27.06.2013 Views

ephedroids from the Early Cretaceous Yixian Formation in Liaoning ...

ephedroids from the Early Cretaceous Yixian Formation in Liaoning ...

ephedroids from the Early Cretaceous Yixian Formation in Liaoning ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pl. Syst. Evol. 262: 239–265 (2006)<br />

DOI 10.1007/s00606-006-0481-2<br />

Liaoxia Cao et S.Q. Wu (Gnetales): <strong>ephedroids</strong> <strong>from</strong> <strong>the</strong> <strong>Early</strong><br />

<strong>Cretaceous</strong> <strong>Yixian</strong> <strong>Formation</strong> <strong>in</strong> Liaon<strong>in</strong>g, nor<strong>the</strong>astern Ch<strong>in</strong>a<br />

C. Ryd<strong>in</strong> 1 ,S.Q.Wu 2 , and E. M. Friis 1<br />

1 Swedish Museum of Natural History, Department of Palaeobotany, Stockholm, Sweden<br />

2 Nanj<strong>in</strong>g Institute of Geology and Palaeontology, Ch<strong>in</strong>ese Academy of Sciences, Nanj<strong>in</strong>g, Ch<strong>in</strong>a<br />

Received April 25, 2006; accepted July 24, 2006<br />

Published onl<strong>in</strong>e: December 1, 2006<br />

Ó Spr<strong>in</strong>ger-Verlag 2006<br />

Abstract. Gnetalean compression-impression fossils<br />

are described <strong>from</strong> <strong>the</strong> <strong>Early</strong> <strong>Cretaceous</strong> <strong>Yixian</strong><br />

<strong>Formation</strong>, Liaon<strong>in</strong>g Prov<strong>in</strong>ce, north-eastern<br />

Ch<strong>in</strong>a, and assigned to six species of Liaoxia Cao<br />

et S.Q. Wu. The fossils have opposite-decussate<br />

phyllotaxis and cones compris<strong>in</strong>g 2–12 pairs of<br />

bracts. Ovulate cones have seeds typically <strong>in</strong> a<br />

distal position. The species differ <strong>from</strong> each o<strong>the</strong>r<br />

and <strong>from</strong> previously described fossils <strong>in</strong> <strong>the</strong> absence<br />

or presence of leaves, shape of cones and seeds, and<br />

shape and position of cone bracts. The species of<br />

Liaoxia are probably close relatives of extant<br />

species of Ephedra L., but diagnostic reproductive<br />

details that could confirm this hypo<strong>the</strong>sis are not<br />

preserved. The restricted <strong>in</strong>formation <strong>in</strong> <strong>the</strong> fossils<br />

and <strong>the</strong> poorly understood morphological diversity<br />

of extant Ephedra, prevent assignment of <strong>the</strong> fossils<br />

to any particular subgroup of Ephedra, as well as<br />

an explicit exclusion of <strong>the</strong>m <strong>from</strong> <strong>the</strong> extant genus.<br />

Key words: Ephedra, Liaoxia, Gnetales, <strong>Yixian</strong><br />

<strong>Formation</strong>, fossils, <strong>Early</strong> <strong>Cretaceous</strong>, Ch<strong>in</strong>a, Jehol<br />

Biota.<br />

Gnetales are a small group of seed plants with<br />

about 65–75 species <strong>in</strong> three genera (Kubitzki<br />

1990). Gross morphology is uniform with<strong>in</strong><br />

each genus (Ephedra L., Gnetum L. and <strong>the</strong><br />

monotypic Welwitschia Hook. f.), but differs<br />

significantly between <strong>the</strong> genera and <strong>the</strong>re is<br />

also significant ecological divergence between<br />

<strong>the</strong> genera with representatives <strong>in</strong> deserts<br />

(Welwitschia), semiarid habitats (Ephedra)<br />

and tropical ra<strong>in</strong> forests (Gnetum). Based on<br />

<strong>the</strong>se data, and <strong>the</strong> scattered geographic distribution<br />

of <strong>the</strong> group, it has been suggested<br />

that <strong>the</strong> Gnetales are ancient with a large<br />

ext<strong>in</strong>ct diversity (e.g. Arber and Park<strong>in</strong> 1908).<br />

Fossil support for a relictual status of <strong>the</strong><br />

group has ma<strong>in</strong>ly come <strong>from</strong> isolated pollen<br />

(Wilson 1962, Traverse 1988, Crane and<br />

Lidgard 1989, Osborn et al. 1993, Crane<br />

1996), but recent f<strong>in</strong>d<strong>in</strong>gs of mega- and<br />

mesofossils <strong>from</strong> Lower <strong>Cretaceous</strong> strata of<br />

Asia, Australia, Europe and North and South<br />

America, with vegetative and reproductive<br />

details preserved, show that <strong>the</strong> group was<br />

diverse and widespread already <strong>in</strong> <strong>the</strong> <strong>Early</strong><br />

<strong>Cretaceous</strong>.<br />

Many of <strong>the</strong> <strong>Early</strong> <strong>Cretaceous</strong> gnetalean<br />

megafossils are ephedroid with striate stems,<br />

more or less reduced leaves, and opposite and<br />

decussate phyllotaxis. Such fossils have been<br />

reported <strong>from</strong> Ch<strong>in</strong>a (Wu et al. 1986, Cao et<br />

al. 1998, Guo and Wu 2000, Sun et al. 2001,<br />

Tao and Yang 2003, Yang et al. 2005), central<br />

Asia (Krassilov 1982, Krassilov and Bugdaeva


240 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

1982) and <strong>from</strong> Australia (Krassilov et al.<br />

1998). There are also many undescribed specimens<br />

<strong>from</strong> Ch<strong>in</strong>a and Brazil (see e.g. Wu et al.<br />

2000, Mohr et al. 2004). <strong>Early</strong> <strong>Cretaceous</strong><br />

mesofossils <strong>in</strong>clude coalified seeds with unique<br />

Ephedra characters such as a sclerenchymatic<br />

seed envelope with apical papillae, and <strong>in</strong> situ<br />

polyplicate pollen (Ryd<strong>in</strong> et al. 2004, Ryd<strong>in</strong> et<br />

al. 2006).<br />

In addition to <strong>the</strong> ephedroid fossils <strong>the</strong>re<br />

are also a few <strong>Early</strong> <strong>Cretaceous</strong> megafossils<br />

that may represent <strong>the</strong> Welwitschia-Gnetum<br />

clade (Crane and Upchurch 1987, Ryd<strong>in</strong> et al.<br />

2003, Dilcher et al. 2005, Ryd<strong>in</strong> et al unpubl.<br />

data), as well as several gnetalean fossils that<br />

are difficult to assign to any of <strong>the</strong> extant<br />

l<strong>in</strong>eages (e.g. Krassilov 1982, Krassilov and<br />

Bugdaeva 1982, Krassilov 1986, Krassilov and<br />

Bugdaeva 1988, Duan 1998, Sun et al. 2001).<br />

Fur<strong>the</strong>r, dispersed seeds and pollen assigned to<br />

<strong>the</strong> ext<strong>in</strong>ct order Erdtmani<strong>the</strong>cales (Pedersen<br />

et al. 1989, Friis and Pedersen 1996, Kvaček<br />

and Pacltová 2001) are probably related to<br />

Gnetales, but <strong>the</strong> vegetative morphology of<br />

<strong>the</strong>se plants is unknown.<br />

Pre-<strong>Cretaceous</strong> evidence of <strong>the</strong> Gnetales<br />

are ma<strong>in</strong>ly dispersed polyplicate ephedroid<br />

pollen (e.g. Wilson 1962), but <strong>the</strong>re are also<br />

several records of megafossils that probably<br />

belong to <strong>the</strong> Gnetales, for <strong>in</strong>stance Ephedrites<br />

s<strong>in</strong>ensis Wu et al. and E. exhibens Wu et al.<br />

<strong>from</strong> <strong>Early</strong> Jurassic deposits <strong>in</strong> Q<strong>in</strong>ghai, Ch<strong>in</strong>a<br />

(Wu et al. 1986). However, most pre-<strong>Cretaceous</strong><br />

gnetalean megafossils are difficult to<br />

<strong>in</strong>terpret. The Permian cone Palaeognetaleana<br />

auspicia Wang with <strong>in</strong> situ polyplicate pollen<br />

(Wang 2004), <strong>the</strong> Late Triassic plant Dechellyia<br />

gormani Ash (Ash 1972), and <strong>the</strong><br />

Jurassic Ust-Balej fossils of East Siberia<br />

(Krassilov and Bugdaeva 1988), are all examples<br />

of fossils that have been discussed as<br />

putative Gnetales, but for which a precise<br />

systematic aff<strong>in</strong>ity rema<strong>in</strong>s to be established.<br />

In this study we describe a number of<br />

ephedroid fossils <strong>from</strong> <strong>the</strong> Liaon<strong>in</strong>g prov<strong>in</strong>ce<br />

of nor<strong>the</strong>astern Ch<strong>in</strong>a collected <strong>in</strong> sediments of<br />

<strong>the</strong> <strong>Yixian</strong> <strong>Formation</strong>. The <strong>Yixian</strong> <strong>Formation</strong><br />

and <strong>the</strong> overlay<strong>in</strong>g Jiufotang <strong>Formation</strong> com-<br />

prise <strong>the</strong> Jehol Group, famous for its exceptionally<br />

rich biota, which <strong>in</strong>clude exquisitely<br />

preserved <strong>in</strong>vertebrates, osteichthyan fish,<br />

amphibians, mammals and reptiles <strong>in</strong>clud<strong>in</strong>g<br />

fea<strong>the</strong>red d<strong>in</strong>osaurs and early birds (Chang<br />

et al. 2003). Vigorous collisions of plates <strong>in</strong> <strong>the</strong><br />

western rim of <strong>the</strong> Pacific resulted <strong>in</strong> <strong>in</strong>tensive<br />

volcanic activity (Wang et al. 1983) dur<strong>in</strong>g <strong>the</strong><br />

deposition of <strong>the</strong> <strong>Yixian</strong> <strong>Formation</strong> and ash<br />

falls repeatedly entombed organisms present <strong>in</strong><br />

<strong>the</strong> area and effectively prevented scaveng<strong>in</strong>g<br />

and bacterial decay. The immediate anoxic<br />

conditions provided by <strong>the</strong> volcanic ash tuffs<br />

permitted <strong>the</strong> preservation of orig<strong>in</strong>al softtissue<br />

features and stomach contents (Chen<br />

et al. 1998, Zhou and Zhang 2002); even<br />

questions on <strong>the</strong> physiology of <strong>Cretaceous</strong><br />

vertebrates and of plant-animal <strong>in</strong>teractions<br />

can be addressed (Zhou et al., 2003, and<br />

papers <strong>in</strong> Chang et al. 2003).<br />

In contrast to <strong>the</strong> anatomical preservation<br />

of many animals of <strong>the</strong> Jehol Biota, plant<br />

fossils rarely have cellular details <strong>in</strong>tact. Similar<br />

to <strong>the</strong> slightly younger Crato plants of<br />

Brazil, <strong>the</strong> Jehol plants are compression or<br />

impression fossils, often with various organs<br />

such as stems, leaves and reproductive structures<br />

still attached. In rare cases even whole<br />

plants are preserved provid<strong>in</strong>g excellent <strong>in</strong>formation<br />

on gross morphology. Anatomical<br />

features, however, are rarely preserved (e.g.<br />

Wu 1999, Sun et al. 2001, Chang et al. 2003,<br />

Friis et al. 2003, Leng and Friis 2003) and<br />

tissues are often replaced or filled <strong>in</strong> with pyrite<br />

framboids and microcrystall<strong>in</strong>es (Leng and<br />

Yang 2003).<br />

The Jehol flora comprises a diverse assemblage<br />

of bryophytes, lycopods, sphenopsids,<br />

ferns and various seed plants <strong>in</strong>clud<strong>in</strong>g many<br />

conifers and rare angiosperms (Sun et al. 1998,<br />

Wu 1999, Sun et al. 2001, Sun et al. 2002, Leng<br />

and Friis 2003, Leng et al. 2003, Wu 2003).<br />

Fossils assignable to <strong>the</strong> Gnetales (Wu 1999,<br />

Sun et al. 2001, Wu 2003) also show some<br />

diversity and <strong>in</strong>clude plants described as<br />

Liaoxia chenii Cao et Wu and Eragrosites<br />

changii Cao et Wu (Cao et al. 1998), Chaoyangia<br />

liangii (Duan 1998, later synonym of


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 241<br />

Gurvanella Krassilov 1982), Ephedrites? elegans<br />

Sun et Zheng (Sun et al. 2001), and<br />

Ephedra archaeorhytidosperma (Yang et al.<br />

2005). Dispersed ephedroid pollen are reported<br />

to be rare <strong>in</strong> <strong>the</strong> <strong>Yixian</strong> <strong>Formation</strong> (Li and Liu<br />

1999, Li 2003), but <strong>in</strong>clude striate forms<br />

assigned to Ephedripites and <strong>the</strong> Welwitschialike<br />

Jugella. The fossils described here are<br />

similar to extant Ephedra <strong>in</strong> gross morphology,<br />

but <strong>the</strong>y usually lack anatomical details and<br />

cannot be assigned unambiguously to extant<br />

Ephedra. The genus Ephedrites Go¨ppert et<br />

Berendt is unsuitable for gnetalean fossils and<br />

we have <strong>the</strong>refore referred <strong>the</strong> Jehol <strong>ephedroids</strong><br />

<strong>in</strong> this study to <strong>the</strong> genus Liaoxia Cao<br />

et Wu (Cao et al. 1998).<br />

Materials and methods<br />

The fossils are <strong>from</strong> two horizons <strong>in</strong> <strong>the</strong> <strong>Yixian</strong><br />

<strong>Formation</strong> of Liaon<strong>in</strong>g, nor<strong>the</strong>astern Ch<strong>in</strong>a. The<br />

<strong>Yixian</strong> <strong>Formation</strong> comprises four beds (<strong>from</strong> base<br />

to top: Lujiatun Bed, Jianshangou Bed, Dawangzhangzi<br />

Bed, J<strong>in</strong>gangshan Bed). Specimens<br />

PB20717 – PB20720 are <strong>from</strong> layer seven of <strong>the</strong><br />

Jianshangou Bed, <strong>in</strong> <strong>the</strong> Huangbanjigou section,<br />

Beipiao (latitude: 41° 37¢ north; longitude: 120° 50¢<br />

east, see Chen et al. 2005) and specimens PB20721 –<br />

PB20726 are <strong>from</strong> layer two of <strong>the</strong> Dawangzhangzi<br />

Bed <strong>in</strong> <strong>the</strong> Fanzhangzi section, L<strong>in</strong>gyuan (appr.<br />

latitude: 41° 10¢ north; longitude: 119° 45¢ east, see<br />

Wang et al. 2000). The geology of <strong>the</strong> two sections<br />

is described by Wang et al. (2000) and Chen et al.<br />

(2005) (see also Chang et al. 2003). The age of <strong>the</strong><br />

<strong>Yixian</strong> <strong>Formation</strong> has been much debated, but<br />

<strong>the</strong>re is now general acceptance for a mid-<strong>Early</strong><br />

<strong>Cretaceous</strong> age of <strong>the</strong> sequence (see Zhou et al.<br />

2003). Basal basalts and andesites of <strong>the</strong> Dawangzhangzi<br />

Bed have been dated to approximately<br />

122.5 Myr (Wang and Zhou 2003). 40 Ar- 39 Ar dates<br />

of approximately 125 Myr have been obta<strong>in</strong>ed<br />

<strong>from</strong> analyses of sanid<strong>in</strong>e and biotite crystals <strong>from</strong><br />

three different tuff layers <strong>in</strong> <strong>the</strong> Jianshangou Bed<br />

(Swisher et al. 1999, Swisher et al. 2002) and an<br />

40 39<br />

Ar- Ar date of 128 Myr has been obta<strong>in</strong>ed <strong>from</strong><br />

basalt-andesite <strong>in</strong> <strong>the</strong> lowermost Lujiatun Bed<br />

(Wang et al. 2001). Later 40 Ar/ 39 Ar dat<strong>in</strong>g of <strong>the</strong><br />

Lujiatun Bed suggest that this bed may be younger,<br />

approximately 123 Myr (He et al. 2006). The age of<br />

<strong>the</strong> base of <strong>the</strong> <strong>Yixian</strong> <strong>Formation</strong> (128–123 Myr)<br />

thus corresponds to Barremian age or possibly<br />

early Aptian accord<strong>in</strong>g to <strong>the</strong> most recent International<br />

Geographic Chart (Gradste<strong>in</strong> et al. 2004).<br />

The Jehol plant fossils conta<strong>in</strong> few or no<br />

anatomical details. They were studied us<strong>in</strong>g dissect<strong>in</strong>g<br />

microscope. No attempts were made to do<br />

SEM. The characters of <strong>the</strong> fossils were documented<br />

by photography and compared with fossils<br />

<strong>in</strong> <strong>the</strong> literature. All specimens are located <strong>in</strong> <strong>the</strong><br />

Nanj<strong>in</strong>g Institute of Geology and Palaeontology,<br />

Ch<strong>in</strong>ese Academy of Sciences, Ch<strong>in</strong>a.<br />

Results<br />

Formal descriptions. Based on new <strong>in</strong>formative<br />

specimens of Liaoxia chenii and o<strong>the</strong>r<br />

ephedroid fossils <strong>from</strong> <strong>the</strong> <strong>Yixian</strong> <strong>Formation</strong><br />

an emended diagnosis of <strong>the</strong> genus Liaoxia is<br />

presented, and a new comb<strong>in</strong>ation, Liaoxia<br />

changii, suggested. Fur<strong>the</strong>r, four new species<br />

are described and assigned to Liaoxia (Liaoxia<br />

acutiformis, L. robusta, L. elongata, L. longibractea).<br />

Spermatophyta<br />

Order Gnetales<br />

Genus Liaoxia Cao et S.Q. Wu (emend. Ryd<strong>in</strong>,<br />

S.Q. Wu et Friis).<br />

Emended generic diagnosis. Plants similar to<br />

extant Ephedra, with erect, striate stems,<br />

dist<strong>in</strong>ct and slightly swollen nodes, and opposite-decussate<br />

branch<strong>in</strong>g. Leaves l<strong>in</strong>ear or<br />

lack<strong>in</strong>g. Reproductive structures form<strong>in</strong>g<br />

cones, sessile to pedunculate, rounded to<br />

obovate to elongate <strong>in</strong> shape, consist<strong>in</strong>g of<br />

opposite-decussate bracts. Seeds ovoid to elliptic<br />

<strong>in</strong> shape, positioned <strong>in</strong> axil of cone bracts.<br />

Specimens <strong>in</strong>vestigated: PB17800, PB17801,<br />

PB17802, PB17803, PB17804, PB20717,<br />

PB20718, PB20719, PB20720, PB20721,<br />

PB20722, PB20723, PB20724, PB20725, PB20726.<br />

Type species. Liaoxia chenii Cao et S.Q.<br />

Wu (emend. Ryd<strong>in</strong>, S.Q. Wu et Friis)<br />

Synonyms and previously published material.<br />

1998 Liaoxia chenii Cao et S.Q. Wu — Cao et<br />

al., p. 231, plate I:1–2.


242 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

1999 Liaoxia chenii Cao et S.Q. Wu — Wu p.<br />

21, plate XIV:3, XV:3.<br />

2000 Ephedrites chenii (Cao et S.Q. Wu) Guo<br />

et X.W. Wu — Guo and Wu p. 86, plates I:1–<br />

4, II:1–4.<br />

2001 Ephedrites chenii (Cao et S.Q. Wu) Guo<br />

et X.W. Wu — Sun et al. p. 206, plates 24:2,<br />

64:1, 3–6 (non plate 64:7–9).<br />

2003 Liaoxia chenii Cao et S.Q. Wu — Chang,<br />

p. 174, Fig. 241.<br />

Emended specific diagnosis. As for <strong>the</strong><br />

genus with <strong>the</strong> follow<strong>in</strong>g dist<strong>in</strong>ctions. Branches<br />

c. 0.5–3.0 mm wide, <strong>in</strong>ternodes 8–40 mm long.<br />

Leaves 5–20 mm long, with two parallel ve<strong>in</strong>s.<br />

Cones obovate, 4–10 mm long, 2–5 mm wide,<br />

with 2–6 pairs of bracts. Cone bracts ovate to<br />

triangular and reflexed, c. 4 mm long, with an<br />

acute to attenuate apex, two parallel ve<strong>in</strong>s.<br />

Seeds ovoid to elliptic, c. 1 mm long, c. 0.3–<br />

0.7 mm wide.<br />

Holotype. PB17800 (Fig. 1).<br />

Paratype. PB17801.<br />

Type locality. Near Chaomidian at Shangyuan<br />

Village of Beipiao, Liaon<strong>in</strong>g, Ch<strong>in</strong>a.<br />

Stratigraphic position and age. Jianshangou<br />

Bed, <strong>Yixian</strong> <strong>Formation</strong>, <strong>Early</strong> <strong>Cretaceous</strong><br />

(Barremian-early Aptian?).<br />

Comments on <strong>the</strong> type material. The holotype<br />

of Liaoxia chenii (PB17800, Cao et al.<br />

1998) (Fig. 1) is a reproductive shoot, c. 9 cm<br />

long. It is clearly ephedroid <strong>in</strong> gross-morphology<br />

with striate stems, 1–3 mm wide. Branch<strong>in</strong>g<br />

is opposite and decussate with dist<strong>in</strong>ct<br />

nodes. Internodes are 8–40 mm long. Leaves<br />

are l<strong>in</strong>ear, at least 20 mm long and c. 1–2 mm<br />

wide, probably with two parallel ve<strong>in</strong>s. Cones<br />

are 5–10 mm long and 3–4 mm wide, obovate<br />

with 2–6 pairs of reflexed cone bracts, c. 4 mm<br />

long, and ovate with an attenuate apex. Cone<br />

bracts have two parallel ve<strong>in</strong>s.<br />

Note that <strong>in</strong> <strong>the</strong> description of Ephedrites<br />

chenii <strong>in</strong> Sun et al. (2001), two additional<br />

specimens (plate 64, Figs. 7–9) are presented.<br />

These fossils may be ephedroid, but <strong>the</strong>y lack<br />

features characteris<strong>in</strong>g Liaoxia and are not<br />

<strong>in</strong>cluded here <strong>in</strong> <strong>the</strong> synonymy list of Liaoxia<br />

chenii.<br />

New material of Liaoxia chenii. Specimens<br />

PB20717–PB20718 (Figs. 2–4) <strong>from</strong> <strong>the</strong> Huangbanjigou<br />

Section, <strong>in</strong>cludes two compression<br />

fossils with oxidized organic material. The<br />

specimens show dist<strong>in</strong>ct features of Liaoxia<br />

chenii and are here <strong>in</strong>cluded <strong>in</strong> this species. In<br />

one specimen <strong>the</strong> uppermost 5 cm of a<br />

branched plant, c. 13 cm wide, is preserved<br />

(Figs. 3–4). The o<strong>the</strong>r specimen is a detached<br />

apical part of a reproductive shoot, 2.5 cm<br />

long (Fig. 2). Stems are erect with 8–17 mm<br />

long <strong>in</strong>ternodes, longitud<strong>in</strong>ally striate and<br />

2 mm wide <strong>in</strong> basal parts and 0.5 mm <strong>in</strong> upper<br />

parts, thicker at nodes. Phyllotaxis is opposite<br />

and decussate. Leaves are l<strong>in</strong>ear (Figs. 2–3), up<br />

to at least 7 mm long and 0.1–0.3 mm wide.<br />

Venation is <strong>in</strong>dist<strong>in</strong>ct, but <strong>the</strong>re are apparently<br />

two parallel ve<strong>in</strong>s <strong>in</strong> each leaf. Cones are<br />

axillary at nodes or term<strong>in</strong>at<strong>in</strong>g branches,<br />

sessile or pedunculate, and obovate to elongate,<br />

4–7 mm long, 2.5–5 mm wide and with<br />

2–6 pairs of bracts. Cone bracts are delicate<br />

and with two ve<strong>in</strong>s (Fig. 3). They are narrowly<br />

ovate with an acute to attenuate apex, 3–4 mm<br />

long, about 0.8 mm wide at <strong>the</strong> base, 0.3<br />

towards <strong>the</strong> apex, decussately arranged and<br />

often reflexed to a position almost at a right<br />

angle to <strong>the</strong> cone axis. A few seeds are<br />

preserved <strong>in</strong> <strong>the</strong> axils of apical or distal cones<br />

bracts of some cones (<strong>in</strong>dicated by an arrow <strong>in</strong><br />

Fig. 3). They are ovoid and 0.9–1.1 mm long<br />

and 0.3–0.7 mm wide. No <strong>in</strong>ternal or external<br />

anatomical details are preserved.<br />

Liaoxia changii (Cao et S.Q. Wu) Ryd<strong>in</strong>,<br />

S.Q. Wu et Friis comb. nov.<br />

Basionym. Eragrosites changii Cao et S.Q.<br />

Wu (Cao et al., February 1998. Ch<strong>in</strong>ese Sci.<br />

Bull. 43: p. 231, plate II:1–3).<br />

Synonyms and previously published material.<br />

1999 Liaoxia changii Cao et S.Q. Wu — Wu, p.<br />

21, plate XV:1, 4.<br />

2000 Ephedrites chenii (Cao et S.Q. Wu) Guo<br />

et X.W. Wu — Guo et Wu p. 86, plates 1:5–7<br />

and 2:5–8.


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 243<br />

2001 Ephedrites chenii (Cao et S.Q. Wu) Guo<br />

et X.W. Wu — Sun et al. p. 206, plates 24:4,<br />

64:2.<br />

Emended specific diagnosis. As for <strong>the</strong><br />

genus with <strong>the</strong> follow<strong>in</strong>g dist<strong>in</strong>ctions. Branches<br />

c. 0.3–4.0 mm wide, <strong>in</strong>ternodes 8–40 mm long.<br />

Leaves absent. Cones elongate to obovate, 4–<br />

6 mm long, 1.5–3 mm wide, with 6–10 pairs of<br />

bracts. Cone bracts erect to slightly reflexed,<br />

2 mm long, with an acute to obtuse apex.<br />

Seeds ovoid, c. 1 mm long, c. 0.2–0.3 mm<br />

wide.<br />

Holotype. As for <strong>the</strong> basionym: PB17803<br />

(Fig. II:2, Cao et al. 1998).<br />

Paratypes. PB17802, PB17804 (Fig. 5)<br />

(Figs. II:1, 3, Cao et al. 1998).<br />

Type locality. Near Chaomidian at Shangyuan<br />

Village of Beipiao, Liaon<strong>in</strong>g, Ch<strong>in</strong>a.<br />

Stratigraphic position and age. Jianshangou<br />

Bed, <strong>Yixian</strong> <strong>Formation</strong>, <strong>Early</strong> <strong>Cretaceous</strong><br />

(Barremian-early Aptian?).<br />

Comments on <strong>the</strong> type material. The holotype<br />

(PB17803) and its counterpart (PB17804,<br />

Fig. 5) are poorly preserved impression fossils,<br />

consist<strong>in</strong>g of several separate branches, not all<br />

<strong>in</strong> connection. Stems are striate, about 0.5–<br />

4.0 mm wide. Nodes are clearly set and slightly<br />

swollen separated by <strong>in</strong>ternodes, about<br />

8–40 mm long. Leaves are absent. Cones are<br />

pedunculate to sessile, 5–6 mm long, 2.5–<br />

3 mm wide. There are 6–10 pairs of bracts <strong>in</strong><br />

each cone. Bracts are 2 mm long, with acute to<br />

obtuse apices. No seeds are preserved. Some<br />

cones have slightly reflexed cone bracts, which<br />

might <strong>in</strong>dicate that <strong>the</strong>y are female; o<strong>the</strong>rs are<br />

more narrowly elongate with erect bracts.<br />

They may represent female cones <strong>in</strong> different<br />

stages of maturity or alternatively, <strong>the</strong>re may<br />

be a mix of male and female branches on this<br />

slab.<br />

New material of Liaoxia changii. Specimen<br />

PB20722 (Figs. 6–8) <strong>from</strong> <strong>the</strong> Dawangzhangzi<br />

Bed at <strong>the</strong> Fanzhangzi Section is a female<br />

plant that <strong>in</strong> all characters is <strong>in</strong>dist<strong>in</strong>guishable<br />

<strong>from</strong> <strong>the</strong> type specimen of Liaoxia changii<br />

described above, but is better preserved than<br />

<strong>the</strong> type material. The specimen has weakly<br />

striate stems with swollen nodes. Stems are<br />

0.7–1.7 mm wide with opposite and decussate<br />

branch<strong>in</strong>g and <strong>in</strong>ternodes about 10–18 mm.<br />

Leaves are absent (Fig. 6). Cones are slightly<br />

obovate to elongate, pedunculate to nearly<br />

sessile, 5–6 mm long and 2.5–3 mm wide<br />

(Fig. 8). Each cone has 6–10 pairs of erect to<br />

slightly reflexed bracts, 2 mm long, and with<br />

acute to obtuse apices. Impressions of seeds<br />

are observed <strong>in</strong> <strong>the</strong> axils of some bracts. Seeds<br />

are c. 0.8–1 mm long, 0.2–0.3 mm wide and<br />

ovoid.<br />

Liaoxia acutiformis Ryd<strong>in</strong>, S.Q. Wu et Friis sp.<br />

nov.<br />

Specific diagnosis. As for <strong>the</strong> genus with <strong>the</strong><br />

follow<strong>in</strong>g dist<strong>in</strong>ctions. Branches 0.3–1.4 mm<br />

thick, leaves 2.7–7.0 mm long, 0.2 mm wide,<br />

probably with two parallel ve<strong>in</strong>s. Cones elongate<br />

(to narrowly obovate), 3.5–6.0 mm long,<br />

c.1.7–2.7 mm wide, with 6–12 pairs of bracts.<br />

Cone bracts erect to slightly reflexed, 1.5–<br />

2.0 mm long, narrowly ovate with acute apex,<br />

two parallel ve<strong>in</strong>s.<br />

Etymology. Named after <strong>the</strong> acute apex of<br />

<strong>the</strong> cone bracts.<br />

Holotype. PB20721 (Figs. 9–11).<br />

Locality. Fanzhangzi Section, L<strong>in</strong>gyuan,<br />

Liaon<strong>in</strong>g, Ch<strong>in</strong>a.<br />

Stratigraphic position and age. Dawangzhangzi<br />

Bed, <strong>Yixian</strong> <strong>Formation</strong>, <strong>Early</strong><br />

<strong>Cretaceous</strong> (Barremian-early Aptian?).<br />

Description and comments. The type material<br />

of Liaoxia acutiformis comprises one<br />

compression fossil of an ephedroid plant with<br />

sparse rema<strong>in</strong>s of oxidized organic material<br />

preserved (Fig. 9). No anatomical details are<br />

preserved. The shoot is 7 cm long with opposite<br />

and decussate branch<strong>in</strong>g. Stems are erect<br />

with weak impressions of longitud<strong>in</strong>al striations,<br />

<strong>in</strong>ternodes about 6–14 mm long, stems<br />

0.3–1.4 mm wide, thicker at nodes. Leaves are<br />

l<strong>in</strong>ear, and opposite at nodes, 2.7–7.0 mm long<br />

and c. 0.2 mm wide (Figs. 9–11). Indist<strong>in</strong>ct<br />

rema<strong>in</strong>s of two ve<strong>in</strong>s are present <strong>in</strong> some leaves<br />

(Fig. 10). There are about seven elongate (to<br />

narrowly obovate) cones, 3.5–6 mm long, and


244 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

about 1.7–2.7 mm wide. Cones are sessile and<br />

placed axillary at nodes or term<strong>in</strong>ally on<br />

branches. Each cone has between 6 and 12<br />

pairs of erect to slightly reflexed bracts that<br />

appear decussately arranged (Fig. 10). Bracts<br />

are narrow and ovate, 1.5–2.0 mm long, with<br />

an acute apex. Seeds or microsporangiate<br />

organs have not been observed.<br />

This fossil is similar to Liaoxia chenii <strong>in</strong><br />

vegetative morphology, but <strong>the</strong> cones are more<br />

elongate <strong>in</strong> shape. Liaoxia acutiformis is fur<strong>the</strong>r<br />

dist<strong>in</strong>guished <strong>from</strong> L. chenii by hav<strong>in</strong>g a higher<br />

number of bracts, probably up to 12 pairs, <strong>in</strong><br />

each cone, <strong>in</strong> contrast to L. chenii that has 2–6<br />

pairs <strong>in</strong> each cone. The apex of <strong>the</strong> cone bracts<br />

differs <strong>in</strong> be<strong>in</strong>g acute to obtuse <strong>in</strong> L. acutiformis<br />

while it is acute to attenuate <strong>in</strong> L. chenii.<br />

Liaoxia elongata Ryd<strong>in</strong>, S.Q. Wu et Friis sp.<br />

nov.<br />

Specific diagnosis. As for <strong>the</strong> genus with <strong>the</strong><br />

follow<strong>in</strong>g dist<strong>in</strong>ctions. Branches 0.4–1.5 mm<br />

thick, sometimes with multiple axillary nodes.<br />

Leaves absent. Cones narrowly elongate, 5–<br />

10 mm long, c. 2–3 mm wide, with 8–12 pairs<br />

of bracts. Cone bracts erect, 2.5–4 mm long,<br />

with an attenuate apex.<br />

Etymology. Named after <strong>the</strong> narrowly<br />

elongated cones.<br />

Holotype. PB20724 (Figs. 14–15).<br />

Paratype. PB20723 (Figs. 12–13).<br />

Locality. Fanzhangzi Section, L<strong>in</strong>gyuan,<br />

Liaon<strong>in</strong>g, Ch<strong>in</strong>a.<br />

Stratigraphic position and age. Dawangzhangzi<br />

Bed, <strong>Yixian</strong> <strong>Formation</strong>, <strong>Early</strong><br />

<strong>Cretaceous</strong> (Barremian-early Aptian?).<br />

Description and comments. The holotype of<br />

Liaoxia elongata comprises <strong>the</strong> uppermost<br />

5.5 cm of <strong>the</strong> plant (Figs. 14–15). An additional<br />

specimen is a shoot with slightly larger<br />

structures, c. 4 cm long and 4 cm wide, repre-<br />

sent<strong>in</strong>g <strong>the</strong> central part of <strong>the</strong> plant (Figs. 12–<br />

13). No anatomical details are preserved.<br />

The stems are erect with nodes and <strong>in</strong>ternodes.<br />

Branch<strong>in</strong>g is opposite and <strong>the</strong> paratype<br />

has multiple axillary units (Fig. 12). Stems are<br />

0.4–1.5 mm thick, thicker towards <strong>the</strong> base<br />

and at nodes, and have very weak remnants of<br />

longitud<strong>in</strong>al striations. Leaves are absent.<br />

Cones are axillary at nodes or term<strong>in</strong>ally on<br />

branches and may be sessile or pedunculate.<br />

They are narrowly elongate (Figs. 13–14) and<br />

vary <strong>in</strong> length between 5–6 mm <strong>in</strong> <strong>the</strong> holotype<br />

to 6–10 mm <strong>in</strong> <strong>the</strong> paratype, but are all<br />

2–3 mm wide. One cone on <strong>the</strong> paratype is<br />

smaller and rounded, c. 3 · 3 mm (arrow <strong>in</strong><br />

Fig. 12). Each cone comprises 8–12 pairs of<br />

erect and decussately arranged bracts. The<br />

bracts are probably very narrowly ovate, c.<br />

2.5–4 mm long, with attenuate apex. Seeds or<br />

microsporangiate organs have not been<br />

observed.<br />

These plants are similar to Liaoxia changii<br />

(Cao et al. 1998) <strong>in</strong> <strong>the</strong> over all ephedroid<br />

habit, and <strong>the</strong> leaf-less stems, but differ <strong>from</strong><br />

Liaoxia changii ma<strong>in</strong>ly <strong>in</strong> that <strong>the</strong>y have<br />

cones with more bracts, which are erect and<br />

have a dist<strong>in</strong>ctly po<strong>in</strong>ted, attenuate apex. The<br />

cone bracts of Liaoxia changii are slightly<br />

reflexed and have a less dist<strong>in</strong>ctly po<strong>in</strong>ted,<br />

acute apex.<br />

Liaoxia robusta Ryd<strong>in</strong>, S.Q. Wu et Friis sp.<br />

nov.<br />

Specific diagnosis. As for <strong>the</strong> genus with <strong>the</strong><br />

follow<strong>in</strong>g dist<strong>in</strong>ctions. Branches 1.5–2 mm<br />

thick, with multiple axillary units. Leaves at<br />

least 15–20 mm long, 0.5–1.0 mm wide. Cones<br />

obovate to elongate 7–16 mm long, c. 6–8 mm<br />

wide, with 4–10 pairs of bracts. Cone bracts<br />

reflexed, 4–7 mm long, ovate with acute to<br />

attenuate apex, one-two parallel ve<strong>in</strong>s. Seeds<br />

c<br />

Figs. 1–4. Liaoxia chenii Cao et S.Q. Wu (emend. Ryd<strong>in</strong>, S.Q. Wu et Friis). 1 The holotype of Liaoxia chenii<br />

(PB17800). 2 New specimen (PB20718); <strong>the</strong> detached apical part of a reproductive shoot. 3–4 New specimen<br />

(PB20717); <strong>the</strong> uppermost part of a branched plant. Note <strong>the</strong> seed and <strong>the</strong> th<strong>in</strong> leaf <strong>in</strong>dicated by arrows <strong>in</strong><br />

Fig. 3. Scale bars = 1 cm <strong>in</strong> Figs. 1, 2, 4; 0.3 cm <strong>in</strong> Fig. 3. S = seed; L =leaf


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 245


246 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

rounded, elliptic, 2.5–3.5 mm long, 1.2–2 mm<br />

wide.<br />

Etymology. From <strong>the</strong> robust morphology<br />

of <strong>the</strong> plant.<br />

Holotype. PB20719. (Figs. 16, 18).<br />

Paratype. (Counterpart) PB20720. (Fig. 17).<br />

Locality. Huangbanjigou Section, Beipiao,<br />

Liaon<strong>in</strong>g, Ch<strong>in</strong>a.<br />

Stratigraphic position and age. Jianshangou<br />

Bed, <strong>Yixian</strong> <strong>Formation</strong>, <strong>Early</strong> <strong>Cretaceous</strong><br />

(Barremian-early Aptian?).<br />

Description and comments. The type material<br />

of Liaoxia robusta comprises two compression<br />

fossils of an ephedroid, female plant,<br />

part and counterpart, with oxidized organic<br />

material preserved. The shoot is 17 cm long<br />

(Fig. 16), but on <strong>the</strong> counterpart, only <strong>the</strong><br />

uppermost 8 cm are preserved (Fig. 17). No<br />

<strong>in</strong>ternal or external anatomical details are<br />

preserved. Precipitations surround <strong>the</strong> plant<br />

rema<strong>in</strong>s and make stems and leaves appear<br />

wider than <strong>the</strong>y are.<br />

Stems are erect with nodes and <strong>in</strong>ternodes,<br />

1.5–2 mm thick, thicker at nodes, and have<br />

longitud<strong>in</strong>al striations-ridges. Phyllotaxis is<br />

opposite and decussate with multiple axillary<br />

units. Leaves are l<strong>in</strong>ear, 15–20 mm long and<br />

appear 1.5–2 mm wide, but <strong>the</strong> width also<br />

comprises precipitates and <strong>the</strong> leaves were<br />

probably only 0.5–1 mm wide. Indist<strong>in</strong>ct<br />

rema<strong>in</strong>s of three or four ve<strong>in</strong>s are present on<br />

some leaves. The plant has about 15 ovulate<br />

cones that are rounded to ellipsoid <strong>in</strong> longitud<strong>in</strong>al<br />

outl<strong>in</strong>e. Cones vary <strong>in</strong> length between 7<br />

and 16 mm, but are all about 6–8 mm wide,<br />

sessile or pedunculate, and are positioned<br />

axillary at nodes or term<strong>in</strong>ally on branches.<br />

Cones comprise between approximately 4 and<br />

10 pairs of reflexed and decussately arranged<br />

bracts. The bracts are ovate, 4–7 mm long,<br />

with a long and acute to attenuate apex. Seeds<br />

are rounded to elliptic, 2.5–3.5 mm long and<br />

1.2–2 mm wide, but no cell structures or o<strong>the</strong>r<br />

anatomical details are preserved. There is one<br />

seed <strong>in</strong> <strong>the</strong> axil of all cone bracts, <strong>in</strong>clud<strong>in</strong>g<br />

proximal bracts.<br />

This plant differs <strong>from</strong> o<strong>the</strong>r species of<br />

Liaoxia <strong>in</strong> that all features are larger. Fur<strong>the</strong>r,<br />

it has multiple axillary branch<strong>in</strong>g, which has<br />

o<strong>the</strong>rwise only been observed for Liaoxia<br />

elongata and L. longibractea, and <strong>the</strong>se species<br />

are clearly different <strong>from</strong> L. robusta <strong>in</strong> <strong>the</strong><br />

characters of <strong>the</strong> cones. Liaoxia robusta differs<br />

<strong>from</strong> Ephedra <strong>in</strong> <strong>the</strong> presence of seeds <strong>in</strong> <strong>the</strong><br />

axil of all bracts, not only <strong>in</strong> distal pairs as <strong>in</strong><br />

extant Ephedra.<br />

A detached w<strong>in</strong>ged seed occurs <strong>in</strong> close<br />

association with Liaoxia robusta (Fig. 18).<br />

The seed body of this isolated seed is of<br />

approximately <strong>the</strong> same length as <strong>the</strong> <strong>in</strong> situ<br />

seeds and <strong>the</strong> possibility that it orig<strong>in</strong>ates<br />

<strong>from</strong> a Liaoxia cone cannot be ruled out, but<br />

<strong>the</strong> shape of <strong>the</strong> seed and <strong>the</strong> nature of <strong>the</strong><br />

w<strong>in</strong>g suggest that it was more likely produced<br />

by one of <strong>the</strong> conifers reported for <strong>the</strong> <strong>Yixian</strong><br />

<strong>Formation</strong>.<br />

Liaoxia longibractea Ryd<strong>in</strong>, S.Q. Wu et Friis<br />

sp. nov.<br />

Specific diagnosis. As for <strong>the</strong> genus with <strong>the</strong><br />

follow<strong>in</strong>g dist<strong>in</strong>ctions. Branches c. 1.5 mm<br />

wide, with multiple axillary branch<strong>in</strong>g. Cones<br />

sessile to very shortly pedunculate, rounded,<br />

3.5–4 mm long ()15 mm <strong>in</strong>clud<strong>in</strong>g bract<br />

apex), c. 2–3 mm wide, with 1–2 pairs of<br />

bracts. Cone bracts reflexed, 10–15 mm long,<br />

extended with a setose apex, two parallel<br />

ve<strong>in</strong>s. Seeds elliptic, 2.5–4.0 mm long, c.<br />

1 mm wide.<br />

Etymology. Named after <strong>the</strong> very long and<br />

narrowly extended cone bracts.<br />

Holotype. PB20725 (Fig. 19).<br />

Paratype. PB20726 (<strong>the</strong> counterpart,<br />

Fig. 20).<br />

Locality. Fanzhangzi Section, L<strong>in</strong>gyuan,<br />

Liaon<strong>in</strong>g, Ch<strong>in</strong>a.<br />

Stratigraphic position and age. Dawangzhangzi<br />

Bed, <strong>Yixian</strong> <strong>Formation</strong>, <strong>Early</strong><br />

<strong>Cretaceous</strong> (Barremian-early Aptian?).<br />

Description and comments. The type material<br />

of Liaoxia longibractea comprises two<br />

relatively well-preserved compression fossils<br />

(part and counterpart) with small amounts of<br />

oxidized organic material preserved. No <strong>in</strong>ternal<br />

or external anatomical details are pre-


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 247<br />

Figs. 5–8. Liaoxia changii (Cao et S.Q. Wu) Ryd<strong>in</strong>, S.Q. Wu et Friis comb. nov. 5 The counterpart of <strong>the</strong><br />

holotype (PB17804). 6–8 New specimen (PB20722); a relatively well-preserved fossil with seeds <strong>in</strong> <strong>the</strong> axil of<br />

cone bracts. Leaves are absent <strong>in</strong> Liaoxia changii. Scale bars = 1 cm <strong>in</strong> Figs. 5–7; 0.3 cm <strong>in</strong> Fig. 8. S =seed


248 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

Figs. 9–11. Liaoxia acutiformis Ryd<strong>in</strong>, S.Q. Wu et Friis sp. nov (PB20721). 9 Overview of this reproductive<br />

shoot. 10 The uppermost cone <strong>in</strong> close up. No rema<strong>in</strong>s of seeds or male structures have been observed <strong>in</strong> this<br />

specimen. 11 Close up of a node. Scale bars = 1 cm <strong>in</strong> Fig. 9; 0.3 cm <strong>in</strong> Figs. 10 and 11. L =leaf;B =branch<br />

served. The shoot is c. 4.5 cm long and<br />

represents <strong>the</strong> term<strong>in</strong>al reproductive part of<br />

one branch (Fig. 19). The stem is erect,<br />

1.5 mm thick, and has dist<strong>in</strong>ct remnants of<br />

longitud<strong>in</strong>al striations. Leaves are not present<br />

<strong>in</strong> <strong>the</strong> preserved part of <strong>the</strong> shoot. Reproduc-


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 249<br />

tive parts are positioned at two nodes separated<br />

by a short (6 mm) <strong>in</strong>ternode. Branch<strong>in</strong>g<br />

is opposite and with multiple axillary units.<br />

Cones are rounded, and vary <strong>in</strong> length between<br />

3.5 and 4 mm (up to 15 mm long <strong>in</strong>clud<strong>in</strong>g <strong>the</strong><br />

extended bract apex), and are 2–3 mm wide.<br />

Four cones are positioned axillary at <strong>the</strong><br />

lowermost node (Fig. 20). They are sessile to<br />

shortly pedunculate. Each cone comprises only<br />

1–2 pairs of bracts, which are reflexed and<br />

decussately arranged. Bracts are probably<br />

ovate, 10–15 mm long and 0.1–0.5 mm wide,<br />

and have a long po<strong>in</strong>ted (setose) apex<br />

(Fig. 20). They have <strong>in</strong>dist<strong>in</strong>ct rema<strong>in</strong>s of two<br />

parallel ve<strong>in</strong>s (Fig. 20). The upper node comprises<br />

sessile cones, densely crowded <strong>in</strong>to a<br />

head-like structure. Seeds are positioned <strong>in</strong> <strong>the</strong><br />

axil of <strong>the</strong> bracts. They are poorly preserved,<br />

but appear elliptic, 2.5–4 mm long and c.<br />

1 mm wide.<br />

This plant differs <strong>from</strong> <strong>the</strong> o<strong>the</strong>r species of<br />

Liaoxia <strong>in</strong> <strong>the</strong> multiple numbers of sessile<br />

cones at nodes, superficially form<strong>in</strong>g head-like<br />

structures. Ano<strong>the</strong>r obvious difference is <strong>the</strong><br />

extended, very long and narrow apex of <strong>the</strong><br />

cone bracts, 10–15 mm long. The bracts of<br />

o<strong>the</strong>r species described here are generally only<br />

2–4 mm, (6–7 <strong>in</strong> L. robusta).<br />

Discussion<br />

The type species, Liaoxia chenii, was orig<strong>in</strong>ally<br />

described as an angiosperm (Cyperaceae) by<br />

Cao et al. (1998). In <strong>the</strong> same work Cao et al.<br />

described ano<strong>the</strong>r species, Eragrosites changii,<br />

also assigned to <strong>the</strong> monocots (Poaceae). The<br />

gnetalean aff<strong>in</strong>ity of <strong>the</strong>se two species was,<br />

however, soon po<strong>in</strong>ted out by several authors<br />

(Sun et al. 1998, Guo and Wu 2000). Both<br />

species are here assigned to Liaoxia. We have<br />

altered <strong>the</strong> term<strong>in</strong>ology but basically followed<br />

<strong>the</strong> orig<strong>in</strong>al <strong>in</strong>terpretations made by Cao and<br />

Wu, with one exception. In <strong>the</strong> orig<strong>in</strong>al<br />

description of Liaoxia it is stated that <strong>the</strong> cone<br />

bracts (‘‘glumes’’) are helically arranged (Cao<br />

et al. 1998), but accord<strong>in</strong>g to our observations<br />

cone bracts are opposite and decussately<br />

arranged.<br />

Nomenclatural comments. In 2000, Liaoxia<br />

chenii and Eragrosites changii were re-described<br />

jo<strong>in</strong>tly as an ephedroid species, Ephedrites<br />

chenii (Guo and Wu 2000), based on <strong>the</strong><br />

orig<strong>in</strong>al material of Cao et al. (1998) and one<br />

additional specimen. This taxonomic treatment<br />

was followed by Sun et al. (2001), who<br />

based <strong>the</strong>ir description on <strong>the</strong> same specimens<br />

as well as new material. There are, however,<br />

problems with <strong>the</strong> approach of jo<strong>in</strong><strong>in</strong>g Liaoxia<br />

chenii and Eragrosites changii <strong>in</strong>to a s<strong>in</strong>gle<br />

species. The specimens orig<strong>in</strong>ally described as<br />

Liaoxia chenii have a dist<strong>in</strong>ct ephedroid habit<br />

with opposite branch<strong>in</strong>g, long slender leaves <strong>in</strong><br />

opposite and decussate arrangement at <strong>the</strong><br />

nodes, and cone bracts with a dist<strong>in</strong>ctly<br />

po<strong>in</strong>ted apex (referred to as an ‘‘awn’’ by<br />

Cao et al. 1998). Eragrosites changii (Cao et al.<br />

1998) also represents a plant with an ephedroid<br />

habit, but it differs <strong>from</strong> Liaoxia chenii <strong>in</strong> that<br />

leaves are absent, cones have more bracts and<br />

<strong>the</strong> bracts are shorter, apparently with an<br />

acute to obtuse apex. We f<strong>in</strong>d <strong>the</strong>se differences<br />

sufficiently marked to warrant a separation of<br />

<strong>the</strong> specimens <strong>in</strong>to two different species.<br />

Fur<strong>the</strong>r, <strong>the</strong> use of <strong>the</strong> genus Ephedrites is<br />

<strong>in</strong>appropriate for ephedroid fossils. The genus<br />

was orig<strong>in</strong>ally described by Go¨ppert and<br />

Berendt (1845), based on stems with female<br />

reproductive units preserved <strong>in</strong> Baltic amber<br />

<strong>from</strong> <strong>the</strong> <strong>Early</strong> Cenozoic of Europe. Additional<br />

material, <strong>in</strong>clud<strong>in</strong>g male structures,<br />

conv<strong>in</strong>ced Go¨ppert that <strong>the</strong>se plants belonged<br />

to Ephedra (Go¨ppert 1853) and he transferred<br />

<strong>the</strong> type species (Ephedrites johnianus) to <strong>the</strong><br />

extant genus (Go¨ppert 1853, Go¨ppert and<br />

Menge 1883). A few years later, Conwentz<br />

(1886) argued that <strong>the</strong> male structures probably<br />

represented poorly preserved material of<br />

Castanea whereas <strong>the</strong> female structures (<strong>the</strong><br />

type) belonged to <strong>the</strong> angiosperm family<br />

Loranthaceae and he transferred Ephedra<br />

(Ephedrites) johnianus to Patzea johnianus<br />

(Conwentz 1886).<br />

In 1891, Saporta made an emended diagnosis<br />

of Ephedrites (cit<strong>in</strong>g <strong>the</strong> Go¨ppert and<br />

Berendt type material <strong>from</strong> 1845). He <strong>in</strong>cluded<br />

two species: one new species based on seeds


250 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

Figs. 12–15. Liaoxia elongata Ryd<strong>in</strong>, S.Q. Wu et Friis sp. nov. 12–13 The central part of <strong>the</strong> plant is preserved<br />

<strong>in</strong> this specimen (PB20723). Note <strong>the</strong> narrowly elongated cones with erect bracts, and a s<strong>in</strong>gle, smaller and<br />

rounded, probably immature cone. 14–15 The uppermost part of a reproductive shoot (PB20724). Leaves are<br />

absent <strong>in</strong> this species. Scale bars = 1 cm <strong>in</strong> Figs. 12 and 15; 0.3 cm <strong>in</strong> Figs. 13 and 14. C =cone<br />

<strong>from</strong> <strong>the</strong> Jurassic of France (Ephedrites armaillensis<br />

Saporta), and Ephedrites antiquus,<br />

described by Heer (1876) based on Jurassic<br />

fossils <strong>from</strong> Ust-Balej, Siberia. S<strong>in</strong>ce <strong>the</strong>n,<br />

several authors have used Ephedrites <strong>in</strong> <strong>the</strong><br />

sense of Saporta (1891), (e.g. Wu et al. 1986,<br />

Guo and Wu 2000, Sun et al. 2001), (see also<br />

Table 1). The orig<strong>in</strong>al description of Ephedrites<br />

(Go¨ppert and Berendt 1845) is, however, validly<br />

published and Ephedrites Saporta (1891) a<br />

later illegitimate homonym. A fur<strong>the</strong>r complication<br />

is that <strong>the</strong> aff<strong>in</strong>ity to Ephedra of <strong>the</strong><br />

material described by Saporta and Heer has<br />

been questioned (Arber and Park<strong>in</strong> 1908,<br />

Krassilov and Bugdaeva 1988), even by Saporta<br />

himself (1891, p. 23). Krassilov and Bugdaeva<br />

(1988) re-described <strong>the</strong> w<strong>in</strong>ged seeds of<br />

Ephedrites antiquus Heer as parts of a possibly<br />

welwitschioid plant: Heerala antiqua (Heer)<br />

comb. nov. (Krassilov and Bugdaeva 1988).<br />

Thus, Ephedrites Go¨ppert et Brendt is <strong>the</strong><br />

basionym of an angiosperm and should not be<br />

used for ephedroid fossils. Conservation of <strong>the</strong><br />

homonym Ephedrites Saporta would be possible,<br />

but is problematic because of <strong>the</strong> uncerta<strong>in</strong><br />

aff<strong>in</strong>ity of <strong>the</strong> fossil material cited by Saporta<br />

(Saporta 1891, p. 23 and 26). These issues have<br />

also been discussed by Yang et al. (2005).


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 251<br />

Table 1. Fossil material assigned to Ephedrites<br />

Reference Location Age Description Comments<br />

The type of Ephedrites.<br />

Belongs to Loranthaceae<br />

Reproductive branches<br />

preserved <strong>in</strong> amber<br />

Ephedrites johnianus Europe Oligocene-<br />

(Go¨ppert and Berendt 1845)<br />

Miocene<br />

(Conwentz 1886).<br />

Jurassic Detached leafless branches Branches and seeds-fruits of uncerta<strong>in</strong><br />

Detached seeds or fruits, aff<strong>in</strong>ity. The w<strong>in</strong>ged<br />

opposite with one flat side seeds re-described as<br />

Detached w<strong>in</strong>ged<br />

Heerala antiqua.<br />

seeds or fruits<br />

(Krassilov and Bugdaeva 1988), as<br />

welwitschioid seeds.<br />

Europe Jurassic Detached seeds or fruits, Of uncerta<strong>in</strong> aff<strong>in</strong>ity.<br />

opposite with one flat side<br />

<strong>Yixian</strong> <strong>Formation</strong>, <strong>Early</strong><br />

Reproductive branches The material belongs to<br />

Ch<strong>in</strong>a<br />

<strong>Cretaceous</strong><br />

two separate species, previously<br />

described as Liaoxia chenii<br />

and Eragrosites changii<br />

(Cao et al. 1998).<br />

<strong>Yixian</strong> <strong>Formation</strong>, <strong>Early</strong><br />

Reproductive shoot with Cones (spikes) with bracts at ‘‘nodes’’,<br />

Ch<strong>in</strong>a<br />

<strong>Cretaceous</strong> three cones<br />

separated by ‘‘<strong>in</strong>ternodes’’<br />

No leaves or nodes preserved Similar to <strong>the</strong> ‘‘Potamogeton-like<br />

spikes’’ <strong>from</strong> Manlej (Krassilov 1982).<br />

<strong>Yixian</strong> <strong>Formation</strong>, <strong>Early</strong><br />

Vegetative shoot Strictly dichotomously branched.<br />

Ch<strong>in</strong>a<br />

<strong>Cretaceous</strong><br />

Not Gnetales, perhaps<br />

not a seed plant.<br />

Europe Oligocene-Miocene Reproductive branches Not Gnetales. Commented e.g. by<br />

preserved <strong>in</strong><br />

Conwentz (1886) and Arber<br />

amber<br />

and Park<strong>in</strong> (1908).<br />

Europe Eocene Vegetative branches; Not Ephedra. Has been<br />

fragmented and probably commented e.g. by Saporta (1891)<br />

poorly preserved.<br />

and Arber and Park<strong>in</strong> (1908).<br />

Alternate branch<strong>in</strong>g<br />

Xiaomeigou Jurassic Reproductive branches, Fossils with aff<strong>in</strong>ity to Ephedra.<br />

<strong>Formation</strong>, Ch<strong>in</strong>a<br />

fragmented<br />

No reproductive details preserved.<br />

Sibiria<br />

(Ust-Balej)<br />

Ephedrites<br />

antiquus (Heer 1876)<br />

Ephedrites armaillensis<br />

(Saporta 1891)<br />

Ephedrites chenii<br />

(Guo and Wu 2000)<br />

Ephedrites? elegans<br />

(Sun et al. 2001)<br />

Ephedrites guozhongiana<br />

(Sun et al. 2001)<br />

Ephedra mengeana<br />

(Go¨ppert and Menge 1883)<br />

Ephedrites sotzkianus<br />

(Unger 1851)<br />

Ephedrites s<strong>in</strong>ensis and<br />

E. exhibens<br />

(Wu et al. 1986)


252 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 253<br />

Consider<strong>in</strong>g <strong>the</strong> nomenclatural problems with<br />

<strong>the</strong> taxon Ephedrites and <strong>the</strong> difficulty to<br />

unambiguously correlate <strong>the</strong> present material<br />

with extant Ephedra, we prefer to keep <strong>the</strong><br />

name Liaoxia, and suggest that Liaoxia is used<br />

for Ephedra-like megafossils that cannot be<br />

unambiguously assigned to <strong>the</strong> extant genus.<br />

Interpretation of <strong>the</strong> new fossils and<br />

comparison with extant species. The material<br />

presented here comprises impression-compression<br />

fossils with rema<strong>in</strong>s of oxidized organic<br />

material. Most specimens have stems, leaves,<br />

and cones <strong>in</strong> connection, but none of <strong>the</strong> fossils<br />

is preserved as whole plants and none has<br />

roots attached. No anatomical details are<br />

preserved. Characters are summarised <strong>in</strong><br />

Table 2. The reconstruction of Liaoxia chenii<br />

(Fig. 21) is based on <strong>the</strong> holotype (PB17800)<br />

and <strong>the</strong> new specimens (PB20717–PB20718).<br />

Vegetative characters of Liaoxia. The fossils<br />

have erect stems, which are longitud<strong>in</strong>ally<br />

striate probably <strong>from</strong> preserved fibers. Upper<br />

parts are th<strong>in</strong>ner than <strong>the</strong> basal parts and <strong>in</strong> all<br />

species <strong>the</strong> stems become wider at <strong>the</strong> nodes.<br />

Liaoxia robusta is larger than <strong>the</strong> o<strong>the</strong>r species<br />

and has <strong>the</strong> widest stems, but <strong>the</strong> variation is<br />

generally larger with<strong>in</strong> each plant than<br />

between <strong>the</strong>m.<br />

Leaves are absent <strong>in</strong> Liaoxia changii and L.<br />

elongata; leaf scars are miss<strong>in</strong>g <strong>in</strong> all specimens.<br />

In Liaoxia longibractea, only <strong>the</strong> uppermost<br />

part of a reproductive shoot is preserved<br />

and it is unknown whe<strong>the</strong>r or not it had leaves.<br />

The o<strong>the</strong>r species all have narrow, l<strong>in</strong>ear<br />

leaves, opposite at nodes. The leaf bases are<br />

probably sheeted <strong>in</strong> all <strong>the</strong> species, but <strong>the</strong><br />

poor preservation prevents unambiguous conclusions.<br />

The venation is also generally poorly<br />

preserved, but obvious <strong>in</strong> at least some parts of<br />

<strong>the</strong> leaves. In all species <strong>the</strong>re is a primary<br />

parallel venation and no second order venation.<br />

Liaoxia chenii and L. acutiformis appear<br />

to have two parallel ve<strong>in</strong>s. Liaoxia robusta has<br />

four ve<strong>in</strong>s.<br />

In extant Ephedra, <strong>the</strong> size and shape of<br />

leaves and stems may vary significantly with<strong>in</strong><br />

and between species (Gifford and Foster 1989)<br />

and <strong>the</strong> variation <strong>in</strong> <strong>the</strong> fossils is covered <strong>in</strong> <strong>the</strong><br />

extant genus. For example, Ephedra leaves are<br />

generally m<strong>in</strong>ute (less than 10 mm long), ovate<br />

to triangular <strong>in</strong> shape, but Ephedra foliata has<br />

l<strong>in</strong>ear leaves with a well-developed lam<strong>in</strong>a,<br />

often 10–15 mm long, sometimes extend<strong>in</strong>g up<br />

to 40 mm <strong>in</strong> length (Freitag and Maier-Stolte<br />

1994). Leaves of Ephedra have 2–3 parallel<br />

ve<strong>in</strong>s (Kubitzki 1990). Second order venation<br />

is unknown <strong>in</strong> Ephedra, but occurs <strong>in</strong> Gnetum<br />

and Welwitschia.<br />

Cones and cone bracts of Liaoxia. The<br />

cones of Liaoxia chenii and L. robusta are<br />

obovate and wide, whereas <strong>the</strong> cones of L.<br />

acutiformis and L. changii are elongate to<br />

slightly obovate. Cones of L. elongata are<br />

narrowly elongate, but one of <strong>the</strong> cones of L.<br />

elongata has a dist<strong>in</strong>ctly different shape and is<br />

smaller and rounded. It was probably preserved<br />

<strong>in</strong> an immature stage. In L. longibractea,<br />

<strong>the</strong> cones are rounded to obovate and<br />

several cones are densely crowded at nodes,<br />

form<strong>in</strong>g a head-like structure. Multiple axillary<br />

branch<strong>in</strong>g result<strong>in</strong>g <strong>in</strong> four or more cones at a<br />

node is obvious <strong>in</strong> Liaoxia robusta, L. longibractea<br />

and L. elongata, and this feature is also<br />

common <strong>in</strong> extant Ephedra. Presence of multiple<br />

axillary buds is a synapomorphy for <strong>the</strong><br />

Gnetales (Crane 1996, Doyle 1996).<br />

Liaoxia chenii has 2–6 pairs of ovate to<br />

triangular cone bracts with a po<strong>in</strong>ted apex.<br />

b<br />

Figs. 16–20. Liaoxia robusta Ryd<strong>in</strong>, S.Q. Wu et Friis sp. nov. and Liaoxia longibractea Ryd<strong>in</strong> S.Q. Wu et Friis<br />

sp. nov. 16–18 Liaoxia robusta sp. nov (PB20719–PB20720); a large species with preserved seeds, also <strong>in</strong> <strong>the</strong> axil<br />

of proximal cone bracts. Leaves and stems are surrounded by precipitations that make <strong>the</strong>m appear wider than<br />

<strong>the</strong>y are. 19–20 Liaoxia longibractea sp. nov. (PB20725–PB20726); <strong>the</strong> uppermostpartofareproductiveshoot.<br />

It is unknown if this species had leaves or not. Note <strong>the</strong> spectacular cone bracts, and <strong>the</strong> densely crowded cones<br />

that form head-like structures. Scale bars = 1 cm <strong>in</strong> Figs. 16–20. S =seed;L =leaf


254 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

Table 2. Species of Liaoxia<br />

Unit: mm. Liaoxia Liaoxia chenii Liaoxia chenii Liaoxia chenii Liaoxia acutiformis Liaoxia<br />

Liaoxia elongata<br />

chenii PB17800 PB17801 PB20717 PB20718 PB20721<br />

elongata PB20724 PB20723<br />

Holotype Paratype New material New material New material New material New material<br />

Photo Fig. 1 – Figs. 3–4 Fig. 2 Figs. 9–11 Figs. 14–15 Figs. 12–13<br />

Branch<strong>in</strong>g Opposite Opposite Opposite Opposite Opposite Opposite-decussate Opposite<br />

Multiple axillary b. No No No No No No Yes<br />

Internode length 8–40 c. 12 8–17 ? 6–14 9–13 ?<br />

Stem width 1–3 0.5–1.5 0.5–2.0 0.5–1.5 0.3–1.4 0.4–1.0 0.5–1.5<br />

Leaf shape L<strong>in</strong>ear L<strong>in</strong>ear L<strong>in</strong>ear L<strong>in</strong>ear L<strong>in</strong>ear Absent Absent<br />

Leaves length 20 5 7 5 2.7–7.0 — —<br />

Leaves width 1 0.1–0.3 0.1–0.3 0.3 0.2 — —<br />

Leaf venation 2? ? 2? 2 2? — —<br />

Cone shape Obovate Obovate Obovate Obovate Elongate<br />

Elongate Elongate<br />

(to narr.<br />

obovate)<br />

Cone length 5–10 4–6 4–6 5–7 3.5–6.0 5–6 (3-)6–10<br />

Cone width 3–4 2–3 2.5–5.0 3–4 1.7–2.7 2 3<br />

Cone attachment SessileSessileSessile- Pedunculate SessilePedunculateSessilepedunculatepedunculatepedunculatepedunculatesessilepedunculate<br />

No. of<br />

2–6;<br />

2–6; 2–6; 2–6; 6–12;<br />

8–10; erect 10–12; erect<br />

bract pairs reflexed reflexed reflexed reflexed erect-slight.<br />

reflexed<br />

Bract length 4 3–4 3–4 4 1.5–2.0 2.5–3.5 4<br />

Bract width 0.6 ? a<br />

0.3–0.8 0.5 ? a<br />

? a<br />

? a<br />

Bract shape Ovate (to Ovate (to Ovate (to Ovate (to Narrowly Narrowly Narrowly<br />

triangular) triangular) triangular) triangular) ovate<br />

ovate<br />

ovate<br />

Bract apex Acute to Acute to Acute to Acute to Acute Attenuate Attenuate<br />

attenuate attenuate attenuate attenuate<br />

Bract<br />

2 parallel ? 2 parallel 2 parallel ? ? ?<br />

venation<br />

Seed shape ? ? Ovoid-elliptic ? ? — —<br />

Seed length ? ? 1 ? ? — —<br />

Seed width ? ? 0.3–0.7 ? ? — —<br />

Gender Female Female Female Female Male? Male? Male?


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 255<br />

Photo – Fig. 5 – Figs. 6–8 Figs. 16–18 Figs. 19–20<br />

Branch<strong>in</strong>g Opposite Opposite Opposite Opposite- Opposite Opposite<br />

decussate<br />

Multiple axillary b. No? No? No? No Yes Yes<br />

Internode lenght 8–40 8–40 10 10–18 15–40 6<br />

Stem width 0.5–4.0 0.5–4.0 0.3–0.8 0.7–1.7 1.5–2.0 1.5<br />

Leaf shape Absent absent absent absent L<strong>in</strong>ear ?<br />

Leaves length — — — — 15–20 ?<br />

Leaves width — — — — 0.5–1.0 ?<br />

Leaf venation — — — —. 3–4 ?<br />

Cone shape ElongateElongateElongate- Obovate Obovate<br />

Rounded<br />

obovateobovateobovate to elongate to elongate<br />

Cone length 5–6 5–6 4–5 5–6 7–16 3.5–4 ()15<br />

<strong>in</strong>clud<strong>in</strong>g<br />

bract apex)<br />

Cone width 2.5–3.0 2.5–3.0 1.5–2.0 2.5–3.0 6–8 2–3<br />

Cone attachment SessileSessileSessileSessileSessile- Sessile- shortly<br />

pedunculatepedunculatepedunculatepedunculatepedunculate pedunculate<br />

Bract pairs;<br />

6–10; erect- 6–10; erect- c. 8; erect- 6–10; erect- 4–10; reflexed 1–2; reflexed<br />

position<br />

slightlyslightlyslightlyslightly reflexed reflexed reflexed<br />

reflexed<br />

Bract length 2 2 2 2 4–7 10–15<br />

Bract width 0.3 0.3 0.3 ? a<br />

? a<br />

0.1–0.5 apically<br />

Bract shape Ovate Ovate Ovate Ovate Ovate Ovate?<br />

Bract apex Acute to Acute to Acute to Acute to Acute to<br />

Setose<br />

obtuse<br />

obtuse<br />

attenuate obtuse<br />

attenuate<br />

Bract venation ? ? ? ? 1–2 parallel? 2 parallel<br />

Seed shape — — ? Ovoid Rounded-elliptic Elliptic<br />

Seed length — — 1 0.8–1.0 2.5–3.5 2.5–4.0<br />

Seed width — — 0.2–0.3 0.2–0.3 1.2–2.0 c. 1.0<br />

Gender Mix? Mix? Female (mix?) Female Female Female<br />

Notes. All units <strong>in</strong> mm. —: Feature absent. ?: Feature poorly preserved. a : Bracts folded and overlapp<strong>in</strong>g; exact width not possible to say.


256 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

Fig. 21. Reconstruction of Liaoxia chenii, Cao et<br />

S.Q. Wu (emerd. Ryd<strong>in</strong>, S.Q. Wu et Friis) based on<br />

<strong>the</strong> holotype (PB17800) and <strong>the</strong> new specimens<br />

(PB20717–PB20718). Draw<strong>in</strong>g by Pollyanna von<br />

Knorr<strong>in</strong>g. Scale bar = 1 cm<br />

The cones of L. acutiformis and L. changii<br />

conta<strong>in</strong> more bracts (6–12 <strong>in</strong> <strong>the</strong> former, 6–10<br />

<strong>in</strong> <strong>the</strong> latter), but each bract is smaller and has<br />

a less dist<strong>in</strong>ctly po<strong>in</strong>ted, acute apex. In L.<br />

elongata <strong>the</strong> cones have c. 10 pairs of po<strong>in</strong>ted,<br />

narrowly ovate bracts. Several cones of Liaoxia<br />

robusta have approximately 4 pairs of<br />

cone bracts but <strong>the</strong>re are also larger cones with<br />

up to 10 bract pairs. The cones of L. longibractea<br />

consist of only 1–2 pairs of bracts,<br />

which are very long and conspicuous with <strong>the</strong>ir<br />

extended, narrow apex. They are unique<br />

among ephedroid plants, we have not seen<br />

anyth<strong>in</strong>g similar <strong>in</strong> any liv<strong>in</strong>g or fossil species.<br />

The cones of extant Ephedra are compound,<br />

consist<strong>in</strong>g of cone bracts and seeds<br />

with extra-<strong>in</strong>tegumentary structures of bract<br />

(leaf) orig<strong>in</strong> (Pearson 1929, Crane 1985, Takaso<br />

1985, Pedersen et al. 1989, Yang 2001,<br />

2004). Our <strong>in</strong>terpretation is that <strong>the</strong> cones of<br />

Liaoxia are also compound with <strong>the</strong> same<br />

structural arrangement as those of Ephedra,<br />

but <strong>the</strong> preservation of <strong>the</strong> material prevents<br />

unambiguous conclusions. Ephedra cones are<br />

generally composed of 2–8 pairs of bracts,<br />

sometimes more. This is <strong>in</strong> agreement with <strong>the</strong><br />

condition <strong>in</strong> <strong>the</strong> fossil species, even though <strong>the</strong><br />

large specimen of L. elongata has more bracts<br />

than usually seen <strong>in</strong> extant Ephedra. Many<br />

extant species have obovate to rounded cone<br />

bracts with an obtuse or rounded apex, but<br />

ovate bracts with a po<strong>in</strong>ted apex also occur <strong>in</strong><br />

some species.<br />

Seeds. Seeds are preserved as compressions<br />

or impressions <strong>in</strong> several of <strong>the</strong> fossils, even<br />

though no anatomical details are preserved.<br />

Like extant Ephedra, Liaoxia chenii has seeds<br />

only <strong>in</strong> <strong>the</strong> axil of distal bract. The cone bracts<br />

are delicate and were probably membranous,<br />

not fleshy. They are often fully reflexed, and<br />

several cones seem to lack seeds, <strong>in</strong>dicat<strong>in</strong>g<br />

w<strong>in</strong>d dispersal and preservation at a late stage<br />

<strong>in</strong> <strong>the</strong> reproduction phase. Delicate cone bracts<br />

with two ve<strong>in</strong>s that become reflexed at seed<br />

maturity can for <strong>in</strong>stance be seen <strong>in</strong> <strong>the</strong><br />

African species Ephedra alata.<br />

Contrary to <strong>the</strong> cones of Liaoxia chenii and<br />

extant Ephedra, <strong>the</strong> cones of L. changii, L.<br />

robusta and L. longibractea appear to have a<br />

seed <strong>in</strong> <strong>the</strong> axil of most bracts, also <strong>in</strong> proximal<br />

part of <strong>the</strong> cones. This is <strong>in</strong>terest<strong>in</strong>g as it differs<br />

significantly <strong>from</strong> Ephedra, which has seeds<br />

ma<strong>in</strong>ly <strong>in</strong> a distal position, but is more similar<br />

to Welwitschia where seeds also occur proximally<br />

<strong>in</strong> <strong>the</strong> cone. This is conceivably an<br />

ancestral state present <strong>in</strong> some of <strong>the</strong> <strong>Cretaceous</strong><br />

fossils and reta<strong>in</strong>ed <strong>in</strong> Welwitschia, (but<br />

see also <strong>the</strong> discussion below on <strong>the</strong> dist<strong>in</strong>ction<br />

between ephedroid and welwitschioid fossils).<br />

In Liaoxia chenii and L. changii, <strong>the</strong> seeds<br />

are ovoid to elliptic and small. In Liaoxia<br />

robusta, and L. longibractea <strong>the</strong>y are rounded


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 257<br />

to elliptic and larger, but all <strong>the</strong> fossil seeds are<br />

much smaller than seeds of extant Gnetales.<br />

Seeds of Ephedra are at least 6–7 mm long<br />

whereas <strong>the</strong> fossils are only 1–4 mm. The small<br />

size of <strong>the</strong> fossil seeds is, however, <strong>in</strong> accordance<br />

with o<strong>the</strong>r ephedroid seeds <strong>from</strong> <strong>the</strong><br />

<strong>Early</strong> <strong>Cretaceous</strong> described <strong>from</strong> Portugal and<br />

North America (Ryd<strong>in</strong> et al. 2004, Ryd<strong>in</strong> et al.<br />

2006).<br />

Gender. Most species of Ephedra are dioecious<br />

with male and female reproductive parts<br />

on separate plants. Male cones often comprise<br />

more bracts than female cones of <strong>the</strong> same<br />

species and <strong>the</strong> shape of male and female cone<br />

bracts may differ with<strong>in</strong> a species. All Liaoxia<br />

specimens currently known have only one k<strong>in</strong>d<br />

of cones and we <strong>the</strong>refore assume that <strong>the</strong>se<br />

ephedroid fossils were also dioecious. Liaoxia<br />

chenii, L. changii, L. robusta and L. longibractea<br />

are clearly female plants. Their cone bracts<br />

are reflexed and seeds are present <strong>in</strong> <strong>the</strong> axil of<br />

bracts. In contrast, Liaoxia acutiformis and L.<br />

elongata have bracts that are more erect and<br />

without rema<strong>in</strong>s of seeds or microsporangiophores.<br />

The poor preservation makes <strong>in</strong>terpretation<br />

of reproductive details difficult, but <strong>the</strong><br />

absences of seeds and <strong>the</strong> erect position of <strong>the</strong><br />

cone bracts might suggest that L. acutiformis<br />

and L. elongata represent male plants. Male<br />

organs of extant Ephedra generally detach<br />

easily, shortly after poll<strong>in</strong>ation, which may<br />

expla<strong>in</strong> <strong>the</strong> absence of preserved microsporangia<br />

<strong>in</strong> <strong>the</strong>se putatively male plants.<br />

Because <strong>the</strong> <strong>Early</strong> <strong>Cretaceous</strong> <strong>ephedroids</strong><br />

are <strong>in</strong>terpreted as dioecious, it is possible that<br />

<strong>the</strong> putatively male specimens actually belong<br />

to <strong>the</strong> same species as one or two of <strong>the</strong> female<br />

specimen. To explicitly correlate female and<br />

male plants would require epidermal or o<strong>the</strong>r<br />

cellular details not present <strong>in</strong> this material. It<br />

is, however, <strong>in</strong>terest<strong>in</strong>g to note that Liaoxia<br />

acutiformis is vegetatively closely similar to L.<br />

chenii, but differs <strong>in</strong> <strong>the</strong> number and shape of<br />

<strong>the</strong> cone bracts. Liaoxia acutiformis may be<br />

very closely related to L. chenii, speculatively,<br />

<strong>the</strong> male plant of L. chenii. Similarly, Liaoxia<br />

changii and L. elongata are vegetatively similar,<br />

both lack<strong>in</strong>g leaves, but differ <strong>in</strong> shape of<br />

cones and cone bracts. Both species have been<br />

found <strong>in</strong> <strong>the</strong> Fanzhangzi Section <strong>in</strong> L<strong>in</strong>gyuan<br />

and, aga<strong>in</strong> speculatively, Liaoxia elongata<br />

could be <strong>the</strong> male plant of Liaoxia changii.<br />

O<strong>the</strong>r gnetalean fossils <strong>from</strong> eastern<br />

Asia. Several ephedroid fossils, o<strong>the</strong>r than<br />

those described here, have been reported <strong>from</strong><br />

Ch<strong>in</strong>a and else where (Table 3). Among <strong>the</strong>m<br />

are Ephedrites s<strong>in</strong>ensis and Ephedrites exhibens<br />

(Wu et al. 1986) <strong>from</strong> <strong>the</strong> Jurassic Xiaomeigou<br />

<strong>Formation</strong> of Q<strong>in</strong>ghai. The fossils are fragmentarily<br />

preserved and difficult to compare<br />

with <strong>the</strong> present material, but <strong>the</strong>y seem to<br />

differ <strong>from</strong> Liaoxia species <strong>in</strong> hav<strong>in</strong>g only a<br />

s<strong>in</strong>gle pair of seeds and bracts.<br />

Alloephedra x<strong>in</strong>gxuei (Tao and Yang 2003)<br />

<strong>from</strong> <strong>the</strong> Dalazi <strong>Formation</strong>, Ch<strong>in</strong>a, is an<br />

<strong>Early</strong> <strong>Cretaceous</strong> fossil <strong>in</strong>terpreted as a close<br />

relative of Ephedra. However, <strong>the</strong> nature of<br />

branch<strong>in</strong>g and reproductive structures is not<br />

fully clear <strong>from</strong> descriptions and illustrations<br />

and <strong>the</strong>re are features that are not compatible<br />

with <strong>the</strong> Gnetales (e.g. possibly alternate<br />

branch<strong>in</strong>g).<br />

Ephedra archaeorhytidosperma (Yang et al.<br />

2005), collected <strong>from</strong> <strong>the</strong> Jianshangou Bed that<br />

also conta<strong>in</strong>s Liaoxia chenii and L. robusta, is<br />

clearly ephedroid with striate stems, opposite<br />

branch<strong>in</strong>g, term<strong>in</strong>al female cones consist<strong>in</strong>g of<br />

1–2 seeds with extended micropylar tubes and<br />

bracts or bract scars. Ephedra archaeorhytidosperma<br />

differs <strong>from</strong> most of <strong>the</strong> Liaoxia species<br />

presented here <strong>in</strong> that each cone consists of<br />

only 1–2 seeds and bract pairs, whereas <strong>the</strong><br />

Liaoxia fossils have cones with more bracts.<br />

Liaoxia longibractea has cones with few bracts<br />

but <strong>the</strong> very long and narrowly extended cone<br />

bracts of L. longibractea are very different<br />

<strong>from</strong> those of Ephedra archaeorhytidosperma.<br />

The material of Ephedra archaeorhytidosperma<br />

comprises one associated triangular leaf, which<br />

is poorly preserved and not clearly attached to<br />

<strong>the</strong> specimen. There is no evidence of leaves at<br />

<strong>the</strong> nodes. Thus Ephedra archaeorhytidosperma<br />

may lack leaves, as do some species of Liaoxia.<br />

Sun et al. (2001) described two new species<br />

of ephedroid fossils <strong>from</strong> <strong>the</strong> <strong>Yixian</strong> <strong>Formation</strong><br />

of Liaon<strong>in</strong>g. Branch<strong>in</strong>g <strong>in</strong> Ephedrites


258 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

Table 3. Fossils with aff<strong>in</strong>ity to Ephedra<br />

Reference Location Age Description Comments<br />

Plant with an ephedroid habit,<br />

but is <strong>in</strong>terpreted as hav<strong>in</strong>g<br />

alternate branch<strong>in</strong>g, which is<br />

o<strong>the</strong>rwise unknown <strong>in</strong> <strong>the</strong><br />

Reproductive<br />

shoot<br />

Dalazi <strong>Formation</strong>, Ch<strong>in</strong>a <strong>Early</strong><br />

<strong>Cretaceous</strong><br />

Alloephedra x<strong>in</strong>gxuei<br />

(Tao and Yang 2003)<br />

Gnetales.<br />

Reproductive Ephedroid plant similar to<br />

shoot<br />

Liaoxia, but appears to have<br />

longer or dist<strong>in</strong>ctly po<strong>in</strong>ted<br />

cone bracts.<br />

Reproductive Well-preserved Ephedra-fossil,<br />

shoot<br />

with vegetative and reproductive<br />

parts <strong>in</strong> connection. The large<br />

‘‘mature’’ cone is detached and<br />

could potentially belong to ano<strong>the</strong>r<br />

species.<br />

Coalified seeds Well-preserved Ephedra seeds<br />

with anatomical details and <strong>in</strong><br />

situ pollen.<br />

Coalified seeds Well-preserved Ephedra seeds<br />

with anatomical details and <strong>in</strong><br />

situ pollen.<br />

Coalified seeds Well-preserved ephedroid seeds<br />

with anatomical details and <strong>in</strong><br />

situ pollen.<br />

Reproductive The material belongs to two se-<br />

shoots<br />

parate species, previously described<br />

as Liaoxia chenii and<br />

Eragrosites changii (Cao et al.<br />

1998).<br />

Reproductive Similar to <strong>the</strong> ‘‘potamogeton-like<br />

shoot<br />

spikes’’ <strong>from</strong> Manlej (Krassilov<br />

1982). No leaves or nodes preserved.<br />

Cone (spike) with bracts<br />

at ‘‘nodes’’, separated by<br />

‘‘<strong>in</strong>ternodes’’.<br />

Manlaj, Mongolia <strong>Early</strong><br />

<strong>Cretaceous</strong><br />

‘‘Cyperacites sp.’’ plate 20,<br />

figs. 240–243<br />

(Krassilov 1982)<br />

<strong>Yixian</strong> <strong>Formation</strong>, Ch<strong>in</strong>a <strong>Early</strong><br />

<strong>Cretaceous</strong><br />

Ephedra archaeorhytidosperma<br />

(Yang et al. 2005)<br />

<strong>Early</strong><br />

<strong>Cretaceous</strong><br />

Potomac Group, North<br />

America<br />

Ephedra drewriensis<br />

(Ryd<strong>in</strong> et al. 2006)<br />

Buarcos, Portugal <strong>Early</strong><br />

<strong>Cretaceous</strong><br />

Ephedra portugallica<br />

(Ryd<strong>in</strong> et al. 2006)<br />

Buarcos, Portugal <strong>Early</strong><br />

<strong>Cretaceous</strong><br />

Ephedrispermum lucitanicum<br />

(Ryd<strong>in</strong> et al. 2006)<br />

<strong>Yixian</strong> <strong>Formation</strong>, Ch<strong>in</strong>a <strong>Early</strong><br />

<strong>Cretaceous</strong><br />

Ephedrites chenii (Guo and Wu 2000).<br />

(Synonym of Liaoxia chenii<br />

Cao et al., 1998)<br />

Ephedrites? elegans (Sun et al. 2001) <strong>Yixian</strong> <strong>Formation</strong>, Ch<strong>in</strong>a <strong>Early</strong><br />

<strong>Cretaceous</strong>


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 259<br />

Plants with aff<strong>in</strong>ity to Ephedra,<br />

no reproductive details pre-<br />

Reproductive<br />

shoot fragments<br />

Xiaomeigou <strong>Formation</strong>, Ch<strong>in</strong>a <strong>Early</strong><br />

Jurassic<br />

Ephedrites s<strong>in</strong>ensis and E. exhibens<br />

(Wu et al. 1986)<br />

served.<br />

Plant with aff<strong>in</strong>ity to Ephedra,<br />

<strong>in</strong>itially described as an angiosperm.<br />

Leaves absent.<br />

Initially thought to be an angiosperm,<br />

later described as Phyllo<strong>the</strong>ca<br />

wonthaggiensis<br />

(Sphenopsida) (Dr<strong>in</strong>nan and<br />

Chambers 1986). Suggested to<br />

be ephedroid by Krassilov et al<br />

(1998).<br />

Very similar to extant Ephedra,<br />

but no anatomical details or <strong>in</strong><br />

situ pollen. Initially described as<br />

an angiosperm.<br />

Cones (spikes) with bracts at<br />

‘‘nodes’’, separated by ‘‘<strong>in</strong>ternodes’’,<br />

similar to Ephedrites?<br />

elegans.<br />

The material <strong>in</strong>dicates that<br />

ephedroid plants were present <strong>in</strong><br />

north-western Gondwana.<br />

Reproductive<br />

shoot<br />

Eragrosites changii (Cao et al. 1998) <strong>Yixian</strong> <strong>Formation</strong>, Ch<strong>in</strong>a <strong>Early</strong><br />

<strong>Cretaceous</strong><br />

Vegetative<br />

shoot fragments<br />

Koonwarra Bed, Australia <strong>Early</strong><br />

<strong>Cretaceous</strong><br />

Leongathia elegans<br />

(Krassilov et al. 1998)<br />

Reproductive<br />

shoot<br />

Liaoxia chenii (Cao et al. 1998) <strong>Yixian</strong> <strong>Formation</strong>, Ch<strong>in</strong>a <strong>Early</strong><br />

<strong>Cretaceous</strong><br />

Reproductive<br />

‘‘spike’’<br />

Manlaj, Mongolia <strong>Early</strong><br />

<strong>Cretaceous</strong><br />

‘‘Potamogeton-like spike’’<br />

(Krassilov 1982)<br />

Reproductive<br />

shoots<br />

<strong>Early</strong><br />

<strong>Cretaceous</strong><br />

Crato <strong>Formation</strong>,<br />

South America<br />

Undescribed fossils (see e.g.<br />

Mohr et al. 2004)


260 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

guozhongiana Sun et Zheng (Sun et al. 2001)<br />

appears to be strictly dichotomous and, as a<br />

consequence of <strong>the</strong> absence of overtopp<strong>in</strong>g, all<br />

branches are of about equal length. Such a<br />

branch<strong>in</strong>g pattern is unknown for <strong>the</strong> Gnetales<br />

and o<strong>the</strong>r seed plants, and <strong>the</strong> aff<strong>in</strong>ity of<br />

Ephedrites guozhongiana to Gnetales uncerta<strong>in</strong>.<br />

Ephedrites? elegans Sun et Zheng (Sun et<br />

al. 2001) was based on a reproductive branch<br />

<strong>from</strong> <strong>the</strong> <strong>Yixian</strong> <strong>Formation</strong>. Sun et al. (2001)<br />

<strong>in</strong>cluded <strong>in</strong> this species a fossil previously<br />

described as ‘‘Potamogeton-like spike’’ <strong>from</strong><br />

<strong>the</strong> <strong>Early</strong> <strong>Cretaceous</strong> of Mongolia (Krassilov<br />

1982). The Ch<strong>in</strong>ese fossil has two lateral and<br />

one term<strong>in</strong>al reproductive axes subtended by a<br />

pair of l<strong>in</strong>ear leaves. Reproductive axes comprise<br />

c. 5 pairs of broadly ovate leaves or<br />

bracts with a po<strong>in</strong>ted apex and 2–3 dist<strong>in</strong>ct<br />

ve<strong>in</strong>s. They are similar to <strong>the</strong> cones of Liaoxia,<br />

but differ <strong>in</strong> hav<strong>in</strong>g dist<strong>in</strong>ct <strong>in</strong>ternodes between<br />

<strong>the</strong> bract pairs. The ‘‘Potamogeton-like spike’’<br />

<strong>from</strong> Mongolia consists of a s<strong>in</strong>gle spike with<br />

five nodes separated by prom<strong>in</strong>ent <strong>in</strong>ternodes.<br />

At each node <strong>the</strong>re are 2–3 ‘‘nutlets’’ apparently<br />

subtended by bracts with a po<strong>in</strong>ted apex.<br />

Ephedrites? elegans and <strong>the</strong> ‘‘Potamogeton-like<br />

spike’’ <strong>from</strong> Mongolia show some resemblance<br />

to Ephedra and welwitschioid fossils <strong>in</strong> <strong>the</strong><br />

striate stems and l<strong>in</strong>ear leaves present at least<br />

<strong>in</strong> <strong>the</strong> Ch<strong>in</strong>ese fossil. However, spikes with<br />

dist<strong>in</strong>ct and clearly def<strong>in</strong>able <strong>in</strong>ternodes and<br />

reproductive structures at nodes are characteristic<br />

for extant Gnetum, and are not seen <strong>in</strong><br />

Ephedra and Welwitschia.<br />

Yabe and Endo (1935) described fossils<br />

<strong>from</strong> L<strong>in</strong>gyuan as possible members of <strong>the</strong><br />

extant angiosperm genus Potamogeton. Later<br />

<strong>the</strong>se fossils were transferred to Ranunculus<br />

(Miki 1964), but Guo and Wu (2000) suggest<br />

that <strong>the</strong>y are related to Ephedra, and Sun et al.<br />

(2001) <strong>in</strong>cluded <strong>the</strong>m <strong>in</strong> Ephedrites chenii<br />

(Liaoxia chenii). The published figures (Yabe<br />

and Endo 1935, Figs. 1–3) <strong>in</strong>dicate a vegetative<br />

morphology similar to that of Liaoxia, but<br />

show differences <strong>in</strong> reproductive structures.<br />

Unfortunately, however, <strong>the</strong>re are no details of<br />

<strong>the</strong> fossils that could be used for comparative<br />

studies.<br />

A possible member of Liaoxia is ‘‘Cyperacites<br />

sp.’’ <strong>from</strong> Mongolia (Krassilov 1982),<br />

characterised by hav<strong>in</strong>g ‘‘a term<strong>in</strong>al cyme of<br />

three spike-like structures’’ and ‘‘at <strong>the</strong> base of<br />

<strong>the</strong> cyme three hair-like appendages’’. Like<br />

Liaoxia chenii it was orig<strong>in</strong>ally <strong>in</strong>terpreted as<br />

member of <strong>the</strong> angiosperm family Cyperaceae,<br />

but it is most likely a gnetalean plant. The<br />

‘‘cymes’’ are similar to cones of Liaoxia, and<br />

apparently composed of acum<strong>in</strong>ate bracts. The<br />

‘‘hair-like’’ structures at <strong>the</strong> base of <strong>the</strong> cyme<br />

are probably <strong>the</strong> ve<strong>in</strong>s of two opposite leaves,<br />

one preserved ve<strong>in</strong> of <strong>the</strong> right leaf, and two<br />

preserved ve<strong>in</strong>s of <strong>the</strong> left leaf.<br />

Phylogenetic implications. The vegetative<br />

characters of <strong>the</strong> fossils presented here (opposite<br />

and decussate phyllotaxis, l<strong>in</strong>ear leaves<br />

positioned at dist<strong>in</strong>ct nodes separated by long<br />

<strong>in</strong>ternodes, parallel venation), <strong>in</strong> comb<strong>in</strong>ation<br />

with <strong>the</strong> reproductive characters (seeds <strong>in</strong> <strong>the</strong><br />

axil of cone bracts <strong>in</strong> decussate arrangement)<br />

exclude a relationship to any o<strong>the</strong>r group than<br />

<strong>the</strong> Gnetales. With<strong>in</strong> <strong>the</strong> Gnetales, Liaoxia are<br />

similar to Ephedra <strong>in</strong> gross morphology, but<br />

several of <strong>the</strong>se characters (elongated leaves<br />

with parallel venation, cones consist<strong>in</strong>g of<br />

oppositely arranged cone bracts with axillary<br />

seeds) are not unique to Ephedra, but occur<br />

also <strong>in</strong> Welwitschia. The presence of seeds<br />

<strong>in</strong>side most cone bracts <strong>in</strong> <strong>the</strong> cones of Liaoxia<br />

robusta and Liaoxia changii, would even<br />

suggest a closer aff<strong>in</strong>ity to Welwitschia.<br />

Consider<strong>in</strong>g only extant species, it may<br />

seem easy to dist<strong>in</strong>guish between Ephedra and<br />

Welwitschia, but among <strong>Cretaceous</strong> plants,<br />

this dist<strong>in</strong>ction is not always straightforward.<br />

For example, Gurvanella first described <strong>from</strong><br />

<strong>the</strong> <strong>Early</strong> <strong>Cretaceous</strong> of Mongolia (Krassilov<br />

1982) and later also reported <strong>from</strong> <strong>the</strong> <strong>Yixian</strong><br />

<strong>Formation</strong> <strong>in</strong> Liaon<strong>in</strong>g (as Chaoyangia Duan,<br />

1998), has an ‘‘ephedroid’’ vegetative habit<br />

with opposite branch<strong>in</strong>g, striate stems and<br />

l<strong>in</strong>ear leaves with parallel venation. However,<br />

<strong>the</strong> seeds are surrounded by a dist<strong>in</strong>ct w<strong>in</strong>g, <strong>in</strong><br />

gross morphology similar to <strong>the</strong> seed w<strong>in</strong>g of<br />

Welwitschia. The venation of <strong>the</strong> Gurvanellaw<strong>in</strong>g<br />

has dichotomies and anastomoses, which<br />

is unknown <strong>in</strong> Ephedra, but present <strong>in</strong> leaves


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 261<br />

and cone bracts of Welwitschia (Rod<strong>in</strong> 1953,<br />

1958).<br />

Yang et al. (2005) argued that Chaoyangia<br />

shares most of its characters with Ephedra, and<br />

Zhou et al. (2003) ma<strong>in</strong>ta<strong>in</strong>ed that <strong>the</strong> comb<strong>in</strong>ation<br />

of ephedroid and welwitschioid characters<br />

<strong>in</strong> Gurvanella (Chaoyangia) supports a<br />

closer relationship between Ephedra and Welwitschia<br />

than currently suggested based on<br />

molecular data (see for example studies by<br />

Magallo´n and Sanderson 2002, Ryd<strong>in</strong> et al.<br />

2002, Burleigh and Ma<strong>the</strong>ws 2004). However,<br />

<strong>the</strong> similarities between Ephedra and Welwitschia<br />

are non-<strong>in</strong>formative plesiomorphic features,<br />

and <strong>the</strong> same is probably true for <strong>the</strong><br />

similarities between Ephedra and Gurvanella<br />

(Chaoyangia). Like Drewria potomacensis<br />

Crane et Upchurch (Crane and Upchurch<br />

1987), Welwitschiostrobus murili (Dilcher et<br />

al. 2005) and several undescribed Crato plants<br />

(Barbara Mohr personal communication),<br />

Gurvanella (Chaoyangia) possesses uniquely<br />

derived characters of Welwitschia, but has also<br />

reta<strong>in</strong>ed primitive vegetative habits with opposite<br />

branch<strong>in</strong>g and phyllotaxis, swollen nodes<br />

and l<strong>in</strong>ear leaves with parallel venation, closely<br />

resembl<strong>in</strong>g that of Ephedra. These characters<br />

are general features of <strong>the</strong> Gnetales; several of<br />

<strong>the</strong>m are <strong>in</strong> fact also present <strong>in</strong> Gnetum. It has<br />

for example been shown that <strong>the</strong> ‘‘reticulate’’<br />

venation pattern <strong>in</strong> Gnetum actually develops<br />

<strong>from</strong> parallel venation, and is a result of<br />

successive dichotomies <strong>in</strong> 5–10 parallel ve<strong>in</strong>s<br />

located <strong>in</strong> <strong>the</strong> centre of <strong>the</strong> leaf (Rod<strong>in</strong> 1967).<br />

Apart <strong>from</strong> molecular data, <strong>the</strong>re are<br />

several morphological synapomorphies that<br />

support <strong>the</strong> Gnetum-Welwitschia clade (second<br />

order venation, paracytic stomata, astrosclerids,<br />

embryo feeder etc, see e.g. Crane 1985,<br />

Doyle 1996), and <strong>the</strong> sister relationship between<br />

Gnetum and Welwitschia is thus well<br />

corroborated. The fossils of Liaoxia do not<br />

possess any of <strong>the</strong> features characteriz<strong>in</strong>g this<br />

clade and we <strong>the</strong>refore exclude a close relationship<br />

to Welwitschia (and <strong>the</strong> Gnetum-<br />

Welwitschia crown group as a whole).<br />

We hypo<strong>the</strong>size that <strong>the</strong> species of Liaoxia<br />

are most closely related to Ephedra among<br />

extant plants, perhaps even nested with<strong>in</strong><br />

Ephedra, but unambiguous support for this<br />

suggestion is not available. Synapomorphies<br />

for Ephedra ma<strong>in</strong>ly constitute structural details<br />

of <strong>the</strong> seed envelope and pollen gra<strong>in</strong>s, not<br />

preserved <strong>in</strong> this type of material. Therefore, it<br />

cannot be fully ruled out that <strong>the</strong> Liaoxia<br />

fossils could represent ephedran or gnetalean<br />

stem l<strong>in</strong>eage(s). Resolv<strong>in</strong>g higher level relationships<br />

among species of Liaoxia, Ephedra<br />

and ephedroid fossils <strong>in</strong> <strong>the</strong> literature is a<br />

challeng<strong>in</strong>g task for <strong>the</strong> future.<br />

Conclusions<br />

The Ephedra-like fossils discussed <strong>in</strong> this paper<br />

have been assigned to <strong>the</strong> genus Liaoxia,<br />

previously established by Cao et al. (1998).<br />

New material of six species, of which four are<br />

new, is presented. The features of <strong>the</strong> fossils<br />

exclude a relationship to any o<strong>the</strong>r group than<br />

<strong>the</strong> Gnetales. With<strong>in</strong> <strong>the</strong> Gnetales, a relationship<br />

to <strong>the</strong> Gnetum-Welwitschia clade can be<br />

excluded, however, <strong>the</strong> preservation stage of<br />

<strong>the</strong> fossils prevents an unambiguous association<br />

with extant Ephedra. Because <strong>the</strong> name<br />

Ephedrites, previously used for ephedroid<br />

fossils, is <strong>the</strong> basionym of an angiosperm and<br />

unsuitable for gnetalean fossils, we have used<br />

<strong>the</strong> genus name Liaoxia and suggest that<br />

Liaoxia is used <strong>in</strong> <strong>the</strong> future for Ephedra-like<br />

megafossils that cannot be unambiguously<br />

assigned to <strong>the</strong> extant genus.<br />

The species of Liaoxia are similar <strong>in</strong> overall<br />

gross morphology, but differ <strong>from</strong> each o<strong>the</strong>r<br />

and <strong>from</strong> previously described ephedroid fossils<br />

<strong>in</strong> morphological details such as <strong>the</strong> absence or<br />

presence of leaves, shape of <strong>the</strong> cones and <strong>in</strong><br />

shape and position of <strong>the</strong> cone bracts.<br />

Several studies have <strong>in</strong>dicated that <strong>the</strong><br />

diversity of <strong>the</strong> Gnetales was larger <strong>in</strong><br />

<strong>the</strong> <strong>Early</strong> <strong>Cretaceous</strong> than it is today and <strong>the</strong><br />

fossils presented here fur<strong>the</strong>r document this.<br />

The crown group Gnetales is represented <strong>in</strong> <strong>the</strong><br />

<strong>Early</strong> <strong>Cretaceous</strong> by Cratonia (Ryd<strong>in</strong> et al.<br />

2003), Welwitschiostrobus (Dilcher et al. 2005),<br />

coalified Ephedra seeds (Ryd<strong>in</strong> et al. 2004,<br />

Ryd<strong>in</strong> et al. 2006) and probably also by


262 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

Drewria (Crane and Upchurch 1987), Gurvanella<br />

(Chaoyangia) (Krassilov 1982, Duan<br />

1998) and undescribed fossils <strong>from</strong> Brazil<br />

(Barbara Mohr, unpubl. data) and Ch<strong>in</strong>a<br />

(Ryd<strong>in</strong> et al., unpubl. data).<br />

Whe<strong>the</strong>r <strong>the</strong> ephedroid fossils presented<br />

here belong to crown group Gnetales or to<br />

ext<strong>in</strong>ct stem groups, is yet to be discovered. We<br />

consider <strong>the</strong>m members of <strong>the</strong> ephedran l<strong>in</strong>eage,<br />

but due to restricted <strong>in</strong>formation <strong>in</strong> <strong>the</strong> fossils<br />

and poorly understood morphological diversity<br />

of extant Ephedra, it is not possible to assign<br />

<strong>the</strong>m to any particular subgroup of Ephedra or<br />

to clearly exclude <strong>the</strong>m <strong>from</strong> <strong>the</strong> extant genus.<br />

The authors thank Susana Magallo´n and an<br />

anonymous reviewer for valuable comments on <strong>the</strong><br />

text, Chen Peiji for <strong>in</strong>formation on <strong>the</strong> geology of<br />

<strong>the</strong> <strong>Yixian</strong> <strong>Formation</strong>, Arne Anderberg for nomenclatural<br />

comments and suggestions and Yvonne<br />

Arremo for assistance with photography. The<br />

project was supported by grants <strong>from</strong> <strong>the</strong> Swedish<br />

Research Council (EMF), The Asian-Swedish<br />

Research L<strong>in</strong>k Programme (EMF and Zhou Zhonghe),<br />

NSFC (SQW) and <strong>from</strong> <strong>the</strong> Royal Swedish<br />

Academy of Sciences (CR).<br />

References<br />

Arber E. A. N., Park<strong>in</strong> J. (1908) Studies on <strong>the</strong><br />

evolution of angiosperms: <strong>the</strong> relationship of <strong>the</strong><br />

angiosperms to <strong>the</strong> Gnetales. Ann. Bot. 22: 489–<br />

515.<br />

Ash S. R. (1972) Late Triassic plants <strong>from</strong> <strong>the</strong><br />

Ch<strong>in</strong>le <strong>Formation</strong> <strong>in</strong> north-eastern Arizona.<br />

Palaeontology 15: 598–618.<br />

Burleigh J. G., Ma<strong>the</strong>ws S. (2004) Phylogenetic<br />

signal <strong>in</strong> nucleotide data <strong>from</strong> seed plants:<br />

Implications for resolv<strong>in</strong>g <strong>the</strong> seed plant tree of<br />

life. Amer. J. Bot. 91: 1599–1613.<br />

Cao Z., Wu S., Zhang P., Li J. (1998) Discovery<br />

of fossil monocotyledons <strong>from</strong> <strong>Yixian</strong> <strong>Formation</strong>,<br />

western Liaon<strong>in</strong>g. Ch<strong>in</strong>. Sci. Bull. 43:<br />

230–233.<br />

Chang M., Chen P., Wang Y., Wang Y., Mioa D.<br />

(eds.) (2003) The Jehol Biota. Shanghai Scientific<br />

& Technical Publishers, Shanghai, pp. 1–208.<br />

Chen P., Dong Z., Zhen S. (1998) An exceptionally<br />

well-preserved <strong>the</strong>ropod d<strong>in</strong>osaur <strong>from</strong> <strong>the</strong> <strong>Yixian</strong><br />

<strong>Formation</strong> of Ch<strong>in</strong>a. Nature 391: 147–152.<br />

Chen P., Wang Q., Zhang H., Cao M., Li W., Wu<br />

S., Shen Y. (2005) Jianshangou Bed of <strong>the</strong><br />

<strong>Yixian</strong> <strong>Formation</strong> <strong>in</strong> West Liaon<strong>in</strong>g, Ch<strong>in</strong>a.<br />

Science <strong>in</strong> Ch<strong>in</strong>a Ser. D Earth Sciences 48: 298–<br />

312.<br />

Conwentz H. (1886) Die Flora des Bernste<strong>in</strong>s, 2.<br />

Die Angiospermen des Bernste<strong>in</strong>s. Engelmann,<br />

Leipzig.<br />

Crane P. R. (1985) Phylogenetic relationships <strong>in</strong><br />

seed plants. Cladistics 1: 329–348.<br />

Crane P. R. (1996) The fossil history of <strong>the</strong><br />

Gnetales. Int. J. Pl. Sci. 157 (6 Suppl.): S50–S57.<br />

Crane P. R., Lidgard S. (1989) Angiosperm diversification<br />

and palaeolatitud<strong>in</strong>al gradients <strong>in</strong> <strong>Cretaceous</strong><br />

floristic diversity. Science 246: 675–678.<br />

Crane P. R., Upchurch G. R. (1987) Drewria<br />

potomacensis gen. et sp. nov., an <strong>Early</strong> <strong>Cretaceous</strong><br />

member of Gnetales <strong>from</strong> <strong>the</strong> Potomac<br />

Group of Virg<strong>in</strong>ia. Amer. J. Bot. 74: 1722–1736.<br />

Dilcher D. L., Bernardes-de-Oliveira M. E., Pons<br />

D., Lott T. A. (2005) Welwitschiaceae <strong>from</strong> <strong>the</strong><br />

Lower <strong>Cretaceous</strong> of Nor<strong>the</strong>astern Brazil. Amer.<br />

J. Bot. 92: 1294–1310.<br />

Doyle J. A. (1996) Seed plant phylogeny and <strong>the</strong><br />

relationships of Gnetales. Int. J. Pl. Sci. 157 (6<br />

Suppl.): S3–S39.<br />

Dr<strong>in</strong>nan A. N., Chambers T. C. (1986) Flora of <strong>the</strong><br />

Lower <strong>Cretaceous</strong> Koonwarra Fossil Bed (Korumburra<br />

Group), south Gippsland, Victoria.<br />

Memoir of <strong>the</strong> Association of Australasian<br />

Palaeontologists 3: 1–77.<br />

Duan S. (1998) The oldest angiosperm - a tricarpous<br />

female reproductive fossil <strong>from</strong> western<br />

Liaon<strong>in</strong>g Prov<strong>in</strong>ce, NE Ch<strong>in</strong>a. Science <strong>in</strong> Ch<strong>in</strong>a<br />

41: 14–20.<br />

Freitag H., Maier-Stolte M. (1994) Characterization<br />

of Areas, Ephedraceae. In: Browicz K. (ed.)<br />

Characterization of Areas, Ephedraceae Polish<br />

Acad Sci, Institute of Dendrology, Kornik, pp.<br />

5–16.<br />

Friis E. M., Doyle J. A., Endress P. K., Leng Q.<br />

(2003) Archaefructus - angiosperm precursor or<br />

specialized early angiosperm? Trends Pl. Sci. 8:<br />

369–373.<br />

Friis E. M., Pedersen K. R. (1996) Eucommii<strong>the</strong>ca<br />

hirsuta, a new pollen organ with Eucommiidites<br />

pollen <strong>from</strong> <strong>the</strong> <strong>Early</strong> <strong>Cretaceous</strong> of Portugal.<br />

Grana 35: 104–112.<br />

Gifford E. M., Foster A. S. (1989) Morphology and<br />

evolution of vascular plants. Freeman and Co,<br />

New York.


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 263<br />

Gradste<strong>in</strong> F. M., Ogg J. G., Smith A. G. (eds.)<br />

(2004) A Geologic Time Scale. Cambridge University<br />

Press.<br />

Guo S., Wu X. (2000) Ephedrites <strong>from</strong> latest<br />

Jurassic <strong>Yixian</strong> <strong>Formation</strong> <strong>in</strong> western Liaon<strong>in</strong>g,<br />

Nor<strong>the</strong>ast Ch<strong>in</strong>a. Acta Palaeontol. S<strong>in</strong>. 39: 81–<br />

91.<br />

Go¨ppert H. R. (1853) U¨ ber die Bernste<strong>in</strong>-Flora.<br />

Buchdruckerei der Ko¨niglichen Akademie der<br />

Wissenschaften, Berl<strong>in</strong>.<br />

Go¨ppert H. R., Berendt G. C. (1845) Der Bernste<strong>in</strong><br />

und die <strong>in</strong> ihm bef<strong>in</strong>dlichen Pflanzenreste der<br />

Vorwelt. Nicolai, Berl<strong>in</strong>.<br />

Go¨ppert H. R., Menge A. (1883) Die Flora des<br />

Bernste<strong>in</strong>s und ihre Beziehungen zur Flora der<br />

Tertia¨rformation und der Gegenwart. Engelmann,<br />

Danzig.<br />

He H. Y., Wang X. L., Zhou Z. H., J<strong>in</strong> F., Wang<br />

F., Yang L. K., D<strong>in</strong>g X., Boven A., Zhu R. X.<br />

(2006) Ar-40/Ar-39 dat<strong>in</strong>g of Lujiatun Bed<br />

(Jehol Group) <strong>in</strong> Liaon<strong>in</strong>g, nor<strong>the</strong>astern Ch<strong>in</strong>a.<br />

Geophysical Research Letters 33: Art. No.<br />

L04303.<br />

Heer O. (1876) Beitra¨ge zur Jura-Flora Ostsibiriens<br />

und des Amurlandes. Acad. Imp. Sci. St.-Pétersbourg<br />

Mém., VII. Se´rie 22: 1–122.<br />

Krassilov V. A. (1982) <strong>Early</strong> <strong>Cretaceous</strong> flora of<br />

Mongolia. Palaeontographica B 181: 1–43.<br />

Krassilov V. A. (1986) New floral structures <strong>from</strong><br />

<strong>the</strong> Lower <strong>Cretaceous</strong> of Lake Baikal area. Rev.<br />

Palaeobot. Palynol. 47: 9–16.<br />

Krassilov V. A., Bugdaeva E. V. (1982) Achene-like<br />

fossils <strong>from</strong> <strong>the</strong> Lower <strong>Cretaceous</strong> of <strong>the</strong> Lake<br />

Baikal area. Rev. Palaeobot. Palynol. 36: 279–<br />

295.<br />

Krassilov V. A., Bugdaeva E. V. (1988) Gnetalean<br />

plants <strong>from</strong> <strong>the</strong> Jurassic of Ust-Balej, East<br />

Siberia. Rev. Palaeobot. Palynol. 53: 359–374.<br />

Krassilov V. A., Dilcher D. L., Douglas J. G.<br />

(1998) New ephedroid plant <strong>from</strong> <strong>the</strong> Lower<br />

<strong>Cretaceous</strong> Koonwarra Fossil Bed, Victoria,<br />

Australia. Alcher<strong>in</strong>ga 22: 123–133.<br />

Kubitzki K. (1990) Ephedraceae. In: Kubitzki K.<br />

(ed.) Ephedraceae Spr<strong>in</strong>ger, Berl<strong>in</strong>, pp. 379–382.<br />

Kvacˇ ek J., Pacltova´ B. (2001) Bayeri<strong>the</strong>ca hughesii<br />

gen. et sp. nov., a new Eucommiidites-bear<strong>in</strong>g<br />

pollen organ <strong>from</strong> <strong>the</strong> Cenomanian of Bohemia.<br />

<strong>Cretaceous</strong> Res. 22: 695–704.<br />

Leng Q., Friis E. M. (2003) S<strong>in</strong>ocarpus decussatus<br />

gen. et sp. nov, a new angiosperm with syncar-<br />

pous fruits <strong>from</strong> <strong>the</strong> <strong>Yixian</strong> <strong>Formation</strong> of<br />

Nor<strong>the</strong>ast Ch<strong>in</strong>a. Pl. Syst. Evol. 241: 77–88.<br />

Leng Q., Wu S., Friis E. M. (2003) Angiosperms.<br />

In: Chang M., Chen P., Wang Y., Wang Y.,<br />

Miao D., (eds.) Angiosperms. Shanghai Scientific<br />

& Technical Publishers, Shanghai, pp. 178–<br />

185.<br />

Leng Q., Yang H. (2003) Pyrite framboids associated<br />

with <strong>the</strong> Mesozoic Jehol Biota <strong>in</strong> nor<strong>the</strong>astern<br />

Ch<strong>in</strong>a: Implications for microenvironment<br />

dur<strong>in</strong>g early fossilization. Progress Nat. Sci. 13:<br />

206–212.<br />

Li W. (2003) Spores and pollen. In: Chang M.,<br />

Chen P., Wang Y., Wang Y., (eds.) Spores and<br />

pollen, Shanghai Scientific and Technological<br />

Publishers, Shanghai, pp. 186–187.<br />

Li W., Liu Z. (1999) Sporomorph assemblage <strong>from</strong><br />

<strong>the</strong> basal <strong>Yixian</strong> <strong>Formation</strong> <strong>in</strong> western Liaon<strong>in</strong>g<br />

and its geological age. In: Chen P. (ed.) Sporomorph<br />

assemblage <strong>from</strong> <strong>the</strong> basal <strong>Yixian</strong><br />

<strong>Formation</strong> <strong>in</strong> western Liaon<strong>in</strong>g and its geological<br />

age Anhui Science and Technology Publish<strong>in</strong>g<br />

House, Hefei, Ch<strong>in</strong>a, pp. 68–79.<br />

Magallo´n S., Sanderson M. J. (2002) Relationships<br />

among seed plants <strong>in</strong>ferred <strong>from</strong> highly conserved<br />

genes: sort<strong>in</strong>g conflict<strong>in</strong>g phylogenetic<br />

signals among ancient l<strong>in</strong>eages. Amer. J. Bot. 89:<br />

1991–2006.<br />

Miki S. (1964) Mesozoic flora of Lycoptera beds <strong>in</strong><br />

South Manchuria. Bullet<strong>in</strong> of Mukogawa<br />

Women’s University 12: 13–22.<br />

Mohr B. A. R., Bernardes-de-Oliveira M. E.,<br />

Barreto A. M. F., Castro-Fernandes M. C.<br />

(2004) Gnetophyte preservation and diversity<br />

<strong>in</strong> <strong>the</strong> early <strong>Cretaceous</strong> Crato <strong>Formation</strong><br />

(Brazil). In: VII International Organisation of<br />

Palaeobotany Conference, Bariloche, Argent<strong>in</strong>a.:<br />

81.<br />

Osborn J. M., Taylor T. N., Lima M. R. D. (1993)<br />

The ultrastructure of fossil ephedroid pollen<br />

with gnetalean aff<strong>in</strong>ities <strong>from</strong> <strong>the</strong> Lower <strong>Cretaceous</strong><br />

of Brazil. Rev. Palaeobot. Palynol. 77:<br />

171–184.<br />

Pearson H. H. W. (1929) Gnetales. Cambridge<br />

University Press, Cambridge.<br />

Pedersen K. R., Crane P. R., Friis E. M. (1989)<br />

Pollen organs and seeds with Eucommiidites<br />

pollen. Grana 28: 279–294.<br />

Rod<strong>in</strong> R. J. (1953) Seedl<strong>in</strong>g morphology of Welwitschia.<br />

Amer. J. Bot. 40: 371–378.


264 C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a<br />

Rod<strong>in</strong> R. J. (1958) Leaf anatomy of Welwitschia. I.<br />

<strong>Early</strong> development of <strong>the</strong> leaf. Amer. J. Bot. 45:<br />

90–95.<br />

Rod<strong>in</strong> R. J. (1967) Ontogeny of foliage leaves <strong>in</strong><br />

Gnetum. Phytomorphology 17: 118–128.<br />

Ryd<strong>in</strong> C., Ka¨llersjo¨ M., Friis E. M. (2002) Seed<br />

plant relationships and <strong>the</strong> systematic position of<br />

Gnetales based on nuclear and chloroplast DNA:<br />

conflict<strong>in</strong>g data, root<strong>in</strong>g problems and <strong>the</strong> monophyly<br />

of conifers. Int. J. Pl. Sci. 163: 197–214.<br />

Ryd<strong>in</strong> C., Mohr B., Friis E. M. (2003) Cratonia<br />

cotyledon gen. et sp. nov.: a unique <strong>Cretaceous</strong><br />

seedl<strong>in</strong>g related to Welwitschia. Biology Letters.<br />

The Royal Society of London 270: 29–32.<br />

Ryd<strong>in</strong> C., Pedersen K. R., Crane P. R., Friis E. M.<br />

(2006) Former diversity of Ephedra (Gnetales):<br />

Evidence <strong>from</strong> <strong>Early</strong> <strong>Cretaceous</strong> seeds <strong>from</strong><br />

Portugal and North America. Ann. Bot. 98:<br />

123–140.<br />

Ryd<strong>in</strong> C., Pedersen K. R., Friis E. M. (2004) On<br />

<strong>the</strong> evolutionary history of Ephedra: <strong>Cretaceous</strong><br />

fossils and extant molecules. Proc. Natl. Acad.<br />

Sci., USA 101: 16571–16576.<br />

Saporta G. D. (1891) Pale´ontologie Francaise ou<br />

description des fossiles de la France. Tome IV.<br />

Libraire de l’acade´mie de medic<strong>in</strong>e, Paris.<br />

Sun G., Dilcher D. L., Zheng S., Zhou Z. (1998) In<br />

search of <strong>the</strong> first flower: a Jurassic angiosperm,<br />

Archaefructus, <strong>from</strong> Nor<strong>the</strong>ast Ch<strong>in</strong>a. Science<br />

282: 1692–1695.<br />

Sun G., Ji Q., Dilcher D. L., Zheng S., Nixon K.<br />

C., Wang X. (2002) Archaefructaceae, a new<br />

basal angiosperm family. Science 296: 899–904.<br />

Sun G., Zheng S., Dilcher D. L., Wang Y., Mei S.<br />

(2001) <strong>Early</strong> angiosperms and <strong>the</strong>ir associated<br />

plants <strong>from</strong> western Liaon<strong>in</strong>g, Ch<strong>in</strong>a. Shanghai<br />

Scientific and Technological Education Publish<strong>in</strong>g<br />

House, Shanghai.<br />

Swisher C. C., Wang X., Zhou Z., Wang Y., J<strong>in</strong> F.,<br />

J. Z., Xu X., Zhang F., Wang Y. (2002) Fur<strong>the</strong>r<br />

support for a <strong>Cretaceous</strong> age for <strong>the</strong> fea<strong>the</strong>redd<strong>in</strong>osaur<br />

beds of Liaon<strong>in</strong>g, Ch<strong>in</strong>a: New 40Ar/<br />

39Ar dat<strong>in</strong>g of <strong>the</strong> <strong>Yixian</strong> and Tuchengzi<br />

formations. Ch<strong>in</strong>. Sci. Bull. 47: 135–138.<br />

Swisher C. C., Wang Y.-q., Wang X.-l., Xu X., Wang<br />

Y. (1999) <strong>Cretaceous</strong> age for <strong>the</strong> fea<strong>the</strong>red d<strong>in</strong>osaurs<br />

of Liaon<strong>in</strong>g, Ch<strong>in</strong>a. Nature 400: 58–61.<br />

Takaso T. (1985) A developmental study of <strong>the</strong><br />

<strong>in</strong>tegument <strong>in</strong> gymnosperms, 3. Ephedra distachya<br />

L. and E. equiset<strong>in</strong>a Bge. Acta Bot. Neerl.<br />

34: 33–48.<br />

Tao J., Yang Y. (2003) Alloephedra x<strong>in</strong>gxuei gen. et<br />

sp. nov., an <strong>Early</strong> <strong>Cretaceous</strong> Member of Ephedraceae<br />

<strong>from</strong> Dalazi <strong>Formation</strong> <strong>in</strong> Yanji Bas<strong>in</strong>,<br />

Jil<strong>in</strong> Prov<strong>in</strong>ce of Ch<strong>in</strong>a. Acta Palaeontol. S<strong>in</strong>. 42:<br />

208–215.<br />

Traverse A. (1988) Palaeopalynology. Unw<strong>in</strong><br />

Hyman, Boston.<br />

Unger F. (1851) Die fossile Flora von Sotzka.<br />

Denkschr. Acad. Wiss. Wien (Math.-Nat.<br />

Classe) II: 131–197.<br />

Wang H., Yang S., Li S. (1983) Mesozoic and<br />

Cenozoic bas<strong>in</strong> formation <strong>in</strong> east Ch<strong>in</strong>a and<br />

adjacent regions and development of <strong>the</strong> cont<strong>in</strong>ental<br />

marg<strong>in</strong>. Acta Geol. S<strong>in</strong>. 57: 213–223.<br />

Wang S., Hu H., Li P., Wang Y. (2001) Fur<strong>the</strong>r<br />

discussion on <strong>the</strong> geologic age of Sihetunvertebrate<br />

assemblage <strong>in</strong> western Liaon<strong>in</strong>g, Ch<strong>in</strong>a:<br />

evidence <strong>from</strong> Ar-Ar dat<strong>in</strong>g. Acta Petrol. S<strong>in</strong>.<br />

17: 663–668. (In Ch<strong>in</strong>ese).<br />

Wang X., Wang Y., Zhang F., Zhang J., Zhou Z.,<br />

J<strong>in</strong> F., Hu Y., Gu G., Zhang H. (2000)<br />

Vertebrate biostratigraphy of <strong>the</strong> Lower <strong>Cretaceous</strong><br />

<strong>Yixian</strong> <strong>Formation</strong> <strong>in</strong> L<strong>in</strong>gyuan, western<br />

Liaon<strong>in</strong>g and its neighbor<strong>in</strong>g sou<strong>the</strong>rn Nei<br />

Mongol (Inner Mongolia), Ch<strong>in</strong>a. Vertebrata<br />

PalAsiatica 38: 81–99 (In Ch<strong>in</strong>ese with English<br />

Abstract).<br />

Wang X., Zhou Z. (2003) Mesozoic Pompeii. In:<br />

Chang M., Chen P., Wang Y., Wang Y. (eds.)<br />

Mesozoic Pompeii Shanghai Scientific & Technical<br />

Publishers, Shanghai, pp. 19–36.<br />

Wang Z. (2004) A new Permian gnetalean cone as<br />

fossil evidence for support<strong>in</strong>g current molecular<br />

phylogeny. Ann. Bot. 94: 281–288.<br />

Wilson L. R. (1962) Permian Plant Microfossils<br />

<strong>from</strong> <strong>the</strong> Flowerpot <strong>Formation</strong>, Oklahoma.<br />

Oklahoma Geolog. Surv. Bull. 49: 5–50.<br />

Wu S. (1999) A prelim<strong>in</strong>ary study of <strong>the</strong> Jehol flora<br />

<strong>from</strong> western Liaon<strong>in</strong>g. Palaeoworld 11: 7–37 (<strong>in</strong><br />

Ch<strong>in</strong>ese with English summary).<br />

Wu S. (2003) Land Plants. In: Chang M., Chen P.,<br />

Wang Y., Wang Y., Miao D. (eds.) Land Plants<br />

Shanghai Scientific & Technical Publishers,<br />

Shanghai, pp. 167–177.<br />

Wu S., Duan S., Mohr B., Pedersen K. R., Friis<br />

E. M. (2000) <strong>Early</strong> <strong>Cretaceous</strong> diversity of<br />

Gnetales: macro- and mesofossil evidence <strong>from</strong><br />

Ch<strong>in</strong>a, Brazil, and Portugal. The Sixth Conference<br />

of International Organization of Palaeobotany,<br />

Q<strong>in</strong>huangdao, Ch<strong>in</strong>a Abstract<br />

volume: 37–38.


C. Ryd<strong>in</strong> et al.: <strong>Cretaceous</strong> <strong>ephedroids</strong> <strong>from</strong> Ch<strong>in</strong>a 265<br />

Wu X., He Y., Mei S. (1986) Discovery of<br />

Ephedrites <strong>from</strong> <strong>the</strong> Lower Jurassic Xiaomeigou<br />

<strong>Formation</strong>, Q<strong>in</strong>ghai. Acta Palaeobot. Palynol.<br />

S<strong>in</strong>. 8: 13–21.<br />

Yabe H., Endo S. (1935) Potamogeton rema<strong>in</strong>s<br />

<strong>from</strong> <strong>the</strong> Lower <strong>Cretaceous</strong>? Lycoptera bed of<br />

Jehol. Proc. Imp. Acad. Tokyo 11: 274–276.<br />

Yang Y. (2001) Ontogeny and Metamorphic Patterns<br />

of Female Reproductive Organs of Ephedra<br />

s<strong>in</strong>ica Stapf (Ephedraceae). Acta Bot. S<strong>in</strong>. 43:<br />

1011–1017.<br />

Yang Y. (2004) Ontogeny of triovulate cones of<br />

Ephedra <strong>in</strong>termedia and orig<strong>in</strong> of <strong>the</strong> outer<br />

envelope of ovules of Ephedraceae. Amer. J.<br />

Bot. 91: 361–368.<br />

Yang Y., Geng B., Dilcher D. L., Chen Z., Lott T.<br />

A. (2005) Morphology and aff<strong>in</strong>ities of an <strong>Early</strong><br />

<strong>Cretaceous</strong> Ephedra (Ephedraceae) <strong>from</strong> Ch<strong>in</strong>a.<br />

Amer. J. Bot. 92: 231–241.<br />

Zhou Z., Barrett P. M., Hilton J. (2003) An<br />

exceptionally preserved Lower <strong>Cretaceous</strong> ecosystem.<br />

Nature 421: 807–814.<br />

Zhou Z., Zhang F. (2002) A long-tailed, seedeat<strong>in</strong>g<br />

bird <strong>from</strong> <strong>the</strong> <strong>Early</strong> <strong>Cretaceous</strong> of Ch<strong>in</strong>a.<br />

Nature 418: 405–409.<br />

Addresses of <strong>the</strong> authors: Catar<strong>in</strong>a Ryd<strong>in</strong>,<br />

(e-mail: catar<strong>in</strong>a.ryd<strong>in</strong>@nrm.se) and E. M. Friis,<br />

Swedish Museum of Natural History, Department<br />

of Palaeobotany, Box 50007, 10405 Stockholm,<br />

Sweden. S. Q. Wu, Nanj<strong>in</strong>g Institute of Geology<br />

and Palaeontology, Ch<strong>in</strong>ese Academy of Sciences,<br />

Nanj<strong>in</strong>g, 210008, Ch<strong>in</strong>a.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!