27.06.2013 Views

Synthesis of polymers containing donor±acceptor Schiff base in side ...

Synthesis of polymers containing donor±acceptor Schiff base in side ...

Synthesis of polymers containing donor±acceptor Schiff base in side ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Synthesis</strong> <strong>of</strong> <strong>polymers</strong> <strong>conta<strong>in</strong><strong>in</strong>g</strong> <strong>donor±acceptor</strong> Schi€ <strong>base</strong><br />

<strong>in</strong> <strong>side</strong> cha<strong>in</strong> for nonl<strong>in</strong>ear optics<br />

Abstract<br />

M. Bagheri, A. Entezami *<br />

Laboratory <strong>of</strong> Polymer Chemistry, Faculty <strong>of</strong> Chemistry, Tabriz University, Tabriz, Iran<br />

Received 12 September 2000; received <strong>in</strong> revised form 19 March 2001; accepted 21 May 2001<br />

The Schi€ <strong>base</strong>s 4-x-hydroxyalkyloxy)-N-5-nitro-2-thienylmethylene)anil<strong>in</strong>e with 2, 6 and 8 methylenic units <strong>in</strong><br />

their alkyl group <strong>in</strong> which a nitrothienyl group as acceptor and an oxyphenyl group as donor were synthesized by<br />

condensation <strong>of</strong> x-hydroxyalkyloxy)anil<strong>in</strong>es with 5-nitro-2-thiophenecarboxaldehyde. The methacrylate monomers<br />

4-x-methacryloyloxyalkyloxy)-N-5-nitro-2-thienylmethylene)anil<strong>in</strong>e with alkylene groups <strong>of</strong> di€erent lengths were<br />

synthesized by two di€erent routes and polymerized us<strong>in</strong>g a free radical <strong>in</strong>itiator to produce low molecular weight<br />

<strong>polymers</strong> useful for nonl<strong>in</strong>ear optics. All the obta<strong>in</strong>ed compounds were characterized by conventional spectroscopic<br />

methods. First-order hyperpolarizability b) <strong>of</strong> 4-2-hydroxyethyloxy)-N-5-nitro-2-thienylmethylene)anil<strong>in</strong>e typically<br />

was calculated us<strong>in</strong>g semiempirical method and the nonl<strong>in</strong>ear optic properties <strong>of</strong> the same compound was studied by<br />

second harmonic generation. Ó 2001Published by Elsevier Science Ltd.<br />

Keywords: Nonl<strong>in</strong>ear optic; Schi€ <strong>base</strong>; Donor±acceptor; Side cha<strong>in</strong> polymer; Second harmonic generation; Semiempirical method<br />

1. Introduction<br />

The synthesis and characterization <strong>of</strong> <strong>polymers</strong> <strong>conta<strong>in</strong><strong>in</strong>g</strong><br />

nonl<strong>in</strong>ear optically active structures cont<strong>in</strong>ue to<br />

be topic <strong>of</strong> current <strong>in</strong>terest [1]. The synthesis <strong>of</strong> polymer<br />

with <strong>side</strong> cha<strong>in</strong> groups that are capable <strong>of</strong> show<strong>in</strong>g<br />

NLO response is a very active ®eld [2]. The <strong>side</strong> cha<strong>in</strong><br />

group is usually a <strong>donor±acceptor</strong> substituted p-conjugated<br />

compound D-p-A molecules) such as a benzene,<br />

biphenyl, napthyl, stilbene, azobenzene and diphenyl<br />

butadiene speci®cally designed for second-order NLO<br />

[3]. Study on the e€ect <strong>of</strong> the p-conjugated nature to<br />

optimize the NLO characteristics has led to development<br />

<strong>of</strong> new molecular systems.<br />

It is found that <strong>in</strong>troduc<strong>in</strong>g a heterocyclic r<strong>in</strong>g could<br />

lead to enhanced molecular hyperpolarizability. For<br />

example, replac<strong>in</strong>g the benzenoid stilbene compounds<br />

with correspond<strong>in</strong>g heteroaromatic r<strong>in</strong>gs such as thio-<br />

* Correspond<strong>in</strong>g author. Fax: +98-411-334-0191.<br />

E-mail address: aaentezami@yahoo.com A. Entezami).<br />

European Polymer Journal 38 2002) 317±326<br />

0014-3057/01/$ - see front matter Ó 2001Published by Elsevier Science Ltd.<br />

PII: S0014 -305701)0013 5 -5<br />

www.elsevier.com/locate/europolj<br />

phene showed that a thiophene moiety results <strong>in</strong> more<br />

electron delocalization <strong>in</strong> <strong>donor±acceptor</strong> compounds<br />

than that <strong>of</strong> a benzenoid moiety [4].<br />

The liquid-crystall<strong>in</strong>e <strong>polymers</strong> <strong>conta<strong>in</strong><strong>in</strong>g</strong> electron<br />

donor and acceptor groups have great potentials <strong>in</strong><br />

various ®elds, such as <strong>in</strong>formation storage and nonl<strong>in</strong>ear<br />

optics [5±9]. The <strong>side</strong> cha<strong>in</strong> group is usually a donor±<br />

acceptor substituted aromatic compound such as a<br />

benzene, stilbene or azodye derivative [10]. <strong>Synthesis</strong> <strong>of</strong><br />

<strong>side</strong> cha<strong>in</strong> liquid crystall<strong>in</strong>e polyacrylate and co<strong>polymers</strong><br />

<strong>conta<strong>in</strong><strong>in</strong>g</strong> alkylene spaced nitro and cyano phenyl,<br />

carbazolyl, qu<strong>in</strong>ol<strong>in</strong>e and naphthyl mesogenic unit were<br />

reported [8,11,12].<br />

The goal <strong>of</strong> the present work was to synthesize a<br />

series <strong>of</strong> <strong>donor±acceptor</strong> Schi€ <strong>base</strong> and related <strong>polymers</strong><br />

<strong>in</strong> the <strong>base</strong> <strong>of</strong> thiophene r<strong>in</strong>g. In this paper,<br />

we report the synthesis and characterization <strong>of</strong> the<br />

Schi€ <strong>base</strong>s, methacrylate monomers and low molecular<br />

weight <strong>polymers</strong> <strong>conta<strong>in</strong><strong>in</strong>g</strong> alkylene spaced nitrothienyl<br />

group. Polymerization <strong>of</strong> the monomers was carried out<br />

by a radical <strong>in</strong>itiator. These compounds conta<strong>in</strong> both a<br />

nitro thienyl group acceptor) and an oxyphenyl group


318 M. Bagheri, A. Entezami / European Polymer Journal 38 2002) 317±326<br />

donor). The ®rst order hyperpolarizability b) calculation<br />

and second harmonic generation SHG) <strong>of</strong> Schi€<br />

<strong>base</strong> 4-2-hydroxyethyloxy)-N-5-nitro-2-thienylmethylene)anil<strong>in</strong>e<br />

<strong>in</strong> polymethylmethacrylate PMMA) matrices<br />

typically was studied by conventional apparatus.<br />

2. Experimental section<br />

2.1. Materials<br />

The purify<strong>in</strong>g or dry<strong>in</strong>g <strong>of</strong> compounds and solvents<br />

have been performed accord<strong>in</strong>g to the common procedure.<br />

4-Nitrophenol, 2-chloroethanol, 1,8-octanediol,<br />

Scheme 1. Synthetic route <strong>of</strong> PnTh n ˆ 2, 6 and 8).<br />

1,3-dibromopropane, stannous chloride and KHCO3<br />

were purchased from Merck. The thiophene-2-carboxaldehyde;<br />

1,6-hexandiol and sodium sul®de nonahydrate<br />

were purchased from Fluka. 1-Chloro-6-hexanol and<br />

1-chloro-8-octanol [13] were prepared accord<strong>in</strong>g to a<br />

literature procedure. The monomers and <strong>polymers</strong> were<br />

synthesized accord<strong>in</strong>g to the route outl<strong>in</strong>ed <strong>in</strong> Schemes 1<br />

and 2, and further details are given below. The chemical<br />

structures <strong>of</strong> the monomers are shown <strong>in</strong> Fig. 1.<br />

2.1.1. 5-Nitro-2-thiophene carboxaldehyde<br />

This compound was prepared as given <strong>in</strong> the literature<br />

[14]. Thus to HNO3 19.2 g, d ˆ 1:51) and 140 ml<br />

AcOH was added slowly 2-thiophenecarboxaldehyde


M. Bagheri, A. Entezami / European Polymer Journal 38 2002) 317±326 319<br />

Fig. 1. Structure <strong>of</strong> <strong>donor±acceptor</strong> monomers.<br />

26.9 g, 0.24 mol) <strong>in</strong> 85 ml Ac2O below 30 °C, the<br />

mixture stirred 0.5 h at 50±60 °C, quenched <strong>in</strong> ice 1h)<br />

and the diacetylated product washed with water. The<br />

crude material 31g) was treated with 140 ml H2O, 140<br />

ml EtOH, and 14 ml concentrated H2SO4, boiled for 0.5<br />

h, treated with charcoal, ®ltered hot and cooled. Then<br />

the ®ltrate was extracted with Et2O. The yellow needle<br />

crystals were recrystallized from 50% EtOH to give<br />

11.31 g 5-nitro-2-thiophene carboxaldehyde. Yield: 30%;<br />

mp ˆ 76 °C lit [17] mp ˆ 77±77.5 °C); IR KBr): 1670<br />

C@O), 1510 N@O), 1340 N@O) cm 1 .<br />

Scheme 2. Synthetic route <strong>of</strong> P3Th.<br />

2.1.2. 4-x-Hydroxyalkyloxy)anil<strong>in</strong>e [12]<br />

The synthesis <strong>of</strong> 4-8-hydroxyoctyloxy)anil<strong>in</strong>e is described<br />

as a representative case. 8-Chlorohexanol 39.5<br />

g, 0.24 mol) was added to a solution <strong>conta<strong>in</strong><strong>in</strong>g</strong> 4nitrophenol<br />

27.8 g, 0.2 mol) and KOH 16.8 g, 0.3 mol)<br />

<strong>in</strong> 150 ml <strong>of</strong> ethanol and water mixture 1:1). Then<br />

the mixture was re¯uxed for 48 h to give 17.5 g<br />

4-8-hydroxyoctyloxy)nitrobenzene. The result<strong>in</strong>g 4-8hydroxyoctyloxy)nitrobenzene<br />

17.37 g, 0.065 mol) was<br />

reduced with sodium sul®de nonahydrate 31.2 g, 0.13<br />

mol) <strong>in</strong> 150 ml 50% ethanol at re¯ux<strong>in</strong>g temperature for<br />

24 h. The crude product was recrystallized from toluene<br />

to give 12.26 g 4-8-hydroxyoctyloxy)anil<strong>in</strong>e. Yield:<br />

79.5%; mp ˆ 77 °C; FTIR KBr): 3362 O±H), 3323<br />

N±H), 3185 N±H) cm 1 ; 1 HNMR CDCl3): d 1.28±<br />

1.59 b, 13H, HOCH2CH2)6CH2), 1.76 m, 2H, NH2),<br />

3.66 m, 2H, CH2 ortho to OH), 3.94m, 2H, CH2OPh),<br />

6.66 d, 2H aromatic, ortho to O), 6.75 d, 2H aromatic,<br />

ortho to NH2); FTIR KBr): 3431 OH), 1619 C@N)<br />

cm 1 ; UV±VIS CH2Cl2): 421nm e ˆ 13,500).<br />

For other 4-x-hydroxyalkyloxy)anil<strong>in</strong>es, n ˆ 2:<br />

yield: 30%; mp ˆ 67 °C lit [15] mp ˆ 63:8 °C); FTIR<br />

KBr): 3450 OH), 3250, 3200 NH), n ˆ 6: yield: 65%;


320 M. Bagheri, A. Entezami / European Polymer Journal 38 2002) 317±326<br />

mp ˆ 75 °C lit [15] mp ˆ 75:7 °C); FTIR KBr): 3354<br />

OH), 3277, 3200 NH).<br />

2.1.3. 4-x-Hydroxyalkyloxy)-N-5-nitro-2-thienylmethylene)anil<strong>in</strong>e<br />

HnTh)<br />

5-Nitro-2-thiophene carboxaldehyde 4.7 g, 0.03 mol)<br />

was dissolved <strong>in</strong> 30 ml ethanol. After an equimolar<br />

amount <strong>of</strong> 4-x-hydroxyalkyloxy)anil<strong>in</strong>e was added to<br />

the ethanol solution, the mixture was heated at 70 °C for<br />

1h. The product was puri®ed by recrystallization from<br />

dichloromethane±petroleum ether 1:3, v/v) to provide<br />

HnTh.<br />

H2Th: Yield: 75% <strong>of</strong> brownish orange crystals;<br />

mp ˆ 125:4 °C; 1 HNMR CDCl3): d 3.88 m, 2H, CH2,<br />

ortho to OH), 4.2 t, 2H, CH2OPh), 6.95 d, 2H aromatic,<br />

ortho to O), 7.29 d, 2H aromatic, ortho to N),<br />

7.39 d, 1H aromatic, meta to NO2), 7.88 d, 1H aromatic,<br />

ortho to NO2), 8.53 s, 1H, N@CH); FTIR<br />

KBr): 3350 OH), 1614 C@N) cm 1 ; UV/VIS CH2<br />

Cl2): 413 nm e ˆ 10,600).<br />

H6Th: Yield: 90% <strong>of</strong> orange crystals; mp ˆ 99:6 °C;<br />

1 HNMR CDCl3): d 1.28 t, 1H, OH), 1.52 m, 4H,<br />

HOCH2)2CH2)2CH2)2), 1.64 m, 2H, HOCH2CH2),<br />

1.84 m, 2H, CH2CH2OPh), 3.69 t, 2H, CH2 ortho to<br />

OH), 4.01t, 2H, CH2OPh), 6.95 d, 2H aromatic, ortho<br />

to O), 7.31m, 3H aromatic), 7.91d, 1H aromatic,<br />

ortho to NO2), 8.57 s, 1H, N@CH); FTIR KBr): 3350<br />

OH), 1615 C@N) cm 1 ; UV±VIS CH2Cl2): 420.8 nm<br />

e ˆ 12,200).<br />

H8Th: Yield: 87% <strong>of</strong> yellowish brown crystals;<br />

mp ˆ 99:8 °C; 1 HNMR CDCl3): d 1.35±1.60 broad,<br />

9H, HOCH2)2CH2)4CH2), 1.78±1.82 m, 4H, HOCH2-<br />

CH2,CH2CH2OPh), 3.67 m, 2H, CH2 ortho to OH),<br />

4.01m, 2H, CH2OPh), 6.95 d, 2H aromatic, ortho to<br />

O), 7.31m, 3H aromatic), 7.91d, 1H aromatic, ortho<br />

to NO2), 8.57 s, 1H, N@CH); FTIR KBr): 3431OH),<br />

1619 C@N) cm 1 ; UV±VIS CH2Cl2): 421nm e ˆ<br />

13,500).<br />

2.1.4. 4-x-Methacryloyloxyalkyloxy)-N-5-nitro-2-thienylmethylene)anil<strong>in</strong>e<br />

MnTh)<br />

The synthesis <strong>of</strong> 4-6-methacryloyloxyhexyloxy)-N-<br />

5-nitro-2-thienylmethylene)anil<strong>in</strong>e is described as a<br />

representative case. H6Th 5 g, 0.017 mol) solution <strong>in</strong> 30<br />

ml dichloromethane was added to a solution <strong>conta<strong>in</strong><strong>in</strong>g</strong><br />

methacrylic acid 1.47 g, 0.017 mol), dicyclohexylcarbodiimide<br />

DCC), 3.53 g, 0.017 mol) and dimethylam<strong>in</strong>opyrid<strong>in</strong>e<br />

DMAP) 1.04 g, 0.0086 mol) <strong>in</strong> 50 ml<br />

dichloromethane at 0 °C. The reaction mixture was<br />

stirred for 20 h at room temperature. After work-up<br />

procedure, the product was puri®ed by recrystallization<br />

three times from ethanol to provide MnTh.<br />

M2Th: Yield: 76% <strong>of</strong> reddish orange crystals; mp ˆ<br />

148 °C; 1 HNMR CDCl3): d 1.89 s, 3H, CH3), 4.18 t,<br />

J ˆ 6:3, 2H, CH2OPh), 4.44 t, J ˆ 6:6, 2H, OCOCH2),<br />

5.53 s, 1H, HC@C), 6.08 s, 1H, HC@C), 6.9 d,<br />

J ˆ 8:6, 2H aromatic, ortho to O), 7.2 d, J ˆ 8:6, 2H<br />

aromatic, ortho to N), 7.26 d, J ˆ 7, 1H aromatic, meta<br />

to NO2), 7.82 d, J ˆ 7, 1H aromatic, ortho to NO2), 8.8<br />

s, 1H, N@CH). Anal. calcd. for C17H16N2O5S: C,<br />

56.65%; H, 4.48%; N 7.78%. Found: C, 56.04%; H,<br />

4.37%; N, 7.62%.<br />

M6Th: Yield: 80% <strong>of</strong> dark orange crystals;<br />

mp ˆ 97:8 °C; 1 HNMR CDCl3): d 1.52 m, 4H,<br />

OCOCH2)2CH2)2CH2)2), 1.74 m, 2H, OCOCH2CH2),<br />

1.82 m, 2H, CH2CH2OPh), 1.96 s, 3H, CH3), 4.0 t,<br />

J ˆ 6:3, 2H, CH2OPh), 4.19 t, J ˆ 6:6, 2H, OCOCH2),<br />

5.56 s, 1H, HC@C), 6.11 s, 1H, HC@C), 6.94 d,<br />

J ˆ 8:7, 2H aromatic, ortho to O), 7.31d, J ˆ 8:7, 2H<br />

aromatic, ortho to N), 7.34 d, J ˆ 7, 1H aromatic, meta<br />

to NO2), 7.92 d, J ˆ 7, 1H aromatic, ortho to NO2),<br />

8.57 s, 1H, N@CH). Anal. calcd. for C21H24N2O5S: C,<br />

60.56%; H, 5.81%; N, 6.73%. Found: C, 59.99%; H,<br />

5.76%; N, 6.76%.<br />

M8Th: Yield: 82% for brownish red crystals;<br />

mp ˆ 96:5 °C; 1 HNMR CDCl3): d 1.41±1.55 m, 8H,<br />

OCOCH2)2CH2)4CH2)2OPh), 1.70 m, 2H, OC-<br />

OCH2CH2), 1.82 m, 2H, CH2CH2OPh), 1.97 s, 3H,<br />

CH3), 4.00 m, J ˆ 6:3, 2H, CH2OPh), 4.16 t, J ˆ 6:6,<br />

2H, OCOCH2), 5.56 s, 1H, H2C@C), 6.12 s, 1H,<br />

H2C@C), 6.95 d, J ˆ 8:6, 2H aromatic, ortho to O),<br />

7.30 d, J ˆ 8:6, 2H aromatic, ortho to N), 7.34 d,<br />

J ˆ 7, 1H aromatic, meta to NO2), 7.92 d, J ˆ 7, 1H<br />

aromatic, ortho to NO2), 8.57 s, 1H, N@CH). Anal.<br />

calcd. for C23H28N2O5S: C, 62.14%; H, 6.55%; N,<br />

6.31%. Found: C, 61.57%; H, 6.71%; N, 6.38%. FTIR<br />

KBr) for MnTh: 1719 C@O), 1618 C@N) cm 1 .<br />

2.1.5. 4-3-Bromopropyloxy)nitrobenzene<br />

This compound was prepared us<strong>in</strong>g a literature<br />

procedure [15]. Thus, 4-nitrophenol 4.5 g, 32.4 mmol),<br />

1,3-dibromopropane 65.4 g, 324 mmol) and potassium<br />

carbonate 33.5 g, 242 mmol) were re¯uxed with stirr<strong>in</strong>g<br />

<strong>in</strong> dry acetone 250 ml) overnight. The reaction mixture<br />

was ®ltered hot. The residue was washed with acetone,<br />

and the solvent removed under reduced pressure. Light<br />

petroleum 40±60 °C) was added to the extract and the<br />

result<strong>in</strong>g white precipitate collected. The crude product<br />

was recrystallized twice from ethanol with hot ®lteration<br />

to ensure the complete removal <strong>of</strong> any dimeric <strong>side</strong><br />

products. Yield: 3.79 g) 90%; mp ˆ 80 °C; FTIR KBr):<br />

1595 C@C aromatic), 1505, 1330 N@O), 1250 C±O),<br />

1170 C±O) cm 1 .<br />

2.1.6. 4-3-Methacryloyloxypropyloxy)nitrobenzene<br />

This compound was prepared us<strong>in</strong>g a procedure described<br />

by Imrie [16]. Methacrylic acid 1.32 g, 15.5<br />

mmol) was stirred with potassium hydrogen carbonate<br />

15.2 g, 15.2 mmol) for 5 m<strong>in</strong> at room temperature<br />

to form the potassium methacrylate salt. This salt was


M. Bagheri, A. Entezami / European Polymer Journal 38 2002) 317±326 321<br />

added to 4-3-bromopropyloxy)nitrobenzene 3.69 g, 14<br />

mmol) and hydroqu<strong>in</strong>one 0.024 g, 0.22 mmol) <strong>in</strong> N,Ndimethylformamide<br />

100 ml) and the reaction mixture<br />

was re¯uxed with stirr<strong>in</strong>g at 100 °C overnight. On<br />

cool<strong>in</strong>g, the mixture was poured <strong>in</strong>to the water 300<br />

ml), the precipitate collected by ®ltration and dissolved<br />

<strong>in</strong> dichloromethane. The organic solution was washed<br />

with 5% aqueous NaOH and the solvent removed. The<br />

crude product was recrystallized twice from ethanol to<br />

produce 3 g white powder. Yield: 81%; mp ˆ 78:9 °C;<br />

IR KBr): 1720 C@O), 1590 C@C aromatic), 1500<br />

N@O), 1330 N@O), 1250 C±O), 1170 C±O) cm 1 ;<br />

1 HNMRCDCl3): d 1.96 s, 3H, CH3), 2.24 m, 2H,<br />

CH2CH2CH2), 4.20 t, 2H, CH2OPh), 4.38 t, 2H, OC-<br />

OCH2), 5.60 s, 1H, H2C@C), 6.13 s, 1H, H2C@C), 6.96<br />

d, 2H aromatic, ortho to O), 6.99 d, 2H aromatic,<br />

ortho to NO2), 8.2 s, 1H, N@CH).<br />

2.1.7. 4-3-Methacryloyloxypropyloxy)anil<strong>in</strong>e<br />

This compound was prepared us<strong>in</strong>g a procedure described<br />

by Bellamy and Ou [17]. Thus a mixture <strong>of</strong> 4-3methacryloyloxypropyloxy)nitrobenzene<br />

2.65 g, 0.01<br />

mol), SnCl2 2H2O 11.28 g, 0.05 mol) and hydroqu<strong>in</strong>one<br />

0.015 g, 0.14 mmol) <strong>in</strong> 20 ml <strong>of</strong> absolute ethanol<br />

was heated at 70 °C under nitrogen. After 30 m<strong>in</strong> the<br />

solution was allowed to cool down and then poured <strong>in</strong>to<br />

ice. The pH was made slightly basic pH 7±8) by addition<br />

<strong>of</strong> 5% aqueous sodiumbicarbonate before be<strong>in</strong>g<br />

extracted with ethyl acetate. The organic phase was<br />

thoroughly washed with br<strong>in</strong>e, treated with charcoal and<br />

dried over sodium sulfate. After evaporation <strong>of</strong> the<br />

solvent, the cured product was further puri®ed by a<br />

silica gel chromatography column elut<strong>in</strong>g with 50% ethyl<br />

acetate <strong>in</strong> petroleum ether to give 1.53 g product as<br />

a clear yellow oil. Yield: 65%; IR KBr): 3420, 3350<br />

N±H), 1712 C@O), 1625, 1500 C@C aromatic), 1250<br />

C±O), 1150 C±O) cm 1 ; 1 HNMR CDCl3): d 1.65<br />

m, 2H, NH2), 1.97 s, 3H, CH3), 2.24 m, 2H,<br />

CH2CH2CH2), 4.17 t, 2H, CH2OPh), 4.39 t, 2H, OC-<br />

OCH2), 5.59 s, 1H, HC@C), 6.14 s, 1H, HC@C), 7.01<br />

d, 2H aromatic, ortho to NH2), 7.89 d, 2H aromatic,<br />

ortho to O).<br />

2.1.8. 4-3-Methacryloyloxypropyloxy)-N-5-nitro-2-thienylmethylene)anil<strong>in</strong>e<br />

M3Th)<br />

5-Nitro-2-thiophene carboxaldehyde 4.7 g, 0.03 mol)<br />

was dissolved <strong>in</strong> 30 ml ethanol. After an equimolar<br />

amount <strong>of</strong> 4-3-methacryloyloxypropyloxy)anil<strong>in</strong>e was<br />

added to the ethanol solution, the mixture was heated at<br />

70 °C for 1h. The product was puri®ed by recrystallization<br />

from dichloromethane±petroleum ether 1:3, v/v).<br />

Yield: 96%; mp ˆ 119 °C; FTIR KBr): 1720 C@O),<br />

1618 C@N) cm 1 ; 1 HNMR CDCl3): d 1.96 s, 3H,<br />

CH3), 2.21m, 2H, CH2CH2CH2), 4.11 t, J ˆ 6:3,<br />

2H, CH2OPh), 4.38 J ˆ 6:6, t, 2H, OCOCH2), 5.59<br />

s, 1H, HC@C), 6.13 s, 1H, HC@C), 6.96 d, J ˆ 8:6,<br />

2H aromatic, ortho to O), 7.31d, J ˆ 8:6, 2H aromatic,<br />

ortho to N), 7.34 d, J ˆ 7, 1H aromatic, meta to NO2),<br />

7.92 d, J ˆ 7, 1H aromatic, ortho to NO2), 8.57 s, 1H,<br />

N@CH). Anal. calcd.: C, 57.74%; H, 4.85%; N, 7.49%.<br />

Found: C, 57.49%; H, 4.88%; N, 7.31%.<br />

2.1.9. Polymerization<br />

Polymerization <strong>of</strong> MnTh was carried out <strong>in</strong> dry<br />

DMF solution with azobisisobutyronitrile) AIBN; 3<br />

mol%) as an <strong>in</strong>itiator at 70 °C for 20 h under vacuum.<br />

The result<strong>in</strong>g polymer was puri®ed by reprecipitation<br />

us<strong>in</strong>g a methanol. This was repeated until the polymer<br />

conta<strong>in</strong>ed no trace <strong>of</strong> monomer.<br />

2.2. Methods<br />

Spectroscopic characterization utilized the follow<strong>in</strong>g<br />

<strong>in</strong>strumentation: Melt<strong>in</strong>g po<strong>in</strong>ts were recorded with an<br />

electrothermal apparatus. Number-average molecular<br />

weights <strong>of</strong> the result<strong>in</strong>g <strong>polymers</strong> were determ<strong>in</strong>ed with a<br />

maxima 820 gel permeation chromatography GPC)<br />

analysis <strong>in</strong>strument run time: 50 m<strong>in</strong>, column temperature:<br />

50 °C). IR and FT-IR spectra were recorded on a<br />

Mattson sirius 100 and Shimadzu Model FT-IR-8101 M<br />

spectrometer, respectively. 1 HNMR spectra were taken<br />

on a FT-NMR 300 and 400 MHz) Brucker versus,<br />

TMS <strong>in</strong> CDCl3. Elemental analyses were performed by<br />

Heareus CHN-O-RAPID analyzer. UV±VIS spectra<br />

were recorded on a Shimadzu UV-265FW spectrometer<br />

<strong>in</strong> dichloromethane solvent.<br />

2.2.1. Film preparation<br />

Th<strong>in</strong> ®lm <strong>of</strong> host polymer PMMA) doped with 3±5%<br />

Schi€ <strong>base</strong> H2Th) or dopant by weight was made by dip<br />

coat<strong>in</strong>g onto <strong>in</strong>dium±t<strong>in</strong> oxide ITO) coated glass slides<br />

from a mixture <strong>in</strong> dichloromethane solution. This ®lm<br />

was employed for SHG measurements.<br />

2.2.2. Corona pol<strong>in</strong>g<br />

The ®lm was poled at 82 °C for 1h us<strong>in</strong>g a coronadischarge<br />

setup to orient the NLO chromophore. The<br />

pol<strong>in</strong>g voltage was around 6 kV with a tip-to-plane<br />

distance <strong>of</strong> about 1.2 cm. The ®lm thickness <strong>of</strong> 3±4 lm<br />

was measured by a microscope.<br />

2.2.3. Second harmonic generation measurements<br />

The Maker Fr<strong>in</strong>ge method [18] was employed<br />

to measure the SHG <strong>in</strong>tensity <strong>of</strong> poled ®lms. The apparatus<br />

employed for SHG measurements, schematically<br />

shown <strong>in</strong> Scheme 3, was a Q-switched Nd:YAG<br />

laser L ˆ 1:064 lm) with a pulse with <strong>of</strong> 10 ns was used<br />

as the fundamental beam. The generated second harmonic<br />

SH) wave ®ltered from the fundamental and<br />

detection was accomplished by FEM-100 photomultiplier.


322 M. Bagheri, A. Entezami / European Polymer Journal 38 2002) 317±326<br />

3. Results and discussion<br />

3.1. Monomer synthesis<br />

The Schi€ <strong>base</strong>s 4-x-hydroxyalkyloxy)-N-5-nitro-2thienylmethylene)anil<strong>in</strong>e<br />

HnThs, n ˆ 2, 6, and 8) were<br />

prepared from 4-N-hydroxyalkyloxy)anil<strong>in</strong>es and 5nitro-2-thiophene<br />

carboxaldehyde <strong>in</strong> high yield.<br />

The <strong>donor±acceptor</strong> monomers MnThs, n ˆ 2, 6<br />

and 8) were successfully synthesized conta<strong>in</strong> both an<br />

oxyphenyl group electron donor) and a nitro thienyl<br />

group electron acceptor) with<strong>in</strong> the same molecules, by<br />

condensation <strong>of</strong> a x-hydroxyalkyloxy)anil<strong>in</strong>es with a<br />

nitrothiophene carboxaldehyde derivative, followed by<br />

esteri®cation <strong>of</strong> the term<strong>in</strong>al hydroxyl group with<br />

methacrylic acid Scheme 1). For the ®nal puri®cation <strong>of</strong><br />

the monomers, the recrystallization from the ethanol<br />

solution were used because the Schi€'s <strong>base</strong> decomposed<br />

where it was puri®ed by silica gel column chromatography<br />

[12]. DCC was used to keep preparation <strong>of</strong><br />

monomer milder than those with acid chloride reported<br />

<strong>in</strong> the literature for a similar monomer <strong>conta<strong>in</strong><strong>in</strong>g</strong> Nmethyl<br />

carbazole [12] or nitrobenzene [7]. A higher yield<br />

76±82%) was obta<strong>in</strong>ed, as compared to 37±56% with<br />

the acid chloride route. It is important to ma<strong>in</strong>ta<strong>in</strong><br />

neutral condition when monomer is very sensitive to<br />

both acid and <strong>base</strong> and hydrolyzes easily.<br />

The other homologue <strong>of</strong> MnThs, the 4-3-methacryloyloxypropyloxy)-N-5-nitro-2-thienylmethylene)ani<br />

Scheme 3. Schematic representation <strong>of</strong> experimental apparatus.<br />

l<strong>in</strong>e M3Th) was synthesized from di€erent route depend<strong>in</strong>g<br />

on start<strong>in</strong>g material, 1,3-dibromopropane, accord<strong>in</strong>g<br />

with Scheme 2. Stannous chloride reduction <strong>of</strong><br />

nitro group to am<strong>in</strong>e was carried out as a mild, selective,<br />

<strong>in</strong>expensive and general method [17]. Under the conditions<br />

used, other reducible or acid sensitive groups are<br />

recovered unchanged. Condensation <strong>of</strong> 4-3-methacryloyloxy<br />

propyloxy)anil<strong>in</strong>e with nitro thiophene derivative<br />

was given monomer M3Th) <strong>in</strong> high yield 96%).<br />

3.2. Polymer synthesis and characterization<br />

All methacrylate <strong>polymers</strong> <strong>conta<strong>in</strong><strong>in</strong>g</strong> a 5-nitro-2thienyl)anil<strong>in</strong>e<br />

group were prepared by solution polymerization<br />

with azobisisobutyronitrile) as a radical<br />

<strong>in</strong>itiator. The molecular weights, polydispersities and<br />

average degree <strong>of</strong> polymerization for the PnTh series are<br />

listed <strong>in</strong> Table 1. All the monomers were given only low<br />

molecular weights <strong>polymers</strong> result<strong>in</strong>g from propagation<br />

through the bond. In the di€erent conditions <strong>of</strong> polymerization<br />

such as time and temperature result<strong>in</strong>g<br />

crossl<strong>in</strong>ked and <strong>in</strong>soluble products. Formation <strong>of</strong> oligomers<br />

and crossl<strong>in</strong>ked products by radical polymerization<br />

<strong>of</strong> methacrylate derivatives <strong>of</strong> ®ve-membered heterocyclics<br />

were already reported [19±21].<br />

1 HNMR spectra <strong>of</strong> M2Th and P2Th are shown <strong>in</strong><br />

Fig. 2. The peaks due to the methacryloyl unit <strong>in</strong> the<br />

monomer at 5.53±6.08 ppm were replaced by the backbone<br />

methylene absorption <strong>in</strong> the polymethacrylate at<br />

Table 1<br />

Molecular weights, polydispersities and average degree <strong>of</strong> polymerization for the PnTh n ˆ 2, 3, 6 and 8)<br />

PnTh Mng mol 1 ) Mwg mol 1 ) PD DP UV/VIS CH2Cl2) Yield %)<br />

n ˆ 2 3087 3308 1.07 9 kmax ˆ 414 38<br />

e ˆ 4:3 104 n ˆ 3 29514551 1.76 7 kmax ˆ 416 40<br />

e ˆ 5:6 104 n ˆ 6 2254 3262 1.44 6 kmax ˆ 419 42<br />

e ˆ 1:9 104 n ˆ 7 2359 2949 1.25 7 kmax ˆ 420 42<br />

e ˆ 1:7 104


M. Bagheri, A. Entezami / European Polymer Journal 38 2002) 317±326 323<br />

Fig. 2. 1 HNMR spectra <strong>of</strong> a) monomer M2Th), b) polymer P6Th) <strong>in</strong> chlor<strong>of</strong>orm solution.<br />

0.78±1.52 ppm. S<strong>in</strong>ce the <strong>in</strong>tensity <strong>of</strong> the C±H proton<br />

peak <strong>of</strong> the Schi€ <strong>base</strong> l<strong>in</strong>kage <strong>in</strong> 1 HNMR spectrum<br />

<strong>of</strong> the polymer was corresponded to that expected, the<br />

relatively labile C@N bond <strong>in</strong> the polymer was not decomposed<br />

dur<strong>in</strong>g polymerization. Moreover, the aromatic<br />

proton peaks <strong>of</strong> the phenylene group and thienyl group<br />

resonances were seen at 6.8±7.1and 7.1±7.78 ppm, respectively.<br />

The observed chemical shift showed that the<br />

polymer conta<strong>in</strong>s the designed chromophoric unit.<br />

Fig. 3a shows the UV/VIS spectrum <strong>of</strong> the H6Th,<br />

M6Th, and P6Th. The absorption maximum <strong>in</strong> the UV/<br />

VIS spectra <strong>of</strong> the monomer was similar to that <strong>of</strong> the


324 M. Bagheri, A. Entezami / European Polymer Journal 38 2002) 317±326<br />

Fig. 3. UV/VIS spectra <strong>of</strong> a) H6Th i), M6Th ii) and P6Th iii); b) P2Th i), P3Th ii), P6Th iii) and P8Th iv) measured <strong>in</strong> dichloromethane.<br />

Schi€ <strong>base</strong>. The small <strong>in</strong>teraction caused by attachment<br />

<strong>of</strong> the chromophores to the polymer backbone could be<br />

detected by UV. The absorption band near 400 nm hypsochromically<br />

shifted and has dim<strong>in</strong>ished <strong>in</strong> <strong>in</strong>tensity<br />

for polymer. As shown <strong>in</strong> the Fig. 3b <strong>in</strong>creas<strong>in</strong>g the<br />

length <strong>of</strong> the alkyl cha<strong>in</strong> <strong>in</strong> the spacer group from ethyl<br />

to the 1,8-octyl group leads to a shift <strong>of</strong> the maximum<br />

absorption to the longer wavelengths by a maximum <strong>of</strong><br />

8 nm).<br />

3.3. Second-order molecular nonl<strong>in</strong>earity<br />

Replac<strong>in</strong>g the homocyclic r<strong>in</strong>g <strong>of</strong> a p-conjugated<br />

system with heteoaromatic r<strong>in</strong>gs also leads to enhanced<br />

second-order NLO response properties [22]. It has been<br />

speculated that the heteroaromatic r<strong>in</strong>gs such as thiophene<br />

acts as an additional donor <strong>in</strong> the bridge. It<br />

could also be possible that the reduced aromaticity <strong>of</strong><br />

the thiophene compound to the benzene r<strong>in</strong>g might result<br />

<strong>in</strong> enhanced molecular hyperpolarizability. The<br />

hyperpolarizability <strong>of</strong> synthesized <strong>donor±acceptor</strong> Schi€<br />

<strong>base</strong> <strong>in</strong> the <strong>base</strong> <strong>of</strong> thiophene r<strong>in</strong>g was calculated us<strong>in</strong>g<br />

the semiempirical method. This chromophore as a candidate<br />

was proposed to the synthesized compounds because<br />

a chromophore <strong>in</strong> a polymer it has b several times<br />

that <strong>of</strong> the same chromophore as a monomer [23].<br />

Therefore the <strong>polymers</strong> are capable <strong>of</strong> show<strong>in</strong>g the NLO<br />

response superior than H2Th.


At First, for calculation <strong>of</strong> b, the molecular geometry<br />

was optimized us<strong>in</strong>g the AM1Hamiltonian <strong>in</strong> the Hyperchem<br />

4.5 package [24]. Then this optimized geometry<br />

was used for calculation <strong>of</strong> b <strong>in</strong> the MOPAC 6 quantum<br />

chemical package [25]. The obta<strong>in</strong>ed amount <strong>of</strong> b for<br />

H2Th was 7:196 10 30 esu.<br />

3.4. Second harmonic generation measurements<br />

M. Bagheri, A. Entezami / European Polymer Journal 38 2002) 317±326 325<br />

For second harmonic generation SHG) or frequency<br />

doubl<strong>in</strong>g, the NLO chromophores <strong>in</strong> the polymer matrix<br />

must be aligned <strong>in</strong> to a noncentrosymmetric orientation.<br />

Electric-®eld-<strong>in</strong>duced chromophore orientation occurs<br />

<strong>in</strong> regions <strong>of</strong> su cient local free volume and segmental<br />

mobility. Corona pol<strong>in</strong>g techniques <strong>in</strong>volv<strong>in</strong>g large<br />

magnitude electric ®eld, applied across the <strong>polymers</strong><br />

®lm, was used to orient the chromophores <strong>in</strong>to the<br />

noncentrosymmetric structure required to obta<strong>in</strong> a second<br />

harmonic signal. A scheme <strong>of</strong> an apparatus used to<br />

measure SHG is shown <strong>in</strong> Scheme 3. Light is generated<br />

by a Q-switched Nd:YAG laser with a k ˆ 1:064 lm<br />

fundamental yield<strong>in</strong>g the SHG signal at a wavelength <strong>of</strong><br />

532 nm).<br />

As shown <strong>in</strong> Fig. 4, with chang<strong>in</strong>g the <strong>in</strong>cident angle<br />

the amount <strong>of</strong> I2x is also changed and reach to a maximum.<br />

This maximum is the <strong>in</strong>terference po<strong>in</strong>t <strong>of</strong> between<br />

harmonic boundary waves and harmonic free<br />

waves. Because, accord<strong>in</strong>g to the Maker et al. equation<br />

[26], I2xaA…/†d 2 s<strong>in</strong> 2 pl/2lc), the second harmonic <strong>in</strong>tensity<br />

have oscillation behavior that related to the<br />

phase mismatch between boundary wave and free wave.<br />

In Maker et al. equation, I2x is <strong>in</strong>tensity <strong>of</strong> second<br />

harmonic, A/) is the transition factor, d is the NLO<br />

coe cient, / is the <strong>in</strong>cident angle, l is the ®lm thickness<br />

and lc is the coherent length and lc ˆ k/4nx cos hx<br />

n2x cos hx)n is refractive <strong>in</strong>dex and h is refractive angle).<br />

Fig. 4. SHG <strong>in</strong> PMMA doped with H2Th.<br />

The obta<strong>in</strong>ed curve <strong>in</strong> the <strong>base</strong> <strong>of</strong> Maker method was<br />

exhibited qualitatively the second harmonic generation<br />

<strong>of</strong> the molecule. Therefore these new NLO materials<br />

have been used for SHG application.<br />

4. Conclusion<br />

The synthesis <strong>of</strong> four members <strong>of</strong> a polymethacrylate<br />

<strong>conta<strong>in</strong><strong>in</strong>g</strong> <strong>donor±acceptor</strong> Schi€ <strong>base</strong>s <strong>in</strong> <strong>side</strong> cha<strong>in</strong><br />

have been reported. GPC studies showed that the radical<br />

polymerization <strong>of</strong> monomers <strong>conta<strong>in</strong><strong>in</strong>g</strong> a nitro thienyl<br />

group at the end <strong>of</strong> molecules gave low molecular weight<br />

<strong>polymers</strong> which was soluble <strong>in</strong> THF, CH2Cl2, DMF and<br />

DMSO. These compounds with electron donor and acceptor<br />

groups can be con<strong>side</strong>red as NLO materials with<br />

potential application <strong>in</strong> nonl<strong>in</strong>ear optic devices.<br />

References<br />

[1] Fuso F, Padias AB, Hall Jr HK. Macromolecules 1991;24:<br />

1710.<br />

[2] Wright ME, Mullick S. Macromolecules 1992;25:6045.<br />

[3] Robello DR. In: Arshady R, editor. Desk references <strong>of</strong><br />

functional <strong>polymers</strong>: syntheses and applications. Wash<strong>in</strong>gton,<br />

DC: ACS; 1997 [Chapter 3.6.].<br />

[4] Nalwa HS, Miyata S. Nonl<strong>in</strong>ear optics <strong>of</strong> organic molecules<br />

and <strong>polymers</strong>. Tokyo: CRC Press; 1997.<br />

[5] Imrie CT, Karasz FE, Attard GS. Macromolecules<br />

1994;27:1578.<br />

[6] Craig AA, Imrie CT. Macromolecules 1995;28:3617.<br />

[7] Kosaka Y, Uryu T. Macromolecules 1995;28:870.<br />

[8] Kosaka Y, Uryu T. Macromolecules 1995;28:8295.<br />

[9] Kosaka Y, Uryu T. Macromolecules 1994;27:6286.<br />

[10] Campbell D, Dix LR, Rostron P. Eur Polym J<br />

1993;292,3):249;<br />

Douglas RR. J Polym Sci Part A: Polym Chem 1990;28:1±<br />

13.<br />

[11] Kosaka Y, Kato T, Uryu T. Macromolecules 1994;<br />

27:2658.<br />

[12] Kosaka Y, Kato T, Uryu T. J Polym Sci Part A: Polym<br />

Chem 1994;32:711.<br />

[13] Horn<strong>in</strong>g EC, editor. Organic syntheses. New York: Wiley;<br />

1955. p. 446±8.<br />

[14] Zubarovskii VM. Doklady Akuk SSSR 1952;83:85.<br />

[15] Ettard GS, Imrie CT, Karasz FE. Chem Mater 1992;4:<br />

1246.<br />

[16] Craig AA, Imrie CT. Macromolecules 1995;28:3617.<br />

[17] Bellamy FD, Ou K. Tet Lett 1984;258):839.<br />

[18] Maker PD, Terhune RW, Niseno€ M, Savage CM. Phys<br />

Rev Lett 1962;81):21.<br />

[19] Gand<strong>in</strong>i A, Rieumont. J Tetrahedron Lett 1976;25:<br />

2101.<br />

[20] Hartmann M, Moszner N. Ger Est) DD 1991;286:<br />

366.<br />

[21] Hallensleben M, Stanke D. Polym Bull Berl<strong>in</strong>) 1991;<br />

272):155.<br />

[22] Albert IDL, Marks TJ, Ratner MA. J Am Chem Soc<br />

1997;119:6575.


326 M. Bagheri, A. Entezami / European Polymer Journal 38 2002) 317±326<br />

[23] Mitchell MA. TRIP 1993;1:144.<br />

[24] Hyperchem, Release 4.5 for W<strong>in</strong>dows 3.1. Hypercube Inc.<br />

1993.<br />

[25] Kanis DR, Ratner MA, Marks T. J Chem Rev 1994;<br />

94:195.<br />

[26] Jerphagnon J, Kurtz SK. J Appl Phys 1970;414):1667.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!