table 3 (c<strong>on</strong>t.)<br />

Residue<br />

Pesticide Crop Process reducti<strong>on</strong> % Reference<br />

fenitrothi<strong>on</strong> apples<br />

broccoli<br />

currants<br />

okra<br />

malathi<strong>on</strong><br />

methidathi<strong>on</strong><br />

parathi<strong>on</strong><br />

broccoli<br />

green beans<br />

okra<br />

tomatoes<br />

cabbage<br />

cauliflower<br />

broccoli<br />

cauliflower<br />

cauliflower<br />

cow-pea<br />

green bean<br />

mustard gr.<br />

sp<strong>in</strong>ach<br />

permethr<strong>in</strong> egg Plant<br />

green gram<br />

green bean<br />

permethr<strong>in</strong> lettuce<br />

thiabendazole potatoes<br />

wash<br />

wash, blanch<br />

wash<br />

wash, blanch<br />

blanch<br />

wash<br />

blanch<br />

wash<br />

wash<br />

wash (day 0)<br />

wash (day 7)<br />

blanch (day 0&7)<br />

wash (day 0)<br />

wash (day 7)<br />

blanch (day 0&7)<br />

wash<br />

detergent wash<br />

blanch<br />

h<str<strong>on</strong>g>and</str<strong>on</strong>g> wash (30sec)<br />

wash/blanch<br />

h<str<strong>on</strong>g>and</str<strong>on</strong>g> wash (30 sec)<br />

wash/blanch<br />

soap wash<br />

soap wash<br />

wash<br />

detergent wash<br />

blanch, wash<br />

detergent dip<br />

wash<br />

blanch<br />

wash<br />

blanch<br />

water wash<br />

water wash<br />

9<br />

27-59<br />

26<br />

24-49<br />

9-34<br />

96<br />

13-99<br />

79-89<br />

95<br />

67-76<br />

24-30<br />

76-89<br />

66-7 1<br />

20-24<br />

82-87<br />

0<br />

30<br />

10<br />

0-47<br />

0-65<br />

23-47<br />

26-66<br />

52<br />

87<br />

9-39<br />

24<br />

58-71<br />

50-60<br />

31-36<br />

38-49<br />

20<br />

62<br />

64<br />

75-90<br />

41<br />

33,34<br />

41<br />

33,34<br />

42<br />

10<br />

36,42<br />

11,36<br />

35<br />

35<br />

36<br />

43<br />

44<br />

43 44<br />

45<br />

45<br />

36,lO<br />

36<br />

36,43<br />

38<br />

39<br />

46<br />

JMPR, 1982<br />

JMPR, 1977<br />

4.2.2 Peel<strong>in</strong>g, Hull<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> Trimm<strong>in</strong>g A majority <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>secticides or fungicides applied<br />

directly to crops undergo very limited movement or penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cuticle. It therefore follows<br />

that <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these materials are c<strong>on</strong>f<strong>in</strong>ed to the outer surfaces where they are amenable to removal<br />

<strong>in</strong> peel<strong>in</strong>g, hull<strong>in</strong>g or trimm<strong>in</strong>g operati<strong>on</strong>s.<br />

Peel<strong>in</strong>g fresh fruits such avocado, bananas, citrus, kiwifruit, mango <str<strong>on</strong>g>and</str<strong>on</strong>g> p<strong>in</strong>eapple achieves virtually<br />

complete removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> from the fruit. There is substantial data show<strong>in</strong>g n<strong>on</strong>-detectable<br />

<strong>residues</strong> <strong>in</strong> pulp <str<strong>on</strong>g>of</str<strong>on</strong>g> citrus <str<strong>on</strong>g>and</str<strong>on</strong>g> the edible porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> other fruits that support these c<strong>on</strong>clusi<strong>on</strong>s. For<br />

example, supervised field trials <str<strong>on</strong>g>of</str<strong>on</strong>g> pirimiphos-methyl <strong>on</strong> various citrus crops gave n<strong>on</strong>-detectable<br />

(< 0.03 mgkg) <strong>residues</strong> <strong>in</strong> the pulp compared to <strong>residues</strong> <strong>in</strong> the peel at 21 - 28 days <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 - 5 m ag<br />

(JMPR, 1985). Post harvest dipp<strong>in</strong>g trials have been c<strong>on</strong>ducted <strong>on</strong> p<strong>in</strong>eapple with the fungicide<br />

triadimef<strong>on</strong> which has some trans-lam<strong>in</strong>ar acti<strong>on</strong> (JMPR, 1986). Residues <strong>in</strong> the flesh were<br />

c<strong>on</strong>sistently <strong>on</strong>ly 0.5 to 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> those <strong>in</strong> the peel 1 to 11 days after dipp<strong>in</strong>g. Under Codex, MRL’s are<br />

based <strong>on</strong> the whole fruit which is appropriate for assess<strong>in</strong>g compliance with GAP. These MRL’s are<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> limited significance <strong>in</strong> assess<strong>in</strong>g exposure to <strong>pesticide</strong>s from c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh fruits which are<br />

peeled or juiced. However some major crops such as apples <str<strong>on</strong>g>and</str<strong>on</strong>g> tomatoes may be c<strong>on</strong>sumed either<br />

whole or after peel<strong>in</strong>g.


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> 343<br />

The sk<strong>in</strong>s from commercial peel<strong>in</strong>g operati<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used for producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> animal feeds or<br />

essential oils (citrus). These processes can result <strong>in</strong> a substantial <strong>in</strong>crease <strong>in</strong> residue levels <strong>in</strong> the by-<br />

products over those determ<strong>in</strong>ed <strong>on</strong> the whole fruit. For stable, n<strong>on</strong>-systemic, <strong>pesticide</strong>s the<br />

c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> the sk<strong>in</strong>s are determ<strong>in</strong>ed by weight proporti<strong>on</strong>ality.<br />

Residues <str<strong>on</strong>g>of</str<strong>on</strong>g> systemic <strong>pesticide</strong>s can enter the flesh <str<strong>on</strong>g>of</str<strong>on</strong>g> crops. Follow<strong>in</strong>g early seas<strong>on</strong> soil <strong>in</strong>corporati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phorate, <strong>residues</strong> <strong>in</strong> washed whole potatoes <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.37 mgkg (parent plus oxidati<strong>on</strong> products) were<br />

<strong>on</strong>ly reduced by 50% through peel<strong>in</strong>g (JMPR, 1992). Similarly disyst<strong>on</strong> <strong>residues</strong> <strong>in</strong> potatoes were<br />

<strong>on</strong>ly reduced 35% by peel<strong>in</strong>g (Ref. 47) whereas <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the much more lipophilic chlorpyrifos<br />

were completely removed <strong>in</strong> the peels (Ref. 48).<br />

The hulls <str<strong>on</strong>g>of</str<strong>on</strong>g> cereal gra<strong>in</strong>s generally c<strong>on</strong>ta<strong>in</strong> the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong> <strong>residues</strong> from any field<br />

treatments. Residues <str<strong>on</strong>g>of</str<strong>on</strong>g> parathi<strong>on</strong> <strong>in</strong> oat or rice gra<strong>in</strong>s were reduced 8-10 fold <strong>on</strong> hull<strong>in</strong>g (JMPR,<br />

1991). Pirimiphos methyl <strong>residues</strong> <strong>in</strong> rice were reduced 70% <str<strong>on</strong>g>and</str<strong>on</strong>g> 90% by husk<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> polish<strong>in</strong>g<br />

respectively (Ref. 25). Husk<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> corn (maize) removed 99% <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>residues</strong> from field treatments<br />

with tetrachlorv<strong>in</strong>phos (Ref. 49).<br />

Trimm<strong>in</strong>g operati<strong>on</strong>s also reduce residue levels <strong>in</strong> prepared food. The outer leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetables such<br />

as lettuce <str<strong>on</strong>g>and</str<strong>on</strong>g> crucifers c<strong>on</strong>ta<strong>in</strong> a large proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>residues</strong> from <strong>pesticide</strong>s applied dur<strong>in</strong>g the<br />

grow<strong>in</strong>g seas<strong>on</strong>. For example, <strong>on</strong> cabbages <strong>on</strong>e week after the last <str<strong>on</strong>g>of</str<strong>on</strong>g> eight weekly sprays <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cyhalothr<strong>in</strong>, over 99% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total <strong>residues</strong> were <strong>in</strong> the seven outermost leaves (Ref. 19). St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard<br />

sampl<strong>in</strong>g protocols for residue trials or enforcement (US-FDA, Codex ) specify removal <str<strong>on</strong>g>of</str<strong>on</strong>g> soiled or<br />

withered outer leaves for these types <str<strong>on</strong>g>of</str<strong>on</strong>g> crop. Residue data <str<strong>on</strong>g>and</str<strong>on</strong>g> MRL’s therefore sometimes reflect<br />

<strong>in</strong>itial trimm<strong>in</strong>g. Domestic preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many foods <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <strong>in</strong>clude further trimm<strong>in</strong>g operati<strong>on</strong>s. On<br />

the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> the feed<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> peel<strong>in</strong>gs or trimm<strong>in</strong>gs can result <strong>in</strong> higher exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> animals such as<br />

pigs to <strong>residues</strong>.<br />

4.2.3 Juic<strong>in</strong>g Residues <str<strong>on</strong>g>of</str<strong>on</strong>g> parathi<strong>on</strong> <strong>in</strong> apple juice were lower when fruit were first cored <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

peeled rather than pressed whole (JMPR, 1991); commercial juic<strong>in</strong>g operati<strong>on</strong>s generally use whole<br />

fruit. The residue levels <strong>in</strong> juices from fruit or must from grapes will depend <strong>on</strong> the partiti<strong>on</strong><strong>in</strong>g<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>pesticide</strong> between the fruit sk<strong>in</strong>dpulp <str<strong>on</strong>g>and</str<strong>on</strong>g> the juice (which generally c<strong>on</strong>ta<strong>in</strong> some<br />

solids). The pulp or pomace by-products, which <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <strong>in</strong>clude the sk<strong>in</strong>, reta<strong>in</strong> a substantial proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lipophilic <strong>residues</strong>. Thus moderately to highly lipophilic <strong>pesticide</strong>s such as parathi<strong>on</strong>, folpet,<br />

captan <str<strong>on</strong>g>and</str<strong>on</strong>g> synthetic pyrethroids are poorly transferred <strong>in</strong>to juices <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>residues</strong> are further reduced<br />

by clarificati<strong>on</strong> operati<strong>on</strong> such as centrifugati<strong>on</strong> or filter<strong>in</strong>g (Ref. 50).<br />

The relatively high residue levels <strong>in</strong> juic<strong>in</strong>g by-products can undergo further <strong>in</strong>creases <strong>on</strong> dry<strong>in</strong>g due<br />

to simple loss <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture. For example apples treated post-harvest with bitertanol were processed<br />

giv<strong>in</strong>g c<strong>on</strong>centrati<strong>on</strong> factors <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1,2.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7.5 <strong>in</strong> juice, wet pomace <str<strong>on</strong>g>and</str<strong>on</strong>g> dry pomace respectively over<br />

the <strong>residues</strong> <strong>on</strong> the whole fruit. Overall there was <strong>on</strong>ly an 11.4% absolute loss <str<strong>on</strong>g>of</str<strong>on</strong>g> bitertanol residue <strong>in</strong><br />

dry<strong>in</strong>g the pomace (JMPR, 1986). Permethr<strong>in</strong> <strong>residues</strong> <strong>in</strong> apple juice were n<strong>on</strong>-detectable while dry<br />

pomace showed a c<strong>on</strong>centrati<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 over whole fruit (JMPR, 1979). Residues <str<strong>on</strong>g>of</str<strong>on</strong>g> the growth<br />

regulator paclobutrazol <strong>in</strong> apples were c<strong>on</strong>centrated 12 fold <strong>in</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dry pomace <str<strong>on</strong>g>and</str<strong>on</strong>g> there<br />

was no loss <str<strong>on</strong>g>of</str<strong>on</strong>g> residue dur<strong>in</strong>g the dry<strong>in</strong>g (JMPR, 1988). Similarly low level <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> abamect<strong>in</strong> <strong>on</strong><br />

field treated tomatoes became n<strong>on</strong>-detectable <strong>on</strong> the washed fruit (hot dip, pH 11) or <strong>in</strong> canned puree<br />

but were detectable <strong>on</strong> the wet pomace <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>centrated 8 fold <strong>on</strong> dry<strong>in</strong>g (JMPR 1992). In c<strong>on</strong>trast<br />

c<strong>on</strong>centrati<strong>on</strong> factors for triadimef<strong>on</strong> <strong>residues</strong> <strong>in</strong> processed apples were 4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 for wet <str<strong>on</strong>g>and</str<strong>on</strong>g> dry<br />

pomace respectively, show<strong>in</strong>g losses were significant dur<strong>in</strong>g dry<strong>in</strong>g (JMPR, 198 1). Residue losses<br />

also were apparent for parathi<strong>on</strong> <strong>on</strong> dry<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> apple or grape pomace (JMPR, 1991).<br />

4.2.4 Comm<strong>in</strong>uti<strong>on</strong> Disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> tissues <strong>in</strong> chopp<strong>in</strong>g, blend<strong>in</strong>g etc. leads to release <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> acids which may <strong>in</strong>crease the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrolytic <str<strong>on</strong>g>and</str<strong>on</strong>g> other degradative processes <strong>on</strong> <strong>residues</strong> that<br />

were previously isolated by cuticular layers. For example, f<strong>in</strong>e chopp<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> crop samples leads to<br />

rapid degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> EBDC fungicide <strong>residues</strong> (Ref. 51). However most <strong>pesticide</strong>s are relatively<br />

stable <strong>in</strong> acidic tissue homogenates for the moderate periods <str<strong>on</strong>g>of</str<strong>on</strong>g> time <strong>in</strong>volved <strong>in</strong> food preparati<strong>on</strong>.<br />

4.2.5 Cook<strong>in</strong>g The processes <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s used <strong>in</strong> cook<strong>in</strong>g food are highly varied. The details<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time, temperature, degree <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture loss <str<strong>on</strong>g>and</str<strong>on</strong>g> whether the system is open or closed are important<br />

to the quantitative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> residue levels. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> volatilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> are<br />

<strong>in</strong>creased by the heat <strong>in</strong>volved <strong>in</strong> cook<strong>in</strong>g or pasteurisati<strong>on</strong>. For example <strong>in</strong> a study <strong>on</strong> radiolabelled<br />

chlorothal<strong>on</strong>il <strong>residues</strong>, cook<strong>in</strong>g under open c<strong>on</strong>diti<strong>on</strong>s resulted <strong>in</strong> 85 - 98% losses by volatilisati<strong>on</strong>.<br />

Cook<strong>in</strong>g under closed c<strong>on</strong>diti<strong>on</strong>s resulted <strong>in</strong> hydrolysis with 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> the chlorothal<strong>on</strong>il be<strong>in</strong>g<br />

recovered unchanged <strong>on</strong> the crop <str<strong>on</strong>g>and</str<strong>on</strong>g> the hydrolysis product be<strong>in</strong>g found <strong>in</strong> the liquor (JMPR, 1979).<br />

For compounds that are <str<strong>on</strong>g>of</str<strong>on</strong>g> low volatility <str<strong>on</strong>g>and</str<strong>on</strong>g> relatively stable to hydrolysis such as DDT <str<strong>on</strong>g>and</str<strong>on</strong>g> synthetic<br />

pyrethroids, losses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> through cook<strong>in</strong>g may be low <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s may actually <strong>in</strong>crease<br />

due to moisture loss. However deltamethr<strong>in</strong> has been reported to have a half-life <str<strong>on</strong>g>of</str<strong>on</strong>g> 9 m<strong>in</strong>utes <strong>in</strong><br />

boil<strong>in</strong>g water <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>residues</strong> were shown to be reduced by 1566% <strong>in</strong> cook<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> various vegetables<br />

(Ref. 17).


344 COMMISSION ON AGROCHEMICALS<br />

Table 4:<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cook<strong>in</strong>g <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> <strong>in</strong> food.<br />

Pesticide Crop Method Reducti<strong>on</strong> <strong>in</strong> residue Reference<br />

c<strong>on</strong>centrati<strong>on</strong> %<br />

benomyl<br />

carbaryl<br />

cypermethr<strong>in</strong><br />

DDT<br />

dimethoate<br />

disyst<strong>on</strong><br />

ethi<str<strong>on</strong>g>of</str<strong>on</strong>g>encarb<br />

fenitrothi<strong>on</strong><br />

fenvalerate<br />

malathi<strong>on</strong><br />

parathi<strong>on</strong> me.<br />

permethr<strong>in</strong><br />

phenothr<strong>in</strong><br />

phorate<br />

pirimiphos me.<br />

thiabendazole<br />

deltamethr<strong>in</strong><br />

green beans<br />

tomatoes<br />

plums<br />

cabbage<br />

whole flour<br />

potatoes<br />

rice<br />

potatoes<br />

beans<br />

potatoes<br />

rice. unpolished<br />

rice, polished<br />

whole flour<br />

potatoes<br />

whole flour<br />

broccoli<br />

sp<strong>in</strong>ach<br />

whole flour<br />

rice<br />

rice<br />

apples<br />

tomatoes<br />

rice<br />

wh.flour<br />

potatoes<br />

rice<br />

potatoes<br />

sp<strong>in</strong>ach<br />

green bean<br />

tea<br />

boil, 30 m<strong>in</strong><br />

boil, 30 m<strong>in</strong><br />

boil, 30 m<strong>in</strong><br />

boil, 45 m<strong>in</strong><br />

bake<br />

boil<br />

boil<br />

fry<br />

boil, dehydr.<br />

boil, 15 m<strong>in</strong><br />

fry<br />

bake<br />

boil<br />

boil<br />

grill<br />

boil or steam<br />

fry or bake<br />

bake<br />

wash, boil<br />

boil<br />

boil or grill<br />

boil<br />

boil<br />

bake, 165O, 45 m<strong>in</strong><br />

fry, 2-3 m<strong>in</strong><br />

boil<br />

bake<br />

microwave<br />

fry<br />

boil<br />

baked<br />

boil<br />

boil<br />

<strong>in</strong>fusi<strong>on</strong><br />

50<br />

69<br />

10<br />

25<br />

16-2 1<br />

0<br />

20<br />

77-97<br />

89-9 1<br />

>gob<br />

>5gb<br />

gob<br />

18-25<br />

0<br />

20<br />

50<br />

>90<br />

a rema<strong>in</strong><strong>in</strong>g 50% found as MBC <strong>in</strong> water <strong>in</strong>clud<strong>in</strong>g metabolites<br />

JMPR 1978<br />

52<br />

JMPR, 1979<br />

JMPR, 1979<br />

53<br />

54<br />

55<br />

47<br />

47<br />

JMPR, 1977<br />

JMPR, 1977<br />

JMPR, 1977<br />

25<br />

25<br />

56<br />

57<br />

57<br />

53<br />

58<br />

32<br />

56,59<br />

55<br />

55<br />

JMPR, 1982<br />

JMPR, 1982<br />

49<br />

60<br />

JMPR, 1992<br />

25<br />

JMPR, 1977<br />

Table 4 summarises some trial data cover<strong>in</strong>g a range <str<strong>on</strong>g>of</str<strong>on</strong>g> crops, <strong>pesticide</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> cook<strong>in</strong>g methods,<br />

4.2.6 Cunn<strong>in</strong>g This commercial process <strong>in</strong> its various forms comb<strong>in</strong>es elements <str<strong>on</strong>g>of</str<strong>on</strong>g> wash<strong>in</strong>g,<br />

peel<strong>in</strong>g, juic<strong>in</strong>g, cook<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>. Process<strong>in</strong>g whole tomatoes with v<strong>in</strong>clozol<strong>in</strong> <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.73 mgkg gave <strong>residues</strong> <strong>in</strong> canned juice, puree <str<strong>on</strong>g>and</str<strong>on</strong>g> ketchup <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.18, 0.73 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.22 mgkg<br />

respectively (JMPR, 1986). In this case the relatively stable fungicide v<strong>in</strong>clozol<strong>in</strong> was carried through<br />

the process <strong>in</strong> significant amounts. Only 13-14% <str<strong>on</strong>g>of</str<strong>on</strong>g> the parathi<strong>on</strong> <strong>residues</strong> <strong>on</strong> tomatoes were found <strong>in</strong><br />

canned juice or ketchup (Ref. 61) <str<strong>on</strong>g>and</str<strong>on</strong>g> no <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> malathi<strong>on</strong> were carried <strong>in</strong>to canned tomato<br />

products (Ref 36, 52). Several organophosphorus <strong>pesticide</strong>s were shown to be unstable <strong>in</strong> canned<br />

products with <strong>residues</strong> becom<strong>in</strong>g n<strong>on</strong>-detectable after 1 year (Ref. 61,62).<br />

17<br />

17<br />

17


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> 345<br />

4.2.7 Mill<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> Other Process<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Gra<strong>in</strong>s Table 5 summarises some <str<strong>on</strong>g>of</str<strong>on</strong>g> the extensive literature<br />

<strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat <strong>on</strong> <strong>residues</strong>. Although gra<strong>in</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>ta<strong>in</strong> <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

protectants (see Secti<strong>on</strong> 3.1) levels <strong>in</strong> the flour are greatly reduced. Most <strong>residues</strong> are present <strong>in</strong> the<br />

outer porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the gra<strong>in</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently levels <strong>in</strong> bran are c<strong>on</strong>sistently higher than <strong>in</strong> wheat,<br />

ususally by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> about 2 to 6. For the herbicide glyphosate, which can enter the gra<strong>in</strong> by<br />

translocati<strong>on</strong>, <strong>residues</strong> are also higher <strong>in</strong> the bran than <strong>in</strong> the flour.<br />

%<br />

00<br />

IA<br />

s<br />

\o<br />

2<br />

2<br />

m<br />

4<br />

d<br />

x<br />

h


346 COMMISSION ON AGROCHEMICALS<br />

The first process <strong>in</strong> a commercial flour mill is a clean<strong>in</strong>g process to remove dirt <str<strong>on</strong>g>and</str<strong>on</strong>g> debris which<br />

have been mixed with the wheat dur<strong>in</strong>g harvest<strong>in</strong>g. Some gra<strong>in</strong> protectant <strong>residues</strong> are also removed<br />

<strong>in</strong> this process. It is not always clear from the literature if samples <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat were taken for analysis<br />

before or after the clean<strong>in</strong>g process. Clean<strong>in</strong>g may be the most important part <str<strong>on</strong>g>of</str<strong>on</strong>g> the mill<strong>in</strong>g process<br />

<strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> remov<strong>in</strong>g <strong>residues</strong>.<br />

Cook<strong>in</strong>g further reduces residue levels (Ref. 5 3, but it is not always clear from data <strong>in</strong> the literature if<br />

the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> has decl<strong>in</strong>ed dur<strong>in</strong>g cook<strong>in</strong>g, or whether the levels are lower because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diluti<strong>on</strong>; moisture levels <strong>in</strong> baked bread <str<strong>on</strong>g>and</str<strong>on</strong>g> boiled rice are much higher than <strong>in</strong> the gra<strong>in</strong>.<br />

The mill<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> rice substantially removes <strong>residues</strong>, which are mostly attached to the husk (Table 6).<br />

Residue levels are further depleted <strong>in</strong> the cooked rice.<br />

The errors <strong>in</strong> calculat<strong>in</strong>g percentage reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> residue c<strong>on</strong>centrati<strong>on</strong>s are substantial, because they<br />

depend <strong>on</strong> divid<strong>in</strong>g two residue c<strong>on</strong>centrati<strong>on</strong>s both hav<strong>in</strong>g typical residue level errors. The errors<br />

become quite large when <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the residue levels is near the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitati<strong>on</strong>. Interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

percentage reducti<strong>on</strong> comparis<strong>on</strong>s must take <strong>in</strong>to account likely errors.<br />

4.2.8 Process<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Vegetable Oils <str<strong>on</strong>g>and</str<strong>on</strong>g> Fats The dom<strong>in</strong>ant feature <strong>in</strong> the <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> oil seeds<br />

is the retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipophilic <strong>pesticide</strong>s <strong>in</strong> the oil or fat fracti<strong>on</strong>. Residues <strong>in</strong> oil-seeds follow<strong>in</strong>g<br />

husk<strong>in</strong>g are very low or n<strong>on</strong>-detectable from field applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> most <strong>pesticide</strong>s. However higher<br />

<strong>residues</strong> are produced by post-harvest treatments aga<strong>in</strong>st <str<strong>on</strong>g>storage</str<strong>on</strong>g> pests which can lead to elevated<br />

<strong>residues</strong> <strong>in</strong> the oils. Process<strong>in</strong>g seeds to recover oil us<strong>in</strong>g press<strong>in</strong>g or solvent extracti<strong>on</strong> can<br />

c<strong>on</strong>centrate lipophilic <strong>residues</strong> <strong>in</strong> the oil. C<strong>on</strong>versely highly polar <strong>pesticide</strong>s such as dimethoate,<br />

oxamyl (JMPR, 1980) or thiodicarb (JMPR, 1985) are not transferred to the oil fracti<strong>on</strong>. Dimethoate<br />

was specifically developed so <strong>residues</strong> would not rema<strong>in</strong> <strong>in</strong> olive oil. Dimethoate <str<strong>on</strong>g>and</str<strong>on</strong>g> omethoate the<br />

oxygen analogue metabolite are largely removed dur<strong>in</strong>g <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> (Ref. 63). Table 7 lists the<br />

c<strong>on</strong>centrati<strong>on</strong> ratios for <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong>s <strong>in</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetable oils.<br />

C<strong>on</strong>centrati<strong>on</strong> ratios are generally lower for cott<strong>on</strong> seed oil because <str<strong>on</strong>g>of</str<strong>on</strong>g> retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> much <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

residue <strong>in</strong> the l<strong>in</strong>t. High c<strong>on</strong>centrati<strong>on</strong> ratios have been found for crops which give low yields <str<strong>on</strong>g>of</str<strong>on</strong>g> oil<br />

such as maize. Press<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> citrus peel led to c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> parathi<strong>on</strong> <strong>in</strong> the oil 100-300 times those<br />

<strong>in</strong> the whole fruit (JMPR, 1991).<br />

While some oils such as olive are sold unref<strong>in</strong>ed, most crude vegetable oils receive some further<br />

<str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g>. Steps such as alkali ref<strong>in</strong><strong>in</strong>g or deodorisati<strong>on</strong> can be very effective at remov<strong>in</strong>g many<br />

<strong>pesticide</strong>s from oils. For example 70 to 100% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>dane or DDT plus metabolites were<br />

removed from a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetable oils by vacuum deodorisati<strong>on</strong> at 230 to 260 C (Ref. 41).<br />

Methoprene <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 to 150 mgkg <strong>in</strong> crude maize oils were reduced to n<strong>on</strong>-detectable levels<br />

after deodorisati<strong>on</strong> (JMPR, 1988). Similarly <strong>residues</strong> from post harvest applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dichlorvos,<br />

malathi<strong>on</strong>, chlorpyrifos or captan to soyabeans were reduced to n<strong>on</strong>-detectable levels <strong>in</strong> ref<strong>in</strong>ed,<br />

deodorised oil (Ref. 65). However some stable, low vapour pressure <strong>pesticide</strong>s such as synthetic<br />

pyrethroids seem to be less effectively removed by this treatment (Table 7).<br />

4.2.9 Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Akoholic Beverages In pr<strong>in</strong>ciple <strong>residues</strong> <strong>on</strong> the barley or hops used <strong>in</strong><br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> beers could be reta<strong>in</strong>ed <strong>in</strong> the f<strong>in</strong>al product. In practice, a comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the malt<strong>in</strong>g<br />

process, the high diluti<strong>on</strong> with water <str<strong>on</strong>g>and</str<strong>on</strong>g> the filter<strong>in</strong>gh<strong>in</strong>g processes generally result <strong>in</strong> n<strong>on</strong>-<br />

detectable <strong>residues</strong> <strong>in</strong> beer. Malt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> barley resulted <strong>in</strong> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> about 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> fenitrothi<strong>on</strong> <strong>residues</strong><br />

(Ref. 66). Synthetic pyrethroid <strong>residues</strong> underwent similar high losses dur<strong>in</strong>g malt<strong>in</strong>g (Ref. 49).<br />

There is a high useage <str<strong>on</strong>g>of</str<strong>on</strong>g> EBDC fungicides <strong>on</strong> hops <str<strong>on</strong>g>and</str<strong>on</strong>g> ETU <strong>residues</strong> have been detected <strong>in</strong> beer (see<br />

secti<strong>on</strong> 4.2.10). Water-soluble compounds are more likely to transfer <strong>in</strong>to the beer. Glyphosate<br />

residue levels <strong>in</strong> beer were about 4% <str<strong>on</strong>g>of</str<strong>on</strong>g> orig<strong>in</strong>al levels <strong>in</strong> the barley (JMPR, 1987). Some glyphosate<br />

was lost dur<strong>in</strong>g the wash<strong>in</strong>g, but most <str<strong>on</strong>g>of</str<strong>on</strong>g> the decrease could be attributed to diluti<strong>on</strong>.<br />

In c<strong>on</strong>trast, w<strong>in</strong>e-mak<strong>in</strong>g <strong>in</strong>volves no diluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore <strong>residues</strong> are more likely to be found. The<br />

residual characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the major fungicides used <strong>in</strong> viticulture have been reviewed (Ref. 50). In<br />

additi<strong>on</strong> to transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> from the grapes <strong>in</strong>to the must, stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> to the fermentati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> f<strong>in</strong><strong>in</strong>g processes are important factors. Fermentati<strong>on</strong> <strong>on</strong> the sk<strong>in</strong>s as carried out <strong>in</strong> red w<strong>in</strong>e<br />

producti<strong>on</strong> is likely to lead to higher <strong>residues</strong> <strong>in</strong> raw w<strong>in</strong>e.<br />

Residues <strong>in</strong> must may be absorbed to the solids produced dur<strong>in</strong>g fermentati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> thus be lost <strong>in</strong> the<br />

f<strong>in</strong><strong>in</strong>g processes. However, a range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong>s with suitable solubilities <str<strong>on</strong>g>and</str<strong>on</strong>g> stabilities can give rise<br />

to <strong>residues</strong> <strong>in</strong> w<strong>in</strong>e. Table 8 summarises available data <strong>on</strong> the reducti<strong>on</strong>s <strong>in</strong> <strong>residues</strong> that have been<br />

found dur<strong>in</strong>g <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> grapes <strong>in</strong>to w<strong>in</strong>e. Further degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> can occur dur<strong>in</strong>g<br />

<str<strong>on</strong>g>storage</str<strong>on</strong>g>. The half lives for dimethoate, methidathi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> dialiflor <strong>residues</strong> <strong>in</strong> bottled w<strong>in</strong>e stored at<br />

24OC were 30,7 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7 days respectively (Ref. 67).


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> end <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> 347<br />

Table 6: Percentage reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> residue c<strong>on</strong>centrati<strong>on</strong>s dur<strong>in</strong>g the <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> cook<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rice. Some decrease <strong>in</strong> residue c<strong>on</strong>centrati<strong>on</strong>s can be attributed to diluti<strong>on</strong> because<br />

the moisture level <strong>in</strong> cooked rice is higher than <strong>in</strong> the raw gra<strong>in</strong>. Values are<br />

reported as mean <str<strong>on</strong>g>and</str<strong>on</strong>g> range (<strong>in</strong> parentheses).<br />

Pesticide Rice <strong>in</strong> husk Rice <strong>in</strong> husk Rice <strong>in</strong> husk Reference<br />

to husked rice to polished rice to cooked rice<br />

bioresmethr<strong>in</strong><br />

carbaryl<br />

deltamethr<strong>in</strong><br />

fenitrothi<strong>on</strong><br />

d-phenothr<strong>in</strong><br />

methacrifos<br />

parathi<strong>on</strong><br />

pirimiphos-methyl<br />

93%<br />

86%<br />

92%<br />

(55-994)<br />

82%<br />

89%<br />

80%<br />

70%<br />

97% >98%a 25<br />

98% 98%a 25<br />

97%<br />

(93-100%)<br />

JMPR, 1987<br />

92% 96%a 25<br />

97% >97%a 25<br />

97% >98%a 25<br />

>93% JMPR 1991<br />

94% 98%a 25<br />

a % reducti<strong>on</strong> <strong>in</strong> <strong>residues</strong>, with allowance for weight change dur<strong>in</strong>g cook<strong>in</strong>g.<br />

Table 7: Pesticide <strong>residues</strong> <strong>in</strong> vegetable oils.<br />

QQQ Pesticide<br />

Cott<strong>on</strong> seed<br />

Maize<br />

Olives<br />

Peanuts<br />

Soyabean<br />

Sunflower<br />

Rape<br />

chlordimef<strong>on</strong> 0.8<br />

c ypermethr<strong>in</strong><br />

diaz<strong>in</strong><strong>on</strong><br />

0.8<br />

l-cyhalothr<strong>in</strong> 0.2<br />

methoprene 10-20<br />

parathi<strong>on</strong> 1.3-3.4<br />

parathi<strong>on</strong> 4.5<br />

pirimiphos-methyl 1.7<br />

fenvalerate 1.1<br />

dichlorvosa 5.3<br />

chlorp yrifosa 4.1<br />

malathi<strong>on</strong>a 3.9<br />

diaz<strong>in</strong><strong>on</strong><br />

permethr<strong>in</strong> 0.7<br />

etrimfos 2.7<br />

- data not reported a from dry flake<br />

ue c o n c e n m Residue loss . . Reference<br />

oillseed <strong>on</strong> deod<strong>on</strong>satiQn<br />

crude oil ref<strong>in</strong>ed oil %<br />

0.6<br />

0.7<br />

1.7<br />

0.1<br />

1.3-3.4<br />

1.2<br />

0.07<br />

2.85<br />

0.43<br />

1.5<br />

1.7<br />

100<br />

60<br />

100<br />

100<br />

100<br />

100<br />

17<br />

98<br />

JMPR, 1979<br />

JMPR, 1979<br />

64<br />

JMPR, 1986<br />

JMPR, 1988<br />

JMPR, 1991<br />

JMPR, 1991<br />

JMPR, 1985<br />

JMPR, 1979<br />

65<br />

65<br />

65<br />

64<br />

JMPR, 1982<br />

JMPR, 1986


348 COMMISSION ON AGROCHEMICALS<br />

Table 8: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> juic<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> v<strong>in</strong>ificati<strong>on</strong> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> from grapes.<br />

sidue from field -<br />

Pesticide Must Clarified juice W<strong>in</strong>e Reference<br />

benomyl<br />

captafol<br />

chlorothal<strong>on</strong>il<br />

dialiflor<br />

dimethoate<br />

folpet<br />

iprodi<strong>on</strong>e<br />

metalaxyl<br />

methidathi<strong>on</strong><br />

methiocarb<br />

procymid<strong>on</strong>e<br />

propic<strong>on</strong>azole<br />

triadimef<strong>on</strong><br />

+ triadimenol<br />

v<strong>in</strong>clozol<strong>in</strong><br />

~~<br />

0<br />

50<br />

12-33<br />

50<br />

45-70<br />

0<br />

0-10<br />

40<br />

70<br />

50<br />

59-88<br />

0<br />

95<br />

95<br />

60-80<br />

30-50<br />

80<br />

- not determ<strong>in</strong>ed a bent<strong>on</strong>ite f<strong>in</strong><strong>in</strong>g<br />

5. METABOLITES<br />

0,75a<br />

100<br />

90<br />

15<br />

100<br />

70-87<br />

66<br />

54<br />

40-70<br />

70<br />

100<br />

50-100<br />

89-93<br />

68<br />

69<br />

JMPR, 1979<br />

67<br />

67<br />

69<br />

JMPR, 1977<br />

51<br />

67<br />

JMPR, 1981<br />

JMPR, 1981<br />

JMPR, 1987<br />

JMPR, 1979<br />

JMPR, 1986<br />

Degradative or transformati<strong>on</strong> processes lead<strong>in</strong>g to formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolites will <str<strong>on</strong>g>of</str<strong>on</strong>g>ten be <strong>in</strong>creased<br />

by unit processes used <strong>in</strong> food <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g>, particularly those <strong>in</strong>volv<strong>in</strong>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> heat or chemicals.<br />

Although no examples are available <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong>s where food <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> has resulted <strong>in</strong> the producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new metabolites, the proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> various metabolites may change from those found <strong>in</strong> field or<br />

laboratory studies <strong>on</strong> whole plants. As metabolites are generally more polar than parents, changes <strong>in</strong><br />

proporti<strong>on</strong>s between <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> fracti<strong>on</strong>s also can be expected. It is therefore prudent <strong>in</strong> prelim<strong>in</strong>ary<br />

<str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> studies to m<strong>on</strong>itor all <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern as guided by plant metabolism studies. Use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

radio-labelled parent simplifies the track<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> through <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g>. FAO-IAEA c<strong>on</strong>ferences<br />

have covered use <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-labelled <strong>pesticide</strong>s <strong>in</strong> <str<strong>on</strong>g>storage</str<strong>on</strong>g> studies (Ref. 13). Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> malathi<strong>on</strong> <strong>on</strong> rice<br />

(Ref. 70) <str<strong>on</strong>g>and</str<strong>on</strong>g> phenothr<strong>in</strong> <strong>on</strong> wheat (Ref. 60) have also been reported.<br />

Detailed studies <strong>on</strong> the fate <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolites dur<strong>in</strong>g food <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> are lack<strong>in</strong>g for most <strong>pesticide</strong>s.<br />

Some studies <strong>on</strong> parathi<strong>on</strong> have <strong>in</strong>cluded measurements <strong>on</strong> paraox<strong>on</strong> or the p-nitrophenol hydrolysis<br />

product. Paraox<strong>on</strong> behaved similarly to parent <strong>in</strong> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> field treated citrus, apples <str<strong>on</strong>g>and</str<strong>on</strong>g> grapes<br />

(JMPR, 1991). Exaggerated rates <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> were required to produce sufficient paraox<strong>on</strong> to track<br />

through the trials. Blanch<strong>in</strong>g or cann<strong>in</strong>g operati<strong>on</strong>s <strong>on</strong> vegetables c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g parathi<strong>on</strong> <strong>residues</strong> did<br />

not result <strong>in</strong> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> p-nitrophenol (Ref. 43, 61). C<strong>on</strong>jugated metabolites <str<strong>on</strong>g>of</str<strong>on</strong>g> benzoylprop <strong>in</strong><br />

wheat were found to c<strong>on</strong>centrate 5 fold <strong>in</strong> the bran after mill<strong>in</strong>g (Ref. 71).<br />

Bound <strong>residues</strong> can be a major proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> term<strong>in</strong>al <strong>residues</strong> for some gra<strong>in</strong> protectants (see Secti<strong>on</strong><br />

3.1). The nature <str<strong>on</strong>g>and</str<strong>on</strong>g> significance <str<strong>on</strong>g>of</str<strong>on</strong>g> bound <strong>residues</strong> rema<strong>in</strong> ill def<strong>in</strong>ed (Ref. 13). Bound<br />

tetrachlorv<strong>in</strong>phos <strong>residues</strong> <strong>in</strong> faba beans caused significant decreases <strong>in</strong> weight ga<strong>in</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> plasma<br />

chol<strong>in</strong>esterase when fed to mice (Ref. 13). Further research is required <strong>on</strong> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> bound <strong>residues</strong><br />

dur<strong>in</strong>g food <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> their bioavailability.


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> 349<br />

6. DITHIOCARBAMATE FUNGICIDES<br />

The ethylene bis-dithiocarbamates (EBDC) fungicides form a useful example <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>pesticide</strong> class<br />

where <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> studies have formed an important part <str<strong>on</strong>g>of</str<strong>on</strong>g> research <str<strong>on</strong>g>and</str<strong>on</strong>g> evaluati<strong>on</strong>. This group <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>pesticide</strong>s have come under particular scrut<strong>in</strong>y because <str<strong>on</strong>g>of</str<strong>on</strong>g> their ability to form the metabolite or<br />

breakdown product ethylenethiourea (ETU), a putative carc<strong>in</strong>ogen. A similar problem exists for<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> propylenethiourea from propylene bis-dithiocarbamates e.g. prop<strong>in</strong>eb.<br />

A review <str<strong>on</strong>g>of</str<strong>on</strong>g> toxicological data <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental health criteria for the dithiocarbamates <str<strong>on</strong>g>and</str<strong>on</strong>g> ETU<br />

has been published (Ref. 7). The toxicology <str<strong>on</strong>g>of</str<strong>on</strong>g> ETU, the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ETU <str<strong>on</strong>g>and</str<strong>on</strong>g> dec<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong><br />

processes for crops were recently reviewed (Ref. 72). Earlier m<strong>on</strong>itor<strong>in</strong>g data showed that ETU<br />

<strong>residues</strong> could be found <strong>in</strong> raw agricultural commodities but the levels were generally less than 1% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parent EBDC <str<strong>on</strong>g>and</str<strong>on</strong>g> seldom exceeded 0.05 mgkg. For comparis<strong>on</strong>, the nati<strong>on</strong>al limits <strong>in</strong> four countries<br />

are between 0.01 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1 mg ETUikg for different commodities. However EBDC’s are rather<br />

unstable compounds <str<strong>on</strong>g>and</str<strong>on</strong>g> elevated levels <str<strong>on</strong>g>of</str<strong>on</strong>g> ETU have been found <strong>in</strong> food after certa<strong>in</strong> processes.<br />

C<strong>on</strong>diti<strong>on</strong>s that favour the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> EBDC’s to ETU are high pH <str<strong>on</strong>g>and</str<strong>on</strong>g> heat.<br />

Table 9 summarises available data <strong>on</strong> <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ETU derived from <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> some crops c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>curred EBDC <strong>residues</strong>. Up to 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> the EBDC <strong>residues</strong> <strong>on</strong> the raw crop were c<strong>on</strong>verted to ETU<br />

dur<strong>in</strong>g some processes <strong>in</strong>volv<strong>in</strong>g heat such as blanch<strong>in</strong>g, cook<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> cann<strong>in</strong>g.<br />

The recent review <str<strong>on</strong>g>of</str<strong>on</strong>g> EBDC fungicide registrati<strong>on</strong>s <strong>in</strong> the USA <strong>in</strong>cluded very large residue m<strong>on</strong>itor<strong>in</strong>g<br />

studies <strong>on</strong> crops <str<strong>on</strong>g>and</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> their processed products. Improved HPLC technology for detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ETU was used to achieve lower detecti<strong>on</strong> limits than <strong>in</strong> previous surveys. M<strong>on</strong>itor<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> 300<br />

processed food samples cover<strong>in</strong>g 14 commodities <strong>in</strong>clud<strong>in</strong>g juices, sauces <str<strong>on</strong>g>and</str<strong>on</strong>g> frozen vegetables<br />

showed mean EBDC <str<strong>on</strong>g>and</str<strong>on</strong>g> ETU <strong>residues</strong> for each group <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.001 - 0.21 mgkg <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.001 - 0.006 mgkg<br />

respectively (Ref. 73).<br />

Efforts have been made to f<strong>in</strong>d techniques for commercial <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> which reduce the EBDC levels<br />

<strong>in</strong> crops or prevent the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ETU. A summary <str<strong>on</strong>g>of</str<strong>on</strong>g> these studies is shown <strong>in</strong> Table 10.<br />

Although the polymer/metal complex powder formulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> EBDC’s are virtually <strong>in</strong>soluble <strong>in</strong> water,<br />

they also are not very lipophilic <str<strong>on</strong>g>and</str<strong>on</strong>g> so largely rema<strong>in</strong> <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the crop at harvest.<br />

Commercial wash<strong>in</strong>g techniques reduced the EBDC levels <strong>on</strong> crops to a great extent. Warm acid<br />

wash<strong>in</strong>g was more effective than a cold water wash <strong>on</strong>ly. Hypochlorite wash<strong>in</strong>g followed by r<strong>in</strong>s<strong>in</strong>g<br />

with sodium sulfite or detergent soluti<strong>on</strong> was even more effective.<br />

ETU is moderately water soluble <str<strong>on</strong>g>and</str<strong>on</strong>g> thus wash<strong>in</strong>g techniques have been shown to be effective at<br />

reduc<strong>in</strong>g ETU levels <strong>on</strong> fresh foods, although small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g>ten still could be detected. The<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> ETU was studied <strong>in</strong> canned products from tomatoes (Ref. 87), <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>in</strong> canned apples (Ref.<br />

81). ETU was sometimes found to have a slow decompositi<strong>on</strong> rate, with the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>residues</strong> still<br />

rema<strong>in</strong><strong>in</strong>g after several weeks. It was least persistent at low pH. However additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ascorbic acid<br />

reduced formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ETU dur<strong>in</strong>g sterilisati<strong>on</strong> but resulted <strong>in</strong> higher stability <str<strong>on</strong>g>of</str<strong>on</strong>g> ETU dur<strong>in</strong>g <str<strong>on</strong>g>storage</str<strong>on</strong>g><br />

due to the anti-oxidative effect.<br />

ETU can also be formed <strong>in</strong> the brew<strong>in</strong>g process from hops c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g EBDC. Suggested techniques<br />

to reduce the ETU levels were not successful (Ref. 88). Low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> ETU <strong>residues</strong> have been found<br />

<strong>in</strong> c<strong>on</strong>centrated grape juice <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>in</strong> must but <strong>residues</strong> have not been detected <strong>in</strong> w<strong>in</strong>e (Ref 51, 89).<br />

Z<strong>in</strong>eb <str<strong>on</strong>g>and</str<strong>on</strong>g> ETU have been reported to be completely adsorbed to grape solids <str<strong>on</strong>g>and</str<strong>on</strong>g> w<strong>in</strong>e suspended<br />

solids (Ref. 5 1,89).<br />

There is a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>formati<strong>on</strong> <strong>in</strong> the literature about the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> ETU <strong>residues</strong> left <strong>in</strong> prepared food<br />

after home-cook<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> raw crops c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g EBDC <strong>residues</strong>. It seems important to gather more<br />

<strong>in</strong>formati<strong>on</strong> <strong>on</strong> this topic.<br />

7.1 Scope <str<strong>on</strong>g>of</str<strong>on</strong>g> Studies<br />

7. RECOMMENDED APPROACHES TO STUDIES FOR REGULATORY<br />

PURPOSES ON RESIDUES IN PROCESSED FOOD<br />

Codex has recognised the need for better estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> residue levels <strong>in</strong> food as c<strong>on</strong>sumed (Ref. 2) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

has prepared draft guidel<strong>in</strong>es for develop<strong>in</strong>g suitable residue data. The large number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

crops plus the very diverse range <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial or domestic processes used to produce foods, make it<br />

impractical to gather residue data <strong>on</strong> all the possible comb<strong>in</strong>ati<strong>on</strong>s. Residue data requirements for a<br />

particular crop can be classified at 3 levels: the raw commodity, as it moves <strong>in</strong> trade, <str<strong>on</strong>g>and</str<strong>on</strong>g> as it is


350 COMMISSION ON AGROCHEMICALS<br />

Table 9: Residues <str<strong>on</strong>g>of</str<strong>on</strong>g> ETU <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> EBDC's after various food <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crops with <strong>in</strong>curred <strong>residues</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> EBDC's.<br />

_ _ _ _ ~<br />

EBDC's <strong>in</strong> raw Treatment ETU Reference<br />

commodity, mgikg level, mgikg % c<strong>on</strong>versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> EBDC, mean<br />

mancozeb, 3.2 - 11<br />

manzate D, 3.1 - 12<br />

metiram, 1.1 - 5.1<br />

z<strong>in</strong>eb, 1.3 - 5.2<br />

mancozeb, 0.3 - 7.1<br />

mancozeb, 0.1 - 0.8<br />

mancozeb, 2 - 219<br />

Cook<strong>in</strong>g tomatoes with reflux 10 m<strong>in</strong><br />

"<br />

Wash<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> cann<strong>in</strong>g, tomato juice<br />

Wash<strong>in</strong>g, peel<strong>in</strong>g, dice<strong>in</strong>g, cann<strong>in</strong>g, carrots<br />

Wash<strong>in</strong>g, blanch<strong>in</strong>g, chopp<strong>in</strong>g, cann<strong>in</strong>g<br />

sp<strong>in</strong>ach<br />

maneb, 2.4,8.0 Wash<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> cann<strong>in</strong>g whole tomatoes<br />

(ETU:


Table 10<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> 35 1<br />

Techniques to dec<strong>on</strong>tam<strong>in</strong>ete ETU from EBDC's <strong>in</strong> commercial procea9es.<br />

Fungicide./ EBDC's <strong>in</strong> processed ETU <strong>in</strong> processed Treatment (to reduce Reducti<strong>on</strong> Reference<br />

proctsstd product, m ag product, mgkg EBDUETU) (46, mean value)<br />

product Untreateda Treated Untreateda Treated<br />

mancomb/<br />

canned<br />

tomato juice<br />

mane Wgreen<br />

beans<br />

maneb/frozen<br />

or juiced<br />

tomatoes<br />

maneb/frozen<br />

or juiced<br />

tomatoes<br />

mancozeb/<br />

canned apple<br />

puree<br />

mancozeb/<br />

canned sp<strong>in</strong>ach<br />

mancomb/<br />

canned sp<strong>in</strong>ach<br />

mancozeb,<br />

manzate ZOO/<br />

canned sp<strong>in</strong>ach<br />

0.17 0.11 0.033 0.017 Water wash 10 m<strong>in</strong> 38 % 82<br />

0.54 0.19 0.065 0.019 65%(EBDC) 82<br />

0.17 0.04 0.033 n.d. Hot acid wash (1.0 M HCl) 76 % 82 % "- 82<br />

0.54 0.10 0.065 0.012<br />

0.30-1.03 0.09-0.71 n.d.-0.02 n.d.-0.03 Water wash 2-10 m<strong>in</strong> 49 % 51 % "- 81<br />

0.73-1.40 0.26-0.88<br />

0.30-1.03 n.d.-0.13 n.d.-0.02 n.d.-0.02 0.1% sodium hypochlorite 91 % 79 % "- 81<br />

0.73-1.40 0.09-0.45 wash 2-6 m<strong>in</strong>, dip 0.1%<br />

sodium sulfite<br />

1.533.1 0.82fo.05 0.03fo.009 0.02fo.005 2 m<strong>in</strong> cold water wash Small EBDC re- 83<br />

+ 2 r<strong>in</strong>ses<br />

ducti<strong>on</strong>, ETU left<br />

1.5fo.1


352 COMMISSION ON AGROCHEMICALS<br />

c<strong>on</strong>sumed. The follow<strong>in</strong>g po<strong>in</strong>ts should be c<strong>on</strong>sidered <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> studies<br />

that maybe required for registrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>pesticide</strong> <strong>on</strong> a crop.<br />

1. Whether the crop is & (>0.5% diet) <str<strong>on</strong>g>and</str<strong>on</strong>g> whether <strong>residues</strong> at harvest are siPnificant (amount<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> toxicology). These are over-rid<strong>in</strong>g prerequisites for most <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> studies although<br />

"major" or "significant" may be difficult to assess. Post-harvest applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong>s will<br />

def<strong>in</strong>itely require <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> studies e.g. protectants <strong>on</strong> stored gra<strong>in</strong>. Nati<strong>on</strong>al or local dietary<br />

habits will <strong>in</strong>fluence the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> crops. The diets <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>fants <str<strong>on</strong>g>and</str<strong>on</strong>g> children should receive<br />

special attenti<strong>on</strong> due to the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> data that has been identified as a particular deficiency to risk<br />

assessment for this populati<strong>on</strong> group (Ref. 90).<br />

2.<br />

3.<br />

4.<br />

5.<br />

Whether the <strong>pesticide</strong> is likely to =centrate <strong>in</strong> a food fracti<strong>on</strong> e.g. vegetable oil. Even very<br />

low <strong>residues</strong> may become significant if they become more c<strong>on</strong>centrated.<br />

Which porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the treated crop is c<strong>on</strong>sumed.<br />

Identify<strong>in</strong>g situati<strong>on</strong>s where normal <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> leads to large reducti<strong>on</strong>s <strong>in</strong> residue levels <strong>in</strong><br />

food items is also important.<br />

Whether the food is a processed commodity comm<strong>on</strong>ly mov<strong>in</strong>g <strong>in</strong> <strong>in</strong>ternati<strong>on</strong>al trade.<br />

Which proces s es are comm<strong>on</strong>ly applied to the crop:<br />

a) Simple commercial, lead<strong>in</strong>g to a traded commodity<br />

e.g. wash<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> fruit or vegetables<br />

solar dry<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> fruit<br />

b) Complex commercial - large scale multi-step food manufactur<strong>in</strong>g processes:<br />

e.g. mill<strong>in</strong>ghak<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> gra<strong>in</strong>s<br />

vegetable oil producti<strong>on</strong><br />

juic<strong>in</strong>g<br />

cann<strong>in</strong>g<br />

c) Typical domestic trimm<strong>in</strong>g, wash<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> cook<strong>in</strong>g. More <strong>in</strong>formati<strong>on</strong> is required <strong>on</strong> the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic cook<strong>in</strong>g practices <strong>on</strong> <strong>residues</strong>.<br />

Even with<strong>in</strong> these guidel<strong>in</strong>es the range <str<strong>on</strong>g>of</str<strong>on</strong>g> possible experiments to def<strong>in</strong>e the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong><br />

<strong>residues</strong> <strong>in</strong> a particular pesticde / crop comb<strong>in</strong>ati<strong>on</strong> could be large. Careful c<strong>on</strong>siderati<strong>on</strong> needs to be<br />

given to the most plausible scenarios for <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> to affect particular <strong>residues</strong> <strong>in</strong> food so the primary<br />

questi<strong>on</strong> <strong>on</strong> the likely residue <strong>in</strong>take by c<strong>on</strong>sumers can be ec<strong>on</strong>omically answered.<br />

7.2 Study protocols<br />

The follow<strong>in</strong>g recommendati<strong>on</strong>s are made for c<strong>on</strong>duct<strong>in</strong>g <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> trials <strong>in</strong> order that residue data<br />

can be produced which is relevant, comparable <str<strong>on</strong>g>and</str<strong>on</strong>g> may be extrapolated to other situati<strong>on</strong>s. A key<br />

requirement is the quantitative account<strong>in</strong>g for changes <strong>in</strong> residue levels <strong>in</strong> processed foods due to<br />

losses, redistributi<strong>on</strong> am<strong>on</strong>gst food fracti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> or diluti<strong>on</strong> from changes <strong>in</strong> moisture<br />

c<strong>on</strong>tent.<br />

1. Studies generally should be c<strong>on</strong>ducted <strong>on</strong> crops with <strong>in</strong>curred <strong>residues</strong> harvested at<br />

recommended pre-harvest <strong>in</strong>tervals. Initial residue levels should be near the MRL's, if<br />

necessary by the use <str<strong>on</strong>g>of</str<strong>on</strong>g> exaggerated field rates.<br />

2.<br />

3.<br />

4.<br />

5.<br />

Careful attenti<strong>on</strong> should be given to obta<strong>in</strong><strong>in</strong>g crop lots that are large enough <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> adequate<br />

uniformity to establish significant differences <strong>in</strong> residue levels dur<strong>in</strong>g <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g>.<br />

Codex guidel<strong>in</strong>es (Ref. 91) should be followed <strong>in</strong> sampl<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> sample preparati<strong>on</strong> for<br />

determ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>itial residue levels <strong>in</strong> the lots.<br />

Commercial <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> facilities should be used where possible. If laboratory studies are<br />

c<strong>on</strong>ducted then the c<strong>on</strong>diti<strong>on</strong>s should simulate the commercial process as closely as possible<br />

with particular attenti<strong>on</strong> to the problems <str<strong>on</strong>g>of</str<strong>on</strong>g> scale.<br />

All relevant <strong>in</strong>formati<strong>on</strong> regard<strong>in</strong>g the particular process <str<strong>on</strong>g>and</str<strong>on</strong>g> operat<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s used should<br />

be recorded. Particular attenti<strong>on</strong> needs to be given to cook<strong>in</strong>g studies where there are a large<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> possibilities with<strong>in</strong> both domestic <str<strong>on</strong>g>and</str<strong>on</strong>g> commercial processes. For example important<br />

differences <strong>in</strong> residue behaviour can arise between closed <str<strong>on</strong>g>and</str<strong>on</strong>g> open systems.


6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> 353<br />

Residue results should be reported so that the reas<strong>on</strong>s for changes <strong>in</strong> c<strong>on</strong>centrati<strong>on</strong>s can be<br />

identified (loss versus redistributi<strong>on</strong> versus change <strong>in</strong> moisture c<strong>on</strong>tent). This normally will<br />

<strong>in</strong>volve track<strong>in</strong>g amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> residue <strong>on</strong> a dry weight basis.<br />

Metabolites should be <strong>in</strong>cluded where possible, particularly if they may be <str<strong>on</strong>g>of</str<strong>on</strong>g> toxicological<br />

significance.<br />

Major fruit or vegetable crops which are frequently peeled before c<strong>on</strong>sumpti<strong>on</strong> should have<br />

residue measurements made <strong>on</strong> both flesh <str<strong>on</strong>g>and</str<strong>on</strong>g> peel<strong>in</strong>gs. This can be ec<strong>on</strong>omically <strong>in</strong>corporated<br />

<strong>in</strong>to st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard residue trials.<br />

Due to the potential major c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gra<strong>in</strong> protectants to <strong>residues</strong> <strong>in</strong> the diet, mill<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

associated studies <strong>on</strong> treated gra<strong>in</strong> always should be carried out <str<strong>on</strong>g>and</str<strong>on</strong>g> commercial scale facilities<br />

used. The Codex descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cereal gra<strong>in</strong> mill<strong>in</strong>g fracti<strong>on</strong>s should be used (Ref. 91).<br />

Vegetable oil studies should cover all fracti<strong>on</strong>s <strong>in</strong>clud<strong>in</strong>g seed, meal, crude oil <str<strong>on</strong>g>and</str<strong>on</strong>g> ref<strong>in</strong>ed oil.<br />

Juic<strong>in</strong>g studies should <strong>in</strong>clude whole fruit <str<strong>on</strong>g>and</str<strong>on</strong>g> sk<strong>in</strong>ned fruit where applicable. The unclarified /<br />

clarified juice <str<strong>on</strong>g>and</str<strong>on</strong>g> wet / dry pomace fracti<strong>on</strong>s should be analysed.<br />

8 ACKNOWLEDGEMENTS<br />

Junichi Ohnishi <str<strong>on</strong>g>of</str<strong>on</strong>g> Sumitomo Chemical Co., Osaka provided valuable assistance to the literature<br />

review for this project. Kay Orr, HortResearch Institute, Hamilt<strong>on</strong>, New Zeal<str<strong>on</strong>g>and</str<strong>on</strong>g> carried out typ<strong>in</strong>g<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> edit<strong>in</strong>g duties.<br />

9 REFERENCES<br />

JMPR refers to the FA0 Plant Producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Producti<strong>on</strong> Paper series "Pesticide Residues <strong>in</strong> Food-<br />

Evaluati<strong>on</strong>s Part 1" published annually by FAO, Rome. Each issue summarises residue data<br />

submitted to the previous JMPR meet<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> is organised by <strong>pesticide</strong> <strong>in</strong> alphabetical order.<br />

1.<br />

2.<br />

3.<br />

4.<br />

Nati<strong>on</strong>al Research Council / Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency, "Regulat<strong>in</strong>g Pesticides <strong>in</strong> Food.<br />

The Delaney Paradox", Nati<strong>on</strong>al Academy Press, Wash<strong>in</strong>gt<strong>on</strong> DC (1987)<br />

"Guidel<strong>in</strong>es for Predict<strong>in</strong>g Dietary Intake <str<strong>on</strong>g>of</str<strong>on</strong>g> Pesticide Residues", World Health Organisati<strong>on</strong>,<br />

Geneva (1989)<br />

C.K. W<strong>in</strong>ter, Rev. Envir<strong>on</strong>. C<strong>on</strong>tam. Tox u. m,23-66 (1992)<br />

J.R. Tomerl<strong>in</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Engler <strong>in</strong> "Pesticide Residues <str<strong>on</strong>g>and</str<strong>on</strong>g> Food Safety - A Harvest <str<strong>on</strong>g>of</str<strong>on</strong>g> Viewpo<strong>in</strong>ts".<br />

B. Tweedy, H. Dishburger, L. McCarthy, J. McCarthy eds., ACS Symp.Ser.446, p 192-201,<br />

American Chemical Society, Wash<strong>in</strong>gt<strong>on</strong> DC (1991)<br />

5. J.A.R. Bates <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Gorbach Pure & &pl. C hem. 2,611-624 (1987)<br />

6. G.L. Erlich, ibid, p 202-213<br />

7. Envir<strong>on</strong>mental Health Criteria No. 78, Dithiocarbamate <strong>pesticide</strong>s, ethylenethiourea <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

propylene thiourea: A general <strong>in</strong>troducti<strong>on</strong>. World Health Organisati<strong>on</strong>, Geneva (1988)<br />

8. J.R. Geisman, Residue Reviews 2,43-54 (1975)<br />

9. S. Berger, P.Pardo <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Skorkowska-Zieleniewska, Biblithica Nutr. D ieta 2, 1-10 (1980)<br />

10. S.J. Ritchey <strong>in</strong> "H<str<strong>on</strong>g>and</str<strong>on</strong>g>book <str<strong>on</strong>g>of</str<strong>on</strong>g> Nutritive Values <str<strong>on</strong>g>of</str<strong>on</strong>g> Processed Foods", Vol.1, p 609-614, M.<br />

Rechcigal ed., CRC Press, Boca Rat<strong>on</strong>, Fla, 1982<br />

11. E.R. Elk<strong>in</strong>s, J. Assoc. 0 ff. Anal. Chem .a, 533-535 (1989)<br />

12. H.B. Ch<strong>in</strong> <strong>in</strong> "Pesticide Residues <str<strong>on</strong>g>and</str<strong>on</strong>g> Food Safety - A Harvest <str<strong>on</strong>g>of</str<strong>on</strong>g> Viewpo<strong>in</strong>ts". B. Tweedy, H.<br />

Dishburger, L. McCarthy, J. McCarthy eds., ACS Symp.Ser.446, p 175-181, American Chemical<br />

Society, Wash<strong>in</strong>gt<strong>on</strong> DC (1991)


354 COMMISSION ON AGROCHEMICALS<br />

13.<br />

14.<br />

15.<br />

16.<br />

17.<br />

18.<br />

19.<br />

' 28.<br />

29.<br />

30.<br />

31.<br />

32.<br />

33.<br />

34.<br />

35.<br />

36.<br />

37.<br />

38.<br />

39.<br />

40.<br />

41.<br />

Internati<strong>on</strong>al Atomic Energy Agency, Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnitude <str<strong>on</strong>g>and</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pesticide</strong> <strong>residues</strong><br />

<strong>in</strong> stored products, us<strong>in</strong>g radiotracer techniques. Vienna (1990)<br />

E. Papadopoulou-Mourkidou, J. Assoc. Offic. Anal. Chem . x, 745-765 (1991)<br />

J.T. Snels<strong>on</strong>, "Gra<strong>in</strong> Protectants", Australian Centre for Internati<strong>on</strong>al Research, Canberra (1987)<br />

G.J.Sharp, J.G. Brayan, S. Dilli, P.R. Haddad <str<strong>on</strong>g>and</str<strong>on</strong>g> J.M. Desmarchelier, halvst m, 1493-1507<br />

(1988)<br />

R. Mestres <str<strong>on</strong>g>and</str<strong>on</strong>g> G. Mestres, Rev. Envir<strong>on</strong>. C<strong>on</strong> tam. Tox icol. U, 1-25 (1992)<br />

D.G. Rowl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, Residue Rev iewss, 113-155 (1975)<br />

B.M. Anderegg <str<strong>on</strong>g>and</str<strong>on</strong>g> L.G. Madisen, J. Ec<strong>on</strong>. Entompl. zh, 733-736 (1983)<br />

20. N.D.G. White <str<strong>on</strong>g>and</str<strong>on</strong>g> T.W. Nowicki, Sciences de 8,273-286 (1986)<br />

21. R.A. Noble, D.J. Hamilt<strong>on</strong>, W.J. Osborne, Pestic. Sd. 11,246-252 (1982)<br />

22. J.M. Desmarchelier, Pesticide Su *. 2,33-38 (1978)<br />

23. J.M. Desmarchelier <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Bengst<strong>on</strong>, Proc. 2nd Int. C<strong>on</strong>f. <strong>in</strong> Stored Product Entomology,<br />

Ibadan, Nigeria (1979)<br />

24. H.J. Banks <str<strong>on</strong>g>and</str<strong>on</strong>g> J.M. Desmarchelier, 45,276-28 1 (1978)<br />

25. J.M. Desmarchelier, M. Gold<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Horan, J. Pesticide Sd. 5,539-545 (1980)<br />

26. J.M. Desmarchelier, M. Bengst<strong>on</strong>, M. C<strong>on</strong>nell, R. Henn<strong>in</strong>g, E. Ridley, E. Ripp, C. Sierakowski,<br />

R. Sticka, J. Snels<strong>on</strong>, A. Wils<strong>on</strong>, Pesticide Sc i. 12,365 (1981)<br />

27. N.S. Kawara, C. Batista, <str<strong>on</strong>g>and</str<strong>on</strong>g> F.A. Gunther, Residue Rev iew$ G, 45-60 (1973)<br />

N.D.G. White <str<strong>on</strong>g>and</str<strong>on</strong>g> T.W. Norwich, J. Stored Prod .Re$.& 111-115(1985)<br />

P. Cano, J.L. De LaPlaza, L. Munoz-Delgado, J. Aeric. Food C hem. 3,144-147 (1987)<br />

K. Ishiki, S. Tsumura, <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Watanabe, &&, Biol. Chem. 46,993-999 (1982)<br />

F.V. Sances, N.C. Toscano <str<strong>on</strong>g>and</str<strong>on</strong>g> L.K. Gast<strong>on</strong>, Calif. A& Sept-Oct, 17-20 (1992)<br />

J.R. Geisman, Residue Rev. S, 43-54 (1975)<br />

S.V. Sarode, R. Lal, €a&an J. *. 52,135 (1982)<br />

S.V. Sarode, R. Lal, Indian J. AFric. Sci. 2, 173 (1982)<br />

A.K. Dikshit, S.K. H<str<strong>on</strong>g>and</str<strong>on</strong>g>a <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Verma, J. Ag ric. Sci. 56,661 (1986)<br />

R.P. Farrow, E.R. Elk<strong>in</strong>s, W.W. Rose, F.C. Lamb, J.W. Rall <str<strong>on</strong>g>and</str<strong>on</strong>g> W.A. Mercher, Residue Rev.<br />

B,73 (1969)<br />

F.A. Gunther, G.E. Carmen, R.D. Bl<strong>in</strong>n <str<strong>on</strong>g>and</str<strong>on</strong>g> J.H. Barkley, Ugn 'c. Food C h<br />

( 1963)<br />

M.D. Awasthi, &&i&&<br />

*. U, 89 (1986)<br />

. JJ., 424-427<br />

P. Sukul <str<strong>on</strong>g>and</str<strong>on</strong>g> S.K. H<str<strong>on</strong>g>and</str<strong>on</strong>g>a, Indian J. Plant P rot. 16,233 (1988)<br />

G. Viel, M. Hascort <str<strong>on</strong>g>and</str<strong>on</strong>g> G. Dubroca, Phvtiat. Phvtogharm .fi, 41 (1966)<br />

S.J. Kubacki <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Lipowska, <strong>in</strong> Food <str<strong>on</strong>g>and</str<strong>on</strong>g> Health, Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, G.G. Birch <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

K.J. Parker eds, p 215-226, Applied Science Publ., L<strong>on</strong>d<strong>on</strong> (1980)


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>process<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>pesticide</strong> <strong>residues</strong> 355<br />

42. L. Kilgore <str<strong>on</strong>g>and</str<strong>on</strong>g> W<strong>in</strong>dham, LAgric. Food Chem .18,162 (1970)<br />

43. T.E. Archer, J. Food Sc i. a, 677 (1975)<br />

44. B.S. Attri <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Lal, J. '. a, 816 (1974)<br />

45. B.D. Thomps<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> C.H. Van Middelem, . i. 65,357 (1955)<br />

46. L.P. Cel<strong>in</strong>o <str<strong>on</strong>g>and</str<strong>on</strong>g> E.D. Magall<strong>on</strong>a, Philip<strong>in</strong>e 'c. 68,525 (1985)<br />

47. M.G. Kle<strong>in</strong>schmidt, -em .B, 1196 (1971)<br />

48. Y. Hasegawa, Y. T<strong>on</strong>ogai, Y. Nakamura <str<strong>on</strong>g>and</str<strong>on</strong>g> Y. Ito, J. Food Hvg. Soc. JaDm 22,128 (1991)<br />

49. J.E. Fahey, G.E. Gould <str<strong>on</strong>g>and</str<strong>on</strong>g> P.E. Nels<strong>on</strong>, w c . Food Chem .u, 1204 (1969)<br />

50. P. Cabras, M. Mel<strong>on</strong>i <str<strong>on</strong>g>and</str<strong>on</strong>g> F.M. Pirisi, Rev. Envir<strong>on</strong>. Cow. Tox ico!. B, 83-117 (1987)<br />

51. S. Howard <str<strong>on</strong>g>and</str<strong>on</strong>g> G. Yip, J. Assoc. Offic. Anal.. 3, 1371-1372 (1971)<br />

52. R.P. Farrow, F.C. Lamb, R.W. Cook, J.R. Kimball <str<strong>on</strong>g>and</str<strong>on</strong>g> E.R. Elk<strong>in</strong>s,<br />

(1968)<br />

'c. Food C& .16,65<br />

53. B.S. Joia, G.R.B. Webster <str<strong>on</strong>g>and</str<strong>on</strong>g> S.R. Loschiavo, J. Aeric. Food Chem .a, 618 (1985)<br />

54. F.C. Lamb, R.P. Farrow, E.R. Elk<strong>in</strong>s, R.W. Cook <str<strong>on</strong>g>and</str<strong>on</strong>g> J.R. Kimball, u<br />

272 (1968)<br />

c . Food Cha . 16,<br />

55. S. Ishikura, S. Onodera, S. Sumiyashiki, T. Kasahara, M. Nakayama <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Watanabe, J. Food<br />

Hyg. Soc. Japa 25,203 (1984)<br />

56. L.M. Lockwood, S.K. Majumder <str<strong>on</strong>g>and</str<strong>on</strong>g> D.R. L<strong>in</strong>eback, Cereal Sc ience Today l!2,(1974)<br />

57. I. Oshita, Y. Enomoto, E. Maruyama <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Kajita, wgakuk- 263 (1979)<br />

58. L. Kilgore <str<strong>on</strong>g>and</str<strong>on</strong>g> F. W<strong>in</strong>dham, Ugri c. Food C b .U, 162 (1970)<br />

59. Y. Kawamura, M. Takeda, M. Uchiyama, K. Sakai <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Ishikawa, J. Food Hvg. - Soc. J-,<br />

a,70 (1980)<br />

60. K. Nambu, Y. Takimoto <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Miyamoto, Uestmde Sc i. 6, 183 (1981)<br />

61. M.A. Muhammad <str<strong>on</strong>g>and</str<strong>on</strong>g> N.S. Kawara, J. Fnvir<strong>on</strong> . Sci. Health m, 499 (1985)<br />

62. E.R. Elk<strong>in</strong>s, R.P. Farrow <str<strong>on</strong>g>and</str<strong>on</strong>g> E.S. Kim, J. Agric. Food Chem . a, 286 (1972)<br />

63. P. de Pietri-T<strong>on</strong>elli <strong>in</strong> Advances <strong>in</strong> Pest C<strong>on</strong>trol Research Vol. 6, Ed R. Metcalf, Interscience-<br />

Wiley, New York (1965)<br />

64. E. Bartsch, U u e Rey .a, (1974)<br />

65. M. Miyahara <str<strong>on</strong>g>and</str<strong>on</strong>g> Y. Saito, LAgric. Food C l h<br />

..<br />

.a,<br />

73 1-734 (1993)<br />

66. V. Gajduskova, Milchwissenschaft 29,278 (1974)<br />

67. N.S. Kawar, Y. Iwata, M.E. Dusch <str<strong>on</strong>g>and</str<strong>on</strong>g> F.A. Gunther, J. Envizpn. Health u, 505 (1979)<br />

68. F. Gnaegi <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Dufour, Hort~ 'c. 2, 101-106 (1972)<br />

69. E. Lemperle, E. Kerner <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Strecker, We<strong>in</strong>-Wissenschaft 25.3 13-328 (1970)<br />

70. Y. Takimoto, M. Ohshima <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Miyamoto, J. Pest-<br />

..<br />

'. 2,277 (1978)<br />

7 1. V.T. Edwards, A.L. McM<strong>in</strong>n <str<strong>on</strong>g>and</str<strong>on</strong>g> A.N. Wright <strong>in</strong> Progress <strong>in</strong> Pesticide Biochemistry Vol2, p7 1-<br />

125, Ed. D. Huts<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Roberts, Wiley, Chichester (1982)<br />

..


356 COMMISSION ON AGROCHEMICALS<br />

72. Ch. Lentza-Rizos, Rev. En vir<strong>on</strong>. C orn. Tox icol. U, 1-38 (1990)<br />

73. EBDC's, ETU Residues <strong>in</strong> Processed Foods. Pesticides & Tox ic Chemical News, Dec. 13,1989,<br />

p14-16<br />

74. W.H. Newsome, M c .<br />

Food Chem . 24, 999-1001 (1976)<br />

75. W.F. Phillips, M.D. Grady <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Freudenthal, Envir<strong>on</strong>. Health Effects Series, US-EPA 600/1-<br />

77-021 (1977)<br />

76. M. Casanova <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Dachaud, Ehytiatr-Phvtophm. 26,215-220 (1977)<br />

77. F.G. VanStryk <str<strong>on</strong>g>and</str<strong>on</strong>g> W.R. Jarvis, Can. J. Plant Sci. 58, 623-628 (1978)<br />

78. R.G. Ross, F.A. Wood <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Stark, Can. J. Plant Sc i. 58,601-604 (1978)<br />

79. C. Rosenberg <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Siltanen, Bull. Envir<strong>on</strong>. C<strong>on</strong>tam . Toxicol. 22,475-478 (1979)<br />

80. C. Wuthrich, H. Zimmermann <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Marek, Mitt. Gebiete Lebe nsm. . a, 117-126 (1984)<br />

8 1. J. Hajslova, V. Kocourek, Z. Jehlickova <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Davidek, Z. Lebens, U nters. Forsch. 183,348-351<br />

(1986)<br />

82.<br />

83.<br />

84.<br />

W. Marshall <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Jarvis, J. Aeric. Food Chem . 22,766-769 (1979)<br />

W. Marshall, J. Agric. Food Chem .B, 649-652 (1982)<br />

A.R. G<strong>on</strong>zales, D.R. Davis, A.A. Kattan, E.R. Elk<strong>in</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> E.S. Kim, J. Food Safety 8,225-233<br />

(1987)<br />

85. A.R. G<strong>on</strong>zales, D.R. Davis <str<strong>on</strong>g>and</str<strong>on</strong>g> A.A. Kattan, J. Food Safety9, 155-164 (1989)<br />

86. A.R. G<strong>on</strong>zales, D.R. Davis, E.R. Elk<strong>in</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> E.S. Kim, Hort. ScienG 24,990-992 (1989)<br />

87. R. Ankumah <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Marshall, J. Agric. Food Chem .a, 1194-1198 (1984)<br />

88. S. Lesage, J. Agn 'c. Food Chem. 28,787-790 (1980)<br />

89. B.D. Ripley, D.F. Cox, J. Wiebe, R. Frank,<br />

'c. Food Chem. 26,134-136 (1978)<br />

90. Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences "Pesticides <strong>in</strong> the diets <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>fants <str<strong>on</strong>g>and</str<strong>on</strong>g> children" Nati<strong>on</strong>al<br />

Academy Press, Wash<strong>in</strong>gt<strong>on</strong> DC (1993).<br />

9 1. Guide to Codex recommendati<strong>on</strong>s c<strong>on</strong>cern<strong>in</strong>g <strong>pesticide</strong> <strong>residues</strong> Part 4: Codex classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

foods <str<strong>on</strong>g>and</str<strong>on</strong>g> animal feeds CAC/PR 4-1986, FAO/WHO, Rome (1989)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!