25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIVERSITE DE NICE-SOPHIA ANTIPOLIS - UFR SCIENCES<br />

Ecole Doctorale <strong>de</strong> Sciences Fondamentales <strong>et</strong> Appliquées<br />

THESE<br />

Présentée pour obtenir le titre <strong>de</strong><br />

Docteur en SCIENCES<br />

<strong>de</strong> l’Université <strong>de</strong> Nice - Sophia Antipolis<br />

Spécialité : Physique<br />

par<br />

Yannick MALEVERGNE<br />

Risques extrêmes en finance :<br />

<strong>st<strong>at</strong>istique</strong>, <strong>théorie</strong> <strong>et</strong> <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong><br />

Soutenue publiquement le 20 décembre 2002 <strong>de</strong>vant le jury composé <strong>de</strong> :<br />

Jean-Clau<strong>de</strong> AUGROS Professeur, Université Lyon I (Prési<strong>de</strong>nt)<br />

Jean-Paul LAURENT Professeur, Université Lyon I (Co-directeur <strong>de</strong> Thèse)<br />

Jean-François MUZY Chargé <strong>de</strong> recherche au CNRS<br />

Michael ROCKINGER Professeur, HEC Lausanne<br />

Bertrand ROEHNER Professeur, Université Paris VII (Rapporteur)<br />

Didier SORNETTE Directeur <strong>de</strong> recherche au CNRS (Directeur <strong>de</strong> Thèse)<br />

à l’Institut <strong>de</strong> Science Financière <strong>et</strong> d’Assurances - Université Clau<strong>de</strong> Bernard - Lyon I


Table <strong>de</strong>s m<strong>at</strong>ières<br />

Avant-propos 11<br />

Introduction 13<br />

I Etu<strong>de</strong> <strong>et</strong> modélis<strong>at</strong>ion <strong>de</strong>s propriétés <strong>de</strong>s rentabilités <strong>de</strong>s actifs financiers 19<br />

1 Faits stylisés <strong>de</strong>s rentabilités boursières 21<br />

1.1 Rappel <strong>de</strong>s faits stylisés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

1.1.1 La distribution <strong>de</strong>s ren<strong>de</strong>ments . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

1.1.2 Propriétés <strong>de</strong> dépendances temporelles . . . . . . . . . . . . . . . . . . . . . . 23<br />

1.1.3 Autres faits stylisés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

1.2 De la difficulté <strong>de</strong> représenter la distribution <strong>de</strong>s ren<strong>de</strong>ments . . . . . . . . . . . . . . . 27<br />

1.3 Modélis<strong>at</strong>ion <strong>de</strong>s propriétés <strong>de</strong> dépendance <strong>de</strong>s ren<strong>de</strong>ments . . . . . . . . . . . . . . . . 28<br />

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

2 Modèles phénoménologiques <strong>de</strong> cours 31<br />

2.1 Bulles r<strong>at</strong>ionnelles multi-dimensionnelles <strong>et</strong> queues épaisses . . . . . . . . . . . . . . . 32<br />

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

2.1.2 Hypothèses du modèle <strong>de</strong> Blanchard <strong>et</strong> W<strong>at</strong>son . . . . . . . . . . . . . . . . . . 34<br />

2.1.3 Généralis<strong>at</strong>ion <strong>de</strong>s bulles r<strong>at</strong>ionnelles en dimensions quelconques . . . . . . . . 36<br />

2.1.4 Théorie du renouvellement <strong>de</strong>s produits <strong>de</strong> m<strong>at</strong>rices alé<strong>at</strong>oires . . . . . . . . . . 37<br />

2.1.5 Conséquences pour les bulles r<strong>at</strong>ionnelles . . . . . . . . . . . . . . . . . . . . . 39<br />

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

2.2 Des bulles r<strong>at</strong>ionnelles aux krachs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

2.2.1 Les modèles <strong>de</strong> bulles r<strong>at</strong>ionnelles . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

3


4 Table <strong>de</strong>s m<strong>at</strong>ières<br />

2.2.2 Bulles r<strong>at</strong>ionnelles pour un actif isolé . . . . . . . . . . . . . . . . . . . . . . . 46<br />

2.2.3 Généralis<strong>at</strong>ion <strong>de</strong>s bulles r<strong>at</strong>ionnelles à un nombre arbitraire <strong>de</strong> dimensions . . . 49<br />

2.2.4 Modèle <strong>de</strong> krach avec taux <strong>de</strong> hasard . . . . . . . . . . . . . . . . . . . . . . . 54<br />

2.2.5 Modèle <strong>de</strong> croissance non st<strong>at</strong>ionnaire . . . . . . . . . . . . . . . . . . . . . . 56<br />

2.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

3 Distributions exponentielles étirées contre distributions régulièrement variables 63<br />

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

3.2 St<strong>at</strong>istiques <strong>de</strong>scriptives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

3.2.1 Les données . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

3.2.2 Existence <strong>de</strong> dépendance temporelle . . . . . . . . . . . . . . . . . . . . . . . 70<br />

3.3 Propriétés extrêmes d’un processus à mémoire longue . . . . . . . . . . . . . . . . . . 70<br />

3.3.1 Résult<strong>at</strong>s théoriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

3.3.2 Exemples <strong>de</strong> convergence lente vers les distributions <strong>de</strong>s valeurs extrêmes <strong>et</strong> <strong>de</strong><br />

Par<strong>et</strong>o généralisées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br />

3.3.3 Génér<strong>at</strong>ion d’un processus à mémoire longue avec <strong>de</strong>s marginales prescrites . . 73<br />

3.3.4 Simul<strong>at</strong>ions numériques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

3.3.5 Estim<strong>at</strong>eurs <strong>de</strong>s paramètres <strong>de</strong>s GEV <strong>et</strong> GPD pour les données réelles . . . . . . 77<br />

3.4 Estim<strong>at</strong>ion paramétrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

3.4.1 Définition d’une famille <strong>de</strong> distributions à trois paramètres . . . . . . . . . . . . 78<br />

3.4.2 Méthodologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

3.4.3 Résult<strong>at</strong>s empiriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

3.4.4 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84<br />

3.5 Comparaison du pouvoir <strong>de</strong>scriptif <strong>de</strong>s différentes familles . . . . . . . . . . . . . . . . 84<br />

3.5.1 Comparaison entre les qu<strong>at</strong>re distributions paramétriques <strong>et</strong> la distribution globale 85<br />

3.5.2 Comparaison directe <strong>de</strong>s modèles <strong>de</strong> Par<strong>et</strong>o <strong>et</strong> Exponentiel-Etiré . . . . . . . . 86<br />

3.6 Discussion <strong>et</strong> conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103<br />

4 Relax<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité 135<br />

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137


Table <strong>de</strong>s m<strong>at</strong>ières 5<br />

4.2 Mémoire longue <strong>et</strong> distinction entre chocs endogènes <strong>et</strong> exogènes . . . . . . . . . . . . 139<br />

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146<br />

5 Approche comportementale <strong>de</strong>s marchés financiers : l’apport <strong>de</strong>s modèles d’agents 149<br />

5.1 Prix d’un actif <strong>et</strong> excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

5.2 Modèles d’opinion contre modèles <strong>de</strong> marché . . . . . . . . . . . . . . . . . . . . . . . 152<br />

5.3 Modèles à agents adapt<strong>at</strong>ifs contre modèles à agents non adapt<strong>at</strong>ifs . . . . . . . . . . . . 154<br />

5.4 Conséquences <strong>de</strong>s phénomènes d’imit<strong>at</strong>ion <strong>et</strong> d’antagonisme... . . . . . . . . . . . . . . 155<br />

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

6 Comportements mimétiques <strong>et</strong> antagonistes : bulles hyperboliques, krachs <strong>et</strong> chaos 159<br />

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

6.2 Le modèle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163<br />

6.3 Analyse qualit<strong>at</strong>ive <strong>de</strong>s propriétés dynamiques . . . . . . . . . . . . . . . . . . . . . . 165<br />

6.4 Analyse quantit<strong>at</strong>ive <strong>de</strong>s bulles spécul<strong>at</strong>ives en régime chaotique dans le cas symétrique 167<br />

6.5 Propriétés <strong>st<strong>at</strong>istique</strong>s <strong>de</strong>s ren<strong>de</strong>ments dans le cas symétrique . . . . . . . . . . . . . . 169<br />

6.6 Cas asymétriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170<br />

6.7 Eff<strong>et</strong>s <strong>de</strong> taille finie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174<br />

Appendice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176<br />

II Etu<strong>de</strong> <strong>de</strong>s propriétés <strong>de</strong> dépendances entre actifs financiers 179<br />

7 Etu<strong>de</strong> <strong>de</strong> la dépendance à l’ai<strong>de</strong> <strong>de</strong>s copules 181<br />

7.1 Les copules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182<br />

7.2 Quelques familles <strong>de</strong> copules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183<br />

7.2.1 Les copules gaussiennes <strong>et</strong> copules <strong>de</strong> Stu<strong>de</strong>nt . . . . . . . . . . . . . . . . . . 184<br />

7.2.2 Les copules archimédiennes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185<br />

7.3 Tests empiriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186<br />

7.3.1 Tests paramétriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186


6 Table <strong>de</strong>s m<strong>at</strong>ières<br />

7.3.2 Tests non paramétriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188<br />

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />

8 Tests <strong>de</strong> copule gaussienne 191<br />

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194<br />

8.2 Généralités sur les copules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195<br />

8.2.1 Définitions <strong>et</strong> résult<strong>at</strong>s importants concernant les copules . . . . . . . . . . . . 195<br />

8.2.2 Dépendance entre <strong>de</strong>ux variables alé<strong>at</strong>oires . . . . . . . . . . . . . . . . . . . . 196<br />

8.2.3 La copule gaussienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198<br />

8.2.1 La copule <strong>de</strong> Stu<strong>de</strong>nt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199<br />

8.3 Tester l’hypothèse <strong>de</strong> copule gaussienne . . . . . . . . . . . . . . . . . . . . . . . . . . 200<br />

8.3.1 <strong>st<strong>at</strong>istique</strong> <strong>de</strong> test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200<br />

8.3.2 Procédure <strong>de</strong> test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201<br />

8.3.3 Sensibilité <strong>de</strong> la métho<strong>de</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203<br />

8.4 Résult<strong>at</strong>s empiriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206<br />

8.4.1 Les <strong>de</strong>vises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206<br />

8.4.2 Les m<strong>at</strong>ières premières : les métaux . . . . . . . . . . . . . . . . . . . . . . . . 209<br />

8.4.3 Les actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209<br />

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212<br />

9 Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers 237<br />

9.1 Les différentes mesures <strong>de</strong> dépendances extrêmes . . . . . . . . . . . . . . . . . . . . . 238<br />

9.1.1 Coefficients <strong>de</strong> corrél<strong>at</strong>ion conditionnels . . . . . . . . . . . . . . . . . . . . . 243<br />

9.1.2 Mesures <strong>de</strong> dépendances conditionnelles . . . . . . . . . . . . . . . . . . . . . 249<br />

9.1.3 Coefficient <strong>de</strong> dépendance <strong>de</strong> queue . . . . . . . . . . . . . . . . . . . . . . . . 252<br />

9.1.4 Synthèse <strong>et</strong> discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257<br />

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279<br />

9.2 Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue . . . . . . . . . . . . . . . . . . . . . 299<br />

9.2.1 Mesure intrinsèque <strong>de</strong> dépendance extrême . . . . . . . . . . . . . . . . . . . . 303<br />

9.2.2 Coefficient <strong>de</strong> dépendance <strong>de</strong> queue pour un modèle à facteurs . . . . . . . . . 305<br />

9.2.3 Etu<strong>de</strong> empirique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309


Table <strong>de</strong>s m<strong>at</strong>ières 7<br />

9.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315<br />

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326<br />

9.3 Synthèse <strong>de</strong> la <strong>de</strong>scription <strong>de</strong> la dépendance entre actifs financiers . . . . . . . . . . . . 340<br />

III Mesures <strong>de</strong>s risques extrêmes <strong>et</strong> applic<strong>at</strong>ion à la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong> 343<br />

10 La mesure du risque 345<br />

10.1 La <strong>théorie</strong> <strong>de</strong> l’utilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346<br />

10.1.1 Théorie <strong>de</strong> l’utilité en environnement certain . . . . . . . . . . . . . . . . . . . 346<br />

10.1.2 Théorie <strong>de</strong> la décision face au risque . . . . . . . . . . . . . . . . . . . . . . . . 347<br />

10.1.3 Théorie <strong>de</strong> la décision face à l’incertain . . . . . . . . . . . . . . . . . . . . . . 350<br />

10.2 Les mesures <strong>de</strong> risque cohérentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353<br />

10.2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353<br />

10.2.2 Quelques exemples <strong>de</strong> mesures <strong>de</strong> risque cohérentes . . . . . . . . . . . . . . . 354<br />

10.2.3 Représent<strong>at</strong>ion <strong>de</strong>s mesures <strong>de</strong> risque cohérentes . . . . . . . . . . . . . . . . . 355<br />

10.2.4 Conséquences sur l’alloc<strong>at</strong>ion <strong>de</strong> capital . . . . . . . . . . . . . . . . . . . . . . 356<br />

10.2.5 Critique <strong>de</strong>s mesures cohérentes <strong>de</strong> risque . . . . . . . . . . . . . . . . . . . . . 357<br />

10.3 Les mesures <strong>de</strong> fluctu<strong>at</strong>ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359<br />

10.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361<br />

11 Portefeuilles optimaux <strong>et</strong> équilibre <strong>de</strong> marché 363<br />

11.1 Les limites <strong>de</strong> l’approche moyenne - variance . . . . . . . . . . . . . . . . . . . . . . . 364<br />

11.2 Prise en compte <strong>de</strong>s grands risques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365<br />

11.2.1 Optimis<strong>at</strong>ion sous contrainte <strong>de</strong> capital économique . . . . . . . . . . . . . . . . 365<br />

11.2.2 Optimis<strong>at</strong>ion sous contrainte <strong>de</strong> fluctu<strong>at</strong>ions autour du ren<strong>de</strong>ment espéré . . . . . 366<br />

11.2.3 Optimis<strong>at</strong>ion sous d’autres contraintes . . . . . . . . . . . . . . . . . . . . . . . 366<br />

11.3 Equilibre <strong>de</strong> marché . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367<br />

11.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367<br />

11.5 Annexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368<br />

12 Gestion <strong>de</strong>s risques grands <strong>et</strong> extrêmes 373<br />

12.1 Comprendre <strong>et</strong> gérer les risques grands <strong>et</strong> extrêmes . . . . . . . . . . . . . . . . . . . . 374


8 Table <strong>de</strong>s m<strong>at</strong>ières<br />

12.1.1 Distributions <strong>de</strong>s ren<strong>de</strong>ments à queues épaisses . . . . . . . . . . . . . . . . . . 376<br />

12.1.2 Dépendance temporelle intermittente à l’origine <strong>de</strong>s gran<strong>de</strong>s pertes . . . . . . . 376<br />

12.1.3 Dépendance <strong>de</strong> queue <strong>et</strong> contagion . . . . . . . . . . . . . . . . . . . . . . . . 377<br />

12.1.4 N<strong>at</strong>ure multidimensionnelle <strong>de</strong>s risques . . . . . . . . . . . . . . . . . . . . . . 378<br />

12.1.5 P<strong>et</strong>its risques, grands risques <strong>et</strong> ren<strong>de</strong>ment . . . . . . . . . . . . . . . . . . . . 378<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379<br />

12.2 Minimiser l’impact <strong>de</strong>s grands co-mouvements . . . . . . . . . . . . . . . . . . . . . . 381<br />

12.2.1 Quantifier les grands co-mouvements . . . . . . . . . . . . . . . . . . . . . . . 382<br />

12.2.2 Dépendance <strong>de</strong> queue génerée par un modèle à facteur . . . . . . . . . . . . . . 383<br />

12.2.3 implément<strong>at</strong>ion pr<strong>at</strong>ique <strong>et</strong> conséquences . . . . . . . . . . . . . . . . . . . . . 384<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386<br />

13 Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique 387<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389<br />

13.1 Définition <strong>et</strong> concepts importants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392<br />

13.1.1 Distributions <strong>de</strong> Weibull modifiées . . . . . . . . . . . . . . . . . . . . . . . . 392<br />

13.1.2 Equivalence <strong>de</strong> queue pour les fonctions <strong>de</strong> distribution . . . . . . . . . . . . . 393<br />

13.1.3 La copule gaussienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394<br />

13.2 Distribution <strong>de</strong> richesse d’un <strong>portefeuille</strong> pour différentes structures <strong>de</strong> dépendance . . . 395<br />

13.2.1 Distribution <strong>de</strong> richesse pour <strong>de</strong>s actifs indépendants . . . . . . . . . . . . . . . 395<br />

13.2.2 Distribution <strong>de</strong> richesse pour <strong>de</strong>s actifs comonotones . . . . . . . . . . . . . . . 396<br />

13.2.3 Distribution <strong>de</strong> richesse sous hypothèse <strong>de</strong> copule gaussienne . . . . . . . . . . 398<br />

13.3 Value-<strong>at</strong>-Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400<br />

13.4 Portefeuilles Optimaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401<br />

13.4.1 Portefeuilles à risque minimum . . . . . . . . . . . . . . . . . . . . . . . . . . 401<br />

13.4.2 Portefeuilles VaR-efficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404<br />

13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405<br />

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417<br />

14 Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché 423<br />

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425<br />

14.2 Mesure <strong>de</strong>s grands risques d’un <strong>portefeuille</strong> . . . . . . . . . . . . . . . . . . . . . . . . 428


Table <strong>de</strong>s m<strong>at</strong>ières 9<br />

14.2.1 Pourquoi les moments d’ordres élevés perm<strong>et</strong>tent-ils <strong>de</strong> quantifier <strong>de</strong> plus grands<br />

risques ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428<br />

14.2.2 Quantific<strong>at</strong>ion <strong>de</strong>s fluctu<strong>at</strong>ions d’un actif . . . . . . . . . . . . . . . . . . . . . 429<br />

14.2.3 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430<br />

14.3 La frontière efficiente généralisée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432<br />

14.3.1 Frontière en l’absence d’actif sans risque . . . . . . . . . . . . . . . . . . . . . 432<br />

14.3.2 Frontière efficiente en présence d’actif sans risque . . . . . . . . . . . . . . . . 433<br />

14.3.3 Théorème <strong>de</strong> sépar<strong>at</strong>ion en <strong>de</strong>ux fonds . . . . . . . . . . . . . . . . . . . . . . 433<br />

14.3.4 Influence du taux d’intérêt sans risque . . . . . . . . . . . . . . . . . . . . . . . 434<br />

14.4 Classific<strong>at</strong>ions <strong>de</strong>s actifs <strong>et</strong> <strong>de</strong>s <strong>portefeuille</strong>s . . . . . . . . . . . . . . . . . . . . . . . . 434<br />

14.4.1 Métho<strong>de</strong> d’ajustement du risque . . . . . . . . . . . . . . . . . . . . . . . . . . 435<br />

14.4.2 Risque marginal d’un actif au sein d’un <strong>portefeuille</strong> . . . . . . . . . . . . . . . 436<br />

14.5 Un nouveau modèle d’équilibre <strong>de</strong> marché . . . . . . . . . . . . . . . . . . . . . . . . 437<br />

14.5.1 Equilibre en marché homogène . . . . . . . . . . . . . . . . . . . . . . . . . . 438<br />

14.5.2 Equilibre en marché hétérogène . . . . . . . . . . . . . . . . . . . . . . . . . . 438<br />

14.6 Estim<strong>at</strong>ion <strong>de</strong> la distribution <strong>de</strong> probabilité jointe du ren<strong>de</strong>ment <strong>de</strong> plusieurs actifs . . . 439<br />

14.6.1 Brève exposition <strong>et</strong> justific<strong>at</strong>ion <strong>de</strong> la métho<strong>de</strong> . . . . . . . . . . . . . . . . . . 440<br />

14.6.2 Transform<strong>at</strong>ion d’une variable alé<strong>at</strong>oire en une variable gaussienne . . . . . . . 441<br />

14.6.3 D<strong>et</strong>ermin<strong>at</strong>ion <strong>de</strong> la distribution jointe : maximum d’entropie <strong>et</strong> copule gaussienne442<br />

14.6.4 Test empirique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443<br />

14.7 Choix d’une famille exponentielle pour paramétrer les distributions marginales . . . . . 444<br />

14.7.1 Les distributions <strong>de</strong> Weibull modifiées . . . . . . . . . . . . . . . . . . . . . . 444<br />

14.7.2 Transform<strong>at</strong>ion <strong>de</strong>s lois <strong>de</strong> Weibull en gaussiennes . . . . . . . . . . . . . . . . 445<br />

14.7.3 Test empirique <strong>et</strong> estim<strong>at</strong>ion <strong>de</strong>s paramètres . . . . . . . . . . . . . . . . . . . 445<br />

14.8 Développement en cumulants <strong>de</strong> la distribution du <strong>portefeuille</strong> . . . . . . . . . . . . . . 446<br />

14.8.1 Lien entre moments <strong>et</strong> cumulants . . . . . . . . . . . . . . . . . . . . . . . . . 446<br />

14.8.2 Cas <strong>de</strong> distributions symétriques . . . . . . . . . . . . . . . . . . . . . . . . . 447<br />

14.8.3 Cas <strong>de</strong> distributions asymétriques . . . . . . . . . . . . . . . . . . . . . . . . . 449<br />

14.8.4 Tests empiriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449<br />

14.9 Peut-on avoir le beurre <strong>et</strong> l’argent du beurre ? . . . . . . . . . . . . . . . . . . . . . . . 450<br />

14.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451<br />

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453


10 Table <strong>de</strong>s m<strong>at</strong>ières<br />

Références . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464<br />

Conclusions <strong>et</strong> Perspectives 491<br />

A Evalu<strong>at</strong>ion <strong>de</strong> la conduite du proj<strong>et</strong> <strong>de</strong> thèse 495<br />

A.1 Bref résumé du suj<strong>et</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495<br />

A.2 Eléments <strong>de</strong> contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496<br />

A.2.1 Choix du suj<strong>et</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496<br />

A.2.2 Choix <strong>de</strong> l’encadrement <strong>et</strong> du labor<strong>at</strong>oire d’accueil . . . . . . . . . . . . . . . . 496<br />

A.2.3 Financement du proj<strong>et</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497<br />

A.3 Evolution du proj<strong>et</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498<br />

A.3.1 Elabor<strong>at</strong>ion du proj<strong>et</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498<br />

A.3.2 Conduite du proj<strong>et</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498<br />

A.3.3 R<strong>et</strong>ombées scientifiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499<br />

A.4 Compétences acquises <strong>et</strong> enseignements personnels . . . . . . . . . . . . . . . . . . . . 499<br />

A.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500<br />

Bibliographie 503


Avant-propos<br />

La rédaction d’une thèse est un travail <strong>de</strong> longue haleine, exigeant, quelque déroutant voire décourageant,<br />

tout particulièrement lorsque les difficultés s’accumulent <strong>et</strong> semblent insurmontables. Mais au final, combien<br />

est captivante, passionnante <strong>et</strong> enthousiasmante c<strong>et</strong>te expérience, première réelle occasion <strong>de</strong> m<strong>et</strong>tre<br />

à profit la somme <strong>de</strong> connaissances p<strong>at</strong>iemment engrangée au cours <strong>de</strong> longues années d’étu<strong>de</strong>s.<br />

C’est lorsque vient le moment <strong>de</strong> la rédaction finale que l’on mesure l’ensemble du chemin parcouru.<br />

Les hésit<strong>at</strong>ions <strong>et</strong> difficultés rencontrées tout au long <strong>de</strong> la route s’évanouissent <strong>et</strong> seuls les succès <strong>et</strong><br />

s<strong>at</strong>isfactions reviennent en mémoire. Ressurgissent aussi les noms <strong>de</strong> ceux qui vous ont accompagné sur<br />

c<strong>et</strong>te route, <strong>et</strong> c’est à eux que je souhaiterai, avant toute chose, adresser ces quelques remerciements.<br />

Le travail que j’ai mené durant ces <strong>de</strong>ux années <strong>de</strong> thèse doit énormément à Didier Sorn<strong>et</strong>te <strong>et</strong> Jean-Paul<br />

Laurent qui ont accepté <strong>de</strong> le diriger. Je tiens avant tout à leur exprimer ma gr<strong>at</strong>itu<strong>de</strong> pour ces années<br />

passées à leur contact <strong>et</strong> voudrais dire le grand plaisir <strong>et</strong> l’immense s<strong>at</strong>isfaction que j’ai eu à travailler<br />

avec eux. Ils ont su à la fois me gui<strong>de</strong>r judicieusement <strong>et</strong> me laisser une gran<strong>de</strong> l<strong>at</strong>itu<strong>de</strong> quant aux choix<br />

<strong>de</strong>s thèmes <strong>de</strong> recherche que je souhaitais poursuivre, ce dont je leur suis infiniment reconnaissant.<br />

Je tiens aussi à remercier chaleureusement les professeurs Gouriéroux <strong>et</strong> Roehner qui m’ont fait l’honneur<br />

d’accepter d’être les rapporteurs <strong>de</strong> c<strong>et</strong>te thèse. Les questions <strong>et</strong> remarques qu’ils ont formulées,<br />

ainsi que les discussions que nous avons eues ont été pour moi du plus grand intérêt car elles ont<br />

été génér<strong>at</strong>rices d’idées nouvelles <strong>et</strong> m’ont ainsi permis d’entrevoir d’autres directions <strong>de</strong> recherche,<br />

complémentaires <strong>de</strong> celle suivies jusqu’ici. Je souhaite également exprimer ma reconnaissance aux professeurs<br />

Augros <strong>et</strong> Rockinger ainsi qu’à Jean-François Muzy – avec qui j’ai eu en outre le grand plaisir<br />

<strong>de</strong> collaborer – qui ont bien voulu consacrer une part <strong>de</strong> leur temps à juger mon travail <strong>et</strong> accepté <strong>de</strong><br />

participer à mon jury <strong>de</strong> thèse.<br />

J’aimerais également remercier les nombreuses personnes avec qui j’ai été amené à travailler sur l’un<br />

ou l’autre <strong>de</strong>s divers thèmes <strong>de</strong> recherche que j’ai abordé au cours <strong>de</strong> ma thèse. En premier lieu, je<br />

souhaiterais dire toute mon estime <strong>et</strong> ma reconnaissance à Vladilen Pisarenko, pour l’ai<strong>de</strong> précieuse<br />

qu’il m’a apporté tout au long <strong>de</strong> ces <strong>de</strong>ux années. Je voudrais aussi remercier Jorgen An<strong>de</strong>rsen avec<br />

qui j’ai passé les trois mois qui ont précédé le début <strong>de</strong> ma thèse durant mon stage <strong>de</strong> DEA ainsi qu’Ali<br />

Chabaane <strong>et</strong> Françoise Turpin du groupe BNP-Paribas avec qui j’ai entamé une collabor<strong>at</strong>ion fructueuse.<br />

Je souhaiterais aussi remercier Anne Sorn<strong>et</strong>te pour son soutien <strong>et</strong> ses encouragements constants mais<br />

également pour m’avoir incité à participer au proj<strong>et</strong> <strong>de</strong> “Nouveau chapitre <strong>de</strong> la thèse”, expérience qui<br />

s’est avérée être très intéressante <strong>et</strong> enrichissante. Inci<strong>de</strong>mment, je remercie Nadjia Hohweiller, consultante<br />

en bilan <strong>de</strong> compétence à la chambre <strong>de</strong> commerce <strong>et</strong> d’industrie <strong>de</strong> Nice, qui a participé à la<br />

rédaction <strong>de</strong> ce chapitre <strong>et</strong> Emmanuel Tric <strong>de</strong> l’Associ<strong>at</strong>ion Bernard Gregory qui soutient ce proj<strong>et</strong>.<br />

Je voudrais également remercier Bernard Gaypara <strong>et</strong> Yann Ageon pour l’ai<strong>de</strong> précieuse qu’ils m’ont<br />

apportée dans le domaine inform<strong>at</strong>ique, Bernard pour ce qui a été <strong>de</strong> résoudre les (nombreuses) pannes<br />

<strong>de</strong> mon ordin<strong>at</strong>eur <strong>et</strong> autres problèmes d’impression <strong>et</strong> Yann pour ses compétences <strong>de</strong> programmeur qui<br />

11


12<br />

m’ont souvent été d’un grand secours.<br />

Enfin, je tiens à remercier ma famille, mes ami(e)s, mes proches <strong>et</strong> tous ceux qui m’ont encouragé tout<br />

au long <strong>de</strong> ces <strong>de</strong>ux années. Qu’ils voient dans l’accomplissement <strong>de</strong> ce travail un témoignage <strong>de</strong> ma<br />

reconnaissance pour le soutien <strong>et</strong> la confiance qu’ils m’ont toujours manifestés.<br />

Nice, Janvier 2003


Introduction<br />

La multiplic<strong>at</strong>ion <strong>de</strong>s risques majeurs est l’une <strong>de</strong>s caractéristiques <strong>de</strong>s sociétés mo<strong>de</strong>rnes, à tel point que,<br />

reprenant le titre d’un <strong>de</strong>s plus célèbres ouvrages du sociologue allemand Ulrich Beck, on n’hésite plus<br />

à les qualifier <strong>de</strong> sociétés du risque. En outre, notre conception même du risque a évolué <strong>de</strong> sorte que les<br />

événements c<strong>at</strong>astrophiques ne semblent plus désormais perçus par nos concitoyens comme s’imposant<br />

à nos sociétés du fait d’un <strong>de</strong>stin injuste <strong>et</strong> implacable mais comme résultant essentiellement <strong>de</strong> notre<br />

propre développement technologique dont la complexité <strong>at</strong>teint un tel <strong>de</strong>gré qu’elle engendre “n<strong>at</strong>urellement”<br />

<strong>de</strong>s situ<strong>at</strong>ions <strong>de</strong> crises pour le présent (Tchernobyl, AZF...) comme pour l’avenir (réchauffement<br />

planétaire <strong>et</strong> changement clim<strong>at</strong>ique, par exemple). C<strong>et</strong>te prolifér<strong>at</strong>ion <strong>de</strong>s sources <strong>de</strong> risques impose<br />

alors aux organis<strong>at</strong>ions publiques, mais aussi aux institutions privées telles que les compagnies d’assurances<br />

ou les banques, <strong>de</strong> nouvelles oblig<strong>at</strong>ions quant à la détermin<strong>at</strong>ion, au contrôle <strong>et</strong> à la <strong>gestion</strong> <strong>de</strong> ces<br />

risques extrêmes afin d’en rendre les conséquences supportables pour la communauté sans pour autant<br />

m<strong>et</strong>tre en péril les organismes qui ont en charge <strong>de</strong> les assurer.<br />

Dans le secteur strictement financier, les krachs représentent peut-être les événements les plus frappants<br />

<strong>de</strong> toute une c<strong>at</strong>égorie d’événements extrêmes, <strong>et</strong> <strong>de</strong> plus en plus fréquemment l’activité financière doit<br />

en subir les eff<strong>et</strong>s néfastes. Que l’on songe, pour fixer les idées, que le krach d’octobre 1987 a englouti en<br />

quelques jours plus <strong>de</strong> mille milliards <strong>de</strong> dollars ou encore que le récent krach <strong>de</strong> la nouvelle économie<br />

a conduit à un effondrement <strong>de</strong> près d’un tiers <strong>de</strong> la capitalis<strong>at</strong>ion boursière mondiale par rapport à<br />

son niveau <strong>de</strong> 1999. Or, si le rôle <strong>de</strong> l’argent est <strong>de</strong> constituer une réserve <strong>de</strong> valeur, encore faut-il être<br />

capable d’en maîtriser les fluctu<strong>at</strong>ions afin notamment <strong>de</strong> ne pas voir, en un instant, englouti l’épargne<br />

<strong>de</strong> toute une vie, ruiné les proj<strong>et</strong>s d’expansion d’une entreprise ou anéanti l’économie d’une n<strong>at</strong>ion. Il<br />

est donc absolument nécessaire <strong>de</strong> se doter d’outils <strong>et</strong> <strong>de</strong> normes perm<strong>et</strong>tant <strong>de</strong> mieux appréhen<strong>de</strong>r les<br />

risques extrêmes sur les marchés financiers. Les instances bancaires mondiales, pleinement conscientes<br />

<strong>de</strong> c<strong>et</strong>te nécessité, ont émis <strong>de</strong>s instructions en se sens, au travers <strong>de</strong>s recommand<strong>at</strong>ions du comité <strong>de</strong><br />

Bâle (1996, 2001), en proposant <strong>de</strong>s modèles <strong>de</strong> <strong>gestion</strong> interne <strong>de</strong>s risques <strong>et</strong> en imposant <strong>de</strong>s montants<br />

minimaux <strong>de</strong> fonds propres en adéqu<strong>at</strong>ion avec les expositions aux risques. Cependant, quelques critiques<br />

se sont élevées contre ces recommand<strong>at</strong>ions (Szergö 1999, Danielsson, Embrechts, Goodhart, Ke<strong>at</strong>ing,<br />

Muennich, Renault <strong>et</strong> Shin 2001) jugées inadaptées <strong>et</strong> pouvant même conduire à une déstabilis<strong>at</strong>ion <strong>de</strong>s<br />

marchés. C<strong>et</strong>te controverse fait ressortir toute l’importance d’une meilleure compréhension <strong>de</strong>s risques<br />

extrêmes, <strong>de</strong> leurs conséquences <strong>et</strong> <strong>de</strong>s moyens <strong>de</strong> s’en prémunir.<br />

Ce challenge comporte à notre avis <strong>de</strong>ux vol<strong>et</strong>s. D’une part il est indispensable d’être capable <strong>de</strong> mieux<br />

quantifier les risques extrêmes, <strong>et</strong> cela passe par le développement d’outils <strong>st<strong>at</strong>istique</strong>s perm<strong>et</strong>tant <strong>de</strong><br />

dépasser le cadre gaussien dans lequel s’ancre la <strong>théorie</strong> financière classique héritée <strong>de</strong> Bachelier (1900),<br />

Markovitz (1959), <strong>et</strong> Black <strong>et</strong> Scholes (1973) notamment. D’autre part, il convient <strong>de</strong> s’interroger sur<br />

la façon dont peut s’intégrer à la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong> la prise en compte <strong>de</strong>s risques extrêmes. En<br />

eff<strong>et</strong>, il est fondamental <strong>de</strong> savoir si, à l’instar <strong>de</strong> ce que nous apprend la <strong>théorie</strong> financière classique<br />

basée sur l’approche moyenne-variance, les risques extrêmes <strong>de</strong>meurent diversifiables ? Si tel n’est pas<br />

le cas, il conviendra alors d’envisager l’utilis<strong>at</strong>ion d’autres moyens que la constitution <strong>de</strong> <strong>portefeuille</strong>s<br />

13


14 Introduction<br />

pour espérer se couvrir contre ce type <strong>de</strong> risques en ayant recours notamment aux produits dérivés, pour<br />

autant qu’ils soient capables <strong>de</strong> fournir une réelle assurance contre les gran<strong>de</strong>s vari<strong>at</strong>ions <strong>de</strong> cours - ce<br />

qui fût loin d’être le cas lors du krach <strong>de</strong> 1987 - ou peut-être avoir recours à la mutualis<strong>at</strong>ion comme en<br />

assurance par exemple.<br />

Le problème du contrôle <strong>de</strong>s risques extrêmes en finance <strong>et</strong> plus particulièrement son applic<strong>at</strong>ion à la <strong>gestion</strong><br />

<strong>de</strong> <strong>portefeuille</strong> peuvent sembler totalement étrangers au domaine <strong>de</strong> la physique. Cela n’est cependant<br />

qu’une apparence puisque dès ses premiers pas, la finance a partagé avec la physique, la <strong>de</strong>vançant<br />

même parfois, <strong>de</strong> nombreuses métho<strong>de</strong>s <strong>et</strong> outils telle la marche alé<strong>at</strong>oire brownienne (Bachelier 1900,<br />

Einstein 1905), l’utilis<strong>at</strong>ion <strong>de</strong> la notion <strong>de</strong> probabilité subjective qui perm<strong>et</strong> <strong>de</strong> rendre compte du comportement<br />

<strong>de</strong>s agents économiques dans l’incertain (Savage 1954) mais aussi d’interpréter <strong>de</strong>s expériences<br />

<strong>de</strong> mécanique quantique (Caves, Fluchs <strong>et</strong> Schack 2002), ou encore la notion <strong>de</strong> compromis moyennevariance<br />

en <strong>théorie</strong> du <strong>portefeuille</strong> Markovitz (1959) comme en algorithmique quantique (Maurer 2001),<br />

ainsi que l’équ<strong>at</strong>ion <strong>de</strong> diffusion <strong>de</strong> la chaleur qui sert également à décrire l’évolution du prix d’une<br />

option dans l’univers <strong>de</strong> Black <strong>et</strong> Scholes (1973), <strong>et</strong> plus récemment l’utilis<strong>at</strong>ion <strong>de</strong> modèles d’agents en<br />

interactions (variante du modèle d’Ising par exemple) perm<strong>et</strong>tant <strong>de</strong> dépasser le cadre standard <strong>de</strong> l’agent<br />

économique représent<strong>at</strong>if <strong>et</strong> ainsi <strong>de</strong> mieux percevoir les mécanismes fondamentaux à l’oeuvre sur les<br />

marchés financiers.<br />

C’est donc dans les métho<strong>de</strong>s, mais aussi dans les concepts, qu’il faut chercher un lien entre <strong>de</strong>s m<strong>at</strong>ières<br />

en apparence si différentes que la finance <strong>et</strong> la physique. En eff<strong>et</strong>, la mesure du risque fait appel à <strong>de</strong>s<br />

notions <strong>de</strong> <strong>théorie</strong> <strong>de</strong> l’inform<strong>at</strong>ion, <strong>de</strong> la décision <strong>et</strong> du contrôle dynamique qui ont une longue tradition<br />

en physique, quant à la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong>, <strong>de</strong> manière un peu schém<strong>at</strong>ique, on peut affirmer que<br />

ce n’est rien d’autre qu’un exemple particulier <strong>de</strong> problème d’optimis<strong>at</strong>ion sous contraintes, comme<br />

on en rencontre dans <strong>de</strong> nombreux domaines. En cela, d’un point <strong>de</strong> vue purement m<strong>at</strong>hém<strong>at</strong>ique, la<br />

recherche <strong>de</strong> <strong>portefeuille</strong>s optimaux n’est guère différente <strong>de</strong> la recherche <strong>de</strong>s ét<strong>at</strong>s d’équilibres d’un<br />

système thermodynamique. En eff<strong>et</strong>, dans le premier cas, on cherche à obtenir une valeur minimale du<br />

risque associé aux vari<strong>at</strong>ions <strong>de</strong> richesse du <strong>portefeuille</strong> pour une valeur fixée du ren<strong>de</strong>ment moyen <strong>et</strong><br />

un montant <strong>de</strong> la richesse initiale donnée. Dans le second cas, on cherche - pour ce qui est <strong>de</strong> l’étu<strong>de</strong> <strong>de</strong><br />

l’ensemble micro-canonique - à maximiser l’entropie (ou minimiser la néguentropie) du système sous<br />

la contrainte d’une énergie totale <strong>et</strong> d’un nombre <strong>de</strong> particules fixé. On peut donc, formellement, faire<br />

un parallèle (certes un peu rapi<strong>de</strong>) entre risque <strong>et</strong> néguentropie, ren<strong>de</strong>ment espéré <strong>et</strong> énergie totale <strong>et</strong><br />

richesse initiale <strong>et</strong> nombre <strong>de</strong> particules.<br />

Ceci étant, le parallèle s’arrête malheureusement là <strong>et</strong> l’on ne peut espérer d’une applic<strong>at</strong>ion simple<br />

<strong>et</strong> directe <strong>de</strong> certains résult<strong>at</strong>s généraux <strong>de</strong> la thermodynamique <strong>st<strong>at</strong>istique</strong> ou <strong>de</strong> mécanique quantique<br />

qu’elle nous perm<strong>et</strong>te d’obtenir d’intéressants enseignements pour la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong>. La distinction<br />

essentielle entre ces <strong>de</strong>ux problèmes d’optimis<strong>at</strong>ion que sont la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong> <strong>et</strong> la physique<br />

<strong>st<strong>at</strong>istique</strong> vient en fait <strong>de</strong> la différence entre les ordres <strong>de</strong> gran<strong>de</strong>ur en jeu dans ces <strong>de</strong>ux situ<strong>at</strong>ions : les<br />

plus gros <strong>portefeuille</strong>s contiennent au maximum quelques milliers d’actifs alors que les systèmes thermodynamiques<br />

auxquels nous sommes usuellement confrontés sont constitués <strong>de</strong> quelques cent milles<br />

milliards <strong>de</strong> milliards (NA 10 23 ) <strong>de</strong> particules. Pour un tel nombre <strong>de</strong> particules, le théorème <strong>de</strong> la<br />

limite centrale s’applique pleinement, y compris pour <strong>de</strong>s événements <strong>de</strong> très faibles probabilités, <strong>et</strong> fournit<br />

une simplific<strong>at</strong>ion fort utile. De plus, vu le nombre gigantesque d’entités considérées, les fluctu<strong>at</strong>ions<br />

rel<strong>at</strong>ives typiques <strong>de</strong>s gran<strong>de</strong>urs mesurées par rapport à leurs valeurs moyennes (espérées) sont <strong>de</strong> l’ordre<br />

<strong>de</strong> 1/ √ NA ∼ 10 −11 − 10 −12 , ce qui les rend tout à fait imperceptibles.<br />

Les choses sont toutes autres pour ce qui est <strong>de</strong> la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong>, où il convient <strong>de</strong> caractériser<br />

avec rigueur la distribution <strong>de</strong> ren<strong>de</strong>ment dudit <strong>portefeuille</strong>. En eff<strong>et</strong>, du fait du nombre le plus souvent<br />

modéré d’actifs qui constituent un <strong>portefeuille</strong> <strong>et</strong> <strong>de</strong> par la structure sous-jacente <strong>de</strong>s distributions <strong>de</strong><br />

chacun <strong>de</strong>s actifs, la distribution <strong>de</strong> ren<strong>de</strong>ment du <strong>portefeuille</strong> s’avère très éloignée <strong>de</strong> la distribution


Introduction 15<br />

gaussienne, contrairement à ce que pourrait conduire à penser le théorème <strong>de</strong> la limite centrale <strong>et</strong> à ce<br />

que l’on observe le plus souvent en physique <strong>st<strong>at</strong>istique</strong>. Il est donc nécessaire d’estimer la distribution<br />

<strong>de</strong> ren<strong>de</strong>ment du <strong>portefeuille</strong>, ce qui peut être réalisé <strong>de</strong> manière directe pour une alloc<strong>at</strong>ion <strong>de</strong> capital<br />

donnée ou bien <strong>de</strong> manière plus générale en se penchant sur le problème <strong>de</strong> l’estim<strong>at</strong>ion <strong>de</strong> la distribution<br />

jointe <strong>de</strong> tous les actifs à inclure dans le <strong>portefeuille</strong>. La première approche est certes beaucoup plus<br />

simple <strong>et</strong> rapi<strong>de</strong> puisqu’elle ne consiste qu’en l’estim<strong>at</strong>ion d’une distribution monovariée, mais il est<br />

aussi très clair qu’elle n’est en fait guère s<strong>at</strong>isfaisante car elle néglige une gran<strong>de</strong> partie <strong>de</strong> l’inform<strong>at</strong>ion<br />

observable <strong>et</strong> extractible à partir <strong>de</strong>s données recueillies sur les marchés financiers <strong>et</strong> dont seule est<br />

capable <strong>de</strong> rendre compte la distribution multivariée <strong>de</strong>s actifs. Cependant, on peut gar<strong>de</strong>r à l’esprit que<br />

ces <strong>de</strong>ux approches se rejoignent dans la mesure où l’on sait que la connaissance <strong>de</strong>s distributions <strong>de</strong><br />

ren<strong>de</strong>ments <strong>de</strong> tous les <strong>portefeuille</strong>s (pour toutes les alloc<strong>at</strong>ions <strong>de</strong> capital possibles) est équivalente à<br />

la connaissance <strong>de</strong> la distribution multivariée. Au final, la secon<strong>de</strong> métho<strong>de</strong> semble préférable, <strong>et</strong> parait<br />

être celle qui mobilise aujourd’hui le plus d’énergie aussi bien dans la recherche académique que privée.<br />

L’<strong>at</strong>taque frontale du problème <strong>de</strong> la détermin<strong>at</strong>ion <strong>de</strong> la distribution multivariée <strong>de</strong>s actifs est ardue <strong>et</strong> à<br />

notre avis beaucoup moins instructive que l’étu<strong>de</strong> séparée du comportement <strong>de</strong>s distributions marginales<br />

<strong>de</strong> chaque actif d’une part <strong>et</strong> <strong>de</strong> la structure <strong>de</strong> dépendance entre ces actifs d’autre part. C’est pourquoi<br />

nous avons privilégié c<strong>et</strong>te démarche-ci, avec pour objectif principal <strong>de</strong> rendre compte <strong>de</strong> manière la plus<br />

précise possible <strong>de</strong>s diverses sources <strong>de</strong> risques : risques associés individuellement à chaque actif d’une<br />

part <strong>et</strong> risques collectivement liés à l’ensemble <strong>de</strong>s actifs d’autre part.<br />

Ceci nous a conduit dans un premier temps (partie I) à nous intéresser au comportement marginal <strong>de</strong>s<br />

actifs dans le but <strong>de</strong> faire ressortir les points essentiels qui nécessitaient une compréhension approfondie<br />

afin <strong>de</strong> mieux cerner l’origine <strong>de</strong>s risques inhérents aux actifs individuels. Dans notre optique, se focalisant<br />

sur l’impact <strong>de</strong>s risques extrêmes, les krachs - succédant aux bulles spécul<strong>at</strong>ives - présentent un<br />

<strong>at</strong>trait tout particulier, au même titre que les quelques plus grands mouvements observés sur les marchés.<br />

En eff<strong>et</strong>, conformément à la célèbre loi <strong>de</strong>s 80-20 <strong>de</strong> V. Par<strong>et</strong>o, une toute p<strong>et</strong>ite fraction d’événements (ici<br />

les krachs <strong>et</strong> autres grands mouvements) suffit à rendre compte <strong>de</strong> la plus gran<strong>de</strong> partie <strong>de</strong>s conséquences<br />

(ici le ren<strong>de</strong>ment à long terme <strong>de</strong>s actifs, par exemple) résultant <strong>de</strong> l’ensemble <strong>de</strong> tous les événements. En<br />

outre, <strong>de</strong> par leurs répétitions qui semblent <strong>de</strong> plus en plus fréquentes, on ne peut plus faire l’économie <strong>de</strong><br />

négliger ces événements extrêmes, en laissant au seul hasard / <strong>de</strong>stin le soin <strong>de</strong> déci<strong>de</strong>r <strong>de</strong> leurs eff<strong>et</strong>s tout<br />

autant macro-économiques que sur chacun d’entre nous. Il est donc souhaitable <strong>de</strong> mieux comprendre<br />

comment <strong>et</strong> pourquoi ces événements se produisent.<br />

Pour cela, nous avons mené notre étu<strong>de</strong> selon trois directions complémentaires. Nous avons tout d’abord<br />

commencé par une étu<strong>de</strong> empirique conduisant à une <strong>de</strong>scription <strong>st<strong>at</strong>istique</strong> <strong>et</strong> st<strong>at</strong>ique <strong>de</strong>s grands risques.<br />

Nous avons ensuite poursuivi par une étu<strong>de</strong> phénoménologique prenant en compte le caractère dynamique<br />

<strong>de</strong> l’occurrence <strong>de</strong>s extrêmes, <strong>et</strong> dont le but était <strong>de</strong> décrire <strong>de</strong> manière ad hoc les phénomènes<br />

observés. Nous avons enfin terminé par une étu<strong>de</strong> “microscopique” ou micro-structurelle nous perm<strong>et</strong>tant<br />

d’abor<strong>de</strong>r <strong>de</strong> manière fondamentale les mécanismes à l’œuvre sur les marchés <strong>et</strong> <strong>de</strong> relier les propriétés<br />

<strong>st<strong>at</strong>istique</strong>s st<strong>at</strong>iques <strong>et</strong> dynamiques <strong>de</strong>s cours à <strong>de</strong>s comportements individuels <strong>et</strong> <strong>de</strong>s organis<strong>at</strong>ions <strong>de</strong><br />

marchés.<br />

D’un point <strong>de</strong> vue <strong>st<strong>at</strong>istique</strong>, il est nécessaire d’estimer précisément la probabilité d’occurrence <strong>de</strong>s<br />

événements extrêmes, qui se traduisent par le fait désormais bien connu que les distributions <strong>de</strong> ren<strong>de</strong>ment<br />

<strong>de</strong>s actifs ont <strong>de</strong>s “queues épaisses”. Cependant, encore faut-il être capable <strong>de</strong> caractériser le plus<br />

parfaitement possible ces “queues épaisses”, c’est-à-dire sans négliger ni surestimer ces événements<br />

extrêmes. De plus, il faut gar<strong>de</strong>r à l’esprit que toute <strong>de</strong>scription paramétrique est suj<strong>et</strong>te à l’erreur <strong>de</strong><br />

modèle <strong>et</strong> qu’ainsi plusieurs représent<strong>at</strong>ions doivent être considérées afin <strong>de</strong> cerner correctement les eff<strong>et</strong>s<br />

d’une telle source d’erreur. C’est pour cela que nous nous sommes, tout au long <strong>de</strong> notre étu<strong>de</strong>,<br />

intéressés à <strong>de</strong>ux classes <strong>de</strong> distributions à queues épaisses : les distributions régulièrement variables <strong>et</strong>


16 Introduction<br />

les distributions exponentielles étirées dont nous avons discuté la pertinence <strong>et</strong> les conséquences vis-à-vis<br />

<strong>de</strong> la sous / surestim<strong>at</strong>ion <strong>de</strong>s risques (chapitres 1, 2 <strong>et</strong> 3).<br />

Nous nous sommes ensuite intéressés à la manière dont la vol<strong>at</strong>ilité r<strong>et</strong>ourne à un niveau d’“équilibre”<br />

après une longue pério<strong>de</strong> <strong>de</strong> forte variabilité <strong>de</strong>s cours (chapitre 4). On sait en eff<strong>et</strong> que la vol<strong>at</strong>ilité<br />

présente un phénomène <strong>de</strong> persistance très marqué, <strong>et</strong> qu’après une pério<strong>de</strong> anormalement haute (ou<br />

basse), elle relaxe vers un niveau moyen, que l’on peut en quelque sorte associer à un niveau d’équilibre.<br />

L’étu<strong>de</strong> <strong>de</strong> c<strong>et</strong>te relax<strong>at</strong>ion est très importante du point <strong>de</strong> vue <strong>de</strong> la <strong>gestion</strong> <strong>de</strong>s risques, car elle perm<strong>et</strong><br />

d’une part d’estimer la durée typique d’une pério<strong>de</strong> anormalement turbulente ou calme <strong>et</strong> d’autre part<br />

elle apporte un moyen <strong>de</strong> prédiction rel<strong>at</strong>ivement fiable <strong>de</strong> la valeur future <strong>de</strong> la vol<strong>at</strong>ilité, dont on connaît<br />

l’intérêt pour tout ce qui concerne le “pricing” <strong>de</strong> produits dérivés notamment. De plus, <strong>et</strong> c’est le point<br />

clé <strong>de</strong> notre développement, cela nous a permis <strong>de</strong> proposer un mécanisme expliquant l’impact du flux<br />

d’inform<strong>at</strong>ion sur la dynamique <strong>de</strong> la vol<strong>at</strong>ilité. Ceci ouvre la voie à une étu<strong>de</strong> systém<strong>at</strong>ique <strong>de</strong> l’eff<strong>et</strong><br />

<strong>de</strong> l’arrivée <strong>de</strong> telle ou telle inform<strong>at</strong>ion sur les marchés aussi bien ex post, pour tout ce qui concerne<br />

l’analyse <strong>de</strong>s causes <strong>de</strong>s grands mouvements <strong>de</strong> cours, qu’ex ante pour tout ce qui touche à l’étu<strong>de</strong> <strong>de</strong><br />

scénarii <strong>et</strong> l’anticip<strong>at</strong>ion <strong>de</strong>s eff<strong>et</strong>s <strong>de</strong>s grands chocs.<br />

Enfin, nous avons voulu explorer un peu plus avant les causes microscopiques responsables <strong>de</strong>s phénomènes<br />

observés sur les marchés (chapitres 5 <strong>et</strong> 6). Pour cela, nous avons construit un modèle d’agents en<br />

interaction, rel<strong>at</strong>ivement parcimonieux, visant à rendre compte <strong>de</strong> manière plus réaliste que ne le font<br />

les modèles actuels <strong>de</strong> la croissance super-exponentielle <strong>de</strong>s cours lors <strong>de</strong>s phases <strong>de</strong> bulles spécul<strong>at</strong>ives<br />

qui conduisent à d’importantes surestim<strong>at</strong>ions du prix <strong>de</strong>s actifs <strong>et</strong> finalement à <strong>de</strong> fortes corrections.<br />

Les résult<strong>at</strong>s obtenus sont intéressants <strong>et</strong> ont confirmé l’importance <strong>de</strong> certains types <strong>de</strong> comportements<br />

<strong>de</strong>s agents conduisant à <strong>de</strong>s “emballées” <strong>de</strong>s marchés <strong>et</strong> par suite aux pério<strong>de</strong>s <strong>de</strong> gran<strong>de</strong>s vol<strong>at</strong>ilités <strong>et</strong><br />

aux fluctu<strong>at</strong>ions extrêmes. Cependant, on ne peut, en l’ét<strong>at</strong>, espérer intégrer ces modèles, encore trop<br />

rudimentaires, à une chaîne <strong>de</strong> décision concernant la politique <strong>de</strong> <strong>gestion</strong> <strong>de</strong>s risques d’une institution.<br />

Néanmoins, nous pensons que ce genre d’outil présente un <strong>at</strong>trait particulier <strong>et</strong> <strong>de</strong>vrait, à terme, fournir<br />

d’utiles inform<strong>at</strong>ions perm<strong>et</strong>tant une meilleure estim<strong>at</strong>ion / prévision <strong>de</strong>s risques à venir. En particulier,<br />

ces modèles <strong>de</strong>vraient perm<strong>et</strong>tre d’obtenir, à l’ai<strong>de</strong> <strong>de</strong> la génér<strong>at</strong>ion <strong>de</strong> scénarii, <strong>de</strong>s estim<strong>at</strong>ions <strong>de</strong>s<br />

probabilités associées aux événements rares dans certaines phases <strong>de</strong> marchés, estim<strong>at</strong>ion beaucoup plus<br />

fiable que ne le sont les actuelles estim<strong>at</strong>ions subjectives (Johnson, Lamper, Jefferies, Hart <strong>et</strong> Howison<br />

2001).<br />

Le <strong>de</strong>uxième maillon <strong>de</strong> la chaîne <strong>de</strong> reconstruction <strong>de</strong> la distribution multivariée <strong>de</strong>s ren<strong>de</strong>ments d’actifs<br />

consiste en l’étu<strong>de</strong> <strong>de</strong> leur structure <strong>de</strong> dépendance, problème que nous abor<strong>de</strong>rons dans la partie II. En<br />

eff<strong>et</strong>, les risques ne sont pas uniquement dus au comportement marginal <strong>de</strong> chaque actif mais également<br />

à leur comportement collectif. Celui-ci peut être étudié à l’ai<strong>de</strong> d’obj<strong>et</strong>s m<strong>at</strong>hém<strong>at</strong>iques nommés copules<br />

qui perm<strong>et</strong>tent <strong>de</strong> capturer complètement la dépendance entre les actifs. En fait, nous verrons aux<br />

chapitres 7 <strong>et</strong> 8 que la détermin<strong>at</strong>ion <strong>de</strong> la copule est une affaire délic<strong>at</strong>e <strong>et</strong> que là encore le risque<br />

d’erreur <strong>de</strong> modèle est important, expressément pour ce qui est <strong>de</strong>s risques extrêmes. Ainsi, nous verrons<br />

qu’il s’avère nécessaire <strong>de</strong> mener une étu<strong>de</strong> spécifique <strong>de</strong> la dépendance entre les extrêmes, ce que<br />

nous ferrons au chapitre 9, en développant une métho<strong>de</strong> d’estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong><br />

queue, c’est-à-dire <strong>de</strong> la probabilité qu’un actif subisse une très gran<strong>de</strong> perte sachant qu’un autre actif<br />

par exemple ou que le marché dans son ensemble a lui aussi subi une très gran<strong>de</strong> perte. C<strong>et</strong>te quantité est<br />

à notre avis absolument cruciale car elle quantifie <strong>de</strong> manière très simple le fait que les risques extrêmes<br />

puissent être ou non diversifiés par agrég<strong>at</strong>ion au sein <strong>de</strong> <strong>portefeuille</strong>s. En eff<strong>et</strong>, soit le coefficient <strong>de</strong><br />

dépendance <strong>de</strong> queue est nul <strong>et</strong> les extrêmes se produisent <strong>de</strong> manière asymptotiquement indépendante<br />

ce qui perm<strong>et</strong> alors d’envisager <strong>de</strong> les diversifier, soit ils <strong>de</strong>meurent asymptotiquement dépendants <strong>et</strong> on<br />

ne peut qu’espérer minimiser la probabilité d’occurrence <strong>de</strong>s mouvements extrêmes concomitants.<br />

Synthétisant les résult<strong>at</strong>s <strong>de</strong> ces <strong>de</strong>ux premières parties, nous pourrons alors nous poser la question pro-


Introduction 17<br />

prement dite <strong>de</strong> la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong>, ce qui sera l’obj<strong>et</strong> <strong>de</strong> la partie III. Avant d’en arriver au<br />

problème <strong>de</strong> la recherche <strong>de</strong>s <strong>portefeuille</strong>s optimaux, qui n’est en fait qu’un problème m<strong>at</strong>hém<strong>at</strong>ique,<br />

nous nous interrogerons sur la manière <strong>de</strong> choisir un <strong>portefeuille</strong> optimal, ce qui nous amènera à discuter,<br />

au chapitre 10, <strong>de</strong> la <strong>théorie</strong> <strong>de</strong> la décision <strong>et</strong> <strong>de</strong> divers moyens <strong>de</strong> quantifier les risques associés à<br />

la distribution <strong>de</strong> ren<strong>de</strong>ment d’un <strong>portefeuille</strong>. La question n’est en fait pas triviale car elle revient à se<br />

<strong>de</strong>man<strong>de</strong>r comment synthétiser le mieux possible en un seul nombre l’inform<strong>at</strong>ion contenue dans une<br />

fonction (<strong>de</strong> distribution) toute entière <strong>et</strong> donc une infinité <strong>de</strong> nombres. Ce résumé <strong>de</strong> l’inform<strong>at</strong>ion ne<br />

pouvant qu’être partiel, il convient, afin d’en conserver la fraction la plus pertinente, <strong>de</strong> bien cerner nos<br />

objectifs <strong>et</strong> pour cela <strong>de</strong> bien comprendre les buts que l’on cherche à <strong>at</strong>teindre en définissant ce qu’est la<br />

notion <strong>de</strong> grand risque ou <strong>de</strong> risque extrême dans le contexte <strong>de</strong> la sélection <strong>de</strong> <strong>portefeuille</strong>s.<br />

A notre avis, la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong> doit répondre à <strong>de</strong>ux objectifs. Premièrement, l’alloc<strong>at</strong>ion <strong>de</strong>s<br />

actifs au sein du <strong>portefeuille</strong> doit s<strong>at</strong>isfaire à <strong>de</strong>s contraintes portant sur le capital économique, c’està-dire<br />

sur la somme qui doit être investie dans un actif sans risque pour perm<strong>et</strong>tre au <strong>gestion</strong>naire <strong>de</strong><br />

faire face à ses oblig<strong>at</strong>ions en dépit <strong>de</strong>s fluctu<strong>at</strong>ions <strong>de</strong> la valeur <strong>de</strong> marché du <strong>portefeuille</strong>. L’objectif<br />

primordial étant, bien évi<strong>de</strong>mment d’éviter la ruine. Deuxièmement, le <strong>portefeuille</strong> doit répondre à un<br />

objectif <strong>de</strong> rentabilité fixé. Il convient donc d’être capable <strong>de</strong> quantifier la propension du <strong>portefeuille</strong> à<br />

réaliser l’objectif qui a été défini. Plus clairement, l’objectif <strong>de</strong> rentabilité est généralement déterminé<br />

par la valeur du ren<strong>de</strong>ment moyen (ou espéré) à <strong>at</strong>teindre <strong>et</strong> dont on souhaite ne pas voir trop s’écarter<br />

les ren<strong>de</strong>ments réalisés. Il est alors nécessaire d’être capable d’estimer les fluctu<strong>at</strong>ions que le <strong>portefeuille</strong><br />

subit typiquement. Donc, la notion <strong>de</strong> risque présente au minimum un double sens, dans la mesure où<br />

elle concerne d’une part le capital économique <strong>et</strong> d’autre part l’amplitu<strong>de</strong> <strong>de</strong>s fluctu<strong>at</strong>ions <strong>st<strong>at</strong>istique</strong>s du<br />

ren<strong>de</strong>ment autour du ren<strong>de</strong>ment à <strong>at</strong>teindre.<br />

Moyennant cela, nous verrons ensuite comment m<strong>et</strong>tre à profit ces mesures <strong>de</strong> risques grands <strong>et</strong> extrêmes<br />

afin <strong>de</strong> construire <strong>de</strong>s <strong>portefeuille</strong>s optimaux supportant le mieux possible les gran<strong>de</strong>s fluctu<strong>at</strong>ions <strong>de</strong>s<br />

marchés financiers (chapitre 11), <strong>et</strong> en particulier comment minimiser l’impact <strong>de</strong>s grands co-mouvements<br />

entre actifs qui ne peuvent être totalement diversifiés (chapitre 12), puis comment s<strong>at</strong>isfaire la contrainte<br />

portant sur le capital économique au travers <strong>de</strong> mesures telles que la Value-<strong>at</strong>-Risk ou l’Expected-shortall<br />

(chapitre 13) <strong>et</strong> enfin, comment construire <strong>de</strong>s <strong>portefeuille</strong>s dont les ren<strong>de</strong>ments réalisés s’écartent le<br />

moins possible <strong>de</strong> l’objectif <strong>de</strong> rentabilité initialement fixé sous l’eff<strong>et</strong> <strong>de</strong>s gran<strong>de</strong>s fluctu<strong>at</strong>ions (chapitre<br />

14), ce qui nous amènera aussi à discuter <strong>de</strong>s conséquences du choix <strong>de</strong> <strong>portefeuille</strong>s minimisant l’impact<br />

<strong>de</strong>s risques grands <strong>et</strong> extrêmes sur l’équilibre <strong>de</strong>s marchés.<br />

Enfin, nous synthétiserons l’ensemble <strong>de</strong>s résult<strong>at</strong>s obtenus, discuterons <strong>de</strong> leurs conséquences vis-à-vis<br />

<strong>de</strong> la <strong>gestion</strong> <strong>de</strong>s risques extrêmes <strong>et</strong> conclurons par quelques perspectives <strong>de</strong> recherches futures.


18 Introduction


Première partie<br />

Etu<strong>de</strong> <strong>et</strong> modélis<strong>at</strong>ion <strong>de</strong>s propriétés <strong>de</strong>s<br />

rentabilités <strong>de</strong>s actifs financiers<br />

19


Chapitre 1<br />

Faits stylisés <strong>de</strong>s rentabilités boursières<br />

L’obj<strong>et</strong> <strong>de</strong> ce chapitre est <strong>de</strong> présenter les principaux faits stylisés <strong>de</strong>s ren<strong>de</strong>ments boursiers, d’en discuter<br />

la pertinence vis-à-vis <strong>de</strong>s grands principes <strong>de</strong> la finance ou <strong>de</strong> certains modèles phénoménologiques,<br />

mais aussi <strong>de</strong> rem<strong>et</strong>tre en cause ou généraliser certains résult<strong>at</strong>s considérés comme acquis <strong>et</strong> bien établis<br />

alors même que d’autres caractéristiques toutes aussi réalistes semblent <strong>de</strong>voir être mises à jour.<br />

Par fait stylisé nous désignons toute caractéristique commune <strong>de</strong>s séries temporelles issues <strong>de</strong>s marchés<br />

financiers. Ainsi donc, nous ne nous intéressons pas à une étu<strong>de</strong> événementielle <strong>de</strong>s marchés, étu<strong>de</strong><br />

où l’on cherche à expliquer le mouvement <strong>de</strong>s cours par l’arrivée <strong>de</strong> telle ou telle inform<strong>at</strong>ion, mais<br />

plutôt à une approche <strong>st<strong>at</strong>istique</strong> dont le but est d’i<strong>de</strong>ntifier <strong>et</strong> d’isoler les traits communs <strong>de</strong>s séries<br />

temporelles issues <strong>de</strong>s cours <strong>de</strong>s actifs financiers. En écrivant cela, nous ne cherchons pas à opposer ces<br />

<strong>de</strong>ux approches, qui n’ont rien d’antinomiques, <strong>et</strong> peuvent même se révéler complémentaires comme<br />

nous le verrons à la fin <strong>de</strong> ce chapitre.<br />

L’étu<strong>de</strong> <strong>de</strong>s faits stylisés repose sur les données fournies par les séries temporelles <strong>de</strong>s prix d’actifs<br />

financiers <strong>et</strong> <strong>de</strong> leurs ren<strong>de</strong>ments. Dans la suite, nous définirons par Pt le prix d’un actif à l’instant t <strong>et</strong><br />

Pt+1 le prix <strong>de</strong> c<strong>et</strong> actif à l’instant t + ∆t, où ∆t désigne l’unité <strong>de</strong> temps considérée, qui peut aussi bien<br />

être la minute que la journée ou le mois. Le ren<strong>de</strong>ment <strong>de</strong> l’actif à l’instant t sera quant à lui noté rt <strong>et</strong><br />

défini par<br />

rt = ln Pt<br />

Pt−1<br />

Pt − Pt−1<br />

, (1.1)<br />

Pt−1<br />

qui est en toute rigueur le ren<strong>de</strong>ment logarithmique mais diffère peu du ren<strong>de</strong>ment traditionnel tant que<br />

celui-ci <strong>de</strong>meure très p<strong>et</strong>it <strong>de</strong>vant un. La différence essentielle vient <strong>de</strong> ce que le ren<strong>de</strong>ment traditionnel<br />

est borné inférieurement par moins un, tandis que le ren<strong>de</strong>ment logarithmique est définie sur la droite<br />

réelle toute entière, ce qui constitue une distinction importante pour la détermin<strong>at</strong>ion <strong>de</strong> la distribution<br />

marginale <strong>de</strong>s ren<strong>de</strong>ments. De plus, dans ces conditions le logarithme du prix ln Pt suit un procesus dont<br />

les incréments sont donnés par les ren<strong>de</strong>ments rt.<br />

Une question cruciale se pose alors, à savoir celle <strong>de</strong> la st<strong>at</strong>ionnarité <strong>de</strong>s données sur lesquelles se basent<br />

les étu<strong>de</strong>s <strong>st<strong>at</strong>istique</strong>s. L’hypothèse <strong>de</strong> la st<strong>at</strong>ionnarité <strong>de</strong>s prix <strong>de</strong>s actifs est évi<strong>de</strong>mment à rej<strong>et</strong>er, puisque<br />

ces <strong>de</strong>rniers dérivent d’un processus intégré, comme le traduit l’équ<strong>at</strong>ion (1.1). En revanche, hypothèse <strong>de</strong><br />

st<strong>at</strong>ionnarité semble beaucoup plus acceptable pour les séries <strong>de</strong> ren<strong>de</strong>ments <strong>et</strong> est très souvent faite, car<br />

nécessaire à l’analyse <strong>st<strong>at</strong>istique</strong> <strong>de</strong>s données 1 , même s’il nous faut reconnaitre qu’elle est parfois suj<strong>et</strong>te<br />

à caution. En eff<strong>et</strong>, certaines étu<strong>de</strong>s auxquelles nous feront référence dans la suite ont été menées sur <strong>de</strong>s<br />

1 Dans le cas <strong>de</strong> séries non st<strong>at</strong>ionnaires, l’étu<strong>de</strong> reste dans une certaine mesure possible, mais fait appel à <strong>de</strong>s métho<strong>de</strong>s plus<br />

complexes <strong>et</strong> dont l’emploi n’est valable que dans le cadre <strong>de</strong> modèles plus ou moins spécifiques (Gouriéroux <strong>et</strong> Jasiak 2001)<br />

21


22 1. Faits stylisés <strong>de</strong>s rentabilités boursières<br />

séries longues d’un siècle. Or, sur <strong>de</strong> telles durées, l’évolution du contexte économique, réglementaire<br />

mais aussi l’introduction <strong>de</strong> nouveaux produits financiers semblent laisser à penser que les mo<strong>de</strong>s <strong>de</strong><br />

fonctionnement <strong>de</strong>s marchés se sont considérablement modifiés au fil du temps ce qui <strong>de</strong>vrait se refléter<br />

dans les cours par <strong>de</strong>s non-st<strong>at</strong>ionnarités. De plus, même sur <strong>de</strong> brèves pério<strong>de</strong>s, <strong>de</strong>s eff<strong>et</strong>s saisonniers<br />

apparaissent <strong>et</strong> l’on note par exemple <strong>de</strong>s comportements anormaux en début <strong>et</strong> fin <strong>de</strong> journée, <strong>de</strong> semaine<br />

ou d’année. Cependant, ces eff<strong>et</strong>s étant i<strong>de</strong>ntifiés, il est possible <strong>de</strong> les corriger. En résumé, la<br />

st<strong>at</strong>ionnarité pose potentiellement un problème important, mais on peut espérer en limiter les eff<strong>et</strong>s par<br />

la <strong>de</strong>ssaisonalis<strong>at</strong>ion <strong>de</strong>s données <strong>et</strong> la considér<strong>at</strong>ion d’échantillons <strong>de</strong> taille raisonnable (<strong>de</strong> cinq à dix<br />

ans tout au plus) sélectionnant <strong>de</strong>s séquences <strong>de</strong> marchés rel<strong>at</strong>ivement homogènes.<br />

Dans ce qui suit, nous allons essentiellement présenter les propriétés <strong>de</strong>s ren<strong>de</strong>ments journaliers ou intradays,<br />

<strong>et</strong> sauf indic<strong>at</strong>ion contraire, le terme ren<strong>de</strong>ment fera implicitement référence aux ren<strong>de</strong>ments calculés<br />

à une échelle <strong>de</strong> temps inférieure ou égale à la journée. Lorsque nous considérerons <strong>de</strong>s ren<strong>de</strong>ments<br />

mensuels par exemple, il en sera explicitement fait mention.<br />

Enfin, nous voulons souligner que le rappel <strong>de</strong>s faits stylisés que nous donnons dans ce chapitre ne<br />

prétend pas à l’exhaustivité, mais se concentre sur la <strong>de</strong>scription <strong>de</strong> ceux qui nous seront les plus utiles<br />

pour la suite <strong>de</strong> notre exposé, <strong>et</strong> nous renvoyons le lecteur aux nombreux articles <strong>de</strong> revue sur le suj<strong>et</strong><br />

comme par exemple Pagan (1996), Cont (2001) ou encore Engle <strong>et</strong> P<strong>at</strong>ton (2001) ainsi qu’aux ouvrages<br />

<strong>de</strong> Campbell, Lo <strong>et</strong> MacKinlay (1997) ou Gouriéroux <strong>et</strong> Jasiak (2001) pour une approche économétrique<br />

<strong>et</strong> Mantegna <strong>et</strong> Stanley (1999), Bouchaud <strong>et</strong> Potters (2000) ou Roehner (2001, 2002) pour une vision <strong>de</strong><br />

physiciens.<br />

1.1 Rappel <strong>de</strong>s faits stylisés<br />

Nous allons maintenant exposer les principaux faits stylisés en commençant par la distribution <strong>de</strong>s ren<strong>de</strong>ments<br />

dont il semble aujourd’hui certain qu’elle possè<strong>de</strong> <strong>de</strong>s “queues épaisses”, puis nous présenterons<br />

les propriétés <strong>de</strong> dépendances temporelles <strong>de</strong>s séries financières essentiellement caractérisées par l’absence<br />

<strong>de</strong> corrél<strong>at</strong>ion entre les ren<strong>de</strong>ments mais une forte persistance <strong>de</strong> la vol<strong>at</strong>ilité, après quoi nous<br />

terminerons par quelques propriétés complémentaires <strong>de</strong> ces séries financières.<br />

1.1.1 La distribution <strong>de</strong>s ren<strong>de</strong>ments<br />

La toute première particularité <strong>de</strong>s ren<strong>de</strong>ments financiers est <strong>de</strong> suivre <strong>de</strong>s lois dites “à queues épaisses”.<br />

Par loi à queues épaisses nous désignons l’ensemble <strong>de</strong>s lois régulièrement variables à l’infini, c’està-dire<br />

pour simplifier, les lois équivalentes à l’infini à une loi <strong>de</strong> puissance (pour une définition exacte<br />

<strong>de</strong> la notion <strong>de</strong> vari<strong>at</strong>ion régulière voir Bingham, Goldie <strong>et</strong> Teugel (1987)). Ce comportement est radicalement<br />

différent <strong>de</strong> celui généralement admis durant la première moitié du XXème siècle. En eff<strong>et</strong>,<br />

<strong>de</strong>puis <strong>de</strong>s travaux pionniers <strong>de</strong> Bachelier (1900) repris <strong>et</strong> étendus par Samuelson (1965, 1973), tout<br />

le mon<strong>de</strong> s’accordait sur le fait que les distributions <strong>de</strong> ren<strong>de</strong>ments suivaient <strong>de</strong>s distributions gaussiennes.<br />

Il faudra <strong>at</strong>tendre Man<strong>de</strong>lbrot (1963) <strong>et</strong> son étu<strong>de</strong> <strong>de</strong>s prix pr<strong>at</strong>iqués sur le marché du coton, puis<br />

Fama (1963, 1965a) pour clairement rej<strong>et</strong>er c<strong>et</strong>te hypothèse <strong>et</strong> en venir à considérer <strong>de</strong>s distributions en<br />

lois <strong>de</strong> puissance, <strong>et</strong> plus particulièrement les lois stables <strong>de</strong> Lévy, dont l’une <strong>de</strong>s caractéristiques est<br />

<strong>de</strong> ne pas adm<strong>et</strong>tre <strong>de</strong> second moment <strong>et</strong> donc d’avoir une variance infinie. Or, <strong>de</strong>s tests directs sur la<br />

plupart <strong>de</strong>s séries financières perm<strong>et</strong>tent clairement <strong>de</strong> conclure à l’existence <strong>de</strong> ce second moment. En<br />

eff<strong>et</strong>, par agrég<strong>at</strong>ion temporelle <strong>de</strong>s ren<strong>de</strong>ments, c’est-à-dire lorsque l’on passe <strong>de</strong>s ren<strong>de</strong>ments journaliers<br />

aux ren<strong>de</strong>ments mensuels ou à <strong>de</strong>s ren<strong>de</strong>ments calculés à <strong>de</strong>s échelles encore plus importantes, on<br />

note une (lente) convergence <strong>de</strong> la distribution vers la gaussienne (Bouchaud <strong>et</strong> Potters 2000, Campbell


1.1. Rappel <strong>de</strong>s faits stylisés 23<br />

<strong>et</strong> al. 1997, Mantegna <strong>et</strong> Stanley 1999). Donc, les lois stables <strong>de</strong> Lévy ne sauraient elles non plus convenir<br />

à la <strong>de</strong>scription <strong>de</strong>s distributions <strong>de</strong> rentabilités boursières, du moins dans leur globalité.<br />

Durant les années 80-90, <strong>de</strong> gigantesques bases <strong>de</strong> données contenant les cours <strong>de</strong>s actifs financiers sur<br />

<strong>de</strong> longues pério<strong>de</strong>s <strong>et</strong> enregistrées à <strong>de</strong> très hautes fréquences voient le jours. Dans le même temps,<br />

l’économétrie <strong>et</strong> plus particulièrement l’économétrie financière développe <strong>de</strong> nouveaux outils, si bien<br />

qu’à la fois sur le plan méthodologique que sur le plan <strong>de</strong> la quantité <strong>de</strong> données accessibles, une p<strong>et</strong>ite<br />

révolution se produit. C’est alors que l’on en vient à cerner <strong>de</strong> manière beaucoup plus précise le comportement<br />

asymptotique <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ments <strong>de</strong>s actifs financiers. De nombreuses étu<strong>de</strong>s<br />

montrent qu’effectivement les distributions <strong>de</strong> ren<strong>de</strong>ments se comportent comme <strong>de</strong>s lois régulièrement<br />

variables dont l’exposant <strong>de</strong> queue est compris entre <strong>de</strong>ux <strong>et</strong> <strong>de</strong>mi <strong>et</strong> qu<strong>at</strong>re <strong>de</strong> sorte que les <strong>de</strong>ux premiers<br />

moments <strong>de</strong> ces distributions existent <strong>et</strong> peut-être aussi les troisième <strong>et</strong> qu<strong>at</strong>rième. Ces étu<strong>de</strong>s ont<br />

été menées sur diverses sortes d’actifs mais conduisent toutes à <strong>de</strong>s conclusions similaires. On pourra<br />

notamment consulter Longin (1996), Lux (1996), Pagan (1996), Gopikrishnan, Meyer, Amaral <strong>et</strong> Stanley<br />

(1998) pour <strong>de</strong>s étu<strong>de</strong>s concernant les marchés d’actions ainsi que Dacorogna, Müller, Pict<strong>et</strong> <strong>et</strong> <strong>de</strong> Vries<br />

(1992), <strong>de</strong> Vries (1994) ou encore Guillaume, Dacorogna, Davé, Müller, Olsen <strong>et</strong> Pict<strong>et</strong> (1997) pour ce<br />

qui est <strong>de</strong>s taux <strong>de</strong> change.<br />

Cependant, quelques voix se sont récemment élevées pour suggérer qu’il serait peut-être sage <strong>de</strong> tempérer<br />

l’enthousiasme général à l’égard <strong>de</strong>s lois <strong>de</strong> puissances. En eff<strong>et</strong>, selon Mantegna <strong>et</strong> Stanley (1995) les<br />

résult<strong>at</strong>s <strong>de</strong> Man<strong>de</strong>lbrot (1963) décrivent certes <strong>de</strong> façon correcte une gran<strong>de</strong> partie <strong>de</strong> la distribution<br />

<strong>de</strong>s ren<strong>de</strong>ments mais, <strong>de</strong> manière ultime, le comportement en loi stable <strong>de</strong> Lévy est erroné <strong>et</strong> doit être<br />

tronqué par une décroissance exponentielle. On sait d’ailleurs que ce type <strong>de</strong> distribution converge - par<br />

convolution - <strong>de</strong> manière extraordinairement lente vers la gaussienne (Mantegna <strong>et</strong> Stanley 1994), ce qui<br />

est conforme aux observ<strong>at</strong>ions empiriques. Dans le même esprit, Gouriéroux <strong>et</strong> Jasiak (1998) concluent<br />

que la <strong>de</strong>nsité <strong>de</strong> probabilité du titre Alc<strong>at</strong>el décroît plus vite que toute loi <strong>de</strong> puissance. Enfin, Laherrère<br />

<strong>et</strong> Sorn<strong>et</strong>te (1999) affirment <strong>de</strong> manière plus précise que les distributions dites exponentielles étirées<br />

semblent fournir une meilleure <strong>de</strong>scription <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ments que les lois <strong>de</strong> puissance,<br />

non seulement dans les queues extrêmes mais aussi sur une large gamme <strong>de</strong> ren<strong>de</strong>ments. Aussi à <strong>de</strong>s fins<br />

<strong>de</strong> généralité, il semble judicieux d’étendre la notion <strong>de</strong> distributions à queues épaisses aux distributions<br />

sous-exponentielles, c’est-à-dire qui ne décroissent pas plus vite qu’une exponentielle à l’infini. Pour une<br />

définition rigoureuse ainsi qu’une synthèse <strong>de</strong>s propriétés <strong>de</strong> ces distributions, nous renvoyons le lecteur<br />

à Embrechts, Klüppelberg <strong>et</strong> Mikosh (1997) <strong>et</strong> Goldie <strong>et</strong> Klüppelberg (1998).<br />

Au vu du flou qui <strong>de</strong>meure quant au comportement exact <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ments, un réexamen<br />

<strong>de</strong> leur comportement asymptotique semble nécessaire. En particulier, il parait indispensable <strong>de</strong> comparer<br />

le pouvoir <strong>de</strong>scriptif <strong>de</strong>s <strong>de</strong>ux familles <strong>de</strong> distributions que nous venons d’évoquer, <strong>et</strong> donc nous<br />

reviendrons en détail sur ce problème dans un prochain paragraphe. Nous délaissons temporairement<br />

ce point pour nous tourner maintenant vers le <strong>de</strong>uxième trait caractéristique <strong>de</strong>s séries financières, à savoir<br />

l’existence <strong>de</strong> structures <strong>de</strong> dépendances temporelles non triviales. Ceci est d’ailleurs un élément<br />

fondamental <strong>de</strong> la compréhension <strong>de</strong> la difficulté à déterminer précisément la distribution marginale <strong>de</strong>s<br />

ren<strong>de</strong>ments.<br />

1.1.2 Propriétés <strong>de</strong> dépendances temporelles<br />

Les propriétés <strong>de</strong> dépendances temporelles que nous allons résumer dans ce paragraphe dérivent toutes<br />

<strong>de</strong> l’un <strong>de</strong>s grands principes fondamentaux <strong>de</strong> la <strong>théorie</strong> financière, à savoir le principe <strong>de</strong> non arbitrage.<br />

Sans rentrer ici dans le détail, nous nous bornerons à dire <strong>de</strong> manière sommaire que ce principe postule<br />

l’impossibilité d’obtenir un gain certain sur les marchés financiers. La logique d’un tel postul<strong>at</strong> tient dans<br />

le fait que si un agent détecte une telle opportunité, il va immédi<strong>at</strong>ement en tirer profit <strong>et</strong> celle-ci va donc


24 1. Faits stylisés <strong>de</strong>s rentabilités boursières<br />

Vol<strong>at</strong>ility<br />

0.01<br />

0.009<br />

0.008<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

Jan 70 Dec 85<br />

FIG. 1.1 – Vol<strong>at</strong>ilité réalisée (carrés <strong>de</strong>s ren<strong>de</strong>ments) <strong>de</strong> l’indice Standard & Poor’s 500 entre janvier<br />

1970 <strong>et</strong> décembre 1985.<br />

disparaître. Ainsi, hormis <strong>de</strong> manière fugitive, une telle situ<strong>at</strong>ion ne peut se produire. Cela implique en<br />

particulier que les ren<strong>de</strong>ments futurs ne peuvent être prédits.<br />

Une conséquence immédi<strong>at</strong>e <strong>et</strong> très communément observée est l’absence d’auto-corrél<strong>at</strong>ion entre les<br />

ren<strong>de</strong>ments 2 (Fama 1971, Pagan 1996, Gouriéroux <strong>et</strong> Jasiak 2001). C<strong>et</strong>te absence <strong>de</strong> corrél<strong>at</strong>ions temporelles<br />

est aisément justifiable par l’absence d’opportunité d’arbitrage (<strong>st<strong>at</strong>istique</strong>). En eff<strong>et</strong>, s’il existe<br />

<strong>de</strong>s corrél<strong>at</strong>ions signific<strong>at</strong>ives, il <strong>de</strong>vient possible <strong>de</strong> prédire les prix futurs, ce qui offre - du moins <strong>st<strong>at</strong>istique</strong>ment<br />

- une possibilité <strong>de</strong> gagner <strong>de</strong> l’argent à coup sûr. Ainsi, selon Man<strong>de</strong>lbrot (1971) l’absence<br />

d’opportunité d’arbitrage conduit à blanchir le spectre <strong>de</strong>s changements <strong>de</strong> prix <strong>et</strong> donc à faire disparaître<br />

les corrél<strong>at</strong>ions temporelles. Ceci a longtemps était l’un <strong>de</strong>s supports <strong>de</strong> la <strong>théorie</strong> <strong>de</strong> l’efficience<br />

<strong>de</strong>s marchés financiers. En eff<strong>et</strong>, l’absence <strong>de</strong> corrél<strong>at</strong>ion justifie notamment l’hypothèse remontant à<br />

Bachelier (1900) selon laquelle les prix suivent une marche alé<strong>at</strong>oire (mouvement Brownien). Cela dit, à<br />

partir du moment où l’on adm<strong>et</strong> que le processus stochastique décrivant l’évolution au cours du temps <strong>de</strong>s<br />

ren<strong>de</strong>ments n’est pas gaussien, sa seule fonction d’auto-corrél<strong>at</strong>ion ne peut suffire à le définir. En particulier,<br />

l’absence <strong>de</strong> corrél<strong>at</strong>ion ne peut perm<strong>et</strong>tre <strong>de</strong> conclure que le prix (plus précisément le logarithme<br />

du prix) suit un processus à incréments indépendants, ce qui serait faux.<br />

Ceci se vérifie d’ailleurs simplement lorsque l’on observe une série <strong>de</strong> ren<strong>de</strong>ments. En eff<strong>et</strong>, il apparaît<br />

que les pério<strong>de</strong>s <strong>de</strong> gran<strong>de</strong> vol<strong>at</strong>ilité alternent avec les pério<strong>de</strong>s <strong>de</strong> vol<strong>at</strong>ilité plus faible montrant ainsi<br />

que la vol<strong>at</strong>ilité 3 présente un phénomène <strong>de</strong> persistance (voir figure 1.1). Ce phénomène est très similaire<br />

2 En toute rigueur, il existe <strong>de</strong>ux limites à c<strong>et</strong>te assertion. Premièrement, en <strong>de</strong>ssous d’un intervalle <strong>de</strong> temps <strong>de</strong> l’ordre <strong>de</strong><br />

quelques secon<strong>de</strong>s à quelques minutes, les eff<strong>et</strong>s <strong>de</strong> microstructure <strong>de</strong>s marchés <strong>de</strong>viennent importants <strong>et</strong> justifient que l’on<br />

observe l’existence <strong>de</strong> corrél<strong>at</strong>ions signific<strong>at</strong>ives (Campbell <strong>et</strong> al. 1997). Deuxièmement, pour les ren<strong>de</strong>ments calculés à <strong>de</strong>s<br />

échelles <strong>de</strong> temps <strong>de</strong> l’ordre du mois ou plus, il semble là aussi que <strong>de</strong>s corrél<strong>at</strong>ions signific<strong>at</strong>ives apparaissent. Cela peut<br />

s’expliquer par le fait que sur <strong>de</strong>s échelles <strong>de</strong> temps <strong>de</strong> c<strong>et</strong> ordre, le ren<strong>de</strong>ment d’un actif possè<strong>de</strong> un contenu économique<br />

beaucoup plus marqué qu’un ren<strong>de</strong>ment journalier essentiellement dominé par <strong>de</strong>s activités <strong>de</strong> (noise) trading pouvant être<br />

totalement découplées <strong>de</strong> toutes réalités économiques.<br />

3 Nous parlons ici <strong>de</strong> vol<strong>at</strong>ilité dans un sens rel<strong>at</strong>ivement vague, qui peut recouvrir à la fois l’écart type <strong>de</strong>s ren<strong>de</strong>ments<br />

ou simplement leur amplitu<strong>de</strong>. On peut toutefois noter qu’une telle persistance s’observe aussi sur la sknewness <strong>et</strong> la kurtosis<br />

(Jon<strong>de</strong>au <strong>et</strong> Rockinger 2000, par exemple).


1.1. Rappel <strong>de</strong>s faits stylisés 25<br />

au phénomène d’intermittence observé en turbulence (Frisch 1995). Il caractérise clairement le fait qu’il<br />

existe une certaine dépendance dans les séries financières : la séquence <strong>de</strong>s ren<strong>de</strong>ments n’apparaît pas <strong>de</strong><br />

manière indépendante. En fait, on const<strong>at</strong>e que la valeur absolue <strong>de</strong>s ren<strong>de</strong>ments ou <strong>de</strong> leurs carrés sont<br />

fortement corrélés <strong>et</strong> que c<strong>et</strong>te corrél<strong>at</strong>ion persiste : la fonction d’auto-corrél<strong>at</strong>ion <strong>de</strong>s valeurs absolues<br />

<strong>de</strong>s ren<strong>de</strong>ments décroît typiquement comme une loi <strong>de</strong> puissance dont l’exposant est compris entre 0.2<br />

<strong>et</strong> 0.4 (Cont, Potters <strong>et</strong> Bouchaud 1997, Liu, Cizeau, Meyer, Peng <strong>et</strong> Stanley 1997). Une fois encore,<br />

cela est conforme au principe <strong>de</strong> non arbitrage, car la vol<strong>at</strong>ilité n’étant pas une gran<strong>de</strong>ur signée, elle<br />

ne perm<strong>et</strong> en rien <strong>de</strong> déduire les ren<strong>de</strong>ments futurs. De manière générale, toute fonction <strong>de</strong> la vol<strong>at</strong>ilité<br />

(ou <strong>de</strong> l’amplitu<strong>de</strong> du ren<strong>de</strong>ment) est autorisée à présenter <strong>de</strong>s corrél<strong>at</strong>ions temporelles signific<strong>at</strong>ives.<br />

Pour quelques exemples voir notamment Cont (2001) mais aussi Muzy, Delour <strong>et</strong> Bacry (2000), où il est<br />

montré que la corrél<strong>at</strong>ion du logarithme <strong>de</strong> la valeur absolue <strong>de</strong>s ren<strong>de</strong>ments décroît comme le logarithme<br />

du décalage temporel entre les ren<strong>de</strong>ments considérés <strong>et</strong> possè<strong>de</strong> donc une mémoire longue.<br />

Ce phénomène <strong>de</strong> persistance (ou mémoire longue) est caractéristique <strong>de</strong> la vol<strong>at</strong>ilité mais sa mise en<br />

évi<strong>de</strong>nce est quelques fois délic<strong>at</strong>e <strong>et</strong> suj<strong>et</strong>te à caution comme l’ont montré Granger <strong>et</strong> Teräsvirta (1999),<br />

qui ont construit un processus auto-régressif du premier ordre non-linéaire passant les tests standards <strong>de</strong><br />

mémoire longue ou An<strong>de</strong>rsson, Eklund <strong>et</strong> Lyhagen (1999) qui ont prouvé le contraire, c’est-à-dire qu’un<br />

processus à mémoire longue pouvait passer les tests <strong>de</strong> linéarité.<br />

Pour en terminer avec les exemples sur les corrél<strong>at</strong>ions temporelles, il convient <strong>de</strong> citer l’eff<strong>et</strong> <strong>de</strong> levier<br />

mis en évi<strong>de</strong>nce par Black (1976) puis Christie (1982) <strong>et</strong> Bouchaud, M<strong>at</strong>acz <strong>et</strong> Potters (2001) notamment,<br />

<strong>et</strong> que l’on rencontre pour les ren<strong>de</strong>ments d’actions <strong>et</strong> les taux d’intérêt mais pas les taux <strong>de</strong> change.<br />

C<strong>et</strong> eff<strong>et</strong> <strong>de</strong> levier se traduit par une corrél<strong>at</strong>ion nég<strong>at</strong>ive entre la vol<strong>at</strong>ilité à un instant donné <strong>et</strong> les<br />

ren<strong>de</strong>ments antérieurs, ce qui signifie que les mouvements <strong>de</strong> prix à la baisse ont tendance à entraîner<br />

une augment<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité. Il semble d’ailleurs que c<strong>et</strong> eff<strong>et</strong> <strong>de</strong> levier soit à l’origine <strong>de</strong> la casca<strong>de</strong><br />

causale observée par Arnéodo, Muzy <strong>et</strong> Sorn<strong>et</strong>te (1998) sur les marchés d’actions 4 .<br />

En résumé, <strong>de</strong> par la contrainte <strong>de</strong> non arbitrage, il est impossible d’observer <strong>de</strong>s corrél<strong>at</strong>ions signific<strong>at</strong>ives<br />

entre <strong>de</strong>s fonctions <strong>de</strong>s variables passées <strong>et</strong> les ren<strong>de</strong>ments futurs qui perm<strong>et</strong>traient <strong>de</strong> prédire ces<br />

<strong>de</strong>rniers. En revanche, il est tout à fait possible d’observer - <strong>et</strong> c’est effectivement le cas - d’importantes<br />

corrél<strong>at</strong>ions entre <strong>de</strong>s fonctions <strong>de</strong>s variables passées <strong>et</strong> la vol<strong>at</strong>ilité future, ceci ne perm<strong>et</strong>tant pas <strong>de</strong><br />

réaliser <strong>de</strong> prédiction sur les ren<strong>de</strong>ments.<br />

Enfin, outre l’existence <strong>de</strong> fortes dépendances entre vol<strong>at</strong>ilité future d’une part, <strong>et</strong> vol<strong>at</strong>ilité <strong>et</strong> ren<strong>de</strong>ments<br />

passés d’autre part, il convient <strong>de</strong> remarquer que globalement, celle-ci a tendance à r<strong>et</strong>ourner à un niveau<br />

moyen, que l’on peut interpréter comme son niveau “normal”. Ce phénomène <strong>de</strong> r<strong>et</strong>our à la moyenne<br />

est bien observé lorsque l’on s’intéresse à la vol<strong>at</strong>ilité prédite par la plupart <strong>de</strong>s modèles usuels : lorsque<br />

l’horizon <strong>de</strong> prévision augmente, on const<strong>at</strong>e que la vol<strong>at</strong>ilité tend vers une même valeur moyenne (voir<br />

Engle <strong>et</strong> P<strong>at</strong>ton (2001) par exemple). Il est alors très intéressant d’étudier le mo<strong>de</strong> <strong>de</strong> relax<strong>at</strong>ion <strong>de</strong> la<br />

vol<strong>at</strong>ilité vers son niveau moyen, ce qui a été réalisé par Sorn<strong>et</strong>te, Malevergne <strong>et</strong> Muzy (2002) <strong>et</strong> dont<br />

nous parlerons un peu plus en détail dans un paragraphe ultérieur.<br />

1.1.3 Autres faits stylisés<br />

Les faits stylisés précé<strong>de</strong>mment évoqués sont les faits stylisés principaux universellement admis. Ce sont<br />

ceux dont doit au moins rendre compte tout modèle <strong>de</strong> cours réaliste. Cela peut sembler peu, mais en fait,<br />

il est déjà assez difficile <strong>de</strong> trouver <strong>de</strong> manière ad hoc <strong>de</strong>s processus s<strong>at</strong>isfaisant ces quelques restrictions.<br />

Nous en donnerons quelques exemples dans la suite <strong>de</strong> ce chapitre. A coté <strong>de</strong> ces grands faits stylisés,<br />

existent plusieurs autres caractéristiques importantes dont notamment la dissymétrie gains/pertes pour<br />

4 C<strong>et</strong>te interprét<strong>at</strong>ion nous a été suggérée par J.F. Muzy lors d’une convers<strong>at</strong>ion privée.


26 1. Faits stylisés <strong>de</strong>s rentabilités boursières<br />

Hang-Seng<br />

10000<br />

1000<br />

↓<br />

↓<br />

↓<br />

↓<br />

100<br />

70 75 80 85 90 95 100<br />

FIG. 1.2 – Indice Hang Seng (bourse <strong>de</strong> Hong Kong) entre janvier 1970 <strong>et</strong> Decembre 2000.<br />

les actions, les accélér<strong>at</strong>ions super-exponentielles <strong>de</strong>s cours lors <strong>de</strong>s phases <strong>de</strong> bulles spécul<strong>at</strong>ives ou<br />

encore la multifractalité <strong>et</strong> la corrél<strong>at</strong>ion entre vol<strong>at</strong>ilité <strong>et</strong> volume <strong>de</strong> transaction, ce <strong>de</strong>rnier point étant<br />

intuitivement évi<strong>de</strong>nt (Gopikrishnan, Plerou, Gabiax <strong>et</strong> Stanley 2000).<br />

Concernant la dissymétrie gains/pertes, il a été clairement établi par Johansen <strong>et</strong> Sorn<strong>et</strong>te (1998) <strong>et</strong> Johansen<br />

<strong>et</strong> Sorn<strong>et</strong>te (2002) que les marchés d’actions sont suj<strong>et</strong>s à <strong>de</strong>s pertes cumulées <strong>de</strong> très gran<strong>de</strong>s<br />

amplitu<strong>de</strong>s, alors que l’on n’observe pas systém<strong>at</strong>iquement <strong>de</strong> phénomènes <strong>de</strong> telle ampleur pour les<br />

gains. De plus, ce phénomène ne semble pas toucher les marchés <strong>de</strong> change, où une plus gran<strong>de</strong> symétrie<br />

parait <strong>de</strong> mise. Ceci est en fait n<strong>at</strong>urel, car la hausse ou la baisse d’un taux <strong>de</strong> change n’est que rel<strong>at</strong>ive à<br />

la position que l’on adopte : une hausse du taux euro/dollar par exemple correspond évi<strong>de</strong>mment à une<br />

baisse du taux dollar/euro.<br />

Pour ce qui est <strong>de</strong> la croissance super-exponentielle du prix <strong>de</strong>s actifs, celle-ci est illustrée sur la figure<br />

1.2. On y observe que le prix (représenté en échelle logarithmique) croit en moyenne <strong>de</strong> manière linéaire<br />

en fonction du temps, ce qui caractérise une croissance exponentielle <strong>et</strong> donc un taux <strong>de</strong> croissance<br />

constant. Mais, un examen plus approfondi montre qu’en fait se succè<strong>de</strong>nt une série <strong>de</strong> phases <strong>de</strong> croissance<br />

accélérée - <strong>et</strong> donc plus rapi<strong>de</strong>s que la moyenne - interrompues par <strong>de</strong> fortes corrections du prix.<br />

Ce phénomène a été qualifié par Roehner <strong>et</strong> Sorn<strong>et</strong>te (1998) <strong>de</strong> “sharp peak, fl<strong>at</strong> trough” <strong>et</strong> semble tirer<br />

son origine <strong>de</strong>s phénomènes d’imit<strong>at</strong>ion <strong>et</strong> eff<strong>et</strong>s <strong>de</strong> foule observés sur les marchés. Nous reviendrons<br />

beaucoup plus en détail sur ce point précis aux chapitres 5 <strong>et</strong> 6.<br />

Enfin le <strong>de</strong>rnier point que nous abor<strong>de</strong>rons concernera la quantific<strong>at</strong>ion <strong>de</strong> la régularité <strong>de</strong> la trajectoire<br />

<strong>de</strong>s prix d’actifs financiers. Arnéodo <strong>et</strong> al. (1998) <strong>et</strong> Fisher, Calv<strong>et</strong> <strong>et</strong> Man<strong>de</strong>lbrot (1998) ont conclu au<br />

caractère multifractal <strong>de</strong> ces trajectoires. En eff<strong>et</strong>, ils ont montré que quel que soit l’actif considéré, son<br />

spectre multifractal est compris strictement entre zéro <strong>et</strong> un, ce qui assure que sa trajectoire est presque<br />

partout continue mais non dérivable, <strong>et</strong> a la forme d’une parabole dont le maximum est voisin <strong>de</strong> 0.6 5 .<br />

Par comparaison, le mouvement brownien étant auto similaire - <strong>et</strong> donc (mono) fractal - son spectre vaut<br />

simplement un <strong>de</strong>mi. Ceci conduit à <strong>de</strong> très fortes contraintes sur les processus perm<strong>et</strong>tant d’obtenir ce<br />

type <strong>de</strong> trajectoires, mais un bémol s’impose quant aux résult<strong>at</strong>s <strong>de</strong> ces étu<strong>de</strong>s car <strong>de</strong> nombreux auteurs,<br />

5 Il est intéressant <strong>de</strong> remarquer que ces observ<strong>at</strong>ions conduisent à rej<strong>et</strong>er un grand nombre <strong>de</strong> modèles en temps continu tels<br />

que les processus <strong>de</strong> diffusion, les processus <strong>de</strong> Lévy ou les processus à saut.<br />

D<strong>at</strong>e<br />

↓<br />

↓<br />

↓<br />


1.2. De la difficulté <strong>de</strong> représenter la distribution <strong>de</strong>s ren<strong>de</strong>ments 27<br />

dont Veneziano, Moglen <strong>et</strong> Bras (1995), Avnir, Biham, Lidar <strong>et</strong> Malcai (1998), Bouchaud, Potters <strong>et</strong><br />

Meyer (2000), LeBaron (2001) ou encore Sorn<strong>et</strong>te <strong>et</strong> An<strong>de</strong>rsen (2002), ont montré qu’il était très facile<br />

<strong>de</strong> m<strong>et</strong>tre en évi<strong>de</strong>nce un caractère multifractal pour <strong>de</strong>s processus dont il est connu qu’ils ne possè<strong>de</strong>nt<br />

aucune propriété <strong>de</strong> fractalité, simplement du fait <strong>de</strong> la taille finie <strong>de</strong>s séries temporelles considérées ou<br />

d’autres mécanismes faisant intervenir <strong>de</strong>s non-linéarités.<br />

1.2 De la difficulté <strong>de</strong> représenter la distribution <strong>de</strong>s ren<strong>de</strong>ments<br />

Nous venons <strong>de</strong> voir dans la première partie du paragraphe précé<strong>de</strong>nt que la distribution <strong>de</strong>s ren<strong>de</strong>ments<br />

semblait pouvoir être décrite par <strong>de</strong>s distributions régulièrement variables d’indice <strong>de</strong> queue <strong>de</strong> l’ordre<br />

<strong>de</strong> trois ou qu<strong>at</strong>re. Cependant, une autre hypothèse a récemment vu le jour, hypothèse selon laquelle les<br />

distributions <strong>de</strong> ren<strong>de</strong>ments suivraient <strong>de</strong>s lois exponentielles étirées. Or, si ces <strong>de</strong>ux types <strong>de</strong> distributions<br />

possè<strong>de</strong>nt beaucoup <strong>de</strong> points communs, elles présentent néanmoins une différence majeure dont<br />

l’impact théorique est très important.<br />

Pour ce qui est <strong>de</strong>s points communs, ces <strong>de</strong>ux familles <strong>de</strong> distributions appartiennent à la classe <strong>de</strong>s<br />

distributions sous-exponentielles <strong>et</strong> sont donc à même <strong>de</strong> produire <strong>de</strong>s événements extrêmes avec une<br />

probabilité élevée. En particulier, pour c<strong>et</strong>te classe <strong>de</strong> variables alé<strong>at</strong>oires, les gran<strong>de</strong>s dévi<strong>at</strong>ions <strong>de</strong> la<br />

somme d’un grand nombre <strong>de</strong> ces variables sont dominées par les gran<strong>de</strong>s dévi<strong>at</strong>ions d’une seule d’entre<br />

elles : la somme est gran<strong>de</strong> si l’une <strong>de</strong>s variables est gran<strong>de</strong> (Embrechts <strong>et</strong> al. 1997, Sorn<strong>et</strong>te 2000), ce<br />

qui contraste énormément avec les distributions dites super-exponentielles où chaque variable contribue<br />

<strong>de</strong> manière signific<strong>at</strong>ive (<strong>et</strong> globalement équivalente) à la somme (Frisch <strong>et</strong> Sorn<strong>et</strong>te 1997).<br />

Cela dit, il existe une différence majeure : les distributions sous-exponentielles adm<strong>et</strong>tent <strong>de</strong>s moments<br />

<strong>de</strong> tous ordres alors que les distributions régulièrement variables n’adm<strong>et</strong>tent <strong>de</strong> moments que d’ordre<br />

inférieur à leur indice <strong>de</strong> queue. C<strong>et</strong>te remarque montre combien il est crucial <strong>de</strong> pouvoir trancher entre<br />

ces <strong>de</strong>ux types <strong>de</strong> distributions, car nous verrons en partie III que ces moments vont jouer un rôle essentiel<br />

dans la représent<strong>at</strong>ion du comportement qu’adoptent les agents économiques face au risque ainsi que<br />

dans la modélis<strong>at</strong>ion <strong>de</strong>s décisions qu’ils prennent. Il est donc absolument fondamental d’être sûr <strong>de</strong> leur<br />

existence.<br />

L’incertitu<strong>de</strong> qui semble naître quant à la n<strong>at</strong>ure exacte <strong>de</strong> la distribution <strong>de</strong>s ren<strong>de</strong>ments dans les<br />

extrêmes <strong>et</strong> les difficultés à la déterminer précisément est à notre avis en gran<strong>de</strong> partie liée aux dépendances<br />

temporelles présentent dans les séries financières. En eff<strong>et</strong>, lorsque les observ<strong>at</strong>ions sont supposées<br />

indépendantes <strong>et</strong> i<strong>de</strong>ntiquement distribuées, la <strong>théorie</strong> montre que les estim<strong>at</strong>eurs usuels - tel l’estim<strong>at</strong>eur<br />

<strong>de</strong> Hill (1975), qui perm<strong>et</strong> <strong>de</strong> déterminer l’exposant <strong>de</strong> queue d’une distribution régulièrement variable,<br />

mais aussi l’estim<strong>at</strong>eur <strong>de</strong> Pickands (1975) - sont asymptotiquement consistants <strong>et</strong> normalement distribués<br />

(Embrechts <strong>et</strong> al. 1997), ce qui perm<strong>et</strong>, par exemple, d’estimer <strong>de</strong> façon précise l’incertitu<strong>de</strong><br />

sur la mesure d’un indice <strong>de</strong> queue <strong>et</strong> éventuellement d’effectuer <strong>de</strong>s tests d’égalité entre les indices <strong>de</strong><br />

queues <strong>de</strong> différents actifs ou entre la queue positive <strong>et</strong> nég<strong>at</strong>ive d’un même actif afin <strong>de</strong> m<strong>et</strong>tre, ou non,<br />

à jour d’éventuelles dissymétries (Jon<strong>de</strong>au <strong>et</strong> Rockinger 2001).<br />

Mais, lorsque les données présentent une certaine dépendance temporelle, on ne peut plus guère espérer<br />

que la consistance asymptotique <strong>de</strong> ces estim<strong>at</strong>eurs (Rootzèn, Leadb<strong>et</strong>ter <strong>et</strong> <strong>de</strong> Haan 1998), l’incertitu<strong>de</strong><br />

<strong>de</strong> la mesure étant quant à elle beaucoup plus importante que celle fournit sous hypothèse d’asymptotique<br />

normalité. En eff<strong>et</strong>, Kearns <strong>et</strong> Pagan (1997) ont montré que pour <strong>de</strong>s processus <strong>de</strong> type (G)ARCH,<br />

qui perm<strong>et</strong>tent <strong>de</strong> rendre raisonnablement compte <strong>de</strong>s dépendances <strong>de</strong>s séries financières (voir paragraphe<br />

suivant), la dévi<strong>at</strong>ion standard <strong>de</strong> l’estim<strong>at</strong>eur <strong>de</strong> Hill peut être sept à huit fois plus gran<strong>de</strong> que<br />

celle estimée pour <strong>de</strong>s séries dont les données sont in<strong>de</strong>ntiquement <strong>et</strong> indépendamment distribuées. Ces


28 1. Faits stylisés <strong>de</strong>s rentabilités boursières<br />

résult<strong>at</strong>s sont encore pires pour l’estim<strong>at</strong>eur <strong>de</strong> Pickand, dont on sait qu’il joue un rôle important dans<br />

la détermin<strong>at</strong>ion empirique du domaine d’<strong>at</strong>traction <strong>de</strong>s lois extrêmes auquel appartient une distribution<br />

donnée.<br />

C<strong>et</strong>te <strong>de</strong>rnière remarque est cruciale <strong>et</strong> conduit à rem<strong>et</strong>tre potentiellement en cause bon nombre d’étu<strong>de</strong>s<br />

sur le comportement asymptotique <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ments. En eff<strong>et</strong>, négliger les dépendances<br />

temporelles revient à minorer l’incertitu<strong>de</strong> <strong>de</strong>s estim<strong>at</strong>eurs comme dans le cas <strong>de</strong>s étu<strong>de</strong>s se fondant sur la<br />

<strong>théorie</strong> <strong>de</strong>s valeurs extrêmes menées par Longin (1996) ou Lux (1997) notamment, où l’on peut dire que<br />

l’hypothèse selon laquelle les distributions <strong>de</strong> ren<strong>de</strong>ments sont régulièrement variables à l’infini semble<br />

avoir été un peu rapi<strong>de</strong>ment <strong>et</strong> peut-être inconsidérément acceptée.<br />

De plus, sur le plan théorique, il a été démontré que certaines classes <strong>de</strong> modèles supportant l’hypothèse<br />

<strong>de</strong> distributions régulièrement variables <strong>de</strong>vaient être abandonnées. En eff<strong>et</strong> Lux <strong>et</strong> Sorn<strong>et</strong>te (2002) <strong>et</strong><br />

Malevergne <strong>et</strong> Sorn<strong>et</strong>te (2001a) ont prouvé que les modèles phénoménologiques à bruit multiplic<strong>at</strong>if du<br />

type Blanchard (1979) <strong>et</strong> Blanchard <strong>et</strong> W<strong>at</strong>son (1982), <strong>et</strong> qui perm<strong>et</strong>tent <strong>de</strong> justifier la notion <strong>de</strong> bulles<br />

r<strong>at</strong>ionnelles (Coll<strong>et</strong>az <strong>et</strong> Gourlaouen 1989, Broze, Gouriéroux <strong>et</strong> Szafarz 1990), conduisent, <strong>de</strong> par la<br />

condition <strong>de</strong> non arbitrage, à <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ment régulièrement variables dont l’exposant <strong>de</strong><br />

queue est nécessairement inférieur à un (voir chapitre 2), ce que toutes les étu<strong>de</strong>s empiriques menées<br />

jusqu’à ce jour ont réfuté. Enfin, parmi les divers modèles <strong>de</strong> prix d’actifs passés en revue dans Sorn<strong>et</strong>te<br />

<strong>et</strong> Malevergne (2001), il ressort notamment que les modèles <strong>de</strong> Johansen, Sorn<strong>et</strong>te <strong>et</strong> Ledoit (1999) <strong>et</strong><br />

Johansen, Ledoit <strong>et</strong> Sorn<strong>et</strong>te (2000) - dans lesquels est introduit un taux <strong>de</strong> krach qui en assure la st<strong>at</strong>ionnarité<br />

- adm<strong>et</strong>tent <strong>de</strong>s dynamiques <strong>de</strong> prix comp<strong>at</strong>ibles aussi bien avec <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ments<br />

régulièrement variables qu’exponentielles étirées.<br />

Au vu <strong>de</strong> ces incertitu<strong>de</strong>s aussi bien empiriques que théoriques, nous avons jugé nécessaire <strong>de</strong> mener<br />

une étu<strong>de</strong> compar<strong>at</strong>ive du pouvoir <strong>de</strong>scriptif <strong>de</strong>s <strong>de</strong>ux représent<strong>at</strong>ions possibles <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ments<br />

(voir Malevergne, Pisarenko <strong>et</strong> Sorn<strong>et</strong>te (2002) présenté au chapitre 3). Il ressort <strong>de</strong> c<strong>et</strong>te étu<strong>de</strong><br />

que, d’un point <strong>de</strong> vue <strong>st<strong>at</strong>istique</strong>, les exponentielles étirées ren<strong>de</strong>nt au moins aussi bien compte <strong>de</strong>s distributions<br />

<strong>de</strong> ren<strong>de</strong>ments que les lois <strong>de</strong> puissances <strong>et</strong> autres lois à vari<strong>at</strong>ions régulières, mais que du fait<br />

<strong>de</strong> la dépendance temporelle, il ne nous est pas possible <strong>de</strong> dire que l’une est réellement meilleure que<br />

l’autre. Nous <strong>de</strong>vons donc nous borner à dire que les exponentielles étirées fournissent une altern<strong>at</strong>ive<br />

parfaitement crédible aux distributions régulièrement variables, mais nous sommes malheureusement<br />

incapable <strong>de</strong> trancher la question <strong>de</strong> l’existence ou non <strong>de</strong>s moments au-<strong>de</strong>là d’un certain ordre.<br />

1.3 Modélis<strong>at</strong>ion <strong>de</strong>s propriétés <strong>de</strong> dépendance <strong>de</strong>s ren<strong>de</strong>ments<br />

Le paragraphe précé<strong>de</strong>nt vient <strong>de</strong> nous perm<strong>et</strong>tre <strong>de</strong> comprendre que d’un point <strong>de</strong> vue <strong>st<strong>at</strong>istique</strong>, il n’est<br />

pas vraiment justifié <strong>de</strong> privilégier les distributions régulièrement variables au profit <strong>de</strong>s distributions exponentielles<br />

étirées ou vice-versa. En fait, comme nous allons le voir maintenant, l’étu<strong>de</strong> <strong>de</strong> l’évolution<br />

dynamique <strong>de</strong>s cours fournit un moyen <strong>de</strong> spécifier un peu mieux ce choix. En eff<strong>et</strong>, la prise en compte<br />

<strong>de</strong>s faits stylisés concernant la dépendance temporelle <strong>de</strong> la vol<strong>at</strong>ilité impose <strong>de</strong>s contraintes suffisamment<br />

fortes pour perm<strong>et</strong>tre <strong>de</strong> définir <strong>de</strong> façon assez s<strong>at</strong>isfaisante le processus stochastique décrivant<br />

l’évolution <strong>de</strong>s cours, ce qui, en r<strong>et</strong>our, fixe la distribution marginale <strong>de</strong>s ren<strong>de</strong>ments comp<strong>at</strong>ible avec le<br />

processus spécifié. L’intérêt <strong>de</strong> trouver un processus stochastique est donc double : décrire la dynamique<br />

<strong>de</strong>s cours en tenant compte <strong>de</strong> la dépendance exhibée par la vol<strong>at</strong>ilité <strong>et</strong> fournir <strong>de</strong>s jalons quant à la<br />

distribution marginale <strong>de</strong>s ren<strong>de</strong>ments.<br />

Les premières <strong>de</strong>scriptions <strong>de</strong>s processus <strong>de</strong> prix en terme <strong>de</strong> marches alé<strong>at</strong>oires à incréments indépendants<br />

ou la modélis<strong>at</strong>ion <strong>de</strong> la dynamique <strong>de</strong>s ren<strong>de</strong>ments à l’ai<strong>de</strong> <strong>de</strong> processus ARMA ont rapi<strong>de</strong>ment


1.3. Modélis<strong>at</strong>ion <strong>de</strong>s propriétés <strong>de</strong> dépendance <strong>de</strong>s ren<strong>de</strong>ments 29<br />

été abandonnées en raison <strong>de</strong> leur incapacité à rendre compte <strong>de</strong> la mémoire longue <strong>de</strong> la vol<strong>at</strong>ilité <strong>et</strong><br />

notamment <strong>de</strong>s bouffées <strong>de</strong> vol<strong>at</strong>ilité. En eff<strong>et</strong>, par construction, les marches alé<strong>at</strong>oires à incréments<br />

indépendants ne présentent aucune dépendance <strong>de</strong> vol<strong>at</strong>ilité tandis que la fonction d’auto-corrél<strong>at</strong>ion <strong>de</strong>s<br />

processus ARMA décroît <strong>de</strong> manière exponentielle (voir Gouriéroux <strong>et</strong> Jasiak (2001) par exemple) <strong>et</strong><br />

non <strong>de</strong> manière algébrique. Une altern<strong>at</strong>ive aux processus ARMA est fournie par les processus ARIMA<br />

fractionnaires (Granger <strong>et</strong> Joyeux 1980, Hosking 1981) qui présentent <strong>de</strong>s corrél<strong>at</strong>ions à longues portées<br />

mais dont l’usage n’est pas bien adapté à la modélis<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité.<br />

La première réelle ébauche <strong>de</strong> solution a en fait été proposée par Engle (1982) <strong>et</strong> les modèles autorégressifs<br />

conditionnellement hétéroskédastiques (ARCH) qui furent ensuite généralisés par Bollerslev<br />

(1986) avec les modèles GARCH. Dans c<strong>et</strong>te famille <strong>de</strong> modèles, les ren<strong>de</strong>ments sont décomposés<br />

comme un produit :<br />

rt = σt · εt, (1.2)<br />

où la vol<strong>at</strong>ilité σt suit un processus auto-régressif <strong>et</strong> εt est un bruit blanc indépendant <strong>de</strong> σt, ce qui assure<br />

l’indépendance <strong>de</strong>s ren<strong>de</strong>ments à <strong>de</strong>s d<strong>at</strong>es successives. Dans un modèle ARCH, la vol<strong>at</strong>ilité présente σt<br />

ne dépend que <strong>de</strong>s réalis<strong>at</strong>ions passées <strong>de</strong>s ren<strong>de</strong>ments rt−1, rt−2, · · · alors que pour un modèle GARCH,<br />

elle est aussi fonction <strong>de</strong>s vol<strong>at</strong>ilités passées σt−1, σt−2, · · ·. En pr<strong>at</strong>ique, le modèle GARCH possè<strong>de</strong> un<br />

indéniable avantage sur le modèle ARCH car il est beaucoup plus parcimonieux : prendre en compte la<br />

<strong>de</strong>rnière vol<strong>at</strong>ilité <strong>et</strong> les <strong>de</strong>ux <strong>de</strong>rniers ren<strong>de</strong>ments (<strong>et</strong> donc trois paramètres) est en général suffisant alors<br />

que pour un modèle ARCH, il n’est pas rare <strong>de</strong> <strong>de</strong>voir considérer les dix ou quinze <strong>de</strong>rniers ren<strong>de</strong>ments<br />

réalisés.<br />

Du point <strong>de</strong> vue <strong>de</strong> l’adéqu<strong>at</strong>ion vis-à-vis <strong>de</strong>s faits stylisés, ces processus perm<strong>et</strong>tent <strong>de</strong> rendre compte<br />

<strong>de</strong> la lente décroissance <strong>de</strong> l’auto-corrél<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité, ce qui était leur premier objectif <strong>et</strong> du r<strong>et</strong>our<br />

à la moyenne. De plus, on peut monter facilement (voir Embrechts <strong>et</strong> al. (1997) par exemple) à l’ai<strong>de</strong> <strong>de</strong><br />

la <strong>théorie</strong> <strong>de</strong>s équ<strong>at</strong>ions <strong>de</strong> renouvellement stochastique (Kesten 1973, Goldie 1991) que la distribution<br />

marginale <strong>de</strong>s ren<strong>de</strong>ments est à vari<strong>at</strong>ion régulière.<br />

Une <strong>de</strong>s limites <strong>de</strong> c<strong>et</strong>te modélis<strong>at</strong>ion est <strong>de</strong> ne pas rendre compte convenablement <strong>de</strong> la lente décroissance<br />

<strong>de</strong> la corrél<strong>at</strong>ion du logarithme <strong>de</strong> la vol<strong>at</strong>ilité, <strong>de</strong> la multifractalité 6 ni <strong>de</strong> l’eff<strong>et</strong> <strong>de</strong> levier. Cependant,<br />

ce <strong>de</strong>rnier point peut être corrigé en considérant le modèle EGARCH <strong>de</strong> Nelson (1991) qui n’est<br />

rien d’autre qu’un processus GARCH sur le logarithme <strong>de</strong> la vol<strong>at</strong>ilité <strong>et</strong> non la vol<strong>at</strong>ilité elle-même ou<br />

encore les modèles TARCH <strong>de</strong> Glosten, Jagannanthan <strong>et</strong> Runkle (1993) <strong>et</strong> Zakoian (1994) qui sont <strong>de</strong><br />

modèles GARCH à seuil. Nous n’irons pas plus avant dans la <strong>de</strong>scription <strong>de</strong> la vaste famille <strong>de</strong>s modèles<br />

ARCH <strong>et</strong> <strong>de</strong> leur généralis<strong>at</strong>ion <strong>et</strong> nous renvoyons le lecteur aux nombreux articles <strong>de</strong> revues <strong>et</strong> livres<br />

sur le suj<strong>et</strong> dont notamment Bollerslev, Chou <strong>et</strong> Kroner (1992), Bollerslev, Engle <strong>et</strong> Nelson (1994) <strong>et</strong><br />

Gouriéroux (1997).<br />

La secon<strong>de</strong> altern<strong>at</strong>ive a été présentée plus récemment par Bacry, Delour <strong>et</strong> Muzy (2001) qui ont développé<br />

un processus <strong>de</strong> marche alé<strong>at</strong>oire multifractale (MRW), processus en temps continu infiniment logdivisible<br />

(Bacry <strong>et</strong> Muzy 2002, Muzy <strong>et</strong> Bacry 2002). Comme dans un processus EGARCH, c’est ici le<br />

logarithme <strong>de</strong> la vol<strong>at</strong>ilité qui est modélisé. Ce processus est en fait un processus gaussien st<strong>at</strong>ionnaire<br />

dont l’auto-corrél<strong>at</strong>ion du logarithme <strong>de</strong> la vol<strong>at</strong>ilité est spécifiée <strong>de</strong> sorte qu’elle décroisse proportionnellement<br />

au logarithme du décalage entre les vol<strong>at</strong>ilités, ce qui est un <strong>de</strong>s faits stylisés présentés plus<br />

haut <strong>et</strong> dont ne rendait pas compte les modèles (G)ARCH. C’est en fait l’avancée majeure proposée<br />

par ce type <strong>de</strong> modèle par rapport aux autres processus déjà existant, d’autant qu’il rend compte, par<br />

construction même, <strong>de</strong>s corrél<strong>at</strong>ions à longue portée <strong>de</strong> la vol<strong>at</strong>ilité <strong>et</strong> est l’un <strong>de</strong>s rares processus connus<br />

à s<strong>at</strong>isfaire <strong>de</strong> manière théorique, <strong>et</strong> non artificiellement, les contraintes liées à la multifractalité.<br />

6 Sur <strong>de</strong>s échantillons <strong>de</strong> taille finie, Baviera, Biferale, Mantegna <strong>et</strong> Vulpiani (1998) ont cependant noté la présence - pure-<br />

ment artificielle - d’une apparente multifractalité.


30 1. Faits stylisés <strong>de</strong>s rentabilités boursières<br />

Pour ce qui est <strong>de</strong> la distribution marginale <strong>de</strong>s ren<strong>de</strong>ments, celle-ci est aussi à queues épaisses <strong>et</strong><br />

régulièrement variables mais avec <strong>de</strong>s exposants <strong>de</strong> queue beaucoup plus élevés que ceux précé<strong>de</strong>mment<br />

rencontrés. En eff<strong>et</strong>, lorsque le modèle est calibré sur les données réelles, il indique n<strong>et</strong>tement que les<br />

moments existent jusqu’à un ordre supérieur à vingt, ce qui est bien plus important que ce qui est habituellement<br />

admis. Cela montre une fois <strong>de</strong> plus combien il est difficile <strong>de</strong> déci<strong>de</strong>r du comportement<br />

asymptotique <strong>de</strong> la distribution marginale <strong>de</strong>s ren<strong>de</strong>ments.<br />

Enfin, ce modèle a permis à Sorn<strong>et</strong>te <strong>et</strong> al. (2002) <strong>de</strong> prédire d’un point <strong>de</strong> vue théorique le mo<strong>de</strong> <strong>de</strong><br />

relax<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité, c’est-à-dire comment décroît (ou croit) la vol<strong>at</strong>ilité lorsqu’elle r<strong>et</strong>ourne vers sa<br />

valeur moyenne. Lillo <strong>et</strong> Mantegna (2002) ont récemment observé qu’après un grand choc, la vol<strong>at</strong>ilité<br />

relaxait selon une loi <strong>de</strong> puissance dont l’exposant était étrangement proche <strong>de</strong> celui <strong>de</strong> la fonction d’autocorrél<strong>at</strong>ion<br />

<strong>de</strong> la vol<strong>at</strong>ilité, ce qui pouvait conduire à penser à une rel<strong>at</strong>ion <strong>de</strong> type fluctu<strong>at</strong>ion-dissip<strong>at</strong>ion<br />

entre les corrél<strong>at</strong>ions <strong>de</strong>s fluctu<strong>at</strong>ions <strong>de</strong> la vol<strong>at</strong>ilité “ à l’équilibre” <strong>et</strong> la dissip<strong>at</strong>ion entraînant le r<strong>et</strong>our à<br />

l’équilibre après un choc. En fait il n’en n’est rien, <strong>et</strong> nous avons montré que le mo<strong>de</strong> <strong>de</strong> relax<strong>at</strong>ion (plus<br />

précisément l’exposant <strong>de</strong> la loi <strong>de</strong> puissance) dépendait <strong>de</strong> la n<strong>at</strong>ure du choc. Si une importante nouvelle<br />

est suffisante par elle-même pour faire bouger le marché (comme le coup d’ét<strong>at</strong> contre Gorb<strong>at</strong>chev en<br />

1991, par exemple) la vol<strong>at</strong>ilité relaxe avec un exposant -1/2, indépendamment <strong>de</strong> l’amplitu<strong>de</strong> du choc.<br />

Au contraire, si le choc est dû à une accumul<strong>at</strong>ion <strong>de</strong> “p<strong>et</strong>ites” mauvaises nouvelles, la relax<strong>at</strong>ion se fait<br />

avec un exposant en général plus faible dont la valeur dépend <strong>de</strong> l’amplitu<strong>de</strong> du choc.<br />

C<strong>et</strong>te approche, vérifiée expérimentalement, a apporté une nouvelle confirm<strong>at</strong>ion <strong>de</strong> l’intérêt du modèle<br />

MRW, puisqu’il semble le seul modèle à même <strong>de</strong> décrire ce changement <strong>de</strong> mo<strong>de</strong> <strong>de</strong> relax<strong>at</strong>ion selon<br />

la n<strong>at</strong>ure du choc. En particulier, la relax<strong>at</strong>ion observée sur un processus GARCH n’en dépend pas.<br />

Enfin, c<strong>et</strong>te approche perm<strong>et</strong> d’entrevoir une métho<strong>de</strong> <strong>de</strong> classement systém<strong>at</strong>ique <strong>de</strong>s chocs <strong>de</strong> vol<strong>at</strong>ilité<br />

selon leur n<strong>at</strong>ure “endogène” ou “exogène”. Cependant, une limite actuelle <strong>de</strong> ce modèle est <strong>de</strong> traiter<br />

<strong>de</strong> manière totalement équivalente les gains <strong>et</strong> les pertes, négligeant <strong>de</strong> ce fait l’eff<strong>et</strong> <strong>de</strong> levier. Une<br />

solution envisageable serait <strong>de</strong> considérer un processus MRW asymétrique tel celui proposé par Pochart<br />

<strong>et</strong> Bouchaud (2002).<br />

1.4 Conclusion<br />

L’obj<strong>et</strong> <strong>de</strong> ce chapitre était d’exposer les principaux faits stylisés <strong>de</strong>s rentabilités boursières, que l’on<br />

peut résumer comme suit :<br />

– distribution <strong>de</strong>s ren<strong>de</strong>ments à queues épaisses,<br />

– dépendance temporelle complexe : absence <strong>de</strong> corrél<strong>at</strong>ion temporelle entre les ren<strong>de</strong>ments, mais corrél<strong>at</strong>ion<br />

persistante <strong>de</strong> la vol<strong>at</strong>ilité,<br />

– croissance super-exponentielle transitoire m<strong>et</strong>tant en évi<strong>de</strong>nce l’existence <strong>de</strong> différentes phases <strong>de</strong><br />

marché,<br />

– <strong>et</strong> caractère multifractal <strong>de</strong>s trajectoires <strong>de</strong>s prix <strong>de</strong>s actifs financiers.<br />

Certaines justific<strong>at</strong>ions théoriques peuvent être apportées à ces faits stylisés en faisant appel aussi bien<br />

à <strong>de</strong>s principes fondamentaux <strong>de</strong> la <strong>théorie</strong> financière qu’à <strong>de</strong> simples modèles phénoménologiques. En<br />

r<strong>et</strong>our, cela perm<strong>et</strong> <strong>de</strong> limiter le champ <strong>de</strong>s processus acceptables pour la modélis<strong>at</strong>ion <strong>de</strong>s prix <strong>de</strong>s actifs<br />

financiers. Pour autant, c<strong>et</strong>te démarche reste superficielle en ce qu’elle ne perm<strong>et</strong> pas une meilleure<br />

compréhension <strong>de</strong>s mécanismes <strong>de</strong> fonctionnement <strong>de</strong>s marchés financiers <strong>et</strong> <strong>de</strong>s comportements <strong>de</strong>s<br />

agents prenant position sur ces marchés. C’est pourquoi il sera nécessaire <strong>de</strong> nous intéresser à l’aspect<br />

“microscopique” ou microstructurel <strong>de</strong>s marchés financiers, ce qui sera l’obj<strong>et</strong> <strong>de</strong>s chapitres 5 <strong>et</strong> 6. Mais<br />

avant cela, nous allons, dans les chapitres qui suivent, présenter certains <strong>de</strong>s résult<strong>at</strong>s que nous avons<br />

obtenus <strong>et</strong> qui perm<strong>et</strong>tent <strong>de</strong> justifier les assertions que nous avons formulées tout au long <strong>de</strong> ce chapitre.


Chapitre 2<br />

Modèles phénoménologiques <strong>de</strong> cours<br />

Nous présentons dans ce chapitre quelques modèles phénoménologiques <strong>de</strong> cours d’actifs afin d’illustrer<br />

notre affirm<strong>at</strong>ion du chapitre 1, section 1.2 selon laquelle il était tout aussi possible <strong>de</strong> construire <strong>de</strong>s<br />

modèles perm<strong>et</strong>tant <strong>de</strong> justifier que la distribution st<strong>at</strong>ionnaire <strong>de</strong>s ren<strong>de</strong>ments est régulièrement variable<br />

ou exponentielle étirée.<br />

Pour cela, nous commençons par montrer que les modèles simples <strong>de</strong> bulles r<strong>at</strong>ionnelles 1 à la Blanchard<br />

<strong>et</strong> W<strong>at</strong>son (1982) ne sont en fait pas comp<strong>at</strong>ibles avec les données empiriques, car s’ils conduisent effectivement<br />

à justifier l’existence <strong>de</strong> distributions <strong>de</strong> ren<strong>de</strong>ments régulièrement variables, l’indice <strong>de</strong> queue<br />

auquel conduisent ces modèles est beaucoup plus faible que celui réellement estimé sous c<strong>et</strong>te hypothèse.<br />

Nous passons ensuite en revue <strong>de</strong>ux modèles qui s<strong>at</strong>isfont aux contraintes empiriques en vérifiant la plupart<br />

<strong>de</strong>s faits stylisés exposés au chapitre 1, <strong>et</strong> qui perm<strong>et</strong>tent <strong>de</strong> justifier tout autant l’hypothèse <strong>de</strong><br />

distribution hyperbolique que l’hypothèse <strong>de</strong> distribution exponentielle étirée.<br />

1 Le lecteur est invité à se référer à Blanchard <strong>et</strong> W<strong>at</strong>son (1982), Coll<strong>et</strong>az <strong>et</strong> Gourlaouen (1989), Broze <strong>et</strong> al. (1990) ou<br />

Adams <strong>et</strong> Szarfarz (1992) notamment pour une revue sur le suj<strong>et</strong>.<br />

31


32 2. Modèles phénoménologiques <strong>de</strong> cours<br />

2.1 Bulles r<strong>at</strong>ionnelles multi-dimensionnelles <strong>et</strong> queues épaisses<br />

Lux <strong>et</strong> Sorn<strong>et</strong>te (2002) ont démontré que les queues <strong>de</strong>s distributions inconditionnelles <strong>de</strong>s incréments <strong>de</strong><br />

prix <strong>et</strong> <strong>de</strong> ren<strong>de</strong>ments associées au modèle <strong>de</strong> bulles r<strong>at</strong>ionnelles <strong>de</strong> Blanchard <strong>et</strong> W<strong>at</strong>son (1982) suivent<br />

<strong>de</strong>s lois <strong>de</strong> puissance (décroissent <strong>de</strong> manière hyperbolique), dont l’exposant <strong>de</strong> queue µ est inférieur à<br />

un sur un large domaine. Bien que les queues en lois <strong>de</strong> puissance soient une caractéristique marquante<br />

relevée sur les données empiriques, la valeur numérique µ < 1 est en désaccord avec les estim<strong>at</strong>ions habituelles<br />

qui, selon ce type <strong>de</strong> modèle, donnent µ 3. Parmi les qu<strong>at</strong>re hypothèses soutenant le modèle<br />

<strong>de</strong> bulles r<strong>at</strong>ionnelles <strong>de</strong> Blanchard <strong>et</strong> W<strong>at</strong>son (r<strong>at</strong>ionalité <strong>de</strong>s agents, condition <strong>de</strong> non arbitrage, dynamique<br />

multiplic<strong>at</strong>ive, bulles indépendantes pour chaque actif), nous démontrons que le même résult<strong>at</strong><br />

µ < 1 reste valable lorsque que l’on relaxe la <strong>de</strong>rnière <strong>de</strong> ces hypothèses, i.e en perm<strong>et</strong>tant le couplage<br />

entre les différentes bulles <strong>de</strong>s divers actifs. En conséquence, <strong>de</strong>s extensions non linéaires <strong>de</strong> la dynamique<br />

<strong>de</strong>s bulles ou une relax<strong>at</strong>ion partielle du principe d’évalu<strong>at</strong>ion r<strong>at</strong>ionnel <strong>de</strong>s prix sont nécessaires<br />

si l’on souhaite rendre compte <strong>de</strong>s observ<strong>at</strong>ions empiriques.<br />

Reprint from : Y. Malevergne and D. Sorn<strong>et</strong>te (2001), “Multi-dimensional bubbles and f<strong>at</strong> tails”, Quantit<strong>at</strong>ive<br />

Finance 1, 533-541.


2.1. Bulles r<strong>at</strong>ionnelles multi-dimensionnelles <strong>et</strong> queues épaisses 33<br />

Q UANTITATIVE F INANCE V OLUME 1 (2001) 533–541 RESEARCH PAPER<br />

I NSTITUTE OF P HYSICS P UBLISHING quant.iop.org<br />

Multi-dimensional r<strong>at</strong>ional bubbles<br />

and f<strong>at</strong> tails<br />

Y Malevergne 1,2 and D Sorn<strong>et</strong>te 1,3<br />

1 Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>ière Con<strong>de</strong>nsée CNRS UMR 6622,<br />

Université <strong>de</strong> Nice-Sophia Antipolis, 06108 Nice Ce<strong>de</strong>x 2, France<br />

2 Institut <strong>de</strong> Science Financière <strong>et</strong> d’Assurances, Université Lyon I, 43 Bd du<br />

11 Novembre 1918, 69622 Villeurbanne Ce<strong>de</strong>x, France<br />

3 Institute of Geophysics and Plan<strong>et</strong>ary Physics and Department of Earth and<br />

Space Science, University of California, Los Angeles, CA 90095, USA<br />

E-mail: Yannick.Malevergne@unice.fr and sorn<strong>et</strong>te@unice.fr<br />

Received 20 July 2001, in final form 20 August 2001<br />

Published 14 September 2001<br />

Online <strong>at</strong> stacks.iop.org/Quant/1/533<br />

Abstract<br />

Lux and Sorn<strong>et</strong>te have <strong>de</strong>monstr<strong>at</strong>ed th<strong>at</strong> the tails of the unconditional<br />

distributions of price differences and of r<strong>et</strong>urns associ<strong>at</strong>ed with the mo<strong>de</strong>l of<br />

r<strong>at</strong>ional bubbles of Blanchard and W<strong>at</strong>son follow power laws (i.e. exhibit<br />

hyperbolic <strong>de</strong>cline), with an asymptotic tail exponent µ


34 2. Modèles phénoménologiques <strong>de</strong> cours<br />

Y Malevergne and D Sorn<strong>et</strong>te Q UANTITATIVE F INANCE<br />

on the process Xt. There is a huge liter<strong>at</strong>ure on theor<strong>et</strong>ical<br />

refinements of this mo<strong>de</strong>l and on the empirical d<strong>et</strong>ectability of<br />

RE bubbles in financial d<strong>at</strong>a (see Camerer (1989) and Adam<br />

and Szafarz (1992) for surveys of this liter<strong>at</strong>ure).<br />

Recently, Lux and Sorn<strong>et</strong>te (1999) studied the implic<strong>at</strong>ions<br />

of the RE bubble mo<strong>de</strong>ls for the unconditional distribution<br />

of prices, price changes and r<strong>et</strong>urns resulting from a<br />

more general discr<strong>et</strong>e-time formul<strong>at</strong>ion extending (2) by allowing<br />

the multiplic<strong>at</strong>ive factor <strong>at</strong> to take arbitrary values and<br />

be i.i.d. random variables drawn from some non-<strong>de</strong>gener<strong>at</strong>e<br />

probability <strong>de</strong>nsity function (pdf) Pa(a). The mo<strong>de</strong>l can also<br />

be generalized by consi<strong>de</strong>ring non-normal realiz<strong>at</strong>ions of bt<br />

with distribution Pb(b) with E[bt] = 0, where E[·] is the expect<strong>at</strong>ion<br />

oper<strong>at</strong>or. Since in (2) the bubble Xt <strong>de</strong>notes the difference<br />

b<strong>et</strong>ween the observed price and the fundamental price,<br />

the ‘bubble’ regimes refer to the cases when Xt explo<strong>de</strong>s exponentially<br />

un<strong>de</strong>r the action of successive multiplic<strong>at</strong>ions by<br />

factor <strong>at</strong>,<strong>at</strong>+1,...with a majority of them larger than 1 in absolute<br />

value but different, thus adding a stochastic component<br />

to the standard mo<strong>de</strong>l of Blanchard and W<strong>at</strong>son (1982).<br />

For this large class of stochastic processes, Lux and<br />

Sorn<strong>et</strong>te (1999) have shown th<strong>at</strong> the distribution of r<strong>et</strong>urns<br />

is a power law whose exponent µ is enforced by the nofree-lunch<br />

condition to remain lower than one. Although<br />

power-law tails are a pervasive fe<strong>at</strong>ure of empirical d<strong>at</strong>a,<br />

these characteriz<strong>at</strong>ions are in strong disagreement with the<br />

usual empirical estim<strong>at</strong>es which find µ ≈ 3 (<strong>de</strong> Vries 1994,<br />

Lux 1996, Pagan 1996, Guillaume <strong>et</strong> al 1997, Gopikrishnan<br />

<strong>et</strong> al 1998). Thus, Lux and Sorn<strong>et</strong>te (1999) conclu<strong>de</strong>d th<strong>at</strong><br />

exogenous r<strong>at</strong>ional bubbles are hardly comp<strong>at</strong>ible with the<br />

empirical distribution d<strong>at</strong>a.<br />

At this stage, one could argue th<strong>at</strong> there is a logical trap<br />

in the finding µ


2.1. Bulles r<strong>at</strong>ionnelles multi-dimensionnelles <strong>et</strong> queues épaisses 35<br />

Q UANTITATIVE F INANCE Multi-dimensional r<strong>at</strong>ional bubbles<br />

for instance Hommes (2001) and Chall<strong>et</strong> <strong>et</strong> al (2001) and<br />

references therein). Following many others before us, we<br />

conclu<strong>de</strong> th<strong>at</strong> the hypotheses of r<strong>at</strong>ional expect<strong>at</strong>ions and of noarbitrage<br />

condition are useful approxim<strong>at</strong>ion or starting points<br />

for mo<strong>de</strong>l constructions.<br />

Within this framework, the price Pt of an ass<strong>et</strong> <strong>at</strong> time t<br />

should obey the equ<strong>at</strong>ion<br />

Pt = δ · EQ[Pt+1|Ft]+dt ∀{Pt}t0, (4)<br />

where dt is an exogeneous ‘divi<strong>de</strong>nd’, δ is the discount factor<br />

and EQ[Pt+1|Ft] is the expect<strong>at</strong>ion of Pt+1 conditioned upon the<br />

knowledge of the filtr<strong>at</strong>ion up to time t un<strong>de</strong>r the risk-neutral<br />

probability Q.<br />

It is important to stress th<strong>at</strong> the r<strong>at</strong>ionality of both<br />

expect<strong>at</strong>ions and behaviour does not necessarily imply th<strong>at</strong><br />

the price of an ass<strong>et</strong> be equal to its fundamental value. In<br />

other words, there can be r<strong>at</strong>ional <strong>de</strong>vi<strong>at</strong>ions of the price from<br />

this value, called r<strong>at</strong>ional bubbles. A r<strong>at</strong>ional bubble can arise<br />

when the actual mark<strong>et</strong> price <strong>de</strong>pends positively on its own<br />

expected r<strong>at</strong>e of change. This is thought to som<strong>et</strong>imes occur in<br />

ass<strong>et</strong> mark<strong>et</strong>s and constitutes the very mechanism un<strong>de</strong>rlying<br />

the mo<strong>de</strong>ls of Blanchard (1979) and Blanchard and W<strong>at</strong>son<br />

(1982). In<strong>de</strong>ed, the ‘forward’ solution of (4) is well-known to<br />

be<br />

+∞<br />

Ft =<br />

i=0<br />

δ i · EQ[dt+i|Ft]. (5)<br />

It is straightforward to check by replacement th<strong>at</strong> the general<br />

solution of (4) is the sum of the forward solution (5) and of an<br />

arbitrary component Xt<br />

where Xt has to obey the single condition:<br />

Pt = Ft + Xt, (6)<br />

Xt = δ · EQ[Xt+1|Ft]. (7)<br />

With only two fundamental and quite reasonable assumptions,<br />

it is thus possible to <strong>de</strong>rive an equ<strong>at</strong>ion (6) (with (7)) justifying<br />

the existence of price fluctu<strong>at</strong>ions and <strong>de</strong>vi<strong>at</strong>ions from the<br />

fundamental value Ft, for equilibrium mark<strong>et</strong>s with r<strong>at</strong>ional<br />

agents. However, the dynamics of the bubbles remains<br />

unknown and is a priori compl<strong>et</strong>ely arbitrary apart from the<br />

no-arbitrage constraint (7).<br />

2.2. Bubble dynamics<br />

One of the main contributions of the mo<strong>de</strong>l of Blanchard<br />

and W<strong>at</strong>son (1982), and its possible generaliz<strong>at</strong>ions (8), is<br />

to propose a bubble dynamics which is both comp<strong>at</strong>ible with<br />

most of the empirical stylized facts of price time series and<br />

sufficiently simple to allow for a tractable analytical tre<strong>at</strong>ment.<br />

In<strong>de</strong>ed, the stochastic autoregressive process<br />

Xt+1 = <strong>at</strong>Xt + bt, (8)<br />

where {<strong>at</strong>} and {bt} are i.i.d. random variables, is well-known<br />

to lead to f<strong>at</strong>-tailed distributions and vol<strong>at</strong>ility clustering.<br />

Kesten (1973) (see Goldie (1991) for a mo<strong>de</strong>rn extension)<br />

has shown th<strong>at</strong>, if E[ln |a|] < 0, the stochastic process {Xt}<br />

admits a st<strong>at</strong>ionary solution (i.e. with a st<strong>at</strong>ionary distribution<br />

function), whose distribution <strong>de</strong>nsity P(X) is a power law<br />

P(X) ∼ X −1−µ with exponent µ s<strong>at</strong>isfying<br />

E[|a| µ ] = 1, (9)<br />

provi<strong>de</strong>d th<strong>at</strong> E[|b| µ ] < ∞. It is easy to show th<strong>at</strong><br />

without other constraints every exponent µ > 0 can be<br />

reached. Consi<strong>de</strong>r, for example, a sequence of variables {<strong>at</strong>}<br />

in<strong>de</strong>pen<strong>de</strong>ntly and i<strong>de</strong>ntically distributed according to a lognormal<br />

law with localiz<strong>at</strong>ion param<strong>et</strong>er a0 < 1 and scale<br />

ln a0<br />

param<strong>et</strong>er σ . Equ<strong>at</strong>ion (9) simply yields µ =−2 σ 2 , which<br />

shows th<strong>at</strong>, varying σ , µ can range over the entire positive real<br />

line.<br />

The second interesting point is th<strong>at</strong> the process (8) allows<br />

vol<strong>at</strong>ility clustering. It is easy to see th<strong>at</strong> a large value of Xt will<br />

be followed by a large value of Xt+1 with a large probability.<br />

The change of variables Xt = Y 2<br />

t with <strong>at</strong> = vZ2 t and bt = uZ2 t<br />

maps exactly the process (8) onto an ARCH(1) process<br />

<br />

u + vYt 2 , (10)<br />

Yt+1 = Zt<br />

where Zt is a Gaussian random variable. The ARCH processes<br />

are known to account for vol<strong>at</strong>ility clustering. Therefore, the<br />

process (8) also exhibits vol<strong>at</strong>ility clustering.<br />

This class (8) of stochastic processes thus provi<strong>de</strong>s<br />

several interesting fe<strong>at</strong>ures of real price series (Roman <strong>et</strong> al<br />

2001). There is however an objection rel<strong>at</strong>ed to the fact th<strong>at</strong>,<br />

without additional assumptions, the bubble price can become<br />

arbitrarily neg<strong>at</strong>ive and can then lead to a neg<strong>at</strong>ive price:<br />

Pt < 0. In fact, a neg<strong>at</strong>ive price is not as meaningless as<br />

often taken for granted, as shown in Sorn<strong>et</strong>te (2000). But,<br />

even without allowing for neg<strong>at</strong>ive prices, it is reasonable to<br />

argue th<strong>at</strong> near Pt = 0, other mechanisms come into play and<br />

modify equ<strong>at</strong>ion (8) in the neighbourhood of a vanishing price.<br />

For instance, when a mark<strong>et</strong> un<strong>de</strong>rgoes a too strong and abrupt<br />

loss, quot<strong>at</strong>ions are interrupted.<br />

2.3. The in<strong>de</strong>pen<strong>de</strong>nt bubbles assumption<br />

The Blanchard and W<strong>at</strong>son mo<strong>de</strong>l assumes th<strong>at</strong> there is only<br />

one ass<strong>et</strong> and one bubble. In other words, the evolution of<br />

each ass<strong>et</strong> does not <strong>de</strong>pend on the dynamics of the others.<br />

But, in reality, there is no such thing as an isol<strong>at</strong>ed ass<strong>et</strong>.<br />

Stock mark<strong>et</strong>s exhibit a vari<strong>et</strong>y of inter-<strong>de</strong>pen<strong>de</strong>nces, based<br />

in part on the mutual influences b<strong>et</strong>ween the USA, European<br />

and Japanese mark<strong>et</strong>s. In addition, individual stocks may be<br />

sensitive to the behaviour of the specific industry as a whole<br />

to which they belong and to a few other indic<strong>at</strong>ors, such as<br />

the main indices, interest r<strong>at</strong>es and so on. Mantegna (1999)<br />

and Bonanno <strong>et</strong> al (2001) have in<strong>de</strong>ed shown the existence<br />

of a hierarchical organiz<strong>at</strong>ion of stock inter<strong>de</strong>pen<strong>de</strong>nces.<br />

Furthermore, bubbles often appear to be not isol<strong>at</strong>ed fe<strong>at</strong>ures<br />

of a s<strong>et</strong> of mark<strong>et</strong>s. For instance, Flood <strong>et</strong> al (1984) tested<br />

wh<strong>et</strong>her a bubble simultaneously existed across the n<strong>at</strong>ions,<br />

such as Germany, Poland, and Hungary, th<strong>at</strong> experienced<br />

hyperinfl<strong>at</strong>ion in the early 1920s. Coordin<strong>at</strong>ed corrections<br />

to wh<strong>at</strong> may be consi<strong>de</strong>red to be correl<strong>at</strong>ed bubbles can<br />

som<strong>et</strong>imes be d<strong>et</strong>ected. One of the most prominent examples<br />

535


36 2. Modèles phénoménologiques <strong>de</strong> cours<br />

Y Malevergne and D Sorn<strong>et</strong>te Q UANTITATIVE F INANCE<br />

is found in the mark<strong>et</strong> appreci<strong>at</strong>ions observed in many of the<br />

world mark<strong>et</strong>s prior to the world mark<strong>et</strong> crash in October 1987<br />

(Barro <strong>et</strong> al 1989). The collective growth of most of the<br />

mark<strong>et</strong>s worldwi<strong>de</strong> was interrupted by a worldwi<strong>de</strong> mark<strong>et</strong><br />

crash: from the opening on 14 October 1987 through the<br />

mark<strong>et</strong> close on 19 October major indices of mark<strong>et</strong> valu<strong>at</strong>ion<br />

in the United St<strong>at</strong>es <strong>de</strong>clined by 30% or more. Furthermore,<br />

all major mark<strong>et</strong>s in the world <strong>de</strong>clined substantially in the<br />

month: out of 23 major industrial countries, 19 had a <strong>de</strong>cline<br />

gre<strong>at</strong>er than 20%. This is one of the most striking evi<strong>de</strong>nces<br />

of the existence of correl<strong>at</strong>ions b<strong>et</strong>ween corrections to bubbles<br />

across the world mark<strong>et</strong>s. Similar intermittent coordin<strong>at</strong>ion<br />

of bubbles have been d<strong>et</strong>ected among the significant bubbles<br />

followed by large crashes or severe corrections in L<strong>at</strong>in-<br />

American and Asian stock mark<strong>et</strong>s (Johansen and Sorn<strong>et</strong>te<br />

2000).<br />

These empirical facts suggest an improvement on the onedimensional<br />

bubble mo<strong>de</strong>l by introducing a multi-dimensional<br />

generaliz<strong>at</strong>ion.<br />

2.4. Position of the problem<br />

As shown in Lux and Sorn<strong>et</strong>te (1999), the one-ass<strong>et</strong> mo<strong>de</strong>l<br />

(8) suffers from a <strong>de</strong>ficiency: the power law tail exponents<br />

predicted by the Blanchard and W<strong>at</strong>son mo<strong>de</strong>l are not<br />

comp<strong>at</strong>ible with the empirical facts. The proof relies on<br />

the following ingredients: the no-free-lunch condition and<br />

the one-dimensional dynamics of the bubble. The onedimensional<br />

dynamics of the bubble implies th<strong>at</strong> the equ<strong>at</strong>ion<br />

(9) holds, while the no-free-lunch condition imposes<br />

E[a] > 1. (11)<br />

Putting these two equ<strong>at</strong>ions tog<strong>et</strong>her allows Lux and Sorn<strong>et</strong>te<br />

(1999) to conclu<strong>de</strong> th<strong>at</strong> necessarily µ


2.1. Bulles r<strong>at</strong>ionnelles multi-dimensionnelles <strong>et</strong> queues épaisses 37<br />

Q UANTITATIVE F INANCE Multi-dimensional r<strong>at</strong>ional bubbles<br />

A generaliz<strong>at</strong>ion of the two-dimensional case to arbitrary<br />

dimensions leads to the following stochastic random equ<strong>at</strong>ion<br />

(SRE)<br />

Xt = AtXt−1 + Bt<br />

(16)<br />

where (Xt, Bt) are d-dimensional vectors. Each component<br />

of Xt can be thought of as the difference b<strong>et</strong>ween the price<br />

of the ass<strong>et</strong> and its fundamental price. The m<strong>at</strong>rices (At)<br />

are i<strong>de</strong>ntically in<strong>de</strong>pen<strong>de</strong>nt distributed d × d-dimensional<br />

stochastic m<strong>at</strong>rices. We assume th<strong>at</strong> Bt are i<strong>de</strong>ntically<br />

in<strong>de</strong>pen<strong>de</strong>nt distributed random vectors and th<strong>at</strong> (Xt) is a<br />

causal st<strong>at</strong>ionary solution of (16). Generaliz<strong>at</strong>ions introducing<br />

additional arbitrary linear terms <strong>at</strong> larger time lags such as<br />

Xt−2,... can be tre<strong>at</strong>ed with slight modific<strong>at</strong>ions of our<br />

approach and yield the same conclusions. We shall thus<br />

confine our <strong>de</strong>monstr<strong>at</strong>ion on the SRE of or<strong>de</strong>r 1, keeping in<br />

mind th<strong>at</strong> our results apply analogously to arbitrary or<strong>de</strong>rs of<br />

regressions.<br />

To formalize the SRE in a rigorous manner, we introduce<br />

in a standard way the probability space (, F, P) and a<br />

filtr<strong>at</strong>ion (Ft). Here P represents the product measure P =<br />

PX ⊗ PA ⊗ PB, where PX, PA and PB are the probability<br />

measures associ<strong>at</strong>ed with {Xt}, {At} and {Bt}. We further<br />

assume as is customory th<strong>at</strong> the stochastic process (Xt) is<br />

adapted to the filtr<strong>at</strong>ion (Ft).<br />

In the following, we <strong>de</strong>note by |·|the Eucli<strong>de</strong>an norm and<br />

by ||·||the corresponding norm for any d × d-m<strong>at</strong>rix A<br />

||A|| = sup |Ax|. (17)<br />

|x|=1<br />

Now, we will formalize the ‘no-free-lunch’ condition for<br />

the SRE (16) and show th<strong>at</strong> it entails in particular th<strong>at</strong> the<br />

spectral radius (largest eigenvalue) of E[At] must be equal to<br />

the inverse of the discount factor, hence it must be larger than<br />

1.<br />

3.3. The no-free-lunch condition<br />

3.3.1. No-free-lunch condition un<strong>de</strong>r the risk-neutral<br />

probability measure The ‘no-free-lunch’ condition is<br />

equivalent to the existence of a probability measure Q<br />

equivalent to P such th<strong>at</strong>, for all self-financing portfolios t,<br />

t<br />

S0,t is a Q-martingale, where S0,t = t−1 i=0 δi −1 , δi = (1+ri) −1<br />

is the discount factor for period i and ri is the corresponding<br />

risk-free interest r<strong>at</strong>e.<br />

It is n<strong>at</strong>ural to assume th<strong>at</strong>, for a given period i, the<br />

discount r<strong>at</strong>es ri are the same for all ass<strong>et</strong>s. In frictionless<br />

mark<strong>et</strong>s, a <strong>de</strong>vi<strong>at</strong>ion for this hypothesis would lead to arbitrage<br />

opportunities. Furthermore, since the sequence of m<strong>at</strong>rices<br />

{At} is i.i.d. and therefore st<strong>at</strong>ionary, this implies th<strong>at</strong> δt or rt<br />

must be constant and equal respectively to δ and r.<br />

Un<strong>de</strong>r those conditions, we have the following<br />

proposition:<br />

Proposition 1. The stochastic process<br />

Xt = AtXt−1 + Bt<br />

s<strong>at</strong>isfies the no-arbitrage condition if and only if<br />

(18)<br />

EQ[A] = 1<br />

δ Id. (19)<br />

The proof is given in appendix A.<br />

The condition (19) imposes some stringent constraints on<br />

admissible m<strong>at</strong>rices At. In<strong>de</strong>ed, while At are not diagonal in<br />

general, their expect<strong>at</strong>ion must be diagonal. This implies th<strong>at</strong><br />

the off-diagonal terms of the m<strong>at</strong>rices At must take neg<strong>at</strong>ive<br />

values, sufficiently often so th<strong>at</strong> their averages vanish. The offdiagonal<br />

coefficients quantify the influence of other bubbles on<br />

a given one. The condition (19) thus means th<strong>at</strong> the average<br />

effect of other bubbles on any given one must vanish. It is<br />

straightforward to check th<strong>at</strong>, in this linear framework, this<br />

implies an absence of correl<strong>at</strong>ion (but not of <strong>de</strong>pen<strong>de</strong>nce)<br />

b<strong>et</strong>ween the different bubble components E[X (k) X (ℓ) ] = 0<br />

for any k = ℓ, where X (j) <strong>de</strong>notes the jth component of the<br />

bubble X.<br />

In contrast, the diagonal elements of At must be mostly<br />

positive in or<strong>de</strong>r for EP[Aii] = δ−1 , for all i, to hold true. In<br />

fact, on economic grounds, we can exclu<strong>de</strong> the cases where<br />

the diagonal elements take neg<strong>at</strong>ive values. In<strong>de</strong>ed, a neg<strong>at</strong>ive<br />

value of Aii <strong>at</strong> a given time t would imply th<strong>at</strong> X (i)<br />

t might<br />

abruptly change sign b<strong>et</strong>ween t − 1 and t, wh<strong>at</strong> does not seem<br />

to be a reasonable financial process.<br />

3.3.2. Consequence for the no-free-lunch condition un<strong>de</strong>r<br />

historic probability measure The historical P and riskneutral<br />

Q probability measures are equivalent. This means<br />

th<strong>at</strong> there exists a non-neg<strong>at</strong>ive m<strong>at</strong>rix h(θ) = hij (θij ) such<br />

th<strong>at</strong>, for each element in<strong>de</strong>xed by i, j, wehave<br />

EP[Aij ] = EQ[hij · Aij ] (20)<br />

= hij (θ 0 ij ) · EQ[Aij ] for some θ 0 ij ∈ R. (21)<br />

The second equ<strong>at</strong>ion comes from the well-known result:<br />

<br />

<br />

f(θ)· g(θ)dµ(θ) = g(θ0) · f(θ)dµ(θ) for some θ0 ∈ R.<br />

(22)<br />

We thus g<strong>et</strong><br />

EP[Aij ] = 0 if i = j (23)<br />

EP[Aij ] = 1<br />

δ (i)<br />

if i = j, (24)<br />

where the δ (i) can be different. We can thus write<br />

EP[A] = δ −1 where δ −1 = diag[δ (1)−1 ,...,δ (d)−1 ]. (25)<br />

Appendix B gives a proof showing th<strong>at</strong> δ (i) is in<strong>de</strong>ed the<br />

genuine discount factor for the ith bubble component.<br />

4. Renewal theory for products of<br />

random m<strong>at</strong>rices<br />

In the following, we will consi<strong>de</strong>r th<strong>at</strong> the random d × d<br />

m<strong>at</strong>rices At are invertible m<strong>at</strong>rices with real entries. We will<br />

<strong>de</strong>note by GLd(R) the group of these m<strong>at</strong>rices.<br />

537


38 2. Modèles phénoménologiques <strong>de</strong> cours<br />

Y Malevergne and D Sorn<strong>et</strong>te Q UANTITATIVE F INANCE<br />

4.1. Definitions<br />

Definition 1 (Feasible m<strong>at</strong>rix). A m<strong>at</strong>rix M ∈ GLd(R) is<br />

P-feasible if there exists an n ∈ N and M1,...,Mn ∈<br />

supp(P) such th<strong>at</strong> M = M1 ...Mn and if M has a simple real<br />

eigenvalue q(M) which, in modulus, exceeds all other<br />

eigenvalues of M.<br />

Definition 2. For any m<strong>at</strong>rix M ∈ GLd(R) and M ′ its<br />

transpose, MM ′ is a symm<strong>et</strong>ric positive <strong>de</strong>finite m<strong>at</strong>rix. We<br />

<strong>de</strong>fine λ(M) as the square root of the smallest eigenvalue of<br />

MM ′ .<br />

4.2. Theorem<br />

We extend the theorem 2.7 of Davis <strong>et</strong> al (1999), which<br />

synthesized Kesten’s theorems 3 and 4 in Kesten (1973), to the<br />

case of real valued m<strong>at</strong>rices. The proof of this theorem is given<br />

in Le Page (1983). We stress th<strong>at</strong> the conditions listed below do<br />

not require the m<strong>at</strong>rices (An) to be non-neg<strong>at</strong>ive. Actually, we<br />

have seen th<strong>at</strong>, in or<strong>de</strong>r for the r<strong>at</strong>ional expect<strong>at</strong>ion condition<br />

not to lead to trivial results, the off-diagonal coefficients of<br />

(An) have to be neg<strong>at</strong>ive with sufficiently large probability<br />

such th<strong>at</strong> their means vanish.<br />

Theorem 1. L<strong>et</strong> (An) be an i.i.d. sequence of m<strong>at</strong>rices in<br />

GLd(R) s<strong>at</strong>isfying the following s<strong>et</strong> of conditions:<br />

H1: for some ɛ>0, EPA [||A||ɛ ] < 1,<br />

H2: for every open U ⊂ Sd−1 (the unit sphere in Rd ) and for<br />

all x ∈ Sd−1 there exists an n such th<strong>at</strong><br />

<br />

xA1 ...An<br />

Pr<br />

∈ U > 0. (26)<br />

||xA1 ...An||<br />

H3: the group {ln |q(M)|,M is PA-feasible} is <strong>de</strong>nse in R .<br />

H4: for all r ∈ R d , Pr{A1r + B1 = r} < 1.<br />

H5: there exists a κ0 > 0 such th<strong>at</strong><br />

EPA ([λ(A1)] κ0 ) 1. (27)<br />

H6: with the same κ0 > 0 as for the previous condition, there<br />

exists a real number u>0 such th<strong>at</strong><br />

sup{||A1||, EPA<br />

||B1||} κ0+u <br />

< ∞ ,<br />

<br />

||A1|| −u (28)<br />

< ∞.<br />

EPA<br />

Provi<strong>de</strong>d th<strong>at</strong> these conditions hold,<br />

• there exists a unique solution κ1 ∈ (0,κ0] to the equ<strong>at</strong>ion<br />

1 <br />

lim ln EPA ||A1 ...An||<br />

n→∞ n κ1 = 0, (29)<br />

• if (Xn) is the st<strong>at</strong>ionary solution to the SRE in (16) then<br />

X is regularly varying with in<strong>de</strong>x κ1. In other words, the<br />

tail of the marginal distribution of each of the<br />

components of the vector X is asymptotically a power<br />

law with exponent κ1.<br />

538<br />

4.3. Comments on the theorem<br />

4.3.1. Intuitive meaning of the hypotheses A suitable<br />

property for an economic mo<strong>de</strong>l is the existence of a st<strong>at</strong>ionary<br />

solution, i.e. the solution Xt of the SRE (16) should not<br />

blow up. This condition is ensured by the hypothesis (H1).<br />

In<strong>de</strong>ed, EPA [ln ||A||] < 0 implies th<strong>at</strong> the Lyapunov exponent<br />

of the sequence {An} of i.i.d. m<strong>at</strong>rices is neg<strong>at</strong>ive (Davis<br />

<strong>et</strong> al 1999). And it is well known th<strong>at</strong> the neg<strong>at</strong>ivity of the<br />

Lyapunov exponent is a sufficient condition for the existence<br />

of a st<strong>at</strong>ionary solution Xt, provi<strong>de</strong>d th<strong>at</strong> E[ln + ||B||] < ∞.<br />

However, this condition can lead to too fast a <strong>de</strong>cay of the<br />

tail of the distibution of {X}. This phenomenon is prevented<br />

by (H5) which means intuitively th<strong>at</strong> the multiplic<strong>at</strong>ive<br />

factors given by the elements of At som<strong>et</strong>imes produce an<br />

amplific<strong>at</strong>ion of Xt. In the one-dimensional bubble case, this<br />

condition reduces to the simple rule th<strong>at</strong> <strong>at</strong> must som<strong>et</strong>imes<br />

be larger than 1 so th<strong>at</strong> a bubble can <strong>de</strong>velop. Otherwise, the<br />

power law tail will be replaced by an exponential tail.<br />

So, (H1) and (H5) keep the balance b<strong>et</strong>ween two opposite<br />

objectives: to obtain a st<strong>at</strong>ionary solution and to observe a<br />

f<strong>at</strong>-tailed distribution for the process (Xt).<br />

Another <strong>de</strong>sirable property for the mo<strong>de</strong>l is ergodicity: we<br />

expect the price process (Xt) to explore the entire space Rd .<br />

This is ensured by hypotheses (H2) and (H4): hypothesis (H2)<br />

allows Xt to visit the neighbourhood of any point in Rd , and<br />

(H4) forbids the trajectory to be trapped <strong>at</strong> some points.<br />

Hypotheses (H3) and (H6) are more technical ones. The<br />

hypothesis (H6) simply ensures th<strong>at</strong> the tails of the distributions<br />

of At and Bt are thinner than the tail cre<strong>at</strong>ed by the SRE (16),<br />

so th<strong>at</strong> the observed tail in<strong>de</strong>x is really due to the dynamics of<br />

the system and not to the heavy-tail n<strong>at</strong>ure of the distributions<br />

of At or Bt. The hypothesis (H3) expresses some kind of<br />

aperiodicity condition.<br />

4.3.2. Intuitive meaning of (29) The equ<strong>at</strong>ion (29)<br />

d<strong>et</strong>ermining the tail exponent κ1 reduces to (9) in the onedimensional<br />

case, which is simple to handle. In the multidimensional<br />

case, the novel fe<strong>at</strong>ure is the non-diagonal n<strong>at</strong>ure<br />

of the multiplic<strong>at</strong>ion of m<strong>at</strong>rices which does not allow in<br />

general for an explicit equ<strong>at</strong>ion similar to (9).<br />

4.4. Constraint on the tail in<strong>de</strong>x<br />

The first conclusion of the theorem above shows th<strong>at</strong> the tail<br />

in<strong>de</strong>x κ1 of the process (Xt) is driven by the behaviour of the<br />

m<strong>at</strong>rices (At). We will then st<strong>at</strong>e a proposition in which we<br />

give a major<strong>at</strong>ion of the tail in<strong>de</strong>x.<br />

Proposition 2. A necessary condition for the process (16) to<br />

have a tail exponent κ1 > 1 is th<strong>at</strong> the spectral radius of<br />

[A] be smaller than 1:<br />

EPA<br />

κ1 > 1 ⇒ ρ(EPA [A])


2.1. Bulles r<strong>at</strong>ionnelles multi-dimensionnelles <strong>et</strong> queues épaisses 39<br />

Q UANTITATIVE F INANCE Multi-dimensional r<strong>at</strong>ional bubbles<br />

5. Consequences for r<strong>at</strong>ional expect<strong>at</strong>ion<br />

bubbles<br />

We have seen in section 3.3 from proposition 1 th<strong>at</strong>, as a<br />

result of the no-arbitrage condition, the spectral radius of the<br />

m<strong>at</strong>rix EP[A] = 1<br />

δ Id is gre<strong>at</strong>er than 1. As a consequence, by<br />

applic<strong>at</strong>ion of the converse of proposition 2, this proves th<strong>at</strong><br />

the tail in<strong>de</strong>x κ1 of the distribution of (X) is smaller than 1.<br />

Using the same arguments as in Lux and Sorn<strong>et</strong>te (1999),<br />

th<strong>at</strong> we do not recall here, it can be shown th<strong>at</strong> the distribution<br />

of price differences and price r<strong>et</strong>urns follows, <strong>at</strong> least over<br />

an exten<strong>de</strong>d range of large r<strong>et</strong>urns, a power law distribution<br />

whose exponent remains lower than 1. This result generalizes<br />

to arbitrary d-dimensional processes the result of Lux and<br />

Sorn<strong>et</strong>te (1999). As a consequence, d-dimensional r<strong>at</strong>ional<br />

expect<strong>at</strong>ion bubbles linking several ass<strong>et</strong>s suffer from the<br />

same discrepancy compared to empirical d<strong>at</strong>a as the onedimensional<br />

bubbles. It therefore appears th<strong>at</strong> accounting for<br />

possible <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween bubbles is not sufficient to cure<br />

the Blanchard and W<strong>at</strong>son mo<strong>de</strong>l: a linear multi-dimensional<br />

bubble dynamics such as (16) is hardly reconcilable with some<br />

of the most fundamental stylized facts of financial d<strong>at</strong>a <strong>at</strong> a very<br />

elementary level.<br />

This result does not rely on the diagonal property of the<br />

m<strong>at</strong>rices E[At] but only on the value of its spectral radius<br />

imposed by the no-arbitrage condition. In other words, the fact<br />

th<strong>at</strong> the introduction of <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween ass<strong>et</strong> bubbles is<br />

not sufficient to cure the mo<strong>de</strong>l can be traced to the constraint<br />

introduced by the no-arbitrage condition, which imposes th<strong>at</strong><br />

the averages of the off-diagonal terms of the m<strong>at</strong>rices At<br />

vanish. As we indic<strong>at</strong>ed before, this implies zero correl<strong>at</strong>ions<br />

(but not the absence of <strong>de</strong>pen<strong>de</strong>nce) b<strong>et</strong>ween ass<strong>et</strong> bubbles.<br />

It thus seems th<strong>at</strong> the multi-dimensional generaliz<strong>at</strong>ion is<br />

constrained so much by the no-arbitrage condition th<strong>at</strong> the<br />

multi-dimensional bubble mo<strong>de</strong>l almost reduces to an average<br />

one-dimensional mo<strong>de</strong>l. With this insight, our present result<br />

generalizing th<strong>at</strong> of Lux and Sorn<strong>et</strong>te (1999) is n<strong>at</strong>ural.<br />

To our knowledge, there are two possible remedies. The<br />

first one is based on the r<strong>at</strong>ional bubble and crash mo<strong>de</strong>l<br />

of Johansen <strong>et</strong> al (1999, 2000) which abandons the linear<br />

stochastic dynamics (8) in favour of an essentially arbitrary<br />

and nonlinear dynamics controlled by a crash hazard r<strong>at</strong>e.<br />

A jump process for crashes is ad<strong>de</strong>d to the process, with a<br />

crash hazard r<strong>at</strong>e evolving with time such th<strong>at</strong> the r<strong>at</strong>ional<br />

expect<strong>at</strong>ion condition is ensured. This mo<strong>de</strong>l is squarely<br />

based on the r<strong>at</strong>ional expect<strong>at</strong>ion framework and shows th<strong>at</strong><br />

changing the dynamics of the Blanchard and W<strong>at</strong>son mo<strong>de</strong>l<br />

allows s<strong>at</strong>isfying results to be obtained, as the corresponding<br />

r<strong>et</strong>urn distributions can be ma<strong>de</strong> to exhibit reasonable f<strong>at</strong> tails.<br />

The second solution (Sorn<strong>et</strong>te 2001) requires the existence<br />

of an average exponential growth of the fundamental price <strong>at</strong><br />

some r<strong>et</strong>urn r<strong>at</strong>e rf > 0 larger than the discount r<strong>at</strong>e. With<br />

the condition th<strong>at</strong> the price fluctu<strong>at</strong>ions associ<strong>at</strong>ed with bubbles<br />

must on average grow with the mean mark<strong>et</strong> r<strong>et</strong>urn rf , it can be<br />

shown th<strong>at</strong> the exponent of the power law tail of the r<strong>et</strong>urns is<br />

no more boun<strong>de</strong>d by 1 as soon as rf is larger than the discount<br />

r<strong>at</strong>e r and can take essentially arbitrary values. This second<br />

approach amounts to abandoning the r<strong>at</strong>ional pricing theory<br />

(6) with (4) and keeping only the no-arbitrage constraint (7)<br />

on the bubble component. This hypothesis may be true in the<br />

case of a firm, som<strong>et</strong>imes in the case of an industry (railways in<br />

the 19th century, oil and computer in the 20th for instance), but<br />

is hard to <strong>de</strong>fend in the case of an economy as a whole. The<br />

real long run interest r<strong>at</strong>e in the US is approxim<strong>at</strong>ely 3.5%,<br />

and the real r<strong>at</strong>e of growth of profits since World War II is<br />

about 2.1%. Thus, for the economy as a whole, the discounted<br />

sum is always finite. It would be interesting to investig<strong>at</strong>e the<br />

interplay b<strong>et</strong>ween inter-<strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween several bubbles<br />

and this exponential growth mo<strong>de</strong>l.<br />

As a final positive remark balancing our neg<strong>at</strong>ive result,<br />

we stress th<strong>at</strong> the stochastic multiplic<strong>at</strong>ive multi-ass<strong>et</strong> r<strong>at</strong>ional<br />

bubble mo<strong>de</strong>l presented here provi<strong>de</strong>s a n<strong>at</strong>ural mechanism for<br />

the existence of a ‘universal’ tail exponent µ across different<br />

mark<strong>et</strong>s.<br />

Acknowledgments<br />

We acknowledge helpful discussions and exchanges with<br />

J P Laurent, T Lux, V Pisarenko and M Taqqu. We also<br />

thank T Mikosch for providing access to Le Page (1983) and<br />

V Pisarenko for a critical reading of the manuscript. Any<br />

remaining error is ours.<br />

Appendix A. Proof of proposition 1 on<br />

the no-arbitrage condition<br />

L<strong>et</strong> t be the value <strong>at</strong> time t of any self-financing portfolio:<br />

t = W ′<br />

t Xt, (A.1)<br />

where W ′<br />

t = (W1,...,Wd) is the vector whose components<br />

are the weights of the different ass<strong>et</strong>s and the prime <strong>de</strong>notes<br />

the transpose. The no-free-lunch condition reads:<br />

t = δ · EQ[t+1|Ft] ∀{t}t0. (A.2)<br />

Therefore, for all self-financing str<strong>at</strong>egies (Wt), wehave<br />

W ′<br />

<br />

t+1 EQ[A] − 1<br />

δ Id<br />

<br />

Xt = 0 ∀ Xt ∈ R d , (A.3)<br />

where we have used the fact th<strong>at</strong> (Wt+1) is (Ft)-measurable<br />

and th<strong>at</strong> the sequence of m<strong>at</strong>rices {At} is i.i.d.<br />

The str<strong>at</strong>egy W ′<br />

t = (0,...,0, 1, 0,...,0) (1 in ith<br />

position), for all t, is self-financing and implies<br />

(ai1,ai2,...,aii − 1<br />

δ ,...,aid)<br />

·(X (1)<br />

t ,X (2)<br />

t ,...,X (i)<br />

t ,...,X (d)<br />

t ) ′ = 0, (A.4)<br />

for all Xt ∈ Rd . We have called aij the (i, j)th coefficient of<br />

the m<strong>at</strong>rix EQ[A]. As a consequence,<br />

(ai1,ai2,...,aii − 1<br />

δ ,...,aid) = 0 ∀i, (A.5)<br />

and<br />

EQ[A] = 1<br />

δ Id. (A.6)<br />

539


40 2. Modèles phénoménologiques <strong>de</strong> cours<br />

Y Malevergne and D Sorn<strong>et</strong>te Q UANTITATIVE F INANCE<br />

The no-arbitrage condition thus implies: EQ[A] = 1<br />

δ Id.<br />

We now show th<strong>at</strong> the converse is true, namely th<strong>at</strong> if<br />

EQ[A] = 1<br />

δ Id is true, then the no-arbitrage condition is<br />

verified. L<strong>et</strong> us thus assume th<strong>at</strong> EQ[A] = 1<br />

δ Id holds. Then<br />

W ′<br />

EQ[Pt+1|Ft] = EQ[W ′<br />

t+1 · Xt+1|Ft] (A.7)<br />

= W ′<br />

t+1 · EQ[Xt+1|Ft] (A.8)<br />

= W ′<br />

t+1 · EQ[At+1Xt + Bt+1|Ft] (A.9)<br />

= W ′<br />

t+1 · EQ[At+1|Ft] · Xt (A.10)<br />

= W ′<br />

t+1 · EQ[A] · Xt<br />

(A.11)<br />

= 1 ′<br />

W t+1<br />

δ · Xt. (A.12)<br />

The condition th<strong>at</strong> the portfolio is self-financing is<br />

t+1 Xt = W ′<br />

t Xt, which means th<strong>at</strong> the weights can be<br />

rebalanced a priori arbitrarily b<strong>et</strong>ween the ass<strong>et</strong>s with the<br />

constraint th<strong>at</strong> the total wealth <strong>at</strong> the same time remains<br />

constant. We can thus write<br />

EQ[t+1|Ft] = 1 ′<br />

W t+1 · Xt (A.13)<br />

δ<br />

= 1<br />

δ t. (A.14)<br />

Therefore, the discounted process {t} is a Q-martingale.<br />

Appendix B. Proof th<strong>at</strong> δ (i) is the<br />

discount factor for the ith bubble<br />

component in the historical space<br />

Here, we express the no-free-lunch condition in the historical<br />

space (or real space). The condition we will obtain is the socalled<br />

‘r<strong>at</strong>ional expect<strong>at</strong>ion condition’, which is a little bit less<br />

general than the condition d<strong>et</strong>ailed in the previous appendix A.<br />

Given the prices {X (i)<br />

k }kt of an ass<strong>et</strong>, labelled by i, until<br />

the d<strong>at</strong>e t, the best estim<strong>at</strong>ion of its price <strong>at</strong> t +1isEP[X (i)<br />

t+1 |Ft].<br />

So, the RE condition leads to<br />

EP[X (i)<br />

t+1 |Ft] − X (i)<br />

t<br />

X (i) = r<br />

t<br />

(i)<br />

t , (A.15)<br />

where r (i)<br />

t is the r<strong>et</strong>urn of the ass<strong>et</strong> i b<strong>et</strong>ween t and t +1. As<br />

previously, we will assume in wh<strong>at</strong> follows th<strong>at</strong> r (i)<br />

t = r (i) is<br />

time in<strong>de</strong>pen<strong>de</strong>nt. Thus, the r<strong>at</strong>ional expect<strong>at</strong>ion condition for<br />

the ass<strong>et</strong>s i reads<br />

<br />

X (i)<br />

t = δ (i) · EPX<br />

= δ (i) · EP<br />

X (i)<br />

t+1 |Ft<br />

<br />

X (i)<br />

t+1 |Ft<br />

, (A.16)<br />

<br />

, (A.17)<br />

where δ (i) is the discount factor.<br />

A priori, each ass<strong>et</strong> has a different r<strong>et</strong>urn. Thus,<br />

introducing the vector ˜Xt whose ith component is X(i) t<br />

δ (i) ,we<br />

can summarize the r<strong>at</strong>ional expect<strong>at</strong>ion condition as<br />

540<br />

˜Xt = EP [Xt+1|Ft] . (A.18)<br />

Again, we evalu<strong>at</strong>e the conditional expect<strong>at</strong>ion of (16),<br />

and using the fact th<strong>at</strong> {At} are i.i.d., we have<br />

<br />

= EP[A]Xt−1. (A.19)<br />

<br />

EP Xt|Ft−1<br />

This equ<strong>at</strong>ion tog<strong>et</strong>her with (A.18), leads to<br />

˜Xt−1 = EP[A]Xt−1, (A.20)<br />

which can be rewritten<br />

<br />

EP[A] − δ−1 <br />

Xt−1 = 0, (A.21)<br />

where δ−1 = diag[δ (1)−1 ...δ (d)−1 ] is the m<strong>at</strong>rix whose ith<br />

diagonal component is δ (i)−1 and 0 elsewhere.<br />

The equ<strong>at</strong>ion (A.21) must be true for every Xt−1 ∈ Rd ,<br />

thus<br />

EP[A] = δ−1 , (A.22)<br />

which is the result announced in section (3.3.2).<br />

Appendix C. Proof of proposition 2 on<br />

the condition κ1 < 1<br />

First step. Behaviour of the function<br />

1 <br />

f(κ)= lim ln EPA ||An ...A1||<br />

n→∞ n κ1<br />

in the interval [0,κ0].<br />

(A.23)<br />

In the fourth step of the proof of theorem 3, Kesten (1973)<br />

shows th<strong>at</strong> the function f has the following properties:<br />

• f is continuous on [0,κ0],<br />

• f(0) = 0 and f(κ0) >0,<br />

• f ′ (0) 1, it is necessary th<strong>at</strong><br />

f(1)


2.1. Bulles r<strong>at</strong>ionnelles multi-dimensionnelles <strong>et</strong> queues épaisses 41<br />

Q UANTITATIVE F INANCE Multi-dimensional r<strong>at</strong>ional bubbles<br />

f(k)<br />

f(1)<br />

0<br />

Figure A1. Schem<strong>at</strong>ic shape of the function f(κ)<strong>de</strong>fined in (A.23).<br />

where ρ(EPA [A]) is the spectral radius of A. By <strong>de</strong>finition,<br />

|| EPA [A] n <br />

|| | EPA [A] n<br />

xmax| =λ n max . (A.29)<br />

Then<br />

1<br />

lim<br />

n→∞ n ln EPA ||An<br />

1<br />

...A1|| lim ln ρ(EPA [A])n<br />

n→∞ n<br />

= ln ρ(EPA [A]) . (A.30)<br />

Now, suppose th<strong>at</strong> ρ(EPA [A]) 1. We obtain<br />

1<br />

f(1) = lim<br />

n→∞ n ln EPA ||An ...A1|| 0, (A.31)<br />

which is in contradiction with the necessary condition (A.24).<br />

Thus,<br />

References<br />

f(1)


42 2. Modèles phénoménologiques <strong>de</strong> cours<br />

2.2 Des bulles r<strong>at</strong>ionnelles aux krachs<br />

Nous étudions <strong>et</strong> généralisons <strong>de</strong> diverses manières le modèle <strong>de</strong> bulles r<strong>at</strong>ionnelles introduit dans la<br />

littér<strong>at</strong>ure économique par Blanchard <strong>et</strong> W<strong>at</strong>son (1982). Les bulles sont présentées comme équivalentes<br />

aux mo<strong>de</strong>s <strong>de</strong> Goldstone du prix fondamental <strong>de</strong> l’équ<strong>at</strong>ion <strong>de</strong> “pricing” r<strong>at</strong>ionnel, associés à la brisure<br />

<strong>de</strong> symétrie liée à l’existence d’un divi<strong>de</strong>n<strong>de</strong> non nul. Généralisant les bulles en terme <strong>de</strong> processus stochastique<br />

multiplic<strong>at</strong>if, nous résumons le résult<strong>at</strong> <strong>de</strong> Lux <strong>et</strong> Sorn<strong>et</strong>te (2002) selon lequel la condition<br />

<strong>de</strong> non arbitrage impose que la queue <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ment est régulièrement variable, d’indice<br />

<strong>de</strong> queue µ < 1. Nous rappelons ensuite le principal résult<strong>at</strong> <strong>de</strong> Malevergne <strong>et</strong> Sorn<strong>et</strong>te (2001a),<br />

qui étend le modèle <strong>de</strong> bulles r<strong>at</strong>ionnelles à un nombre quelconque <strong>de</strong> dimensions d : un nombre d<br />

<strong>de</strong> séries financières sont rendues linéairement interdépendantes via une m<strong>at</strong>rice <strong>de</strong> couplage alé<strong>at</strong>oire.<br />

Nous dérivons la condition <strong>de</strong> non arbitrage dans ce contexte <strong>et</strong>, à l’ai<strong>de</strong> <strong>de</strong> la <strong>théorie</strong> <strong>de</strong> renouvellement<br />

<strong>de</strong>s m<strong>at</strong>rices alé<strong>at</strong>oires, nous étendons le théorème <strong>de</strong> Lux <strong>et</strong> Sorn<strong>et</strong>te (2002) <strong>et</strong> démontrons que les<br />

queues <strong>de</strong>s distributions inconditionnelles <strong>de</strong>s ren<strong>de</strong>ments <strong>de</strong> chaque actif sont régulièrement variables<br />

<strong>et</strong> <strong>de</strong> même indice <strong>de</strong> queue inférieur à un. Bien que le comportement asymptotique en loi <strong>de</strong> puissance<br />

<strong>de</strong>s queues <strong>de</strong> distributions soit une caractéristique marquante ressortant <strong>de</strong> l’étu<strong>de</strong> <strong>de</strong>s données empiriques,<br />

l’exposant <strong>de</strong> queue inférieur à un est en contradiction flagrante avec l’estim<strong>at</strong>ion empirique<br />

généralement admise qui est <strong>de</strong> l’ordre <strong>de</strong> trois. Nous discutons alors <strong>de</strong>ux extensions du modèle <strong>de</strong><br />

bulles r<strong>at</strong>ionnelles en accord avec les faits stylisés.<br />

Reprint from : D. Sorn<strong>et</strong>te <strong>et</strong> Y. Malevergne (2001),“From r<strong>at</strong>ional bubbles to crashes”, Physica A 299,<br />

40-59.


2.2. Des bulles r<strong>at</strong>ionnelles aux krachs 43<br />

Physica A 299 (2001) 40–59<br />

From r<strong>at</strong>ional bubbles to crashes<br />

www.elsevier.com/loc<strong>at</strong>e/physa<br />

D. Sorn<strong>et</strong>te a;b; ∗ , Y. Malevergne a<br />

a Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>iere Con<strong>de</strong>nsee, CNRS UMR 6622 and Universite <strong>de</strong> Nice-Sophia<br />

Antipolis, 06108 Nice Ce<strong>de</strong>x 2, France<br />

b Institute of Geophysics and Plan<strong>et</strong>ary Physics and Department of Earth and Space Science,<br />

University of California, Los Angeles, CA 90095, USA<br />

Abstract<br />

We study and generalize in various ways the mo<strong>de</strong>l of r<strong>at</strong>ional expect<strong>at</strong>ion (RE) bubbles<br />

introduced by Blanchard and W<strong>at</strong>son in the economic liter<strong>at</strong>ure. Bubbles are argued to be the<br />

equivalent of Goldstone mo<strong>de</strong>s of the fundamental r<strong>at</strong>ional pricing equ<strong>at</strong>ion, associ<strong>at</strong>ed with<br />

the symm<strong>et</strong>ry-breaking introduced by non-vanishing divi<strong>de</strong>nds. Generalizing bubbles in terms of<br />

multiplic<strong>at</strong>ive stochastic maps, we summarize the result of Lux and Sorn<strong>et</strong>te th<strong>at</strong> the no-arbitrage<br />

condition imposes th<strong>at</strong> the tail of the r<strong>et</strong>urn distribution is hyperbolic with an exponent ¡1.<br />

We then outline the main results of Malevergne and Sorn<strong>et</strong>te, who extend the RE bubble mo<strong>de</strong>l<br />

to arbitrary dimensions d: a number d of mark<strong>et</strong> time series are ma<strong>de</strong> linearly inter<strong>de</strong>pen<strong>de</strong>nt<br />

via d × d stochastic coupling coe cients. We <strong>de</strong>rive the no-arbitrage condition in this context<br />

and, with the renewal theory for products of random m<strong>at</strong>rices applied to stochastic recurrence<br />

equ<strong>at</strong>ions, we extend the theorem of Lux and Sorn<strong>et</strong>te to <strong>de</strong>monstr<strong>at</strong>e th<strong>at</strong> the tails of the<br />

unconditional distributions associ<strong>at</strong>ed with such d-dimensional bubble processes follow power<br />

laws, with the same asymptotic tail exponent ¡1 for all ass<strong>et</strong>s. The distribution of price<br />

di erences and of r<strong>et</strong>urns is domin<strong>at</strong>ed by the same power-law over an exten<strong>de</strong>d range of<br />

large r<strong>et</strong>urns. Although power-law tails are a pervasive fe<strong>at</strong>ure of empirical d<strong>at</strong>a, the numerical<br />

value ¡1 is in disagreement with the usual empirical estim<strong>at</strong>es ≈ 3. We then discuss two<br />

extensions (the crash hazard r<strong>at</strong>e mo<strong>de</strong>l and the non-st<strong>at</strong>ionary growth r<strong>at</strong>e mo<strong>de</strong>l) of the RE<br />

bubble mo<strong>de</strong>l th<strong>at</strong> provi<strong>de</strong> two ways of reconcili<strong>at</strong>ion with the stylized facts of nancial d<strong>at</strong>a.<br />

c○ 2001 Elsevier Science B.V. All rights reserved.<br />

1. The mo<strong>de</strong>l of r<strong>at</strong>ional bubbles<br />

Blanchard [1] and Blanchard and W<strong>at</strong>son [2] originally introduced the mo<strong>de</strong>l of<br />

r<strong>at</strong>ional expect<strong>at</strong>ions (RE) bubbles to account for the possibility, often discussed in<br />

∗ Corresponding author. Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>iere Con<strong>de</strong>nsee, CNRS UMR 6622 and Universite<br />

<strong>de</strong> Nice-Sophia Antipolis, 06108 Nice Ce<strong>de</strong>x 2, France. Fax: +33-4-92-07-67-54.<br />

E-mail addresses: sorn<strong>et</strong>te@unice.fr (D. Sorn<strong>et</strong>te), yannick.malevergne@unice.fr (Y. Malevergne).<br />

0378-4371/01/$ - see front m<strong>at</strong>ter c○ 2001 Elsevier Science B.V. All rights reserved.<br />

PII: S 0378-4371(01)00281-3


44 2. Modèles phénoménologiques <strong>de</strong> cours<br />

D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59 41<br />

the empirical liter<strong>at</strong>ure and by practitioners, th<strong>at</strong> observed prices may <strong>de</strong>vi<strong>at</strong>e signi -<br />

cantly and over exten<strong>de</strong>d time intervals from fundamental prices. While allowing for<br />

<strong>de</strong>vi<strong>at</strong>ions from fundamental prices, r<strong>at</strong>ional bubbles keep a fundamental anchor point<br />

of economic mo<strong>de</strong>lling, namely th<strong>at</strong> bubbles must obey the condition of r<strong>at</strong>ional expect<strong>at</strong>ions.<br />

In contrast, recent works stress th<strong>at</strong> investors are not fully r<strong>at</strong>ional, or have<br />

<strong>at</strong> most boun<strong>de</strong>d r<strong>at</strong>ionality, and th<strong>at</strong> behavioral and psychological mechanisms, such<br />

as herding, may be important in the shaping of mark<strong>et</strong> prices [3–5]. However, for<br />

uid ass<strong>et</strong>s, dynamic investment str<strong>at</strong>egies rarely perform over simple buy-and-hold<br />

str<strong>at</strong>egies [6], in other words, the mark<strong>et</strong> is not far from being e cient and little arbitrage<br />

opportunities exist as a result of the constant search for gains by sophistic<strong>at</strong>ed<br />

investors. Here, we shall work within the conditions of r<strong>at</strong>ional expect<strong>at</strong>ions and of<br />

no-arbitrage condition, taken as useful approxim<strong>at</strong>ions. In<strong>de</strong>ed, the r<strong>at</strong>ionality of both<br />

expect<strong>at</strong>ions and behavior often does not imply th<strong>at</strong> the price of an ass<strong>et</strong> be equal to its<br />

fundamental value. In other words, there can be r<strong>at</strong>ional <strong>de</strong>vi<strong>at</strong>ions of the price from<br />

this value, called r<strong>at</strong>ional bubbles. A r<strong>at</strong>ional bubble can arise when the actual mark<strong>et</strong><br />

price <strong>de</strong>pends positively on its own expected r<strong>at</strong>e of change, as som<strong>et</strong>imes occurs in<br />

ass<strong>et</strong> mark<strong>et</strong>s, which is the mechanism un<strong>de</strong>rlying the mo<strong>de</strong>ls of Refs. [1,2].<br />

In or<strong>de</strong>r to avoid the unrealistic picture of ever-increasing <strong>de</strong>vi<strong>at</strong>ions from fundamental<br />

values, Blanchard [2] proposed a mo<strong>de</strong>l with periodically collapsing bubbles in<br />

which the bubble component of the price follows an exponential explosive p<strong>at</strong>h (the<br />

price being multiplied by <strong>at</strong> =a¿1) with probability and collapses to zero (the price<br />

being multiplied by <strong>at</strong> = 0) with probability 1− . It is clear th<strong>at</strong>, in this mo<strong>de</strong>l, a bubble<br />

has an exponential distribution of lif<strong>et</strong>imes with a nite average lif<strong>et</strong>ime =(1 − ).<br />

Bubbles are thus transient phenomena. The condition of r<strong>at</strong>ional expect<strong>at</strong>ions imposes<br />

th<strong>at</strong> a =1=( ), where is the discount factor. In or<strong>de</strong>r to allow for the start of new<br />

bubbles after the collapse, a stochastic zero mean normally distributed component bt<br />

is ad<strong>de</strong>d to the system<strong>at</strong>ic part of Xt. This leads to the following dynamical equ<strong>at</strong>ion<br />

Xt+1 = <strong>at</strong>Xt + bt ; (1)<br />

where, as we said, <strong>at</strong> =a with probability and <strong>at</strong> = 0 with probability 1 − . Both<br />

variables <strong>at</strong> and bt do not <strong>de</strong>pend on the process Xt. There is a huge liter<strong>at</strong>ure on theor<strong>et</strong>ical<br />

re nements of this mo<strong>de</strong>l and on the empirical d<strong>et</strong>ectability of RE bubbles in<br />

nancial d<strong>at</strong>a (see Refs. [7,8], for surveys of this liter<strong>at</strong>ure). Mo<strong>de</strong>l (1) has also been<br />

explored in a large vari<strong>et</strong>y of contexts, for instance in ARCH processes in econom<strong>et</strong>ry<br />

[9], 1D random- eld Ising mo<strong>de</strong>ls [10] using Mellin transforms, and more recently<br />

using extremal properties of the G-harmonic functions on non-compact groups [11]<br />

and the Wiener–Hopf technique [12]. See also Ref. [13] for a short review of other<br />

domains of applic<strong>at</strong>ions including popul<strong>at</strong>ion dynamics with external sources, epi<strong>de</strong>mics,<br />

immigr<strong>at</strong>ion and investment portfolios, the intern<strong>et</strong>, directed polymers in<br />

random media ::: :<br />

Large |Xk| are gener<strong>at</strong>ed by intermittent ampli c<strong>at</strong>ions resulting from the multiplic<strong>at</strong>ion<br />

by several successive values of |a| larger than one. We now o er a simple<br />

“mean- eld” type argument th<strong>at</strong> clari es the origin of the power law f<strong>at</strong> tail. L<strong>et</strong> us


2.2. Des bulles r<strong>at</strong>ionnelles aux krachs 45<br />

42 D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59<br />

call p¿ the probability th<strong>at</strong> the absolute value of the multiplic<strong>at</strong>ive factor a is found<br />

larger than 1. The probability to observe n successive multiplic<strong>at</strong>ive factors |a| larger<br />

than 1 is thus pn ¿. L<strong>et</strong> us call |a¿| the average of |a| conditioned on being larger than<br />

1:|a¿| is thus the typical absolute value of the ampli c<strong>at</strong>ion factor. When n successive<br />

multiplic<strong>at</strong>ive factors occur with absolute values larger than 1, they typically lead to<br />

an ampli c<strong>at</strong>ion of the amplitu<strong>de</strong> of X by |a¿| n . Using the fact th<strong>at</strong> the additive term<br />

bk ensures th<strong>at</strong> the amplitu<strong>de</strong> of Xk remains of the or<strong>de</strong>r of the standard <strong>de</strong>vi<strong>at</strong>ion or<br />

of other measures of typical scales b of the distribution Pb(b) when the multiplic<strong>at</strong>ive<br />

factors |a| are less than 1, this shows th<strong>at</strong> a value of Xk of the or<strong>de</strong>r of |X |≈ b|a¿| n<br />

occurs with probability<br />

p n <br />

<br />

ln |X |= b 1<br />

¿ = exp (n ln p¿) ≈ exp ln p¿ =<br />

(2)<br />

ln |a¿| (|X |= b)<br />

with =lnp¿=ln |a¿|, which can be rewritten as p¿|a¿| = 1. Note the similarity<br />

b<strong>et</strong>ween this last “mean- eld” equ<strong>at</strong>ion and the exact solution (8) given below. The<br />

power law distribution is thus the result of an exponentially small probability of cre<strong>at</strong>ing<br />

an exponentially large value [14]. Expression (2) does not provi<strong>de</strong> a precise<br />

d<strong>et</strong>ermin<strong>at</strong>ion of the exponent , only an approxim<strong>at</strong>e one since we have used a kind<br />

of mean- eld argument in the <strong>de</strong> nition of |a¿|.<br />

In the next section, we recall how bubbles appear as possible solutions of the fundamental<br />

pricing equ<strong>at</strong>ion and play the role of Goldstone mo<strong>de</strong>s of a price-symm<strong>et</strong>ry<br />

broken by the divi<strong>de</strong>nd ow. We then <strong>de</strong>scribe the Kesten generaliz<strong>at</strong>ion of r<strong>at</strong>ional<br />

bubbles in terms of random multiplic<strong>at</strong>ive maps and present the fundamental result [15]<br />

th<strong>at</strong> the no-arbitrage condition leads to the constraint th<strong>at</strong> the exponent of the power<br />

law tail is less than 1. We then present an extension to arbitrary multidimensional<br />

random multiplic<strong>at</strong>ive maps: a number d of mark<strong>et</strong> time series are ma<strong>de</strong> linearly inter<strong>de</strong>pen<strong>de</strong>nt<br />

via d × d stochastic coupling coe cients. We show th<strong>at</strong> the no-arbitrage<br />

condition imposes th<strong>at</strong> the non-diagonal impacts of any ass<strong>et</strong> i on any other ass<strong>et</strong> j = i<br />

has to vanish on average, i.e., must exhibit random altern<strong>at</strong>ive regimes of reinforcement<br />

and contrarian feedbacks. In contrast, the diagonal terms must be positive and<br />

equal on average to the inverse of the discount factor. Applying the results of renewal<br />

theory for products of random m<strong>at</strong>rices to stochastic recurrence equ<strong>at</strong>ions (SRE), we<br />

extend the theorem of Ref. [15] and <strong>de</strong>monstr<strong>at</strong>e th<strong>at</strong> the tails of the unconditional<br />

distributions associ<strong>at</strong>ed with such d-dimensional bubble processes follow power laws<br />

(i.e., exhibit hyperbolic <strong>de</strong>cline), with the same asymptotic tail exponent ¡1 for all<br />

ass<strong>et</strong>s. The distribution of price di erences and of r<strong>et</strong>urns is domin<strong>at</strong>ed by the same<br />

power-law over an exten<strong>de</strong>d range of large r<strong>et</strong>urns. In or<strong>de</strong>r to unlock the paradox,<br />

we brie y discuss the crash hazard r<strong>at</strong>e mo<strong>de</strong>l [16,17] and the non-st<strong>at</strong>ionary growth<br />

mo<strong>de</strong>l [18]. We conclu<strong>de</strong> by proposing a link with the theory of specul<strong>at</strong>ive pricing<br />

through a spontaneous symm<strong>et</strong>ry-breaking [19].<br />

We should stress th<strong>at</strong>, due to the no-arbitrage condition th<strong>at</strong> forms the backbone of<br />

our theor<strong>et</strong>ical approach, correl<strong>at</strong>ions of r<strong>et</strong>urns are vanishing. In addition, the multiplic<strong>at</strong>ive<br />

stochastic structure of the mo<strong>de</strong>ls ensures the phenomenon of vol<strong>at</strong>ility


46 2. Modèles phénoménologiques <strong>de</strong> cours<br />

D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59 43<br />

clustering. These two stylized facts, taken for granted in our present approach, will<br />

not be discussed further.<br />

2. R<strong>at</strong>ional bubbles of an isol<strong>at</strong>ed ass<strong>et</strong> [15]<br />

2.1. R<strong>at</strong>ional expect<strong>at</strong>ion bubble mo<strong>de</strong>l and Goldstone mo<strong>de</strong>s<br />

We rst brie y recall th<strong>at</strong> pricing of an ass<strong>et</strong> un<strong>de</strong>r r<strong>at</strong>ional expect<strong>at</strong>ions theory is<br />

based on the two following hypothesis: the r<strong>at</strong>ionality of the agents and the “no-free<br />

lunch” condition.<br />

Un<strong>de</strong>r the r<strong>at</strong>ional expect<strong>at</strong>ion condition, the best estim<strong>at</strong>ion of the price pt+1 of<br />

an ass<strong>et</strong> <strong>at</strong> time t + 1 viewed from time t is given by the expect<strong>at</strong>ion of pt+1 conditioned<br />

upon the knowledge of the ltr<strong>at</strong>ion {Ft} (i.e., sum of all available inform<strong>at</strong>ion<br />

accumul<strong>at</strong>ed) up to time t: E[pt+1|Ft].<br />

The “no-free lunch” condition imposes th<strong>at</strong> the expected r<strong>et</strong>urns of every ass<strong>et</strong>s are<br />

all equal un<strong>de</strong>r a given probability measure Q equivalent to the historical probability<br />

measure P. In particular, the expected r<strong>et</strong>urn of each ass<strong>et</strong> is equal to the r<strong>et</strong>urn r of<br />

the risk-free ass<strong>et</strong> (which is assumed to exist), and thus the probability measure Q is<br />

named the risk neutral probability measure.<br />

Putting tog<strong>et</strong>her these two conditions, we are led to the following valu<strong>at</strong>ion formula<br />

for the price pt:<br />

pt = EQ[pt+1|Ft]+dt ∀{pt}t¿0 ; (3)<br />

where dt is an exogeneous “divi<strong>de</strong>nd”, and =(1+r) −1 is the discount factor. The rst<br />

term in the r.h.s. quanti es the usual fact th<strong>at</strong> som<strong>et</strong>hing tomorrow is less valuable than<br />

today by a factor called the discount factor. Intuitively, the second term, the divi<strong>de</strong>nd,<br />

is ad<strong>de</strong>d to express the fact th<strong>at</strong> the expected price tomorrow has to be <strong>de</strong>creased by<br />

the divi<strong>de</strong>nd since the value before giving the divi<strong>de</strong>nd incorpor<strong>at</strong>es it in the pricing.<br />

The “forward” solution of (3) is well-known to be the fundamental price<br />

p f<br />

t =<br />

+∞<br />

i=0<br />

i EQ[dt+i|Ft] : (4)<br />

It is straightforward to check by replacement th<strong>at</strong> the sum of the forward solution (4)<br />

and of an arbitrary component Xt<br />

pt = p f<br />

t + Xt ; (5)<br />

where Xt has to obey the single condition of being an arbitrary martingale<br />

Xt = EQ[Xt+1|Ft] (6)<br />

is also the solution of (3). In fact, it can be shown [20] th<strong>at</strong> (5) is the general solution<br />

of (3).<br />

Here, it is important to note th<strong>at</strong>, in the framework of the Blanchard and W<strong>at</strong>son<br />

mo<strong>de</strong>l, the specul<strong>at</strong>ive bubbles appear as a n<strong>at</strong>ural consequence of the valu<strong>at</strong>ion formula


2.2. Des bulles r<strong>at</strong>ionnelles aux krachs 47<br />

44 D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59<br />

(3), i.e., of the no free-lunch condition and the r<strong>at</strong>ionality of the agents. Thus, the<br />

concept of bubbles is not an addition to the theory, as som<strong>et</strong>imes believed, but is<br />

entirely embed<strong>de</strong>d in it.<br />

Notice also th<strong>at</strong> the component Xt in (5) plays a role analogous to the Goldstone<br />

mo<strong>de</strong> in nuclear, particle and con<strong>de</strong>nsed-m<strong>at</strong>ter physics [21,22]. Goldstone mo<strong>de</strong>s are<br />

the zero-wavenumber zero-energy modal uctu<strong>at</strong>ions th<strong>at</strong> <strong>at</strong>tempt to restore a broken<br />

symm<strong>et</strong>ry. For instance, consi<strong>de</strong>r a Bloch wall b<strong>et</strong>ween two semi-in nite magn<strong>et</strong>ic<br />

domains of opposite spin directions selected by opposite magn<strong>et</strong>ic eld <strong>at</strong> boundaries<br />

far away. At non-zero temper<strong>at</strong>ure, capillary waves are excited by thermal uctu<strong>at</strong>ions.<br />

The limit of very long-wavelength capillary mo<strong>de</strong>s correspond to Goldstone mo<strong>de</strong>s th<strong>at</strong><br />

tend to restore the transl<strong>at</strong>ional symm<strong>et</strong>ry broken by the presence of the Bloch wall<br />

[23].<br />

In the present context, as shown in Ref. [19], the<br />

p →−p parity symm<strong>et</strong>ry (7)<br />

is broken by the “external” eld embodied in the divi<strong>de</strong>nd ow dt. In<strong>de</strong>ed, as can be<br />

seen from (3) and its forward solution (4), the fundamental price is i<strong>de</strong>ntically zero in<br />

absence of divi<strong>de</strong>nds. Ref. [19] has stressed the fact th<strong>at</strong> it makes perfect sense to think<br />

of neg<strong>at</strong>ive prices. For instance, we are ready to pay a (positive) price for a commodity<br />

th<strong>at</strong> we need or like. However, we will not pay a positive price to g<strong>et</strong> som<strong>et</strong>hing we<br />

dislike or which disturb us, such as garbage, waste, broken and useless car, chemical<br />

and industrial hazards, <strong>et</strong>c. Consi<strong>de</strong>r a chunk of waste. We will be ready to buy it<br />

for a neg<strong>at</strong>ive price, in other words, we are ready to take the unwanted commodity if<br />

it comes with cash. Positive divi<strong>de</strong>nds imply positive prices, neg<strong>at</strong>ive divi<strong>de</strong>nds lead<br />

to neg<strong>at</strong>ive prices. Neg<strong>at</strong>ive divi<strong>de</strong>nds correspond to the premium to pay to keep an<br />

ass<strong>et</strong> for instance. From an economic view point, wh<strong>at</strong> makes a share of a company<br />

<strong>de</strong>sirable is its earnings, th<strong>at</strong> provi<strong>de</strong> divi<strong>de</strong>nds, and its potential appreci<strong>at</strong>ion th<strong>at</strong> give<br />

rise to capital gains. As a consequence, in absence of divi<strong>de</strong>nds and of specul<strong>at</strong>ion,<br />

the price of share must be nil and the symm<strong>et</strong>ry (7) holds. The earnings leading to<br />

divi<strong>de</strong>nds d thus act as a symm<strong>et</strong>ry-breaking “ eld”, since a positive d makes the share<br />

<strong>de</strong>sirable and thus <strong>de</strong>velop a positive price.<br />

It is now clear th<strong>at</strong> the addition of the bubble Xt, which can be anything but for<br />

the martingale condition (6), is playing the role of the Goldstone mo<strong>de</strong>s restoring the<br />

broken symm<strong>et</strong>ry: the bubble price can wan<strong>de</strong>r up or down and, in the limit where it<br />

becomes very large in absolute value, domin<strong>at</strong>e over the fundamental price, restoring<br />

the in<strong>de</strong>pen<strong>de</strong>nce with respect to divi<strong>de</strong>nd. Moreover, as in con<strong>de</strong>nsed-m<strong>at</strong>ter physics<br />

where the Goldstone mo<strong>de</strong> appears spontaneously since it has no energy cost, the<br />

r<strong>at</strong>ional bubble itself can appear spontaneously with no divi<strong>de</strong>nd.<br />

The “bubble” Goldstone mo<strong>de</strong> turns out to be intim<strong>at</strong>ely rel<strong>at</strong>ed to the “money” Goldstone<br />

mo<strong>de</strong> introduced by Bak <strong>et</strong> al. [24]. Ref. [24] introduces a dynamical many-body<br />

theory of money, in which the value of money in equilibrium is not xed by the<br />

equ<strong>at</strong>ions, and thus obeys a continuous symm<strong>et</strong>ry. The dynamics breaks this continuous<br />

symm<strong>et</strong>ry by x<strong>at</strong>ing the value of money <strong>at</strong> a level which <strong>de</strong>pends on initial


48 2. Modèles phénoménologiques <strong>de</strong> cours<br />

D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59 45<br />

conditions. The uctu<strong>at</strong>ions around the equilibrium, for instance in the presence of<br />

noise, are governed by the Goldstone mo<strong>de</strong>s associ<strong>at</strong>ed with the broken symm<strong>et</strong>ry. In<br />

apparent contrast, a bubble represents the arbitrary <strong>de</strong>vi<strong>at</strong>ion from fundamental valu<strong>at</strong>ion.<br />

Introducing money, a given valu<strong>at</strong>ion or price is equivalent to a certain amount<br />

of money. A growing bubble thus corresponds to the same ass<strong>et</strong> becoming equivalent<br />

to more and more cash. Equivalently, from the point of view of the ass<strong>et</strong>, this can be<br />

seen as cash <strong>de</strong>valu<strong>at</strong>ion, i.e., in <strong>at</strong>ion. The “bubble” Goldstone mo<strong>de</strong> and the “money”<br />

Goldstone mo<strong>de</strong> are thus two fac<strong>et</strong>s of the same fundamental phenomenon: they both<br />

are left unconstrained by the valu<strong>at</strong>ion equ<strong>at</strong>ions.<br />

2.2. The no-arbitrage condition and f<strong>at</strong> tails<br />

Following Ref. [15], we study the implic<strong>at</strong>ions of the RE bubble mo<strong>de</strong>ls for the<br />

unconditional distribution of prices, price changes and r<strong>et</strong>urns resulting from a general<br />

discr<strong>et</strong>e-time formul<strong>at</strong>ion extending (1) by allowing the multiplic<strong>at</strong>ive factor <strong>at</strong> to take<br />

arbitrary values and be i.i.d. random variables drawn from some non-<strong>de</strong>gener<strong>at</strong>e probability<br />

<strong>de</strong>nsity function (pdf) Pa(a). The mo<strong>de</strong>l can also be generalized by consi<strong>de</strong>ring<br />

non-normal realiz<strong>at</strong>ions of bt with distribution Pb(b) with EP[bt] = 0, where EP[ · ]is<br />

the unconditional expect<strong>at</strong>ion with respect to the probability measure P.<br />

Provi<strong>de</strong>d EP[ln a] ¡ 0 (st<strong>at</strong>ionarity condition) and if there is a number such th<strong>at</strong><br />

0 ¡EP[|b| ] ¡ + ∞, such th<strong>at</strong><br />

EP[|a| ]=1 (8)<br />

and such th<strong>at</strong> EP[|a| ln |a|] ¡ + ∞, then the tail of the distribution of X is asymptotically<br />

(for large X ’s) a power law [25,26]<br />

PX (X )dX ≈ C<br />

dX ; (9)<br />

|X | 1+<br />

with an exponent given by the real positive solution of (8).<br />

R<strong>at</strong>ional expect<strong>at</strong>ions require in addition th<strong>at</strong> the bubble component of ass<strong>et</strong> prices<br />

obeys the “no free-lunch” condition<br />

EQ[Xt+1|Ft]=Xt<br />

(10)<br />

where ¡1 is the discount factor and the expect<strong>at</strong>ion is taken conditional on the<br />

knowledge of the<br />

rst<br />

ltr<strong>at</strong>ion (inform<strong>at</strong>ion) until time t. Condition (10) with (1) imposes<br />

and then<br />

EQ[a]=1= ¿ 1 ; (11)<br />

EP[a] ¿ 1 ; (12)<br />

on the distribution of the multiplic<strong>at</strong>ive factors <strong>at</strong>.<br />

Consi<strong>de</strong>r the function<br />

M( )=EP[a ] : (13)


2.2. Des bulles r<strong>at</strong>ionnelles aux krachs 49<br />

46 D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59<br />

Fig. 1. Convexity of M( ). This enforces th<strong>at</strong> the exponent solution of (8) is ¡1.<br />

It has the following properties:<br />

(1) M(0) = 1 by <strong>de</strong> nition,<br />

(2) M ′ (0) = EP[ln a] ¡ 0 from the st<strong>at</strong>ionarity condition,<br />

(3) M ′′ ( )=EP[(ln a) 2 |a| ] ¿ 0, by the positivity of the square,<br />

(4) M(1)=1= ¿ 1 by the no-arbitrage result (12).<br />

M( ) is thus convex and is shown in Fig. 1. This <strong>de</strong>monstr<strong>at</strong>e th<strong>at</strong> ¡1 autom<strong>at</strong>ically<br />

(see Ref. [15] for a d<strong>et</strong>ailed <strong>de</strong>monstr<strong>at</strong>ion). It is easy to show [15] th<strong>at</strong> the<br />

distribution of price di erences has the same power law tail with the exponent ¡1<br />

and the distribution of r<strong>et</strong>urns is domin<strong>at</strong>ed by the same power-law over an exten<strong>de</strong>d<br />

range of large r<strong>et</strong>urns [15]. Although power-law tails are a pervasive fe<strong>at</strong>ure of empirical<br />

d<strong>at</strong>a, these characteriz<strong>at</strong>ions are in strong disagreement with the usual empirical<br />

estim<strong>at</strong>es which nd ≈ 3 [27–31]. Lux and Sorn<strong>et</strong>te [15] conclu<strong>de</strong>d th<strong>at</strong> exogenous<br />

r<strong>at</strong>ional bubbles are thus hardly reconcilable with some of the stylized facts of nancial<br />

d<strong>at</strong>a <strong>at</strong> a very elementary level.<br />

3. Generaliz<strong>at</strong>ion of r<strong>at</strong>ional bubbles to arbitrary dimensions [32]<br />

3.1. Generaliz<strong>at</strong>ion to several coupled ass<strong>et</strong>s<br />

In reality, there is no such thing as an isol<strong>at</strong>ed ass<strong>et</strong>. Stock mark<strong>et</strong>s exhibit a vari<strong>et</strong>y<br />

of inter-<strong>de</strong>pen<strong>de</strong>nces, based in part on the mutual in uences b<strong>et</strong>ween the USA,<br />

European and Japanese mark<strong>et</strong>s. In addition, individual stocks may be sensitive to<br />

the behavior of the speci c industry as a whole to which they belong and to a few<br />

other indic<strong>at</strong>ors, such as the main indices, interest r<strong>at</strong>es and so on. Mantegna <strong>et</strong> al.<br />

[33,34] have in<strong>de</strong>ed shown the existence of a hierarchical organiz<strong>at</strong>ion of stock inter<strong>de</strong>pen<strong>de</strong>nces.<br />

Furthermore, bubbles often appear to be not isol<strong>at</strong>ed fe<strong>at</strong>ures of a s<strong>et</strong> of<br />

mark<strong>et</strong>s. For instance, Ref. [35] tested wh<strong>et</strong>her a bubble simultaneously existed across


50 2. Modèles phénoménologiques <strong>de</strong> cours<br />

D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59 47<br />

the n<strong>at</strong>ions, such as Germany, Poland, and Hungary, th<strong>at</strong> experienced hyperin <strong>at</strong>ion<br />

in the early 1920s. Coordin<strong>at</strong>ed bubbles can som<strong>et</strong>imes be d<strong>et</strong>ected. One of the most<br />

prominent example is found in the mark<strong>et</strong> appreci<strong>at</strong>ions observed in many of the world<br />

mark<strong>et</strong>s prior to the world mark<strong>et</strong> crash in October 1987 [36]. Similar intermittent<br />

coordin<strong>at</strong>ion of bubbles have been d<strong>et</strong>ected among the signi cant bubbles followed<br />

by large crashes or severe corrections in L<strong>at</strong>in American and Asian stock mark<strong>et</strong>s<br />

[37]. It is therefore <strong>de</strong>sirable to generalize the one-dimensional RE bubble mo<strong>de</strong>l (1)<br />

to the multi-dimensional case. One could also hope a priori th<strong>at</strong> this generaliz<strong>at</strong>ion<br />

would modify the result ¡1 obtained in the one-dimensional case and allow for a<br />

b<strong>et</strong>ter a<strong>de</strong>qu<strong>at</strong>ion with empirical results. In<strong>de</strong>ed, 1d-systems are well-known to exhibit<br />

anamalous properties often not shared by higher dimensional systems. Here however,<br />

it turns out th<strong>at</strong> the same result ¡1 holds, as we shall see.<br />

In the case of several ass<strong>et</strong>s, r<strong>at</strong>ional pricing theory again dict<strong>at</strong>es th<strong>at</strong> the fundamental<br />

price of each individual ass<strong>et</strong> is given by a formula like (3), where the speci c<br />

divi<strong>de</strong>nd ow of each ass<strong>et</strong> is used, with the same discount factor. The corresponding<br />

forward solution (4) is again valid for each ass<strong>et</strong>. The general solution for each ass<strong>et</strong><br />

is (5) with a bubble component Xt di erent from an ass<strong>et</strong> to the next. The di erent<br />

bubble components can be coupled, as we shall see, but they must each obey the martingale<br />

condition (6), component by component. This imposes speci c conditions on<br />

the coupling terms, as we shall see.<br />

Following this reasoning, we can therefore propose the simplest generaliz<strong>at</strong>ion of a<br />

bubble into a “two-dimensional” bubble for two ass<strong>et</strong>s X and Y with bubble prices, respectively,<br />

equal to Xt and Yt <strong>at</strong> time t. We express the generaliz<strong>at</strong>ion of the Blanchard–<br />

W<strong>at</strong>son mo<strong>de</strong>l as follows:<br />

Xt+1 = <strong>at</strong>Xt + btYt + t ; (14)<br />

Yt+1 = ctXt + dtYk + t ; (15)<br />

where <strong>at</strong>, bt, ct and dt are drawn from some multivari<strong>at</strong>e probability <strong>de</strong>nsity function.<br />

The two additive noises t and t are also drawn from some distribution function with<br />

zero mean. The diagonal case bt = ct = 0 for all t recovers the previous one-dimensional<br />

case with two uncoupled bubbles, provi<strong>de</strong>d t and t are in<strong>de</strong>pen<strong>de</strong>nt.<br />

R<strong>at</strong>ional expect<strong>at</strong>ions require th<strong>at</strong> Xt and Yt obey both the “no-free lunch”<br />

condition (10), i.e., · EQ[Xt+1|Ft]=Xt and · EQ[Yt+1|Ft]=Yt. With (14; 15); this<br />

gives<br />

(EQ[<strong>at</strong>] − −1 )Xt + EQ[bt]Yt =0; (16)<br />

EQ[ct]Xt +(EQ[dt] − −1 )Yt =0; (17)<br />

where we have used th<strong>at</strong> t and t are centered. The two equ<strong>at</strong>ions (16; 17) must<br />

be true for all times, i.e., for all values of Xt and Yt visited by the dynamics. This


2.2. Des bulles r<strong>at</strong>ionnelles aux krachs 51<br />

48 D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59<br />

imposes EQ[bt]=EQ[ct]=0 and EQ[<strong>at</strong>]=EQ[dt]= −1 . We are going to r<strong>et</strong>rieve this<br />

result more formally in the general case.<br />

3.2. General formul<strong>at</strong>ion<br />

A generaliz<strong>at</strong>ion to arbitrary dimensions leads to the following stochastic random<br />

equ<strong>at</strong>ion (SRE):<br />

Xt = AtXt−1 + Bt ; (18)<br />

where (Xt; Bt) are d-dimensional vectors. Each component of Xt can be thought of<br />

as the price of an ass<strong>et</strong> above its fundamental price. The m<strong>at</strong>rices (At) are i<strong>de</strong>ntically<br />

in<strong>de</strong>pen<strong>de</strong>nt distributed d × d-dimensional stochastic m<strong>at</strong>rices. We assume th<strong>at</strong> Bt are<br />

i<strong>de</strong>ntically in<strong>de</strong>pen<strong>de</strong>nt distributed random vectors and th<strong>at</strong> (Xt) is a causal st<strong>at</strong>ionary<br />

solution of (18). Generaliz<strong>at</strong>ions introducing additional arbitrary linear terms <strong>at</strong> larger<br />

time lags such as Xt−2;::: can be tre<strong>at</strong>ed with slight modi c<strong>at</strong>ions of our approach<br />

and yield the same conclusions. We shall thus con ne our <strong>de</strong>monstr<strong>at</strong>ion on the SRE<br />

of or<strong>de</strong>r 1, keeping in mind th<strong>at</strong> our results apply analogously to arbitrary or<strong>de</strong>rs of<br />

regressions.<br />

In the following, we <strong>de</strong>note by |·| the Eucli<strong>de</strong>an norm and by · the corresponding<br />

norm for any d × d-m<strong>at</strong>rix A<br />

A =sup|Ax|<br />

: (19)<br />

|x|=1<br />

Technical d<strong>et</strong>ails are given in [32].<br />

3.3. The no-free lunch condition<br />

The valu<strong>at</strong>ion formula (3) and the martingale condition (6) given for a single ass<strong>et</strong><br />

easily extends to a bask<strong>et</strong> of ass<strong>et</strong>s. It is n<strong>at</strong>ural to assume th<strong>at</strong>, for a given period t, the<br />

discount r<strong>at</strong>e rt(i), associ<strong>at</strong>ed with ass<strong>et</strong> i, are all the same. In frictionless mark<strong>et</strong>s, a<br />

<strong>de</strong>vi<strong>at</strong>ion for this hypothesis would lead to arbitrage opportunities. Furthermore, since<br />

the sequence of m<strong>at</strong>rices {At} is assumed to be i.i.d. and therefore st<strong>at</strong>ionary, this<br />

implies th<strong>at</strong> t or rt must be constant and equal, respectively, to and r.<br />

Un<strong>de</strong>r those conditions, we have the following proposition.<br />

Proposition 1. The stochastic process<br />

Xt = AtXt−1 + Bt<br />

s<strong>at</strong>is es the no-arbitrage condition if and only if<br />

(20)<br />

EQ[A]= 1 Id : (21)<br />

The proof is given in Ref. [32] in which this condition (21) is also shown to hold true<br />

un<strong>de</strong>r the historical probability measure P.


52 2. Modèles phénoménologiques <strong>de</strong> cours<br />

D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59 49<br />

The condition (21) imposes some stringent constraints on admissible m<strong>at</strong>rices At.<br />

In<strong>de</strong>ed, while At are not diagonal in general, their average must be diagonal. This<br />

implies th<strong>at</strong> the o -diagonal terms of the m<strong>at</strong>rices At must take neg<strong>at</strong>ive values, sufciently<br />

often so th<strong>at</strong> their averages vanish. The o -diagonal coe cients quantify the<br />

in uence of other bubbles on a given one. The condition (21) thus means th<strong>at</strong> the<br />

average e ect of other bubbles on any given one must vanish. It is straightforward to<br />

check th<strong>at</strong>, in this linear framework, this implies an absence of correl<strong>at</strong>ion (but not an<br />

absence of <strong>de</strong>pen<strong>de</strong>nce) b<strong>et</strong>ween the di erent bubble components E[X (k) X (‘) ]=0 for<br />

any k = ‘.<br />

In contrast, the diagonal elements of At must be positive in majority in or<strong>de</strong>r for<br />

EP[Aii]= (i)−1,<br />

for all i’s, to hold true. In fact, on economic grounds, we can exclu<strong>de</strong><br />

the cases where the diagonal elements take neg<strong>at</strong>ive values. In<strong>de</strong>ed, a neg<strong>at</strong>ive value<br />

of Aii <strong>at</strong> a given time t would imply th<strong>at</strong> X (i)<br />

t abruptly change sign b<strong>et</strong>ween t − 1 and<br />

t, wh<strong>at</strong> does not seem to be a reasonable nancial process.<br />

3.4. Renewal theory for products of random m<strong>at</strong>rices<br />

In the following, we will consi<strong>de</strong>r th<strong>at</strong> the random d × d m<strong>at</strong>rices At are invertible<br />

m<strong>at</strong>rices with real entries. We use Theorem 2:7 of Davis <strong>et</strong> al. [38], which synthesized<br />

Kesten’s Theorems 3 and 4 in Ref. [25], to the case of real valued m<strong>at</strong>rices. The proof<br />

of this theorem is given in Ref. [39]. We stress th<strong>at</strong> the conditions listed below do<br />

not require the m<strong>at</strong>rices (An) to be non-neg<strong>at</strong>ive. Actually, we have seen th<strong>at</strong>, in or<strong>de</strong>r<br />

for the r<strong>at</strong>ional expect<strong>at</strong>ion condition not to lead to trivial results, the o -diagonal<br />

coe cients of (An) have to be neg<strong>at</strong>ive with su ciently large probability such th<strong>at</strong><br />

their means vanish.<br />

Theorem 1. L<strong>et</strong> (An) be an i.i.d. sequence of m<strong>at</strong>rices in GLd(R) s<strong>at</strong>isfying the following<br />

s<strong>et</strong> of conditions th<strong>at</strong> we st<strong>at</strong>e in a heuristic manner (see Ref. [32] for technical<br />

d<strong>et</strong>ails). Provi<strong>de</strong>d th<strong>at</strong> the following conditions hold;<br />

H1: st<strong>at</strong>ionarity condition;<br />

H2: ergodicity;<br />

H3: intermittent ampli c<strong>at</strong>ion of the random m<strong>at</strong>rices;<br />

H4: the f<strong>at</strong>tailness of the distribution is not controlled by th<strong>at</strong> of the additive<br />

part Bt;<br />

then;<br />

• there exists a unique solution ∈ (0; 0] to the equ<strong>at</strong>ion<br />

1<br />

lim<br />

n→∞ n ln EP[A1 ···An ]=0; (22)<br />

• If (Xn) is the st<strong>at</strong>ionary solution to the stochastic recurrence equ<strong>at</strong>ion in (18)<br />

then X is regularly varying with in<strong>de</strong>x . In other words; the tail of the marginal


2.2. Des bulles r<strong>at</strong>ionnelles aux krachs 53<br />

50 D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59<br />

distribution of each of the components of the vector X is asymptotically a power<br />

law with exponent .<br />

Eq. (22) d<strong>et</strong>ermining the tail exponent reduces to (8) in the one-dimensional case,<br />

which is simple to handle. In the multi-dimensional case, the novel fe<strong>at</strong>ure is the<br />

non-diagonal n<strong>at</strong>ure of the multiplic<strong>at</strong>ion of m<strong>at</strong>rices which does not allow in general<br />

for an explicit equ<strong>at</strong>ion similar to (8).<br />

It is important to stress th<strong>at</strong> the tails of the distribution of r<strong>et</strong>urns for all the components<br />

of the bubble <strong>de</strong>crease with the same tail in<strong>de</strong>x . This mo<strong>de</strong>l thus provi<strong>de</strong>s<br />

a n<strong>at</strong>ural s<strong>et</strong>ting for r<strong>at</strong>ionalizing the well-documented empirical observ<strong>at</strong>ion th<strong>at</strong> the<br />

exponent is found to be approxim<strong>at</strong>ely the same for most ass<strong>et</strong>s. The constraint on<br />

its value discussed in the next paragraph does not diminish the value of this remark,<br />

as explained in Section 5.<br />

3.5. Constraint on the tail in<strong>de</strong>x<br />

The rst conclusion of the theorem above shows th<strong>at</strong> the tail in<strong>de</strong>x of the process<br />

(Xt) is driven by the behavior of the m<strong>at</strong>rices (At). We will then st<strong>at</strong>e a proposition<br />

in which we give a major<strong>at</strong>ion of the tail in<strong>de</strong>x.<br />

Proposition 2. A necessary condition to have ¿1 is th<strong>at</strong> the spectral radius (largest<br />

eigenvalue) of EP[A] be smaller than 1:<br />

¿1 ⇒ (EP[A]) ¡ 1 : (23)<br />

The proof is given in Ref. [32]. This proposition, put tog<strong>et</strong>her with Proposition 1 above,<br />

allows us to <strong>de</strong>rive our main result. We have seen in Section 3.3 from Proposition 1<br />

th<strong>at</strong>, as a result of the no-arbitrage condition, the spectral radius of the m<strong>at</strong>rix EP[A]<br />

is gre<strong>at</strong>er than 1. As a consequence, by applic<strong>at</strong>ion of the converse of Proposition 2,<br />

we nd th<strong>at</strong> the tail in<strong>de</strong>x of the distribution of (X) is smaller than 1. This result<br />

does not rely on the diagonal property of the m<strong>at</strong>rices EP[At] but only on the value<br />

of the spectral radius imposed by the no-arbitrage condition.<br />

This result generalizes to arbitrary d-dimensional processes the result of Ref. [15]. As<br />

a consequence, d-dimensional r<strong>at</strong>ional expect<strong>at</strong>ion bubbles linking several ass<strong>et</strong>s su er<br />

from the same discrepancy compared to empirical d<strong>at</strong>a as the one-dimensional bubbles.<br />

It would therefore appear th<strong>at</strong> exogenous r<strong>at</strong>ional bubbles are hardly reconcilable with<br />

some of the most fundamental stylized facts of nancial d<strong>at</strong>a <strong>at</strong> a very elementary level.<br />

At this stage, we have to ask the question: wh<strong>at</strong> is wrong with the mo<strong>de</strong>l of r<strong>at</strong>ional<br />

bubbles? Two altern<strong>at</strong>ive answers are explored below: either we believe in the standard<br />

valu<strong>at</strong>ion formula and we are led to extend the restricted framework <strong>de</strong>scribed by the<br />

Blanchard and W<strong>at</strong>son’s mo<strong>de</strong>l; or we believe in the existence of the bubbles within<br />

their framework and we have to generalize the valu<strong>at</strong>ion formula. In the next two<br />

sections, we will discuss these two points of view.


54 2. Modèles phénoménologiques <strong>de</strong> cours<br />

D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59 51<br />

4. The crash hazard r<strong>at</strong>e mo<strong>de</strong>l [16,17]<br />

In the stylised framework of a purely specul<strong>at</strong>ive ass<strong>et</strong> th<strong>at</strong> pays no divi<strong>de</strong>nds—i.e.,<br />

with zero fundamental price—and in which we ignore inform<strong>at</strong>ion asymm<strong>et</strong>ry and the<br />

mark<strong>et</strong>-clearing condition, the price of the ass<strong>et</strong> equals the price of the bubble and the<br />

valu<strong>at</strong>ion formula (3) leads to the familiar martingale hypothesis for the bubble price:<br />

for all t ′ ¿t t→t ′EQ[X (t ′ )|Ft]=X (t) : (24)<br />

This equ<strong>at</strong>ion is nothing but a generalis<strong>at</strong>ion of Eq. (6) to a continuous time formul<strong>at</strong>ion,<br />

in which t→t ′ <strong>de</strong>notes the discount factor from time t to time t′ .<br />

We consi<strong>de</strong>r a general bubble dynamics given by<br />

dX = m(t) X (t)dt − X (t)dj; (25)<br />

where m(t) can be any non-linear causal function of X itself. We add a jump process<br />

j to capture the possibility th<strong>at</strong> the bubble exhibits a crash. j is thus zero before the<br />

crash and one afterwards. The random n<strong>at</strong>ure of the crash occurrence is mo<strong>de</strong>led by the<br />

cumul<strong>at</strong>ive distribution function Q(t) of the time of the crash, the probability <strong>de</strong>nsity<br />

function q(t)=dQ=dt and the hazard r<strong>at</strong>e h(t)=q(t)=[1 − Q(t)]. The hazard r<strong>at</strong>e is the<br />

probability per unit of time th<strong>at</strong> the crash will happen in the next instant provi<strong>de</strong>d it<br />

has not happened y<strong>et</strong>, i.e.:<br />

EQ[dj|Ft]=h(t)dt: (26)<br />

Expression (25) assumes th<strong>at</strong>, during a crash, the bubble drops by a xed percentage<br />

∈ (0; 1), say b<strong>et</strong>ween 20% and 30% of the bubble price.<br />

Using EQ[X (t +dt)|Ft]=(1+r dt)X (t), where r is the riskless discount r<strong>at</strong>e, taking<br />

the expect<strong>at</strong>ion of (25) conditioned on the ltr<strong>at</strong>ion up to time t and using Eq. (26),<br />

we g<strong>et</strong><br />

EQ[dX |Ft]=m(t)X (t)dt − X (t)h(t)dt = rX (t)dt; (27)<br />

which yields<br />

m(t) − r = h(t) : (28)<br />

If the crash hazard r<strong>at</strong>e h(t) increases, the r<strong>et</strong>urn m(t)−r above the riskless interest r<strong>at</strong>e<br />

increases to compens<strong>at</strong>e the tra<strong>de</strong>rs for the increasing risk. Reciprocally, if the dynamics<br />

of the bubble shoots up, the r<strong>at</strong>ional expect<strong>at</strong>ion condition imposes an increasing crash<br />

risk in or<strong>de</strong>r to ensure the absence of arbitrage opportunities: the risk-adjusted r<strong>et</strong>urn<br />

remains constant equal to the risk-free r<strong>at</strong>e. The corresponding equ<strong>at</strong>ion for the bubble<br />

price, conditioned on the crash not to have occurred, is<br />

t<br />

X (t)<br />

log = rt + h(t<br />

X (t0)<br />

t0<br />

′ )dt ′<br />

before the crash : (29)<br />

The integral t<br />

t0 h(t′ )dt ′ is the cumul<strong>at</strong>ive probability of a crash until time t. This gives<br />

the logarithm of the bubble price as the relevant observable. It has successfully been


2.2. Des bulles r<strong>at</strong>ionnelles aux krachs 55<br />

52 D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59<br />

applied to the 1929 and 1987 Wall Stre<strong>et</strong> crashes up to about 7:5 years prior to the<br />

crash [40,17].<br />

The higher the probability of a crash, the faster the bubble must increase (conditional<br />

on having no crash) in or<strong>de</strong>r to s<strong>at</strong>isfy the martingale condition. Reciprocally,<br />

the higher the bubble, the more dangerous is the probability of a looming crash. Intuitively,<br />

investors must be compens<strong>at</strong>ed by a higher r<strong>et</strong>urn in or<strong>de</strong>r to be induced to<br />

hold an ass<strong>et</strong> th<strong>at</strong> might crash. This is the only e ect th<strong>at</strong> this mo<strong>de</strong>l captures. Note<br />

th<strong>at</strong> the bubble dynamics can be anything and the bubble can in particular be such<br />

th<strong>at</strong> the distribution of r<strong>et</strong>urns are f<strong>at</strong> tails with an exponent ≈ 3 without loss of<br />

generality [41].<br />

Ilinski [42] raised the concern th<strong>at</strong> the martingale condition (24) leads to a mo<strong>de</strong>l<br />

which “assumes a zero r<strong>et</strong>urn as the best prediction for the mark<strong>et</strong>”. He continues:<br />

“No need to say th<strong>at</strong> this is not wh<strong>at</strong> one expects from a perfect mo<strong>de</strong>l of mark<strong>et</strong><br />

bubble! Buying shares, tra<strong>de</strong>rs expect the price to rise and it is re ected (or caused)<br />

by their prediction mo<strong>de</strong>l. They support the bubble and the bubble support them!”.<br />

In other words, Ilinski [42] criticises a key economic element of the mo<strong>de</strong>l [16,17]:<br />

mark<strong>et</strong> r<strong>at</strong>ionality. This point is captured by assuming th<strong>at</strong> the mark<strong>et</strong> level is expected<br />

to stay constant (up to the riskless discount r<strong>at</strong>e) as written in equ<strong>at</strong>ion (24). Ilinski<br />

claims th<strong>at</strong> this equ<strong>at</strong>ion (24) is wrong because the mark<strong>et</strong> level does not stay constant<br />

in a bubble: it rises, almost by <strong>de</strong> nition.<br />

This misun<strong>de</strong>rstanding addresses a r<strong>at</strong>her subtle point of the mo<strong>de</strong>l and stems from<br />

the di erence b<strong>et</strong>ween two di erent types of r<strong>et</strong>urns:<br />

(1) The unconditional r<strong>et</strong>urn is in<strong>de</strong>ed zero as seen from (24) and re ects the fair<br />

game condition.<br />

(2) The conditional r<strong>et</strong>urn, conditioned upon no crash occurring b<strong>et</strong>ween time t and<br />

time t ′ , is non-zero and is given by Eq. (28). If the crash hazard r<strong>at</strong>e is increasing with<br />

time, the conditional r<strong>et</strong>urn will be acceler<strong>at</strong>ing precisely because the crash becomes<br />

more probable and the investors need to be remuner<strong>at</strong>ed for their higher risk.<br />

Thus, the expect<strong>at</strong>ion which remains constant in Eq. (24) takes into account the<br />

probability th<strong>at</strong> the mark<strong>et</strong> may crash. Therefore, conditionally on staying in the bubble<br />

(no crash y<strong>et</strong>), the mark<strong>et</strong> must r<strong>at</strong>ionally rise to compens<strong>at</strong>e buyers for having taken<br />

the risk th<strong>at</strong> the mark<strong>et</strong> could have crashed.<br />

The mark<strong>et</strong> price re ects the equilibrium b<strong>et</strong>ween the greed of buyers who hope the<br />

bubble will in <strong>at</strong>e and the fear of sellers th<strong>at</strong> it may crash. A bubble th<strong>at</strong> goes up is<br />

just one th<strong>at</strong> could have crashed but did not. The mo<strong>de</strong>l [16,17] is well summarised<br />

by borrowing the words of another economist: “(...) the higher probability of a crash<br />

leads to an acceler<strong>at</strong>ion of [the mark<strong>et</strong> price] while the bubble lasts”. Interestingly, this<br />

cit<strong>at</strong>ion is culled from the very same article by Blanchard [1] th<strong>at</strong> Ilinski [42] cites as<br />

an altern<strong>at</strong>ive mo<strong>de</strong>l more realistic than the mo<strong>de</strong>l [16,17]. We see th<strong>at</strong> this is in fact<br />

more of an endorsement than an altern<strong>at</strong>ive.<br />

A simple way to incorpor<strong>at</strong>e a di erent level of risk aversion into the mo<strong>de</strong>l [16,17]<br />

is to say th<strong>at</strong> the probability of a crash in the next instant is perceived by tra<strong>de</strong>rs as<br />

being K times bigger than it objectively is. This amounts to multiplying our hazard


56 2. Modèles phénoménologiques <strong>de</strong> cours<br />

D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59 53<br />

r<strong>at</strong>e h(t) byK, and once again this makes no substantive di erence as long as K is<br />

boun<strong>de</strong>d away from zero and in nity. Risk aversion is a central fe<strong>at</strong>ure of economic<br />

theory, and it is generally thought to be stable within a reasonable range, associ<strong>at</strong>ed<br />

with slow-moving secular trends such as changes in educ<strong>at</strong>ion, social structures and<br />

technology. Ilinski [42] rightfully points out th<strong>at</strong> risk perceptions are constantly changing<br />

in the course of real-life bubbles, but wrongfully claims th<strong>at</strong> the mo<strong>de</strong>l [16,17]<br />

viol<strong>at</strong>es this intuition. In this mo<strong>de</strong>l, risk perceptions do oscill<strong>at</strong>e dram<strong>at</strong>ically throughout<br />

the bubble, even though subjective aversion to risk remains stable, simply because<br />

it is the objective <strong>de</strong>gree of risk th<strong>at</strong> the bubble may burst th<strong>at</strong> goes through wild<br />

swings. For these reasons, the criticisms put forth by Ilinski, far from making a <strong>de</strong>nt<br />

in the economic mo<strong>de</strong>l [16,17], serve instead to show th<strong>at</strong> it is robust, exible and<br />

intuitive.<br />

To summarize, the crash hazard r<strong>at</strong>e mo<strong>de</strong>l is such th<strong>at</strong> the price dynamics can be<br />

essentially arbitrary, and in particular such th<strong>at</strong> the corresponding r<strong>et</strong>urns exhibit a<br />

reasonable f<strong>at</strong> tail. A jump process for crashes is ad<strong>de</strong>d, with a crash hazard r<strong>at</strong>e such<br />

th<strong>at</strong> the r<strong>at</strong>ional expect<strong>at</strong>ion condition is ensured.<br />

5. The non-st<strong>at</strong>ionary growth mo<strong>de</strong>l [18]<br />

In the previous section, we have presented a mo<strong>de</strong>l which assumes th<strong>at</strong> the fundamental<br />

valu<strong>at</strong>ion formula remains valid and have generalized Blanchard and W<strong>at</strong>son’s<br />

framework by reformul<strong>at</strong>ing the r<strong>at</strong>ional expect<strong>at</strong>ion condition with a jump crash process.<br />

We now consi<strong>de</strong>r the second view point which consists in rejecting the validity<br />

of the valu<strong>at</strong>ion formula while keeping the <strong>de</strong>composition of the price of an ass<strong>et</strong> into<br />

the sum of a fundamental price and a bubble term. In this aim, we present a possible<br />

modi c<strong>at</strong>ion of the r<strong>at</strong>ional bubble mo<strong>de</strong>l of Blanchard and W<strong>at</strong>son, recently proposed<br />

in Ref. [18], which involves an average exponential growth of the fundamental price<br />

<strong>at</strong> some r<strong>et</strong>urn r<strong>at</strong>e rf ¿ 0 larger than the discount r<strong>at</strong>e.<br />

5.1. Exponentially growing economy<br />

Recall th<strong>at</strong> (5) shows th<strong>at</strong> the observable mark<strong>et</strong> price is the sum of the bubble<br />

component Xt and of a “fundamental” price p f<br />

t<br />

pt = p f<br />

t + Xt : (30)<br />

Thus, waiving o the valu<strong>at</strong>ion formula (3), l<strong>et</strong> us assume th<strong>at</strong> the fundamental price<br />

p f<br />

t is growing exponentially as<br />

p f<br />

t = p0e rft<br />

(31)<br />

<strong>at</strong> the r<strong>at</strong>e rf and the bubble price is following (1).<br />

Note th<strong>at</strong> this formul<strong>at</strong>ion is comp<strong>at</strong>ible with the standard valu<strong>at</strong>ion formula as long<br />

as rf ¡r, provi<strong>de</strong>d the cash- ow dt <strong>at</strong> time t also grows with the same exponential


2.2. Des bulles r<strong>at</strong>ionnelles aux krachs 57<br />

54 D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59<br />

r<strong>at</strong>e rf, i.e.: dt = d0erft . In<strong>de</strong>ed, the standard valu<strong>at</strong>ion formula then applies and leads<br />

to<br />

p f<br />

∞ dte<br />

t =<br />

k=0<br />

krf<br />

ekr <br />

d0<br />

e<br />

r − rf<br />

rft<br />

(32)<br />

up to the rst or<strong>de</strong>r in rf − r. The discussion of the case rf ¿r, for which (32) loses<br />

its meaning, is the subject of the sequel in which we follow [19].<br />

Putting (1) and (31) tog<strong>et</strong>her with (30), we obtain<br />

pt+1 = p f<br />

t+1 + <strong>at</strong>Xt + bt = <strong>at</strong>pt +(e rf − <strong>at</strong>)p f<br />

t + bt :<br />

Replacing p<br />

(33)<br />

f<br />

t in (30) by p0erft given in (31) leads to<br />

pt =e rft (p0 +ât) ; (34)<br />

where we have <strong>de</strong> ned the “reduced” bubble price following:<br />

ât+1 = <strong>at</strong>e −rf ât +e −rf e −rft bt : (35)<br />

Thus, if we allow the additive term bt in (1) to also grow exponentially as<br />

bt =e rft ˆbt ; (36)<br />

where ˆbt is a st<strong>at</strong>ionary stochastic white noise process, we obtain<br />

ât+1 = <strong>at</strong>e −rf ât +e −rf ˆbt ; (37)<br />

which is of the usual form. Intuitively, the additive term represents the background of<br />

“normal” uctu<strong>at</strong>ions around the fundamental price (31). Their “normal” uctu<strong>at</strong>ions<br />

have thus to grow with the same growth r<strong>at</strong>e in or<strong>de</strong>r to remain st<strong>at</strong>ionary in rel<strong>at</strong>ive<br />

value.<br />

In addition, replacing p f<br />

t in (33) again by p0e rft leads to<br />

pt+1 = <strong>at</strong>pt +e rft [p0(e rf − <strong>at</strong>)+ ˆbt] : (38)<br />

The expression (38) has the same form as (1) with a di erent additive term [p0(e r −<br />

<strong>at</strong>)+ ˆbt] replacing bt. The structure of this new additive term makes clear the origin of<br />

the factor e rft : as we said, it re ects nothing but the average exponential growth of the<br />

un<strong>de</strong>rlying economy. The contributions bt =e rft ˆbt are then nothing but the uctu<strong>at</strong>ions<br />

around this average growth.<br />

5.2. The value of the tail exponent<br />

The condition E[ln a] ¡rf ensures th<strong>at</strong> E[ln(ae −rf )] ¡ 0 which is now the st<strong>at</strong>ionarity<br />

condition for the process ât <strong>de</strong> ned by (37). The conditions 0 ¡E[|e rf ˆbt| ] ¡ + ∞<br />

(which is the same condition 0 ¡E[|bt| ] ¡ + ∞ as before) and the solution of<br />

E[|ae −rf | ] = 1 (39)<br />

tog<strong>et</strong>her with the constraint E[|ae −rf | ln |ae −rf |] ¡ + ∞ (which is the same as<br />

E[|a| ln |a|] ¡ + ∞) leads to an asymptotic power law distribution for the reduced


58 2. Modèles phénoménologiques <strong>de</strong> cours<br />

D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59 55<br />

price variable ât of the form Pâ(â) ≈ Câ=|â| 1+ , where is the real positive solution<br />

of (39). Note th<strong>at</strong> the condition E[ln(ae −rf )] ¡ 0 which is E[ln(a)] ¡rf now allows<br />

for positive average growth r<strong>at</strong>e of the product <strong>at</strong><strong>at</strong>−1<strong>at</strong>−2 ···a2a1a0.<br />

Consi<strong>de</strong>r the illustr<strong>at</strong>ive case where the multiplic<strong>at</strong>ive factors <strong>at</strong> are distributed according<br />

to a log-normal distribution such th<strong>at</strong> E[ln a]=lna0 (where a0 is thus the most<br />

probable value taken by <strong>at</strong>) and of variance 2 . Then<br />

E[|ae −rf<br />

<br />

| ] = exp −rf + ln a0 + 2<br />

2<br />

2<br />

: (40)<br />

Equ<strong>at</strong>ing (40) to 1 to g<strong>et</strong> according to Eq. (39) gives<br />

=2 rf − ln a0<br />

2<br />

= rf − ln a0<br />

r − ln a0<br />

=1+ rf − r<br />

r − ln a0<br />

: (41)<br />

We have used the not<strong>at</strong>ion 1= =1+r for the discount r<strong>at</strong>e r <strong>de</strong> ned in terms of the<br />

discount factor . The second equality in (41) uses E[a]=a0e 2 =2 .<br />

First, we r<strong>et</strong>rieve the result [15] th<strong>at</strong> ¡1 for the initial RE mo<strong>de</strong>l (1) for which<br />

rf = 0 and ln a0 ¡ 0. However, as soon as rf ¿r −ln ; we g<strong>et</strong><br />

¿1 ; (42)<br />

and can take arbitrary values. Technically, this results fundamentally from the structure<br />

of the process in which the additive noise grows exponentially to mimick the<br />

growth of the bubble which allevi<strong>at</strong>es the bound ¡1. Note th<strong>at</strong> rf does not need<br />

to be large for the result (42) to hold. Take for instance an annualized discount r<strong>at</strong>e<br />

ry =2%; an annualized r<strong>et</strong>urn r y<br />

f = 4% and a0 =1:0004. Expression (41) predicts<br />

which is comp<strong>at</strong>ible with empirical d<strong>at</strong>a.<br />

=3;<br />

5.3. Price r<strong>et</strong>urns<br />

The observable r<strong>et</strong>urn is<br />

where<br />

Rt = pt+1 − pt<br />

pt<br />

= t<br />

<br />

f<br />

pt+1 − pf t<br />

p f<br />

t<br />

= pf<br />

t+1 − pf t + Xt+1 − Xt<br />

p f<br />

t + Xt<br />

+ Xt+1 − Xt<br />

p f<br />

t<br />

<br />

= t rf + ât+1 − ât<br />

p0<br />

<br />

; (43)<br />

t = pf t<br />

p f<br />

1<br />

=<br />

: (44)<br />

t + Xt 1+(ât=p0)<br />

In or<strong>de</strong>r to <strong>de</strong>rive the last equality in the right-hand-si<strong>de</strong> of (43), we have used the<br />

<strong>de</strong> nition of the r<strong>et</strong>urn of the fundamental price (neglecting the small second or<strong>de</strong>r<br />

di erence b<strong>et</strong>ween e rf − 1 and rf). Expression (43) shows th<strong>at</strong> the distribution of


2.2. Des bulles r<strong>at</strong>ionnelles aux krachs 59<br />

56 D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59<br />

r<strong>et</strong>urns Rt of the observable prices is the same as th<strong>at</strong> of the product of the random<br />

variable t by rf+(ât+1−ât)=p0. Now, the tail of the distribution of rf+(ât+1−ât)=p0 is<br />

the same as the tail of the distribution of ât+1 −ât; which is a power law with exponent<br />

solution of (39), as shown rigorously in Ref. [15].<br />

It remains to show th<strong>at</strong> the product of this variable rf +(ât+1 − ât)=p0 by t has<br />

the same tail behavior as rf +(ât+1 − ât)=p0 itself. If rf +(ât+1 − ât)=p0 and t were<br />

in<strong>de</strong>pen<strong>de</strong>nt, this would follow from results in Ref. [43] who <strong>de</strong>monstr<strong>at</strong>es th<strong>at</strong> for two<br />

in<strong>de</strong>pen<strong>de</strong>nt random variables and with Proba(| | ¿x) ≈ cx − and E[ + ] ¡ ∞<br />

for some ¿0; the random product obeys Proba(| | ¿x) ≈ E[ ]x − .<br />

However, rf+(ât+1−ât)=p0 and t are not in<strong>de</strong>pen<strong>de</strong>nt as both contain a contribution<br />

from the same term ât. However, when âtp0; t is close to 1 and the previous result<br />

should hold. The impact of ât in becomes important when ât becomes comparable<br />

to p0.<br />

It is then convenient to rewrite (43) using (44) as<br />

Rt =<br />

rf<br />

1+(ât=p0) + ât+1 − At<br />

=<br />

p0 +ât<br />

We can thus distinguish two regimes:<br />

rf<br />

1+(ât=p0) + (<strong>at</strong>e −rf − 1)ât +e −rf bt<br />

p0 +ât<br />

: (45)<br />

• for not too large values of the reduced bubble term ât; speci cally for ât ¡p0, the<br />

<strong>de</strong>nomin<strong>at</strong>or p0 +ât changes more slowly than the numer<strong>at</strong>or of the second term, so<br />

th<strong>at</strong> the distribution of r<strong>et</strong>urns will be domin<strong>at</strong>ed by the vari<strong>at</strong>ions of this numer<strong>at</strong>or<br />

(<strong>at</strong>e −rf − 1)ât +e −rf bt and, hence, will follow approxim<strong>at</strong>ely the same power-law<br />

as for ât; according to the results of Ref. [43].<br />

• For large bubbles, ât of the or<strong>de</strong>r of or gre<strong>at</strong>er than p0; the situ<strong>at</strong>ion changes,<br />

however: from (45), we see th<strong>at</strong> when the reduced bubble term ât increases without<br />

bound, the rst term rf=(1+(ât=p0)) goes to 0 while the second term becomes<br />

asymptotically <strong>at</strong>e −r − 1. This leads to the existence of an absolute upper bound for<br />

the absolute value of the r<strong>et</strong>urns.<br />

To summarize, we expect th<strong>at</strong> the distribution of r<strong>et</strong>urns will therefore follow a<br />

power-law with the same exponent as for ât, but with a nite cut-o (see [18]<br />

for d<strong>et</strong>ails). This is valid<strong>at</strong>ed by numerical simul<strong>at</strong>ions shown in Fig. 2 taken from<br />

Ref. [18].<br />

Thus, when the price uctu<strong>at</strong>ions associ<strong>at</strong>ed with bubbles on average grow with the<br />

mean mark<strong>et</strong> r<strong>et</strong>urn rf; we nd th<strong>at</strong> the exponent of the power law tail of the r<strong>et</strong>urns<br />

is no more boun<strong>de</strong>d by 1 as soon as rf is larger than the discount r<strong>at</strong>e r and can take<br />

essentially arbitrary values. It is remarkable th<strong>at</strong> this condition rf ¿r corresponds to<br />

the paradoxical and unsolved regime in fundamental valu<strong>at</strong>ion theory where the forward<br />

valu<strong>at</strong>ion solution (4) loses its meaning, as discussed in Ref. [19]. In analogy<br />

with the theory of bifurc<strong>at</strong>ions and their normal forms, Ref. [19] proposed th<strong>at</strong> this<br />

regime might be associ<strong>at</strong>ed with a spontaneous symm<strong>et</strong>ry breaking phase corresponding


60 2. Modèles phénoménologiques <strong>de</strong> cours<br />

D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59 57<br />

Fig. 2. Double logarithmic scale represent<strong>at</strong>ion of the complementary cumul<strong>at</strong>ive distribution of the “monthly”<br />

r<strong>et</strong>urns Rt <strong>de</strong> ned in (43) of the synth<strong>et</strong>ic total price sum of the exponential growing fundamental price and<br />

the bubble price. The continuous (resp. dashed) line corresponds to the positive (resp. neg<strong>at</strong>ive) r<strong>et</strong>urns. The<br />

distribution is well-<strong>de</strong>scribed by an asymptotic power law with an exponent in agreement with the prediction<br />

≈ 3:3 given by the equ<strong>at</strong>ions (39) and (41) and shown as the straight line. The small di erences b<strong>et</strong>ween<br />

the predicted slope and the numerically gener<strong>at</strong>ed ones are within the error bar of ±0:3 obtained from a<br />

standard maximum likelihood Hill estim<strong>at</strong>ion. From Ref. [18].<br />

to a spontaneous valu<strong>at</strong>ion in absence of divi<strong>de</strong>nds by pure specul<strong>at</strong>ive imit<strong>at</strong>ive<br />

processes.<br />

6. Conclusion<br />

Despite its elegant formul<strong>at</strong>ion of the bubble phenomenon, the Blanchard and W<strong>at</strong>son’s<br />

mo<strong>de</strong>l su ers from a l<strong>et</strong>hal discrepancy: it does not seem to comply with the<br />

empirical d<strong>at</strong>a, i.e., it cannot gener<strong>at</strong>e power law tails whose exponent is gre<strong>at</strong>er than<br />

1, in disagreement with the empirical tail in<strong>de</strong>x found around 3. We have summarized<br />

the <strong>de</strong>monstr<strong>at</strong>ion th<strong>at</strong> this result holds true both for a bubble <strong>de</strong> ned for a single ass<strong>et</strong><br />

as well as for bubbles on any s<strong>et</strong> of coupled ass<strong>et</strong>s, as long as the r<strong>at</strong>ional expect<strong>at</strong>ion<br />

condition holds.<br />

In or<strong>de</strong>r to reconcile the theory with the empirical facts on the tails of the distributions<br />

of r<strong>et</strong>urns, two altern<strong>at</strong>ive mo<strong>de</strong>ls have been presented. The “crash hazard r<strong>at</strong>e”<br />

mo<strong>de</strong>l extends the formul<strong>at</strong>ion of Blanchard and W<strong>at</strong>son by replacing the linear stochastic<br />

bubble price equ<strong>at</strong>ion by an arbitrary dynamics solely constrained by the no-arbitrage<br />

condition ma<strong>de</strong> to hold with the introduction of a jump process. The “growth r<strong>at</strong>e<br />

mo<strong>de</strong>l” <strong>de</strong>parts more audaciously from standard economic mo<strong>de</strong>ls since it discards<br />

one of the pillars of the standard valu<strong>at</strong>ion theory, but putting itself rmly in the<br />

regime rf ¿r for which the fundamental valu<strong>at</strong>ion formula breaks down. In addition to<br />

allowing for correct values of the tail exponent, it provi<strong>de</strong>s a generaliz<strong>at</strong>ion of the


2.2. Des bulles r<strong>at</strong>ionnelles aux krachs 61<br />

58 D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59<br />

fundamental valu<strong>at</strong>ion formula by providing an un<strong>de</strong>rstanding of its breakdown as<br />

<strong>de</strong>eply associ<strong>at</strong>ed with a spontaneous breaking of the price symm<strong>et</strong>ry. Its implement<strong>at</strong>ion<br />

for multi-dimensional bubbles is straightforward and the results obtained in<br />

Section 5 carry over n<strong>at</strong>urally in this case. This provi<strong>de</strong>s an explan<strong>at</strong>ion for why the<br />

tail in<strong>de</strong>x seems to be the same for any group of ass<strong>et</strong>s as observed empirically. This<br />

work begs for the introduction of a generalized eld theory which would be able to<br />

capture the spontaneous breaking of symm<strong>et</strong>ry, recover the fundamental valu<strong>at</strong>ion formula<br />

in the normal economic case rf ¡r and extend it to the still unexplored regime<br />

rf ¿r.<br />

Acknowledgements<br />

We acknowledge helpful discussions and exchanges with J.V. An<strong>de</strong>rsen, A. Johansen,<br />

J.P. Laurent, O. Ledoit, T. Lux, V. Pisarenko and M. Taqqu and thank T. Mikosch for<br />

providing access to Ref. [39].<br />

References<br />

[1] O.J. Blanchard, Econ. L<strong>et</strong>t. 3 (1979) 387–389.<br />

[2] O.J. Blanchard, M.W. W<strong>at</strong>son, Bubbles, r<strong>at</strong>ional expect<strong>at</strong>ions and specul<strong>at</strong>ive mark<strong>et</strong>s, in: P. Wachtel<br />

(Ed.), Crisis in Economic and Financial Structure: Bubbles, Bursts, and Shocks, Lexington Books,<br />

Lexington, 1982.<br />

[3] R.H. Thaler (Ed.), Advances in Behavioral Finance, Russell Sage Found<strong>at</strong>ion, New York, 1993.<br />

[4] H. Shefrin, Beyond Greed and Fear: Un<strong>de</strong>rstanding Behavioral Finance and the Psychology of Investing,<br />

Harvard Business School Press, Boston, MA, 2000.<br />

[5] A. Shleifer, Ine cient Mark<strong>et</strong>s: An Introduction to Behavioral Finance, Oxford University Press, Oxford,<br />

2000.<br />

[6] B.G. Malkiel, A random walk down Wall Stre<strong>et</strong>, WW Norton & Company, New York, 1999.<br />

[7] C. Camerer, J. Econ. Surveys 3 (1989) 3–41.<br />

[8] M.C. Adam, A. Szafarz, Oxford Economic Papers 44 (1992) 626–640.<br />

[9] L. <strong>de</strong> Haan, S.I. Resnick, H. Rootzen, C.G. <strong>de</strong> Vries, Stochastic Processes Appl. 32 (1989) 213.<br />

[10] C. <strong>de</strong> Calan, J.-M. Luck, T.M. Nieuwenhuizen, D. P<strong>et</strong>ritis, J. Phys. A 18 (1985) 501.<br />

[11] M. Levy, S. Solomon, G. Ram, Int. J. Mod. Phys. C 7 (1996) 65.<br />

[12] D. Sorn<strong>et</strong>te, R. Cont, J. Phys. I France 7 (1997) 431–444.<br />

[13] D. Sorn<strong>et</strong>te, Physica A 250 (1998) 295–314.<br />

[14] D. Sorn<strong>et</strong>te, Critical Phenomena in N<strong>at</strong>ural Sciences (Chaos, Fractals, Self-organiz<strong>at</strong>ion and Disor<strong>de</strong>r:<br />

Concepts and Tools), Springer Series in Synerg<strong>et</strong>ics, Springer, Hei<strong>de</strong>lberg, 2000.<br />

[15] T. Lux, D. Sorn<strong>et</strong>te, On r<strong>at</strong>ional bubbles and f<strong>at</strong> tails, J. Money, Credit Banking, 1999, in press, (e-print<br />

<strong>at</strong> http:==xxx.lanl.gov=abs=cond-m<strong>at</strong>=9910141).<br />

[16] A. Johansen, D. Sorn<strong>et</strong>te, O. Ledoit, J. Risk 1 (4) (1999) 5–32.<br />

[17] A. Johansen, O. Ledoit, D. Sorn<strong>et</strong>te, Int. J. Theor<strong>et</strong>. Appl. Finance 3 (2) (2000) 219–255.<br />

[18] D. Sorn<strong>et</strong>te, “Slimming” of power law tails by increasing mark<strong>et</strong> r<strong>et</strong>urns, preprint, Univ. Nice (e-print<br />

<strong>at</strong> http:==arXiv.org=abs=cond-m<strong>at</strong>=0010112).<br />

[19] D. Sorn<strong>et</strong>te, Physica A 284 (2000) 355–375.<br />

[20] C. Gourieroux, J.J. La ont, A. Monfort, Econom<strong>et</strong>rica 50 (1982) 409–425.<br />

[21] R.A. Broglia, J. Terasaki, N. Giovanardi, Phys. Rep. 335 (2000) 2–18.<br />

[22] C.P. Burgess, Phys. Rep. 330 (2000) 194–261.<br />

[23] J.W. Vanholten, Phys. L<strong>et</strong>t. 352 (1995) 220–223.<br />

[24] P. Bak, S.F. Norrelykke, M. Shubik, Phys. Rev. E 60 (1999) 2528–2532.


62 2. Modèles phénoménologiques <strong>de</strong> cours<br />

D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59 59<br />

[25] H. Kesten, Acta M<strong>at</strong>h. 131 (1973) 207–248.<br />

[26] C.M. Goldie, Ann. Appl. Probab. 1 (1991) 126–166.<br />

[27] C.G. <strong>de</strong> Vries, Stylized facts of nominal exchange r<strong>at</strong>e r<strong>et</strong>urns, in: F. van <strong>de</strong>r Ploeg (Ed.), The Handbook<br />

of Intern<strong>at</strong>ional Macroeconomics, Blackwell, Oxford, 1994, S. 348–389.<br />

[28] L. Lux, Appl. Financial Econ. 6 (1996) 463–475.<br />

[29] A. Pagan, J. Empirical Finance 3 (1996) 15–102.<br />

[30] D.M. Guillaume, M.M. Dacorogna, R.R. Dave, J.A. Muller, R.B. Olsen, O.V. Pict<strong>et</strong>, Finance Stochastics<br />

1 (1997) 95–129.<br />

[31] P. Gopikrishnan, M. Meyer, L.A.N. Amaral, H.E. Stanley, Eur. Phys. J. B 3 (1998) 139–140.<br />

[32] Y. Malevergne, D. Sorn<strong>et</strong>te, Multi-dimensional r<strong>at</strong>ional bubbles and f<strong>at</strong> tails, preprint <strong>at</strong><br />

http:==arXiv.org=abs=cond-m<strong>at</strong>=0101371, 2001.<br />

[33] R.N. Mantegna, Eur. Phys. J. B 11 (1999) 193–197.<br />

[34] G. Bonanno, F. Lillo, R.N. Mantegna, Quantit<strong>at</strong>ive Finance 1 (1) (2001) 96–104.<br />

[35] R.P. Flood, P.M. Garber, L.O. Scott, J. Econ. Dyn. Control 8 (1984) 329–340.<br />

[36] R.J. Barro, E.F. Fama, D.R. Fischel, A.H. Meltzer, R. Roll, L.G. Telser, in: R.W. Kamphuis Jr.,<br />

R.C. Kormendi, J.W.H. W<strong>at</strong>son (Eds.), Black Monday and the Future of Financial Mark<strong>et</strong>s, Mid<br />

American Institute for Public Policy Research, Inc. and Dow Jones-Irwin, Inc., 1989.<br />

[37] A. Johansen, D. Sorn<strong>et</strong>te, Bubbles and anti-bubbles in L<strong>at</strong>in-American, Asian and Western stock mark<strong>et</strong>s:<br />

an empirical study, Int. J. Theor<strong>et</strong>. Appl. Finance, 2000, in press (e-print <strong>at</strong> http:==xxx.lanl.gov=<br />

abs=cond-m<strong>at</strong>=9907270).<br />

[38] R.A. Davis, T. Mikosch, B. Basrak, Sample ACF of multivari<strong>at</strong>e stochastic recurrence equ<strong>at</strong>ions<br />

with applic<strong>at</strong>ions to GARCH. Technical Report, University of Groeningen, available <strong>at</strong> www.m<strong>at</strong>h.<br />

rug.nl=mikosch, 1999.<br />

[39] E. Le Page, Theoremes <strong>de</strong> renouvellement pour les produits <strong>de</strong> m<strong>at</strong>rices ale<strong>at</strong>oires. Equ<strong>at</strong>ions aux<br />

di erences ale<strong>at</strong>oires. Seminaires <strong>de</strong> probabilites Rennes 1938, Publ. Sem. M<strong>at</strong>h. Univ. Rennes I, 1983,<br />

116pp.<br />

[40] D. Sorn<strong>et</strong>te, A. Johansen, Physica A 245 (1997) 411–422.<br />

[41] D. Sorn<strong>et</strong>te, J.V. An<strong>de</strong>rsen, Quantifying herding during specul<strong>at</strong>ive nancial bubbles, preprint, Univ.<br />

Nice (e-print <strong>at</strong> http:==arXiv.org=abs=cond-m<strong>at</strong>=0104341).<br />

[42] K. Ilinski, Int. J. Mod. Phys. C 10 (1999) 741–746.<br />

[43] L. Breiman, Theory Probab. Appl. 10 (1965) 323–329.


Chapitre 3<br />

Distributions exponentielles étirées contre<br />

distributions régulièrement variables<br />

Un large consensus semble s’être développé en faveur <strong>de</strong> l’hypothèse selon laquelle les distributions<br />

empiriques <strong>de</strong> ren<strong>de</strong>ment <strong>de</strong>s séries financières sont régulièrement variables, avec un indice <strong>de</strong> queue <strong>de</strong><br />

l’ordre <strong>de</strong> trois. Nous montrons tout d’abord, à l’ai<strong>de</strong> <strong>de</strong> tests synthétiques réalisés sur <strong>de</strong>s séries temporelles<br />

dont la vol<strong>at</strong>ilité présente <strong>de</strong> longues dépendances <strong>et</strong> dont les distributions marginales sont soit<br />

<strong>de</strong>s lois <strong>de</strong> puissance soit <strong>de</strong>s exponentielles étirées, que les estim<strong>at</strong>eurs basés sur les distributions <strong>de</strong>s<br />

extrêmes généralisés ou les distributions <strong>de</strong> Par<strong>et</strong>o généralisées ne sont pas à même <strong>de</strong> distinguer ces <strong>de</strong>ux<br />

classes <strong>de</strong> distributions, en contradiction avec <strong>de</strong> nombreuses étu<strong>de</strong>s antérieures. Ensuite, nous utilisons<br />

une représent<strong>at</strong>ion paramétrique <strong>de</strong> la distribution <strong>de</strong> ren<strong>de</strong>ments qui englobe à la fois <strong>de</strong>s distributions<br />

régulièrement variables ainsi que rapi<strong>de</strong>ment variables comme notamment les exponentielles-étirées.<br />

Utilisant le théorème <strong>de</strong> Wilk, nous comparons la validité <strong>de</strong> ces différentes hypothèses <strong>et</strong> concluons que<br />

les distributions exponentielles-étirées <strong>et</strong> les distributions <strong>de</strong> Par<strong>et</strong>o fournissent une <strong>de</strong>scription convenable<br />

<strong>de</strong>s données <strong>et</strong> ne peuvent être distinguées lorsque l’on s’intéresse à <strong>de</strong>s quantiles suffisamment<br />

élevés. Nous introduisons ensuite un nouveau test basé sur le fait que dans une certaine limite, les distributions<br />

exponentielles-étirées ten<strong>de</strong>nt vers les distributions <strong>de</strong> Par<strong>et</strong>o. La conclusion <strong>de</strong> notre ensemble<br />

<strong>de</strong> tests est que probablement les distributions <strong>de</strong> ren<strong>de</strong>ments d’actifs financiers décroissent moins vite<br />

que toute exponentielle-étirée mais plus vite que toute loi <strong>de</strong> puissance d’exposant raisonnable. Pour terminer,<br />

nous discutons les implic<strong>at</strong>ions <strong>de</strong> nos résult<strong>at</strong>s sur le problème d’existence <strong>de</strong>s moments <strong>et</strong> pour<br />

l’estim<strong>at</strong>ion du risque.<br />

63


64 3. Distributions exponentielles étirées contre distributions régulièrement variables


Empirical Distributions of Log-R<strong>et</strong>urns:<br />

Exponential or Power-like?<br />

Y. Malevergne 1,2 , V. Pisarenko 3 , and D. Sorn<strong>et</strong>te 1,4<br />

1 Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>ière Con<strong>de</strong>nsée<br />

CNRS UMR6622 and Université <strong>de</strong> Nice-Sophia Antipolis<br />

Parc Valrose, 06108 Nice Ce<strong>de</strong>x 2, France<br />

2 Institut <strong>de</strong> Science Financière <strong>et</strong> d’Assurances - Université Lyon I<br />

43, Bd du 11 Novembre 1918, 69622 Villeurbanne Ce<strong>de</strong>x, France<br />

3 Intern<strong>at</strong>ional Institute of Earthquake Prediction Theory and M<strong>at</strong>hem<strong>at</strong>ical Geophysics<br />

Russian Ac. Sci. Warshavskoye sh., 79, kor. 2, Moscow 113556, Russia<br />

4 Institute of Geophysics and Plan<strong>et</strong>ary Physics and Department of Earth and Space Science<br />

University of California, Los Angeles, California 90095<br />

e-mails: Yannick.Malevergne@unice.fr, Vlad@sirus.mitp.ru and sorn<strong>et</strong>te@unice.fr<br />

Abstract<br />

A large consensus now seems to take for granted th<strong>at</strong> the distributions of empirical r<strong>et</strong>urns of financial<br />

time series are regularly varying, with a tail exponent close to 3. First, we show by synth<strong>et</strong>ic tests performed<br />

on time series with long-range time <strong>de</strong>pen<strong>de</strong>nce in the vol<strong>at</strong>ility with both Par<strong>et</strong>o and Str<strong>et</strong>ched-<br />

Exponential distributions th<strong>at</strong> standard generalized extreme value (GEV) and Generalized Par<strong>et</strong>o Distribution<br />

(GPD) estim<strong>at</strong>ors are quite inefficient and cannot distinguish reliably b<strong>et</strong>ween the two classes<br />

of distributions, in contradiction with previous results. Then, we use a param<strong>et</strong>ric represent<strong>at</strong>ion of the<br />

distribution of r<strong>et</strong>urns of 100 years of daily r<strong>et</strong>urn of the Dow Jones Industrial Average and over 1 years<br />

of 5-minutes r<strong>et</strong>urns of the Nasdaq Composite in<strong>de</strong>x, encompassing both a regularly varying distribution<br />

in one limit of the param<strong>et</strong>ers and rapidly varying distributions of the class of the Str<strong>et</strong>ched-Exponential<br />

(SE) distributions in other limits. Using the m<strong>et</strong>hod of nested hypothesis testing (Wilk theorem), we<br />

conclu<strong>de</strong> th<strong>at</strong> both the SE distributions and Par<strong>et</strong>o distributions provi<strong>de</strong> reliable <strong>de</strong>scriptions of the d<strong>at</strong>a<br />

and cannot be distinguished for sufficiently high thresholds. Then, we introduced a novel encompassing<br />

test based on the discovery th<strong>at</strong> the SE contains the Par<strong>et</strong>o law in a certain limit th<strong>at</strong> confirms th<strong>at</strong> the SE<br />

encompasses any power law tail distribution. However, our best estim<strong>at</strong>ion of the param<strong>et</strong>ers of the SE<br />

mo<strong>de</strong>l suggests th<strong>at</strong> the tails <strong>de</strong>cay probably more slowly th<strong>at</strong> a pure SE. Summing up all the evi<strong>de</strong>nce<br />

provi<strong>de</strong>d by our b<strong>at</strong>tery of tests, it seems th<strong>at</strong> the tails ultim<strong>at</strong>ely <strong>de</strong>cay slower than any SE but probably<br />

faster than power laws with reasonable exponents. We discuss the implic<strong>at</strong>ions of our results on the<br />

“moment condition failure” and for risk estim<strong>at</strong>ion and management.<br />

1<br />

65


66 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

1 Motiv<strong>at</strong>ion of the study<br />

The d<strong>et</strong>ermin<strong>at</strong>ion of the precise shape of the tail of the distribution of r<strong>et</strong>urns is a major issue both from<br />

a practical and from an aca<strong>de</strong>mic point of view. For practitioners, it is crucial to accur<strong>at</strong>ely estim<strong>at</strong>e the<br />

low value quantiles of the distribution of r<strong>et</strong>urns (profit and loss) because they are involved in almost all<br />

the mo<strong>de</strong>rn risk management m<strong>et</strong>hods. From an aca<strong>de</strong>mic perspective, many economic and financial theories<br />

rely on a specific param<strong>et</strong>eriz<strong>at</strong>ion of the distributions whose param<strong>et</strong>ers are inten<strong>de</strong>d to represent the<br />

“macroscopic” variables the agents are sensitive to.<br />

The distribution of r<strong>et</strong>urns is one of the most basic characteristics of the mark<strong>et</strong>s and many papers have been<br />

<strong>de</strong>voted to it. Contrarily to the average or expected r<strong>et</strong>urn, for which economic theory provi<strong>de</strong>s gui<strong>de</strong>lines<br />

to assess them in rel<strong>at</strong>ion with risk premium, firm size or book-to-mark<strong>et</strong> equity (see for instance Fama<br />

and French (1996)), the functional form of the distribution of r<strong>et</strong>urns, and especially of extreme r<strong>et</strong>urns, is<br />

much less constrained and still a topic of active <strong>de</strong>b<strong>at</strong>e. Naively, the central limit theorem would lead to<br />

a Gaussian distribution for sufficiently large time intervals over which the r<strong>et</strong>urn is estim<strong>at</strong>ed. Taking the<br />

continuous time limit such th<strong>at</strong> any finite time interval is seen as the sum of an infinite number of increments<br />

thus leads to the paradigm of log-normal distributions of prices and equivalently of Gaussian distributions<br />

of r<strong>et</strong>urns, based on the pioneering work of Bachelier (1900) l<strong>at</strong>er improved by Samuelson (1965). The lognormal<br />

paradigm has been the starting point of many financial theories such as Markovitz (1959)’s portfolio<br />

selection m<strong>et</strong>hod, Sharpe (1964)’s mark<strong>et</strong> equilibrium mo<strong>de</strong>l or Black and Scholes (1973)’s r<strong>at</strong>ional option<br />

pricing theory. However, for real financial d<strong>at</strong>a, the convergence in distribution to a Gaussian law is very<br />

slow (Campbell <strong>et</strong> al. 1997, Bouchaud and Potters 2000, for instance), much slower th<strong>at</strong> predicted for<br />

in<strong>de</strong>pen<strong>de</strong>nt r<strong>et</strong>urns. As table 1 shows, the excess kurtosis (which is zero for a normal distribution) remains<br />

large even for monthly r<strong>et</strong>urns, testifying of significant <strong>de</strong>vi<strong>at</strong>ions from normality, of the heavy tail behavior<br />

of the distributions of r<strong>et</strong>urns and of significant <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween r<strong>et</strong>urns (Campbell <strong>et</strong> al. 1997).<br />

Another i<strong>de</strong>a rooted in economic theory consists in invoking the “Gibr<strong>at</strong> principle” (Simon 1957) initially<br />

used to account for the growth of cities and of wealth through a mechanism combining stochastic multiplic<strong>at</strong>ive<br />

and additive noises (Levy <strong>et</strong> al. 1996, Sorn<strong>et</strong>te and Cont 1997, Biham <strong>et</strong> al 1998, Sorn<strong>et</strong>te 1998)<br />

leading to a Par<strong>et</strong>o distribution of sizes (Champenowne 1953, Gabaix 1999). R<strong>at</strong>ional bubble mo<strong>de</strong>ls a<br />

la Blanchard and W<strong>at</strong>son (1982) can also be cast in this m<strong>at</strong>hem<strong>at</strong>ical framework of stochastic recurrence<br />

equ<strong>at</strong>ions and leads to distribution with power law tails, albeit with a strong constraint on the tail exponent<br />

(Lux and Sorn<strong>et</strong>te 2002, Malevergne and Sorn<strong>et</strong>te 2001). These frameworks suggest th<strong>at</strong> an altern<strong>at</strong>ive and<br />

n<strong>at</strong>ural way to capture the heavy tail character of the distributions of r<strong>et</strong>urns is to use distributions with<br />

power-like tails (Par<strong>et</strong>o, Generalized Par<strong>et</strong>o, stable laws) or more generally, regularly-varying distributions<br />

(Bingham <strong>et</strong> al 1987) 1 , the l<strong>at</strong>er encompassing all the former.<br />

In the early 1960s, Man<strong>de</strong>lbrot (1963) and Fama (1965) presented evi<strong>de</strong>nce th<strong>at</strong> distributions of r<strong>et</strong>urns can<br />

be well approxim<strong>at</strong>ed by a symm<strong>et</strong>ric Levy stable law with tail in<strong>de</strong>x b about 1.7. These estim<strong>at</strong>es of the<br />

power tail in<strong>de</strong>x have recently been confirmed by Mittnik <strong>et</strong> al. (1998), and slightly different indices of the<br />

stable law (b = 1.4) were suggested by Mantegna and Stanley (1995, 2000).<br />

On the other hand, there are numerous evi<strong>de</strong>nces of a larger value of the tail in<strong>de</strong>x b ∼ = 3 (Longin 1996,<br />

Guillaume <strong>et</strong> al. 1997, Gopikrishnan <strong>et</strong> al. 1998, Müller <strong>et</strong> al. 1998, Farmer 1999, Lux 2000). See also the<br />

various altern<strong>at</strong>ive param<strong>et</strong>eriz<strong>at</strong>ions in term of the Stu<strong>de</strong>nt distribution (Bl<strong>at</strong>tberg and Gonne<strong>de</strong>s 1974, Kon<br />

1984), hyperbolic distributions (Eberlein <strong>et</strong> al. 1998, Prause 1998), normal inverse Gaussian distributions<br />

(Barndorff-Nielsen 1997), and Pearson type-VII distributions (Nagahara and Kitagawa 1999), which all have<br />

an asymptotic power law tail and are regularly varying. Thus, a general conclusion of this group of authors<br />

1 The general represent<strong>at</strong>ion of a regularly varying distribution is given by ¯F(x) = L(x) · x −α , where L(·) is a slowly varying<br />

function, th<strong>at</strong> is, limx→∞L(tx)/L(x) = 1 for any finite t.<br />

2


concerning tail f<strong>at</strong>ness can be formul<strong>at</strong>ed as follows: tails of the distribution of r<strong>et</strong>urns are heavier than a<br />

Gaussian tail and heavier than an exponential tail; they certainly admit the existence of a finite variance<br />

(b > 2), whereas the existence of the third (skewness) and the fourth (kurtosis) moments is questionable.<br />

These apparent contradictory results actually do not apply to the same quantiles of the distributions of<br />

r<strong>et</strong>urns. In<strong>de</strong>ed, Mantegna and Stanley (1995) have shown th<strong>at</strong> the distribution of r<strong>et</strong>urns can be <strong>de</strong>scribed<br />

accur<strong>at</strong>ely by a Lévy law only within a range of approxim<strong>at</strong>ely nine standard <strong>de</strong>vi<strong>at</strong>ions, while a faster <strong>de</strong>cay<br />

of the distribution is observed beyond. This almost-but-not-quite Lévy stable <strong>de</strong>scription explains (in part)<br />

the slow convergence of the r<strong>et</strong>urns distribution to the Gaussian law un<strong>de</strong>r time aggreg<strong>at</strong>ion (Sorn<strong>et</strong>te 2000).<br />

And it is precisely outsi<strong>de</strong> this range where the Lévy law applies th<strong>at</strong> a tail in<strong>de</strong>x of about three have been<br />

estim<strong>at</strong>ed. This can be seen from the fact th<strong>at</strong> most authors who have reported a tail in<strong>de</strong>x b ∼ = 3 have used<br />

some optimality criteria for choosing the sample fractions (i.e., the largest values) for the estim<strong>at</strong>ion of the<br />

tail in<strong>de</strong>x. Thus, unlike the authors supporting stable laws, they have used only a fraction of the largest<br />

(positive tail) and smallest (neg<strong>at</strong>ive tail) sample values.<br />

It would thus seem th<strong>at</strong> all has been said on the distributions of r<strong>et</strong>urns. However, there are dissenting<br />

views in the liter<strong>at</strong>ure. In<strong>de</strong>ed, the class of regularly varying distributions is not the sole one able to account<br />

for the large kurtosis and f<strong>at</strong>-tailness of the distributions of r<strong>et</strong>urns. Some recent works suggest altern<strong>at</strong>ive<br />

<strong>de</strong>scriptions for the distributions of r<strong>et</strong>urns. For instance, Gouriéroux and Jasiak (1998) claim th<strong>at</strong> the<br />

distribution of r<strong>et</strong>urns on the French stock mark<strong>et</strong> <strong>de</strong>cays faster than any power law. Cont <strong>et</strong> al. (1997)<br />

have proposed to use exponentially trunc<strong>at</strong>ed stable distributions (Cont <strong>et</strong> al. 1997) while Laherrère and<br />

Sorn<strong>et</strong>te (1999) suggest to fit the distributions of stock r<strong>et</strong>urns by the Str<strong>et</strong>ched-Exponential (SE) law. These<br />

results, challenging the traditional hypothesis of power-like tail, offer a new represent<strong>at</strong>ion of the r<strong>et</strong>urns<br />

distributions and need to be tested rigorously on a st<strong>at</strong>istical ground.<br />

A priori, one could assert th<strong>at</strong> Longin (1996)’s results should rule out the exponential and Str<strong>et</strong>ched-<br />

Exponential hypotheses. In<strong>de</strong>ed, his results, based on extreme value theory, show th<strong>at</strong> the distributions<br />

of log-r<strong>et</strong>urns belong to the maximum domain of <strong>at</strong>traction of the Fréch<strong>et</strong> distribution, so th<strong>at</strong> they are necessarily<br />

regularly varying power-like laws. However, his study, like almost all others on this subject, has<br />

been performed un<strong>de</strong>r the assumption th<strong>at</strong> (1) financial time series are ma<strong>de</strong> of in<strong>de</strong>pen<strong>de</strong>nt and i<strong>de</strong>ntically<br />

distributed r<strong>et</strong>urns and (2) the corresponding distributions of r<strong>et</strong>urns belong to one of only three possible<br />

maximum domains of <strong>at</strong>traction. However, these assumptions are not fulfilled in general. While Smith<br />

(1985)’s results indic<strong>at</strong>e th<strong>at</strong> the <strong>de</strong>pen<strong>de</strong>nce of the d<strong>at</strong>a does not constitute a major problem in the limit<br />

of large samples, we shall see th<strong>at</strong> it can significantly bias standard st<strong>at</strong>istical m<strong>et</strong>hods for samples of size<br />

commonly used in extreme tails studies. Moreover, Longin’s conclusions are essentially based on an aggreg<strong>at</strong>ion<br />

procedure which stresses the central part of the distribution while smoothing the characteristics of<br />

the tail, which are essential in characterizing the tail behavior.<br />

In addition, real financial time series exhibit GARCH effects (Bollerslev 1986, Bollerslev <strong>et</strong> al. 1994) leading<br />

to h<strong>et</strong>eroskedasticity and to clustering of high threshold exceedances due to a long memory of the<br />

vol<strong>at</strong>ility. These r<strong>at</strong>her complex <strong>de</strong>pen<strong>de</strong>nt structures make difficult if not questionable the blind applic<strong>at</strong>ion<br />

of standard st<strong>at</strong>istical tools for d<strong>at</strong>a analysis. In particular, the existence of significant <strong>de</strong>pen<strong>de</strong>nce in the<br />

r<strong>et</strong>urn vol<strong>at</strong>ility leads to dram<strong>at</strong>ic un<strong>de</strong>restim<strong>at</strong>es of the true standard <strong>de</strong>vi<strong>at</strong>ion of the st<strong>at</strong>istical estim<strong>at</strong>ors<br />

of tail indices. In<strong>de</strong>ed, there are now many examples showing th<strong>at</strong> <strong>de</strong>pen<strong>de</strong>nces and long memories as well<br />

as nonlinearities mislead standard st<strong>at</strong>istical tests (An<strong>de</strong>rsson <strong>et</strong> al. 1999, Granger and Teräsvirta 1999, for<br />

instance). Consi<strong>de</strong>r the Hill’s and Pickand’s estim<strong>at</strong>ors, which play an important role in the study of the<br />

tails of distributions. It is often overlooked th<strong>at</strong>, for <strong>de</strong>pen<strong>de</strong>nt time series, Hill’s estim<strong>at</strong>or remains only<br />

consistent but not asymptotically efficient (Rootzen <strong>et</strong> al. 1998). Moreover, for financial time series with a<br />

<strong>de</strong>pen<strong>de</strong>nce structure <strong>de</strong>scribed by a GARCH process, Kearns and Pagan (1997) have shown th<strong>at</strong> the standard<br />

<strong>de</strong>vi<strong>at</strong>ion of Hill’s estim<strong>at</strong>or obtained by a bootstrap m<strong>et</strong>hod can be seven to eight time larger than the<br />

standard <strong>de</strong>vi<strong>at</strong>ion <strong>de</strong>rived un<strong>de</strong>r the asymptotic normality assumption. These figures are even worse for<br />

3<br />

67


68 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Pickand’s estim<strong>at</strong>or.<br />

The question then arises wh<strong>et</strong>her the many results and seemingly almost consensus obtained by ignoring<br />

the limit<strong>at</strong>ions of usual st<strong>at</strong>istical tools could have led to erroneous conclusions about the tail behavior of<br />

the distributions of r<strong>et</strong>urns. Here, we propose to investig<strong>at</strong>e once more this <strong>de</strong>lic<strong>at</strong>e problem of the tail<br />

behavior of distributions of r<strong>et</strong>urns in or<strong>de</strong>r to shed new lights. To this aim, we investig<strong>at</strong>e two time series:<br />

the daily r<strong>et</strong>urns of the Dow Jones Industrial Average (DJ) In<strong>de</strong>x over a century and the five-minutes r<strong>et</strong>urns<br />

of the Nasdaq Composite in<strong>de</strong>x (ND) over one year from April 1997 to May 1998. These two s<strong>et</strong>s of d<strong>at</strong>a<br />

have been chosen since they are typical of the d<strong>at</strong>a s<strong>et</strong>s used in most previous studies. Their size (about<br />

20,000 d<strong>at</strong>a points), while significant compared with those used in investment and portfolio analysis, is<br />

however much smaller than recent d<strong>at</strong>a-intensive studies using ten of millions of d<strong>at</strong>a points (Gopikrishnan<br />

<strong>et</strong> al. 1998, M<strong>at</strong>ia <strong>et</strong> al. 2002, Mizuno <strong>et</strong> al. 2002).<br />

Our first conclusion is th<strong>at</strong> none of the standard param<strong>et</strong>ric family distributions (Par<strong>et</strong>o, exponential, str<strong>et</strong>che<strong>de</strong>xponential<br />

and incompl<strong>et</strong>e Gamma) fits s<strong>at</strong>isfactorily the DJ and ND d<strong>at</strong>a on the whole range of either<br />

positive or neg<strong>at</strong>ive r<strong>et</strong>urns. While this is also true for the family of str<strong>et</strong>ched exponential distribution, this<br />

family appears to be the best among the four consi<strong>de</strong>red param<strong>et</strong>ric families, in so far as it is able to fit the<br />

d<strong>at</strong>a over the largest interval. Our second and main conclusion comes from the discovery th<strong>at</strong> the Par<strong>et</strong>o<br />

distribution is a limit case of the Str<strong>et</strong>ched-Exponential distribution. This allows us to test the encompassing<br />

of these two mo<strong>de</strong>ls with respect to the true d<strong>at</strong>a, from which it seems th<strong>at</strong> the Str<strong>et</strong>ched-Exponential distribution<br />

is the most relevant mo<strong>de</strong>l of r<strong>et</strong>urns distributions. The regular <strong>de</strong>cay of the fractional exponent of<br />

the SE mo<strong>de</strong>l tog<strong>et</strong>her with the regular increase of the tail in<strong>de</strong>x of the Par<strong>et</strong>o mo<strong>de</strong>l lead us to think th<strong>at</strong> the<br />

extreme tail of true distribution of r<strong>et</strong>urns is f<strong>at</strong>ter th<strong>at</strong> any str<strong>et</strong>ched-exponential, strictly speaking -i.e., with<br />

a strickly positive fractional exponent- but thinner than any power law. Notwithstanding our best efforts, we<br />

cannot conclu<strong>de</strong> on the exact n<strong>at</strong>ure of the far-tail of distributions of r<strong>et</strong>urns. As already mentioned, other<br />

works have proposed the so-called inverse-cubic law (b = 3) based on the analysis of distributions of r<strong>et</strong>urns<br />

of high-frequency d<strong>at</strong>a aggreg<strong>at</strong>ed over hundreds up to thousands of stocks. This aggreg<strong>at</strong>ing procedure<br />

leads to novel problems of interpr<strong>et</strong><strong>at</strong>ion. We think th<strong>at</strong> the relevant question for most practical applic<strong>at</strong>ions<br />

is not to d<strong>et</strong>ermine wh<strong>at</strong> is the true asymptotic tail but wh<strong>at</strong> is the best effective <strong>de</strong>scription of the tails in<br />

the domain of useful applic<strong>at</strong>ions. As we shall show below, it may be th<strong>at</strong> the extreme asymptotic tail is<br />

a regularly varying function with tail in<strong>de</strong>x b = 3 for daily r<strong>et</strong>urns, but this is not very useful if this tail<br />

<strong>de</strong>scribes events whose recurrence time is a century or more. Our present work must thus be gauged as<br />

an <strong>at</strong>tempt to provi<strong>de</strong> a simple efficient effective <strong>de</strong>scription of the tails of distribution of r<strong>et</strong>urns covering<br />

most of the range of interest for practical applic<strong>at</strong>ions. We feel th<strong>at</strong> the efforts requested to go beyond the<br />

tails analyzed here, while of gre<strong>at</strong> interest from a scientific point of view to potentially help unravel mark<strong>et</strong><br />

mechanisms, may be too artificial and unreachable to have significant applic<strong>at</strong>ions.<br />

The paper is organized as follows.<br />

The next section is <strong>de</strong>voted to the present<strong>at</strong>ion of our two d<strong>at</strong>a s<strong>et</strong>s and to some of their basic st<strong>at</strong>istical<br />

properties, emphasizing their f<strong>at</strong> tailed behavior. We discuss, in particular, the importance of the so-called<br />

“lunch effect” for the tail properties of intraday r<strong>et</strong>urns. We then <strong>de</strong>monstr<strong>at</strong>e the presence of a significant<br />

temporal <strong>de</strong>pen<strong>de</strong>nce structure and study the possible non-st<strong>at</strong>ionary character of these time series.<br />

Section 3 <strong>at</strong>tempts to account for the temporal <strong>de</strong>pen<strong>de</strong>nce of our time series and investig<strong>at</strong>es its effect on<br />

the d<strong>et</strong>ermin<strong>at</strong>ion of the extreme behavior of the tails of the distribution of r<strong>et</strong>urns. In this goal, we build<br />

two simple long memory stochastic vol<strong>at</strong>ility processes whose st<strong>at</strong>ionary distributions are by construction<br />

either asymptotically regularly varying or exponential. We show th<strong>at</strong>, due to the long range <strong>de</strong>pen<strong>de</strong>nce<br />

on the vol<strong>at</strong>ility, the estim<strong>at</strong>ion with standard st<strong>at</strong>istical estim<strong>at</strong>ors is severely biased. This leads to a very<br />

unreliable estim<strong>at</strong>ion of the param<strong>et</strong>ers. These results justify our re-examin<strong>at</strong>ion of previous claims of<br />

regularly varying tails.<br />

4


To fit our two d<strong>at</strong>a s<strong>et</strong>s, section 4 proposes a general param<strong>et</strong>ric represent<strong>at</strong>ion of the distribution of r<strong>et</strong>urns<br />

encompassing both a regularly varying distribution in one limit of the param<strong>et</strong>ers and rapidly varying distributions<br />

of the class of str<strong>et</strong>ched exponential distributions in another limit. The use of regularly varying<br />

distributions have been justified above. From a theor<strong>et</strong>ical view point, the class of str<strong>et</strong>ched exponentials is<br />

motiv<strong>at</strong>ed in part by the fact th<strong>at</strong> the large <strong>de</strong>vi<strong>at</strong>ions of multiplic<strong>at</strong>ive processes are generically distributed<br />

with str<strong>et</strong>ched exponential distributions (Frisch and Sorn<strong>et</strong>te 1997). Str<strong>et</strong>ched exponential distributions are<br />

also parsimonious examples of the important subs<strong>et</strong> of sub-exponentials, th<strong>at</strong> is, of the general class of<br />

distributions <strong>de</strong>caying slower than an exponential. This class of sub-exponentials share several important<br />

properties of heavy-tailed distributions (Embrechts <strong>et</strong> al. 1997), not shared by exponentials or distributions<br />

<strong>de</strong>creasing faster than exponentials.<br />

The <strong>de</strong>scriptive power of these different hypotheses are compared in section 5. We first consi<strong>de</strong>r nested<br />

hypotheses and use Wilk’s test to this aim. It appears th<strong>at</strong> both the str<strong>et</strong>ched-exponential and the Par<strong>et</strong>o<br />

distributions are the most parsimonous mo<strong>de</strong>ls comp<strong>at</strong>ible with the d<strong>at</strong>a with a slight advantage in favor<br />

of the str<strong>et</strong>ched exponential mo<strong>de</strong>l. Then, in or<strong>de</strong>r to directly compare the <strong>de</strong>scriptive power of these two<br />

mo<strong>de</strong>ls, we perform encompassing tests, which prove the validity of the two represent<strong>at</strong>ions, but for different<br />

quantile ranges. Finally we show th<strong>at</strong> these two distributions can be s<strong>et</strong> within a single mo<strong>de</strong>l.<br />

Section 7 summarizes our results and conclu<strong>de</strong>s.<br />

2 Some basic st<strong>at</strong>istical fe<strong>at</strong>ures<br />

2.1 The d<strong>at</strong>a<br />

We use two s<strong>et</strong>s of d<strong>at</strong>a. The first sample consists in the daily r<strong>et</strong>urns 2 of the Dow Jones Industrial Average<br />

In<strong>de</strong>x (DJ) over the time interval from May 27, 1896 to May 31, 2000, which represents a sample size<br />

n = 28415. The second d<strong>at</strong>a s<strong>et</strong> contains the high-frequency (5 minutes) r<strong>et</strong>urns of Nasdaq Composite (ND)<br />

in<strong>de</strong>x for the period from April 8, 1997 to May 29, 1998 which represents n=22123 d<strong>at</strong>a points. The choice<br />

of these two d<strong>at</strong>a s<strong>et</strong>s is justified by their similarity with (1) the d<strong>at</strong>a s<strong>et</strong> of daily r<strong>et</strong>urns used by Longin<br />

(1996) particularly and (2) the high frequency d<strong>at</strong>a used by Guillaume <strong>et</strong> al. (1997), Lux (2000), Müller <strong>et</strong><br />

al. (1998) among others.<br />

For the intra-day Nasdaq d<strong>at</strong>a, there are two cave<strong>at</strong>s th<strong>at</strong> must be addressed. First, in or<strong>de</strong>r to remove the<br />

effect of overnight price jumps, we have d<strong>et</strong>ermined the r<strong>et</strong>urns separ<strong>at</strong>ely for each of 289 days contained in<br />

the Nasdaq d<strong>at</strong>a and have taken the union of all these 289 r<strong>et</strong>urn d<strong>at</strong>a s<strong>et</strong>s to obtain a global r<strong>et</strong>urn d<strong>at</strong>a s<strong>et</strong>.<br />

Second, the vol<strong>at</strong>ility of intra-day d<strong>at</strong>a are known to exhibit a U-shape, also called “lunch-effect”, th<strong>at</strong> is, an<br />

abnormally high vol<strong>at</strong>ility <strong>at</strong> the begining and the end of the trading day compared with a low vol<strong>at</strong>ility <strong>at</strong><br />

the approxim<strong>at</strong>e time of lunch. Such effect is present in our d<strong>at</strong>a, as <strong>de</strong>picted on figure 1, where the average<br />

absolute r<strong>et</strong>urns are shown as a function of the time within a trading day. It is <strong>de</strong>sirable to correct the d<strong>at</strong>a<br />

from this system<strong>at</strong>ic effect. This has been performed by renormalizing the 5 minutes-r<strong>et</strong>urns <strong>at</strong> a given<br />

moment of the trading day by the corresponding average absolute r<strong>et</strong>urn <strong>at</strong> the same moment. We shall refer<br />

to this time series as the corrected Nasdaq r<strong>et</strong>urns in constrast with the raw (incorrect) Nasdaq r<strong>et</strong>urns and<br />

we shall examine both d<strong>at</strong>a s<strong>et</strong>s for comparison.<br />

Although the distributions of positive and neg<strong>at</strong>ive r<strong>et</strong>urns are known to be very similar (Jon<strong>de</strong>au and<br />

Rockinger 2001, for instance), we have chosen to tre<strong>at</strong> them separ<strong>at</strong>ely. For the Dow Jones, this gives<br />

us 14949 positive and 13464 neg<strong>at</strong>ive d<strong>at</strong>a points while, for the Nasdaq, we have 11241 positive and 10751<br />

neg<strong>at</strong>ive d<strong>at</strong>a points.<br />

2 Throughout the paper, we will use compound r<strong>et</strong>urns, i.e., log-r<strong>et</strong>urns.<br />

5<br />

69


70 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Table 1 summarizes the main st<strong>at</strong>istical properties of these two time series (both for the raw and for the<br />

corrected Nasdaq r<strong>et</strong>urns) in terms of the average r<strong>et</strong>urns, their standard <strong>de</strong>vi<strong>at</strong>ions, the skewness and the<br />

excess kurtosis for four time scales of five minutes, an hour, one day and one month. The Dow Jones<br />

exhibits a significaltly neg<strong>at</strong>ive skewness, which can be ascribed to the impact of the mark<strong>et</strong> crashes. The<br />

raw Nasdaq r<strong>et</strong>urns are significantly positively skewed while the r<strong>et</strong>urns corrected for the “lunch effect” are<br />

neg<strong>at</strong>ively skewed, showing th<strong>at</strong> the lunch effect plays an important role in the shaping of the distribution<br />

of the intra-day r<strong>et</strong>urns. Note also the important <strong>de</strong>crease of the kurtosis after correction of the Nasdaq<br />

r<strong>et</strong>urns for lunch effect, confirming the strong impact of the lunch effect. In all cases, the excess-kurtosis are<br />

high and remains significant even after a time aggreg<strong>at</strong>ion of one month. Jarque-Bera’s test (Cromwell <strong>et</strong><br />

al. 1994), a joint st<strong>at</strong>istic using skewness and kurtosis coefficients, is used to reject the normality assumption<br />

for these time series.<br />

2.2 Existence of time <strong>de</strong>pen<strong>de</strong>nce<br />

It is well-known th<strong>at</strong> financial time series exhibit complex <strong>de</strong>pen<strong>de</strong>nce structures like h<strong>et</strong>eroskedasticity<br />

or non-linearities. These properties are clearly observed in our two times series. For instance, we have<br />

estim<strong>at</strong>ed the st<strong>at</strong>istical characteristic V (for positive random variables) called coefficient of vari<strong>at</strong>ion<br />

V = Std(X)<br />

E(X)<br />

, (1)<br />

which is often used as a testing st<strong>at</strong>istic of the randomness property of a time series. It can be applied to<br />

a sequence of points (or, intervals gener<strong>at</strong>ed by these points on the line). If these points are “absolutely<br />

random,” th<strong>at</strong> is, gener<strong>at</strong>ed by a Poissonian flow, then the intervals b<strong>et</strong>ween them are distributed according<br />

to an exponential distribution for which V = 1. If V > 1 are associ<strong>at</strong>ed with a clustering phenomenon. We estim<strong>at</strong>ed V = V (u) for extrema X > u<br />

and X < −u as function of threshold u (both for positive and for neg<strong>at</strong>ive extrema). The results are shown<br />

in figure 2 for the Dow Jones daily r<strong>et</strong>urns. As the results are essentially the same for the Nasdaq, we do not<br />

show them. Figure 2 shows th<strong>at</strong>, in the main range |X| < 0.02, containing ∼ 95% of the sample, V increases<br />

with u, indic<strong>at</strong>ing th<strong>at</strong> the “clustering” property becomes stronger as the threshold u increases.<br />

We have then applied several formal st<strong>at</strong>istical tests of in<strong>de</strong>pen<strong>de</strong>nce. We have first performed the Lagrange<br />

multiplier test proposed by Engle (1984) which leads to the T · R 2 test st<strong>at</strong>istic, where T <strong>de</strong>notes the sample<br />

size and R 2 is the d<strong>et</strong>ermin<strong>at</strong>ion coefficient of the regression of the squared centered r<strong>et</strong>urns xt on a constant<br />

and on q of their lags xt−1,xt−2,··· ,xt−q. Un<strong>de</strong>r the null hypothesis of homoskedastic time series, T · R 2<br />

follows a χ 2 -st<strong>at</strong>istic with q <strong>de</strong>grees of freedom. The test have been performed up to q = 10 and, in every<br />

case, the null hypothesis is strongly rejected, <strong>at</strong> any usual significance level. Thus, the time series are<br />

h<strong>et</strong>eroskedastics and exhibit vol<strong>at</strong>ility clustering. We have also performed a BDS test (Brock <strong>et</strong> al. 1987)<br />

which allows us to d<strong>et</strong>ect not only vol<strong>at</strong>ility clustering, like in the previous test, but also <strong>de</strong>parture from<br />

iid-ness due to non-linearities. Again, we strongly rejects the null-hypothesis of iid d<strong>at</strong>a, <strong>at</strong> any usual<br />

significance level, confirming the Lagrange multiplier test.<br />

3 Can long memory processes lead to misleading measures of extreme properties?<br />

Since the <strong>de</strong>scriptive st<strong>at</strong>istics given in the previous section have clearly shown the existence of a significant<br />

temporal <strong>de</strong>pen<strong>de</strong>nce structure, it is important to consi<strong>de</strong>r the possibility th<strong>at</strong> it can lead to erroneous conclusions<br />

on estim<strong>at</strong>ed param<strong>et</strong>ers. We first briefly recall the standard procedures used to investig<strong>at</strong>e extremal<br />

6


properties, stressing the problems and drawbacks arising from the existence of temporal <strong>de</strong>pen<strong>de</strong>nce. We<br />

then perform a numerical simul<strong>at</strong>ion to study the behavior of the estim<strong>at</strong>ors in presence of <strong>de</strong>pen<strong>de</strong>nce. We<br />

put particular emphasis on the possible appearance of significant biases due to <strong>de</strong>pen<strong>de</strong>nce in the d<strong>at</strong>a s<strong>et</strong>.<br />

Finally, we present the results on the extremal properties of our two DJ and ND d<strong>at</strong>a s<strong>et</strong>s in the light of the<br />

bootstrap results.<br />

3.1 Some theor<strong>et</strong>ical results<br />

Two limit theorems allow one to study the extremal properties and to d<strong>et</strong>ermine the maximum domain of<br />

<strong>at</strong>traction (MDA) of a distribution function in two forms.<br />

First, consi<strong>de</strong>r a sample of N iid realiz<strong>at</strong>ions X1,X2,··· ,XN. L<strong>et</strong> X ∧ <strong>de</strong>notes the maximum of this sample.<br />

Then, the Gne<strong>de</strong>nko theorem st<strong>at</strong>es th<strong>at</strong> if, after an a<strong>de</strong>qu<strong>at</strong>e centering and normaliz<strong>at</strong>ion, the distribution of<br />

X ∧ converges to a non-<strong>de</strong>gener<strong>at</strong>e distribution as N goes to infinity, this limit distribution is then necessarily<br />

the Generalized Extreme Value (GEV) distribution <strong>de</strong>fined by<br />

H ξ(x) = exp<br />

When ξ = 0, H ξ(x) should be un<strong>de</strong>rstood as<br />

Thus, for N large enough<br />

71<br />

<br />

−(1 + ξ · x) −1/ξ<br />

. (2)<br />

H ξ=0(x) = exp[−exp(−x)]. (3)<br />

Pr X ∧ < x = H ξ<br />

x − µ<br />

ψ<br />

<br />

, (4)<br />

for some value of the centering param<strong>et</strong>er µ, scale factor ψ and tail in<strong>de</strong>x ξ. It should be noted th<strong>at</strong> the<br />

existence of non-<strong>de</strong>gener<strong>at</strong>e limit distribution of properly centered and normalized X ∧ is a r<strong>at</strong>her strong limit<strong>at</strong>ion.<br />

There are a lot of distribution functions th<strong>at</strong> do not s<strong>at</strong>isfy this limit<strong>at</strong>ion, e.g., infinitely altern<strong>at</strong>ing<br />

functions b<strong>et</strong>ween a power-like and an exponential behavior.<br />

The second limit theorem is called after Gne<strong>de</strong>nko-Pickands-Balkema-<strong>de</strong> Haan (GPBH) and its formul<strong>at</strong>ion<br />

is as follows. In or<strong>de</strong>r to st<strong>at</strong>e the GPBH theorem, we <strong>de</strong>fine the right endpoint xF of a distribution function<br />

F(x) as xF = sup{x : F(x) < 1}. L<strong>et</strong> us call the function<br />

Pr{X − u ≥ x | X > u} ≡ ¯Fu(x) (5)<br />

the excess distribution function (DF). Then, this DF ¯Fu(x) belongs to the Maximum Domain of Attraction of<br />

H ξ(x) <strong>de</strong>fined by eq.(2) if and only if there exists a positive scale-function s(u), <strong>de</strong>pending on the threshold<br />

u, such th<strong>at</strong><br />

limu→xF sup 0≤x≤xF −u | ¯Fu(x) − ¯G(x/ξ,s(u))| = 0 , (6)<br />

where<br />

G(x/ξ,s) = 1 + ln(H ξ(x/s)) = 1 − (1 + ξ · x/s) −1/ξ . (7)<br />

By taking the limit ξ → 0, expression (7) leads to the exponential distribution. The support of the distribution<br />

function (7) is <strong>de</strong>fined as follows: <br />

0 x < ∞,<br />

0 x −d/ξ,<br />

if ξ 0<br />

if ξ < 0.<br />

(8)<br />

Thus, the Generalized Par<strong>et</strong>o Distribution has a finite support for ξ < 0.<br />

7


72 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

The form param<strong>et</strong>er ξ is of paramount importance for the form of the limiting distribution. Its sign d<strong>et</strong>ermines<br />

three possible limiting forms of the distribution of maximua: If ξ > 0, then the limit distribution is<br />

the Fréch<strong>et</strong> power-like distribution; If ξ = 0, then the limit distribution is the Gumbel (double-exponential)<br />

distribution; If ξ < 0, then the limit distribution has a support boun<strong>de</strong>d from above. All these three distributions<br />

are united in eq.(2) by this param<strong>et</strong>eriz<strong>at</strong>ion. The d<strong>et</strong>ermin<strong>at</strong>ion of the param<strong>et</strong>er ξ is the central<br />

problem of extreme value analysis. In<strong>de</strong>ed, it allows one to d<strong>et</strong>ermine the maximum domain of <strong>at</strong>traction<br />

of the un<strong>de</strong>rling distribution. When ξ > 0, the un<strong>de</strong>rlying distribution belongs to the Fréch<strong>et</strong> maximum<br />

domain of <strong>at</strong>traction and is regularly varying (power-like tail). When ξ = 0, it belongs to the Gumbel MDA<br />

and is rapidly varying (exponential tail), while if ξ < 0 it belongs to the Weibull MDA and has a finite right<br />

endpoint.<br />

3.2 Examples of slow convergence to limit GEV and GPD distributions<br />

There exist two ways of estim<strong>at</strong>ing ξ. First, if there is a sample of maxima (taken from sub-samples of<br />

sufficiently large size), then one can fit to this sample the GEV distribution, thus estim<strong>at</strong>ing the param<strong>et</strong>ers<br />

by Maximum Likelihood m<strong>et</strong>hod. Altern<strong>at</strong>ively, one can prefer the distribution of exceedance over a large<br />

threshold given by the GPD (7), whose tail in<strong>de</strong>x can be estim<strong>at</strong>ed with Pickands’ estim<strong>at</strong>or or by Maximum<br />

Likelihood, as previously. Hill’s estim<strong>at</strong>or cannot be used since it assumes ξ > 0, while the essence<br />

of extreme value analysis is, as we said, to test for the class of limit distributions without excluding any<br />

possibility, and not only to d<strong>et</strong>ermine the quantit<strong>at</strong>ive value of an exponent. Each of these m<strong>et</strong>hods has its<br />

advantages and drawbacks, especially when one has to study <strong>de</strong>pen<strong>de</strong>nt d<strong>at</strong>a, as we show below.<br />

Given a sample of size N, one consi<strong>de</strong>r the q-maxima drawn from q sub-samples of size p (such th<strong>at</strong> p · q =<br />

N) to estim<strong>at</strong>e the param<strong>et</strong>ers (µ,ψ,ξ) in (4) by Maximum Likelihood. This procedure yields consistent and<br />

asymptotically Gaussian estim<strong>at</strong>ors, provi<strong>de</strong>d th<strong>at</strong> ξ > −1/2 (Smith 1985). The properties of the estim<strong>at</strong>ors<br />

still hold approxim<strong>at</strong>ely for <strong>de</strong>pen<strong>de</strong>nt d<strong>at</strong>a, provi<strong>de</strong>d th<strong>at</strong> the inter<strong>de</strong>pen<strong>de</strong>nce of d<strong>at</strong>a is weak. However, it<br />

is difficult to choose an optimal value of q of the sub-samples. It <strong>de</strong>pends both on the size N of the entire<br />

sample and on the un<strong>de</strong>rlying distribution: the maxima drawn from an Exponential distribution are known<br />

to converge very quickly to Gumbel’s distribution (Hall and Wellnel 1979), while for the Gaussian law,<br />

convergence is particularly slow (Hall 1979).<br />

The second possibility is to estim<strong>at</strong>e the param<strong>et</strong>er ξ from the distribution of exceedances (the GPD) or<br />

Pickand’s estim<strong>at</strong>or. For this, one can use either the Maximum Likelihood estim<strong>at</strong>or or Pickands’ estim<strong>at</strong>or.<br />

Maximum Likelihood estim<strong>at</strong>ors are well-known to be the most efficient ones (<strong>at</strong> least for ξ > −1/2 and for<br />

in<strong>de</strong>pen<strong>de</strong>nt d<strong>at</strong>a) but, in this particular case, Pickands’ estim<strong>at</strong>or works reasonably well. Given an or<strong>de</strong>red<br />

sample x1 ≤ x2 ≤ ···xN of size N, Pickands’ estim<strong>at</strong>or is given by<br />

ˆξk,N = 1<br />

ln2 ln xk − x2k<br />

. (9)<br />

x2k − x4k<br />

For in<strong>de</strong>pen<strong>de</strong>nt and i<strong>de</strong>ntically distributed d<strong>at</strong>a, this estim<strong>at</strong>or is consistent provi<strong>de</strong>d th<strong>at</strong> k is chosen so th<strong>at</strong><br />

k → ∞ and k/N → 0 as N → ∞. Morover, ˆ ξk,n is asymptotically normal with variance<br />

σ( ˆ ξk,N) 2 · k = ξ2 (22ξ+1 + 1)<br />

(2(2ξ . (10)<br />

− 1)ln2) 2<br />

In the presence of <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween d<strong>at</strong>a, one can expect an increase of the standard <strong>de</strong>vi<strong>at</strong>ion, as reported<br />

by Kearns and Pagan (1997). For time <strong>de</strong>pen<strong>de</strong>nce of the GARCH class, Kearns and Pagan (1997) have<br />

in<strong>de</strong>ed <strong>de</strong>monstr<strong>at</strong>ed a significant increase of the standard <strong>de</strong>vi<strong>at</strong>ion of the tail in<strong>de</strong>x estim<strong>at</strong>or, such as<br />

Hill’s estim<strong>at</strong>or, by a factor more than seven with respect to their asymptotic properties for iid samples. This<br />

leads to very inaccur<strong>at</strong>e in<strong>de</strong>x estim<strong>at</strong>es for time series with this kind of temporal <strong>de</strong>pen<strong>de</strong>nce.<br />

8


Another problem lies in the d<strong>et</strong>ermin<strong>at</strong>ion of the optimal threshold u of the GPD, which is in fact rel<strong>at</strong>ed to<br />

the optimal d<strong>et</strong>ermin<strong>at</strong>ion of the sub-samples size q in the case of the estim<strong>at</strong>ion of the param<strong>et</strong>ers of the<br />

distribution of maximum.<br />

In sum, none of these m<strong>et</strong>hods seem really s<strong>at</strong>isfying and each one presents severe drawbacks. The estim<strong>at</strong>ion<br />

of the param<strong>et</strong>ers of the GEV distribution and of the GPD may be less sensitive to the <strong>de</strong>pen<strong>de</strong>nce of<br />

the d<strong>at</strong>a, but this property is only asymptotic, thus it requires a bootstrap investig<strong>at</strong>ion to be able to compare<br />

the real power of each estim<strong>at</strong>ion m<strong>et</strong>hod.<br />

As a first simple example illustr<strong>at</strong>ing the possibly very slow convergence to the limit distributions of extreme<br />

value theory mentioned above, l<strong>et</strong> us consi<strong>de</strong>r a simul<strong>at</strong>ed sample of iid Weibull random variables (we thus<br />

fulfill the most basic assumption of extreme values theory, i.e, iid-ness). For such a distribution, one must<br />

obtain in the limit N → ∞ the exponential distribution (ξ = 0). We took two values for the exponent of<br />

the Weibull distribution: c = 0.7 and c = 0.3, with d = 1 (scale param<strong>et</strong>er). Such the estim<strong>at</strong>ion of ξ by<br />

the distribution of the GPD of exceedance should give estim<strong>at</strong>ed values of ξ close to zero in the limit of<br />

large N. In or<strong>de</strong>r to use the GPD, we have taken the conditional Weibull distribution un<strong>de</strong>r condition X ><br />

Uk,k = 1...15, where the thresholds Uk are choosen as: U1 = 0.1; U2 = 0.3; U3 = 1; U4 = 3; U5 = 10; U6 =<br />

30; U7 = 100; U8 = 300; U9 = 1000; U10 = 3000; U11 = 10 4 ; U12 = 3 · 10 4 ; U13 = 10 5 ; U14 = 3 · 10 5 and<br />

U15 = 10 6 .<br />

For each simul<strong>at</strong>ion, the size of the sample above the consi<strong>de</strong>red threshold Uk is choosen equal to 50,000<br />

in or<strong>de</strong>r to g<strong>et</strong> small standard <strong>de</strong>vi<strong>at</strong>ions. The Maximum-Likelihood estim<strong>at</strong>es of the GPD form param<strong>et</strong>er<br />

ξ are shown in figure 3. For c = 0.7, the threshold U7 gives an estim<strong>at</strong>e ξ = 0.0123 with standard <strong>de</strong>vi<strong>at</strong>ion<br />

equal to 0.0045, i.e., the estim<strong>at</strong>e for ξ differs significantly from zero (which is the correct theor<strong>et</strong>ical limit<br />

value). This occurs notwithstanding the huge size of the implied d<strong>at</strong>a s<strong>et</strong>; in<strong>de</strong>ed, the probability PrX > U7<br />

for c = 0.7 is about 10 −9 , so th<strong>at</strong> in or<strong>de</strong>r to obtain a d<strong>at</strong>a s<strong>et</strong> of conditional samples from an unconditional<br />

d<strong>at</strong>a s<strong>et</strong> of the size studied here (50,000 realiz<strong>at</strong>ions above U7), the size of such unconditional sample should<br />

be approxim<strong>at</strong>ely 10 9 times larger than the number of “peaks over threshold”, i.e., it is practically impossible<br />

to have such a sample. For c = 0.3 the convergence to the theor<strong>et</strong>ical value zero is even slower. In<strong>de</strong>ed,<br />

even the largest financial d<strong>at</strong>as<strong>et</strong>s for a single ass<strong>et</strong>, drawn from high frequency d<strong>at</strong>a, are no larger than or<br />

of the or<strong>de</strong>r of one million points 3 . The situ<strong>at</strong>ion does not change even for d<strong>at</strong>a s<strong>et</strong>s one or two or<strong>de</strong>rs of<br />

magnitu<strong>de</strong>s larger as consi<strong>de</strong>red in (Gopikrishnan <strong>et</strong> al. 1998), obtained by aggreg<strong>at</strong>ing thousands of stocks<br />

4 . Thus, although the GPD form param<strong>et</strong>er should be zero theor<strong>et</strong>ically in the limit of large sample for the<br />

Weibull distribution, this limit cannot be reached for any available sample sizes.<br />

This is a clear illustr<strong>at</strong>ion th<strong>at</strong> a rapidly varying distribution, like the Weibull distribution with exponent<br />

smaller than one, i.e., a Str<strong>et</strong>ched-Exponential distribution, can be mistaken for a Par<strong>et</strong>o or any other regularly<br />

varying distribution for any practical applic<strong>at</strong>ions.<br />

3.3 Gener<strong>at</strong>ion of a long memory process with a well-<strong>de</strong>fined st<strong>at</strong>ionary distribution<br />

In or<strong>de</strong>r to study the performance of the various estim<strong>at</strong>ors of the tail in<strong>de</strong>x ξ and the influence of inter<strong>de</strong>pen<strong>de</strong>nce<br />

of sample values, we have gener<strong>at</strong>ed six samples with distinct properties. The first three samples<br />

are ma<strong>de</strong> of iid realiz<strong>at</strong>ions drawn respectively from a Par<strong>et</strong>o Distribution with tail in<strong>de</strong>x b = 3 and from<br />

a Str<strong>et</strong>ched-Exponential distribution with exponent c = 0.3 and c = 0.7. The three other samples contain<br />

realiz<strong>at</strong>ions exhibiting long-range memory with the same three distributions as for the first three samples:<br />

a regularly varying distribution with tail in<strong>de</strong>x b = 3 and a Str<strong>et</strong>ched-Exponential distribution with expo-<br />

3 One year of d<strong>at</strong>a sampled <strong>at</strong> the 1 minute time scale gives approxim<strong>at</strong>ely 1.2 · 10 5 d<strong>at</strong>a points<br />

4 In this case, another issue arises concerning the fact th<strong>at</strong> the aggreg<strong>at</strong>ion of r<strong>et</strong>urns from differents ass<strong>et</strong>s may distord the<br />

inform<strong>at</strong>ion and the very structure of the tails of the pdfs, if they exhibit some intrinsic variability (M<strong>at</strong>ia <strong>et</strong> al. 2002).<br />

9<br />

73


74 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

nent c = 0.3 and c = 0.7. Thus, the three first samples are the iid counterparts of the l<strong>at</strong>er ones. The<br />

sample with regularly varying iid distributions converges to the Fréch<strong>et</strong>’s maximum domain of <strong>at</strong>traction<br />

with ξ = 1/3 = 0.33, while the iid Str<strong>et</strong>ched-Exponential distribution converges to Gumbel’s maximum domain<br />

of <strong>at</strong>traction with ξ = 0. We now study how well can one distinguish b<strong>et</strong>ween these two distributions<br />

belonging to two different maximum domains of <strong>at</strong>traction.<br />

For the stochastic processes with long memory, we use a simple stochastic vol<strong>at</strong>ility mo<strong>de</strong>l. First, we<br />

construct a Gaussian process {Xt}t≥1 with correl<strong>at</strong>ion function<br />

C(t) =<br />

1<br />

(1+|t|) α<br />

if |t| ≤ T ,<br />

0 if |t| > T .<br />

It should be noted th<strong>at</strong>, in or<strong>de</strong>r for the stochastic process to be well-<strong>de</strong>fined, the correl<strong>at</strong>ion function must<br />

s<strong>at</strong>isfy a positivity condition. More precisely, the spectral <strong>de</strong>nsity (the Fourier transform of the correl<strong>at</strong>ion<br />

function) must remain positive. This condition imposes th<strong>at</strong> the dur<strong>at</strong>ion of the memory T be larger than a<br />

constant <strong>de</strong>pending on α.<br />

The next step consists in building the process {Ut}t≥1, <strong>de</strong>fined by<br />

(11)<br />

Ut = Φ(Xt) , (12)<br />

where Φ(·) is the Gaussian distribution function. The process {Ut}t≥1 exhibits exactly the same long range<br />

<strong>de</strong>pen<strong>de</strong>nce as the process {Xt}t≥1. This is ensured by the property of invariance of the copula un<strong>de</strong>r<br />

strickly increasing change of variables. L<strong>et</strong> us recall th<strong>at</strong> a copula is the m<strong>at</strong>hem<strong>at</strong>ical embodiement of the<br />

<strong>de</strong>pen<strong>de</strong>nce structure b<strong>et</strong>ween different random variables (Joe 1997, Nelsen 1998). The process {Ut}t≥1<br />

thus possesses a Gaussian copula <strong>de</strong>pen<strong>de</strong>nce structure with long memory and uniform marginals 5 .<br />

In the last step, we <strong>de</strong>fine the vol<strong>at</strong>ility process<br />

σt = σ0 ·U −1/b<br />

t , (13)<br />

which ensures th<strong>at</strong> the st<strong>at</strong>ionary distribution of the vol<strong>at</strong>ility is a Par<strong>et</strong>o distribution with tail in<strong>de</strong>x b. Such<br />

a distribution of the vol<strong>at</strong>ility is not realistic in the bulk which is found to be approxim<strong>at</strong>ely a lognormal<br />

distribution for not too large vol<strong>at</strong>ilities (Sorn<strong>et</strong>te <strong>et</strong> al. 2000), but is in agreement with the hypothesis of<br />

an asymptotic regularly varying distribution. A change of variable more complic<strong>at</strong>ed than (13) can provi<strong>de</strong><br />

a more realistic behavior of the vol<strong>at</strong>ility on the entire range of the distribution but our main goal is not to<br />

provi<strong>de</strong> a realistic stochastic vol<strong>at</strong>ility mo<strong>de</strong>l but only to exhibit a long memory process with well-<strong>de</strong>fined<br />

prescribed marginals in or<strong>de</strong>r to test the influence of a long range <strong>de</strong>pen<strong>de</strong>nce structure.<br />

The r<strong>et</strong>urn process is then given by<br />

rt = σt · εt , (14)<br />

where the εt are Gaussian random variables in<strong>de</strong>pen<strong>de</strong>nt from σt. The construction (14) ensures the <strong>de</strong>correl<strong>at</strong>ion<br />

of the r<strong>et</strong>urns <strong>at</strong> every time lag. The st<strong>at</strong>ionary distribution of rt admits the <strong>de</strong>nsity<br />

p(r) = 2 b−1<br />

<br />

b − 1 r2 b<br />

2 · Γ , , (15)<br />

2 2 rb+1 <br />

b−1 r2<br />

which is regularly varying <strong>at</strong> infinity since Γ 2 , 2 goes to Γ <br />

b−1<br />

2 . This compl<strong>et</strong>es the construction and<br />

characteriz<strong>at</strong>ion of our long memory process with regularly varying st<strong>at</strong>ionary distribution.<br />

5 Of course, one can make the correl<strong>at</strong>ion as small as one wants un<strong>de</strong>r an a<strong>de</strong>qu<strong>at</strong>e choice of a strickly increasing transform<strong>at</strong>ion<br />

but this does not change the fact th<strong>at</strong> the <strong>de</strong>pen<strong>de</strong>nce remains unchanged. This is another illustr<strong>at</strong>ion of the fact th<strong>at</strong> the correl<strong>at</strong>ion<br />

is not always a good and adapted measure of <strong>de</strong>pen<strong>de</strong>nce (Malevergne and Sorn<strong>et</strong>te 2002).<br />

10


In or<strong>de</strong>r to obtain a process with Str<strong>et</strong>ched-Exponential distribution with long range <strong>de</strong>pen<strong>de</strong>nce, we apply<br />

to {rt}t≥1 the following increasing mapping G : r → y<br />

⎧<br />

⎪⎨ (x0 + ln<br />

G(r) =<br />

⎪⎩<br />

r<br />

r0 )1/c r > r0<br />

sgn(r) · |r| 1/c |r| ≤ r0<br />

−(r0 + ln|r/r0|) 1/c (16)<br />

r < −r0 .<br />

This transform<strong>at</strong>ion gives a str<strong>et</strong>ched exponential of in<strong>de</strong>x c for all values of the r<strong>et</strong>urn larger than the scale<br />

factor r0. This <strong>de</strong>rives from the fact th<strong>at</strong> the process {rt}t≥1 admits a regularly varying distribution function,<br />

characterized by ¯Fr(r) = 1 − Fr(r) = L(r)|r| −b , for some slowly varying function L. As a consequence, the<br />

st<strong>at</strong>ionary distribution of {Yt}t≥1 is given by<br />

¯FY (y) = L r0e −x0 exp(y c ) e br0<br />

which is a Str<strong>et</strong>ched-Exponential distribution.<br />

x b 0<br />

75<br />

· e −b|y|c<br />

, ∀|y| > r0, (17)<br />

= L ′ (y) · e −b|y|c<br />

, L ′ is slowly varying <strong>at</strong> infinity, (18)<br />

To summarize, starting with a long memory Gaussian process, we have <strong>de</strong>fined a long memory process<br />

characterized by a st<strong>at</strong>ionary distribution function of our choice, thanks to the invariance of the temporal<br />

<strong>de</strong>pen<strong>de</strong>nce structure (the copula) un<strong>de</strong>r strictly increasing change of variable. In particular, this approach<br />

gives long memory processes with a regularly varying marginal distribution and with a str<strong>et</strong>ched-exponential<br />

distribution. Notwithstanding the difference in their marginals, these two processes possess by construction<br />

exactly the same time <strong>de</strong>pen<strong>de</strong>nce. This allows us to compare the impact of the same <strong>de</strong>pen<strong>de</strong>nce on these<br />

two classes of marginals.<br />

3.4 Results of numerical simul<strong>at</strong>ions<br />

We have gener<strong>at</strong>ed 1000 samples of each kind (iid Str<strong>et</strong>ched-Exponential, iid Par<strong>et</strong>o, long memory process<br />

with a Par<strong>et</strong>o distribution and with a Str<strong>et</strong>ched-Exponential distribution). Each sample contains 10,000<br />

realiz<strong>at</strong>ions, which is approxim<strong>at</strong>ely the number of points in each tail of our real samples. In or<strong>de</strong>r to<br />

gener<strong>at</strong>e the Gaussian process with correl<strong>at</strong>ion function (11), we have used the algorithm based on Fast<br />

Fourier Transform <strong>de</strong>scribed in Beran (1994). The param<strong>et</strong>er T has been s<strong>et</strong> to 250 and α to 0.5 (it can be<br />

checked th<strong>at</strong> for α = 0.5 the lower bound for T is equal to 23).<br />

Panel (a) of table 2 presents the mean values and standard <strong>de</strong>vi<strong>at</strong>ions of the Maximum Likelihood estim<strong>at</strong>es<br />

of ξ, using the Generalized Extreme Value distribution and the Generalized Par<strong>et</strong>o Distribution for the three<br />

samples of iid d<strong>at</strong>a. To estim<strong>at</strong>e the param<strong>et</strong>ers of the GEV distribution and study the influence of the<br />

sub-sample size, we have grouped the d<strong>at</strong>a in clusters of size q = 10,50,100 and 200. For the analysis in<br />

terms of the GPD, we have consi<strong>de</strong>red four different large thresholds u, corresponding to the quantiles 90%,<br />

95%, 99% and 99.5%. The estim<strong>at</strong>es obtained from the distribution of maxima are significantly different<br />

from the theor<strong>et</strong>ical ones: 0.2 in average over the four different size of sub-samples intead of 0.0 for the<br />

Str<strong>et</strong>ched-Exponential distribution with c = 0.7, 1.0 instead of 0.0 for c = 0.3 for the Str<strong>et</strong>ched-Exponential<br />

distribution and 0.40 instead of 0.33 for the Par<strong>et</strong>o Distribution. At the same time, the standard <strong>de</strong>vi<strong>at</strong>ion of<br />

these estim<strong>at</strong>or remains very low. This significant bias of the estim<strong>at</strong>or is a clear sign th<strong>at</strong> the distribution of<br />

the maximum has not y<strong>et</strong> converged to the asymptotic GEV distribution, even for subsamples of size 200.<br />

The results are b<strong>et</strong>ter with smaller biases for the Maximum Likelihood estim<strong>at</strong>es obtained from the GPD.<br />

However, the standard <strong>de</strong>vi<strong>at</strong>ions are significantly larger than in the previous case, which testifies of the high<br />

variability of this estim<strong>at</strong>or. Thus, for such sample sizes, the GEV and GPD Maximum Likelihood estim<strong>at</strong>es<br />

seem not very reliable due to an important bias for the former and large st<strong>at</strong>istical fluctu<strong>at</strong>ions for the l<strong>at</strong>er.<br />

11


76 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Nevertheless, an optimistic view point is th<strong>at</strong>, discarding the largest quantile of 0.995, the GPD estim<strong>at</strong>or is<br />

comp<strong>at</strong>ible with a value ξ = 0.32 ± 0.1 for the iid d<strong>at</strong>a with Par<strong>et</strong>o distribution while it is comp<strong>at</strong>ible with<br />

ξ = (−0.21) − (0.19) ± 0.6 − 0.8 for c = 0.3 and with ξ = (−0.13) − (0.11) ± 0.04 − 0.5 for c = 0.7. The<br />

consistency of the GPD estim<strong>at</strong>or in the case of the Par<strong>et</strong>o distribution in contrast with the wild vari<strong>at</strong>ions for<br />

the Str<strong>et</strong>ched-Exponential distributions suggests th<strong>at</strong> one could conclu<strong>de</strong> th<strong>at</strong> the first result qualifies (correctly)<br />

a regularly varying function while the second one either (correctly) disqualifies a regularly varying<br />

function or more conserv<strong>at</strong>ily is unable to conclu<strong>de</strong>. In other words, when the sample d<strong>at</strong>a is truely Par<strong>et</strong>o,<br />

the GPD estim<strong>at</strong>or seems to be able to r<strong>et</strong>rieve this inform<strong>at</strong>ion reliably, in constrast with the GEV estim<strong>at</strong>or<br />

which is quite unreliable in all cases.<br />

Panel (b) of table 2 presents the same results for <strong>de</strong>pen<strong>de</strong>nt d<strong>at</strong>a. The GEV estim<strong>at</strong>es exhibit in each case a<br />

significant bias, either positive or neg<strong>at</strong>ive and a huge increase of the standard <strong>de</strong>vi<strong>at</strong>ion in the case of the<br />

Str<strong>et</strong>ched-Exponential with exponent c = 0.7. Interestingly, the GEV estim<strong>at</strong>or for the Par<strong>et</strong>o distribution is<br />

utterly wrong. The situ<strong>at</strong>ion is different for the GPD estim<strong>at</strong>es which show a weak bias not really sensitive to<br />

the quantile. In constrast, the standard <strong>de</strong>vi<strong>at</strong>ions of the GPD estim<strong>at</strong>ors strongly increase with the quantile,<br />

which is n<strong>at</strong>ural since the number of oberv<strong>at</strong>ions <strong>de</strong>creases accordingly. The GPD behaves surprisingly well<br />

and seems to be the only one able to perfom a reasonable estim<strong>at</strong>ion of the tail in<strong>de</strong>x.<br />

To summarize, the Maximum Likelihood estim<strong>at</strong>ors <strong>de</strong>rived form the GEV or GPD distributions are not very<br />

efficient in the presence of <strong>de</strong>pen<strong>de</strong>nce in the d<strong>at</strong>a and of non-asymptotic effects due to the slow convergence<br />

toward the asymptotic GEV or GPD distributions. The only positive note is th<strong>at</strong> the GPD estim<strong>at</strong>or correctly<br />

recovers the range of the in<strong>de</strong>x ξ with an uncertainty smaller than 20% for d<strong>at</strong>a with a pure Par<strong>et</strong>o distribution<br />

while it is cannot reject the hypothesis th<strong>at</strong> ξ = 0 when the d<strong>at</strong>a is gener<strong>at</strong>ed with a Str<strong>et</strong>ched-Exponential<br />

distribution, albeit with a very large uncertainty, in other words with very little power.<br />

Table 3 focuses on the results given by Pickands’ estim<strong>at</strong>or for the tail in<strong>de</strong>x of the GPD. For each threshods<br />

u, corresponding to the quantiles 90%, 95%, 99% and 99.5% respectively, the results of our simul<strong>at</strong>ions are<br />

given for two particular values of k (<strong>de</strong>fined in 9) corresponding to N/k = 4, which is the largest admissible<br />

value, and N/k = 10 corresponding to be sufficiently far in the tail of the GPD. Table 3 provi<strong>de</strong>s the mean<br />

value and the numerically estim<strong>at</strong>ed as well as the theor<strong>et</strong>ical (given by (10)) standard <strong>de</strong>vi<strong>at</strong>ion of ˆ ξk,N.<br />

Panel (a) gives the result for iid d<strong>at</strong>a. The mean values do not exhibit a significant bias for the Par<strong>et</strong>o<br />

distribution and the Str<strong>et</strong>ched-Exponential with c = 0.7, but are utterly wrong in the case c = 0.3 since<br />

the estim<strong>at</strong>es are comparable with those given for the Par<strong>et</strong>o distribution. In each case, we note a very<br />

good agreement b<strong>et</strong>ween the empirical and theor<strong>et</strong>ical standard <strong>de</strong>vi<strong>at</strong>ions, even for the larger quantiles<br />

(and thus the smaller samples). Panel (b) presents the results for <strong>de</strong>pen<strong>de</strong>nt d<strong>at</strong>a. The estim<strong>at</strong>ed standard<br />

<strong>de</strong>vi<strong>at</strong>ions remains of the same or<strong>de</strong>r as the theor<strong>et</strong>ical ones, contrarily to results reported by Kearns and<br />

Pagan (1997) for GARCH processes. However, like these authors, we find th<strong>at</strong> the bias, either positive or<br />

neg<strong>at</strong>ive, becomes very significant and leads on to misclassify a Str<strong>et</strong>ched-Exponential distribution with<br />

c = 0.3 for a Par<strong>et</strong>o distribution with b = 3. Thus, in presence of <strong>de</strong>pen<strong>de</strong>nce, Pickands’ estim<strong>at</strong>or is<br />

unreliable.<br />

To summarize, the impact of the <strong>de</strong>pen<strong>de</strong>nce can add a severe sc<strong>at</strong>ter of estim<strong>at</strong>ors which increase their<br />

standard <strong>de</strong>vi<strong>at</strong>ion. The d<strong>et</strong>ermin<strong>at</strong>ion of the maximum domain of <strong>at</strong>traction with usual estim<strong>at</strong>ors does<br />

not appear to be a very efficient way to study the extreme properties of <strong>de</strong>pen<strong>de</strong>nt times series. Almost all<br />

the previous studies which have investig<strong>at</strong>ed the tail behavior of ass<strong>et</strong> r<strong>et</strong>urns distributions have focused on<br />

these m<strong>et</strong>hods (see the influencial works of Longin (1996) for instance) and may thus have led to spurious<br />

results on the d<strong>et</strong>ermin<strong>at</strong>ion of the tail behavior. In particular, our simul<strong>at</strong>ions show th<strong>at</strong> rapidly varying<br />

function may be mistaken for regularly varying functions. Thus, according to our simul<strong>at</strong>ions, this casts<br />

doubts on the strength of the conclusion of previous works th<strong>at</strong> the distributions of r<strong>et</strong>urns are regularly<br />

varying as seems to have been the consensus until now and suggests to re-examine the possibility th<strong>at</strong> the<br />

distribution of r<strong>et</strong>urns may be rapidly varying as suggested by Gouriéroux and Jasiak (1998) or Laherrère<br />

12


and Sorn<strong>et</strong>te (1999) for instance. We now turn to this question using the framework of GEV and GDP<br />

estim<strong>at</strong>ors just <strong>de</strong>scribed.<br />

3.5 GEV and GPD estim<strong>at</strong>ors of the Dow Jones and Nasdaq d<strong>at</strong>a s<strong>et</strong>s<br />

We have applied the same analysis as in the previous section on the real samples of the Dow Jones and<br />

Nasdaq (raw and corrected) r<strong>et</strong>urns. To this aim, we have randomly gener<strong>at</strong>ed one thousand sub-samples,<br />

each sub-sample being constituted of ten thousand d<strong>at</strong>a points in the positive or neg<strong>at</strong>ive parts of the samples<br />

respectively (without replacement). Obviously, among the one thousand sub-samples, many of them are<br />

inter<strong>de</strong>pen<strong>de</strong>nt as they contain parts of the same observed values. With this d<strong>at</strong>abase, we have estim<strong>at</strong>ed the<br />

mean value and standard <strong>de</strong>vi<strong>at</strong>ions of Pickands’ estim<strong>at</strong>or for the GPD <strong>de</strong>rived from the upper quantiles of<br />

these distributions, and of ML-estim<strong>at</strong>ors for the distribution of maximum and for the GPD. The results are<br />

given in tables 4 and 5.<br />

These results confirm the confusion about the tail behavior of the r<strong>et</strong>urns distributions and it seems impossible<br />

to exclu<strong>de</strong> a rapidly varying behavior of their tails. In<strong>de</strong>ed, even the estim<strong>at</strong>ions performed by Maximum<br />

Likelihood with the GPD tail in<strong>de</strong>x, which have appeared as the less unreliable estim<strong>at</strong>or in our previous<br />

tests, does not allow us to reject the hypothesis th<strong>at</strong> the tails of the empirical distributions of r<strong>et</strong>urns are<br />

rapidly varying.<br />

For the Nasdaq d<strong>at</strong>as<strong>et</strong>, accounting for the lunch effect does not yield a significant change in the estim<strong>at</strong>ions,<br />

except for a very strong increase of the standard vari<strong>at</strong>ion of the GPD Maximum Likelihood estim<strong>at</strong>or. This<br />

results from the fact th<strong>at</strong> extremes are no more domin<strong>at</strong>ed by the few largest realiz<strong>at</strong>ions of the r<strong>et</strong>urns <strong>at</strong><br />

the begining or the end of trading days. In<strong>de</strong>ed, panel (b) of table 4 shows th<strong>at</strong> the sample variance of the<br />

GPD maximum likelihood estim<strong>at</strong>e vanishes for quantile 99% and 99.5%. It is due to the important overlap<br />

of the sub-samples tog<strong>et</strong>her with the impact of the extreme realiz<strong>at</strong>ions of the r<strong>et</strong>urns <strong>at</strong> the open or close<br />

trading days. In panel (c), which corresponds to the Nasdaq d<strong>at</strong>a corrected for the lunch effect, the sample<br />

variance vanishes only in one case (instead of four), clearly showing th<strong>at</strong> extremes are less domin<strong>at</strong>ed by<br />

the large r<strong>et</strong>urns of the beginning and <strong>at</strong> the end of each day.<br />

As a last non-param<strong>et</strong>ric <strong>at</strong>tempt to distinguish b<strong>et</strong>ween a regularly varying tail and a rapidly varying tail<br />

of the exponential or Str<strong>et</strong>ched-Exponential families, we study the Mean Excess Function which is one of<br />

the known m<strong>et</strong>hods th<strong>at</strong> often can help in <strong>de</strong>ciding wh<strong>at</strong> param<strong>et</strong>ric family is appropri<strong>at</strong>e for approxim<strong>at</strong>ion<br />

(see for d<strong>et</strong>ails Embrechts <strong>et</strong> al. (1997)). The Mean Excess Function MEF(u) of a random value X (also<br />

called “shortfall” when applied to neg<strong>at</strong>ive r<strong>et</strong>urns in the context of financial risk management) is <strong>de</strong>fined as<br />

MEF(u) = E(X − u|X > u) . (19)<br />

The Mean Excess Function MEF(u) is obviously rel<strong>at</strong>ed to the GPD for sufficiently large threshold u and<br />

its behavior can be <strong>de</strong>rived in this limit for the three maximum domains of <strong>at</strong>traction. In addition, more<br />

precise results can be given for particular radom variables, even in a non-asymptotic regime. In<strong>de</strong>ed, for an<br />

exponential random variable X, the MEF(u) is just a constant. For a Par<strong>et</strong>o random variable, the MEF(u)<br />

is a straight increasing line, whereas for the Streched-Exponential and the Gauss distributions the MEF(u)<br />

is a <strong>de</strong>creasing function. We evalu<strong>at</strong>ed the sample analogues of the MEF(u) (Embrechts <strong>et</strong> al. 1997, p.296)<br />

which are shown in figure 4. All <strong>at</strong>tempts to find a constant or a linearly increasing behavior of the MEF(u)<br />

on the main central part of the range of r<strong>et</strong>urns were ineffective. In the central part of the range of neg<strong>at</strong>ive<br />

r<strong>et</strong>urns (|X| > 0.002; q ∼ = 98% for ND d<strong>at</strong>a, and |X| > 0.025 ; q ∼ = 96% for DJ d<strong>at</strong>a), the MEF(u) behaves<br />

like a convex function which exclu<strong>de</strong> both exponential and power (Par<strong>et</strong>o) distributions. Thus, the MEF(u)<br />

tool does not support using any of these two distributions.<br />

In view of the stalem<strong>at</strong>e reached with the above non-param<strong>et</strong>ric approaches and in particular with the stan-<br />

13<br />

77


78 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

dard extreme value estim<strong>at</strong>ors, the sequel of this paper is <strong>de</strong>voted to the investig<strong>at</strong>ion of a param<strong>et</strong>ric approach<br />

in or<strong>de</strong>r to <strong>de</strong>ci<strong>de</strong> which class of extreme value distributions, rapidly versus regularly varying, accounts<br />

best for the empirical distributions of r<strong>et</strong>urns.<br />

4 Fitting distributions of r<strong>et</strong>urns with param<strong>et</strong>ric <strong>de</strong>nsities<br />

Since our previous results lead to doubt the validity of the rejection of the hypothesis th<strong>at</strong> the distribution of<br />

r<strong>et</strong>urns are rapidly varying, we now propose to pit a param<strong>et</strong>ric champion for this class of functions against<br />

the Par<strong>et</strong>o champion of regularly varying functions. To represent the class of rapidly varying functions, we<br />

propose the family of Str<strong>et</strong>ched-Exponentials. As discussed in the introduction, the class of str<strong>et</strong>ched exponentials<br />

is motiv<strong>at</strong>ed in part from a theor<strong>et</strong>ical view point by the fact th<strong>at</strong> the large <strong>de</strong>vi<strong>at</strong>ions of multiplic<strong>at</strong>ive<br />

processes are generically distributed with str<strong>et</strong>ched exponential distributions (Frisch and Sorn<strong>et</strong>te 1997).<br />

Str<strong>et</strong>ched exponential distributions are also parsimonious examples of sub-exponential distributions with f<strong>at</strong><br />

tails for instance in the sense of the asymptotic probability weight of the maximum compared with the sum<br />

of large samples (Feller 1971). Notwithstanding their f<strong>at</strong>-tailness, Str<strong>et</strong>ched Exponential distributions have<br />

all their moments finite 6 , in constrast with regularly varying distributions for which moments of or<strong>de</strong>r equal<br />

to or larger than the in<strong>de</strong>x b are not <strong>de</strong>fined. This property may provi<strong>de</strong> a substantial advantage to exploit in<br />

generaliz<strong>at</strong>ions of the mean-variance portfolio theory using higher-or<strong>de</strong>r moments (Rubinstein 1973, Fang<br />

and Lai 1997, Hwang and S<strong>at</strong>chell 1999, Sorn<strong>et</strong>te <strong>et</strong> al. 2000, An<strong>de</strong>rsen and Sorn<strong>et</strong>te 2001, Jurczenko and<br />

Maill<strong>et</strong> 2002, Malevergne and Sorn<strong>et</strong>te 2002, for instance ). Moreover, the existence of all moments is<br />

an important property allowing for an efficient estim<strong>at</strong>ion of any high-or<strong>de</strong>r moment, since it ensures th<strong>at</strong><br />

the estim<strong>at</strong>ors are asymptotically Gaussian. In particular, for Str<strong>et</strong>ched-Exponentially distributed random<br />

variables, the variance, skewness and kurtosis can be well estim<strong>at</strong>ed, contrarily to random variables with<br />

regularly varying distribution with tail in<strong>de</strong>x in the range 3 − 5.<br />

4.1 Definition of a general 3-param<strong>et</strong>ers family of distributions<br />

We thus consi<strong>de</strong>r a general 3-param<strong>et</strong>ers family of distributions and its particular restrictions corresponding<br />

to some fixed value(s) of two (one) param<strong>et</strong>ers. This family is <strong>de</strong>fined by its <strong>de</strong>nsity function given by:<br />

<br />

A(b,c,d,u) x<br />

fu(x|b,c,d) =<br />

−(b+1) exp − <br />

x c<br />

d if x u > 0<br />

(20)<br />

0 if x < u.<br />

Here, b,c,d are unknown param<strong>et</strong>ers, u is a known lower threshold th<strong>at</strong> will be varied for the purposes of<br />

our analysis and A(b,c,d,u) is a normalizing constant given by the expression:<br />

A(b,c,d,u) =<br />

db c<br />

Γ(−b/c,(u/d) c , (21)<br />

)<br />

where Γ(a,x) <strong>de</strong>notes the (non-normalized) incompl<strong>et</strong>e Gamma function. The param<strong>et</strong>er b ranges from<br />

minus infinity to infinity while c and d range from zero to infinity. In the particular case where c = 0,<br />

the param<strong>et</strong>er b also needs to be positive to ensure the normaliz<strong>at</strong>ion of the probability <strong>de</strong>nsity function<br />

(pdf). The interval of <strong>de</strong>finition of this family is the positive semi-axis. Neg<strong>at</strong>ive log-r<strong>et</strong>urns will be studied<br />

by taking their absolute values. The family (20) inclu<strong>de</strong>s several well-known pdf’s often used in different<br />

applic<strong>at</strong>ions. We enumer<strong>at</strong>e them.<br />

6 However, they do not admit an exponential moment, which leads to problems in the reconstruction of the distribution from the<br />

knowledge of their moments (Stuart and Ord 1994).<br />

14


1. The Par<strong>et</strong>o distribution:<br />

79<br />

Fu(x) = 1 − (u/x) b , (22)<br />

which corresponds to the s<strong>et</strong> of param<strong>et</strong>ers (b > 0,c = 0) with A(b,c,d,u) = b·u b . Several works have<br />

<strong>at</strong>tempted to <strong>de</strong>rive or justified the existence of a power tail of the distribution of r<strong>et</strong>urns from agentbased<br />

mo<strong>de</strong>ls (Chall<strong>et</strong> and Marsili 2002), from optimal trading of large funds with sizes distributed<br />

according to the Zipf law (Gabaix <strong>et</strong> al. 2002) or from stochastic processes (Biham <strong>et</strong> al 1998, 2002).<br />

2. The Weibull distribution:<br />

<br />

Fu(x) = 1 − exp −<br />

<br />

x<br />

c +<br />

d<br />

<br />

u<br />

c , (23)<br />

d<br />

with param<strong>et</strong>er s<strong>et</strong> (b = −c,c > 0,d > 0) and normaliz<strong>at</strong>ion constant A(b,c,d,u) = c<br />

dc exp <br />

u c<br />

d .<br />

This distribution is said to be a “Str<strong>et</strong>ched-Exponential” distribution when the exponent c is smaller<br />

than 1, namely when the distribution <strong>de</strong>cays more slowly than an exponential distribution.<br />

3. The exponential distribution:<br />

<br />

Fu(x) = 1 − exp − x<br />

d<br />

u<br />

<br />

+ , (24)<br />

d<br />

with param<strong>et</strong>er s<strong>et</strong> (b = −1, c = 1, d > 0) and normaliz<strong>at</strong>ion constant A(b,c,d,u) = 1<br />

d exp− u<br />

<br />

d .<br />

The exponential family can for instance <strong>de</strong>rive from a simple mo<strong>de</strong>l where stock price dynamics is<br />

governed by a geom<strong>et</strong>rical (multiplic<strong>at</strong>ive) Brownian motion with stochastic variance. Dragulescu<br />

and Yakovenko (2002) have found an excellent fit of this mo<strong>de</strong>l with the Dow-Jones in<strong>de</strong>x for time<br />

lags from 1 to 250 trading days, within an asymptotic exponential tail of the distribution of log-r<strong>et</strong>urns<br />

with a time-<strong>de</strong>pen<strong>de</strong>nt exponent.<br />

4. The incompl<strong>et</strong>e Gamma distribution:<br />

Fu(x) = 1 − Γ(−b,x/d)<br />

Γ(−b,u/d)<br />

with param<strong>et</strong>er s<strong>et</strong> (b, c = 1, d > 0) and normaliz<strong>at</strong>ion A(b,c,d,u) =<br />

d b<br />

Γ(−b,u/d) .<br />

Thus, the Par<strong>et</strong>o distribution (PD) and exponential distribution (ED) are one-param<strong>et</strong>er families, whereas<br />

the str<strong>et</strong>ched exponential (SE) and the incompl<strong>et</strong>e Gamma distribution (IG) are two-param<strong>et</strong>er families. The<br />

comprehensive distribution (CD) given by equ<strong>at</strong>ion (20) contains three unknown param<strong>et</strong>ers.<br />

Interesting links b<strong>et</strong>ween these different mo<strong>de</strong>ls reveal themselves un<strong>de</strong>r specific asymptotic conditions.<br />

For instance, in the limit b → +∞, the Par<strong>et</strong>o mo<strong>de</strong>l becomes the Exponential mo<strong>de</strong>l (Bouchaud and Potters<br />

2000). In<strong>de</strong>ed, provi<strong>de</strong>d th<strong>at</strong> the scale param<strong>et</strong>er u of the power law is simultaneously scaled as u b = (b/α) b ,<br />

we can write the tail of the cumul<strong>at</strong>ive distribution function of the PD as u b /(u + x) b which is in<strong>de</strong>ed of the<br />

form u b /x b for large x. Then, u b /(u + x) b = (1 + αx/b) −b → exp(−αx) for b → +∞. This shows th<strong>at</strong> the<br />

Exponential mo<strong>de</strong>l can be approxim<strong>at</strong>ed with any <strong>de</strong>sired accuracy on an arbitrary interval (u > 0,U) by<br />

the (PD) mo<strong>de</strong>l with param<strong>et</strong>ers (β,u) s<strong>at</strong>isfying u b = (b/α) b . Although the value b → +∞ does not give<br />

strickly speaking a Exponential distribution, the limit b → +∞ provi<strong>de</strong>s any <strong>de</strong>sired approxim<strong>at</strong>ion to the<br />

Exponential distribution, uniformly on any finite interval (u,U).<br />

More interesting for our present study is the behavior of the (SE) mo<strong>de</strong>l when c → 0. In this limit, and<br />

provi<strong>de</strong>d th<strong>at</strong><br />

<br />

u<br />

c c · → β,<br />

d<br />

as c → 0 . (26)<br />

15<br />

(25)


80 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

the (SE) mo<strong>de</strong>l goes to the Par<strong>et</strong>o mo<strong>de</strong>l. In<strong>de</strong>ed, we can write<br />

c<br />

dc · xc−1 <br />

· exp − xc − uc dc <br />

<br />

u<br />

c = c ·<br />

d<br />

xc−1<br />

<br />

u<br />

c <br />

x<br />

c <br />

exp − · − 1 ,<br />

uc d u<br />

β · x −1 <br />

u<br />

c exp −c · ln<br />

d<br />

x<br />

<br />

, as c → 0<br />

u<br />

β · x −1 <br />

exp −β · ln x<br />

<br />

,<br />

u<br />

β uβ<br />

, (27)<br />

xβ+1 which is the pdf of the (PD) mo<strong>de</strong>l with tail in<strong>de</strong>x β. The condition (26) comes n<strong>at</strong>urally from the properties<br />

of the maximum-likelihood estim<strong>at</strong>or of the scale param<strong>et</strong>er d given by equ<strong>at</strong>ion (47) and un<strong>de</strong>rlined by<br />

equ<strong>at</strong>ion (90) in the appendices <strong>at</strong> the end of the paper. It implies th<strong>at</strong>, as c → 0, the characteristic scale d<br />

of the (SE) mo<strong>de</strong>l must also go to zero with c to ensure the convergence of the (SE) mo<strong>de</strong>l towards the (PD)<br />

mo<strong>de</strong>l.<br />

This shows th<strong>at</strong> the Par<strong>et</strong>o mo<strong>de</strong>l can be approxim<strong>at</strong>ed with any <strong>de</strong>sired accuracy on an arbitrary interval<br />

(u > 0,U) by the (SE) mo<strong>de</strong>l with paramters (c,d) s<strong>at</strong>isfying equ<strong>at</strong>ion (26) where the arrow is replaced by an<br />

equality. Although the value c = 0 does not give strickly speaking a Str<strong>et</strong>ched-Exponential distribution, the<br />

limit c → 0 provi<strong>de</strong>s any <strong>de</strong>sired approxim<strong>at</strong>ion to the Par<strong>et</strong>o distribution, uniformly on any finite interval<br />

(u,U). This <strong>de</strong>ep rel<strong>at</strong>ionship b<strong>et</strong>ween the SE and PD mo<strong>de</strong>ls allows us to un<strong>de</strong>rstand why it can be very<br />

difficult to <strong>de</strong>ci<strong>de</strong>, on a st<strong>at</strong>istical basis, which of these mo<strong>de</strong>ls fits the d<strong>at</strong>a best.<br />

4.2 M<strong>et</strong>hodology<br />

We start with fitting our two d<strong>at</strong>a s<strong>et</strong>s (DJ and ND) by the five distributions enumer<strong>at</strong>ed above (20) and (22-<br />

25). Our first goal is to show th<strong>at</strong> no single param<strong>et</strong>ric represent<strong>at</strong>ion among any of the cited pdf’s fits the<br />

whole range of the d<strong>at</strong>a s<strong>et</strong>s. Recall th<strong>at</strong> we analyze separ<strong>at</strong>ely positive and neg<strong>at</strong>ive r<strong>et</strong>urns (the l<strong>at</strong>er being<br />

converted to the positive semi-axis). We shall use in our analysis a movable lower threshold u, restricting by<br />

this threshold our sample to observ<strong>at</strong>ions s<strong>at</strong>isfying to x > u.<br />

In addition to estim<strong>at</strong>ing the param<strong>et</strong>ers involved in each represent<strong>at</strong>ion (20,22-25) by maximum likelihood<br />

for each particular threshold u 7 , we need a characteriz<strong>at</strong>ion of the goodness-of-fit. For this, we propose<br />

to use a distance measure b<strong>et</strong>ween the estim<strong>at</strong>ed distribution and the sample distribution. Many distances<br />

can be used: mean-squared error, Kullback-Liebler distance 8 , Kolmogorov distance, Spearman distance (as<br />

in Longin (1996)) or An<strong>de</strong>rson-Darling distance, to cite a few. We can also use one of these distances<br />

to d<strong>et</strong>ermine the param<strong>et</strong>ers of each pdf according to the criterion of minimizing the distance b<strong>et</strong>ween the<br />

estim<strong>at</strong>ed distribution and the sample distribution. The chosen distance is thus useful both for characterizing<br />

and for estim<strong>at</strong>ing the param<strong>et</strong>ric pdf. In the l<strong>at</strong>er case, once an estim<strong>at</strong>ion of the param<strong>et</strong>ers of particular<br />

distribution family has been obtained according to the selected distance, we need to quantify the st<strong>at</strong>istical<br />

significance of the fit. This requires to <strong>de</strong>rive the st<strong>at</strong>istics associ<strong>at</strong>ed with the chosen distance. These<br />

st<strong>at</strong>istics are known for most of the distances cited above, in the limit of large sample.<br />

We have chosen the An<strong>de</strong>rson-Darling distance to <strong>de</strong>rive our estim<strong>at</strong>ed param<strong>et</strong>ers and perform our tests<br />

of goodness of fit. The An<strong>de</strong>rson-Darling distance b<strong>et</strong>ween a theor<strong>et</strong>ical distribution function F(x) and its<br />

7 The estim<strong>at</strong>ors and their asymptotic properties are <strong>de</strong>rived in appendix A.<br />

8 This distance (or divergence, strictly speaking) is the n<strong>at</strong>ural distance associ<strong>at</strong>ed with maximum-likelihood estim<strong>at</strong>ion since<br />

it is for these values of the estim<strong>at</strong>ed param<strong>et</strong>ers th<strong>at</strong> the distance b<strong>et</strong>ween the true mo<strong>de</strong>l and the assumed mo<strong>de</strong>l reaches its<br />

minimum.<br />

16


empirical analog FN(x), estim<strong>at</strong>ed from<br />

· a sample of N realiz<strong>at</strong>ions, is evalu<strong>at</strong>ed as follows:<br />

[FN(x) − F(x)]<br />

ADS = N 2<br />

dF(x) (28)<br />

F(x)(1 − F(x))<br />

= −N − 2<br />

N<br />

∑<br />

1<br />

{wk log(F(yk)) + (1 − wk)log(1 − F(yk))}, (29)<br />

where wk = 2k/(2N + 1), k = 1...N and y1 ... yN is its or<strong>de</strong>red sample. If the sample is drawn<br />

from a popul<strong>at</strong>ion with distribution function F(x), the An<strong>de</strong>rson-Darling st<strong>at</strong>istics (ADS) has a standard<br />

AD-distribution free of the theor<strong>et</strong>ical df F(x) (An<strong>de</strong>rson and Darling 1952), similarly to the χ 2 for the<br />

χ 2 -st<strong>at</strong>istic, or the Kolmogorov distribution for the Kolmogorov st<strong>at</strong>istic. It should be noted th<strong>at</strong> the ADS<br />

weights the squared difference in eq.(28) by 1/F(x)(1 − F(x)) which is nothing but the inverse of the variance<br />

of the difference in square brack<strong>et</strong>s. The AD distance thus emphasizes more the tails of the distribution<br />

than, say, the Kolmogorov distance which is d<strong>et</strong>ermined by the maximum absolute <strong>de</strong>vi<strong>at</strong>ion of Fn(x) from<br />

F(x) or the mean-squared error, which is mostly controlled by the middle of range of the distribution. Since<br />

we have to insert the estim<strong>at</strong>ed param<strong>et</strong>ers into the ADS, this st<strong>at</strong>istic does not obey any more the standard<br />

AD-distribution: the ADS <strong>de</strong>creases because the use of the fitting param<strong>et</strong>ers ensures a b<strong>et</strong>ter fit to the sample<br />

distribution. However, we can still use the standard quantiles of the AD-distribution as upper boundaries<br />

of the ADS. If the observed ADS is larger than the standard quantile with a high significance level (1 − ε),<br />

we can then conclu<strong>de</strong> th<strong>at</strong> the null hypothesis F(x) is rejected with significance level larger than (1 − ε). If<br />

we wish to estim<strong>at</strong>e the real significance level of the ADS in the case where it does not exceed the standard<br />

quantile of a high significance level, we are forced to use some other m<strong>et</strong>hod of estim<strong>at</strong>ion of the significance<br />

level of the ADS, such as the bootstrap m<strong>et</strong>hod.<br />

In the following, the estim<strong>at</strong>es minimizing the An<strong>de</strong>rson-Darling distance will be refered to as AD-estim<strong>at</strong>es.<br />

The maximum likelihood estim<strong>at</strong>es (ML-estim<strong>at</strong>es) are asymptotically more efficient than AD-estim<strong>at</strong>es for<br />

in<strong>de</strong>pen<strong>de</strong>nt d<strong>at</strong>a and un<strong>de</strong>r the condition th<strong>at</strong> the null hypothesis (given by one of the four distributions (22-<br />

25), for instance) corresponds to the true d<strong>at</strong>a gener<strong>at</strong>ing mo<strong>de</strong>l. When this is not the case, the AD-estim<strong>at</strong>es<br />

provi<strong>de</strong> a b<strong>et</strong>ter practical tool for approxim<strong>at</strong>ing sample distributions compared with the ML-estim<strong>at</strong>es.<br />

We have d<strong>et</strong>ermined the AD-estim<strong>at</strong>es for 18 standard significance levels q1 ...q18 given in table 6. The<br />

corresponding sample quantiles corresponding to these significance levels or thresholds u1 ...u18 for our<br />

samples are also shown in table 6. Despite the fact th<strong>at</strong> thresholds uk vary from sample to sample, they<br />

always correspon<strong>de</strong>d to the same fixed s<strong>et</strong> of significance levels qk throughout the paper and allows us to<br />

compare the goodness-of-fit for samples of different sizes.<br />

4.3 Empirical results<br />

The An<strong>de</strong>rson-Darling st<strong>at</strong>istics (ADS) for five param<strong>et</strong>ric distributions (Weibull or Str<strong>et</strong>ched-Exponential,<br />

Generalized Par<strong>et</strong>o, Gamma, exponential and Par<strong>et</strong>o) are shown in table 7 for two quantile ranges, the first<br />

top half of the table corresponding to the 90% lowest thresholds while the second bottom half corresponds<br />

to the 10% highest ones. For the lowest thresholds, the ADS rejects all distributions, except the Str<strong>et</strong>ched-<br />

Exponential for the Nasdaq. Thus, none of the consi<strong>de</strong>red distributions is really a<strong>de</strong>qu<strong>at</strong>e to mo<strong>de</strong>l the d<strong>at</strong>a<br />

over such large ranges. For the 10% highest quantiles, only the exponential mo<strong>de</strong>l is rejected <strong>at</strong> the 95%<br />

confi<strong>de</strong>nce level. The Str<strong>et</strong>ched-Exponential distribution is the best, just before the Par<strong>et</strong>o distribution and<br />

the Incompl<strong>et</strong>e Gamma th<strong>at</strong> cannot be rejected. We now present an analysis of each case in more d<strong>et</strong>ails.<br />

17<br />

81


82 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

4.3.1 Par<strong>et</strong>o distribution<br />

Figure 5a shows the cumul<strong>at</strong>ive sample distribution function 1 − F(x) for the Dow Jones Industrial Average<br />

in<strong>de</strong>x, and in figure 5b the cumul<strong>at</strong>ive sample distribution function for the Nasdaq Composite in<strong>de</strong>x. The<br />

mism<strong>at</strong>ch b<strong>et</strong>ween the Par<strong>et</strong>o distribution and the d<strong>at</strong>a can be seen with the naked eye: if samples were<br />

taken from a Par<strong>et</strong>o popul<strong>at</strong>ion, the graph in double log-scale should be a straight line. Even in the tails,<br />

this is doubtful. To formalize this impression, we calcul<strong>at</strong>e the Hill and AD estim<strong>at</strong>ors for each threshold u.<br />

Denoting y1 ... ynu the or<strong>de</strong>red sub-sample of values exceeding u where Nu is size of this sub-sample,<br />

the Hill maximum likelihood estim<strong>at</strong>e of param<strong>et</strong>er b is (Hill 1975)<br />

<br />

1<br />

ˆbu =<br />

Nu<br />

The standard <strong>de</strong>vi<strong>at</strong>ions of ˆbu can be estim<strong>at</strong>ed as<br />

Nu<br />

∑ 1<br />

log(yk/u)<br />

−1<br />

. (30)<br />

Std(ˆbu) = ˆbu/ √ Nu, (31)<br />

un<strong>de</strong>r the assumption of iid d<strong>at</strong>a, but very severely un<strong>de</strong>restim<strong>at</strong>e the true standard <strong>de</strong>vi<strong>at</strong>ion when samples<br />

exhibit <strong>de</strong>pen<strong>de</strong>nce, as reported by Kearns and Pagan (1997).<br />

Figure 6a and 6b shows the Hill estim<strong>at</strong>es ˆbu as a function of u for the Dow Jones and for the Nasdaq.<br />

Instead of an approxim<strong>at</strong>ely constant exponent (as would be the case for true Par<strong>et</strong>o samples), the tail in<strong>de</strong>x<br />

estim<strong>at</strong>or increases until u ∼ = 0.04, beyond which it seems to slow its growth and oscill<strong>at</strong>es around a value<br />

≈ 3 − 4 up to the threshold u ∼ = .08. It should be noted th<strong>at</strong> interval [0,0.04] contains 99.12% of the sample<br />

whereas interval [0.04,0.08] contains only 0.64% of the sample. The behavior of ˆbu for the ND shown<br />

in figure 6b is similar: Hill’s estim<strong>at</strong>es ˆbu seem to slow its growth already <strong>at</strong> u ∼ = 0.0013 corresponding<br />

to the 95% quantile. Are these slowdowns of the growth of ˆbu genuine sign<strong>at</strong>ures of a possible constant<br />

well-<strong>de</strong>fined asymptotic value th<strong>at</strong> would qualify a regularly varying function?<br />

As a first answer to this question, table 8 compares the AD-estim<strong>at</strong>es of the tail exponent b with the corresponding<br />

maximum likelihood estim<strong>at</strong>es for the 18 intervals u1 ...u18. Both maximum likelihood and<br />

An<strong>de</strong>rson-Darling estim<strong>at</strong>es of b steadily increase with the threshold u (excepted for the highest quantiles<br />

of the positive tail of the Nasdaq). The corresponding figures for positive and neg<strong>at</strong>ive r<strong>et</strong>urns are very<br />

close each to other and almost never significantly different <strong>at</strong> the usual 95% confi<strong>de</strong>nce level. Some slight<br />

non-monotonicity of the increase for the highest thresholds can be explained by small sample sizes. One can<br />

observe th<strong>at</strong> both MLE and ADS estim<strong>at</strong>es continue increasing as the interval of estim<strong>at</strong>ion is contracting to<br />

the extreme values. It seems th<strong>at</strong> their growth potential has not been exhausted even for the largest quantile<br />

u18, except for the positive tail of the Nasdaq sample. This st<strong>at</strong>ement might be however not very strong<br />

as the standard <strong>de</strong>vi<strong>at</strong>ions of the tail in<strong>de</strong>x estim<strong>at</strong>or also grow when exploring the largest quantiles.<br />

However, the non-exhausted growth is observed for three samples out of four. Moreover, this effect is<br />

seen for several threshold values and we can add th<strong>at</strong> random fluctu<strong>at</strong>ions would distort the b-curve<br />

in a random manner, i.e, now up now down, whearas we note in three cases an increasing curve.<br />

Assuming th<strong>at</strong> the observ<strong>at</strong>ion, th<strong>at</strong> the sample distribution can be approxim<strong>at</strong>ed by a Par<strong>et</strong>o distribution<br />

with a growing in<strong>de</strong>x b, is correct, an important question arises: how far beyond the sample this growth will<br />

continue? Judging from table 8, we can think this growth is still not exhausted. Figure 7 suggests a specific<br />

form of this growth, by plotting the hill estim<strong>at</strong>or ˆbu for all four d<strong>at</strong>a s<strong>et</strong>s (positive and neg<strong>at</strong>ive branches<br />

of the distribution of r<strong>et</strong>urns for the DJ and for the ND) as a function of the in<strong>de</strong>x n = 1,...,18 of the 18<br />

quantiles or standard significance levels q1 ...q18 given in table 6. Similar results are obtained with the AD<br />

estim<strong>at</strong>es. Apart from the positive branch of the ND d<strong>at</strong>a s<strong>et</strong>, all other three branches suggest a continuous<br />

growth of the Hill estim<strong>at</strong>or ˆbu as a function of n = 1,...,18. Since the quantiles q1 ...q18 given in table 6<br />

18


have been chosen to converge to 1 approxim<strong>at</strong>ely exponentially as<br />

1 − qn = 3.08 e −0.342n , (32)<br />

the linear fit of ˆbu as a function of n shown as the dashed line in figure 7 corresponds to<br />

83<br />

ˆbu(qn) = 0.08 + 0.626ln 3.08<br />

. (33)<br />

1 − qn<br />

Expression (33) suggests an unbound logarithmic growth of ˆbu as the quantile approaches 1. For instance,<br />

for a quantile 1 −q = 0.1%, expression (33) predicts ˆbu(1 −q = 10 −3 ) = 5.1. For a quantile 1 −q = 0.01%,<br />

expression (33) predicts ˆbu(1 − q = 10 −4 ) = 6.5, and so on. Each time the quantile 1 − q is divi<strong>de</strong>d by<br />

a factor 10, the apparent exponent ˆbu(q) is increased by the additive constant ∼ = 1.45: ˆbu((1 − q)/10) =<br />

ˆbu(1 − q) + 1.45. This very slow growth uncovered here may be an explan<strong>at</strong>ion for the belief and possibly<br />

mistaken conclusion th<strong>at</strong> the Hill and other estim<strong>at</strong>ors of the tail in<strong>de</strong>x tends to a constant for high quantiles.<br />

In<strong>de</strong>ed, it is now clear th<strong>at</strong> the slowdowns of the growth of ˆbu seen in figures 6 <strong>de</strong>cor<strong>at</strong>ed by large fluctu<strong>at</strong>ions<br />

due to small size effects is mostly the result of a dil<strong>at</strong><strong>at</strong>ion of the d<strong>at</strong>a expressed in terms of threshold u.<br />

When recast in the more n<strong>at</strong>ural logarithm scale of the quantiles q1 ...q18, this slowdown disappears. Of<br />

course, it is impossible to know how long this growth given by (33) may go on as the quantile q tends to 1.<br />

In other words, how can we escape from the sample range when estim<strong>at</strong>ing quantiles? How can we estim<strong>at</strong>e<br />

the so-called “high quantiles” <strong>at</strong> the level q > 1 − 1/T where T is the total number of sampled points.<br />

Embrechts <strong>et</strong> al. (1997) have summarized the situ<strong>at</strong>ion in this way: “there is no free lunch when it comes to<br />

high quantiles estim<strong>at</strong>ion!” It is possible th<strong>at</strong> ˆbu(q) will grow without limit as would be the case if the true<br />

un<strong>de</strong>rlying distribution was rapidly varying. Altern<strong>at</strong>ively, ˆbu(q) may s<strong>at</strong>ur<strong>at</strong>e to a large value, as predicted<br />

for instance by the traditional GARCH mo<strong>de</strong>l which yields tails indices which can reach 10 − 20 (Engle<br />

and P<strong>at</strong>ton 2001, Starica and Pict<strong>et</strong> 1999) or by the recent multifractal random walk (MRW) mo<strong>de</strong>l which<br />

gives an asymptotic tail exponent in the range 20 − 50 (Muzy <strong>et</strong> al. 2000, Muzy <strong>et</strong> al. 2001). According to<br />

(33), a value ˆbu ≈ 20 (respectively 50) would be <strong>at</strong>tained for 1 − q ≈ 10 −13 (respectively 1 − q ≈ 10 −34 )! If<br />

one believes in the prediction of the MRW mo<strong>de</strong>l, the tail of the distribution of r<strong>et</strong>urns is regularly varying<br />

but this insight is compl<strong>et</strong>ely useless for all practical purposes due to the astronomically high st<strong>at</strong>istics th<strong>at</strong><br />

would be nee<strong>de</strong>d to sample this regime. In this context, we cannot hope to g<strong>et</strong> access to the true n<strong>at</strong>ure of the<br />

pdf of r<strong>et</strong>urns but only strive to <strong>de</strong>fine the best effective or apparent most parsimonious and robust mo<strong>de</strong>l.<br />

We do not discuss here the new class of estim<strong>at</strong>ion issues raised by the MRW mo<strong>de</strong>l, which is interesting in<br />

itself but requires a specific analysis of its own left for another work.<br />

The question of the exhaustion of the growth of the tail in<strong>de</strong>x is really crucial. In<strong>de</strong>ed, if it is unboun<strong>de</strong>dly<br />

increasing, it is the sign<strong>at</strong>ure th<strong>at</strong> the tails of the distributions of r<strong>et</strong>urns <strong>de</strong>cay faster than any power-law, and<br />

thus cannot be regularly varying. We revisit this question of the growth of the apparent exponent b, using<br />

the notion of local exponent, in Appendix C as an <strong>at</strong>tempt to b<strong>et</strong>ter constraint this growth. The analysis<br />

<strong>de</strong>veloped in this Appendix C basically confirms the first indic<strong>at</strong>ion shown in figure 7 .<br />

4.3.2 Weibull distributions<br />

L<strong>et</strong> us now fit our d<strong>at</strong>a with the Weibull (SE) distribution (23). The An<strong>de</strong>rson-Darling st<strong>at</strong>istics (ADS) for<br />

this case are shown in table 7. The ML-estim<strong>at</strong>es and AD-estim<strong>at</strong>es of the form param<strong>et</strong>er c are represented<br />

in table 9. Table 7 shows th<strong>at</strong>, for the higest quantiles, the ADS for the Str<strong>et</strong>ched-Exponential is the smallest<br />

of all ADS, suggesting th<strong>at</strong> the SE is the best mo<strong>de</strong>l of all. Moreover, for the lowest quantiles, it is the sole<br />

mo<strong>de</strong>l not system<strong>at</strong>ically rejected <strong>at</strong> the 95% level.<br />

The c-estim<strong>at</strong>es are found to <strong>de</strong>crease when increasing the or<strong>de</strong>r q of the threshold uq beyond which the<br />

estim<strong>at</strong>ions are performed. In addition, the c-estim<strong>at</strong>e is i<strong>de</strong>ntically zero for u18. However, this does not<br />

19


84 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

autom<strong>at</strong>ically imply th<strong>at</strong> the SE mo<strong>de</strong>l is not the correct mo<strong>de</strong>l for the d<strong>at</strong>a even for these highest quantiles.<br />

In<strong>de</strong>ed, numerical simul<strong>at</strong>ions show th<strong>at</strong>, even for synth<strong>et</strong>ic samples drawn from genuine Str<strong>et</strong>ched-<br />

Exponential distributions with exponent c smaller than 0.5 and whose size is comparable with th<strong>at</strong> of our<br />

d<strong>at</strong>a, in about one case out of three (<strong>de</strong>pending on the exact value of c) the estim<strong>at</strong>ed value of c is zero. This<br />

a priori surprising result comes from condition (51) in appendix A which is not fulfilled with certainty even<br />

for samples drawn for SE distributions.<br />

Notwithstanding this cautionary remark, note th<strong>at</strong> the c-estim<strong>at</strong>e of the positive tail of the Nasdaq d<strong>at</strong>a equal<br />

zero for all quantiles higher than q14 = 0.97%. In fact, in every cases, the estim<strong>at</strong>ed c is not significantly<br />

different from zero - <strong>at</strong> the 95% significance level - for quantiles higher than q12-q14. In addition, table 10<br />

gives the values of the estim<strong>at</strong>ed scale parem<strong>et</strong>er d, which are found very small - particularly for the Nasdaq<br />

- beyond q12 = 95%. In constrast, the Dow Jones keeps significant scale factors until q16 − q17.<br />

These evi<strong>de</strong>nces taken all tog<strong>et</strong>her provi<strong>de</strong> a clear indic<strong>at</strong>ion on the existence of a change of behavior of<br />

the true pdf of these four distributions: while the bulks of the distributions seem r<strong>at</strong>her well approxim<strong>at</strong>ed<br />

by a SE mo<strong>de</strong>l, a f<strong>at</strong>ter tailed distribution than th<strong>at</strong> of the (SE) mo<strong>de</strong>l is required for the highest quantiles.<br />

Actually, the fact th<strong>at</strong> both c and d are extremely small may be interpr<strong>et</strong>ed according to the asymptotic<br />

correspon<strong>de</strong>nce given by (26) and (27) as the existence of a possible power law tail.<br />

4.3.3 Exponential and incompl<strong>et</strong> Gamma distribution<br />

L<strong>et</strong> us now fit our d<strong>at</strong>a with the exponential distribution (24). The average ADS for this case are shown in<br />

table 7. The maximum likelihood- and An<strong>de</strong>rson-Darling estim<strong>at</strong>es of the scale param<strong>et</strong>er d are given in<br />

table 11. Note th<strong>at</strong> they always <strong>de</strong>crease as the threshold uq increases. Comparing the mean ADS-values<br />

of table 7 with the standard AD quantiles, we can conclu<strong>de</strong> th<strong>at</strong>, on the whole, the exponential distribution<br />

(even with moving scale param<strong>et</strong>er d) does not fit our d<strong>at</strong>a: this mo<strong>de</strong>l is system<strong>at</strong>ically rejected <strong>at</strong> the 95%<br />

confi<strong>de</strong>nce level for the lowest and highest quantiles - excepted for the neg<strong>at</strong>ive tail of the Nasdaq.<br />

Finally, we fit our d<strong>at</strong>a by the IG-distribution (25). The mean ADS for this class of functions are shown in<br />

table 7. The Maximum likelihood and An<strong>de</strong>rson Darling estim<strong>at</strong>es of the power in<strong>de</strong>x b are represented in<br />

table 12. Comparing the mean ADS-values of table 7 with the standard AD quantiles, we can again conclu<strong>de</strong><br />

th<strong>at</strong>, on the whole, the IG-distribution does not fit our d<strong>at</strong>a. The mo<strong>de</strong>l is rejected <strong>at</strong> the 95% confi<strong>de</strong>nce<br />

level excepted for the neg<strong>at</strong>ive tail of the Nasdaq for which it is not rejected marginally (significance level:<br />

94.13%). However, for the largest quantiles, this mo<strong>de</strong>l becomes again revelant since it cannot be rejected<br />

<strong>at</strong> the 95% level.<br />

4.4 Summary<br />

At this stage, two conclusions can be drawn. First, it appears th<strong>at</strong> none of the consi<strong>de</strong>red distributions fit the<br />

d<strong>at</strong>a over the entire range, which is not a surprise. Second, for the highest quantiles, three mo<strong>de</strong>ls seem to<br />

be able to represent to d<strong>at</strong>a, the Gamma mo<strong>de</strong>l, the Par<strong>et</strong>o mo<strong>de</strong>l and the Str<strong>et</strong>ched-Exponential mo<strong>de</strong>l. This<br />

last one has the lowest An<strong>de</strong>rson-Darling st<strong>at</strong>istic and thus seems to be the most reasonable mo<strong>de</strong>l among<br />

the three mo<strong>de</strong>ls comp<strong>at</strong>ible with the d<strong>at</strong>a.<br />

20


5 Comparison of the <strong>de</strong>scriptive power of the different families<br />

As we have seen by comparing the An<strong>de</strong>rson-Darling st<strong>at</strong>istics corresponding to the four param<strong>et</strong>ric families<br />

(22-25), the best mo<strong>de</strong>l in the sense of minimizing the An<strong>de</strong>rson-Darling distance is the Str<strong>et</strong>ched-<br />

Exponential distribution.<br />

We now compare these four distributions with the comprehensive distribution (20) using Wilks’ theorem<br />

(Wilks 1938) of nested hypotheses to check wh<strong>et</strong>her or not some of the four distributions are sufficient<br />

compared with the comprehensive distribution to <strong>de</strong>scribe the d<strong>at</strong>a. We then turn to the Wald encompassing<br />

test for non-nested hypotheses which provi<strong>de</strong>s a pairwise comparison of the different mo<strong>de</strong>ls.<br />

5.1 Comparison b<strong>et</strong>ween the four param<strong>et</strong>ric families and the comprehensive distribution<br />

According to Wilk’s theorem, the doubled generalized log-likelihood r<strong>at</strong>io Λ:<br />

85<br />

Λ = 2 log maxL(CD,X,Θ)<br />

, (34)<br />

maxL(z,X,θ)<br />

has asymptotically (as the size N of the sample X tends to infinity) the χ 2 -distribution. Here L <strong>de</strong>notes the<br />

likelihood function, θ and Θ are param<strong>et</strong>ric spaces corresponding to hypotheses z and CD correspondingly<br />

(hypothesis z is one of the four hypotheses (22-25) th<strong>at</strong> are particular cases of the CD un<strong>de</strong>r some param<strong>et</strong>er<br />

rel<strong>at</strong>ions). The st<strong>at</strong>ement of the theorem is valid un<strong>de</strong>r the condition th<strong>at</strong> the sample X obeys hypothesis z<br />

for some particular value of its param<strong>et</strong>er belonging to the space θ. The number of <strong>de</strong>grees of freedom of<br />

the χ 2 -distribution equals to the difference of the dimensions of the two spaces Θ and θ. Since dim(Θ) = 3<br />

and dim(θ) = 2 for the Str<strong>et</strong>ched-Exponential and Incompl<strong>et</strong> Gamma distributions; dim(θ) = 1 for the<br />

Par<strong>et</strong>o and the Exponential distributions, we have one <strong>de</strong>gree of freedom for the formers and two <strong>de</strong>grees of<br />

freedom for the l<strong>at</strong>ers. The maximum of the likelihood in the numer<strong>at</strong>or of (34) is taken over the space Θ,<br />

whereas the maximum of the likelihood in the <strong>de</strong>nomin<strong>at</strong>or of (34) is taken over the space θ. Since we have<br />

always θ ⊂ Θ, the likelihood r<strong>at</strong>io is always larger than 1, and the log-likelihood r<strong>at</strong>io is non-neg<strong>at</strong>ive. If the<br />

observed value of Λ does not exceed some high-confi<strong>de</strong>nce level (say, 99% confi<strong>de</strong>nce level) of the χ 2 , we<br />

then reject the hypothesis CD in favour of the hypothesis z, consi<strong>de</strong>ring the space Θ redundant. Otherwise,<br />

we accept the hypothesis CD, consi<strong>de</strong>ring the space θ insufficient.<br />

The doubled log-likelihood r<strong>at</strong>ios (34) are shown in figures 8 for the positive and neg<strong>at</strong>ive branches of the<br />

distribution of r<strong>et</strong>urns of the Nasdaq and in figures 9 for the Dow Jones. The 95% χ 2 confi<strong>de</strong>nce levels for<br />

1 and 2 <strong>de</strong>grees of freedom are given by the horizontal lines.<br />

For the Nasdaq d<strong>at</strong>a, figure 8 clearly shows th<strong>at</strong> Exponential distribution is compl<strong>et</strong>ely insufficient: for all<br />

lower thresholds, the Wilks log-likelihood r<strong>at</strong>io exceeds the 95% χ2 1 level 3.84. The Par<strong>et</strong>o distribution is<br />

insufficient for thresholds u1 − u11 (92.5% of the or<strong>de</strong>red sample) and becomes comparable with the Comprehensive<br />

distribution in the tail u12 − u18 (7.5% of the tail probability). It is n<strong>at</strong>ural th<strong>at</strong> two-param<strong>et</strong>ric<br />

families Incompl<strong>et</strong>e Gamma and Str<strong>et</strong>ched-Exponential have higher goodness-of-fit than the one-param<strong>et</strong>ric<br />

Exponential and Par<strong>et</strong>o distributions. The Incompl<strong>et</strong>e Gamma distribution is comparable with the Comprehensive<br />

distribution starting with u10 (90%), whereas the Str<strong>et</strong>ched-Exponential is somewh<strong>at</strong> b<strong>et</strong>ter (u9 or<br />

u8 , i.e., 70%). For the tails representing 7.5% of the d<strong>at</strong>a, all param<strong>et</strong>ric families except for the Exponential<br />

distribution fit the sample distribution with almost the same efficiency. The results obtained for the Dow<br />

Jones d<strong>at</strong>a shown in figure 9 are similar. The Str<strong>et</strong>ched-Exponential is comparable with the Comprehensive<br />

distribution starting with u8 (70%). On the whole, one can say th<strong>at</strong> the Str<strong>et</strong>ched-Exponential distribution<br />

performs b<strong>et</strong>ter than the three other param<strong>et</strong>ric families.<br />

21


86 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

We should stress th<strong>at</strong> each log-likelihood r<strong>at</strong>io represented in figures 8 and 9, so-to say “acts on its own<br />

ground,” th<strong>at</strong> is, the corresponding χ 2 -distribution is valid un<strong>de</strong>r the assumption of the validity of each<br />

particular hypothesis whose likelihood stands in the numer<strong>at</strong>or of the double log-likelihood (34). It would<br />

be <strong>de</strong>sirable to compare all combin<strong>at</strong>ions of pairs of hypotheses directly, in addition to comparing each<br />

of them with the comprehensive distribution. Unfortun<strong>at</strong>ely, the Wilks theorem can not be used in the<br />

case of pair-wise comparison because the problem is not more th<strong>at</strong> of comparing nested hypothesis (th<strong>at</strong><br />

is, one hypothesis is a particular case of the comprehensive mo<strong>de</strong>l). As a consequence, our results on the<br />

comparison of the rel<strong>at</strong>ive merits of each of the four distributions using the generalized log-likelihood r<strong>at</strong>io<br />

should be interpr<strong>et</strong>ed with a care, in particular, in a case of contradictory conclusions. Fortun<strong>at</strong>ely, the main<br />

conclusion of the comparison (an advantage of the Str<strong>et</strong>ched-Exponential distribution over the three other<br />

distribution) does not contradict our earlier results discussed above.<br />

5.2 Pair-wise comparison of the Par<strong>et</strong>o mo<strong>de</strong>l with the Str<strong>et</strong>ched-Exponential mo<strong>de</strong>l<br />

In or<strong>de</strong>r to compare formally the <strong>de</strong>scriptive power of the Str<strong>et</strong>ched-Exponential distribution (the best twoparam<strong>et</strong>ers<br />

ditribution) with th<strong>at</strong> of the Par<strong>et</strong>o distribution (the best one-param<strong>et</strong>er distribution), we need to<br />

use the m<strong>et</strong>hods for testing non-nested hypotheses. There are in fact many ways to perform such a test (see<br />

Gouriéroux and Monfort (1994) for a review). Concerning the log-likelihood r<strong>at</strong>io test used in the previous<br />

section for nested-hypotheses testing, a direct generaliz<strong>at</strong>ion for non-nested hypotheses has been provi<strong>de</strong>d<br />

by Cox’s test (1961, 1962). However, such a test requires th<strong>at</strong> the true distribution of the sample be nested in<br />

one of the two consi<strong>de</strong>red mo<strong>de</strong>ls. Our previous investig<strong>at</strong>ions have shown th<strong>at</strong> it is not the case, so we need<br />

to use another testing procedure. In<strong>de</strong>ed, when comparing the Par<strong>et</strong>o mo<strong>de</strong>l with the Str<strong>et</strong>ched-Exponential<br />

mo<strong>de</strong>l, we have found th<strong>at</strong> using the m<strong>et</strong>hodology of non-nested hypothesis leads to inconsistencies such<br />

as neg<strong>at</strong>ive variances of estim<strong>at</strong>ors. This is another (indirect) confirm<strong>at</strong>ion th<strong>at</strong> neither the Par<strong>et</strong>o nor the<br />

Str<strong>et</strong>ched-Exponential distributions are the true distribution.<br />

In the case where none of the tested hypotheses contain the true distribution, it can be useful to consi<strong>de</strong>r the<br />

encompassing principle introduced by Mizon and Richard (1986). A mo<strong>de</strong>l, (SE) say, is said to encompass<br />

another mo<strong>de</strong>l, (PD) for instance, if the represent<strong>at</strong>ive of (PD), which is the closest to the best represent<strong>at</strong>ive<br />

of (SE), is also the best represent<strong>at</strong>ive of (PD) per se. Here, the best represent<strong>at</strong>ive of a mo<strong>de</strong>l is the<br />

distribution which is the nearest to the true distribution for the consi<strong>de</strong>red mo<strong>de</strong>l. The d<strong>et</strong>ailled testing<br />

procedure is based on the Wald and Score encompassing tests (Gouriéroux and Monfort 1994), which are<br />

d<strong>et</strong>ailed in appendix D.<br />

Table 13 presents the results of the tests for the null hypothesis “(SE) encompasses (PD)”. In every cases,<br />

the null hypothesis cannot be rejected <strong>at</strong> the 95% significance level for quantiles higher than q6 = 0.5 and <strong>at</strong><br />

the 99% significance level for quantiles higher than q10 = 0.9. The unfilled entries for the largest quantiles<br />

correspond to MLE giving c → 0. In this case, as shown in Appendix D.1.2, b † has a non-trivial and well<strong>de</strong>fined<br />

limit which is nothing but the true value ˆb. Thus, the Wald tests is autom<strong>at</strong>ically verified <strong>at</strong> any<br />

confi<strong>de</strong>nce levels. Thus, in the tail, the Str<strong>et</strong>ched-Eponential mo<strong>de</strong>l encompasses the Par<strong>et</strong>o mo<strong>de</strong>l. We can<br />

then conclu<strong>de</strong> th<strong>at</strong> it provi<strong>de</strong>s a <strong>de</strong>scription of the d<strong>at</strong>a which is <strong>at</strong> least as good as th<strong>at</strong> given by the l<strong>at</strong>er.<br />

In or<strong>de</strong>r to test wh<strong>et</strong>her the (SE) mo<strong>de</strong>l is superior to the Par<strong>et</strong>o mo<strong>de</strong>l, we should perform the reverse<br />

test, namely the encompassing of the former mo<strong>de</strong>l into the l<strong>at</strong>er. This task is difficult since the pseudotrue<br />

values of the param<strong>et</strong>ers (c,d) are not always well-<strong>de</strong>fined as exposed in appendix D. Thus, Wald<br />

encompassing test cannot be performed as in the previous case. As a remedy and altern<strong>at</strong>ive, we propose<br />

a test of the null hypothesis H0 th<strong>at</strong> the Par<strong>et</strong>o distribution is the true un<strong>de</strong>rlying distribution. This test is<br />

22


ased on the fact th<strong>at</strong> the quantity<br />

ˆηT = ĉ<br />

<br />

ĉ<br />

u<br />

+ 1<br />

dˆ<br />

goes to b un<strong>de</strong>r the null hypothesis, wh<strong>at</strong>ever c being positive or neg<strong>at</strong>ive. This can be seen from the<br />

asymptotic correspon<strong>de</strong>nce given by (26) and (27). Moreover, it is proved in appendix D th<strong>at</strong> the variable<br />

<br />

ˆηT<br />

ζT = T − 1 , (36)<br />

ˆb<br />

asymptoticaly follows a χ 2 -distribution with one <strong>de</strong>gree of freedom.<br />

The results of this test are given in table 14. They show th<strong>at</strong> H0 is more often rejected for the Dow Jones<br />

than for the Nasdaq. In<strong>de</strong>ed, beyond quantile q12 = 95%, H0 cannot be rejected <strong>at</strong> the 95% confi<strong>de</strong>nce level<br />

for the Nasdaq d<strong>at</strong>a. For the Dow Jones, we must consi<strong>de</strong>r quantiles higher than q18 = 99% in or<strong>de</strong>r not to<br />

reject H0 <strong>at</strong> the 95% significance level. These results are in agreement with the central limit theorem: the<br />

power-law regime (if it really exists) is pushed back to higher quantiles due to time agreg<strong>at</strong>ion (recall th<strong>at</strong><br />

our Dow Jones d<strong>at</strong>a is <strong>at</strong> the daily scale while our Nasdaq d<strong>at</strong>a is <strong>at</strong> the 5 minutes time scale).<br />

In summary, the (SE) mo<strong>de</strong>l encompasses the Par<strong>et</strong>o mo<strong>de</strong>l as soon as one consi<strong>de</strong>rs quantiles higher than<br />

q6 = 50%. On the other hand, the null hypothesis th<strong>at</strong> the true distribution is the Par<strong>et</strong>o distribution is<br />

strongly rejected until quantiles 90% − 95% or so. Thus, within this range, the (SE) mo<strong>de</strong>l seems the best.<br />

But, for the very highest quantiles (above 95% − 98%) we cannot any more reject the hypothesis th<strong>at</strong> the<br />

Par<strong>et</strong>o mo<strong>de</strong>l is the right one. Thus, for these extreme quantiles, this last mo<strong>de</strong>l seems to slightly outperform<br />

the (SE) mo<strong>de</strong>l.<br />

However, recall th<strong>at</strong> section 4.1 has shown th<strong>at</strong> the Par<strong>et</strong>o mo<strong>de</strong>l is r<strong>et</strong>rieved as a limiting case of the (SE)<br />

mo<strong>de</strong>l when the fractional exponent c and the scale factor d go to zero <strong>at</strong> an appropri<strong>at</strong>ed r<strong>at</strong>e. Thus, all the<br />

results above are comp<strong>at</strong>ible with the (SE) mo<strong>de</strong>l in a generalized version. In<strong>de</strong>ed, <strong>de</strong>fining a generalized<br />

Str<strong>et</strong>ched-Exponential mo<strong>de</strong>l as<br />

<br />

¯Fu(x) = exp − xc−uc dc <br />

, c > 0<br />

¯Fu(x) = <br />

u b<br />

x , c = 0 and b = limc→0 c <br />

u c (37)<br />

d = b,<br />

our tests show the relevance of this represent<strong>at</strong>ion and its superiority over all the mo<strong>de</strong>ls consi<strong>de</strong>red here.<br />

In<strong>de</strong>ed, we have shown th<strong>at</strong> it is the best (i.e, the most parcimonious) represent<strong>at</strong>ion of the d<strong>at</strong>a for all<br />

quantiles above q9 = 80%.<br />

6 Discussion and Conclusions<br />

We have presented a st<strong>at</strong>istical analysis of the tail behavior of the distributions of the daily log-r<strong>et</strong>urns of<br />

the Dow Jones Industrial Average and of the 5-minutes log-r<strong>et</strong>urns of the Nasdaq Composite in<strong>de</strong>x. We<br />

have emphasized practical aspects of the applic<strong>at</strong>ion of st<strong>at</strong>istical m<strong>et</strong>hods to this problem. Although the<br />

applic<strong>at</strong>ion of st<strong>at</strong>istical m<strong>et</strong>hods to the study of empirical distributions of r<strong>et</strong>urns seems to be an obvious<br />

approach, it is necessary to keep in mind the existence of necessary conditions th<strong>at</strong> the empirical d<strong>at</strong>a must<br />

obey for the conclusions of the st<strong>at</strong>istical study to be valid. Maybe the most important condition in or<strong>de</strong>r to<br />

speak meaningfully about distribution functions is the st<strong>at</strong>ionarity of the d<strong>at</strong>a, a difficult issue th<strong>at</strong> we have<br />

not consi<strong>de</strong>red here. In particular, the importance of regime switching is now well established (Ramcham<br />

and Susmel 1998, Ang and Bekeart 2001) and should be accounted for.<br />

23<br />

87<br />

(35)


88 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Our purpose here has been to revisit a generally accepted fact th<strong>at</strong> the tails of the distributions of r<strong>et</strong>urns<br />

present a power-like behavior. Although there are some disagreements concerning the exact value of the<br />

power indices (the majority of previous workers accepts in<strong>de</strong>x values b<strong>et</strong>ween 3 and 3.5, <strong>de</strong>pending on the<br />

particular ass<strong>et</strong> and the investig<strong>at</strong>ed time interval), the power-like character of the tails of distributions of<br />

r<strong>et</strong>urns is not subjected to doubts. Often, the conviction of the existence of a power-like tail is based on<br />

the Gne<strong>de</strong>nko theorem st<strong>at</strong>ing the existence of only three possible types of limit distributions of normalized<br />

maxima (a finite maximum value, an exponential tail, and a power-like tail) tog<strong>et</strong>her with the exclusion of<br />

the first two types by experimental evi<strong>de</strong>nce. The power-like character of the log-r<strong>et</strong>urn tail ¯F(x) follows<br />

then simply from the power-like distribution of maxima. However, in this chain of arguments, the conditions<br />

nee<strong>de</strong>d for the fulfillment of the corresponding m<strong>at</strong>hem<strong>at</strong>ical theorems are often omitted and not discussed<br />

properly. In addition, wi<strong>de</strong>ly used arguments in favor of power law tails invoke the self-similarity of the d<strong>at</strong>a<br />

but are often assumptions r<strong>at</strong>her than experimental evi<strong>de</strong>nce or consequences of economic and financial<br />

laws.<br />

Here, we have shown th<strong>at</strong> standard st<strong>at</strong>istical estim<strong>at</strong>ors of heavy tails are much less efficient th<strong>at</strong> often<br />

assumed and cannot in general clearly distinguish b<strong>et</strong>ween a power law tail and a Str<strong>et</strong>ched Exponential<br />

tail even in the absence of long-range <strong>de</strong>pen<strong>de</strong>nce in the vol<strong>at</strong>ility. In fact, this can be r<strong>at</strong>ionalized by our<br />

discovery th<strong>at</strong>, in a certain limit where the exponent c of the str<strong>et</strong>ched exponential pdf goes to zero (tog<strong>et</strong>her<br />

with condition (26) as seen in the <strong>de</strong>riv<strong>at</strong>ion (27)), the str<strong>et</strong>ched exponential pdf tends to the Par<strong>et</strong>o distribution.<br />

Thus, the Par<strong>et</strong>o (or power law) distribution can be approxim<strong>at</strong>ed with any <strong>de</strong>sired accuracy on an<br />

arbitrary interval by a suitable adjustment of the pair (c,d) of the param<strong>et</strong>ers of the str<strong>et</strong>ched exponential<br />

pdf. We have then turned to param<strong>et</strong>ric tests which indic<strong>at</strong>e th<strong>at</strong> the class of Str<strong>et</strong>ched Exponential distribution<br />

provi<strong>de</strong>s a significantly b<strong>et</strong>ter fit to empirical r<strong>et</strong>urns than the Par<strong>et</strong>o, the exponential or the incompl<strong>et</strong>e<br />

Gamma distributions. All our tests are consistent with the conclusion th<strong>at</strong> the Str<strong>et</strong>ched Exponential mo<strong>de</strong>l<br />

provi<strong>de</strong>s the best effective apparent and parsimonious mo<strong>de</strong>l to account for the empirical d<strong>at</strong>a.<br />

However, this does not mean th<strong>at</strong> the str<strong>et</strong>ched exponential (SE) mo<strong>de</strong>l is the correct <strong>de</strong>scription of the tails<br />

of empirical distributions of r<strong>et</strong>urns. Again, as already mentioned, the strength of the SE mo<strong>de</strong>l comes<br />

from the fact th<strong>at</strong> it encompasses the Par<strong>et</strong>o mo<strong>de</strong>l in the tail and offers a b<strong>et</strong>ter <strong>de</strong>scription in the bulk of<br />

the distribution. To see where the problem arises, we report in table 6 our best ML-estim<strong>at</strong>es for the SE<br />

param<strong>et</strong>ers c (form param<strong>et</strong>er) and d (scale param<strong>et</strong>er) restricted to the quantile level q12 = 95%, which<br />

offers a good compromise b<strong>et</strong>ween a sufficiently large sample size and a restricted tail range leading to an<br />

accur<strong>at</strong>e approxim<strong>at</strong>ion in this range.<br />

Sample c d<br />

ND positive r<strong>et</strong>urns 0.039 (0.138) 4.54 · 10 −52 (2.17· 10 −49 )<br />

ND neg<strong>at</strong>ive r<strong>et</strong>urns 0.273 (0.155) 1.90 · 10 −7 (1.38· 10 −6 )<br />

DJ positive r<strong>et</strong>urns 0.274 (0.111) 4.81 · 10 −6 (2.49· 10 −5 )<br />

DJ neg<strong>at</strong>ive r<strong>et</strong>urns 0.362 (0.119) 1.02 · 10 −4 (2.87· 10 −4 )<br />

One can see th<strong>at</strong> c is very small (and all the more so for the scale param<strong>et</strong>er d) for the tail of positive r<strong>et</strong>urns<br />

of the Nasdaq d<strong>at</strong>a suggesting a convergence to a power law tail. The exponents c for the three other tails<br />

are an or<strong>de</strong>r of magnitu<strong>de</strong> larger but our tests show th<strong>at</strong> they are not incomp<strong>at</strong>ible with an asymptotic power<br />

tail either.<br />

Note also th<strong>at</strong> the exponents c seem larger for the daily DJ d<strong>at</strong>a than for the 5-minutes ND d<strong>at</strong>a, in agreement<br />

with an expected (slow) convergence to the Gaussian law according to the central limit theory (see Sorn<strong>et</strong>te<br />

<strong>et</strong> al. (2000) and figures 3.6-3.8 pp. 68 of Sorn<strong>et</strong>te (2000) where it is shown th<strong>at</strong> SE distributions are<br />

approxim<strong>at</strong>ely stable in family and the effect of aggreg<strong>at</strong>ion can be seen to slowly increase the exponent c).<br />

However, a t-test does not allow us to reject the hypotheses th<strong>at</strong> the exponents c remains the same for a given<br />

24


tail (positive or neg<strong>at</strong>ive) of the Dow Jones d<strong>at</strong>a. Thus, we confirm previous results (Lux 1996, Jon<strong>de</strong>au and<br />

Rockinger 2001, for instance) according to which the extreme tails can be consi<strong>de</strong>red as symm<strong>et</strong>ric, <strong>at</strong> least<br />

for the Dow Jones d<strong>at</strong>a.<br />

These are the evi<strong>de</strong>nce in favor of the existence of an asymptotic power law tail. Balancing this, many<br />

of our tests have shown th<strong>at</strong> the power law mo<strong>de</strong>l is not as powerful compared with the SE mo<strong>de</strong>l, even<br />

arbitrarily far in the tail (as far as the available d<strong>at</strong>a allows us to probe). In addition, our <strong>at</strong>tempts for a<br />

direct estim<strong>at</strong>ion of the exponent b of a possible power law tail has failed to confirm the existence of a<br />

well-converged asymptotic value (except maybe for the positive tail of the Nasdaq). In constrast, we have<br />

found th<strong>at</strong> the exponent b of the power law mo<strong>de</strong>l system<strong>at</strong>ically increases when going <strong>de</strong>eper and <strong>de</strong>eper<br />

in the tails, with no visible sign of exhausting this growth. We have proposed tent<strong>at</strong>ive param<strong>et</strong>eriz<strong>at</strong>ion of<br />

this growth of the apparent power law exponent. We note again th<strong>at</strong> this behavior is expected from mo<strong>de</strong>ls<br />

such as the GARCH or the Multifractal Random Walk mo<strong>de</strong>ls which predict asymptotic power law tails but<br />

with exponents of the or<strong>de</strong>r of 20 or larger, th<strong>at</strong> would be sampled <strong>at</strong> un<strong>at</strong>tainable quantiles.<br />

Attempting to wrap up the different results obtained by the b<strong>at</strong>tery of tests presented here, we can offer<br />

the following conserv<strong>at</strong>ive conclusion: it seems th<strong>at</strong> the four tails examined here are <strong>de</strong>caying faster than<br />

any (reasonable) power law but slower than any str<strong>et</strong>ched exponentials. Maybe log-normal or log-Weibull<br />

distributions could offer a b<strong>et</strong>ter effective <strong>de</strong>scription of the distribution of r<strong>et</strong>urns 9 . Such a mo<strong>de</strong>l has<br />

already been suggested by (Serva <strong>et</strong> al. 2002).<br />

The correct <strong>de</strong>scription of the distribution of r<strong>et</strong>urns has important implic<strong>at</strong>ions for the assessment of large<br />

risks not y<strong>et</strong> sampled by historical time series. In<strong>de</strong>ed, the whole purpose of a characteriz<strong>at</strong>ion of the functional<br />

form of the distribution of r<strong>et</strong>urns is to extrapol<strong>at</strong>e currently available historical time series beyond<br />

the range provi<strong>de</strong>d by the empirical reconstruction of the distributions. For risk management, the d<strong>et</strong>ermin<strong>at</strong>ion<br />

of the tail of the distribution is crucial. In<strong>de</strong>ed, many risk measures, such as the Value-<strong>at</strong>-Risk<br />

or the Expected-Shartfall, are based on the properties of the tail of the distributions of r<strong>et</strong>urns. In or<strong>de</strong>r to<br />

assess risk <strong>at</strong> probability levels of 95% or more, non-param<strong>et</strong>ric m<strong>et</strong>hods have merits. However, in or<strong>de</strong>r to<br />

estim<strong>at</strong>e risks <strong>at</strong> high probability level such as 99% or larger, non-param<strong>et</strong>ric estim<strong>at</strong>ions fail by lack of d<strong>at</strong>a<br />

and param<strong>et</strong>ric mo<strong>de</strong>ls become unavoidable. This shift in str<strong>at</strong>egy has a cost and replaces sampling errors<br />

by mo<strong>de</strong>l errors. The consi<strong>de</strong>red distribution can be too thin-tailed as when using normal laws, and risk will<br />

be un<strong>de</strong>restim<strong>at</strong>ed, or it is too f<strong>at</strong>-tailed and risk will be over estim<strong>at</strong>ed as with Lévy law and possibly with<br />

Par<strong>et</strong>o tails according to the present study. In each case, large amounts of money are <strong>at</strong> stake and can be lost<br />

due to a too conserv<strong>at</strong>ive or too optimistic risk measurement.<br />

Our present study suggests th<strong>at</strong> the Par<strong>et</strong>ian paradigm leads to an overestim<strong>at</strong>ion of the probability of large<br />

events and therefore leads to the adoption of too conserv<strong>at</strong>ive positions. Generalizing to larger time scales,<br />

the overly pessimistic view of large risks <strong>de</strong>riving from the Par<strong>et</strong>ian paradigm should be all the more revised,<br />

due to the action of the central limit theorem. Finally, an additional note of caution is in or<strong>de</strong>r. This study has<br />

focused on the marginal distributions of r<strong>et</strong>urns calcul<strong>at</strong>ed <strong>at</strong> fixed time scales and thus neglects the possible<br />

occurrence of runs of <strong>de</strong>pen<strong>de</strong>ncies, such as in cumul<strong>at</strong>ive drawdowns. In the presence of <strong>de</strong>pen<strong>de</strong>ncies<br />

b<strong>et</strong>ween r<strong>et</strong>urns, and especially if the <strong>de</strong>pen<strong>de</strong>nce is non st<strong>at</strong>ionary and increases in time of stress, the<br />

characteriz<strong>at</strong>ion of the marginal distributions of r<strong>et</strong>urns is not sufficient. As an example, Johansen and<br />

Sorn<strong>et</strong>te (2002) have recently shown th<strong>at</strong> the recurrence time of very large drawdowns cannot be predicted<br />

from the sole knowledge of the distribution of r<strong>et</strong>urns and th<strong>at</strong> transient <strong>de</strong>pen<strong>de</strong>nce eff<strong>et</strong>s occurring in time<br />

of stress make very large drawdowns more frequent, qualifying them as abnormal “outliers.”<br />

9 L<strong>et</strong> us stress th<strong>at</strong> we are speaking of a log-normal distribution of r<strong>et</strong>urns, not of price! In<strong>de</strong>ed, the standard Black and Scholes<br />

mo<strong>de</strong>l of a log-normal distribution of prices is equivalent to a Gaussian distribution of r<strong>et</strong>urns. Thus, a log-normal distribution of<br />

r<strong>et</strong>urns is much more f<strong>at</strong> tailed, and in fact brack<strong>et</strong>ed by power law tails and str<strong>et</strong>ched exponential tails.<br />

25<br />

89


90 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

A Maximum likelihood estim<strong>at</strong>ors<br />

In this appendix, we give the expressions of the maximum likelihood estim<strong>at</strong>ors <strong>de</strong>rived from the four<br />

distributions (22-25)<br />

A.1 The Par<strong>et</strong>o distribution<br />

According to expression (22), the Par<strong>et</strong>o distribution is given by<br />

<br />

u<br />

b Fu(x) = 1 − ,<br />

x<br />

x ≥ u (38)<br />

and its <strong>de</strong>nsity is<br />

L<strong>et</strong> us <strong>de</strong>note by<br />

L PD<br />

fu(x|b) = b ub<br />

x b+1<br />

T (ˆb) = max<br />

b<br />

T<br />

∑<br />

i=1<br />

(39)<br />

ln fu(xi|b) (40)<br />

the maximum of log-likekihood function <strong>de</strong>rived un<strong>de</strong>r hypothesis (PD). ˆb is the maximum likelihood estim<strong>at</strong>or<br />

of the tail in<strong>de</strong>x b un<strong>de</strong>r such hyptothesis.<br />

The maximum of the likelihood function is solution of<br />

which yields<br />

ˆb =<br />

<br />

1<br />

T<br />

T<br />

∑<br />

i=1<br />

lnxi − lnu<br />

1 1<br />

+ lnu −<br />

b T ∑lnxi = 0, (41)<br />

−1<br />

, and<br />

1<br />

T LPD T (ˆb) = ln ˆb<br />

u −<br />

<br />

1 + 1<br />

<br />

. (42)<br />

ˆb<br />

Moreover, one easily shows th<strong>at</strong> ˆb is asymptotically normally distributed:<br />

√ N(ˆb − b) ∼ N (0,b). (43)<br />

A.2 The Weibull distribution<br />

The Weibull distribution is given by equ<strong>at</strong>ion (23) and its <strong>de</strong>nsity is<br />

fu(x|c,d) = c<br />

d c · e( u d ) c<br />

x c−1 · exp<br />

The maximum of the log-likelihood function is<br />

L SE<br />

T (ĉ, d) ˆ = max<br />

T ∑Ti=1 T<br />

∑<br />

i=1<br />

c,d<br />

T<br />

∑<br />

i=1<br />

<br />

−<br />

x<br />

d<br />

c<br />

, x ≥ u. (44)<br />

ln fu(xi|c,d) (45)<br />

Thus, the maximum likehood estim<strong>at</strong>ors (ĉ, d) ˆ are solution of<br />

1<br />

c =<br />

1<br />

T ∑T xi c xi<br />

i=1 u ln<br />

u<br />

1 xi c −<br />

u − 1 1 T<br />

T ∑ ln<br />

i=1<br />

xi<br />

d<br />

,<br />

u<br />

(46)<br />

c = uc<br />

<br />

xi<br />

c<br />

− 1.<br />

T u<br />

(47)<br />

26


Equ<strong>at</strong>ion (46) <strong>de</strong>pends on c only and must be solved numerically. Then, the resulting value of c can be<br />

reinjected in (47) to g<strong>et</strong> d. The maximum of the log-likelihood function is<br />

1<br />

T LSE T (ĉ, d) ˆ = ln ĉ ĉ − 1<br />

+<br />

dˆ ĉ T<br />

T<br />

∑<br />

i=1<br />

91<br />

lnxi − 1. (48)<br />

Since c > 0, the vector √ N(ĉ − c, ˆ<br />

d − d) is asymptotically normal, with a covariance m<strong>at</strong>rix whose<br />

expression is given in appendix D by the inverse of K11.<br />

It should be noted th<strong>at</strong> maximum likelihood equ<strong>at</strong>ions (46-47) admit a solution with positive c not for<br />

all possible samples (x1,··· ,xN). In<strong>de</strong>ed, the function<br />

h(c) = 1<br />

c −<br />

1<br />

T ∑T xi c xi<br />

i=1 u ln<br />

u<br />

c +<br />

− 1 1 T<br />

ln<br />

T<br />

xi<br />

, (49)<br />

u<br />

1<br />

T ∑T xi<br />

i=1 u<br />

which is the total <strong>de</strong>riv<strong>at</strong>ive of LSE T (c, d(c)), ˆ is a <strong>de</strong>creasing function of c. It means, as one can expect,<br />

th<strong>at</strong> the likelihood function is concave. Thus, a necessary and sufficient condition for equ<strong>at</strong>ion (46) to<br />

admit a solution is th<strong>at</strong> h(0) is positive. After some calcul<strong>at</strong>ions, we find<br />

which is positive if and only if<br />

h(0) = 2 1<br />

T<br />

xi ∑ln u<br />

2 xi<br />

T ∑ln u<br />

∑<br />

i=1<br />

2 1 xi − T ∑ln2 u<br />

, (50)<br />

2 1 xi<br />

2<br />

T<br />

∑ln −<br />

u<br />

1 2 xi<br />

T<br />

∑ln > 0. (51)<br />

u<br />

However, the probability of occurring a sample providing a neg<strong>at</strong>ive maximum-likelyhood estim<strong>at</strong>e of<br />

c tends to zero (un<strong>de</strong>r Hypothesis of SE with a positive c) as<br />

<br />

Φ − c√ <br />

N σ<br />

√ e<br />

σ 2π Nc − c2N 2σ2 , (52)<br />

i.e. exponentially with respect to N. Here σ2 is the variance of the limit Gaussian distribution of<br />

maximum-likelihood c-estim<strong>at</strong>or th<strong>at</strong> can be <strong>de</strong>rived explicitly. If h(0) is neg<strong>at</strong>ive, LSE T reaches its<br />

maximum <strong>at</strong> c = 0 and in such a case<br />

1<br />

T LSE<br />

<br />

1 xi<br />

T (c = 0) = −ln<br />

T<br />

∑ln −<br />

u<br />

1<br />

T ∑lnxi − 1. (53)<br />

Now, if we apply maximum likelihood estim<strong>at</strong>ion based on SE assumption to samples distributed<br />

differently from SE, then we can g<strong>et</strong> neg<strong>at</strong>ive c-estim<strong>at</strong>e with some positive probability not tending<br />

to zero with N → ∞. If sample is distributed according to Par<strong>et</strong>o distribution, for instance, then<br />

maximum-likelihood c-estim<strong>at</strong>e converges in probability to a Gaussian random variable with zero<br />

mean, and thus the probability of neg<strong>at</strong>ive c-estim<strong>at</strong>es converges to 0.5.<br />

A.3 The Exponential distribution<br />

The Exponential distribution function is given by equ<strong>at</strong>ion (24), and its <strong>de</strong>nsity is<br />

fu(x|d) = exp <br />

u <br />

d exp −<br />

d<br />

x<br />

<br />

,<br />

d<br />

x ≥ u. (54)<br />

27


92 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

The maximum of the log-likelihood function is reach <strong>at</strong><br />

and is given by<br />

T<br />

d ˆ = 1<br />

T ∑ xi − u, (55)<br />

i=1<br />

1<br />

T LED T ( d) ˆ = −(1 + lnd). ˆ<br />

(56)<br />

The random variable √ N( ˆ<br />

d − d) is asymptotically normally distributed with zero mean and variance d 2 /N.<br />

A.4 The Incompl<strong>et</strong>e Gamma distribution<br />

The expression of the Incompl<strong>et</strong>e Gamma distribution function is given by (25) and its <strong>de</strong>nsity is<br />

fu(x|b,d) =<br />

d b<br />

Γ −b, u<br />

d<br />

· x −(b+1) <br />

exp −<br />

<br />

x<br />

<br />

, x ≥ u. (57)<br />

d<br />

L<strong>et</strong> us introduce the partial <strong>de</strong>riv<strong>at</strong>ive of the logarithm of the incompl<strong>et</strong>e Gamma function:<br />

Ψ(a,x) = ∂<br />

∞ 1<br />

lnΓ(a,x) = dt lnt t<br />

∂a Γ(a,x) x<br />

a−1 e −t . (58)<br />

The maximum of the log-likelihood function is reached <strong>at</strong> the point (ˆb, ˆ<br />

d) solution of<br />

and is equal to<br />

1<br />

T<br />

T<br />

∑<br />

i=1<br />

1<br />

T<br />

1<br />

T LIG<br />

<br />

T (ˆb, d) ˆ = −lndˆ − lnΓ<br />

ln xi<br />

d<br />

T<br />

xi<br />

∑<br />

i=1 d =<br />

−b, u<br />

d<br />

<br />

= Ψ<br />

−b, u<br />

d<br />

1<br />

Γ −b, u<br />

<br />

d<br />

<br />

<br />

+ (b + 1) · Ψ<br />

28<br />

<br />

, (59)<br />

<br />

u<br />

−b e<br />

d<br />

− u d − b, (60)<br />

−b, u<br />

d<br />

<br />

+ b −<br />

1<br />

Γ −b, u<br />

d<br />

<br />

<br />

u<br />

−b e<br />

d<br />

− u d . (61)


B Minimum An<strong>de</strong>rson-Darling Estim<strong>at</strong>ors<br />

We <strong>de</strong>rive in this appendix the expressions allowing the calcul<strong>at</strong>ion of the param<strong>et</strong>ers which minimize the<br />

An<strong>de</strong>rson-Darling distance b<strong>et</strong>ween the assumed distribution and the true distribution.<br />

Given the or<strong>de</strong>red sample x1 ≤ x2 ≤ ··· ≤ xN, the AD-distance is given by<br />

ADN = −N − 2<br />

N<br />

∑<br />

k=1<br />

[wk logF(xk|α) + (1 − wk)log(1 − F(xk|α))], (62)<br />

where α represents the vector of param<strong>at</strong>ers and wk = 2k/(2N + 1). It is easy to show th<strong>at</strong> the minimun is<br />

reached <strong>at</strong> the point ˆα solution of<br />

B.1 The Par<strong>et</strong>o distribution<br />

N<br />

∑<br />

k=1<br />

Applying equ<strong>at</strong>ion (63) to the Par<strong>et</strong>o distribution yields<br />

<br />

1 − wk<br />

<br />

log(1 − F(xk|α)) = 0. (63)<br />

F(xk|α)<br />

N<br />

∑<br />

k=1<br />

1 −<br />

wk<br />

<br />

u<br />

xk<br />

b ln u<br />

xk<br />

This equ<strong>at</strong>ion always admits a unique solution, and can easily be solved numerically.<br />

B.2 Str<strong>et</strong>ched-Exponential distribution<br />

In the Str<strong>et</strong>ched-Exponential case, we obtain the two following equ<strong>at</strong>ions<br />

with<br />

N<br />

∑<br />

k=1<br />

<br />

1 − wk<br />

ln<br />

Fk<br />

u<br />

d<br />

∑<br />

k=1<br />

=<br />

N<br />

∑<br />

k=1<br />

93<br />

ln u<br />

. (64)<br />

xk<br />

<br />

u<br />

c − ln<br />

d<br />

xk<br />

<br />

xk c<br />

d d<br />

= 0, (65)<br />

N <br />

1 − wk<br />

<br />

(u<br />

Fk<br />

c − x c k ) = 0, (66)<br />

<br />

Fk = 1 − exp − uc − xc k<br />

dc <br />

. (67)<br />

After some simple algebraic manipul<strong>at</strong>ions, the first equ<strong>at</strong>ion can be slightly simplified, to finally yields<br />

N<br />

∑<br />

k=1<br />

N<br />

∑<br />

k=1<br />

<br />

1 − wk<br />

<br />

ln<br />

Fk<br />

xk<br />

u<br />

<br />

1 − wk<br />

Fk<br />

xk<br />

u<br />

<br />

xk<br />

c<br />

u<br />

c <br />

− 1<br />

= 0, (68)<br />

= 0. (69)<br />

However, these two equ<strong>at</strong>ions remain coupled. Moreover, we have not y<strong>et</strong> been able to prove the unicity of<br />

the solution.<br />

29


94 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

B.3 Exponential distribution<br />

In the exponential case, equ<strong>at</strong>ion(63) becomes<br />

with<br />

N <br />

wk<br />

∑<br />

k=1<br />

Fk<br />

Here again, we can show th<strong>at</strong> this equ<strong>at</strong>ion admits a unique solution.<br />

<br />

− 1 (u − xk) = 0, (70)<br />

<br />

u − xk<br />

Fk = 1 − exp − . (71)<br />

d<br />

30


C Local exponent<br />

In this Appendix, we come back to the notion of a local Par<strong>et</strong>o exponent discussed above in section 4.3.1,<br />

with figure 7 and expression (33). We call the local exponent β.<br />

Generally speaking, any positive smooth function g(x) can be represented in the form<br />

g(x) = 1/x β(x) , x 1, (72)<br />

by <strong>de</strong>fining β(x) = −ln(g(x))/lnx. Thus, the local in<strong>de</strong>x β(x) of a distribution F(x) will be <strong>de</strong>fined as<br />

β(x) = −<br />

95<br />

ln(1 − F(x))<br />

. (73)<br />

ln(x)<br />

For example, the log-normal distribution can be mistaken for a power law over several <strong>de</strong>ca<strong>de</strong>s with very<br />

slowly (logarithmically) varying exponents if its variance is large (see figures 4.2 and 4.3 in section 4.1.3<br />

of (Sorn<strong>et</strong>te 2000)). When we approxim<strong>at</strong>e a sample distribution by some param<strong>et</strong>ric family with moving<br />

in<strong>de</strong>x β(x), it is important th<strong>at</strong> β(x) should have as small a vari<strong>at</strong>ion as possible, i.e., th<strong>at</strong> the represent<strong>at</strong>ion<br />

(72) be parsimonious. Given a sample x1,x2,··· ,xN, drawn from a distribution function F(x), x ≥ 1, the tail<br />

in<strong>de</strong>x β(x) is consistently estim<strong>at</strong>ed by<br />

ˆβ(x) = lnN − ln <br />

∑i 1 {xi>x}<br />

, (74)<br />

ln(x)<br />

where 1 {·} is the indic<strong>at</strong>or function which equals one if its argument is true and zero otherwhise. The<br />

asymptotic distribution of the estim<strong>at</strong>or is easily <strong>de</strong>rived and reads:<br />

with<br />

N 1/2 ·<br />

<br />

e ln(x)·ˆ β(x) − e ln(x)·β(x) d<br />

−→ N (0,σ 2 ), (75)<br />

σ 2 =<br />

1<br />

. (76)<br />

F(x) · (1 − F(x))<br />

As an example, l<strong>et</strong> us illustr<strong>at</strong>e the properties of the local in<strong>de</strong>x β(x) for regularly varying distributions. The<br />

general represent<strong>at</strong>ion of any regularly varying distribution is given by ¯F(x) = L(x) · x −α , where L(·) is a<br />

slowly varying function. In such a case, the local power in<strong>de</strong>x can be written as<br />

β(x) = α − lnL(x)<br />

, (77)<br />

ln(x)<br />

which goes to α as x goes to infinity, as expected from the build-in slow vari<strong>at</strong>ion of L(x). The upper panel<br />

of figure 10 shows the local in<strong>de</strong>x β(x) for a simul<strong>at</strong>ed Par<strong>et</strong>o distribution with power in<strong>de</strong>x b = 1.2 (X > 1).<br />

The estim<strong>at</strong>e β(x) oscill<strong>at</strong>es very closely to the true value b = 1.2.<br />

L<strong>et</strong> us now assume th<strong>at</strong> we observe a regularly varying local exponent<br />

β(x) = L(x) · x c , with c > 0, (78)<br />

it would be clearly the char<strong>at</strong>eriz<strong>at</strong>ion of a Str<strong>et</strong>ched-Exponential distribution<br />

¯F(x) = exp −L ′ (x) · x c , (79)<br />

31


96 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

where L ′ (x) = ln(x) L(x). The lower panel of figure 10 shows the local in<strong>de</strong>x β(x) for a simul<strong>at</strong>ed Str<strong>et</strong>ched-<br />

Exponential distribution with c = 0.3. In this case, the local in<strong>de</strong>x β(x) continuously increases, which corresponds<br />

to our intuition th<strong>at</strong> an Str<strong>et</strong>ched-Exponential behaves like a power-law with an always increasing<br />

exponent.<br />

Figure 11 shows the local in<strong>de</strong>x β(x) for a distribution constructed by joining two Par<strong>et</strong>o distributions with<br />

exponents b1 = 0.70 and b2 = 1.5 <strong>at</strong> the cross-over point u1 = 10. In this case, the local in<strong>de</strong>x β(x) again<br />

increases but not so quickly as in previous Str<strong>et</strong>ched-Exponential case. Even for such large sample size<br />

(n = 15000), the “final” β(x) is about 1.3 which is still less than the true b-value for the second Par<strong>et</strong>o part<br />

(b = 1.5), showing the existence of strong cross-over effects. Such very strong cross-over effects occurring<br />

in the presence of a transition from a power law to another power law have already been noticed in (Sorn<strong>et</strong>te<br />

<strong>et</strong> al. 1996).<br />

Similarly to the local in<strong>de</strong>x β(x) based on the Par<strong>et</strong>o distribution taken as a reference, we <strong>de</strong>fine the notion<br />

of a local exponent c(x) taking Str<strong>et</strong>ched-Exponential distributions as a reference. In<strong>de</strong>ed, given any<br />

sufficiently smooth positive function g(x), one can always find a function c(x) such th<strong>at</strong><br />

<br />

g(x) = exp 1 − x c(x)<br />

, x ≥ 1, (80)<br />

with c(x) = ln(1 − ln(g(x)))/ln(x). Obviously, for any Str<strong>et</strong>ched-Exponential distribution with exponent c,<br />

the local exponent c(x) converges to c as x goes to infinity. This property is the same as for the local in<strong>de</strong>x<br />

β(x) which goes to the true tail in<strong>de</strong>x β for regularly varying distributions.<br />

Figure 12 shows the sample tail (continuous line), the local in<strong>de</strong>x β(x) (dashed line) and the local exponent<br />

c(x) (dash-dotted line) for the neg<strong>at</strong>ive tail of the Nasdaq five-minutes r<strong>et</strong>urns. The local exponent c(x)<br />

clearly reaches an asymptotic value ∼ = 0.32 for large enough values of the r<strong>et</strong>urns. In contrast, the local exponent<br />

β(x) remains continuously increasing. The lower panel shows in double logarithmic scale the local<br />

in<strong>de</strong>x β(x). Over a large range, β(x) increases approxim<strong>at</strong>ely a power law of in<strong>de</strong>x 0.77 while beyond the<br />

quantile 99% (see the ins<strong>et</strong>) it behaves like a power law with smaller in<strong>de</strong>x equal to 0.54 implying a <strong>de</strong>celer<strong>at</strong>ing<br />

growth. The goodness of fit of the regression of lnβ(x) on lnx has been qualified by a χ 2 test which<br />

does not allow to reject this mo<strong>de</strong>l <strong>at</strong> any usual confi<strong>de</strong>nce level. Note th<strong>at</strong> a power law <strong>de</strong>pen<strong>de</strong>nce of the<br />

local Par<strong>et</strong>o exponent β(x) as a function of x qualifies a Str<strong>et</strong>ched-Exponential distribution, according to (78)<br />

and (79). The second regime fitted with the exponent c = 0.54 seems still perturbed by a cross-over effect<br />

as it does not r<strong>et</strong>rieve the value c ∼ = 0.32 which characterizes the tail of the distributions of r<strong>et</strong>urns according<br />

to the Str<strong>et</strong>ched-Exponential mo<strong>de</strong>l. These fits quantifying the growth of the local Par<strong>et</strong>o exponent are not<br />

in contradiction with figure 7 and expression (33). In<strong>de</strong>ed, a <strong>de</strong>creasing positive exponent is an altern<strong>at</strong>ive<br />

<strong>de</strong>scription for a logarithmic growth and vice-versa. These fits provi<strong>de</strong> an improved quantific<strong>at</strong>ion of the<br />

previously rough characteriz<strong>at</strong>ion of the growth of the exponent estim<strong>at</strong>ed per quantile shown with 7 and<br />

expression (33) but using a b<strong>et</strong>ter characteriz<strong>at</strong>ion of the “local” exponent.<br />

The positive tail of the Nasdaq and both tails of the Dow Jones exhibit exactly the same continuously increasing<br />

behaviour with the same characteristics and we are not showing them. Taken tog<strong>et</strong>her, these oberv<strong>at</strong>ions<br />

suggest th<strong>at</strong> the Str<strong>et</strong>ched-Exponential represent<strong>at</strong>ion provi<strong>de</strong>s a b<strong>et</strong>ter mo<strong>de</strong>l of the tail behavior of large<br />

r<strong>et</strong>urns than does a regularly varying distribution.<br />

32


D Testing non-nested hypotheses with the encompassing principle<br />

D.1 Testing the Par<strong>et</strong>o mo<strong>de</strong>l against the (SE) mo<strong>de</strong>l<br />

D.1.1 Pseudo-true value<br />

L<strong>et</strong> us consi<strong>de</strong>r the two mo<strong>de</strong>ls, str<strong>et</strong>ched exponential (SE) and Par<strong>et</strong>o (P). The pdf’s associ<strong>at</strong>ed with these<br />

two mo<strong>de</strong>ls are f1(x|c,d) and f2(x|b) respectively . Un<strong>de</strong>r the true distribution f0(x), we will d<strong>et</strong>ermine the<br />

pseudo-true values of the maximum likelihood estim<strong>at</strong>ors ˆb, ĉ and d, ˆ namely, the values of these param<strong>et</strong>ers<br />

which minimize the (Kullback-Leibler) distance b<strong>et</strong>ween the consi<strong>de</strong>red mo<strong>de</strong>l and the true distribution<br />

(Gouriéroux and Monfort 1994). Thus, the pseudo-true values b∗ , c∗ and d∗ of ˆb, ĉ and dˆ appear as the<br />

expected values of the estim<strong>at</strong>ors un<strong>de</strong>r f0. For instance<br />

b ∗ = arginf<br />

b E0<br />

<br />

ln f0(x)<br />

<br />

, (81)<br />

f2(x|b)<br />

where, in all wh<strong>at</strong> follows, E0[·] <strong>de</strong>notes the expect<strong>at</strong>ion un<strong>de</strong>r the probability measure associ<strong>at</strong>ed with the<br />

true distribution f0. Thus, b∗ is simply solution of<br />

∂<br />

∂b E0<br />

<br />

ln f0(x)<br />

<br />

= 0, (82)<br />

f2(x|b)<br />

which yields<br />

b ∗ = (E0[lnx] − lnu) −1 , (83)<br />

and is consistently estim<strong>at</strong>ed by the maximum likelihood estim<strong>at</strong>or<br />

<br />

ˆb<br />

1<br />

=<br />

T ∑lnxi<br />

−1 − lnu . (84)<br />

In fact, the maximum likelihood estim<strong>at</strong>or ˆb converges to its pseudo-true value, with (ˆb−b ∗ ) asymptotically<br />

normally distributed with zero mean.<br />

Similarly, the maximum likelihood estim<strong>at</strong>ors ĉ and ˆ<br />

d converge to their pseudo-true values c ∗ and d ∗ .<br />

D.1.2 Binding functions and encompassing<br />

L<strong>et</strong> us now ask wh<strong>at</strong> is the value b † (c,d) of the param<strong>et</strong>er b for which f2(x|b) is the nearest to f1(x|c,d), for<br />

a given (c,d). Such a value b † is the binding function and is solution of<br />

b † (c,d) = arginf<br />

b E1<br />

<br />

ln f1(x|c,d)<br />

<br />

, (85)<br />

f2(x|b)<br />

which only involves f1 and f2 but not the true distribution f0. The binding function is given by<br />

b † <br />

(c,d) = E1 ln x<br />

<br />

− ln<br />

d<br />

u<br />

−1 . (86)<br />

d<br />

After some calcul<strong>at</strong>ions, we find<br />

<br />

E1 ln x<br />

<br />

d<br />

97<br />

= c<br />

dc e( u d ) c<br />

·∞<br />

dx ln<br />

u<br />

x<br />

d xc−1 e −( x d ) c<br />

, (87)<br />

= ln u<br />

d + e( u d ) c<br />

c Γ<br />

<br />

u<br />

c 0, ,<br />

d<br />

(88)<br />

33


98 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

so th<strong>at</strong> the binding function can be expressed as<br />

b † (c,d) = c · e −( u d ) c<br />

<br />

−1 u<br />

c Γ 0, , when c > 0 (89)<br />

d<br />

In the case when c goes to zero and c and d are rel<strong>at</strong>ed by equ<strong>at</strong>ion (47), we can still calcul<strong>at</strong>e b † . In<strong>de</strong>ed,<br />

we can first show th<strong>at</strong><br />

<br />

u<br />

c ∼<br />

d<br />

1<br />

<br />

1<br />

c T<br />

T<br />

ln xi<br />

−1 =<br />

u<br />

1<br />

c · ˆb. (90)<br />

Now, using the asymptoptic rel<strong>at</strong>ion<br />

we conclu<strong>de</strong> th<strong>at</strong><br />

∑<br />

i=1<br />

e x · Γ(0,x) ∼ x −1 , as x → ∞, (91)<br />

b † (ĉ, ˆ<br />

d) = ˆb, as ĉ → 0. (92)<br />

This result is in fact n<strong>at</strong>ural because the PD mo<strong>de</strong>l can be seen formally as the limit of the SE mo<strong>de</strong>l for<br />

c → 0 un<strong>de</strong>r the condition<br />

as previously exposed in section 4.1<br />

<br />

u<br />

c c · → β,<br />

d<br />

as c → 0 , (93)<br />

Now, following Mizon and Richard (1986), the mo<strong>de</strong>l (SE) with pdf f1 is said to encompass the mo<strong>de</strong>l<br />

(PD) with pdf f2 if the best represent<strong>at</strong>ive of (PD) -with param<strong>et</strong>er b ∗ - is also the distribution nearest to the<br />

best represent<strong>at</strong>ive of (SE) -with param<strong>et</strong>ers (c ∗ ,d ∗ ). Thus, (SE) is said to encompass (PD) if and only if<br />

b ∗ = b † (c ∗ ,d ∗ ).<br />

The reverse situ<strong>at</strong>ion can be consi<strong>de</strong>red in or<strong>de</strong>r to study the encompassing of the mo<strong>de</strong>l (SE) by the mo<strong>de</strong>l<br />

(PD). Such situ<strong>at</strong>ion occurs if and only if<br />

c ∗<br />

D.1.3 Wald encompassing test<br />

d ∗<br />

<br />

c † (b∗ )<br />

=<br />

d † (b∗ )<br />

<br />

. (94)<br />

We first test the encompassing of (PD) into (SE), namely the null hypothesis H0 = {b ∗ = b † (c ∗ ,d ∗ )}.<br />

Un<strong>de</strong>r this null hypothesis, it can be shown (Gouriéroux and Monfort 1994) th<strong>at</strong> the random variable<br />

√ T ˆb − b † (ĉ, ˆ<br />

d) is asymptotically normally distributed with zero mean and variance V given by<br />

V = K −1<br />

C12]K −1<br />

22 [C22 −C21C −1<br />

11<br />

+ K −1 −1<br />

22<br />

[C21C11 − ˜C21K −1<br />

11<br />

22 +<br />

]C11[C −1<br />

11 C12 − K −1<br />

11<br />

˜C12]K −1<br />

22<br />

where the expression of the coefficients involved in V will be given below. Thus, un<strong>de</strong>r H0, the random variable<br />

ξT = T ˆb − b † (ĉ, d) ˆ<br />

ˆV −1 ˆb − b † (ĉ, d) ˆ<br />

, where ˆV −1 is a consistent estim<strong>at</strong>or of V −1 , follows asymptotically<br />

a χ2-distribution with one <strong>de</strong>grees of freedom.<br />

The m<strong>at</strong>rix K11 is given by<br />

K11(i, j) = −E0<br />

∂ 2 ln f1(x|c ∗ ,d ∗ )<br />

∂αi∂α j<br />

34<br />

(95)<br />

<br />

, i, j = 1,2, (96)


where α = (c ∗ ,d ∗ ). It can be consistently estim<strong>at</strong>ed by<br />

The coefficient K22 is given by<br />

ˆK11(1,1) = 1<br />

ĉ u u<br />

− ln2<br />

+<br />

ĉ2 dˆ<br />

dˆ<br />

1 T<br />

T ∑ ln<br />

i=1<br />

2<br />

ĉ xi xi<br />

, (97)<br />

dˆ<br />

dˆ<br />

ˆK11(1,2) = ˆK11(2,1) = c<br />

ĉ u u<br />

ln<br />

−<br />

d dˆ<br />

dˆ<br />

1 T <br />

ĉ<br />

xi xi<br />

T ∑ ln<br />

, (98)<br />

ˆ<br />

i=1 d dˆ<br />

2 ˆK11(2,2)<br />

ĉ<br />

= . (99)<br />

dˆ<br />

K22 = −E0<br />

which is consistently estim<strong>at</strong>ed by ˆK22 = ˆb −2 .<br />

∂ 2 ln f (x|b ∗ )<br />

∂b ∗2<br />

<br />

99<br />

= 1<br />

, (100)<br />

b∗2 Now, we have to calcul<strong>at</strong>e the two components of the vector ˜C12 = ˜C t 21 . Its first component is<br />

<br />

˜C12(1)<br />

∂ln f1(x|c<br />

= E1<br />

∗ ,d ∗ )<br />

∂c∗ · ∂ln f2(x|b∗ )<br />

∂b∗ <br />

, (101)<br />

<br />

1 u<br />

= E1 + ln<br />

c∗ d∗ <br />

u<br />

d∗ c∗ <br />

+ ln x x<br />

− ln<br />

d∗ d∗ <br />

x<br />

d∗ c∗ <br />

1 u<br />

· + ln<br />

b∗ d∗ <br />

− ln x<br />

d∗ <br />

,(102)<br />

<br />

1 u<br />

= + ln<br />

c∗ d∗ <br />

u<br />

d∗ c∗ <br />

1 u 1 u<br />

· + ln − + ln<br />

b∗ d c∗ d∗ <br />

u<br />

d∗ c∗ <br />

· E1 ln x<br />

d∗ <br />

<br />

1 u<br />

+ + ln<br />

b∗ d∗ <br />

· E1 ln x<br />

d∗ <br />

− E1 ln x<br />

d∗ <br />

x<br />

d∗ c∗ <br />

2 x<br />

− E1 ln<br />

d∗ <br />

2 x<br />

+ E1 ln<br />

d∗ <br />

x<br />

d∗ c∗ (103) .<br />

Some simple calcul<strong>at</strong>ions show th<strong>at</strong><br />

E1<br />

E1<br />

<br />

ln x<br />

d ·<br />

<br />

x<br />

c d<br />

<br />

2 x<br />

ln<br />

d ·<br />

<br />

x<br />

c d<br />

= 1 u<br />

+ ln<br />

c d ·<br />

<br />

u<br />

c <br />

+ E1 ln<br />

d<br />

x<br />

<br />

, (104)<br />

d<br />

2 u<br />

= ln<br />

d ·<br />

<br />

u<br />

c +<br />

d<br />

2<br />

c E1<br />

<br />

ln x<br />

<br />

2 x<br />

<br />

+ E1 ln , (105)<br />

d d<br />

which allows us to show th<strong>at</strong> the first and third terms cancel out, and it remains<br />

˜C12(1) = 1<br />

<br />

E1 ln<br />

c∗ x<br />

d∗ <br />

− ln u<br />

d∗ <br />

u<br />

d∗ c∗ <br />

E1 ln x<br />

d∗ <br />

− ln u<br />

d∗ <br />

. (106)<br />

The second component is<br />

˜C12(2) =<br />

<br />

∂ln f1(x|c<br />

E1<br />

∗ ,d ∗ )<br />

∂d∗ · ∂ln f2(x|b∗ )<br />

∂b∗ =<br />

<br />

,<br />

<br />

E1 −<br />

(107)<br />

c∗<br />

d∗ <br />

u<br />

1 +<br />

d∗ c∗ <br />

x<br />

−<br />

d∗ c∗ <br />

1 u<br />

· + ln<br />

b∗ d∗ <br />

− ln x<br />

d∗ =<br />

<br />

,<br />

−<br />

(108)<br />

c∗<br />

d∗ <br />

u<br />

1 +<br />

d∗ c∗ 1 u<br />

+ ln<br />

b∗ d∗ <br />

u<br />

− 1 +<br />

d∗ c∗ <br />

E1 ln x<br />

d∗ −<br />

<br />

<br />

1 u<br />

+ ln<br />

b∗ d∗ x<br />

E1<br />

d∗ c∗ <br />

+ E1 ln x<br />

d∗ <br />

x<br />

d∗ c∗ . (109)<br />

35


100 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Now, accounting for the rel<strong>at</strong>ion E1[xc ] = uc +d c , the first and third term within the brack<strong>et</strong>s cancel out, and<br />

accounting for equ<strong>at</strong>ion (104) yields<br />

˜C12(2) = − c∗<br />

d∗ <br />

1<br />

<br />

u<br />

+<br />

c∗ d∗ c∗ <br />

· ln u<br />

<br />

− E ln<br />

d∗ x<br />

d∗ . (110)<br />

Finally, ˜C12 can be consistently estim<strong>at</strong>ed by replacing (c ∗ ,d ∗ ) by (ĉ, ˆ<br />

d) and using the rel<strong>at</strong>ion<br />

L<strong>et</strong> us now <strong>de</strong>fine<br />

g1(x|c ∗ ,d ∗ ) =<br />

<br />

E<br />

ln x<br />

d<br />

∂ln f1(x|c ∗ ,d ∗ )<br />

∂c ∗<br />

∂ln f1(x|c ∗ ,d ∗ )<br />

∂d ∗<br />

g2(x|b ∗ ) = ∂ln f2(x|b ∗ )<br />

∂b ∗<br />

The m<strong>at</strong>rices Ci j are <strong>de</strong>fined as<br />

which can be consistently estim<strong>at</strong>ed by<br />

<br />

= ln u 1<br />

+<br />

d c e( u d ) c <br />

· Γ 0,<br />

<br />

=<br />

<br />

1<br />

c∗ + ln u<br />

d∗ − c∗<br />

d∗ <br />

u<br />

c . (111)<br />

d<br />

<br />

u<br />

d∗ c∗ <br />

+ ln x<br />

d∗ − ln x<br />

d∗ 1 + u<br />

d∗ c∗ − x<br />

d∗ c∗ <br />

x c∗ d<br />

<br />

(112)<br />

= 1<br />

+ lnu − lnx. (113)<br />

b∗<br />

<br />

Ci j = E0 gi(x) · g j(x) t , i, j = 1,2, (114)<br />

Ĉi j = 1<br />

T<br />

T<br />

∑<br />

i=1<br />

D.2 Testing the (SE) mo<strong>de</strong>l against the Par<strong>et</strong>o mo<strong>de</strong>l<br />

gi(x) · g j(x) t , i, j = 1,2. (115)<br />

L<strong>et</strong> us now assume th<strong>at</strong>, beyond a given high threshold u, the true mo<strong>de</strong>l is the Par<strong>et</strong>o mo<strong>de</strong>l, th<strong>at</strong> is, the true<br />

r<strong>et</strong>urns distribution is a power law with pdf<br />

This will be our null hypothesis H0.<br />

f0(x|b) = b ub<br />

, x ≥ u. (116)<br />

xb+1 Now consi<strong>de</strong>r the maximum likelihood estim<strong>at</strong>ors (ĉ, d) ˆ of the mo<strong>de</strong>l (SE). They are solution of equ<strong>at</strong>ions<br />

(46-47)<br />

1<br />

c =<br />

d c = uc<br />

T<br />

1<br />

T ∑T xi<br />

i=1 u<br />

1<br />

T ∑T xi<br />

i=1 u<br />

T <br />

xi<br />

∑<br />

i=1 u<br />

Un<strong>de</strong>r H0, (ĉ, ˆ<br />

d) converges to the pseudo-true values, solutions of<br />

1<br />

c<br />

<br />

x<br />

E0 u = <br />

x<br />

E0 u<br />

c xi ln<br />

u<br />

c −<br />

− 1 1 T<br />

T ∑ ln<br />

i=1<br />

xi<br />

,<br />

u<br />

(117)<br />

c − 1. (118)<br />

c <br />

x ln<br />

u<br />

c − 1 − E0<br />

<br />

ln x<br />

<br />

, (119)<br />

u<br />

d c = E0 [x c ] − u c , (120)<br />

36


where E0[·] <strong>de</strong>notes the expect<strong>at</strong>ion with respect to the power-law distribution f0. We have<br />

<br />

x<br />

c E0<br />

u<br />

<br />

E0 ln<br />

=<br />

b<br />

, and c < b,<br />

b − c<br />

(121)<br />

x<br />

<br />

u<br />

= 1<br />

<br />

x<br />

c E0 ln<br />

u<br />

,<br />

b<br />

(122)<br />

x<br />

<br />

u<br />

=<br />

b<br />

.<br />

(b − c) 2 (123)<br />

Thus, we easily obtain th<strong>at</strong> the unique solution of (119) is c = 0, and equ<strong>at</strong>ion (120) does not make sense<br />

any more. So, un<strong>de</strong>r H0, ĉ goes to zero and dˆ is not well <strong>de</strong>fined. Thus, Wald test cannot be performed un<strong>de</strong>r<br />

such a null hypothesis. We must find another way to test (SE) against H0.<br />

In this goal, we remark th<strong>at</strong> the quantity<br />

ˆηT = ĉ<br />

<br />

ĉ<br />

u<br />

+ 1<br />

dˆ<br />

101<br />

(124)<br />

is still well <strong>de</strong>fined. Using (120), it is easy to show th<strong>at</strong>, as T goes to infinity, this quantity goes to b,<br />

wh<strong>at</strong>ever ĉ being positive or equal to zero. For positive c, this is obvious from (120) and (121), while for<br />

c = 0, expanding (118) around ĉ = 0 yields<br />

ĉ<br />

ĉ u<br />

dˆ<br />

=<br />

<br />

1<br />

T<br />

T<br />

∑<br />

i=1<br />

ln xi<br />

u<br />

−1<br />

(125)<br />

= ˆb → b. (126)<br />

In or<strong>de</strong>r to test the <strong>de</strong>scriptive power of the (SE) mo<strong>de</strong>l against the null hypothesis th<strong>at</strong> the true mo<strong>de</strong>l is the<br />

Par<strong>et</strong>o mo<strong>de</strong>l, we can consi<strong>de</strong>r the st<strong>at</strong>istic<br />

<br />

ˆηT<br />

ζT = T − 1 , (127)<br />

ˆb<br />

which asymptoticaly follows a χ 2 -distribution with one <strong>de</strong>gree of freedom. In<strong>de</strong>ed expanding the quantity<br />

(xi/u) ĉ in power series around c = 0 gives<br />

which allows us to g<strong>et</strong><br />

where<br />

<br />

xi<br />

ĉ<br />

∼= 1 + ĉ · log(<br />

u<br />

xi<br />

u<br />

<br />

) + ĉ2<br />

2 · log2 <br />

xi<br />

+<br />

u<br />

ĉ3<br />

6 · log3 <br />

xi<br />

+ ··· , as ĉ → 0, (128)<br />

u<br />

1<br />

T ∑ <br />

xi<br />

ĉ<br />

∼= 1 + ĉ · S1 +<br />

u<br />

ĉ2<br />

2 · S2 + ĉ3<br />

3 S3, (129)<br />

1<br />

T ∑ <br />

xi<br />

c <br />

xi<br />

log ∼= S1 + ĉ · S2 +<br />

u u<br />

ĉ2<br />

2 S3, (130)<br />

S1 = 1<br />

T<br />

S2 = 1<br />

T<br />

S3 = 1<br />

T<br />

T<br />

∑<br />

i=1<br />

T<br />

∑<br />

i=1<br />

T<br />

∑<br />

i=1<br />

log<br />

xi<br />

u<br />

log 2 xi<br />

u<br />

log 3 xi<br />

u<br />

37<br />

<br />

, (131)<br />

<br />

, (132)<br />

<br />

. (133)<br />

(134)


102 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Thus, we g<strong>et</strong> from equ<strong>at</strong>ion (117):<br />

and from equ<strong>at</strong>ions (124) and (118):<br />

ĉ <br />

1<br />

2 S2 − S 2 1<br />

1<br />

2S1S2 − 1<br />

3S3 ˆηT<br />

ˆb − 1 = ĉ · S2 1<br />

1 − 2S2 + ĉ<br />

2 [S1S2 − 1<br />

S1 + ĉ<br />

2S2 + ĉ2<br />

6 S3<br />

, (135)<br />

3 S3]<br />

. (136)<br />

Now, accounting for the fact th<strong>at</strong> the variables ξ1 = S1 − b−1 , ξ2 = S2 − 2b−2 and ξ3 = S3 − 6b−3 are<br />

asymptoticaly Gaussian random variables with zero mean and variance of or<strong>de</strong>r T −1/2 , we obtain, <strong>at</strong> the<br />

lowest or<strong>de</strong>r in T −1/2 :<br />

ĉ = b 2<br />

<br />

2ξ1 − b<br />

2 ξ2<br />

<br />

, (137)<br />

and<br />

which shows th<strong>at</strong><br />

S2 1<br />

1 − 2S2 + ĉ<br />

2 [S1S2 − 1<br />

3S3] S1 + ĉ<br />

2 S2 + ĉ2<br />

6 S3<br />

ˆηT<br />

ˆb<br />

− 1 = b2<br />

<br />

<br />

= 2ξ1 − b<br />

2 ξ2<br />

<br />

, (138)<br />

2ξ1 − b<br />

2 ξ2<br />

2<br />

. (139)<br />

We now use the fact th<strong>at</strong> ξ1, ξ2 are asymptotically Gaussian random variables with zero mean. We find their<br />

variances:<br />

Var(ξ1) = 1<br />

T b2 , Var(ξ2) = 20<br />

T b4 , and Cov(ξ1,ξ2) = 4<br />

.<br />

T b3 (140)<br />

Using equ<strong>at</strong>ion (139), the random variable b(2ξ1 − bξ2/2) is in the limit of large T a Gaussian rv with zero<br />

mean and variance 1/T , i.e., ζT is asymptoticaly distributed according to a χ 2 distribution with one <strong>de</strong>gree<br />

of freedom.<br />

Thus, the test consists in accepting H0 if ζT ≤ χ2 1−ε (1) and rejecting it otherwise. (ε <strong>de</strong>notes the asymptotic<br />

level of the test).<br />

38


References<br />

An<strong>de</strong>rsen, J.V. and D. Sorn<strong>et</strong>te, 2001, Have your cake and e<strong>at</strong> it too: increasing r<strong>et</strong>urns while lowering large<br />

risks! Journal of Risk Finance 2 (3), 70-82 .<br />

An<strong>de</strong>rson, T.W. and D.A. Darling, 1952, Asymptotic theory of certain “goodness of fit” criteria, annals of<br />

M<strong>at</strong>hem<strong>at</strong>ical st<strong>at</strong>istics 23, 193-212.<br />

An<strong>de</strong>rsson, M., B. Eklund and J. Lyhagen, 1999, A simple linear time series mo<strong>de</strong>l with misleading nonlinear<br />

properties, Economics L<strong>et</strong>ter 65, 281-285.<br />

Ang, A. and G. Bekeart, 2001, Intern<strong>at</strong>ional ass<strong>et</strong> alloc<strong>at</strong>ion with regime shifts, Review of Financial Studies.<br />

Bachelier, L., 1900, Théorie <strong>de</strong> la spécul<strong>at</strong>ion, Annales <strong>de</strong> l’Ecole Normale Supérieure 17, 21-86.<br />

Barndorff-Nielsen, O.E., 1997, Normal inverse Gaussian distributions and the mo<strong>de</strong>lling of stock r<strong>et</strong>urns<br />

Scandinavian, J. St<strong>at</strong>istics 24, 1-13.<br />

Beran, J., 1994, St<strong>at</strong>istics for long-memory processes, Monographs on St<strong>at</strong>istics and Applied Probabilty 61,<br />

Chapman & Hall.<br />

Biham, O., Malcai, O., Levy, M. and Solomon, S., 1998, Generic emergence of power law distributions and<br />

Levy-Stable intermittent fluctu<strong>at</strong>ions in discr<strong>et</strong>e logistic systems, Phys. Rev. E 58, 1352-1358.<br />

Biham, O., Z-F. Huang, O. Malcai and S. Solomon, 2002, Long-Time Fluctu<strong>at</strong>ions in a Dynamical Mo<strong>de</strong>l<br />

of Stock Mark<strong>et</strong> Indices, preprint <strong>at</strong> http://arXiv.org/abs/cond-m<strong>at</strong>/0208464<br />

Bingham, N.H., C.M. Goldie and J.L. Teugel, 1987, Regular vari<strong>at</strong>ion, Cambridge University Press.<br />

Black, F. and M. Scholes, 1973, the pricing of options and corpor<strong>at</strong>e liabilities, Journal of Political Economy<br />

81, 637-653.<br />

Blanchard, O.J. and M.W. W<strong>at</strong>son, 1982, Bubbles, R<strong>at</strong>ional Expect<strong>at</strong>ions and Specul<strong>at</strong>ive Mark<strong>et</strong>s, in:<br />

Wachtel, P. ,eds., Crisis in Economic and Financial Structure: Bubbles, Bursts, and Shocks. Lexington<br />

Books: Lexington.<br />

Bl<strong>at</strong>tberg, R. and Gonne<strong>de</strong>s, N., 1974, A comparison of stable and Stu<strong>de</strong>nt distribution as st<strong>at</strong>istical mo<strong>de</strong>ls<br />

for stock prices, J. Business 47, 244-280.<br />

Bollerslev, T., 1986, Generalized autoregressive conditional h<strong>et</strong>eroskedasticity, Journal of Econom<strong>et</strong>rics 31,<br />

307-327.<br />

Bollerslev T, R.F. Engle and D.B. Nelson, 1994, ARCH mo<strong>de</strong>ls, Handbook of Econom<strong>et</strong>rics IV, 2959-3038.<br />

Bouchaud, J.-P. and M. Potters, Theory of financial risks: from st<strong>at</strong>istical physics to risk management<br />

(Cambridge [England]; New York: Cambridge University Press, 2000).<br />

Brock, W.A., W.D. Dechert and J.A. Scheinkman, 1987, A Test for in<strong>de</strong>pen<strong>de</strong>nce Based on the Correl<strong>at</strong>ion<br />

Dimension, unpublished manuscript, Department of Economics, University of Wisconsin, Madison.<br />

Campbell, J.Y., Lo, A.W. and MacKinlay, A.C., 1997, The econom<strong>et</strong>rics of financial mark<strong>et</strong>s (Princ<strong>et</strong>on,<br />

N.J. : Princ<strong>et</strong>on University Press).<br />

Chall<strong>et</strong>, D. and M. Marsili, 2002, Criticality and finite size effects in a simple realistic mo<strong>de</strong>l of stock<br />

mark<strong>et</strong>, preprint <strong>at</strong> http://arXiv.org/abs/cond-m<strong>at</strong>/0210549<br />

39<br />

103


104 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Champenowne, D.G, 1953, Economic Journal 63, 318-51.<br />

Cont, R., Potters, M. and J.-P. Bouchaud, 1997, Scaling in stock mark<strong>et</strong> d<strong>at</strong>a: stable laws and beyond, in<br />

Scale Invariance and Beyond (Proc. CNRS Workshop on Scale Invariance, Les Houches, 1997), eds.<br />

B. Dubrulle, F. Graner and D. Sorn<strong>et</strong>te (Berlin: Springer).<br />

Cox, D.R., 1961, Test of separ<strong>at</strong>e families of hypotheses, in : Proceedings of the Fourth Berkeley Symposium<br />

on M<strong>at</strong>hem<strong>at</strong>ical St<strong>at</strong>istics and Probabilty 1, 105-123, University of California Press: Berkeley .<br />

Cox, D.R., 1962, Further results of separ<strong>at</strong>e families of hypotheses, journal of the Royal St<strong>at</strong>istical Soci<strong>et</strong>y<br />

B 24, 406-424.<br />

Cromwell, J.B., W.C. Labys and M. Terraza, 1994, Univari<strong>at</strong>e Tests for Time Series Mo<strong>de</strong>ls (Sage, Thousand<br />

Oaks, CA, pp. 20-22).<br />

Dacorogna M.M., U.A. Müller, O.V. Pict<strong>et</strong> and C.G. <strong>de</strong> Vries, 1992, The distribution of extremal foreign<br />

exchange r<strong>at</strong>e r<strong>et</strong>urns in large d<strong>at</strong>e s<strong>et</strong>s, Working Paper, Olsen and Associ<strong>at</strong>es Internal Documents<br />

UAM, 19921022.<br />

Dragulescu, A.A. and V.M. Yakovenko, 2002, Probability distribution of r<strong>et</strong>urns for a mo<strong>de</strong>l with stochastic<br />

vol<strong>at</strong>ility, preprint <strong>at</strong> http://xxx.lanl.gov/abs/cond-m<strong>at</strong>/0203046<br />

Eberlein, E., Keller, U. and Prause, K., 1998, New insights into smile, mispricing and value <strong>at</strong> risk: the<br />

hyperbolic mo<strong>de</strong>l J. Business 71, 371-405.<br />

Embrechts P., C.P. Klüppelberg and T. Mikosh, 1997, Mo<strong>de</strong>lling Extremal Events (Springer-Verlag).<br />

Engle, R.F., 1984, Wald, Likelihood R<strong>at</strong>io, and Lagrange Multiplier Tests in Econom<strong>et</strong>rics , in: Z. Griliches<br />

and M.D. Intrilig<strong>at</strong>or, eds., Handbook of Econom<strong>et</strong>rics, Vol. II. North-Holland: Amsterdam.<br />

Engle, R.F. and A.J. P<strong>at</strong>ton, 2001, Wh<strong>at</strong> good is a vol<strong>at</strong>ility mo<strong>de</strong>l ?, Quantit<strong>at</strong>ive Finance 1, 237-245.<br />

Fama E.F., 1965, The Behavior of Stock Mark<strong>et</strong> Prices, J. Business 38, 34-105.<br />

Fama E.F. and K.R. French, 1996, Multifactor explan<strong>at</strong>ions of ass<strong>et</strong> pricing anomalies, Journal of Finance<br />

51.<br />

Fang, H. and T. Lai, 1997, Co-kurtosis and capital ass<strong>et</strong> pricing, Financial Review 32, 293-307.<br />

Farmer J.D., 1999, Physicists Attempt to Scale the Ivory Towers of Finance, Computing in Science and<br />

Engineering, Nov/Dec 1999, 26-39.<br />

Feller, W., 1971, An Introduction to Probability Theory and its Applic<strong>at</strong>ions, vol. II (John Wiley and<br />

sons, New York).<br />

Frisch, U. and D. Sorn<strong>et</strong>te, 1997, Extreme <strong>de</strong>vi<strong>at</strong>ions and applic<strong>at</strong>ions, J. Phys. I France 7, 1155-1171.<br />

Gabaix, X., 1999, Zipf’s law for cities: An explan<strong>at</strong>ion, Qu<strong>at</strong>erly J. Econ. 114, 739-767.<br />

Gabaix, X., P. Gopikrishnan, V. Plerou and H.E. Stanley, 2002, Un<strong>de</strong>rstanding Large Movements in Stock<br />

Mark<strong>et</strong> Activity, in press in N<strong>at</strong>ure<br />

Gopikrishnan P., M. Meyer, L.A.N. Amaral and H.E. Stanley, 1998, Inverse Cubic Law for the Distribution<br />

of Stock Price Vari<strong>at</strong>ions, European Physical Journal B 3, 139 –140.<br />

Gouriéroux C. and J. Jasiak, 1998, Trunc<strong>at</strong>ed maximum likelihood, goodness of fit tests and tail analysis,<br />

Working paper, CREST.<br />

40


Gouriéroux C. and A. Monfort, 1994, Testing non nested hypothesis, Handbook of Econom<strong>et</strong>rics 4, 2585-<br />

2637.<br />

Granger, C.W.J. and T. Teräsvirta, 1999, A simple nonlinear mo<strong>de</strong>l with misleading properties, Economics<br />

L<strong>et</strong>ter 62, 741-782.<br />

Guillaume D.M., M.M. Dacorogna, R.R. Davé, U.A. Müller, R.B. Olsen and O.V. Pict<strong>et</strong>, 1997, From the<br />

bird’s eye to the microscope: a survey of new stylized facts of the intra-day foreign exchange mark<strong>et</strong>s,<br />

Finance and Stochastics 1, 95-130.<br />

Hall, P.G, 1979, On the r<strong>at</strong>e of convergence of normal extremes. Journal of Applied Probabilities 16, 433-<br />

439.<br />

Hall, W.J. and J.A. Wellnel, 1979, The r<strong>at</strong>e of convergence in law of the maximum of an exponential sample.<br />

St<strong>at</strong>istica Neerlandica 33, 151-154.<br />

Hill, B.M., 1975, A simple general approach to inference about the tailof a distribution, Annals of st<strong>at</strong>istics<br />

3, 1163-1174.<br />

Hwang, S. and S. S<strong>at</strong>chell, 1999, Mo<strong>de</strong>lling emerging mark<strong>et</strong> risk premia using higher moments, Intern<strong>at</strong>ional<br />

Journal of Finance and Economics 4, 271-296.<br />

Joe, H, 1997, Multivari<strong>at</strong>e mo<strong>de</strong>ls and <strong>de</strong>pen<strong>de</strong>nce concepts, Chapman & Hall, London.<br />

Johansen, A. and D. Sorn<strong>et</strong>te, 2002, Large Stock Mark<strong>et</strong> Price Drawdowns Are Outliers, Journal of Risk 4<br />

(2), 69-110.<br />

E. Jon<strong>de</strong>au and M. Rockinger, 2001, Testing for differences in the tails of stock-mark<strong>et</strong> r<strong>et</strong>urns. Working<br />

Paper available <strong>at</strong> htt p : //papers.ssrn.com/paper.ta f ?abstract id = 291399<br />

Jurcenko, E. and B. Maill<strong>et</strong>, 2002, The four-moment capital ass<strong>et</strong> pricing mo<strong>de</strong>l: some basic results, Working<br />

Paper.<br />

Kearns P. and A. Pagan, 1997, Estim<strong>at</strong>ing the <strong>de</strong>nsity tail in<strong>de</strong>x for financial time series, Review of Economics<br />

and St<strong>at</strong>istics 79, 171-175.<br />

Kon, S., 1984, Mo<strong>de</strong>ls of stock r<strong>et</strong>urns: a comparison J. Finance XXXIX, 147-165.<br />

Laherrère J. and D. Sorn<strong>et</strong>te, 1999, Str<strong>et</strong>ched exponential distributions in n<strong>at</strong>ure and economy: F<strong>at</strong> tails with<br />

characteristic scales, European Physical Journal B 2, 525-539.<br />

Levy, M., S. Solomon and G. Ram, 1996, Dynamical explan<strong>at</strong>ion of the emergence of power law in a stock<br />

mark<strong>et</strong> mo<strong>de</strong>l, Int. J. Mod. Phys. C 7, 65-72.<br />

Longin F.M., 1996, The asymptotic distribution of extreme stock mark<strong>et</strong> r<strong>et</strong>urns, Journal of Business 96,<br />

383-408.<br />

Lux T., 1996, The stable Par<strong>et</strong>ian hypothesis and the frequency of large r<strong>et</strong>urns: an examin<strong>at</strong>ion of major<br />

German stocks, Applied Financial Economics 6, 463-475.<br />

Lux T., 2000, The Limiting Extreme Behavior of Specul<strong>at</strong>ive R<strong>et</strong>urns: An Analysis of Intra-Daily D<strong>at</strong>a from<br />

the Francfurt Stock Exchange, preprint,March 2000, 29 p.<br />

Lux, L. and D. Sorn<strong>et</strong>te, 2002, On R<strong>at</strong>ional Bubbles and F<strong>at</strong> Tails, J. Money Credit and Banking, Part 1, 34,<br />

589-610.<br />

41<br />

105


106 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Malevergne, Y. and D. Sorn<strong>et</strong>te, 2001, Multi-dimensional R<strong>at</strong>ional Bubbles and f<strong>at</strong> tails, Quantit<strong>at</strong>ive Finance<br />

1, 533-541.<br />

Malevergne, Y. and D. Sorn<strong>et</strong>te, 2002, Multi-Moments M<strong>et</strong>hod for Portfolio Management: Generalized<br />

Capital Ass<strong>et</strong> Pricing Mo<strong>de</strong>l in Homogeneous and H<strong>et</strong>erogeneous mark<strong>et</strong>s, working paper (htt p :<br />

//papers.ssrn.com/paper.ta f ?abstract id = 319544)<br />

Malevergne, Y. and D. Sorn<strong>et</strong>te, 2002, Investig<strong>at</strong>ing Extreme Depen<strong>de</strong>nces: Concepts and Tools, working<br />

paper (htt p : //papers.ssrn.com/paper.ta f ?abstractid = 303465)<br />

Man<strong>de</strong>lbrot B., 1963, The vari<strong>at</strong>ion of certain specul<strong>at</strong>ive prices, Journal of Business 36, 392-417.<br />

Mantegna R.N. and H.E. Stanley, 1995, Scaling behavior of an economic in<strong>de</strong>x, N<strong>at</strong>ure 376, 46-55.<br />

Mantegna R.N. and H.E.Stanley, 2000, An Introduction to Econophysics, Correl<strong>at</strong>ions and Complexity in<br />

Finance, Cambridge Univ. Press, Cambridge UK.<br />

Markovitz, H., 1959, Portfolio Selection: Efficient diversific<strong>at</strong>ion of investments, john Wiley and Sons, New<br />

York.<br />

M<strong>at</strong>ia, K., L.A.N. Amaral, S.P. Goodwin and H.E. Stanley, Non-Lévy Distribution of Commodity Price<br />

Fluctu<strong>at</strong>ions, preprint cond-m<strong>at</strong>/0202028<br />

Mittnik S., S.T.Rachev, M.S.Paolella,1998, Stable Par<strong>et</strong>ian Mo<strong>de</strong>ling in Finance: Some Empirical and Theor<strong>et</strong>ical<br />

Aspects, In: A Practical Gui<strong>de</strong> to Heavy Tails, pp.79-110, Eds. R.J.Adler, R.E.Feldman,<br />

M.S.Taqqu, Birkhauser, Boston.<br />

Mizon, G.E. and J.F. Richard, 1984, The encompassing principle and its applic<strong>at</strong>ions to testing non-nested<br />

hypotheses, Econom<strong>et</strong>rica 54, 675-678.<br />

Müller U.A., M.M.Dacarogna, O.V.Pickt<strong>et</strong>, 1998, Heavy Tails in High-Frequency Financial D<strong>at</strong>a, In: A<br />

Practical Gui<strong>de</strong> to Heavy Tails, pp.55-78, Eds. R.J.Adler, R.E.Feldman, M.S.Taqqu, Birkhauser,<br />

Boston.<br />

Muzy, J.-F., Delour, J. and Bacry, E., 2000, Mo<strong>de</strong>lling fluctu<strong>at</strong>ions of financial time series: from casca<strong>de</strong><br />

process to stochastic vol<strong>at</strong>ility mo<strong>de</strong>l, European Physical Journal 17, 537-548.<br />

Muzy, J.-F., D. Sorn<strong>et</strong>te, J. Delour and A. Arneodo, 2001, Multifractal r<strong>et</strong>urns and Hierarchical Portfolio<br />

Theory, Quantit<strong>at</strong>ive Finance 1, 131-148.<br />

Nagahara, Y. and G. Kitagawa, 1999, A non-Gaussian stochastic vol<strong>at</strong>ility mo<strong>de</strong>l, J. Comput<strong>at</strong>ional Finance<br />

2, 33-47.<br />

Nelsen, R., 1998, An introduction to copulas, Lectures notes in st<strong>at</strong>istics 139, Springer Verlag, New York.<br />

Pagan A., 1996, The econom<strong>et</strong>rics of financial mark<strong>et</strong>s, Journal of Empirical Finance 3, 15-102.<br />

Prause, K., 1998, The generalized hyperbolic mo<strong>de</strong>l, PhD Dissert<strong>at</strong>ion, University of Freiburg.<br />

Ramshand, L. and R. Susmel, 1998, Vol<strong>at</strong>ility and cross correl<strong>at</strong>ion across major stock mark<strong>et</strong>s, Journal of<br />

Empirical Finance 5, 397-416.<br />

Rootzen H., M.R. Leadb<strong>et</strong>ter and L. <strong>de</strong> Haan, 1998, On the distribution of tail array sums for strongly<br />

mixing st<strong>at</strong>ionnary sequences, Annals of Applied Probability 8, 868-885.<br />

42


Rubinstein, M., 1973, The fundamental theorem of param<strong>et</strong>er-preference security valu<strong>at</strong>ion. Journal of Financial<br />

and Quantit<strong>at</strong>ive Analysis 8, 61-69.<br />

Samuelson, P.A., 1965, Proof th<strong>at</strong> Properly Anticip<strong>at</strong>ed Prices Fluctu<strong>at</strong>e Randomly, Industrial Management<br />

Review 6, 41-49.<br />

Serva, M., U.L. Fulco, M.L. Lyra and G.M. Viswan<strong>at</strong>han, 2002, Kinem<strong>at</strong>ics of stock prices, preprint <strong>at</strong><br />

http://arXiv.org/abs/cond-m<strong>at</strong>/0209103<br />

Sharpe, W., 1964, Capital ass<strong>et</strong> prices: A theory of mark<strong>et</strong> equilirium un<strong>de</strong>r condition of risk, journal of<br />

finance 19, 425-442.<br />

Simon, H.A., 1957, Mo<strong>de</strong>ls of man: social and r<strong>at</strong>ional; m<strong>at</strong>hem<strong>at</strong>ical essays on r<strong>at</strong>ional human behavior in<br />

a social s<strong>et</strong>ting (New York, Wiley)<br />

Smith, R.L., 1985, Maximum likelihood estim<strong>at</strong>ion in a class of non-regular cases. Biom<strong>et</strong>rika 72, 67-90.<br />

Sorn<strong>et</strong>te, D., 1998, Linear stochastic dynamics with nonlinear fractal properties, Physica A 250, 295-314.<br />

Sorn<strong>et</strong>te, D., 2000, Critical Phenomena in N<strong>at</strong>ural Sciences, Chaos, Fractals, Self-organiz<strong>at</strong>ion and Disor<strong>de</strong>r:<br />

Concepts and Tools, (Springer Series in Synerg<strong>et</strong>ics, Hei<strong>de</strong>lberg).<br />

Sorn<strong>et</strong>te, D. and R. Cont, 1997, Convergent multiplic<strong>at</strong>ive processes repelled from zero: power laws and<br />

trunc<strong>at</strong>ed power laws, J. Phys. I France 7, 431-444.<br />

Sorn<strong>et</strong>te, D., L. Knopoff, Y.Y. Kagan and C. Vanneste, 1996, Rank-or<strong>de</strong>ring st<strong>at</strong>istics of extreme events:<br />

applic<strong>at</strong>ion to the distribution of large earthquakes, J.Geophys.Res. 101, 13883-13893.<br />

Sorn<strong>et</strong>te, D., P. Simon<strong>et</strong>ti and J.V. An<strong>de</strong>rsen, 2000, φ q -field theory for Portfolio optimiz<strong>at</strong>ion: “f<strong>at</strong> tails” and<br />

non-linear correl<strong>at</strong>ions, Physics Report 335 (2), 19-92.<br />

Starica C. and O. Pict<strong>et</strong>, 1999, The tales the tails of GARCH(1,1) process tell. Working Paper, Univ. of<br />

Pennsylvania.<br />

Stuart A. and K. Ord, 1994, Kendall’s advances theory of st<strong>at</strong>istics (John Wiley and Sons).<br />

Mizuno, T., S. Kurihara, M. Takayasu and H. Takayasu, 2002, Analysis of high-resolution foreign exchange<br />

d<strong>at</strong>a of USD-JPY for 13 years, working paper http://xxx.lanl.gov/abs/cond-m<strong>at</strong>/0211162<br />

Vries, <strong>de</strong> C.G., 1994, Stylized facts of nominal exchange r<strong>at</strong>e r<strong>et</strong>urns, in The Handbook of Intern<strong>at</strong>ional<br />

Macroeconomics, F. van <strong>de</strong>r Ploeg (ed.), 348-389 (Blackwell).<br />

Wilks, S. S., 1938, The Large Sample Distribution of the Likelihood R<strong>at</strong>io for Testing Composite Hypotheses<br />

, Annals of M<strong>at</strong>hemurical St<strong>at</strong>istics 9, 60-62.<br />

43<br />

107


108 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Mean St. Dev. Skewness Ex. Kurtosis Jarque-Bera<br />

Nasdaq (5 minutes) † 1.80 ·10 −6 6.61 ·10 −4 0.0326 11.8535 1.30 ·10 5 (0.00)<br />

Nasdaq (1 hour) † 2.40 ·10 −5 3.30 ·10 −3 1.3396 23.7946 4.40 ·10 4 (0.00)<br />

Nasdaq (5 minutes) ‡ - 6.33 ·10 −9 3.85 ·10 −4 -0.0562 6.9641 4.50 ·10 4 (0.00)<br />

Nasdaq (1 hour) ‡ 1.05 ·10 −6 1.90 ·10 −3 -0.0374 4.5250 1.58 ·10 3 (0.00)<br />

Dow Jones (1 day) 8.96·10 −5 4.70 ·10 −3 -0.6101 22.5443 6.03 ·10 5 (0.00)<br />

Dow jones (1 month) 1.80 ·10 −3 2.54 ·10 −2 -0.6998 5.3619 1.28 ·10 3 (0.00)<br />

Table 1: Descriptive st<strong>at</strong>istics for the Dow Jones r<strong>et</strong>urns calcul<strong>at</strong>ed over one day and one month and for<br />

the Nasdaq r<strong>et</strong>urns calcul<strong>at</strong>ed over five minutes and one hour. The numbers within parenthesis represent<br />

the p-value of Jarque-Bera’s normality test. (†) raw d<strong>at</strong>a, (‡) d<strong>at</strong>a corrected for the U-shape of the intra-day<br />

vol<strong>at</strong>ility due to the lunch effect.<br />

44


(a) In<strong>de</strong>pen<strong>de</strong>nt D<strong>at</strong>a<br />

Str<strong>et</strong>ched-Exponential c=0.7 Str<strong>et</strong>ched-Exponential c=0.3 Par<strong>et</strong>o Distribution b=3<br />

Maximum Maximum Maximum<br />

cluster 10 50 100 200 cluster 10 50 100 200 cluster 10 50 100 200<br />

mean 0.1870 0.1734 0.2032 0.2290 mean 0.9313 0.9910 1.0617 1.1011 mean 0.3669 0.4007 0.4455 0.4769<br />

Emp Std 0.0262 0.0340 0.0382 0.0415 Emp Std 0.0380 0.0464 0.0492 0.0508 Emp Std 0.0267 0.0353 0.0384 0.0407<br />

GPD GPD GPD<br />

quantile 0.9 0.95 0.99 0.995 quantile 0.9 0.95 0.99 0.995 quantile 0.9 0.95 0.99 0.995<br />

mean 0.1108 0.0758 -0.1374 -0.0509 mean -0.1234 0.1947 -0.2147 -0.2681 mean 0.3336 0.3271 0.3193 0.2585<br />

Emp Std 0.0346 0.1579 0.4648 0.4147 Emp Std 0.8139 0.6197 0.6625 0.597 Emp Std 0.0454 0.0604 0.1271 0.2991<br />

(b) Depen<strong>de</strong>nt D<strong>at</strong>a<br />

Str<strong>et</strong>ched-Exponential c=0.7 with long memory Str<strong>et</strong>ched-Exponential c=0.3 with long memory Par<strong>et</strong>o with long memory b=3<br />

Maximum Maximum Maximum<br />

cluster 10 50 100 200 cluster 10 50 100 200 cluster 10 50 100 200<br />

mean -0.2169 -0.2226 -0.2027 -0.1918 mean 0.1230 0.1143 0.1359 0.1569 mean 0.0566 0.0606 0.0794 0.0978<br />

Emp Std 0.1553 0.1512 0.1553 0.1718 Emp Std 0.0328 0.0414 0.0450 0.0443 Emp Std 0.0422 0.0495 0.0533 0.0560<br />

45<br />

GPD GPD GPD<br />

quantile 0.9 0.95 0.99 0.995 quantile 0.9 0.95 0.99 0.995 quantile 0.9 0.95 0.99 0.995<br />

mean -0.1005 -0.0593 -0.0189 -0.0314 mean 0.0732 0.0740 0.0031 -0.0559 mean 0.2952 0.3203 0.3153 0.2570<br />

Emp Std 0.0386 0.0503 0.1097 0.1700 Emp Std 0.0942 0.1804 0.3744 0.4822 Emp Std 0.0548 0.0694 0.1812 0.3382<br />

Table 2: Mean values and standard <strong>de</strong>vi<strong>at</strong>ions of the Maximum Likelihood estim<strong>at</strong>es of the param<strong>et</strong>er ξ (inverse of the Par<strong>et</strong>o exponent) for the distribution<br />

of maxima (cf. equ<strong>at</strong>ion 4) when d<strong>at</strong>a are clustered in samples of size 10,50,100 and 200 and for the Generalized Par<strong>et</strong>o Distribution (7) for thresholds<br />

u corresponding to quantiles 90%,95%,99% ans 99.5%. In panel (a), we have used iid samples of size 10000 drawn from a Str<strong>et</strong>ched-Exponential<br />

distribution with c = 0.7 and c = 0.3 and a Par<strong>et</strong>o distribution with tail in<strong>de</strong>x b = 3, while in panel (b) the samples are drawn from a long memory process<br />

with Str<strong>et</strong>ched-Exponential marginals and regularly-varying marginal as explained in the text.<br />

109


110 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

(a) In<strong>de</strong>pen<strong>de</strong>nt d<strong>at</strong>a<br />

Str<strong>et</strong>ched-Exponential c=0.7 Str<strong>et</strong>ched-Exponential c=0.3 Par<strong>et</strong>o Distribution b=3<br />

quantile 0.005 0.01 0.05 0.1 quantile 0.005 0.01 0.05 0.1 quantile 0.005 0.01 0.05 0.1<br />

N/k=4 N/k=4 N/k=4<br />

mean 0.0791 0.0689 0.1172 0.1432 mean 0.3843 0.4340 0.6301 0.7768 mean 0.3460 0.3496 0.3359 0.3334<br />

emp. Std 0.5156 0.3614 0.1652 0.1154 emp. Std 0.5643 0.3925 0.1800 0.1340 emp. Std 0.5384 0.3631 0.1760 0.1175<br />

th. Std 0.5148 0.3635 0.1636 0.1161 th. Std 0.5393 0.3847 0.1786 0.1302 th. Std 0.5358 0.3791 0.1691 0.1195<br />

N/k=10 N/k=10 N/k=10<br />

mean 0.0726 0.0652 0.0880 0.1083 mean 0.3613 0.3819 0.5028 0.5950 mean 0.3134 0.3379 0.3213 0.3382<br />

emp. Std 0.8218 0.5925 0.2602 0.1839 emp. Std 0.8961 0.6141 0.2741 0.1963 emp. Std 0.9003 0.6056 0.2551 0.1933<br />

th. Std 0.8133 0.5745 0.2577 0.1827 th. Std 0.8493 0.6027 0.2755 0.1983 th. Std 0.8425 0.5982 0.2668 0.1892<br />

(b) Depen<strong>de</strong>nt d<strong>at</strong>a<br />

Str<strong>et</strong>ched-Exponential c=0.7 with long memory Str<strong>et</strong>ched-Exponential c=0.3 with long memory Par<strong>et</strong>o b=3 with long memory<br />

quantile 0.005 0.01 0.05 0.1 quantile 0.005 0.01 0.05 0.1 quantile 0.005 0.01 0.05 0.1<br />

N/k=4 N/k=4 N/k=4<br />

mean -0.0439 -0.0736 -0.2134 -0.3395 mean 0.1297 0.1215 0.0410 0.0235 mean 0.1458 0.1261 -0.0023 -0.0790<br />

emp. Std 0.5396 0.3599 0.1643 0.1128 emp. Std 0.5557 0.3756 0.1633 0.1130 emp. Std 0.5572 0.3765 0.1633 0.1125<br />

th. Std 0.5073 0.3576 0.1579 0.1108 th. Std 0.5183 0.3661 0.1620 0.1143 th. Std 0.5194 0.3663 0.1612 0.1130<br />

46<br />

N/k=10 N/k=10 N/k=10<br />

mean -0.0371 -0.0307 -0.0928 -0.1781 mean 0.0961 0.1275 0.0682 0.0521 mean 0.1239 0.1461 0.0584 0.0196<br />

emp. Std 0.8325 0.5754 0.2561 0.1821 emp. Std 0.8314 0.5796 0.2607 0.1801 emp. Std 0.8352 0.5811 0.2608 0.1801<br />

th. Std 0.8028 0.5680 0.2524 0.1771 th. Std 0.8158 0.5793 0.2570 0.1814 th. Std 0.8188 0.5808 0.2567 0.1807<br />

Table 3: Pickands estim<strong>at</strong>es (9) of the param<strong>et</strong>er ξ for the Generalized Par<strong>et</strong>o Distribution (7) for thresholds u corresponding to quantiles 90%,95%,99%<br />

ans 99.5% and two different values of the r<strong>at</strong>io N/k respectively equal to 4 and 10. In panel (a), we have used iid samples of size 10000 drawn from a<br />

Str<strong>et</strong>ched-Exponential distribution with c = 0.7 and c = 0.3 and a Par<strong>et</strong>o distribution with tail in<strong>de</strong>x b = 3, while in panel (b) the samples are drawn from<br />

a long memory process with Str<strong>et</strong>ched-Exponential marginals and regularly-varying marginal.


(a) Dow Jones<br />

Positive Tail Neg<strong>at</strong>ive Tail<br />

Maximum Maximum<br />

cluster 10 50 100 200 cluster 10 50 100 200<br />

mean 0.2195 0.2150 0.2429 0.2884 mean 0.1346 0.1012 0.1222 0.1700<br />

Emp Std 0.0850 0.1163 0.1342 0.1238 Emp Std 0.1318 0.1437 0.1549 0.1671<br />

GPD GPD<br />

quantile 0.9 0.95 0.99 0.995 quantile 0.9 0.95 0.99 0.995<br />

mean 0.2479 0.2493 0.1808 0.3458 mean 0.2121 0.0244 0.2496 0.3118<br />

Emp Std 0.0224 0.0436 0.0654 0.1209 Emp Std 0.0294 0.0344 0.0979 0.1452<br />

(b) Nasdaq (Raw d<strong>at</strong>a)<br />

Positive Tail Neg<strong>at</strong>ive Tail<br />

Maximum Maximum<br />

cluster 10 50 100 200 cluster 10 50 100 200<br />

mean 1.2961 1.1992 0.9858 0.7844 mean 1.2105 0.4707 0.4146 0.4200<br />

Emp Std 0.2837 0.2955 0.4377 0.4679 Emp Std 0.2780 0.4625 0.4117 0.3980<br />

GPD GPD<br />

quantile 0.9 0.95 0.99 0.995 quantile 0.9 0.95 0.99 0.995<br />

mean 0.2123 0.3025 0.5973 0.5973 mean 0.1477 0.2189 0.5973 0.5973<br />

Emp Std 0.0693 0.0712 0 0 Emp Std 0.0468 0.0798 0 0<br />

(c) Nasdaq (Corr<strong>et</strong>ed d<strong>at</strong>a)<br />

Positive Tail Neg<strong>at</strong>ive Tail<br />

Maximum Maximum<br />

cluster 10 50 100 200 cluster 10 50 100 200<br />

mean 0.2163 0.2652 0.2738 0.2771 mean 0.2530 0.2276 0.3173 0.3681<br />

Emp Std 0.2461 0.2825 0.2364 0.2604 Emp Std 0.3345 0.3273 0.4303 0.4289<br />

GPD GPD<br />

quantile 0.9 0.95 0.99 0.995 quantile 0.9 0.95 0.99 0.995<br />

mean 0.2569 0.4945 0.5943 0.5973 mean 0.2560 0.3185 0.5929 0.5847<br />

Emp Std 0.1287 0.1683 0.0304 0.0000 Emp Std 0.1794 0.2137 0.0446 0.0883<br />

Table 4: Mean values and standard <strong>de</strong>vi<strong>at</strong>ions of the Maximum Likelihood estim<strong>at</strong>es of the param<strong>et</strong>er ξ for<br />

the distribution of maximum (cf. equ<strong>at</strong>ion 4) when d<strong>at</strong>a are clustered in samples of size 10,50,100 and 200<br />

and for the Generalized Par<strong>et</strong>o Distribution (7) for thresholds u corresponding to quantiles 90%,95%,99%<br />

ans 99.5%. In panel (a), are presented the results for the Dow Jones, in panel (b) for the Nasdaq for raw d<strong>at</strong>a<br />

and in panel (c) the Nasdaq corrected for the “lunch effect”.<br />

47<br />

111


112 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

(a) Dow Jones<br />

Neg<strong>at</strong>ive Tail Positive Tail<br />

quantile 0.995 0.99 0.95 0.90 quantile 0.995 0.99 0.95 0.90<br />

N/k =4 N/k =4<br />

mean 0.2491 -0.0366 0.2721 0.2268 mean 0.6427 -0.3035 0.4006 0.2338<br />

emp. Std 0.3561 0.2382 0.0974 0.0639 emp. Std 0.3913 0.2233 0.0902 0.0695<br />

th. Std 0.5274 0.3590 0.1674 0.1175 th. Std 0.5663 0.3510 0.1710 0.1177<br />

N/k =10 N/k=10<br />

mean 0.4449 -0.2539 0.0279 0.2905 mean -0.2228 0.8057 0.3622 0.3107<br />

emp. Std 0.5354 0.5563 0.1314 0.0943 emp. Std 1.3601 0.5420 0.1301 0.1227<br />

th. Std 0.8619 0.5568 0.2558 0.1877 th. Std 0.7891 0.6552 0.2686 0.1883<br />

(b) Nasdaq (Raw d<strong>at</strong>a)<br />

Neg<strong>at</strong>ive Tail Positive Tail<br />

quantile 0.995 0.99 0.95 0.90 quantile 0.995 0.99 0.95 0.90<br />

N/k =4 N/k=4<br />

mean 0.3189 0.0006 0.1055 0.0284 mean 1.0709 0.2538 0.1090 0.0386<br />

emp. Std 0.2489 0.1295 0.0649 0.043 emp. Std 0.3461 0.2190 0.0626 0.0384<br />

th. Std 0.5333 0.3605 0.1634 0.1144 th. Std 0.6222 0.3732 0.1634 0.1145<br />

N/k =10 N/k =10<br />

mean 0.2034 -0.1098 0.1634 0.2445 mean -0.8666 1.1228 0.1601 0.2846<br />

emp. Std 0.6173 0.4596 0.0871 0.0571 emp. Std 0.6405 0.3499 0.1157 0.0762<br />

th. Std 0.8281 0.5634 0.2604 0.1863 th. Std 0.7835 0.7042 0.2602 0.1875<br />

(c) Nasdaq (Corrected d<strong>at</strong>a)<br />

Neg<strong>at</strong>ive Tail Positive Tail<br />

quantile 0.995 0.99 0.95 0.90 quantile 0.995 0.99 0.95 0.90<br />

N/k =4 N/k=4<br />

mean 0.1910 0.3435 0.0616 0.2070 mean 1.4051 -0.1313 0.0255 0.2259<br />

emp. Std 0.2238 0.1441 0.0487 0.0333 emp. Std 0.2299 0.1424 0.0739 0.0390<br />

th. Std 0.5228 0.3787 0.1624 0.1172 th. Std 0.6742 0.3556 0.1617 0.1175<br />

N/k =10 N/k =10<br />

mean 0.0630 0.0543 0.4537 -0.0699 mean -0.3357 1.3961 0.4034 0.0770<br />

emp. Std 0.4899 0.1004 0.0780 0.0614 emp. Std 0.6830 0.2481 0.0891 0.0643<br />

th. Std 0.5137 0.3629 0.1727 0.1150 th. Std 0.7835 0.7521 0.2705 0.1820<br />

Table 5: Pickands estim<strong>at</strong>es (9) of the param<strong>et</strong>er ξ for the Generalized Par<strong>et</strong>o Distribution (7) for thresholds u<br />

corresponding to quantiles 90%,95%,99% ans 99.5% and two different values of the r<strong>at</strong>io N/k respectiveley<br />

equal to 4 and 10. In panel (a), are presented the results for the Dow Jones, in panel (b) for the Nasdaq for<br />

raw d<strong>at</strong>a and in panel (c) the Nasdaq corrected for the “lunch effect”.<br />

48


Nasdaq Dow Jones<br />

Pos. Tail Neg. Tail Pos. Tail Neg. Tail<br />

q 10 3 u nu 10 3 u nu 10 2 u nu 10 2 u nu<br />

q1=0 0.0053 11241 0.0053 10751 0.0032 14949 0.0028 13464<br />

q2=0.1 0.0573 10117 0.0571 9676 0.0976 13454 0.0862 12118<br />

q3=0.2 0.1124 8993 0.1129 8601 0.1833 11959 0.1739 10771<br />

q4=0.3 0.1729 7869 0.1723 7526 0.2783 10464 0.263 9425<br />

q5=0.4 0.238 6745 0.2365 6451 0.3872 8969 0.3697 8078<br />

q6=0.5 0.3157 5620 0.3147 5376 0.5055 7475 0.4963 6732<br />

q7=0.6 0.406 4496 0.412 4300 0.6426 5980 0.6492 5386<br />

q8=0.7 0.5211 3372 0.5374 3225 0.8225 4485 0.8376 4039<br />

q9=0.8 0.6901 2248 0.7188 2150 1.0545 2990 1.1057 2693<br />

q10=0.9 0.973 1124 1.0494 1075 1.4919 1495 1.6223 1346<br />

q11=0.925 1.1016 843 1.1833 806 1.6956 1121 1.8637 1010<br />

q12=0.95 1.2926 562 1.3888 538 1.9846 747 2.2285 673<br />

q13=0.96 1.3859 450 1.4955 430 2.1734 598 2.4197 539<br />

q14=0.97 1.53 337 1.639 323 2.413 448 2.7218 404<br />

q15=0.98 1.713 225 1.8557 215 2.7949 299 3.1647 269<br />

q16=0.99 2.1188 112 1.8855 108 3.5704 149 4.1025 135<br />

q17=0.9925 2.3176 84 2.4451 81 3.9701 112 4.3781 101<br />

q18=0.995 3.0508 56 2.7623 54 4.5746 75 5.0944 67<br />

Table 6: Significance levels qk and their corresponding lower thresholds uk for the four different samples.<br />

The number nu provi<strong>de</strong>s the size of the sub-sample beyond the threshold uk.<br />

49<br />

113


114 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Mean AD-st<strong>at</strong>istic for u1 – u9<br />

N-pos N-neg DJ-pos DJ-neg<br />

Weibull 1.86 (89.34%) 1.34 (79.18%) 5.43 (99.82%) 3.85 (98.91%)<br />

Gen. Par<strong>et</strong>o 4.45 (99.45%) 2.68 (96.01%) 12.47 (99.996%) 6.44 (99,99%)<br />

Gamma 3.59 (98.59%) 2.82 (96.62%) 8.76 (99.996%) 7.23 (99.996%)<br />

Exponential 3.64 (98.66%) 2.76 (96.36%) 13.96 (99.996%) 10.10 (99.996%)<br />

Par<strong>et</strong>o 475.2 (99.996%) 441.7 (99.996%) 691.7 (99.996%) 607.9 (99.996%)<br />

Mean AD-st<strong>at</strong>istic for u10 – u18<br />

Weibull 1.21 (74.29%) .988 (63.39%) .835 (53,52%) .849 (54.54%)<br />

Gen. Par<strong>et</strong>o 2.29 (93.57%) 1.88 (89.52%) 1.95 (90.28%) 1.36 (79.67%)<br />

Gamma 2.49 (95.00%) 1.90 (89.74%) 2.12 (92.01%) 1.63 (86.02%)<br />

Exponential 3.26 (97.97%) 1.93 (90.02%) 4.52 (99.10%) 2.70 (96.11%)<br />

Par<strong>et</strong>o 1.80 (88.60%) 1.77 (88.23%) 1.18 (73.01%) 1.65 (86.40%)<br />

Table 7: Mean An<strong>de</strong>rson-Darling distances in the range of thresholds u1-u9 and in the range u10-u18. The<br />

figures within parenthesis characterize the goodness of fit: they represent the significance levels with which<br />

the consi<strong>de</strong>red mo<strong>de</strong>l can be rejected.<br />

50


Nasdaq Dow Jones<br />

Pos. Tail Neg. Tail Pos. Tail Neg. Tail<br />

MLE ADE MLE ADE MLE ADE MLE ADE<br />

1 0.256 (0.002) 0.192 0.254 (0.002) 0.191 0.204 (0.002) 0.150 0.199 (0.002) 0.147<br />

2 0.555 (0.006) 0.443 0.548 (0.006) 0.439 0.576 (0.005) 0.461 0.538 (0.005) 0.431<br />

3 0.765 (0.008) 0.630 0.755 (0.008) 0.625 0.782 (0.007) 0.644 0.745 (0.007) 0.617<br />

4 0.970 (0.011) 0.819 0.945 (0.011) 0.800 0.989 (0.010) 0.833 0.920 (0.009) 0.777<br />

5 1.169 (0.014) 1.004 1.122 (0.014) 0.965 1.219 (0.013) 1.053 1.114 (0.012) 0.960<br />

6 1.400 (0.019) 1.227 1.325 (0.018) 1.157 1.447 (0.017) 1.279 1.327 (0.016) 1.169<br />

7 1.639 (0.024) 1.460 1.562 (0.024) 1.386 1.685 (0.022) 1.519 1.563 (0.021) 1.408<br />

8 1.916 (0.033) 1.733 1.838 (0.032) 1.655 1.984 (0.030) 1.840 1.804 (0.028) 1.659<br />

9 2.308 (0.049) 2.145 2.195 (0.047) 1.999 2.240 (0.041) 2.115 2.060 (0.040) 1.921<br />

10 2.759 (0.082) 2.613 2.824 (0.086) 2.651 2.575 (0.067) 2.474 2.436 (0.066) 2.315<br />

11 2.955 (0.102) 2.839 3.008 (0.106) 2.836 2.715 (0.081) 2.648 2.581 (0.081) 2.467<br />

12 3.232 (0.136) 3.210 3.352 (0.145) 3.259 2.787 (0.102) 2.707 2.765 (0.107) 2.655<br />

13 3.231 (0.152) 3.193 3.441 (0.166) 3.352 2.877 (0.118) 2.808 2.782 (0.120) 2.642<br />

14 3.358 (0.183) 3.390 3.551 (0.198) 3.479 2.920 (0.138) 2.841 2.903 (0.144) 2.740<br />

15 3.281 (0.219) 3.306 3.728 (0.254) 3.730 2.989 (0.173) 2.871 3.059 (0.186) 2.870<br />

16 3.327 (0.313) 3.472 3.990 (0.384) 3.983 3.226 (0.263) 3.114 3.690 (0.318) 3.668<br />

17 3.372 (0.366) 3.636 3.917 (0.435) 3.860 3.427 (0.322) 3.351 3.518 (0.350) 3.397<br />

18 3.136 (0.415) 3.326 4.251 (0.578) 4.302 3.818 (0.441) 3.989 4.168 (0.506) 4.395<br />

Table 8: Maximum Likelihood and An<strong>de</strong>rson-Darling estim<strong>at</strong>es of the Par<strong>et</strong>o param<strong>et</strong>er b. Figures within<br />

parentheses give the standard <strong>de</strong>vi<strong>at</strong>ion of the Maximum Likelihood estim<strong>at</strong>or.<br />

51<br />

115


116 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Nasdaq Dow Jones<br />

Pos. Tail Neg. Tail Pos. Tail Neg. Tail<br />

MLE ADE MLE ADE MLE ADE MLE ADE<br />

1 1.007 (0.008) 1.053 0.987 (0.008) 1.017 1.040 (0.007) 1.104 0.975 (0.007) 1.026<br />

2 0.983 (0.011) 1.051 0.953 (0.011) 0.993 0.973 (0.010) 1.075 0.910 (0.010) 0.989<br />

3 0.944 (0.014) 1.031 0.912 (0.014) 0.955 0.931 (0.013) 1.064 0.856 (0.012) 0.948<br />

4 0.896 (0.018) 0.995 0.876 (0.018) 0.916 0.878 (0.015) 1.038 0.821 (0.015) 0.933<br />

5 0.857 (0.021) 0.978 0.861 (0.021) 0.912 0.792 (0.019) 0.955 0.767 (0.018) 0.889<br />

6 0.790 (0.026) 0.916 0.833 (0.026) 0.891 0.708 (0.023) 0.873 0.698 (0.022) 0.819<br />

7 0.732 (0.033) 0.882 0.796 (0.033) 0.859 0.622 (0.028) 0.788 0.612 (0.028) 0.713<br />

8 0.661 (0.042) 0.846 0.756 (0.042) 0.834 0.480 (0.035) 0.586 0.531 (0.035) 0.597<br />

9 0.509 (0.058) 0.676 0.715 (0.059) 0.865 0.394 (0.047) 0.461 0.478 (0.047) 0.527<br />

10 0.359 (0.092) 0.631 0.522 (0.099) 0.688 0.304 (0.074) 0.346 0.403 (0.076) 0.387<br />

11 0.252 (0.110) 0.515 0.481 (0.120) 0.697 0.231 (0.087) 0.158 0.379 (0.091) 0.337<br />

12 0.039 (0.138) 0.177 0.273 (0.155) 0.275 0.269 (0.111) 0.207 0.357 (0.119) 0.288<br />

13 0.057 (0.155) 0.233 0.255 (0.177) 0.274 0.247 (0.127) 0.147 0.428 (0.136) 0.465<br />

14 0 0 0.215 (0.209) 0.194 0.283 (0.150) 0.174 0.448 (0.164) 0.641<br />

15 0 0 0.091 (0.260) 0 0.374 (0.192) 0.407 0.451 (0.210) 0.863<br />

16 0 0 0.064 (0.390) 0 0.372 (0.290) 0.382 0.022 (0.319) 0.110<br />

17 0 0 0.158 (0.452) 0.224 0.281 (0.346) 0.255 0.178 (0.367) 0.703<br />

18 0 0 0 0 0 0 0 0<br />

Table 9: Maximum Likelihood and An<strong>de</strong>rson-Darling estim<strong>at</strong>es of the form param<strong>et</strong>er c of the Weibull<br />

(Str<strong>et</strong>ched-Exponential) distribution.<br />

52


Nasdaq Dow Jones<br />

Pos. Tail Neg. Tail Pos. Tail Neg. Tail<br />

MLE ADE MLE ADE MLE ADE MLE ADE<br />

1 0.443 (0.004) 0.441 0.455 (0.005) 0.452 7.137 (0.060) 7.107 7.268 (0.068) 7.127<br />

2 0.429 (0.006) 0.440 0.436 (0.006) 0.443 6.639 (0.082) 6.894 6.726 (0.094) 6.952<br />

3 0.406 (0.008) 0.432 0.410 (0.009) 0.424 6.236 (0.113) 6.841 6.108 (0.131) 6.640<br />

4 0.372 (0.011) 0.414 0.383 (0.012) 0.402 5.621 (0.155) 6.655 5.656 (0.175) 6.515<br />

5 0.341 (0.015) 0.404 0.369 (0.016) 0.399 4.515 (0.215) 5.942 4.876 (0.235) 6.066<br />

6 0.283 (0.020) 0.364 0.345 (0.021) 0.383 3.358 (0.277) 5.081 3.801 (0.305) 5.220<br />

7 0.231 (0.026) 0.339 0.309 (0.028) 0.358 2.192 (0.326) 4.073 2.475 (0.366) 3.764<br />

8 0.166 (0.034) 0.311 0.269 (0.039) 0.336 0.682 (0.256) 1.606 1.385 (0.389) 2.149<br />

9 0.053 (0.030) 0.164 0.225 (0.057) 0.365 0.195 (0.163) 0.510 0.810 (0.417) 1.297<br />

10 0.005 (0.010) 0.128 0.058 (0.057) 0.184 0.019 (0.048) 0.065 0.276 (0.361) 0.207<br />

11 0.000 (0.001) 0.049 0.036 (0.053) 0.194 0.001 (0.003) 0.000 0.169 (0.316) 0.065<br />

12 0.000 (0.000) 0.000 0.000 (0.001) 0.000 0.005 (0.025) 0.000 0.103 (0.291) 0.012<br />

13 0.000 (0.000) 0.000 0.000 (0.001) 0.000 0.001 (0.010) 0.000 0.427 (0.912) 0.729<br />

14 - - 0.000 (0.000) 0.000 0.009 (0.055) 0.000 0.577 (1.357) 3.509<br />

15 - - 0.000 (0.000) - 0.149 (0.629) 0.282 0.613 (1.855) 9.640<br />

16 - - 0.000 (0.000) - 0.145 (0.960) 0.179 0.000 (0.000) 0.000<br />

17 - - 0.000 (0.000) 0.000 0.007 (0.109) 0.002 0.000 (0.000) 5.528<br />

18 - - - - - - - -<br />

Table 10: Maximum Likelihood and An<strong>de</strong>rson-Darling estim<strong>at</strong>es of the form param<strong>et</strong>er d(×10 3 ) of the<br />

Weibull (Str<strong>et</strong>ched-Exponential) distribution.<br />

53<br />

117


118 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Nasdaq Dow Jones<br />

Pos. Tail Neg. Tail Pos. Tail Neg. Tail<br />

MLE ADE MLE ADE MLE ADE MLE ADE<br />

1 0.441 (0.004) 0.441 0.458 (0.004) 0.451 7.012 (0.057) 7.055 7.358 (0.063) 7.135<br />

2 0.435 (0.004) 0.431 0.454 (0.005) 0.444 6.793 (0.059) 6.701 7.292 (0.066) 6.982<br />

3 0.431 (0.005) 0.424 0.452 (0.005) 0.438 6.731 (0.062) 6.575 7.275 (0.070) 6.890<br />

4 0.428 (0.005) 0.416 0.453 (0.005) 0.437 6.675 (0.065) 6.444 7.358 (0.076) 6.938<br />

5 0.429 (0.005) 0.415 0.458 (0.006) 0.443 6.607 (0.070) 6.264 7.429 (0.083) 6.941<br />

6 0.429 (0.006) 0.411 0.464 (0.006) 0.447 6.630 (0.077) 6.186 7.529 (0.092) 6.951<br />

7 0.436 (0.006) 0.413 0.472 (0.007) 0.453 6.750 (0.087) 6.207 7.700 (0.105) 7.005<br />

8 0.447 (0.008) 0.421 0.483 (0.009) 0.463 6.920 (0.103) 6.199 8.071 (0.127) 7.264<br />

9 0.462 (0.010) 0.425 0.503 (0.011) 0.482 7.513 (0.137) 6.662 8.797 (0.170) 7.908<br />

10 0.517 (0.015) 0.468 0.529 (0.016) 0.496 8.792 (0.227) 7.745 10.205 (0.278) 9.175<br />

11 0.540 (0.019) 0.479 0.551 (0.019) 0.514 9.349 (0.279) 8.148 10.835 (0.341) 9.751<br />

12 0.574 (0.024) 0.489 0.570 (0.025) 0.516 10.487 (0.383) 9.265 11.796 (0.454) 10.657<br />

13 0.615 (0.029) 0.526 0.594 (0.029) 0.537 11.017 (0.451) 9.722 12.598 (0.543) 11.581<br />

14 0.653 (0.035) 0.543 0.627 (0.035) 0.564 11.920 (0.563) 10.626 13.349 (0.664) 12.386<br />

15 0.750 (0.050) 0.625 0.671 (0.046) 0.594 13.251 (0.766) 12.062 14.462 (0.880) 13.521<br />

16 0.917 (0.086) 0.741 0.760 (0.073) 0.674 15.264 (1.246) 13.943 15.294 (1.316) 13.285<br />

17 0.991 (0.107) 0.783 0.827 (0.092) 0.744 15.766 (1.483) 14.210 17.140 (1.705) 15.327<br />

18 1.178 (0.156) 0.978 0.857 (0.117) 0.742 16.207 (1.871) 13.697 16.883 (2.047) 13.476<br />

Table 11: Maximum Likelihood- and An<strong>de</strong>rson-Darling estim<strong>at</strong>es of the scale param<strong>et</strong>er d = 10 −3 d ′ of the<br />

Exponential distribution.Figures within parentheses give the standard <strong>de</strong>vi<strong>at</strong>ion of the Maximum Likelihood<br />

estim<strong>at</strong>or.<br />

54


Nasdaq Dow Jones<br />

Pos. Tail Neg. Tail Pos. Tail Neg. Tail<br />

MLE ADE MLE ADE MLE ADE MLE ADE<br />

MLE ADE MLE ADE MLE ADE MLE ADE<br />

1 -1.03 -1.09 -1.00 -1.03 -1.12 -1.18 -0.100 -1.05<br />

2 -1.02 -1.13 -0.934 -1.01 -1.01 -1.19 -0.862 -1.01<br />

3 -0.931 -1.13 -0.821 -0.955 -0.921 -1.23 -0.710 -0.943<br />

4 -0.787 -1.09 -0.701 -0.887 -0.766 -1.24 -0.594 -0.944<br />

5 -0.655 -1.12 -0.636 -0.914 -0.458 -1.09 -0.397 -0.870<br />

6 -0.395 -1.01 -0.518 -0.911 -0.119 -0.929 -0.118 -0.715<br />

7 -0.142 -1.03 -0.351 -0.906 0.261 -0.763 0.251 -0.462<br />

8 0.206 -1.09 -0.149 -0.97 0.881 -0.202 0.619 -0.160<br />

9 0.971 -0.754 0.101 -1.35 1.31 0.127 0.930 -0.018<br />

10 1.83 -1.04 1.17 -1.33 1.82 0.408 1.40 0.435<br />

11 2.34 -0.441 1.45 -1.53 2.10 0.949 1.59 0.420<br />

12 3.12 -0.445 2.52 -0.435 2.04 0.733 1.78 0.403<br />

13 3.10 -0.444 2.63 -0.402 2.16 0.886 1.57 -0.375<br />

14 3.35 1.43 2.89 -0.419 2.07 0.786 1.58 -0.425<br />

15 3.27 1.57 3.36 1.35 1.82 -0.282 1.64 -2.75<br />

16 3.30 2.97 3.80 -0.411 1.88 -0.129 3.60 -0.428<br />

17 3.34 3.19 3.46 -0.412 2.35 -0.317 3.19 -0.433<br />

18 2.74 2.90 4.22 -0.408 3.73 3.27 4.11 0.374<br />

Table 12: Maximum Likelihood- and An<strong>de</strong>rson-Darling estim<strong>at</strong>es of the form param<strong>et</strong>er b of the Incompl<strong>et</strong>e<br />

Gamma distribution.<br />

55<br />

119


120 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Dow Jones Positive Tail Dow Jones Neg<strong>at</strong>ive Tail<br />

ˆb b † Wald Test Score Test ˆb b † Wald Test Score Test<br />

1 0.204 0.205 79.009% 78.793% 0.199 0.200 77.394% 77.166%<br />

2 0.576 0.580 52.580% 52.300% 0.538 0.541 45.609% 45.385%<br />

3 0.782 0.787 40.708% 40.474% 0.745 0.749 28.921% 28.792%<br />

4 0.989 0.995 29.416% 29.251% 0.920 0.924 21.447% 21.354%<br />

5 1.219 1.224 15.222% 15.159% 1.114 1.118 13.074% 13.027%<br />

6 1.447 1.452 7.202% 7.181% 1.327 1.330 6.456% 6.439%<br />

7 1.685 1.689 2.984% 2.978% 1.563 1.565 2.224% 2.221%<br />

8 1.984 1.986 0.449% 0.448% 1.804 1.805 0.559% 0.558%<br />

9 2.240 2.241 0.078% 0.078% 2.060 2.060 0.179% 0.179%<br />

10 2.575 2.575 0.005% 0.005% 2.436 2.437 0.020% 0.020%<br />

11 2.715 2.715 0.004% 0.004% 2.581 2.582 0.010% 0.010%<br />

12 2.787 2.787 0.004% 0.004% 2.765 2.765 0.009% 0.009%<br />

13 2.877 2.877 0.004% 0.004% 2.782 2.783 0.048% 0.048%<br />

14 2.920 2.920 0.005% 0.005% 2.903 2.905 0.082% 0.082%<br />

15 2.989 2.989 0.002% 0.002% 3.059 3.063 0.099% 0.099%<br />

16 3.226 3.226 0.001% 0.001% 3.690 3.690 0.000% 0.000%<br />

17 3.427 3.427 0.001% 0.001% 3.518 3.519 0.002% 0.002%<br />

18 3.818 - - - 4.168 - - -<br />

Nasdaq Positive Tail Nasdaq Neg<strong>at</strong>ive Tail<br />

ˆb b † Wald Test Score Test ˆb b † Wald Test Score Test<br />

1 0.256 0.256 38.328% 38.238% 0.254 0.255 39.906% 39.812%<br />

2 0.555 0.557 38.525% 38.352% 0.548 0.550 26.450% 26.369%<br />

3 0.765 0.769 27.629% 27.505% 0.755 0.757 14.636% 14.601%<br />

4 0.970 0.974 17.914% 17.844% 0.945 0.946 7.777% 7.763%<br />

5 1.169 1.174 13.144% 13.094% 1.122 1.124 6.269% 6.258%<br />

6 1.400 1.404 7.080% 7.060% 1.325 1.327 4.096% 4.090%<br />

7 1.639 1.643 4.221% 4.211% 1.562 1.564 2.468% 2.464%<br />

8 1.916 1.920 2.167% 2.162% 1.838 1.840 1.481% 1.480%<br />

9 2.308 2.311 0.420% 0.419% 2.195 2.199 1.061% 1.059%<br />

10 2.759 2.761 0.071% 0.071% 2.824 2.826 0.137% 0.136%<br />

11 2.955 2.956 0.013% 0.013% 3.008 3.010 0.089% 0.089%<br />

12 3.232 3.232 0.000% 0.000% 3.352 3.353 0.002% 0.002%<br />

13 3.231 3.231 0.000% 0.000% 3.441 3.441 0.001% 0.001%<br />

14 3.358 - - - 3.551 3.551 0.000% 0.000%<br />

15 3.281 - - - 3.728 3.728 0.000% 0.000%<br />

16 3.327 - - - 3.990 3.990 0.000% 0.000%<br />

17 3.372 - - - 3.917 3.917 0.000% 0.000%<br />

18 3.136 - - - 4.251 - - -<br />

Table 13: Wald and Score encompassing Test for non-nested hypotheses. The p-value gives the significance<br />

with which one can reject the null hypothesis: (SE) encompasses (PD). b † is the estim<strong>at</strong>or of the Par<strong>et</strong>o<br />

mo<strong>de</strong>l un<strong>de</strong>r the hypothesis for the SE distribution. ˆb is the estim<strong>at</strong>or un<strong>de</strong>r the true distribution for the<br />

Par<strong>et</strong>o mo<strong>de</strong>l.<br />

56


Dow Jones positive tail Dow Jones neg<strong>at</strong>ive tail<br />

ˆηT ˆb p-value ˆηT ˆb p-value<br />

1 1.044 0.204 100.000% 0.979 0.199 100.000%<br />

2 1.123 0.576 100.000% 1.050 0.538 100.000%<br />

3 1.229 0.782 100.000% 1.148 0.745 100.000%<br />

4 1.351 0.989 100.000% 1.259 0.920 100.000%<br />

5 1.493 1.219 100.000% 1.388 1.114 100.000%<br />

6 1.653 1.447 100.000% 1.538 1.327 100.000%<br />

7 1.835 1.685 100.000% 1.715 1.563 100.000%<br />

8 2.069 1.984 100.000% 1.912 1.804 100.000%<br />

9 2.294 2.240 100.000% 2.141 2.060 100.000%<br />

10 2.605 2.575 99.997% 2.489 2.436 100.000%<br />

11 2.732 2.715 99.165% 2.626 2.581 99.997%<br />

12 2.809 2.787 98.487% 2.803 2.765 99.766%<br />

13 2.895 2.877 94.723% 2.835 2.782 99.869%<br />

14 2.943 2.920 94.010% 2.960 2.903 99.514%<br />

15 3.027 2.989 95.032% 3.116 3.059 97.480%<br />

16 3.261 3.226 80.157% 3.690 3.690 5.634%<br />

17 3.447 3.427 58.002% 3.527 3.518 38.929%<br />

18 3.818 3.818 - 4.168 4.168 -<br />

Nasdaq positive tail Nasdaq neg<strong>at</strong>ive tail<br />

ˆηT ˆb p-value ˆηT ˆb p-value<br />

1 1.019 0.256 100.000% 1.000 0.254 100.000%<br />

2 1.118 0.555 100.000% 1.090 0.548 100.000%<br />

3 1.225 0.765 100.000% 1.194 0.755 100.000%<br />

4 1.347 0.970 100.000% 1.312 0.945 100.000%<br />

5 1.486 1.169 100.000% 1.447 1.122 100.000%<br />

6 1.650 1.400 100.000% 1.605 1.325 100.000%<br />

7 1.840 1.639 100.000% 1.796 1.562 100.000%<br />

8 2.069 1.916 100.000% 2.032 1.838 100.000%<br />

9 2.393 2.308 100.000% 2.353 2.195 100.000%<br />

10 2.799 2.759 99.994% 2.900 2.824 100.000%<br />

11 2.974 2.955 98.132% 3.070 3.008 99.996%<br />

12 3.232 3.232 22.570% 3.372 3.352 92.329%<br />

13 3.232 3.231 28.945% 3.457 3.441 85.305%<br />

14 3.358 3.358 - 3.563 3.551 69.909%<br />

15 3.281 3.281 - 3.730 3.728 27.179%<br />

16 3.327 3.327 - 3.991 3.990 13.117%<br />

17 3.372 3.372 - 3.923 3.917 27.655%<br />

18 3.136 3.136 - 4.251 4.251 -<br />

Table 14: Test of the (SE) mo<strong>de</strong>l against the null hypothesis th<strong>at</strong> the true mo<strong>de</strong>l is the Par<strong>et</strong>o mo<strong>de</strong>l. The<br />

p-value gives the significance with which one can reject the null hypothesis.<br />

57<br />

121


122 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

mean absolute r<strong>et</strong>urn |r|<br />

x 10−4<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

0 10 20 30 40<br />

time (by five minutes)<br />

50 60 70 80<br />

Figure 1: Average absolute r<strong>et</strong>urn, as a function of time within a trading day. The U-shape characterizes the<br />

so-called lunch effect.<br />

58


Vari<strong>at</strong>ion coefficient<br />

Vari<strong>at</strong>ion coefficient<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Vari<strong>at</strong>ion coeff.=std/mean of time intervals b<strong>et</strong>ween pos. extremums of DJ<br />

0<br />

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08<br />

Threshold u, (for extremums X > u)<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Vari<strong>at</strong>ion coeff.=std/mean of time intervals b<strong>et</strong>ween neg. extremums, DJ<br />

0<br />

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08<br />

Threshold, u (for extremums X < −u)<br />

Figure 2: Coefficient of vari<strong>at</strong>ion V for the Dow Jones daily r<strong>et</strong>urns. An increase of V characterizes the<br />

increase of “clustering”.<br />

59<br />

123


124 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

MLE of ξ<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

MLE of GPD form param<strong>et</strong>er ξ from SE samples, n=50000<br />

c=0.7<br />

c=0.3<br />

−0.2<br />

0 2 4 6 8 10 12 14 16<br />

Number of lower threshold h<br />

Figure 3: Maximum Likelihood estim<strong>at</strong>es of the GPD form param<strong>et</strong>er for Str<strong>et</strong>ched-Exponentail samples of<br />

size 50,000.<br />

60


Mean excess function<br />

Mean excess function<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0.5<br />

Mean excess functions for DJ−daily pos.(line) and neg.(pointwise)<br />

0<br />

0 0.05 0.1 0.15<br />

Lower threshold, u<br />

x 10−3<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

Mean excess functions for ND−5min pos.(line) and neg.(pointwise)<br />

0<br />

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01<br />

Lower threshold, u<br />

Figure 4: Mean excess functions for the Dow Jones daily r<strong>et</strong>urns (upper panel) and the Nasdaq five minutes<br />

r<strong>et</strong>urns (lower panel). The plain line represents the positive r<strong>et</strong>urns and the dotted line the neg<strong>at</strong>ive ones<br />

61<br />

125


126 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Complementary sample DF<br />

Complementary sample DF<br />

10 0<br />

10 −1<br />

10 −2<br />

10 −3<br />

10 −4<br />

10 −5<br />

10 0<br />

10 −1<br />

10 −2<br />

10 −3<br />

10 −4<br />

10 −5<br />

10 −5<br />

10 −6<br />

Complementary DF of DJ−daily pos.(line),n=14949 and neg.(pointwise),n=13464<br />

10 −4<br />

10 −5<br />

10 −3<br />

10 −2<br />

Absolute log−r<strong>et</strong>urn, x<br />

10 −4<br />

10 −3<br />

10 −1<br />

Complementary DF of ND−5min pos.(line),n=11241 and neg.(pointwise) n=10751<br />

Absolute log−r<strong>et</strong>urn, x<br />

Figure 5: Cumul<strong>at</strong>ive sample distributions for the Dow Jones (a) and for the Nasdaq (b) d<strong>at</strong>a s<strong>et</strong>s.<br />

62<br />

10 0<br />

10 −2


Hill‘s estim<strong>at</strong>e b u<br />

Hill‘s estim<strong>at</strong>e b u<br />

4.5<br />

3.5<br />

2.5<br />

1.5<br />

1<br />

0.5<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

4<br />

3<br />

2<br />

0<br />

10 −5<br />

10 −5<br />

Hill‘s estim<strong>at</strong>es of b u for DJ−daily pos.(line), n=14949, and neg.(pointwise),n=13464<br />

10 −4<br />

10 −3<br />

Lower threshold, u<br />

Hill‘s estim<strong>at</strong>es of b u for ND−5min pos.(line),n=11241, and neg.(pointwise),n=10751<br />

10 −4<br />

Lower threshold, u<br />

Figure 6: Hill estim<strong>at</strong>es ˆbu as a function of the threshold u for the Dow Jones (a) and for the Nasdaq (b).<br />

63<br />

10 −2<br />

10 −3<br />

127


128 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

b<br />

5<br />

4<br />

3<br />

2<br />

1<br />

ND<<br />

ND><br />

DJ><br />

DJ<<br />

0<br />

0 5 10 15 20<br />

In<strong>de</strong>x n of the quantile q n<br />

Figure 7: Hill estim<strong>at</strong>or ˆbu for all four d<strong>at</strong>a s<strong>et</strong>s (positive and neg<strong>at</strong>ive branches of the distribution of r<strong>et</strong>urns<br />

for the DJ and for the ND) as a function of the in<strong>de</strong>x n = 1,...,18 of the 18 quantiles or standard significance<br />

levels q1 ...q18 given in table 6. The dashed line is expression (33) with 1 − qn = 3.08 e −0.342n given by<br />

(32).<br />

64


Wilks st<strong>at</strong>istic (doubled log−likelihood r<strong>at</strong>io)<br />

Wilks st<strong>at</strong>istic (doubled log−likelihood r<strong>at</strong>io)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

SE<br />

IG<br />

Wilks st<strong>at</strong>istics for CD vs 4 param<strong>et</strong>ric families, Npos, n=11241<br />

PD<br />

0 0.5 1 1.5 2 2.5 3<br />

x 10 −3<br />

0<br />

Lower threshold, u<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

SE<br />

ED<br />

2<br />

χ (.95)<br />

2<br />

Wilks st<strong>at</strong>istics for CD vs 4 param<strong>et</strong>ric families, Nneg, n=10751<br />

ED<br />

IG<br />

PD<br />

2<br />

χ (.95)<br />

1<br />

0 0.5 1 1.5 2 2.5 3<br />

x 10 −3<br />

0<br />

Lower threshold, u<br />

Figure 8: Wilks st<strong>at</strong>istic for the comprehensive distribution versus the four param<strong>et</strong>ric distributions : Par<strong>et</strong>o<br />

(PD), Weibull (SE), Exponential (ED) and Incompl<strong>et</strong>e Gamma (IG) for the Nasdaq five minutes r<strong>et</strong>urns.<br />

The upper panel refers to the positive r<strong>et</strong>urns and lower panel to the neg<strong>at</strong>ive ones.<br />

65<br />

2<br />

χ (.95)<br />

2<br />

2<br />

χ (.95)<br />

1<br />

129


130 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Wilks st<strong>at</strong>istic (doubled log−likelihood r<strong>at</strong>io)<br />

Wilks st<strong>at</strong>istic (doubled log−likelihood r<strong>at</strong>io)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

SE<br />

Wilks st<strong>at</strong>istics for CD vs 4 param<strong>et</strong>ric families, DJpos, n=14949<br />

IG<br />

PD<br />

0<br />

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05<br />

Lower threshold, u<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

SE<br />

IG<br />

ED<br />

2<br />

χ (.95)<br />

2<br />

Wilks st<strong>at</strong>istics for CD vs 4 param<strong>et</strong>ric families, DJneg, n=13464<br />

PD<br />

ED<br />

2<br />

χ (.95)<br />

2<br />

2<br />

χ (.95)<br />

1<br />

2<br />

χ (.95)<br />

1<br />

0<br />

0 0.01 0.02 0.03<br />

Lower threshold, u<br />

0.04 0.05 0.06<br />

Figure 9: Wilks st<strong>at</strong>istic for the comprehensive distribution versus the four param<strong>et</strong>ric distributions : Par<strong>et</strong>o<br />

(PD), Weibull (SE), Exponential (ED) and Incompl<strong>et</strong>e Gamma (IG) for the Dow Jones daily r<strong>et</strong>urns. The<br />

upper panel refers to the positive r<strong>et</strong>urns and the lower panel to the neg<strong>at</strong>ive ones.<br />

66


Tail 1−F(x) and param<strong>et</strong>er b<br />

Tail 1−F(x) and param<strong>et</strong>er b<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Sample tail 1−F(x)(thick) and "local" Par<strong>et</strong>o−b(thin), simul<strong>at</strong>ed Par<strong>et</strong>o−1.2,n=15000<br />

10 20 30 40 50<br />

x<br />

60 70 80 90 100<br />

Sample tail 1−F(x)(thick) and "local" Par<strong>et</strong>o−b(thin), simul<strong>at</strong>ed SE−0.3,n=15000<br />

100 200 300 400 500<br />

x<br />

600 700 800 900 1000<br />

Figure 10: Local in<strong>de</strong>x β(x) estim<strong>at</strong>ed for a Par<strong>et</strong>o distribution with tail in<strong>de</strong>x = 1.2 (upper panel) and a<br />

Str<strong>et</strong>ched exponential with exponent c = 0.3 (lower panel).<br />

67<br />

131


132 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Tail and param<strong>et</strong>er b<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Sample tail 1−F(x)(tick) and Par<strong>et</strong>o−b(thin), simul<strong>at</strong>ed crossover<br />

Simul<strong>at</strong>ed 2 Par<strong>et</strong>o sample<br />

b 1 =0.70; b 2 =1.5;<br />

Lower threshold u 0 =1;<br />

Crossover point u 1 =10;<br />

PX>10≅0.1;<br />

( )<br />

20 40 60 80 100<br />

x<br />

120 140 160 180 200<br />

Figure 11: Local in<strong>de</strong>x β(x) for a distribution constructed by joining two Par<strong>et</strong>o distributions with exponents<br />

b1 = 0.70 and b2 = 1.5 <strong>at</strong> the cross-over point u1 = 10.<br />

68


1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0 1 2 3 4 5 6 7<br />

x 10 −3<br />

0<br />

log−r<strong>et</strong>urn x<br />

10 1<br />

10 0<br />

10 −1<br />

10 −2<br />

10 −5<br />

10 1<br />

10 0<br />

10 −1<br />

10 −3<br />

y ∼ x 0.54<br />

10 −4<br />

10 −2<br />

log−r<strong>et</strong>urn x<br />

y ∼ x 0.77<br />

Figure 12: Upper panel: Sample tail (continuous line), local in<strong>de</strong>x β(x) (dashed line) and local exponent c(x)<br />

(dash-dotted line) for the neg<strong>at</strong>ive tail of the Nasdaq five minutes r<strong>et</strong>urns. Lower panel: doubled logarithmic<br />

plot of the local in<strong>de</strong>x β(x). Over most of the d<strong>at</strong>a s<strong>et</strong>, β(x) increases with the log-r<strong>et</strong>urn x as a power law<br />

of in<strong>de</strong>x 0.77 while beyond the quantile 99% (see the ins<strong>et</strong>) it behaves like another power law of a smaller<br />

in<strong>de</strong>x equal to 0.54. The goodness of fit with these two power laws has been checked by a χ 2 test.<br />

69<br />

10 −3<br />

10 −2<br />

133


134 3. Distributions exponentielles étirées contre distributions régulièrement variables


Chapitre 4<br />

Relax<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité<br />

L’un <strong>de</strong>s enjeux <strong>de</strong> la <strong>théorie</strong> financière est <strong>de</strong> comprendre comment le flux incessant d’inform<strong>at</strong>ion<br />

arrivant sur les marchés financiers est incorporé dans le prix <strong>de</strong>s actifs. Toutes les nouvelles n’ayant<br />

pas le même impact, la question se pose <strong>de</strong> savoir si l’on peut distinguer les eff<strong>et</strong>s <strong>de</strong>s <strong>at</strong>tent<strong>at</strong>s du 11<br />

septembre 2001 ou du coup d’ét<strong>at</strong> contre Gorb<strong>at</strong>chev le 19 aout 1991 du crash <strong>de</strong> 1987 ou d’autre chocs<br />

<strong>de</strong> vol<strong>at</strong>ilité <strong>de</strong> plus faible amplitu<strong>de</strong> ? Utilisant un processus autorégressif à mémoire longue défini sur<br />

le logarithme <strong>de</strong> la vol<strong>at</strong>ilité - le processus <strong>de</strong> marche alé<strong>at</strong>oire multifractale (MRW) - nous prédisons <strong>de</strong>s<br />

fonctions <strong>de</strong> réponse <strong>de</strong> la vol<strong>at</strong>ilité <strong>de</strong>s prix totalement différentes aux grands chocs externes comparées<br />

à celles que nous prédisons pour les chocs endogènes, i.e, qui résultent d’une accumul<strong>at</strong>ion constructive<br />

(ou cohérente) d’un grand nombre <strong>de</strong> p<strong>et</strong>its chocs.<br />

Ces prédictions sont remarquablement bien confirmées empiriquement sur divers chocs <strong>de</strong> vol<strong>at</strong>ilité<br />

d’amplitu<strong>de</strong>s variées. Notre <strong>théorie</strong> perm<strong>et</strong> <strong>de</strong> distinguer <strong>de</strong>ux types d’évèments (endogènes <strong>et</strong> exogènes)<br />

avec <strong>de</strong>s sign<strong>at</strong>ures spécifiques <strong>et</strong> <strong>de</strong>s précurseurs caractéristiques pour la classe <strong>de</strong>s chocs endogènes.<br />

Cela explique aussi l’origine <strong>de</strong> ce type <strong>de</strong> chocs par l’accumul<strong>at</strong>ion cohérente <strong>de</strong> p<strong>et</strong>ites mauvaises nouvelles,<br />

<strong>et</strong> ainsi perm<strong>et</strong> d’unifier les précé<strong>de</strong>ntes explic<strong>at</strong>ions <strong>de</strong>s grands krachs, incluant celui d’octobre<br />

1987.<br />

135


136 4. Relax<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité


Vol<strong>at</strong>ility Fingerprints of Large Shocks:<br />

Endogeneous Versus Exogeneous ∗<br />

D. Sorn<strong>et</strong>te 1,2 , Y. Malevergne 1,3 and J.-F. Muzy 4<br />

1 Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>ière Con<strong>de</strong>nsée CNRS UMR 6622<br />

Université <strong>de</strong> Nice-Sophia Antipolis, 06108 Nice Ce<strong>de</strong>x 2, France<br />

2 Institute of Geophysics and Plan<strong>et</strong>ary Physics and Department of Earth and Space Science<br />

University of California, Los Angeles, California 90095, USA<br />

3 Institut <strong>de</strong> Science Financière <strong>et</strong> d’Assurances - Université Lyon I<br />

43, Bd du 11 Novembre 1918, 69622 Villeurbanne Ce<strong>de</strong>x, France<br />

4 Labor<strong>at</strong>oire Systèmes Physiques <strong>de</strong> l’Environemment, CNRS UMR 6134<br />

Université <strong>de</strong> Corse, Quartier Gross<strong>et</strong>ti, 20250 Corte, France<br />

email: sorn<strong>et</strong>te@unice.fr, Yannick.Malevergne@unice.fr and muzy@univ-corse.fr<br />

fax: (310) 206 30 51<br />

Forthcoming Risk<br />

Abstract<br />

Finance is about how the continuous stream of news g<strong>et</strong>s incorpor<strong>at</strong>ed into prices. But not all news<br />

have the same impact. Can one distinguish the effects of the Sept. 11, 2001 <strong>at</strong>tack or of the coup<br />

against Gorbachev on Aug., 19, 1991 from financial crashes such as Oct. 1987 as well as smaller<br />

vol<strong>at</strong>ility bursts? Using a parsimonious autoregressive process with long-range memory <strong>de</strong>fined on the<br />

logarithm of the vol<strong>at</strong>ility, we predict strikingly different response functions of the price vol<strong>at</strong>ility to gre<strong>at</strong><br />

external shocks compared to wh<strong>at</strong> we term endogeneous shocks, i.e., which result from the cooper<strong>at</strong>ive<br />

accumul<strong>at</strong>ion of many small shocks. These predictions are remarkably well-confirmed empirically on<br />

a hierarchy of vol<strong>at</strong>ility shocks. Our theory allows us to classify two classes of events (endogeneous<br />

and exogeneous) with specific sign<strong>at</strong>ures and characteristic precursors for the endogeneous class. It also<br />

explains the origin of endogeneous shocks as the coherent accumul<strong>at</strong>ions of tiny bad news, and thus<br />

unify all previous explan<strong>at</strong>ions of large crashes including Oct. 1987.<br />

1 Introduction<br />

A mark<strong>et</strong> crash occurring simultaneously on most of the stock mark<strong>et</strong>s of the world as witnessed in Oct.<br />

1987 would amount to the quasi-instantaneous evapor<strong>at</strong>ion of trillions of dollars. Mark<strong>et</strong> crashes are the<br />

extreme end members of a hierarchy of mark<strong>et</strong> shocks, which shake stock mark<strong>et</strong>s repe<strong>at</strong>edly. Among<br />

∗ We acknowledge helpful discussions and exchanges with E. Bacry and V. Pisarenko. This work was partially supported by the<br />

James S. Mc Donnell Found<strong>at</strong>ion 21st century scientist award/studying complex system.<br />

1<br />

137


138 4. Relax<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité<br />

recent events still fresh in memories are the Hong-Kong crash and the turmoil on US mark<strong>et</strong>s on oct. 1997,<br />

the Russian <strong>de</strong>fault in Aug. 1998 and the ensuing mark<strong>et</strong> turbulence in western stock mark<strong>et</strong>s and the<br />

collapse of the “new economy” bubble with the crash of the Nasdaq in<strong>de</strong>x in March 2000.<br />

In each case, a lot of work has been carried out to unravel the origin(s) of the crash, so as to un<strong>de</strong>rstand<br />

its causes and <strong>de</strong>velop possible remedies. However, no clear cause can usually be singled out. A case in<br />

point is the Oct. 1987 crash, for which many explan<strong>at</strong>ions have been proposed but none has been wi<strong>de</strong>ly<br />

accepted unambiguously. These proposed causes inclu<strong>de</strong> computer trading, <strong>de</strong>riv<strong>at</strong>ive securities, illiquidity,<br />

tra<strong>de</strong> and budg<strong>et</strong> <strong>de</strong>ficits, over-infl<strong>at</strong>ed prices gener<strong>at</strong>ed by specul<strong>at</strong>ive bubble during the earlier period, the<br />

auction system itself, the presence or absence of limits on price movements, regul<strong>at</strong>ed margin requirements,<br />

off-mark<strong>et</strong> and off-hours trading, the presence or absence of floor brokers, the extent of trading in the<br />

cash mark<strong>et</strong> versus the forward mark<strong>et</strong>, the i<strong>de</strong>ntity of tra<strong>de</strong>rs (i.e. institutions such as banks or specialized<br />

trading firms), the significance of transaction taxes, <strong>et</strong>c. More rigorous and system<strong>at</strong>ic analyses on univari<strong>at</strong>e<br />

associ<strong>at</strong>ions and multiple regressions of these various factors conclu<strong>de</strong> th<strong>at</strong> it is not <strong>at</strong> all clear wh<strong>at</strong> caused<br />

the crash (Barro <strong>et</strong> al. 1989). The most precise st<strong>at</strong>ement, albeit somewh<strong>at</strong> self-referencial, is th<strong>at</strong> the most<br />

st<strong>at</strong>istically significant explan<strong>at</strong>ory variable in the October crash can be ascribed to the normal response of<br />

each country’s stock mark<strong>et</strong> to a worldwi<strong>de</strong> mark<strong>et</strong> motion (Barro <strong>et</strong> al. 1989).<br />

In view of the stalem<strong>at</strong>e reached by the approaches <strong>at</strong>tempting to find a proximal cause of a mark<strong>et</strong> shock,<br />

several researchers have looked for more fundamental origins and have proposed th<strong>at</strong> a crash may be the climax<br />

of an endogeneous instability associ<strong>at</strong>ed with the (r<strong>at</strong>ional or irr<strong>at</strong>ional) imit<strong>at</strong>ive behavior of agents (see<br />

for instance (Orléan 1989, Orléan 1995, Johansen and Sorn<strong>et</strong>te 1999, Shiller 2000)). Are there qualifying<br />

sign<strong>at</strong>ures of such a mechanism? According to (Johansen and Sorn<strong>et</strong>te 1999, Sorn<strong>et</strong>te and Johansen 2001)<br />

for which a crash is a stochastic event associ<strong>at</strong>ed with the end of a bubble, the d<strong>et</strong>ection of such bubble would<br />

provi<strong>de</strong> a fingerprint. A large liter<strong>at</strong>ure has emerged on the empirical d<strong>et</strong>ectability of bubbles in financial<br />

d<strong>at</strong>a and in particular on r<strong>at</strong>ional expect<strong>at</strong>ion bubbles (see (Camerer 1989, Adam and Szafarz 1992) for a survey).<br />

Unfortun<strong>at</strong>ely, the present evi<strong>de</strong>nce for specul<strong>at</strong>ive bubbles is fuzzy and unresolved <strong>at</strong> best, according<br />

to the standard economic and econom<strong>et</strong>ric liter<strong>at</strong>ure. Other than the still controversial (Feigenbaum 2001)<br />

sug<strong>gestion</strong> th<strong>at</strong> super-exponential price acceler<strong>at</strong>ion (Sorn<strong>et</strong>te and An<strong>de</strong>rsen 2002) and log-periodicity may<br />

qualify a specul<strong>at</strong>ive bubble (Johansen and Sorn<strong>et</strong>te 1999, Sorn<strong>et</strong>te and Johansen 2001), there are no unambiguous<br />

sign<strong>at</strong>ures th<strong>at</strong> would allow one to qualify a mark<strong>et</strong> shock or a crash as specifically endogeneous.<br />

On the other end, standard economic theory holds th<strong>at</strong> the complex trajectory of stock mark<strong>et</strong> prices is the<br />

faithful reflection of the continuous flow of news th<strong>at</strong> are interpr<strong>et</strong>ed and digested by an army of analysts<br />

and tra<strong>de</strong>rs (Cutler <strong>et</strong> al. 1989). Accordingly, large shocks should result from really bad surprises. It is<br />

a fact th<strong>at</strong> exogeneous shocks exist, as epitomized by the recent events of Sept. 11, 2001 and the coup<br />

against Gorbachev on Aug., 19, 1991, and there is no doubt about the existence of utterly exogeneous bad<br />

news th<strong>at</strong> move stock mark<strong>et</strong> prices and cre<strong>at</strong>e strong bursts of vol<strong>at</strong>ility. However, some could argue th<strong>at</strong><br />

precursory fingerprints of these events were known to some elites, suggesting the possibility the action of<br />

these informed agents may have been reflected in part in stock mark<strong>et</strong>s prices. Even more difficult is the<br />

classific<strong>at</strong>ion (endogeneous versus exogeneous) of the hierarchy of vol<strong>at</strong>ility bursts th<strong>at</strong> continuously shake<br />

stock mark<strong>et</strong>s. While it is a common practice to associ<strong>at</strong>e the large mark<strong>et</strong> moves and strong bursts of<br />

vol<strong>at</strong>ility with external economic, political or n<strong>at</strong>ural events (White 1996), there is not convincing evi<strong>de</strong>nce<br />

supporting it.<br />

Here, we provi<strong>de</strong> a clear and novel sign<strong>at</strong>ure allowing us to distinguish b<strong>et</strong>ween an endogeneous and an<br />

exogeneous origin to a vol<strong>at</strong>ility shock. Tests on the Oct. 1987 crash, on a hierarchy of vol<strong>at</strong>ility shocks<br />

and on a few of the obvious exogeneous shocks valid<strong>at</strong>e the concept. Our theor<strong>et</strong>ical framework combines<br />

a r<strong>at</strong>her novel but really powerful and parsimonious so-called multifractal random walk with conditional<br />

probability calcul<strong>at</strong>ions.<br />

2


2 Long-range memory and distinction b<strong>et</strong>ween endogeneous and exogeneous<br />

shocks<br />

While r<strong>et</strong>urns do not exhibit discernable correl<strong>at</strong>ions beyond a time scale of a few minutes in liquid arbitraged<br />

mark<strong>et</strong>s, the historical vol<strong>at</strong>ility (measured as the standard <strong>de</strong>vi<strong>at</strong>ion of price r<strong>et</strong>urns or more<br />

generally as a positive power of the absolute value of centered price r<strong>et</strong>urns) exhibits a long-range <strong>de</strong>pen<strong>de</strong>nce<br />

characterized by a power law <strong>de</strong>caying two-point correl<strong>at</strong>ion function (Ding <strong>et</strong> al. 1993, Ding<br />

and Granger 1996, Arneodo <strong>et</strong> al. 1998) approxim<strong>at</strong>ely following a (t/T ) −ν <strong>de</strong>cay r<strong>at</strong>e with an exponent<br />

ν ≈ 0.2. A vari<strong>et</strong>y of mo<strong>de</strong>ls have been proposed to account for these long-range correl<strong>at</strong>ions (Granger and<br />

Ding 1996, Baillie 1996, Müller <strong>et</strong> al. 1997, Muzy <strong>et</strong> al. 2000, Muzy <strong>et</strong> al. 2001, Müller <strong>et</strong> al. 1997).<br />

In addition, not only are r<strong>et</strong>urns clustered in bursts of vol<strong>at</strong>ility exhibiting long-range <strong>de</strong>pen<strong>de</strong>nce, but they<br />

also exhibit the property of multifractal scale invariance (or multifractality), according to which moments<br />

mq ≡ 〈|rτ | q 〉 of the r<strong>et</strong>urns <strong>at</strong> time scale τ are found to scale as mq ∝ τ ζq , with the exponent ζq being a<br />

non-linear function of the moment or<strong>de</strong>r q (Man<strong>de</strong>lbrot 1997, Muzy <strong>et</strong> al. 2000).<br />

To make quantit<strong>at</strong>ive predictions, we use a flexible and parsimonious mo<strong>de</strong>l, the so-called multifractal random<br />

walk (MRW) (see Appendix A and (Muzy <strong>et</strong> al. 2000, Bacry <strong>et</strong> al. 2001)), which unifies these two<br />

empirical observ<strong>at</strong>ions by <strong>de</strong>riving n<strong>at</strong>urally the multifractal scale invariance from the vol<strong>at</strong>ility long range<br />

<strong>de</strong>pen<strong>de</strong>nce.<br />

The long-range n<strong>at</strong>ure of the vol<strong>at</strong>ility correl<strong>at</strong>ion function can be seen as the direct consequence of a<br />

slow power law <strong>de</strong>cay of the response function K∆(t) of the mark<strong>et</strong> vol<strong>at</strong>ility measured a time t after the<br />

occurrence of an external perturb<strong>at</strong>ion of the vol<strong>at</strong>ility <strong>at</strong> scale ∆t. We find th<strong>at</strong> the distinct difference<br />

b<strong>et</strong>ween exogeneous and endogeneous shocks is found in the way the vol<strong>at</strong>ility relaxes to its unconditional<br />

average value.<br />

The prediction of the MRW mo<strong>de</strong>l (see Appendix B for the technical <strong>de</strong>riv<strong>at</strong>ion) is th<strong>at</strong> the excess vol<strong>at</strong>ility<br />

Eexo[σ 2 (t) | ω0] − σ 2 (t), <strong>at</strong> scale ∆t, due to an external shock of amplitu<strong>de</strong> ω0 relaxes to zero according to<br />

the universal response<br />

139<br />

Eexo[σ 2 (t) | ω0] − σ2 2K0t−1/2 (t) ∝ e − 1 ≈ 1 √ , (1)<br />

t<br />

for not too small times, where σ 2 (t) = σ 2 ∆t is the unconditional average vol<strong>at</strong>ility. This prediction is<br />

nothing but the response function K∆(t) of the MRW mo<strong>de</strong>l to a single piece of very bad news th<strong>at</strong> is<br />

sufficient by itself to move the mark<strong>et</strong> significantly. This prediction is well-verified by the empirical d<strong>at</strong>a<br />

shown in figure 1.<br />

On the other hand, an “endogeneous” shock is the result of the cumul<strong>at</strong>ive effect of many small bad news,<br />

each one looking rel<strong>at</strong>ively benign taken alone, but when taken all tog<strong>et</strong>her collectively along the full p<strong>at</strong>h<br />

of news can add up coherently due to the long-range memory of the vol<strong>at</strong>ility dynamics to cre<strong>at</strong>e a large<br />

“endogeneous” shock. This term “endogeneous” is thus not exactly a<strong>de</strong>qu<strong>at</strong>e since prices and vol<strong>at</strong>ilities<br />

are always moved by external news. The difference is th<strong>at</strong> an endogeneous shock in the present sense is the<br />

sum of the contribution of many “small” news adding up according to a specific most probable trajectory.<br />

It is this s<strong>et</strong> of small bad news prior to the large shock th<strong>at</strong> not only led to it but also continues to influence<br />

the dynamics of the vol<strong>at</strong>ility time series and cre<strong>at</strong>es an anomalously slow relax<strong>at</strong>ion. Appendix C gives the<br />

<strong>de</strong>riv<strong>at</strong>ion of the specific relax<strong>at</strong>ion (21) associ<strong>at</strong>ed with endogeneous shocks.<br />

Figure 2 reports empirical estim<strong>at</strong>es of the conditional vol<strong>at</strong>ility relax<strong>at</strong>ion after local maxima of the S&P100<br />

intradaily series ma<strong>de</strong> of 5 minute close prices during the period from 04/08/1997 to 12/24/2001 (figure<br />

1(a)). The original intraday squared r<strong>et</strong>urns have been preprocessed in or<strong>de</strong>r to remove the U-shaped vol<strong>at</strong>ility<br />

modul<strong>at</strong>ion associ<strong>at</strong>ed with the intraday vari<strong>at</strong>ions of mark<strong>et</strong> activity. Figure 2(b) shows th<strong>at</strong> the MRW<br />

3


140 4. Relax<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité<br />

∫ dt E[σ(t) | ω 0 ] − E[σ(t)]<br />

10 −1<br />

10 −2<br />

10 0<br />

Nikkei 250 : Aug 19, 1991<br />

S&P 500 : Aug 19, 1991<br />

FT−SE 100 : Aug 19, 1991<br />

CAC 40 : Sep 11, 2001<br />

S&P 500 : Oct 19, 1987<br />

10 1<br />

Time (trading days)<br />

Slope α = 1/2<br />

August 19, 1991 : Putsh against Presi<strong>de</strong>nt Gorbachev<br />

September 11, 2001: Attack against the WTC<br />

Figure 1: Cumul<strong>at</strong>ive excess vol<strong>at</strong>ility <strong>at</strong> scale ∆t, th<strong>at</strong> is, integral over time of Eexo[σ 2 (t) | ω0] − σ 2 (t),<br />

due to the vol<strong>at</strong>ility shock induced by the coup against Presi<strong>de</strong>nt Gorbachev observed in three British,<br />

Japanese and USA indices and the shock induced by the <strong>at</strong>tack of September 11, 2002 against the World<br />

Tra<strong>de</strong> Center. The dashed line is the theor<strong>et</strong>ical prediction obtained by integr<strong>at</strong>ing (1), which gives a ∝ √ t<br />

time-<strong>de</strong>pen<strong>de</strong>nce. The cumul<strong>at</strong>ive excess vol<strong>at</strong>ility following the crash of October 1987 is also shown with<br />

circles. Notice th<strong>at</strong> the slope of the non-constant curve for the October 1987 crash is very different from the<br />

value 1/2 expected and observed for exogeneous shocks. This crash and the resulting vol<strong>at</strong>ility relax<strong>at</strong>ion<br />

can be interpr<strong>et</strong>ed as an endogeneous event.<br />

4<br />

10 2


Figure 2: Measuring the conditional vol<strong>at</strong>ility response exponent α(s) for S&P 100 intradaily time series<br />

as a function of the endogeneous shock amplitu<strong>de</strong> param<strong>et</strong>erized by s, <strong>de</strong>fined by (19). (a) The original<br />

5 minute intradaily time series from 04/08/1997 to 12/24/2001. The 5 minute <strong>de</strong>-seasonalized squared<br />

r<strong>et</strong>urns are aggreg<strong>at</strong>ed in or<strong>de</strong>r to estim<strong>at</strong>e the 40 minutes and daily vol<strong>at</strong>ilities. (b) 40 minute log-vol<strong>at</strong>ility<br />

covariance C40(τ) as a function of the logarithm of the lag τ. The MRW theor<strong>et</strong>ical curve with λ 2 = 0.018<br />

and T = 1 year (dashed line) provi<strong>de</strong>s an excellent fit of the d<strong>at</strong>a up to lags of one month. (c) Conditional<br />

vol<strong>at</strong>ility response ln(Eendo[σ 2 (t) | s]) as a function of ln(t) for three shocks with amplitu<strong>de</strong>s given by<br />

s = −1, 0, 1. (d) Estim<strong>at</strong>ed exponent α(s) for ∆t = 40 minutes (•) as a function of s. The solid line<br />

is the prediction corresponding to Eq. (22). The dashed line corresponds to the empirical MRW estim<strong>at</strong>e<br />

obtained by averaging over 500 Monte-Carlo trials. It fits more accur<strong>at</strong>ely for neg<strong>at</strong>ive s (vol<strong>at</strong>ility lower<br />

than normal) due to the fact th<strong>at</strong> the estim<strong>at</strong>ions of the variance by aggreg<strong>at</strong>ion over smaller scales is very<br />

noisy for small variance values. The error bars give the 95 % confi<strong>de</strong>nce intervals estim<strong>at</strong>ed by Monte-Carlo<br />

trials of the MRW process. In the ins<strong>et</strong>, α(s) is compared for ∆t = 40 minutes (•) and ∆t = 1 day (×).<br />

5<br />

141


142 4. Relax<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité<br />

mo<strong>de</strong>l provi<strong>de</strong>s a very good fit of the empirical vol<strong>at</strong>ility covariance in a range of time scales from 5 minutes<br />

to one month. Fig. 2(c) plots in a double logarithmic represent<strong>at</strong>ion, for the time scale ∆t = 40 minutes,<br />

the estim<strong>at</strong>ed conditional vol<strong>at</strong>ility responses for s = 1, 0, −1, where the endogeneous shocks are param<strong>et</strong>erized<br />

by e 2s σ 2 (t). A value s > 0 (resp. s < 0) corresponds to a positive bump (resp. neg<strong>at</strong>ive dip) of the<br />

vol<strong>at</strong>ility above (resp. below) the average level σ 2 (t). The straight lines are the predictions (Eqs. (24,22))<br />

of the MRW mo<strong>de</strong>l and qualify power law responses whose exponents α(s) are continuous function of the<br />

shock amplitu<strong>de</strong> s. Figure 1(d) plots the conditional response exponent α(s) as a function of s for the two<br />

time scales ∆t = 40 minutes and ∆t = 1 day (ins<strong>et</strong>). For ∆t = 40 minutes, we observe th<strong>at</strong> α varies<br />

b<strong>et</strong>ween −0.2 for the largest positive shocks to +0.2 for the largest neg<strong>at</strong>ive shocks, in excellent agreement<br />

with MRW estim<strong>at</strong>es (dashed line) and, for α ≥ 0, with Eq. (22) obtained without any adjustable param<strong>et</strong>ers.<br />

1 The error bars represent the 95 % confi<strong>de</strong>nce intervals estim<strong>at</strong>ed using 500 trials of synth<strong>et</strong>ic MRW<br />

with the same param<strong>et</strong>ers as observed for the S&P 100 series. By comparing α(s) for different ∆t (ins<strong>et</strong>),<br />

we can see the the MRW mo<strong>de</strong>l is thus able to recover not only the s-<strong>de</strong>pen<strong>de</strong>nce of the exponent α(s) of<br />

the conditional response function to endogeneous shocks but also its time scale ∆t vari<strong>at</strong>ions: this exponent<br />

increases as one goes from fine to coarse scales. Similar results are obtained for other intradaily time series<br />

(Nasdaq, FX-r<strong>at</strong>es, <strong>et</strong>c.). We also obtain the same results for 17 years of daily r<strong>et</strong>urn times series of various<br />

indices (French, German, canada, Japan, <strong>et</strong>c.).<br />

In summary, the most remarkable result is the qualit<strong>at</strong>ively different functional <strong>de</strong>pen<strong>de</strong>nce of the response<br />

(1) to an exogeneous compared to the response (24,22) to an endogeneous shock. The former gives a <strong>de</strong>cay<br />

of the burst of vol<strong>at</strong>ility ∝ 1/t 1/2 compared to 1/t α(s) for endogeneous shocks with amplitu<strong>de</strong> e 2s σ 2 (t),<br />

with an exponent α(s) being a linear function of s.<br />

3 Discussion<br />

Wh<strong>at</strong> is the source of endogeneous shocks characterized by the response function (21)? Appendix D and<br />

equ<strong>at</strong>ion (29) predict th<strong>at</strong> the expected p<strong>at</strong>h of the continuous inform<strong>at</strong>ion flow prior to the endogeneous<br />

shock grows proportionally to the response function K(tc − t) measured in backward time to the shock<br />

occuring <strong>at</strong> tc. In other words, conditioned on the observ<strong>at</strong>ion of a large endogeneous shock, there is<br />

specific s<strong>et</strong> of trajectories of the news flow th<strong>at</strong> led to it. This specific flow has an expect<strong>at</strong>ion given by (29).<br />

This result allows us to un<strong>de</strong>rstand the distinctive fe<strong>at</strong>ures of an endogeneous shock compared to an external<br />

shock. The l<strong>at</strong>er is a single piece of very bad news th<strong>at</strong> is sufficient by itself to move the mark<strong>et</strong> significantly<br />

according to (1). In contrast, an “endogeneous” shock is the result of the cumul<strong>at</strong>ive effect of many small<br />

bad news, each one looking rel<strong>at</strong>ively benign taken alone, but when taken all tog<strong>et</strong>her collectively along<br />

the full p<strong>at</strong>h of news can add up coherently due to the long-range memory of the log-vol<strong>at</strong>ility dynamics to<br />

cre<strong>at</strong>e a large “endogeneous” shock. This term “endogeneous” is thus not exactly a<strong>de</strong>qu<strong>at</strong>e since prices and<br />

vol<strong>at</strong>ilities are always moved by external news. The difference is th<strong>at</strong> an endogeneous shock in the present<br />

sense is the sum of the contribution of many “small” news adding up according to a specific most probable<br />

trajectory. It is this s<strong>et</strong> of small bad news prior to the large shock th<strong>at</strong> not only led to it but also continues to<br />

influence the dynamics of the vol<strong>at</strong>ility time series and cre<strong>at</strong>es the anomalously slow relax<strong>at</strong>ion (21).<br />

In this respect, this result allows us to r<strong>at</strong>ionalize and unify the many explan<strong>at</strong>ions proposed to account for<br />

the Oct. 1987 crash: according to the present theory, each of the explan<strong>at</strong>ions is insufficient to explain the<br />

crash; however, our theory suggests th<strong>at</strong> it is the cumul<strong>at</strong>ive effect of many such effects th<strong>at</strong> led to the crash.<br />

In a sense, the different comment<strong>at</strong>ors and analysts were all right in <strong>at</strong>tributing the origin of the Oct. 1987<br />

crash to many different factors but they missed the main point th<strong>at</strong> the crash was the extreme response of<br />

1 The <strong>de</strong>vi<strong>at</strong>ion of α(s) from expression (22) for neg<strong>at</strong>ive s, origin<strong>at</strong>es from the error in the vol<strong>at</strong>ility estim<strong>at</strong>ion using a sum of<br />

squared r<strong>et</strong>urns. The smaller the sum of squared r<strong>et</strong>urns, the larger the error is. As ∆t increases, this error becomes negligible<br />

6


the system to the accumul<strong>at</strong>ion of many tiny bad news contributions. To test this i<strong>de</strong>a, we note th<strong>at</strong> the<br />

<strong>de</strong>cay of the vol<strong>at</strong>ility response after the Oct. 1987 crash has been <strong>de</strong>scribed by a power law 1/t 0.3 (Lillo<br />

and Mantegna 2001), which is in line with the prediction of our MRW theory with equ<strong>at</strong>ion (22) for such<br />

a large shock (see also figure 2 panel d). This value of the exponent is still significantly smaller than 0.5.<br />

Figure 1 <strong>de</strong>monstr<strong>at</strong>es further the difference b<strong>et</strong>ween the relax<strong>at</strong>ion of the vol<strong>at</strong>ility after this event shown<br />

with circle and those following the exogenous coup against Gorbachev and the September 11 <strong>at</strong>tack. There<br />

is clearly a strong constrast which qualifies the Oct. 1987 crash as endogeneous, in the sense of our theory<br />

of “conditional response.” This provi<strong>de</strong>s an in<strong>de</strong>pen<strong>de</strong>nt confirm<strong>at</strong>ion of the concept advanced before in<br />

(Johansen and Sorn<strong>et</strong>te 1999, Sorn<strong>et</strong>te and Johansen 2001).<br />

It is also interesting to compare the prediction (21) with those obtained with a linear autoregressive mo<strong>de</strong>l<br />

of the type (5), in which ω(t) is replaced by σ(t). FIGARCH mo<strong>de</strong>ls fall in this general class. It is easy<br />

to show in this case th<strong>at</strong> this linear (in vol<strong>at</strong>ility) mo<strong>de</strong>l predicts the same exponent for the response of the<br />

vol<strong>at</strong>ility to endogeneous shocks, in<strong>de</strong>pen<strong>de</strong>ntly of their magnitu<strong>de</strong>. This prediction is in stark constrast<br />

with the prediction (21) of the log-vol<strong>at</strong>ility MRW mo<strong>de</strong>l. The l<strong>at</strong>er mo<strong>de</strong>l is thus strongly valid<strong>at</strong>ed by our<br />

empirical tests.<br />

Appendix A: The Multifractal Randow Walk (MRW) mo<strong>de</strong>l<br />

The multifractal random walk mo<strong>de</strong>l is the continuous time limit of a stochastic vol<strong>at</strong>ility mo<strong>de</strong>l where<br />

log-vol<strong>at</strong>ility 2 correl<strong>at</strong>ions <strong>de</strong>cay logarithmically. It possesses a nice “stability” property rel<strong>at</strong>ed to its scale<br />

invariance property: For each time scale ∆t ≤ T , the r<strong>et</strong>urns <strong>at</strong> scale ∆t, r∆t(t) ≡ ln[p(t)/p(t − ∆t)], can<br />

be <strong>de</strong>scribed as a stochastic vol<strong>at</strong>ility mo<strong>de</strong>l:<br />

143<br />

r∆t(t) = ɛ(t) · σ∆t(t) = ɛ(t) · e ω∆t(t) , (2)<br />

where ɛ(t) is a standardized Gaussian white noise in<strong>de</strong>pen<strong>de</strong>nt of ω∆t(t) and ω∆t(t) is a nearly Gaussian<br />

process with mean and covariance:<br />

µ∆t = 1<br />

2 ln(σ2∆t) − C∆t(0) (3)<br />

C∆t(τ) = Cov[ω∆t(t), ω∆t(t + τ)] = λ 2 <br />

T<br />

ln<br />

|τ| + e−3/2 <br />

. (4)<br />

∆t<br />

σ 2 ∆t is the r<strong>et</strong>urn variance <strong>at</strong> scale ∆t and T represents an “integral” (correl<strong>at</strong>ion) time scale. Such logarithmic<br />

<strong>de</strong>cay of log-vol<strong>at</strong>ility covariance <strong>at</strong> different time scales has been <strong>de</strong>monstr<strong>at</strong>ed empirically in<br />

(Arneodo <strong>et</strong> al. 1998, Muzy <strong>et</strong> al. 2000). Typical values for T and λ 2 are respectively 1 year and 0.02.<br />

According to the MRW mo<strong>de</strong>l, the vol<strong>at</strong>ility correl<strong>at</strong>ion exponent ν is rel<strong>at</strong>ed to λ 2 by ν = 4λ 2 .<br />

The MRW mo<strong>de</strong>l can be expressed in a more familiar form, in which the log-vol<strong>at</strong>ility ω∆t(t) obeys an<br />

auto-regressive equ<strong>at</strong>ion whose solution reads<br />

t<br />

ω∆t(t) = µ∆t + dτ η(τ) K∆t(t − τ) , (5)<br />

−∞<br />

where η(t) <strong>de</strong>notes a standardized Gaussian white noise and the memory kernel K∆t(·) is a causal function,<br />

ensuring th<strong>at</strong> the system is not anticip<strong>at</strong>ive. The process η(t) can be seen as the inform<strong>at</strong>ion flow. Thus ω(t)<br />

represents the response of the mark<strong>et</strong> to incoming inform<strong>at</strong>ion up to the d<strong>at</strong>e t. At time t, the distribution<br />

2 The log-vol<strong>at</strong>ilty is the n<strong>at</strong>ural quantity used in canonical stoch<strong>at</strong>ic vol<strong>at</strong>ility mo<strong>de</strong>ls (see (Kim <strong>et</strong> al. 1998, and references<br />

therein)).<br />

7


144 4. Relax<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité<br />

of ω∆t(t) is Gaussian with mean µ∆t and variance V∆t = ∞<br />

0 dτ K2 ∆t (τ) = λ2 ln<br />

which entirely specifies the random process, is given by<br />

∞<br />

C∆t(τ) =<br />

0<br />

T e 3/2<br />

∆t<br />

<br />

. Its covariance,<br />

dt K∆t(t)K∆t(t + |τ|) . (6)<br />

Performing a Fourier tranform, we obtain ˆ K∆t(f) 2 = Ĉ∆t(f) = 2λ2 f −1<br />

T f<br />

0<br />

which shows th<strong>at</strong> for τ small enough<br />

K∆t(τ) ∼ K0<br />

λ 2 T<br />

τ<br />

<br />

sin(t)<br />

t dt + O (f∆t ln(f∆t)) ,<br />

for ∆t


Appendix C: “Conditional response” to an endogeneous shock<br />

L<strong>et</strong> us consi<strong>de</strong>r the n<strong>at</strong>ural evolution of the system, without any large external shock, which nevertheless<br />

exhibits a large vol<strong>at</strong>ility burst ω(t = 0) = ω0 <strong>at</strong> t = 0. From the <strong>de</strong>finition (2) with (5) and (6), it is<br />

clear th<strong>at</strong> a large “endogeneous” shock requires a special s<strong>et</strong> of realiz<strong>at</strong>ion of the “small news” {η(t)}. To<br />

quantifies the response in such case, we can evalu<strong>at</strong>e Eendo[σ 2 (t) | ω0] = Eendo[e 2ω(t) | ω0]. Since ω(t) is a<br />

Gaussian process, the new process ω(t) conditional on ω0 remains Gaussian, so th<strong>at</strong><br />

145<br />

Eendo[σ 2 (t) | ω0] = Eendo[e 2ω(t) | ω0] (13)<br />

= exp (2E[w(t) | ω0] + 2Var[ω(t) | ω0]) . (14)<br />

Due to the still Gaussian n<strong>at</strong>ure of the condition log-vol<strong>at</strong>ility ω(t), we easily obtain using (3) and (4),<br />

and<br />

L<strong>et</strong> us s<strong>et</strong>:<br />

Eendo[ω(t) | ω0] = E[ω(t)] +<br />

Cov[ω(t), ω0]<br />

Var[ω0]<br />

· (ω0 − E[ω0]) , (15)<br />

= (ω0 − µ) · C(t)<br />

+ µ , (16)<br />

C(0)<br />

Cov[ω(t), ω0] 2<br />

Varendo[ω(t) | ω0] = Var[ω(t)] − , (17)<br />

Var[ω0]<br />

<br />

= C(0) 1 − C2 (t)<br />

C2 <br />

. (18)<br />

(0)<br />

e 2ω0 = e 2s σ 2 (t) ⇒ ω0 − µ = s + C(0) (19)<br />

By subsitution in (14), we obtain thanks to (3) and (4),<br />

Eendo[σ 2 (t) | ω0] = σ2 <br />

(t) exp 2(ω0 − µ) · C(t)<br />

C(0) − 2C2 =<br />

<br />

(t)<br />

,<br />

C(0)<br />

σ<br />

(20)<br />

2 α(s)+β(t) T<br />

(t)<br />

t<br />

(21)<br />

where<br />

α(s) =<br />

ln(<br />

2s<br />

, (22)<br />

T e3/2<br />

∆t )<br />

β(t) = 2λ 2 ln(t/∆t)<br />

ln(T e3/2 . (23)<br />

/∆t)<br />

Within the range ∆t < t


146 4. Relax<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité<br />

where<br />

It is thus easy to obtain the estim<strong>at</strong>e:<br />

β ′ (t) = 2λ 2 ln(T/t)<br />

ln(T e3/2 /∆t)<br />

<br />

Varendo [σ2 (t) | ω0] ≤ Eendo[σ 2 <br />

(t) | ω0] ( T<br />

∆t )2β(t) 1/2 <br />

− 1 6λ2 ln(te3/2 /∆t) Eendo[σ 2 (t) | ω0]<br />

We thus conclu<strong>de</strong>, th<strong>at</strong>, for s large enough (i.e., α(s) large enough):<br />

Eendo[σ 2 (t) | ω0] − σ 2 (t)<br />

Varendo [σ 2 (t) | ω0] <br />

1<br />

6λ 2 ln(te 3/2 /∆t)<br />

Over the first <strong>de</strong>ca<strong>de</strong> ∆t ≤ t ≤ 10∆t, the <strong>de</strong>vi<strong>at</strong>ion of the conditional mean vol<strong>at</strong>ility from the unconditional<br />

vol<strong>at</strong>ility σ 2 (t) is gre<strong>at</strong>er than the conditional variance, which ensures the existence of a strong d<strong>et</strong>erministic<br />

component of the conditional response above the stochastic components.<br />

Expressions (24,22) are our two main predictions. These equ<strong>at</strong>ions predict th<strong>at</strong> the conditional response<br />

function Eendo[σ2 (t) | ω0] of the vol<strong>at</strong>ility <strong>de</strong>cays as a power law ∼ 1/tα <br />

of the time since the endogeneous<br />

shock, with an exponent α ≈ 2ω0 − ln(σ2 <br />

λ2 (t))<br />

C(0) which <strong>de</strong>pends linearly upon the amplitu<strong>de</strong> ω0 of the<br />

shock. Note in particular, th<strong>at</strong> α changes sign: it is positive for w0 > 1<br />

2 ln(σ2 (t)) and neg<strong>at</strong>ive otherwise.<br />

Appendix D: D<strong>et</strong>ermin<strong>at</strong>ion of the sources of endogeneous shocks<br />

Wh<strong>at</strong> is the source of endogeneous shocks characterized by the response function (21)? To answer, l<strong>et</strong><br />

us consi<strong>de</strong>r the process W (t) ≡ t<br />

−∞ dτ η(τ), where η(t) is a standardized Gaussian white noise which<br />

captures the inform<strong>at</strong>ion flow impacting on the vol<strong>at</strong>ility, as <strong>de</strong>fined in (5). Extending the property (16), we<br />

find th<strong>at</strong><br />

t<br />

Cov[W (t), ω0]<br />

Eendo[W (t) | ω0] = · (ω0 − E[ω0]) ∝ (ω0 − E[ω0]) dτ K(−τ) . (29)<br />

Var[ω0]<br />

−∞<br />

Expression (29) predicts th<strong>at</strong> the expected p<strong>at</strong>h of the continuous inform<strong>at</strong>ion flow prior to the endogeneous<br />

shock (i.e., for t < 0) grows like ∆W (t) = η(t)∆t ∼ K(−t)∆t ∼ ∆t/ √ −t for t < 0 upon the approach<br />

to the time t = 0 of the large endogeneous shock. In other words, conditioned on the observ<strong>at</strong>ion of a large<br />

endogeneous shock, there is specific s<strong>et</strong> of trajectories of the news flow η(t) th<strong>at</strong> led to it. These conditional<br />

news flows have an expect<strong>at</strong>ion given by (29).<br />

References<br />

Adam, M.C. and A. Szafarz, 1992, Specul<strong>at</strong>ive Bubbles and Financial Mark<strong>et</strong>s, Oxford Economic Papers<br />

44, 626-640.<br />

Arneodo, A., J.F. Muzy and D. Sorn<strong>et</strong>te, 1998, Direct causal casca<strong>de</strong> in the stock mark<strong>et</strong>, The European<br />

physical Journal B 2, 277-282.<br />

Bacry, E., J. Delour and J.F. Muzy, 2001, Multifractal ranom walk, Physical Review E 64, 026103.<br />

10<br />

(26)<br />

(27)<br />

(28)


Baillie, R.T., 1996, Long memory processes and fractional integr<strong>at</strong>ion in econom<strong>et</strong>rics, Journal of Econom<strong>et</strong>rics<br />

73, 5-59.<br />

Barro, R.J., E.F. Fama, D.R. Fischel, A.H. Meltzer, R. Roll and L.G. Telser, 1989, Black monday and the<br />

future of financial mark<strong>et</strong>s, edited by R.W. Kamphuis, Jr., R.C. Kormendi and J.W.H. W<strong>at</strong>son (Mid<br />

American Institute for Public Policy Research, Inc. and Dow Jones-Irwin, Inc.).<br />

Camerer, C., 1989, Bubbles and Fads in Ass<strong>et</strong> Prices, Journal of Economic Surveys 3, 3-41.<br />

Cutler, D., J. Poterba and L. Summers, Wh<strong>at</strong> Moves Stock Prices? 1989, Journal of Portfolio Management,<br />

Spring, 4-12.<br />

Ding, Z., Granger, C.W.J. and Engle, R., 1993, A long memory property of stock r<strong>et</strong>urns and a new mo<strong>de</strong>l,<br />

Journal of Empirical Finance 1, 83-106.<br />

Ding, Z., Granger, C.W.J., 1996, Mo<strong>de</strong>ling vol<strong>at</strong>ility persistence of specul<strong>at</strong>ive r<strong>et</strong>urns: A new approach,<br />

Journal of Econom<strong>et</strong>rics 73, 185-215.<br />

Feigenbaum, J.A., 2001, A st<strong>at</strong>istical analysis of log-periodic precursors to financial crashes, Quantit<strong>at</strong>ive<br />

Finance 1(3), 346-360.<br />

Granger, C.W.J. and Ding, Z., 1996, Vari<strong>et</strong>ies of long memory mo<strong>de</strong>ls, Journal of Econom<strong>et</strong>rics 73, 61-77.<br />

Johansen, A. and Sorn<strong>et</strong>te, 1999, Critical Crashes, Risk 12 (1), 91-94.<br />

Lillo, F. and R.N. Mantegna, Power-law relax<strong>at</strong>ion in a complex system: the fluctu<strong>at</strong>ion <strong>de</strong>cay after a financial<br />

mark<strong>et</strong> crash, preprint cond-m<strong>at</strong>/0111257<br />

Man<strong>de</strong>lbrot, B.B., 1997, Fractals and scaling in finance : discontinuity, concentr<strong>at</strong>ion, risk : selecta volume<br />

E, New York : Springer.<br />

Müller, U.A., M.M. Dacorogna, R. Dav, R.B. Olsen, O.V. Pict<strong>et</strong> and J.E. von Weizs”cker, 1997, Vol<strong>at</strong>ilities<br />

of Different Time Resolutions - Analyzing the Dynamics of Mark<strong>et</strong> Components, Journal of<br />

Empirical Finance 4, No. 2-3, 213-240.<br />

Muzy, J.F., J. Delour and E. Bacry, 2000, Mo<strong>de</strong>lling fluctu<strong>at</strong>ions of financial time series: from casca<strong>de</strong><br />

process to stochastic vol<strong>at</strong>ility mo<strong>de</strong>l, The European physical Journal B 17, 537-548.<br />

Muzy, J.-F., D. Sorn<strong>et</strong>te, J. Delour and A. Arneodo, 2001, Multifractal r<strong>et</strong>urns and Hierarchical Portfolio<br />

Theory, Quantit<strong>at</strong>ive Finance 1 (1), 131-148.<br />

Orléan, A., 1989, Mim<strong>et</strong>ic contagion and specul<strong>at</strong>ive bubbles, Theory and Decision 27, 63-92.<br />

Orléan, A., 1995, Bayesian interactions and collective dynamics of opinion: Heard behavior and mim<strong>et</strong>ic<br />

contagion, journal of Economic Behavior & Organiz<strong>at</strong>ion 28, 257-274.<br />

Kim, S., N. Shepard, and S. Chib , 1998, Stochastic vol<strong>at</strong>ility: Likelyhood inference and comparison with<br />

ARCH mo<strong>de</strong>ls, Review of Economic Studies 65, 361-393.<br />

Shiller, R.J., 2000, Irr<strong>at</strong>ional exuberance (Princ<strong>et</strong>on University Press, Princ<strong>et</strong>on, NJ).<br />

Sorn<strong>et</strong>te, D. and A. Johansen, 2001, Significance of log-periodic precursors to financial crashes, Quantit<strong>at</strong>ive<br />

Finance 1 (4), 452-471.<br />

Sorn<strong>et</strong>te, D. and J.V. An<strong>de</strong>rsen, 2002, A Nonlinear Super-Exponential R<strong>at</strong>ional Mo<strong>de</strong>l of Specul<strong>at</strong>ive Financial<br />

Bubbles, Int. J. Mod. Phys. C 13 (2), 171-188.<br />

11<br />

147


148 4. Relax<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité<br />

White E.N., 1996, Stock mark<strong>et</strong> crashes and specul<strong>at</strong>ive manias. In The intern<strong>at</strong>ional library of macroeconomic<br />

and financial history, 13 (An Elgar Reference Collection, Cheltenham, UK; Brookfield, US).<br />

12


Chapitre 5<br />

Approche comportementale <strong>de</strong>s marchés<br />

financiers : l’apport <strong>de</strong>s modèles d’agents<br />

Depuis quelques années, les sciences économiques <strong>et</strong> financières abandonnent progressivement le modèle<br />

standard <strong>de</strong> l’agent économique représent<strong>at</strong>if dont on sait qu’il soutient notamment l’hypothèse d’efficience<br />

<strong>de</strong>s marchés, <strong>et</strong> ce dans le but <strong>de</strong> prendre en considér<strong>at</strong>ion le fait que les marchés financiers<br />

reflètent les actions <strong>et</strong> les émotions d’êtres réels. Ainsi s’est développé ce qu’il convient désormais d’appeler<br />

l’économie ou la finance cognitive (voir par exemple Thaller (1993), Sheffrin (2000), Shleiffer<br />

(2000) ou encore Goldberg <strong>et</strong> von Nitzsch (2001)). Le but <strong>de</strong> c<strong>et</strong>te nouvelle approche est d’intégrer<br />

la r<strong>at</strong>ionalité nécessairement limitée <strong>de</strong>s agents, qui peuvent certes tenter au mieux <strong>de</strong> leurs capacités<br />

d’être r<strong>at</strong>ionnels <strong>et</strong> d’agir <strong>de</strong> manière optimale, il n’en reste pas moins qu’ils seront toujours suj<strong>et</strong> à<br />

<strong>de</strong>s émotions ou <strong>de</strong>s influences extérieures qu’ils ne contrôlent pas. Ainsi, il est normal que les dimensions<br />

psychologique, sociologique <strong>et</strong> cognitive au sens large ayant une influence sur l’agent économique<br />

soient prises en compte. Pour autant <strong>et</strong> en dépit <strong>de</strong> c<strong>et</strong>te r<strong>at</strong>ionalité limitée <strong>de</strong>s agents, les marchés sont le<br />

plus souvent très proches <strong>de</strong> l’efficience. Ainsi il convient <strong>de</strong> se <strong>de</strong>man<strong>de</strong>r comment l’auto-organis<strong>at</strong>ion<br />

<strong>de</strong>s agents perm<strong>et</strong> d’<strong>at</strong>teindre c<strong>et</strong>te efficience <strong>et</strong> pourquoi / comment le système s’en écarte parfois <strong>de</strong><br />

manière spectaculaire.<br />

C’est en fait tout l’enjeu <strong>de</strong> l’étu<strong>de</strong> <strong>de</strong>s modèles d’agents en interaction que <strong>de</strong> tenter d’apporter <strong>de</strong>s<br />

réponses à ces questions. L’approche théorique nouvelle offerte par ces modèles perm<strong>et</strong> d’intégrer beaucoup<br />

<strong>de</strong>s limit<strong>at</strong>ions <strong>de</strong>s agents réels <strong>et</strong> à partir <strong>de</strong> la <strong>de</strong>scription - même très sommaire - du comportement<br />

<strong>de</strong>s acteurs agissant sur les marchés, il est possible d’en déduire certains mo<strong>de</strong>s <strong>de</strong> fonctionnement. Cela<br />

perm<strong>et</strong> notamment <strong>de</strong> mieux comprendre comment, partant d’agents individuels non r<strong>at</strong>ionnels au sens<br />

strict, peut émerger un comportement collectif conforme aux modèles r<strong>at</strong>ionnels, puis dans un <strong>de</strong>uxième<br />

temps, d’étudier les dévi<strong>at</strong>ions possibles <strong>et</strong> les relax<strong>at</strong>ions vers l’ét<strong>at</strong> d’efficience du marché prédit par<br />

ces modèles r<strong>at</strong>ionnels. Réciproquement, l’adéqu<strong>at</strong>ion ou non <strong>de</strong>s prévisions <strong>de</strong> ces modèles aux faits<br />

stylisés, que nous avons décrits au chapitre 1, perm<strong>et</strong> si ce n’est d’accepter ou <strong>de</strong> rej<strong>et</strong>er définitivement la<br />

pertinence <strong>de</strong> certains types <strong>de</strong> comportements <strong>de</strong>s agents vis-à-vis <strong>de</strong> la génér<strong>at</strong>ion <strong>de</strong> l’organis<strong>at</strong>ion <strong>de</strong>s<br />

marchés, du moins <strong>de</strong> cerner les mécanismes les plus importants quant à la <strong>de</strong>scription <strong>de</strong>s faits stylisés.<br />

De plus, à la différence notoire <strong>de</strong> la physique <strong>et</strong> <strong>de</strong>s sciences n<strong>at</strong>urelles en général, il est quasiment<br />

impossible <strong>de</strong> se livrer à <strong>de</strong>s expériences sur les marchés financiers afin <strong>de</strong> tester directement telle ou<br />

telle hypothèse ou l’impact d’une nouvelle réglement<strong>at</strong>ion. Certes, quelques simul<strong>at</strong>ions <strong>de</strong> marché ont<br />

été conduites en labor<strong>at</strong>oire (Smith 1994, Smith 1998), mais le nombre restreint d’acteurs qui y prennent<br />

part <strong>et</strong> le fait qu’ils sachent qu’ils participent à une expérience, en limite quelque peu la validité. Donc,<br />

le développement <strong>de</strong> modèles <strong>de</strong> marchés réalistes est particulièrement intéressant dans la mesure où<br />

149


150 5. Approche comportementale <strong>de</strong>s marchés financiers : l’apport <strong>de</strong>s modèles d’agents<br />

ils pourraient servir <strong>de</strong> substitut <strong>de</strong> labor<strong>at</strong>oire. En fait c<strong>et</strong>te approche est d’ores <strong>et</strong> déjà en train <strong>de</strong> se<br />

développer, tant sur le plan académique dans le but d’étudier l’eff<strong>et</strong> <strong>de</strong> l’introduction <strong>de</strong> la taxe Tobin<br />

ou l’influence <strong>de</strong>s ordres limites sur la vol<strong>at</strong>ilité du marché (Westerhoff 2001, Westerhoff 2002, par<br />

exemple), que sur le plan pr<strong>at</strong>ique pour tester divers scénarii <strong>et</strong> m<strong>et</strong>tre au point certaines str<strong>at</strong>égies.<br />

Comme nous venons <strong>de</strong> le dire, l’émergence <strong>de</strong>s modèles d’agents en interaction est en gran<strong>de</strong> partie<br />

due à l’échec <strong>de</strong>s modèles standards dont les principales conséquences sont les propriétés d’efficience<br />

<strong>de</strong>s marchés <strong>et</strong> le fait que les prix <strong>de</strong>s actifs financiers suivent <strong>de</strong>s marches alé<strong>at</strong>oires. Le défaut majeur,<br />

aujourd’hui bien établi, <strong>de</strong>s modèles économiques standards est <strong>de</strong> considérer un agent dit représent<strong>at</strong>if,<br />

ce qui revient à faire une approxim<strong>at</strong>ion <strong>de</strong> “champ moyen”, alors qu’il apparaît très clairement que<br />

l’hétérogénéité est un concept clé <strong>de</strong> la compréhension <strong>de</strong>s marchés financiers <strong>et</strong> que malgrè c<strong>et</strong>te<br />

hétérogénéité, une auto-organis<strong>at</strong>ion voit le jour.<br />

Il existe désormais un grand nombre <strong>de</strong> modèles d’agents perm<strong>et</strong>tant <strong>de</strong> rendre compte <strong>de</strong> tels ou tels<br />

faits stylisés. Notre objectif n’est pas <strong>de</strong> les décrire un par un <strong>de</strong> manière exhaustive, ce qui n’aurait<br />

d’ailleurs pas grand intérêt. Nous préférons nous <strong>at</strong>tacher à présenter quelques gran<strong>de</strong>s classes <strong>de</strong><br />

modèles d’agents parmi lesquelles nous distinguons d’une part les modèles d’opinion <strong>et</strong> les modèles<br />

<strong>de</strong> marchés <strong>et</strong> d’autre part les modèles à agents adapt<strong>at</strong>ifs <strong>et</strong> non adapt<strong>at</strong>ifs. D’autres c<strong>at</strong>égories peuvent<br />

évi<strong>de</strong>mment être établies, conduisant notamment à l’importante distinction entre modèles à hétérogénéité<br />

forte ou faible, mais nous n’irons pas aussi loin, d’autant que nous souhaitons m<strong>et</strong>tre en exergue les<br />

quelques mécanismes récurrents se r<strong>et</strong>rouvant dans la plupart <strong>de</strong>s modèles.<br />

Avant d’entrer dans le vif du suj<strong>et</strong>, il convient <strong>de</strong> spécifier un <strong>de</strong>rnier point, à savoir, étant donnée une<br />

popul<strong>at</strong>ion d’agents économiques s’échangeant un actif financier, comment se forme le prix <strong>de</strong> c<strong>et</strong> actif.<br />

Un grand nombre <strong>de</strong> modèles continuent <strong>de</strong> supporter l’idée que la form<strong>at</strong>ion <strong>de</strong>s prix sur les marchés<br />

financiers peut résulter d’un équilibre entre offre <strong>et</strong> <strong>de</strong>man<strong>de</strong>. Ce sont les modèles dits d’équilibres r<strong>at</strong>ionnels<br />

adapt<strong>at</strong>ifs, parmi lesquels on peut citer Brock <strong>et</strong> LeBaron (1996), Brock <strong>et</strong> Hommes (1997) ou<br />

Grandmont (1998) par exemple. Cependant, au vu <strong>de</strong> résult<strong>at</strong>s empiriques <strong>de</strong> plus en plus nombreux<br />

(Brown, Walsh <strong>et</strong> Yuen 1997, Chordia, Roll <strong>et</strong> Subrahmanyam 2002), il parait extrêmement difficile <strong>de</strong><br />

continuer à adm<strong>et</strong>tre c<strong>et</strong>te hypothèse <strong>et</strong> il <strong>de</strong>vient nécessaire <strong>de</strong> reconnaître que les prix observés sur les<br />

marchés financiers se forment en <strong>de</strong>hors <strong>de</strong> tout équilibre. Donc, avant <strong>de</strong> nous intéresser aux différentes<br />

classes <strong>de</strong> modèles d’agents, nous allons montrer comment définir un pris hors équilibre.<br />

5.1 Prix d’un actif <strong>et</strong> excès <strong>de</strong> <strong>de</strong>man<strong>de</strong><br />

L’un <strong>de</strong>s principaux enjeux <strong>de</strong> tout modèle d’agents est <strong>de</strong> rendre compte <strong>et</strong> d’expliquer l’évolution du<br />

prix <strong>de</strong>s actifs sur les marchés financiers. Dans le modèle du tâtonnement Walrasien, les agents signalent<br />

le prix auquel ils sont prêts à ach<strong>et</strong>er ou vendre, <strong>et</strong> après ajustement, la transaction est effectuée lorsqu’un<br />

prix d’équilibre est <strong>at</strong>teint (Samuelson 1941, par exemple). Si ce type d’approche semblait convenir à la<br />

modélis<strong>at</strong>ion <strong>de</strong>s marchés financiers au début du siècle lorsque les prix étaient fixés une fois par jour<br />

<strong>et</strong> non en continu, elle parait désormais très loin <strong>de</strong> refléter le fonctionnement <strong>de</strong>s places financières<br />

mo<strong>de</strong>rnes, où l’on peut penser que les prix se forment en <strong>de</strong>hors <strong>de</strong> tout équilibre. Il est donc nécessaire <strong>de</strong><br />

savoir comment relier l’évolution <strong>de</strong>s prix, hors <strong>de</strong> l’équilibre, à la répartition <strong>de</strong>s agents entre ach<strong>et</strong>eurs<br />

<strong>et</strong> ven<strong>de</strong>urs. Une simple applic<strong>at</strong>ion <strong>de</strong> la loi <strong>de</strong> l’offre <strong>et</strong> <strong>de</strong> la <strong>de</strong>man<strong>de</strong> nous indique que les prix doivent<br />

augmenter lorsque le nombre d’ach<strong>et</strong>eurs est supérieur au nombre <strong>de</strong> ven<strong>de</strong>urs <strong>et</strong> réciproquement, celuici<br />

doit diminuer lorsque les ven<strong>de</strong>urs sont en plus grand nombre que les ach<strong>et</strong>eurs.<br />

Donc, il apparaît qu’une quantité n<strong>at</strong>urelle dont dépend l’évolution <strong>de</strong>s prix est l’excès <strong>de</strong> <strong>de</strong>man<strong>de</strong>, que<br />

nous noterons ED dans la suite, <strong>et</strong> qui représente la différence entre le nombre d’ach<strong>et</strong>eurs <strong>et</strong> le nombre


5.1. Prix d’un actif <strong>et</strong> excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> 151<br />

<strong>de</strong> ven<strong>de</strong>urs. Plus précisément, l’excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> est la différence entre la <strong>de</strong>man<strong>de</strong> <strong>de</strong>s ach<strong>et</strong>eurs <strong>et</strong><br />

l’offre <strong>de</strong>s ven<strong>de</strong>urs. Ainsi, la vari<strong>at</strong>ion <strong>de</strong> prix dP (t), entre les instants t <strong>et</strong> t+dt, est fonction <strong>de</strong> l’excès<br />

<strong>de</strong> <strong>de</strong>man<strong>de</strong> ED(t), mais aussi a priori du prix lui-même P (t) :<br />

dP (t)<br />

dt<br />

= f(P (t), ED(t)), (5.1)<br />

où il suffit <strong>de</strong> choisir f(P (t), ED(t)) = P (t) · g(ED(t)), avec g(·) croissante <strong>et</strong> g(0) = 0 pour assurer<br />

la positivité du prix P (t) à tout instant :<br />

On peut noter que la quantité 1<br />

P (t)<br />

1<br />

P (t)<br />

dP (t)<br />

dt<br />

associé au prix P (t), si bien que r(t) est égal à g(ED(t)).<br />

= g(ED(t)). (5.2)<br />

· dP (t)<br />

dt n’est en fait rien d’autre que le ren<strong>de</strong>ment instantané r(t)<br />

Pour aller plus avant, il est nécessaire <strong>de</strong> spécifier un peu plus l’expression <strong>de</strong> la fonction g(·). En l’absence<br />

<strong>de</strong> toute autre inform<strong>at</strong>ion, l’approche la plus simple consiste à remarquer que pour les faibles<br />

excès <strong>de</strong> <strong>de</strong>man<strong>de</strong>, un développement au premier ordre <strong>de</strong> g(·), pourvu que g ′ (0) existe <strong>et</strong> soit non nulle,<br />

est déjà intéressant. En eff<strong>et</strong>, il vient alors<br />

1<br />

P (t)<br />

dP (t)<br />

dt<br />

ED(t)<br />

= , (5.3)<br />

λ<br />

où l’on a noté g ′ (0) = λ −1 . Ce facteur λ mesure la liquidité ou profon<strong>de</strong>ur du marché (Hausman, Lo <strong>et</strong><br />

MacKinlay 1992, Kempf <strong>et</strong> Korn 1999). Il représente l’excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> nécessaire pour faire bouger<br />

le ren<strong>de</strong>ment instantané d’une unité <strong>et</strong> mesure donc la sensibilité du prix aux fluctu<strong>at</strong>ions <strong>de</strong> l’excès <strong>de</strong><br />

<strong>de</strong>man<strong>de</strong>. La plupart <strong>de</strong>s modèles que nous rencontrerons dans la suite utilisent c<strong>et</strong>te représent<strong>at</strong>ion.<br />

Farmer (1998) a montré que c<strong>et</strong>te expression qui n’apparaît ici que comme une approxim<strong>at</strong>ion (linéaire)<br />

est en fait la rel<strong>at</strong>ion exacte entre le prix <strong>et</strong> l’excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> si l’on adm<strong>et</strong> que les ordres traités<br />

simultanément le sont au même prix. Ceci est réaliste pour <strong>de</strong>s marchés où le carn<strong>et</strong> d’ordre est traité en<br />

continu, comme sur EURONEXT par exemple, mais <strong>de</strong>vient peu crédible lorsque les ordres sont traités<br />

<strong>de</strong> manière décentralisée par différents mark<strong>et</strong>-makers comme sur le NYSE.<br />

En conclusion, la rel<strong>at</strong>ion (5.3), même si elle adm<strong>et</strong> certaines justific<strong>at</strong>ions théoriques, n’est généralement<br />

qu’approxim<strong>at</strong>ive, il est donc important <strong>de</strong> se <strong>de</strong>man<strong>de</strong>r quel est son domaine <strong>de</strong> validité. Les étu<strong>de</strong>s<br />

empiriques <strong>de</strong> Campbell <strong>et</strong> al. (1997), Chan <strong>et</strong> Fong (2000) ou Plerou, Gopikrishnan, Gabaix <strong>et</strong> Stanley<br />

(2001) ont montré que lorsque l’excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> <strong>de</strong>vient trop important, <strong>de</strong>s non-linéarités - traduisant<br />

un phénomène <strong>de</strong> s<strong>at</strong>ur<strong>at</strong>ion - <strong>de</strong>viennent appréciables. Ainsi, selon Plerou <strong>et</strong> al. (2001) la fonction g(·)<br />

peut être raisonnablement approchée par la fonction tangente hyperbolique. Notons, que dans ce cas,<br />

l’approxim<strong>at</strong>ion (5.3) reste valable pour les excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> modérés. Ceci n’est plus vrai dans la<br />

représent<strong>at</strong>ion <strong>de</strong> Zhang (1999) où la fonction g(·) est la fonction racine carrée, qui n’adm<strong>et</strong> pas <strong>de</strong><br />

dérivée en zéro. C<strong>et</strong>te représent<strong>at</strong>ion en terme <strong>de</strong> racine carrée apparaît lorsque l’on adm<strong>et</strong> qu’un ordre<br />

peut ne pas être exécuté instantanément, mais requière d’autant plus <strong>de</strong> temps que sa taille est importante.<br />

Son intérêt a récemment été confirmé par l’étu<strong>de</strong> empirique <strong>de</strong> Lillo, Farmer <strong>et</strong> Mantegna (2002).<br />

C<strong>et</strong>te <strong>de</strong>rnière remarque m<strong>et</strong> en lumière l’influence du temps d’exécution d’un ordre sur l’évolution du<br />

prix, ce qui constitue en fait une autre <strong>de</strong>s limit<strong>at</strong>ions <strong>de</strong> (5.3) (<strong>et</strong> <strong>de</strong> 5.1). En eff<strong>et</strong>, il est incorrect <strong>de</strong><br />

considérer que l’évolution du prix à l’instant t ne dépend que <strong>de</strong> l’excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> au même instant :<br />

Chordia <strong>et</strong> al. (2002) notamment ont montré que les gran<strong>de</strong>s fluctu<strong>at</strong>ions <strong>de</strong> prix étaient aussi affectées<br />

par les excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> passés. Plus précisément ceci semble là encore dépendre <strong>de</strong> l’organis<strong>at</strong>ion du<br />

marché, puisque selon Brown <strong>et</strong> al. (1997) c<strong>et</strong> eff<strong>et</strong> est plus important pour les marchés organisés autour


152 5. Approche comportementale <strong>de</strong>s marchés financiers : l’apport <strong>de</strong>s modèles d’agents<br />

<strong>de</strong> mark<strong>et</strong>-makers comme sur le NYSE que pour les marchés organisés autour d’un carn<strong>et</strong> d’ordres<br />

gérés inform<strong>at</strong>iquement comme sur EURONEXT ou sur le marché australien ASX.<br />

Malgré ces quelques limit<strong>at</strong>ions, la modélis<strong>at</strong>ion (5.3) est la plus souvent r<strong>et</strong>enue du fait <strong>de</strong> sa simplicité,<br />

ce qui est pleinement justifiable lorsque c<strong>et</strong>te simplific<strong>at</strong>ion perm<strong>et</strong> d’obtenir <strong>de</strong>s solutions analytiques<br />

pour le modèle considéré. Malheureusement, la plupart <strong>de</strong>s modèles d’agents que l’on rencontre dans<br />

la littér<strong>at</strong>ure doivent, du fait <strong>de</strong> leur complexité, être étudiés numériquement. Du coup, c<strong>et</strong>te approche<br />

simplific<strong>at</strong>rice, n’a <strong>de</strong> raison d’être que dans la mesure où elle facilite l’interprét<strong>at</strong>ion <strong>et</strong> la compréhension<br />

<strong>de</strong>s résult<strong>at</strong>s numériques en perm<strong>et</strong>tant <strong>de</strong> réduire l’ensemble <strong>de</strong>s paramètres du système à son minimum.<br />

5.2 Modèles d’opinion contre modèles <strong>de</strong> marché<br />

Outre la modélis<strong>at</strong>ion du prix <strong>de</strong>s actifs financiers, un <strong>de</strong>s objectifs <strong>de</strong> l’étu<strong>de</strong> <strong>de</strong>s marchés en terme <strong>de</strong><br />

modèle d’agents est <strong>de</strong> s’intéresser à la dynamique <strong>de</strong> répartition <strong>de</strong> ces agents en différents groupes :<br />

ach<strong>et</strong>eurs/ven<strong>de</strong>urs, fondamentalistes/chartistes ou encore imit<strong>at</strong>eurs/antagonistes C’est pour cela, qu’une<br />

fois fixées les règles <strong>de</strong> form<strong>at</strong>ion <strong>de</strong>s groupes, l’étu<strong>de</strong> <strong>de</strong>s modèles d’agents reprend les principes directeurs<br />

<strong>de</strong> l’étu<strong>de</strong> <strong>de</strong> n’importe quel système dynamique.<br />

Un point important dans la distinction entre les différents types <strong>de</strong> modèles d’agents est <strong>de</strong> savoir si la<br />

variable prix est endogène au modèle ou exogène. Par exogène, nous entendons que le prix est fixé par<br />

l’excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> <strong>et</strong> donc par la composition <strong>de</strong>s différents groupes d’agents, mais qu’il n’influe pas sur<br />

la form<strong>at</strong>ion <strong>de</strong> ces groupes. En ce sens, <strong>de</strong> tels modèles d’agents ne sont rien d’autres que <strong>de</strong>s modèles<br />

d’opinion, où le déséquilibre entre les différents groupes est traduit par un prix, à l’ai<strong>de</strong> <strong>de</strong> l’équ<strong>at</strong>ion<br />

(5.3). Au contraire, lorsque le prix <strong>de</strong>vient une variable endogène, la form<strong>at</strong>ion <strong>de</strong>s différents groupes<br />

d’agents dépend <strong>de</strong> celui-ci, notamment par l’intermédiaire <strong>de</strong> règles <strong>de</strong> transition entre groupes. Il y<br />

a donc, d’une part une action <strong>de</strong> la composition <strong>de</strong>s groupes sur le prix (via 5.3), <strong>et</strong> d’autre part une<br />

rétro-action du prix sur la composition <strong>de</strong>s groupes (via les règles <strong>de</strong> form<strong>at</strong>ion/transition). On est alors<br />

réellement en présence d’un modèle <strong>de</strong> marché.<br />

Parmi les nombreux modèles d’opinion ayant vu le jour, le modèle <strong>de</strong> Cont <strong>et</strong> Bouchaud (2000) présente<br />

l’avantage d’être d’une gran<strong>de</strong> généralité. En eff<strong>et</strong>, il ne spécifie nullement la n<strong>at</strong>ure <strong>de</strong>s interactions<br />

entre les agents - celle-ci étant extrêmement difficile à déterminer - <strong>et</strong> va même jusqu’à tirer profit <strong>de</strong><br />

c<strong>et</strong>te indétermin<strong>at</strong>ion en reprenant l’idée défendue par Kirman (1983) selon laquelle la communic<strong>at</strong>ion<br />

entre agents économiques peut être représentée comme un réseau <strong>de</strong> connexions alé<strong>at</strong>oires. Cont <strong>et</strong> Bouchaud<br />

(2000) formalisent alors le problème <strong>de</strong> sorte qu’il apparaisse exactement comme un problème <strong>de</strong><br />

percol<strong>at</strong>ion, phénomène critique bien connu <strong>de</strong>s m<strong>at</strong>hém<strong>at</strong>iciens <strong>et</strong> physiciens.<br />

Plus précisément, Cont <strong>et</strong> Bouchaud (2000) considèrent un ensemble <strong>de</strong> N agents choisissant d’être<br />

ach<strong>et</strong>eurs, ven<strong>de</strong>urs ou <strong>de</strong> ne pas prendre position sur le marché, avec <strong>de</strong>s probabilités respectivement<br />

égales à a, a <strong>et</strong> 1−2a, <strong>et</strong> a ∈]0, 1/2[. Ces agents créent <strong>de</strong>s coalitions au sein <strong>de</strong>squelles chaque individu<br />

possè<strong>de</strong> la même opinion, ce qui peut rendre compte par exemple <strong>de</strong> l’existence <strong>et</strong> <strong>de</strong> l’évolution <strong>de</strong><br />

groupes d’investisseurs associés au sein <strong>de</strong> fonds mutuels. Les coalitions se forment <strong>de</strong> manière alé<strong>at</strong>oire<br />

par appariement entre agents. Ainsi, on peut considérer que les agents sont situés sur les nœuds d’un<br />

graphe, <strong>et</strong> que <strong>de</strong>ux agents en rel<strong>at</strong>ion sont liés par une connexion entre les nœuds qu’ils occupent.<br />

Un groupe d’opinion est alors représenté par un amas <strong>de</strong> nœuds reliés entres eux par <strong>de</strong>s connexions<br />

binaires, <strong>et</strong> la distribution <strong>de</strong> taille <strong>de</strong> ces amas peut être obtenue à l’ai<strong>de</strong> <strong>de</strong> résult<strong>at</strong>s standards en <strong>théorie</strong><br />

<strong>de</strong>s graphes.<br />

En supposant que la probabilité que <strong>de</strong>ux agents soient appariés est p = c/N, ce qui garantit que le<br />

nombre moyen d’agents avec lequel un agent donné est relié reste fini (est égal à c) quand N tend


5.2. Modèles d’opinion contre modèles <strong>de</strong> marché 153<br />

vers l’infini, les résult<strong>at</strong>s <strong>de</strong> Erdös <strong>et</strong> Renyi (1960) perm<strong>et</strong>tent <strong>de</strong> montrer que la distribution <strong>de</strong> taille <strong>de</strong>s<br />

coalitions est une loi <strong>de</strong> puissance d’exposant 3/2 lorsque c = 1, <strong>et</strong> que c<strong>et</strong>te loi <strong>de</strong> puissance est tronquée<br />

exponentiellement lorsque c < 1. Ainsi, lorsque le système se trouve au seuil <strong>de</strong> percol<strong>at</strong>ion c = 1, ce<br />

modèle perm<strong>et</strong> <strong>de</strong> rendre compte <strong>de</strong> la décroissance en loi <strong>de</strong> puissance observée pour la distribution<br />

<strong>de</strong>s ren<strong>de</strong>ments <strong>de</strong>s actifs financiers. Cependant, l’accord n’est que qualit<strong>at</strong>if, puisque l’indice <strong>de</strong> queue<br />

généralement observé est plutôt <strong>de</strong> l’ordre <strong>de</strong> 3 − 4, alors que ce modèle prédit un exposant égal à 3/2.<br />

Une <strong>de</strong>s critiques élevée contre ce modèle est qu’a priori, le système n’a aucune raison <strong>de</strong> se trouver<br />

au seuil c = 1. C’est pour cela que Stauffer <strong>et</strong> Sorn<strong>et</strong>te (1999) ont proposé que le paramètre c puisse<br />

varier, ce qui perm<strong>et</strong> <strong>de</strong> rendre compte <strong>de</strong> l’évolution <strong>de</strong>s opinions au cours du temps. Moyennant cela,<br />

la distribution <strong>de</strong>s ren<strong>de</strong>ments est une loi <strong>de</strong> puissance dont l’exposant peut être ajusté pour s<strong>at</strong>isfaire les<br />

observ<strong>at</strong>ions expérimentales. De plus, c<strong>et</strong>te version dynamique du modèle <strong>de</strong> Cont <strong>et</strong> Bouchaud (2000)<br />

est comp<strong>at</strong>ible avec la lente décroissante <strong>de</strong> la corrél<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité <strong>de</strong>s ren<strong>de</strong>ments.<br />

Ce modèle est clairement un modèle d’opinion puisque les décisions <strong>de</strong>s agents sont indépendantes du<br />

prix <strong>de</strong> l’actif qu’ils s’échangent. En particulier, le fait que les agents choisissent <strong>de</strong> placer un ordre sur<br />

le marché ou non ne dépend pas du prix du marché, ce qui est assez peu réaliste. Cela montre comment<br />

rendre <strong>de</strong> façon simple le prix endogène dans ce type <strong>de</strong> modèle, perm<strong>et</strong>tant ainsi <strong>de</strong> d’obtenir un réel<br />

modèle <strong>de</strong> marché. Il suffit pour cela <strong>de</strong> rendre les probabilités d’entrer ou non dans le marché <strong>et</strong> d’être<br />

ach<strong>et</strong>eur ou ven<strong>de</strong>ur dépendantes du prix <strong>de</strong> l’actif. A notre connaissance cela n’a pas encore été fait<br />

pour ce type <strong>de</strong> modèle.<br />

C<strong>et</strong>te métho<strong>de</strong> d’endogénéis<strong>at</strong>ion du prix est généralement celle suivie dans tous les modèles <strong>de</strong> marché.<br />

Ainsi, dans les modèles proposés par Kirman (1991), Brock (1993), Lux (1995) ou encore Farmer (1998)<br />

parmi bien d’autres, il existe <strong>de</strong>ux classes d’agents : certains sont supposés fondamentalistes <strong>et</strong> prennent<br />

donc position en fonction <strong>de</strong> l’écart entre le prix du marché <strong>et</strong> un prix fondamental, tandis que d’autres<br />

sont chartistes <strong>et</strong> suivent la tendance qu’ils essaient <strong>de</strong> détecter dans les cours. Le seuil <strong>de</strong> déclenchement<br />

du placement d’ordre est donc fonction du prix du marché.<br />

Dans le même esprit, mais à un niveau macroscopique c<strong>et</strong>te fois, Bouchaud <strong>et</strong> Cont (1998) - dans une<br />

version linéaire - puis I<strong>de</strong> <strong>et</strong> Sorn<strong>et</strong>te (2002) - dans une généralis<strong>at</strong>ion non linéaire - ont repris c<strong>et</strong>te<br />

approche afin <strong>de</strong> décrire non plus l’excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> individuelle mais l’excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> agrégée <strong>de</strong>s<br />

agents, ce qui leur a permis - dans l’approche non linéaire - <strong>de</strong> rendre compte <strong>de</strong> la croissance superexponentielle<br />

<strong>de</strong>s bulles spécul<strong>at</strong>ives ainsi que <strong>de</strong>s oscill<strong>at</strong>ions log-périodiques précédant les krachs.<br />

Il convient <strong>de</strong> noter que dans tous ces modèles que nous venons <strong>de</strong> citer, les fondamentalistes jouent le<br />

rôle d’une force <strong>de</strong> rappel qui tend à ramener le prix <strong>de</strong> marché vers le prix fondamental, alors que les<br />

chartistes ten<strong>de</strong>nt à l’en écarter, <strong>et</strong> ce d’autant plus vite que le prix <strong>de</strong> marché augmente rapi<strong>de</strong>ment.<br />

Ceci donne alors naissance à une succession <strong>de</strong> phases calmes, où les fondamentalistes sont en majorité,<br />

alternant avec <strong>de</strong>s phases <strong>de</strong> forte vol<strong>at</strong>ilité, où les chartistes dominent le marché.<br />

Bien d’autres exemples <strong>de</strong> modèles, tel celui <strong>de</strong> Brock <strong>et</strong> Hommes (1997) ou celui <strong>de</strong> Lux (1998), puis<br />

Lux <strong>et</strong> Marchesi (1999), reposent sur ces mêmes idées, mais dans tous les cas, l’endogénéis<strong>at</strong>ion du prix<br />

s’effectue <strong>de</strong> la même manière : les seuils <strong>de</strong> déclenchement <strong>de</strong>s actions <strong>de</strong>s agents sur le marché sont<br />

rendus dépendants du prix, ce qui est à la fois la manière la plus simple <strong>et</strong> la plus n<strong>at</strong>urelle <strong>de</strong> concevoir<br />

la chose.


154 5. Approche comportementale <strong>de</strong>s marchés financiers : l’apport <strong>de</strong>s modèles d’agents<br />

5.3 Modèles à agents adapt<strong>at</strong>ifs contre modèles à agents non adapt<strong>at</strong>ifs<br />

Parmi les modèles que nous venons <strong>de</strong> présenter, certains sont dits à agents non adapt<strong>at</strong>ifs <strong>et</strong> d’autres à<br />

agents adapt<strong>at</strong>ifs. Pour illustrer c<strong>et</strong>te distinction, considérons par exemple le modèle <strong>de</strong> Farmer (1998).<br />

Les agents y sont soit fondamentalistes soit chartistes <strong>et</strong> le nombre d’agents appartenant à chacune <strong>de</strong><br />

ces c<strong>at</strong>égories, fixé au départ, n’évolue pas au cours du temps. Ainsi, les agents choisissent certes d’être<br />

ach<strong>et</strong>eur ou ven<strong>de</strong>ur selon le prix du marché (le modèle <strong>de</strong> Farmer (1998) est un modèle <strong>de</strong> marché<br />

<strong>et</strong> non un simple modèle d’opinion), mais ils ne peuvent pas adapter leur str<strong>at</strong>égie - fondamentaliste<br />

ou chartiste- aux modific<strong>at</strong>ions <strong>de</strong> leur environnement. Le modèle <strong>de</strong> Farmer (1998) est donc qualifié <strong>de</strong><br />

modèle à agents non adapt<strong>at</strong>ifs. Le modèle <strong>de</strong> Bouchaud <strong>et</strong> Cont (1998) <strong>et</strong> son extension proposée par I<strong>de</strong><br />

<strong>et</strong> Sorn<strong>et</strong>te (2002), <strong>de</strong> même que le modèle <strong>de</strong> Lévy, Lévy <strong>et</strong> Solomon (1995), par exemple, appartiennent<br />

eux aussi à c<strong>et</strong>te c<strong>at</strong>égorie.<br />

Au contraire, le modèle <strong>de</strong> Lux (1998) ou Lux <strong>et</strong> Marchesi (1999), fait partie <strong>de</strong>s modèles à agents adapt<strong>at</strong>ifs.<br />

En eff<strong>et</strong>, à la différence du modèle <strong>de</strong> Farmer (1998), les différents agents communiquent entre<br />

eux <strong>et</strong> comparent les résult<strong>at</strong>s <strong>de</strong>s différentes str<strong>at</strong>égies afin <strong>de</strong> se déterminer. Un agent peut donc passer<br />

d’une str<strong>at</strong>égie chartiste à fondamentaliste (ou vice-versa) s’il a l’espoir que cela lui perm<strong>et</strong>te <strong>de</strong> réaliser<br />

un gain plus important. Il est donc sensible à son environnement <strong>et</strong> tend notamment à imiter les agents<br />

avec lesquels il rentre en contact si cela lui est profitable. Ces changements <strong>de</strong> str<strong>at</strong>égie perm<strong>et</strong>tent <strong>de</strong><br />

rendre compte <strong>de</strong>s bouffées <strong>de</strong> vol<strong>at</strong>ilité caractéristiques <strong>de</strong>s séries financières. En eff<strong>et</strong>, lorsque les fondamentalistes<br />

sont majoritaires, le marché est calme <strong>et</strong> les cours ne présentent que <strong>de</strong>s fluctu<strong>at</strong>ions <strong>de</strong><br />

faibles amplitu<strong>de</strong>s autour <strong>de</strong> leur prix fondamental. Au contraire, dès que les chartistes sont en nombre<br />

suffisant, une tendance peut apparaître, puis s’amplifier, conduisant alors à une augment<strong>at</strong>ion <strong>de</strong> la vol<strong>at</strong>ilité,<br />

qui ne r<strong>et</strong>ombera que lorsque l’enthousiasme <strong>de</strong>s chartistes aura disparu <strong>et</strong> que les fondamentalistes<br />

reprendront le <strong>de</strong>ssus. Ainsi, ce modèle perm<strong>et</strong> d’interpréter en terme microstructurel pourquoi les séries<br />

financières présentent <strong>de</strong>s bouffées <strong>de</strong> vol<strong>at</strong>ilité, <strong>et</strong> justifie l’idée selon laquelle la dynamique <strong>de</strong>s marchés<br />

financiers présente <strong>de</strong>s changements <strong>de</strong> régime (Susmel 1996).<br />

Le modèle <strong>de</strong> Cont <strong>et</strong> Bouchaud (2000) dans la version généralisée <strong>de</strong> Stauffer <strong>et</strong> Sorn<strong>et</strong>te (1999) peut<br />

lui aussi être considéré, à la limite, comme un modèle à agents adapt<strong>at</strong>ifs. En eff<strong>et</strong>, même si le processus<br />

d’adapt<strong>at</strong>ion n’est pas clairement précisé <strong>et</strong> est spécifié <strong>de</strong> manière totalement ad hoc, les agents peuvent<br />

changer <strong>de</strong> coalition au cours du temps, marquant ainsi leur adhésion à telle ou telle opinion <strong>et</strong> conduisant<br />

à une évolution <strong>de</strong> l’opinion globale du système.<br />

Dans les <strong>de</strong>ux modèles précé<strong>de</strong>nts, les agents n’ont le choix qu’entre un p<strong>et</strong>it nombre <strong>de</strong> str<strong>at</strong>égies,<br />

l’hétérogénéité <strong>de</strong> ces modèles est donc faible. C’est pourquoi il est important <strong>de</strong> mentionner <strong>de</strong>ux autres<br />

types <strong>de</strong> modèles à agents adapt<strong>at</strong>ifs, complètement différents <strong>de</strong> tous ceux évoqués jusqu’ici, à savoir<br />

les jeux <strong>de</strong> minorité <strong>et</strong> le modèle d’agents “génétiques” développé au Santa-Fe Intitut (Palmer, Arthur,<br />

Holland, LeBaron <strong>et</strong> Taylor 1994, Arthur, Holland, LeBaron, Palmer <strong>et</strong> Taylor 1997, LeBaron, Arthur <strong>et</strong><br />

Palmer 1999). Dans ce <strong>de</strong>rnier modèle, les agents sont représentés par <strong>de</strong>s algorithmes génétiques, p<strong>et</strong>its<br />

programmes inform<strong>at</strong>iques imitant le processus <strong>de</strong> sélection n<strong>at</strong>urelle <strong>de</strong>s gènes en compétition pour leur<br />

survie <strong>et</strong> leur développement. Ainsi, ces agents, doués <strong>de</strong> facultés d’adapt<strong>at</strong>ion très poussées, forment<br />

<strong>de</strong>s prédictions sur les prix futurs <strong>et</strong> placent <strong>de</strong>s ordres sur le marché en fonction <strong>de</strong> leurs prévisions. Les<br />

règles <strong>de</strong> sélection <strong>et</strong> d’évolution <strong>de</strong>s agents sont ensuite déterminées par leur performance, <strong>de</strong> sorte qu’à<br />

chaque génér<strong>at</strong>ion, les agents les moins performants disparaissent au profit <strong>de</strong>s plus performants. Il est<br />

alors observé que dans certaines conditions, ces agents apprennent à coopérer <strong>et</strong> <strong>de</strong> leurs actions individuelles<br />

émerge un équilibre r<strong>at</strong>ionnel dynamique conforme à ce qui est prévu par la <strong>théorie</strong> économique.<br />

Le modèle <strong>de</strong> Farmer (1998) que nous avons évoqué plus haut constitue en fait une version simplifiée <strong>de</strong><br />

c<strong>et</strong>te approche, qui exploite l’analogie entre le marché <strong>et</strong> un écosystème où se développe une compétition<br />

entre diverses str<strong>at</strong>égies favorisant ainsi l’émergence <strong>de</strong> nouvelles métho<strong>de</strong>s tirant parti <strong>de</strong>s inefficacités


5.4. Conséquences <strong>de</strong>s phénomènes d’imit<strong>at</strong>ion <strong>et</strong> d’antagonisme... 155<br />

<strong>de</strong>s anciennes qu’elles finissent par remplacer.<br />

Les modèles <strong>de</strong> minorité, introduits par Chall<strong>et</strong> <strong>et</strong> Zhang (1997), procè<strong>de</strong> d’une toute autre approche.<br />

Considèrons N agents en compétition pour une ressource limitée <strong>et</strong> dont les choix se résument à <strong>de</strong>ux<br />

altern<strong>at</strong>ives mutuellement exclusives, que l’on pourra noter 0 ou 1. Chaque agent effectue un choix, <strong>et</strong> les<br />

gagnants sont ceux qui sont en minorité (on peut reconnaître ici le célèbre problème du bar d’El Farol introduit<br />

par Arthur (1994)). Un tel modèle est pertinent dans un contexte financier, car un agent qui déci<strong>de</strong><br />

<strong>de</strong> vendre, par exemple, ne va empocher un bénéfice que si la majorité <strong>de</strong>s autres agents sont ach<strong>et</strong>eurs,<br />

<strong>de</strong> sorte que l’excès <strong>de</strong> <strong>de</strong>man<strong>de</strong> soit positif <strong>et</strong> que le prix augmente (voir Chall<strong>et</strong>, Chessa, Marsili <strong>et</strong><br />

Zhang (2001) pour une discussion <strong>de</strong> l’applic<strong>at</strong>ion <strong>de</strong>s jeux <strong>de</strong> minorité aux marchés financiers).<br />

Concrètement, le jeu est répété un grand nombre <strong>de</strong> fois, si bien que chaque agent dispose <strong>de</strong> la même<br />

inform<strong>at</strong>ion : la succession <strong>de</strong>s décisions minoritaires, soit une séquence <strong>de</strong> 0 <strong>et</strong> <strong>de</strong> 1. En supposant que<br />

les agents ne disposent que d’une mémoire <strong>de</strong> taille limitée m, tous les agents connaissent donc les m<br />

<strong>de</strong>rniers choix gagnants. Une séquence <strong>de</strong> longueur m représente donc l’histoire <strong>de</strong>s événements <strong>et</strong> il y<br />

a évi<strong>de</strong>mment 2m histoires possibles. Chaque agent établit <strong>de</strong>s str<strong>at</strong>égies visant à prédire l’ét<strong>at</strong> futur du<br />

système en se fondant sur l’histoire passée. Il existe donc en tout 22m str<strong>at</strong>égies. Tous les agents possè<strong>de</strong>nt<br />

un même nombre <strong>de</strong> str<strong>at</strong>égies, ces str<strong>at</strong>égies étant différentes d’un agent à l’autre. C<strong>et</strong>te approche perm<strong>et</strong><br />

<strong>de</strong> rendre compte <strong>de</strong> l’extraordinaire diversité <strong>de</strong>s acteurs économiques présents sur les marchés<br />

réels. En eff<strong>et</strong>, ceux-ci ont <strong>de</strong>s objectifs différents, aussi bien en terme <strong>de</strong> gains espérés que d’horizon<br />

d’investissements mais aussi d’aversion au risque <strong>et</strong> présentent donc <strong>de</strong>s str<strong>at</strong>égies extrêmement variées.<br />

Les résult<strong>at</strong>s fournis par ce type <strong>de</strong> modèles sont s<strong>at</strong>isfaisants dans la mesure où ils perm<strong>et</strong>tent <strong>de</strong> rendre<br />

compte <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ment en loi <strong>de</strong> puissance <strong>et</strong> <strong>de</strong> la lente décroissance <strong>de</strong> la corrél<strong>at</strong>ion <strong>de</strong><br />

la vol<strong>at</strong>ilité lorsque le rapport m/N est voisin d’une certaine valeur critique. Cependant, comme relevé<br />

récemment par An<strong>de</strong>rsen <strong>et</strong> Sorn<strong>et</strong>te (2002b) <strong>et</strong> Giardina <strong>et</strong> Bouchaud (2002), le principe <strong>de</strong> minorité<br />

n’est pas toujours le plus réaliste. En eff<strong>et</strong>, un agent a intérêt à se trouver dans la minorité lorsqu’un<br />

renversement <strong>de</strong> tendance est observé sur les prix, mais lorsque la tendance se poursuit, il faut être dans<br />

la majorité pour profiter <strong>de</strong> celle-ci. Dans le cadre <strong>de</strong> ce modèle, la trajectoire <strong>de</strong> la richesse <strong>de</strong>s agents<br />

est notablement différente <strong>de</strong> celle observée dans les jeux <strong>de</strong> minorités standards, mais ce type <strong>de</strong> modèle<br />

rend tout aussi bien compte <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ment à queue épaisse que <strong>de</strong> la corrél<strong>at</strong>ion à longue<br />

portée <strong>de</strong> la vol<strong>at</strong>ilité.<br />

5.4 Conséquences <strong>de</strong>s phénomènes d’imit<strong>at</strong>ion <strong>et</strong> d’antagonisme sur la<br />

forme <strong>de</strong> la trajectoire <strong>de</strong>s prix d’un actif.<br />

Tous les modèles microscopiques que nous avons décrits jusqu’à présent perm<strong>et</strong>tent <strong>de</strong> rendre compte<br />

<strong>de</strong> la distribution <strong>de</strong>s ren<strong>de</strong>ments ainsi que <strong>de</strong> la corrél<strong>at</strong>ion à longue portée <strong>de</strong> la vol<strong>at</strong>ilité, qui sont les<br />

faits stylisés les plus marquants observés au suj<strong>et</strong> <strong>de</strong>s rentabilités boursières. Pour autant, aucun <strong>de</strong> ces<br />

modèles n’est capable d’expliquer la croissance super-exponentielle <strong>de</strong>s prix que l’on observe lorsqu’une<br />

bulle spécul<strong>at</strong>ive se développe.<br />

Afin <strong>de</strong> pouvoir modéliser ce phénomène, il convient <strong>de</strong> comprendre ce que recouvre une croissance<br />

super-exponentielle du prix d’un actif. Lorsque le ren<strong>de</strong>ment d’un actif est constant, son prix augmente<br />

n<strong>at</strong>urellement <strong>de</strong> façon exponentielle, puisque l’actualis<strong>at</strong>ion est un processus multiplic<strong>at</strong>if. Une croissance<br />

super-exponentielle traduit donc le fait que le ren<strong>de</strong>ment <strong>de</strong> l’actif considéré augmente au fur <strong>et</strong><br />

à mesure que son prix lui-même augmente. Un mécanisme possible est le suivant : lorsqu’une tendance<br />

haussière suffisamment forte apparaît, le nombre d’agents ach<strong>et</strong>eurs augmente, <strong>at</strong>tiré par la promesse <strong>de</strong><br />

gains importants, ce qui en r<strong>et</strong>our intensifie la tendance du fait <strong>de</strong> la forte pression ach<strong>et</strong>euse, validant du


156 5. Approche comportementale <strong>de</strong>s marchés financiers : l’apport <strong>de</strong>s modèles d’agents<br />

même coup la croyance en un gain important, <strong>et</strong> <strong>at</strong>tire en conséquence toujours plus d’ach<strong>et</strong>eurs.<br />

Nous pouvons donc conclure qu’un eff<strong>et</strong> d’aubaine ou un eff<strong>et</strong> <strong>de</strong> foule semble tout à fait à même <strong>de</strong> justifier<br />

la croissance super-exponentielle <strong>de</strong>s prix observés en présence <strong>de</strong> bulles spécul<strong>at</strong>ives. Ces eff<strong>et</strong>s <strong>de</strong><br />

foules ont été observés sur les marchés spécul<strong>at</strong>ifs (Arthur 1987, Orléan 1992, Shiller 2000, notamment)<br />

<strong>et</strong> traduisent le phénomène d’imit<strong>at</strong>ion entre agents économiques. Il est à noter que ce phénomène d’imit<strong>at</strong>ion<br />

est parfaitement r<strong>at</strong>ionnel, comme le souligne Orléan (1989), <strong>et</strong> découle simplement <strong>de</strong>s règles<br />

d’apprentissage bayésien.<br />

Si l’on s’en tient au comportement mimétique <strong>et</strong> auto-référentiel exposé ci-<strong>de</strong>ssus, la bulle spécul<strong>at</strong>ive<br />

n’a aucune raison <strong>de</strong> prendre fin. Il est donc raisonnable <strong>de</strong> penser qu’à un certain moment, les agents<br />

réalisent que les prix sont <strong>de</strong>venus trop éloignés <strong>de</strong>s fondamentaux <strong>de</strong> l’économie ou que les liquidités<br />

vont venir à manquer <strong>et</strong> donc choisissent <strong>de</strong> vendre pour engranger leurs bénéfices tant que l’afflux<br />

d’ach<strong>et</strong>eurs <strong>de</strong>meure suffisamment important pour pouvoir absorber leurs ordres <strong>de</strong> vente sans que les<br />

cours ne chutent. Ainsi, durant c<strong>et</strong>te phase, certains agents choisissent <strong>de</strong> prendre le marché à contrecourant,<br />

<strong>et</strong> présentent un comportement antagoniste par rapport à l’opinion majoritaire à ce moment<br />

là. On peut noter que dans l’esprit, ceci est assez proche du modèle <strong>de</strong> An<strong>de</strong>rsen <strong>et</strong> Sorn<strong>et</strong>te (2002b)<br />

évoqué plus haut, <strong>et</strong> il apparaît clairement pourquoi le principe <strong>de</strong> minorité ne saurait parvenir à décrire<br />

complètement le fonctionnement <strong>de</strong>s marchés financiers.<br />

C<strong>et</strong>te approche heuristique perm<strong>et</strong> <strong>de</strong> comprendre que les comportements mimétiques <strong>et</strong> antagonistes<br />

<strong>de</strong>s agents peuvent suffire à expliquer la croissance super-exponentielle <strong>de</strong>s bulles spécul<strong>at</strong>ives, ce qui<br />

nous a conduit à développer le modèle simple exposé dans Corcos, Eckmann, Malaspinas, Malevergne <strong>et</strong><br />

Sorn<strong>et</strong>te (2002). Dans ce modèle, nous considérons un marché où s’échange un seul actif <strong>et</strong> un ensemble<br />

<strong>de</strong> N agents pouvant être soit ach<strong>et</strong>eurs soit ven<strong>de</strong>urs. Chacun interroge m <strong>de</strong> ses voisins <strong>et</strong> peut choisir<br />

<strong>de</strong> suivre l’opinion majoritaire qu’il a relevée ou bien d’en prendre le contre-pied. Par exemple, un agent<br />

ach<strong>et</strong>eur changera d’avis <strong>et</strong> <strong>de</strong>viendra ven<strong>de</strong>ur si la proportion d’agents ven<strong>de</strong>urs parmi les m agents<br />

qu’il a interrogés dépasse un certain seuil ρhb, ce qui correspond à un comportement mimétique, ou si la<br />

proportion d’agents ach<strong>et</strong>eurs est jugée trop importante <strong>et</strong> dépasse un autre seuil ρhh, ce qui correspond<br />

à un comportement antagoniste, tandis qu’il conserve son opinion si aucun <strong>de</strong> ces seuils n’est dépassé.<br />

Nous montrons alors que, comme <strong>at</strong>tendu, le prix présente <strong>de</strong>s bulles spécul<strong>at</strong>ives dont la croissance est<br />

d’abord exponentielle, puis accélère <strong>et</strong> tend à présenter une singularité en temps fini. En fait, à cause<br />

du mécanisme <strong>de</strong> ré-injection lié à l’existence <strong>de</strong> comportements antagonistes, la bulle écl<strong>at</strong>e avant que<br />

la divergence ait lieu. Ainsi donc ce modèle m<strong>et</strong> en évi<strong>de</strong>nce l’importance <strong>de</strong>s phénomènes d’imit<strong>at</strong>ion<br />

<strong>et</strong> d’antagonisme, qui à eux seuls suffisent à expliquer la croissance super-exponentielle <strong>de</strong>s bulles<br />

spécul<strong>at</strong>ives suivies par <strong>de</strong>s krachs. Par ailleurs, ce modèle rend aussi compte, <strong>de</strong> manière qualit<strong>at</strong>ive,<br />

<strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ments à queues épaisses. Cependant, il conduit à <strong>de</strong>s ren<strong>de</strong>ments beaucoup<br />

trop corrélés pour être réalistes.<br />

Ce défaut est dû au caractère faiblement stochastique <strong>de</strong> notre modèle <strong>et</strong> peut être facilement corrigé.<br />

En fait, d’après notre classific<strong>at</strong>ion, ce modèle n’est pas un modèle <strong>de</strong> marché mais un simple modèle<br />

d’opinion. Il convient donc d’en endogénéiser le prix, ce qui est réalisable par une généralis<strong>at</strong>ion simple<br />

du modèle précé<strong>de</strong>nt. Pour cela, nous pouvons considérer que les N agents ne sont pas tous en position<br />

sur le marché à un instant donné. Plus précisément, chaque agent estime la valeur du prix fondamental<br />

<strong>de</strong> l’actif <strong>et</strong> déci<strong>de</strong> d’entrer sur le marché si (<strong>et</strong> seulement si) l’écart entre le prix <strong>de</strong> marché <strong>de</strong> c<strong>et</strong> actif<br />

<strong>et</strong> son fondamental dépasse un certain seuil. Etant entré sur le marché, l’agent interroge m agents euxmêmes<br />

sur le marché <strong>et</strong> peut alors se comporter comme un fondamentaliste s’il ne note aucune majorité<br />

forte perm<strong>et</strong>tant <strong>de</strong> soutenir une tendance ou au contraire, peut choisir <strong>de</strong> suivre c<strong>et</strong>te tendance s’il pense<br />

qu’elle est viable <strong>et</strong> donc qu’il peut en tirer profit.<br />

Par rapport au modèle originel, c<strong>et</strong>te généralis<strong>at</strong>ion apporte un couplage entre le volume <strong>et</strong> la vol<strong>at</strong>ilité,


5.5. Conclusion 157<br />

ce qui induit une beaucoup plus gran<strong>de</strong> variabilité dans la dynamique <strong>de</strong>s prix. Nous espérons donc que<br />

ceci perm<strong>et</strong>tra <strong>de</strong> guérir les carences observées sur le modèle d’origine.<br />

5.5 Conclusion<br />

Les modèles d’agents en interaction se sont développés pour palier aux insuffisances <strong>de</strong> l’approche standard<br />

en terme d’agent économique représent<strong>at</strong>if, qui n’est rien d’autre qu’une approxim<strong>at</strong>ion <strong>de</strong> champ<br />

moyen m<strong>et</strong>tant l’accent sur l’équilibre. C<strong>et</strong>te nouvelle façon d’abor<strong>de</strong>r la modélis<strong>at</strong>ion <strong>de</strong>s marchés financiers<br />

semble prom<strong>et</strong>teuse <strong>et</strong> à notre avis présente un double intérêt.<br />

D’une part, elle offre un moyen <strong>de</strong> cerner les comportements minimaux <strong>de</strong>s agents nécessaires à la<br />

restitution <strong>de</strong>s faits stylisés <strong>de</strong>s séries financières. En cela, elle perm<strong>et</strong> d’abor<strong>de</strong>r l’aspect comportemental<br />

<strong>de</strong>s marchés financiers, aspect qui nous semble essentiel à la détermin<strong>at</strong>ion <strong>de</strong> certaines composantes du<br />

risque associé à l’activité financière. En eff<strong>et</strong>, l’un <strong>de</strong>s apports <strong>de</strong>s modèles d’agents en interaction est <strong>de</strong><br />

pouvoir traiter c<strong>et</strong>te dimension comportementale non plus du seul point <strong>de</strong> vue qualit<strong>at</strong>if mais également<br />

<strong>de</strong> manière quantit<strong>at</strong>ive.<br />

D’autre part, une fois un modèle crédible établi, il peut perm<strong>et</strong>tre <strong>de</strong> réaliser <strong>de</strong>s expériences, visant par<br />

exemple à étudier l’influence <strong>de</strong> l’évolution <strong>de</strong> l’environnement réglementaire, mais aussi <strong>de</strong> simuler<br />

divers scénarii <strong>et</strong> donc apporter <strong>de</strong> nouveaux moyens <strong>de</strong> <strong>gestion</strong> <strong>de</strong>s risques.


158 5. Approche comportementale <strong>de</strong>s marchés financiers : l’apport <strong>de</strong>s modèles d’agents


Chapitre 6<br />

Comportements mimétiques <strong>et</strong><br />

antagonistes : bulles hyperboliques, krachs<br />

<strong>et</strong> chaos<br />

Les comportements mimétiques <strong>et</strong> antagonistes sont <strong>de</strong>ux <strong>at</strong>titu<strong>de</strong>s opposées typiques <strong>de</strong>s investisseurs<br />

sur les marchés financiers. Nous introduisons un modèle simple nous perm<strong>et</strong>tant d’étudier le rôle <strong>de</strong><br />

chacun <strong>de</strong> ces comportements sur un marché financier où les agents ne peuvent choisir qu’entre <strong>de</strong>ux<br />

altern<strong>at</strong>ives : être ach<strong>et</strong>eur ou ven<strong>de</strong>ur. Chaque agent ach<strong>et</strong>eur (resp. ven<strong>de</strong>ur) interroge m “amis” <strong>et</strong><br />

change d’opinion pour <strong>de</strong>venir ven<strong>de</strong>ur (resp. ach<strong>et</strong>eur) si<br />

– au moins m · ρhb (resp. m · ρbh) parmi les m agents consultés sont ven<strong>de</strong>urs (resp. ach<strong>et</strong>eurs),<br />

– ou si au moins m · ρhh > m · ρhb (resp. m · ρbb > m · ρbh) parmi les m agents consultés sont ach<strong>et</strong>eurs<br />

(resp. ven<strong>de</strong>urs).<br />

Ces conditions correspon<strong>de</strong>nt respectivement à <strong>de</strong>s comportements mimétique <strong>et</strong> antagoniste.<br />

Dans la limite où le nombre N d’agents est infini, la dynamique <strong>de</strong> la fraction d’agents ach<strong>et</strong>eurs est<br />

déterministe <strong>et</strong> présente un comportement chaotique dans un domaine signific<strong>at</strong>if <strong>de</strong> l’espace <strong>de</strong>s paramètres<br />

{ρhb, ρbh, ρhh, ρbb, m}. Une trajectoire chaotique typique est caractérisée par <strong>de</strong>s phases intermittentes<br />

<strong>de</strong> chaos, <strong>de</strong> comportement quasi-périodique <strong>et</strong> <strong>de</strong> développement super-exponentiel <strong>de</strong> bulles<br />

ponctuées par <strong>de</strong>s krachs. Une bulle commence par croître initialement à un rythme exponentiel puis<br />

accélère jusqu’à conduire à une singularité en temps fini. Le mécanisme <strong>de</strong> réinjection dû à la présence<br />

d’agents antagonistes introduit un eff<strong>et</strong> <strong>de</strong> taille finie, prévenant c<strong>et</strong>te singularité <strong>et</strong> conduisant au chaos.<br />

Nous documentons les principaux faits stylisés <strong>de</strong> ce modèle dans les cas symétrique <strong>et</strong> asymétrique. Il<br />

est à noter que ce modèle est l’un <strong>de</strong>s rares modèles d’agents donnant naissance à une dynamique non<br />

triviale dans la limite “thermodynamique” - c’est-à-dire lorsque le nombre N d’agents tend vers l’infini.<br />

Nous discutons aussi du cas où le nombre d’agents est fini, ce qui introduit une source endogène <strong>de</strong> bruit<br />

qui se superpose à la dynamique chaotique.<br />

Reprint from : A. Corcos, J.-P. Eckmann, A. Malaspinas, Y. Malevergne <strong>et</strong> D. Sorn<strong>et</strong>te (2002), “Imit<strong>at</strong>ion<br />

and contrarian behavior : hyperbolic bubbles, crashes and chaos”, Quantit<strong>at</strong>ive Finance 2, 264-281.<br />

Err<strong>at</strong>um : page 164, l’équ<strong>at</strong>ion Q = prob({x < m(1 − ρbh)} ∪ {x > mρbb}) doit être remplacée par<br />

Q = prob({x < m(1 − ρbb)} ∪ {x > mρbh}).<br />

159


160 6. Comportements mimétiques <strong>et</strong> antagonistes : bulles hyperboliques, krachs <strong>et</strong> chaos


RESEARCH PAPER Q UANTITATIVE F INANCE V OLUME 2 (2002) 264–281<br />

quant.iop.org I NSTITUTE OF P HYSICS P UBLISHING<br />

Imit<strong>at</strong>ion and contrarian behaviour:<br />

hyperbolic bubbles, crashes and chaos<br />

A Corcos 1 , J-P Eckmann 2,3 , A Malaspinas 2 , Y Malevergne 4,5<br />

and D Sorn<strong>et</strong>te 4,6<br />

1 CRIISEA, Université <strong>de</strong> Picardie, BP 2716, 80027 Amiens, France<br />

2 Dépt. <strong>de</strong> Physique Théorique, Université <strong>de</strong>Genève, CH-1211 Genève 4,<br />

Switzerland<br />

3 Section <strong>de</strong> M<strong>at</strong>hém<strong>at</strong>iques, Université <strong>de</strong>Genève, CH-1211 Genève 4,<br />

Switzerland<br />

4 Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>ière Con<strong>de</strong>nsée, CNRS UMR6622 and<br />

Université <strong>de</strong> Nice-Sophia Antipolis, BP 71, Parc Valrose,<br />

06108 Nice Ce<strong>de</strong>x 2, France<br />

5 Institut <strong>de</strong> Science Financière <strong>et</strong> d’Assurances—Université Lyon I, 43,<br />

Bd du 11 Novembre 1918, 69622 Villeurbanne Ce<strong>de</strong>x, France<br />

6 Institute of Geophysics and Plan<strong>et</strong>ary Physics and Department of Earth and<br />

Space Science, University of California, Los Angeles, CA 90095, USA<br />

Received 25 September 2001, in final form 26 November 2001<br />

Published 2 August 2002<br />

Online <strong>at</strong> stacks.iop.org/Quant/2/264<br />

Abstract<br />

Imit<strong>at</strong>ive and contrarian behaviours are the two typical opposite <strong>at</strong>titu<strong>de</strong>s of<br />

investors in stock mark<strong>et</strong>s. We introduce a simple mo<strong>de</strong>l to investig<strong>at</strong>e their<br />

interplay in a stock mark<strong>et</strong> where agents can take only two st<strong>at</strong>es, bullish or<br />

bearish. Each bullish (bearish) agent polls m ‘friends’ and changes her<br />

opinion to bearish (bullish) if (i) <strong>at</strong> least mρhb (mρbh) among the m agents<br />

inspected are bearish (bullish) or (ii) <strong>at</strong> least mρhh >mρhb (mρbb >mρbh)<br />

among the m agents inspected are bullish (bearish). The condition (i) ((ii))<br />

corresponds to imit<strong>at</strong>ive (antagonistic) behaviour. In the limit where the<br />

number N of agents is infinite, the dynamics of the fraction of bullish agents<br />

is d<strong>et</strong>erministic and exhibits chaotic behaviour in a significant domain of the<br />

param<strong>et</strong>er space {ρhb,ρbh,ρhh,ρbb,m}. A typical chaotic trajectory is<br />

characterized by intermittent phases of chaos, quasi-periodic behaviour and<br />

super-exponentially growing bubbles followed by crashes. A typical bubble<br />

starts initially by growing <strong>at</strong> an exponential r<strong>at</strong>e and then crosses over to a<br />

nonlinear power-law growth r<strong>at</strong>e leading to a finite-time singularity. The<br />

reinjection mechanism provi<strong>de</strong>d by the contrarian behaviour introduces a<br />

finite-size effect, rounding off these singularities and leads to chaos. We<br />

document the main stylized facts of this mo<strong>de</strong>l in the symm<strong>et</strong>ric and<br />

asymm<strong>et</strong>ric cases. This mo<strong>de</strong>l is one of the rare agent-based mo<strong>de</strong>ls th<strong>at</strong> give<br />

rise to interesting non-periodic complex dynamics in the ‘thermodynamic’<br />

limit (of an infinite number N of agents). We also discuss the case of a finite<br />

number of agents, which introduces an endogenous source of noise<br />

superimposed on the chaotic dynamics.<br />

264 1469-7688/02/040264+18$30.00 © 2002 IOP Publishing Ltd PII: S1469-7688(02)29456-7<br />

161


162 6. Comportements mimétiques <strong>et</strong> antagonistes : bulles hyperboliques, krachs <strong>et</strong> chaos<br />

Q UANTITATIVE F INANCE Imit<strong>at</strong>ion and contrarian behaviour: hyperbolic bubbles, crashes and chaos<br />

‘Human behaviour is a main factor in how mark<strong>et</strong>s<br />

act. In<strong>de</strong>ed, som<strong>et</strong>imes mark<strong>et</strong>s act quickly, violently<br />

with little warning. [...] Ultim<strong>at</strong>ely, history tells us<br />

th<strong>at</strong> there will be a correction of some significant dimension.<br />

I have no doubt th<strong>at</strong>, human n<strong>at</strong>ure being<br />

wh<strong>at</strong> it is, th<strong>at</strong> it is going to happen again and again.’<br />

Alan Greenspan, Chairman of the Fe<strong>de</strong>ral Reserve<br />

of the USA, before the Committee on Banking and<br />

Financial Services, US House of Represent<strong>at</strong>ives, 24<br />

July 1998.<br />

1. Introduction<br />

In recent economic and finance research, there is a growing<br />

interest in incorpor<strong>at</strong>ing i<strong>de</strong>as from social sciences to account<br />

for the fact th<strong>at</strong> mark<strong>et</strong>s reflect the thoughts, emotions and<br />

actions of real people as opposed to the i<strong>de</strong>alized economic<br />

investor whose behaviour un<strong>de</strong>rlies the efficient mark<strong>et</strong> and<br />

random walk hypothesis. This was captured by the now<br />

famous pronouncement of Keynes (1936) th<strong>at</strong> most investors’<br />

<strong>de</strong>cisions ‘can only be taken as a result of animal spirits—of<br />

a spontaneous urge to action r<strong>at</strong>her than inaction, and not the<br />

outcome of a weighed average of benefits multiplied by the<br />

quantit<strong>at</strong>ive probabilities’. A real investor may intend to be<br />

r<strong>at</strong>ional and may try to optimize his actions, but th<strong>at</strong> r<strong>at</strong>ionality<br />

tends to be hampered by cognitive biases, emotional quirks<br />

and social influences. ‘Behavioural finance’ is a growing<br />

research field (Thaler 1993, De Bondt and Thaler 1995, Shefrin<br />

2000, Shleifer 2000, Goldberg and von Nitzsch 2001), which<br />

uses psychology, sociology and other behavioural theories<br />

to <strong>at</strong>tempt to explain the behaviour of investors and money<br />

managers. The behaviour of financial mark<strong>et</strong>s is thought to<br />

result from varying <strong>at</strong>titu<strong>de</strong>s towards risk, the h<strong>et</strong>erogeneity in<br />

the framing of inform<strong>at</strong>ion, from cognitive errors, self-control<br />

and lack thereof, from regr<strong>et</strong> in financial <strong>de</strong>cision-making and<br />

from the influence of mass psychology. Assumptions about the<br />

frailty of human r<strong>at</strong>ionality and the acceptance of such drives<br />

as fear and greed are un<strong>de</strong>rlying the recipes <strong>de</strong>veloped over<br />

<strong>de</strong>ca<strong>de</strong>s by so-called technical analysts.<br />

There is growing empirical evi<strong>de</strong>nce for the existence<br />

of herd or ‘crowd’ behaviour in specul<strong>at</strong>ive mark<strong>et</strong>s (Arthur<br />

1987, Bikhchandani <strong>et</strong> al 1992, Johansen <strong>et</strong> al 1999, 2000,<br />

Orléan 1986, 1990, 1992, Shiller 1984, 2000, Topol 1991,<br />

West 1988). Herd behaviour is often said to occur when<br />

many people take the same action, because some mimic the<br />

actions of others. Herding has been linked to many economic<br />

activities, such as investment recommend<strong>at</strong>ions (Graham and<br />

Dodd 1934, Scharfstein and Stein 1990), price behaviour of<br />

IPOs (Initial Public Offering) (Welch 1992) fads and customs<br />

(Bikhchandani <strong>et</strong> al 1992), earnings forecasts (Trueman 1994),<br />

corpor<strong>at</strong>e conserv<strong>at</strong>ism (Zwiebel 1995) and <strong>de</strong>leg<strong>at</strong>ed portfolio<br />

management (Maug and Naik 1995).<br />

Here, we introduce arguably the simplest mo<strong>de</strong>l capturing<br />

the interplay b<strong>et</strong>ween mim<strong>et</strong>ic and contrarian behaviour in<br />

a popul<strong>at</strong>ion of N agents taking only two possible st<strong>at</strong>es,<br />

‘bullish’ or ‘bearish’ (buying or selling). In the limit of<br />

an infinite number N → ∞ of agents, the key variable,<br />

which is the fraction p of bullish agents, follows a chaotic<br />

d<strong>et</strong>erministic dynamics on a subspace of positive measure in<br />

the param<strong>et</strong>er space. Before explaining and analysing the<br />

mo<strong>de</strong>l in subsequent sections, we compare it in three respects<br />

to standard theories of economic behaviour.<br />

1. Since in the limit N →∞, the mo<strong>de</strong>l oper<strong>at</strong>es on<br />

a purely d<strong>et</strong>erministic basis, it actually challenges the purely<br />

external and unpredictable origin of mark<strong>et</strong> prices. Our mo<strong>de</strong>l<br />

exploits the continuous mimicry of financial mark<strong>et</strong>s to show<br />

th<strong>at</strong> the disor<strong>de</strong>red and random aspect of the time series of<br />

prices can be in part explained not only by the advent of<br />

‘random’ news and events, but can also be gener<strong>at</strong>ed by the<br />

behaviour of the agents fixing the prices.<br />

In the limit N → ∞, the dynamics of prices in our<br />

mo<strong>de</strong>l is d<strong>et</strong>erministic and <strong>de</strong>rives from the theory of chaotic<br />

dynamical systems, which have the fe<strong>at</strong>ure of exhibiting<br />

endogenously perturbed motion. After the first papers on<br />

the theory of chaotic systems, such as Lorenz (1963), May<br />

(1976), (see, e.g. Coll<strong>et</strong> and Eckmann (1980) for an early<br />

exposition), a series of economic papers <strong>de</strong>alt with mo<strong>de</strong>ls<br />

mostly of growth (Benhabib and Day 1981, Day 1982, 1983,<br />

Stutzer 1980). L<strong>at</strong>er, a vast and varied number of fields of<br />

economics were analysed in the light of the theory of chaos<br />

(Grandmont 1985, 1987, Grandmont and Malgrange 1986).<br />

They extend from macro-economics—business cycles, mo<strong>de</strong>ls<br />

of class struggles, political economy—to micro-economics—<br />

mo<strong>de</strong>ls with overlapping gener<strong>at</strong>ions, optimizing behaviour—<br />

and touch subjects such as game theory and the theory<br />

of finance. The applicability of these theories has been<br />

thoroughly tested on the stock mark<strong>et</strong> prices (Brock 1988,<br />

Brock <strong>et</strong> al 1987, 1991, Brock and Dechert 1988, LeBaron<br />

1988, Hsieh 1989, Scheinkman and LeBaron 1989a, 1989b)<br />

in studies which tried to d<strong>et</strong>ect signs of nonlinear effects and<br />

to nail down the d<strong>et</strong>erministic n<strong>at</strong>ure of these prices. While<br />

the theor<strong>et</strong>ical mo<strong>de</strong>ls (Van Der Ploeg 1986, De Grauwe and<br />

Vansanten 1990, De Grauwe <strong>et</strong> al 1993) seem to agree on<br />

the relevance of chaotic d<strong>et</strong>erministic dynamics, the empirical<br />

studies (Eckmann <strong>et</strong> al 1988, Hsieh and LeBaron 1988, Hsieh<br />

1989, 1991, 1992, LeBaron 1988, Scheinkman and LeBaron<br />

1989a, 1989b) are less clear-cut, mostly because of lack of<br />

sufficiently long time series (Eckmann and Ruelle 1992) or<br />

because the d<strong>et</strong>erministic component of mark<strong>et</strong> behaviour is<br />

necessarily overshadowed by the inevitable external effects.<br />

An additional source of ‘noise’ is found to result from the<br />

finiteness of the number N of agents. For finite N, the<br />

d<strong>et</strong>erministically chaotic dynamics of the price is replaced by a<br />

stochastic dynamics shadowing the corresponding trajectories<br />

obtained for N →∞.<br />

The mo<strong>de</strong>l presented here shows a mechanism of price<br />

fixing—<strong>de</strong>cisions to buy or sell dict<strong>at</strong>ed by comparison with<br />

other agents—which is <strong>at</strong> the origin of an instability of<br />

prices. From one period to the next, and in the absence of<br />

inform<strong>at</strong>ion other than the anticip<strong>at</strong>ions of other agents, prices<br />

can continuously exhibit err<strong>at</strong>ic behaviour and never stabilize,<br />

without diverging. Thus, the mo<strong>de</strong>l questions the fundamental<br />

hypothesis th<strong>at</strong> equilibrium prices have to converge to the<br />

intrinsic value of an ass<strong>et</strong>.<br />

2. We can also consi<strong>de</strong>r our mo<strong>de</strong>l in the context of the<br />

excess mark<strong>et</strong> vol<strong>at</strong>ility of financial mark<strong>et</strong>s. The vol<strong>at</strong>ility of<br />

265


A Corcos <strong>et</strong> al Q UANTITATIVE F INANCE<br />

prices gener<strong>at</strong>ed by our chaotic mo<strong>de</strong>l could give the beginning<br />

of an explan<strong>at</strong>ion of the excess vol<strong>at</strong>ility observed on financial<br />

mark<strong>et</strong>s (Grossman and Shiller 1981, Fama 1965, Flavin 1983,<br />

Shiller 1981, West 1988) which traditional mo<strong>de</strong>ls, such as<br />

ARCH, try to incorpor<strong>at</strong>e (Engle 1982, Bollerslev <strong>et</strong> al 1991,<br />

Bollerslev 1987).<br />

3. Finally, we can see specul<strong>at</strong>ive bubbles in our mo<strong>de</strong>l<br />

as a n<strong>at</strong>ural consequence of mim<strong>et</strong>ism. We can compare<br />

this to the two basic trends in explaining the problem of<br />

bubbles. The first makes reference to r<strong>at</strong>ional anticip<strong>at</strong>ions<br />

(Muth 1961) and rests on the hypothesis of efficient mark<strong>et</strong>s.<br />

With fixed inform<strong>at</strong>ion, and knowing the dynamics of prices,<br />

the recurrence rel<strong>at</strong>ion for the price is seen to <strong>de</strong>pend on the<br />

fundamental value and a self-referential component, which<br />

tends to cause a <strong>de</strong>vi<strong>at</strong>ion from the fundamental value: this<br />

is a specul<strong>at</strong>ive bubble (Blanchard and W<strong>at</strong>son 1982). This<br />

theory of r<strong>at</strong>ional specul<strong>at</strong>ive bubbles fails to explain the birth<br />

of such events, and even less their collapse, which it does<br />

not predict either. Recent <strong>de</strong>velopments improve on these<br />

traditional approaches by combining the r<strong>at</strong>ional agents in<br />

the economy with irr<strong>at</strong>ional ‘noise’ tra<strong>de</strong>rs (Johansen <strong>et</strong> al<br />

1999, 2000, Sorn<strong>et</strong>te and Johansen 2001). These noise tra<strong>de</strong>rs<br />

are imit<strong>at</strong>ive investors who resi<strong>de</strong> on an interaction n<strong>et</strong>work.<br />

Neighbours of an agent on this n<strong>et</strong>work can be viewed as the<br />

agent’s friends or contacts, and an agent will incorpor<strong>at</strong>e his<br />

neighbours’ views regarding the stock into his own view. These<br />

noise tra<strong>de</strong>rs are responsible for triggering crashes. Sorn<strong>et</strong>te<br />

and An<strong>de</strong>rsen (2001) <strong>de</strong>velop a similar mo<strong>de</strong>l in which the<br />

noise tra<strong>de</strong>rs induce a nonlinear positive feedback in the stock<br />

price dynamics with an interplay b<strong>et</strong>ween nonlinearity and<br />

multiplic<strong>at</strong>ive noise. The <strong>de</strong>rived hyperbolic stochastic finit<strong>et</strong>ime<br />

singularity formula transforms a Gaussian white noise<br />

into a rich time series possessing all the stylized facts of<br />

empirical prices, as well as acceler<strong>at</strong>ed specul<strong>at</strong>ive bubbles<br />

preceding crashes.<br />

The second trend purports to explain specul<strong>at</strong>ive bubbles<br />

by a limit<strong>at</strong>ion of r<strong>at</strong>ionality (Shiller 1984, 2000, West 1988,<br />

Topol 1991). It allows us to incorpor<strong>at</strong>e notions which the<br />

neo-classical analysis does not take into account: asymm<strong>et</strong>ry<br />

of inform<strong>at</strong>ion, inefficiency of prices, h<strong>et</strong>erogeneity of<br />

anticip<strong>at</strong>ions (Grossman 1977, Grossman and Stiglitz 1980,<br />

Grossman 1981, Radner 1972, 1979). In our approach, which<br />

follows the second trend, the agents act without knowing the<br />

actual effect of their behaviour: this contrasts with the position<br />

of a mo<strong>de</strong>l-buil<strong>de</strong>r (Orléan 1986, 1989, 1990, 1992). This, in<br />

turn, can lead to prices which disconnect from the fundamental<br />

indic<strong>at</strong>ors of economics.<br />

In the present paper we show th<strong>at</strong> self-referred behaviour<br />

in financial mark<strong>et</strong>s can gener<strong>at</strong>e chaos and specul<strong>at</strong>ive<br />

bubbles. They will be seen to be caused by mim<strong>et</strong>ic behaviour:<br />

bubbles will form due to imit<strong>at</strong>ive behaviour and collapse when<br />

certain agents believe in the advent of a turn of trend, while<br />

they observe the behaviour of their peers.<br />

Our work can also be seen as a dynamical generaliz<strong>at</strong>ion<br />

of Galam and Moscovici (1991) and Galam (1997) who<br />

have introduced the i<strong>de</strong>a of a universal behaviour in group<br />

<strong>de</strong>cision making, in<strong>de</strong>pen<strong>de</strong>ntly of the n<strong>at</strong>ure of the <strong>de</strong>cision, in<br />

situ<strong>at</strong>ions where two opposite choices are proposed. Using the<br />

266<br />

163<br />

formalism of the Ising mo<strong>de</strong>l with the condition of minimal<br />

conflict specifying the interactions b<strong>et</strong>ween members of the<br />

group, Galam and Moscovici (1991) and Galam (1997) have<br />

established a st<strong>at</strong>ic phase diagram of possible behaviours.<br />

Local pressure and anticip<strong>at</strong>ion have been taken into account<br />

by a local random field and a mean field respectively, in the<br />

context of the Ising formalism.<br />

Section 2 <strong>de</strong>fines the mo<strong>de</strong>l. Section 3 provi<strong>de</strong>s<br />

a qualit<strong>at</strong>ive un<strong>de</strong>rstanding and analysis of its dynamical<br />

properties. Section 4 extends it with a quantit<strong>at</strong>ive analysis<br />

of the phases of specul<strong>at</strong>ive bubbles in the symm<strong>et</strong>ric case.<br />

Section 5 <strong>de</strong>scribes the st<strong>at</strong>istical properties of the price r<strong>et</strong>urns<br />

<strong>de</strong>rived from its dynamics in the symm<strong>et</strong>ric case. Section 6<br />

discusses the asymm<strong>et</strong>ric case. Section 7 explores some effects<br />

introduced by the finiteness N


164 6. Comportements mimétiques <strong>et</strong> antagonistes : bulles hyperboliques, krachs <strong>et</strong> chaos<br />

Q UANTITATIVE F INANCE Imit<strong>at</strong>ion and contrarian behaviour: hyperbolic bubbles, crashes and chaos<br />

value investors (I<strong>de</strong> and Sorn<strong>et</strong>te 2001, Sorn<strong>et</strong>te and I<strong>de</strong> 2001).<br />

We build on this insight and construct a very simple mo<strong>de</strong>l<br />

of price dynamics, which puts emphasis on the fundamental<br />

nonlinear behaviour of both classes of agents.<br />

These well-known principles gener<strong>at</strong>e different kinds of<br />

risks b<strong>et</strong>ween which agents choose by arbitrage. The former<br />

is a comp<strong>et</strong>ing risk (Keynes 1936, Orléan 1989) which leads<br />

agents to imit<strong>at</strong>e the collective point of view since the mark<strong>et</strong><br />

price inclu<strong>de</strong>s it. Thus, it is assumed th<strong>at</strong> Keynes’ animal<br />

spirits may exist. More simply, there is the risk of mistaken<br />

expect<strong>at</strong>ion: agents believe in a price different from the mark<strong>et</strong><br />

price. Keynes uses his famous beauty contest as a parable<br />

for stock mark<strong>et</strong>s. In or<strong>de</strong>r to predict the winner of a beauty<br />

contest, objective beauty is not very important, but knowledge<br />

or prediction of others’ prediction of beauty is. In Keynes’<br />

view, the optimal str<strong>at</strong>egy is not to pick those faces the player<br />

thinks the pr<strong>et</strong>tiest, but those the other players are likely to<br />

think the average opinion will be, or those the other players<br />

will think the others will think the average opinion will be, or<br />

even further along this iter<strong>at</strong>ive loop.<br />

On the other hand, in the l<strong>at</strong>ter case, the emerging<br />

price is not necessarily in harmony with economic reality<br />

and fundamental value. Self-referred <strong>de</strong>cisions and selfvalid<strong>at</strong>ion<br />

phenomena can then in<strong>de</strong>ed lead to specul<strong>at</strong>ive<br />

bubbles or sunspots (i.e. external random events) (Azariadis<br />

1981, Azariadis and Guesnerie 1982, Blanchard and W<strong>at</strong>son<br />

1982, Jevons 1871, Kreps 1977). Thus, the l<strong>at</strong>ter risk is<br />

the result of precaution. It addresses the fitting of mark<strong>et</strong><br />

price to fundamental value and, by extension, collapse of the<br />

specul<strong>at</strong>ive bubble.<br />

Both <strong>at</strong>titu<strong>de</strong>s are likely to be important and are integr<strong>at</strong>ed<br />

in <strong>de</strong>cision rules. Agents realize an arbitrage b<strong>et</strong>ween the two<br />

kinds of risk we have <strong>de</strong>scribed. Th<strong>at</strong> is why they have both a<br />

mim<strong>et</strong>ic behaviour and an antagonistic one: they either follow<br />

the collective point of view or they have reversed expect<strong>at</strong>ions.<br />

We are now going to put these assumptions into the<br />

simplest possible m<strong>at</strong>hem<strong>at</strong>ical form. We assume th<strong>at</strong>, <strong>at</strong><br />

any given time t, the popul<strong>at</strong>ion is divi<strong>de</strong>d into two parts.<br />

Agents are explicitly differenti<strong>at</strong>ed as being bullish or bearish<br />

in proportions pt and qt = 1 − pt respectively. The first ones<br />

expect an increase of the price, while the bearish ones expect<br />

a <strong>de</strong>crease. The agents then form their opinion for time t +1<br />

by sampling the expect<strong>at</strong>ions of m other agents <strong>at</strong> time t, and<br />

modifying their own expect<strong>at</strong>ions accordingly. The number m<br />

of agents polled by a given agent to form her opinion <strong>at</strong> time<br />

t + 1 is the first important param<strong>et</strong>er in our mo<strong>de</strong>l.<br />

We then introduce threshold <strong>de</strong>nsities ρhb and ρhh. We<br />

assume 0 ρhb ρhh 1. A bullish agent will change<br />

opinion if <strong>at</strong> least one of the following propositions is true.<br />

(1) At least m · ρhb among the m agents inspected are bearish.<br />

(2) At least m · ρhh among the m agents inspected are bullish.<br />

The first case corresponds to ‘following the crowd’, while<br />

the second case corresponds to the ‘antagonistic behaviour’.<br />

The quantity ρhb is thus the threshold for a bullish agent<br />

(‘haussier’) to become bearish (‘baissier’) for mim<strong>et</strong>ic reasons,<br />

and similarly, ρhh is the threshold for a bullish agent to<br />

become bearish because there are ‘too many’ bullish agents.<br />

One reason for this behaviour is, as we said, th<strong>at</strong> the <strong>de</strong>vi<strong>at</strong>ion<br />

of the mark<strong>et</strong> price from the fundamental value is felt to be<br />

unsustainable. Another reason is th<strong>at</strong> if many managers tell<br />

you th<strong>at</strong> they are bullish, it is probable th<strong>at</strong> they have large<br />

‘long’ positions in the mark<strong>et</strong>: they therefore tell you to buy,<br />

hoping to be able to unfold in part their position in favourable<br />

conditions with a good profit.<br />

The <strong>de</strong>vi<strong>at</strong>ion of the threshold ρhb above the symm<strong>et</strong>ric<br />

value 1/2 is a measure of the ‘stubbornness’ (or ‘buy-and-hold’<br />

ten<strong>de</strong>ncy) of the agent to keep her position. For ρhb = 1/2,<br />

the agent strictly endorses without <strong>de</strong>lay the opinion of the<br />

majority and believes in any weak trend. This corresponds to a<br />

reversible dynamics. A value ρhb > 1/2 expresses a ten<strong>de</strong>ncy<br />

towards conserv<strong>at</strong>ism: a large ρhb means th<strong>at</strong> the agent will<br />

rarely change opinion. She is risk-adverse and would like to<br />

see an almost unanimity appearing before changing her mind.<br />

Her future behaviour has thus a strong memory of her past<br />

position. ρhb − 1/2 can be called the bullish ‘buy-and-hold’<br />

in<strong>de</strong>x.<br />

The <strong>de</strong>vi<strong>at</strong>ion of the threshold ρhh below 1 quantifies the<br />

strength of disbelief of the agent in the sustainability of a<br />

specul<strong>at</strong>ive trend. For ρhh = 1, she always follows the crowd<br />

and is never contrarian. For ρhh close to 1/2, she has little faith<br />

in trend-following str<strong>at</strong>egies and is closer to a fundamentalist,<br />

expecting the price to revert rapidly to its fundamental value.<br />

1 − ρhh can be called the bullish reversal in<strong>de</strong>x.<br />

Putting the above rules into m<strong>at</strong>hem<strong>at</strong>ical equ<strong>at</strong>ions we<br />

see th<strong>at</strong> the probability P for an agent who is bullish <strong>at</strong> time t<br />

to change his opinion <strong>at</strong> time t + 1 is:<br />

P = prob({x mρhh}), (1)<br />

where x is the number of bullish agents found in the sample of<br />

m agents.<br />

In an entirely similar way, we introduce thresholds ρbh,<br />

and ρbb. The thresholds ρbh and ρbb have compl<strong>et</strong>ely<br />

symm<strong>et</strong>ric roles when the agent is initially bearish. ρbh − 1/2<br />

can be called the bearish ‘buy-and-hold’ in<strong>de</strong>x. 1 − ρbb can<br />

be called the bearish reversal in<strong>de</strong>x. The probability Q for a<br />

bearish agent <strong>at</strong> time t to become bullish <strong>at</strong> time t + 1 is:<br />

Q = prob({x mρbb}).<br />

We can combine these two rules into a dynamical law<br />

governing the time evolution of the popul<strong>at</strong>ions. Denoting pt<br />

the proportion of bullish agents in the popul<strong>at</strong>ion <strong>at</strong> time t,we<br />

can find the new proportion, pt+1, <strong>at</strong> time t + 1, by taking into<br />

account those agents which have changed opinion according to<br />

the d<strong>et</strong>erministic law given above. To simplify not<strong>at</strong>ion, we l<strong>et</strong><br />

pt+1 = p ′ and pt = p. Then, the above st<strong>at</strong>ements are easily<br />

used to express p ′ in terms of p, by using the probability of<br />

finding j bullish people among m (Corcos 1993):<br />

p ′ = p − p<br />

<br />

<br />

m<br />

p<br />

j<br />

m−j (1 − p) j<br />

+ (1 − p)<br />

jm·ρhb<br />

or j


A Corcos <strong>et</strong> al Q UANTITATIVE F INANCE<br />

Figure 1. The family of functions Fρ,m(p) for ρhb = ρbh = 0.72<br />

and ρhh = ρbb = 0.85. The curves are for<br />

m = 13 + j · 26,j = 0,...,13. Note the convergence to the<br />

function Gρ, (indic<strong>at</strong>ed by m =∞).<br />

where ρ ={ρhb,ρbh,ρhh,ρbb}. Thus, the function Fρ,m(p)<br />

compl<strong>et</strong>ely characterizes the dynamics of the proportion of<br />

bullish and bearish popul<strong>at</strong>ions.<br />

3. Qualit<strong>at</strong>ive analysis of the dynamical<br />

properties<br />

3.1. The limit m →∞<br />

The law given by equ<strong>at</strong>ion (2) is not easy to analyse, and we<br />

give in figure1afewsample curves Fρ,m. We see th<strong>at</strong> as m g<strong>et</strong>s<br />

larger, the curves seem to tend to a limiting curve. Using this<br />

observ<strong>at</strong>ion, our conceptual un<strong>de</strong>rstanding of the dynamics can<br />

be drastically simplified if we consi<strong>de</strong>r the problem for a large<br />

number m of polled partners. In<strong>de</strong>ed, it is most convenient<br />

to first study the unrealistic problem m =∞and to view the<br />

large m case as a perturb<strong>at</strong>ion of this limiting case. The main<br />

ingredient in the study of the case m =∞is the Law of Large<br />

Numbers, which we use in a form given in Feller (1966):<br />

Lemma. L<strong>et</strong> g be a continuous function on [0, 1]. Then, for<br />

p ∈ [0, 1],<br />

m<br />

<br />

m<br />

lim p<br />

m→∞ j<br />

j (1 − p) m−j g(j/m) = g(p). (3)<br />

j=0<br />

We apply this lemma to the (piecewise continuous)<br />

function g = fh, where fh is the indic<strong>at</strong>or function of the<br />

s<strong>et</strong> <strong>de</strong>fining P :<br />

<br />

1, if x ρhb or x


166 6. Comportements mimétiques <strong>et</strong> antagonistes : bulles hyperboliques, krachs <strong>et</strong> chaos<br />

Q UANTITATIVE F INANCE Imit<strong>at</strong>ion and contrarian behaviour: hyperbolic bubbles, crashes and chaos<br />

p t<br />

p t<br />

p t<br />

p t<br />

1.0<br />

0.5<br />

0.0<br />

1.0<br />

0.5<br />

0.0<br />

1.0<br />

0.5<br />

0.0<br />

1.0<br />

0.5<br />

0.0<br />

r bb = 0.75<br />

r bb = 0.76<br />

r bb = 0.77<br />

r bb = 0.85<br />

Figure 3. The time series for the same param<strong>et</strong>er values as in<br />

figure 2. Note th<strong>at</strong>, for ρhh = ρbb = 0.75, one has convergence to a<br />

bullish equilibrium, for 0.76 a bullish period 2, for 0.77 a bullish, but<br />

chaotic behaviour. The most interesting case is ρhh = ρbb = 0.85,<br />

where calm periods altern<strong>at</strong>e in a seemingly random fashion with<br />

specul<strong>at</strong>ive bubbles ending in crashes and anti-crashes.<br />

(2) The next, more interesting case, is the appearance of a limit<br />

cycle (of period 2): <strong>at</strong> successive times, the popul<strong>at</strong>ion<br />

of bullish and bearish agents will oscill<strong>at</strong>e b<strong>et</strong>ween two<br />

different values. This happens, e.g. for ρhh = ρbb = 0.76,<br />

with the other param<strong>et</strong>ers as before (see second panel of<br />

figure 3).<br />

(3) But for certain values of the param<strong>et</strong>ers, e.g. ρhh = ρbb =<br />

0.85, the sequence of values of pt is a chaotic sequence,<br />

with positive Lyapunov exponent (compare with Eckmann<br />

and Ruelle 1985). The mechanism for this is really a<br />

combin<strong>at</strong>ion of sufficiently strong buy-and-hold in<strong>de</strong>x<br />

ρhb − 1/2 and of sufficiently weak reversal in<strong>de</strong>x 1 − ρhh.<br />

This regime thus occurs when the opinion of a tra<strong>de</strong>r has<br />

a strong memory of her past positions and changes it only<br />

when a strong majority appears. This regime also requires<br />

a weak belief of the agent in fundamental valu<strong>at</strong>ion, as<br />

she will believe until very l<strong>at</strong>e th<strong>at</strong> a strong bullish or<br />

bearish specul<strong>at</strong>ive trend is sustainable. Fundamentally, it<br />

is this self-referential behaviour of the anticip<strong>at</strong>ions alone<br />

which is responsible for a d<strong>et</strong>erministic, but seemingly<br />

err<strong>at</strong>ic evolution of the popul<strong>at</strong>ion of bullish and bearish<br />

agents. No external noise is nee<strong>de</strong>d to make this happen,<br />

and in general, we view external stimuli as acting on top of<br />

the intrinsic mechanism which we exhibit here (Eckmann<br />

1981). Note th<strong>at</strong> the s<strong>et</strong> of param<strong>et</strong>er values ρ for which<br />

chaos is expected (say, near the values used <strong>at</strong> the bottom<br />

of figure 3) has positive Lebesgue measure.<br />

t<br />

t<br />

t<br />

t<br />

Wh<strong>at</strong> should be a reasonable value for ρhh = ρbb to<br />

<strong>de</strong>scribe empirical d<strong>at</strong>a? We believe th<strong>at</strong> this is an illposed<br />

question and, conditioned on the use of the present<br />

very simplified mo<strong>de</strong>l, ρhh = ρbb is probably not constant<br />

in time but is a (possibly slowly varying) function of time.<br />

As a consequence, the mark<strong>et</strong> dynamics may explore all the<br />

possible different regimes <strong>de</strong>scribed above: stability of price,<br />

oscill<strong>at</strong>ions or cycles, chaotic behaviour (of course each of<br />

them being <strong>de</strong>cor<strong>at</strong>ed by noise capturing a finite N as discussed<br />

below as well as other external sources of uncertainties not<br />

captured by the mo<strong>de</strong>l). The i<strong>de</strong>a of a time-varying control<br />

param<strong>et</strong>er ρhh = ρbb is similar to th<strong>at</strong> advoc<strong>at</strong>ed in Stauffer and<br />

Sorn<strong>et</strong>te (1999) to cure the percol<strong>at</strong>ion mo<strong>de</strong>l of stock mark<strong>et</strong><br />

prices (Cont and Bouchaud 2000), which nee<strong>de</strong>d to be tuned<br />

very artificially to close to the critical percol<strong>at</strong>ion threshold<br />

in or<strong>de</strong>r to exhibit interesting reasonable st<strong>at</strong>istics. Here, we<br />

shall not explore further this possibility but will instead go on<br />

investig<strong>at</strong>ing the properties of the mo<strong>de</strong>l with fixed param<strong>et</strong>ers.<br />

We next consi<strong>de</strong>r in more d<strong>et</strong>ail the time evolution of<br />

pt for the param<strong>et</strong>er values of the last frame of figure 3,<br />

which are typical for the abundant s<strong>et</strong> of ‘chaotic’ param<strong>et</strong>er<br />

values, and we will show how the time evolution exhibits<br />

‘specul<strong>at</strong>ive bubbles’. This phenomenon is akin to the<br />

notion of intermittency (of ‘type I’) as known to physicists,<br />

see e.g. Manneville (1991) for an exposition. In<strong>de</strong>ed, we<br />

can distinguish two distinct behaviours in the last frame of<br />

figure 3, which occur repe<strong>at</strong>edly with more or less pronounced<br />

separ<strong>at</strong>ion. The first process is the ‘laminar phase’, which<br />

is seen to occur when the popul<strong>at</strong>ion pt is near 0.5. Then,<br />

the evolution of the popul<strong>at</strong>ion is slow, and the popul<strong>at</strong>ion<br />

grows slowly away from 0.5, either monotonically or through<br />

an oscill<strong>at</strong>ion of period 2, <strong>de</strong>pending on ρ. This motion is<br />

slower when the inspected sample size (m) is larger, reflecting<br />

a more stable evolution for less in<strong>de</strong>pen<strong>de</strong>nt agents. When<br />

the distance from 0.5 is large, err<strong>at</strong>ic behaviour s<strong>et</strong>s in, which<br />

persists until the popul<strong>at</strong>ion reaches again a value of about 0.5,<br />

<strong>at</strong> which point the whole scenario repe<strong>at</strong>s. The d<strong>et</strong>erminism of<br />

the mo<strong>de</strong>l is reflected by ‘equal causes lead to equal effects’,<br />

while its chaotic n<strong>at</strong>ure is reflected by the err<strong>at</strong>ic length of the<br />

laminar periods, as well as of the bubbles of wild behaviour.<br />

Having analysed qualit<strong>at</strong>ively the evolution of the number<br />

of bullish agents, we next <strong>de</strong>scribe how the price πt+1 of an<br />

ass<strong>et</strong> <strong>at</strong> time t + 1 is rel<strong>at</strong>ed to the proportion pt of bullish<br />

agents. One can argue (Corcos 1993, Bouchaud and Cont<br />

1998, Farmer 1998) th<strong>at</strong> the price change πt+1 − πt from one<br />

period to the next is a monotonic function of pt (and, perhaps,<br />

of πt). This function is positive when pt > 1/2 and neg<strong>at</strong>ive<br />

when pt < 1/2. If the reaction to a change in pt is reflected<br />

in the prices in the next period, then a bubble in pt will lead to<br />

a specul<strong>at</strong>ive bubble in the prices in the next period. Thus, our<br />

mo<strong>de</strong>l predicts the occurrence of bubbles from the behaviour<br />

of the agents alone. Furthermore, for quite general laws of the<br />

form<br />

πt+1 = H(πt,pt), (7)<br />

a simple applic<strong>at</strong>ion of the chain rule of differenti<strong>at</strong>ion leads<br />

to the observ<strong>at</strong>ion th<strong>at</strong> the variable πt has the same Lyapunov<br />

exponent as pt. In fact, this will be the case if 0


A Corcos <strong>et</strong> al Q UANTITATIVE F INANCE<br />

p t<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

t<br />

Figure 4. Evolution of the system over 10 000 time steps for<br />

N =∞, m = 60 polled agents and the param<strong>et</strong>ers<br />

ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85. Note the existence of<br />

acceler<strong>at</strong>ions ending in crashes and anti-crashes (fast jumps).<br />

and ∂pH >c>0, where λ is the Lyapunov exponent for pt,as<br />

follows from δπt+1 = ∂πH · δπt + ∂pH · δpt. This condition is,<br />

in particular, s<strong>at</strong>isfied for a law of the form πt+1 = πt + G(pt),<br />

where G is strictly monotonic. Thus, chaotic behaviour of<br />

bullish agents leads to chaotic behaviour of prices.<br />

In the following, we shall take the simplest form of a<br />

log-difference of the price linearly proportional to the or<strong>de</strong>r<br />

unbalance (Farmer 1998), leading to<br />

ln πt+1 − ln πt ≡ rt+1 = γ(pt − 1<br />

), (8)<br />

2<br />

showing th<strong>at</strong> the r<strong>et</strong>urn rt calcul<strong>at</strong>ed over one period is<br />

proportional to the imbalance pt − 1<br />

. Thus, the properties<br />

2<br />

of the r<strong>et</strong>urn time series can be <strong>de</strong>rived directly from those of<br />

pt as we document below. This linear function of (pt − 1<br />

) can 2<br />

be improved for instance by the hyperbolic tangent function<br />

tanh(pt − 1<br />

) documented in Plerou <strong>et</strong> al (2001).<br />

2<br />

To summarize this qualit<strong>at</strong>ive analysis of the case of an<br />

infinite number N of agents, we observe a time evolution<br />

which, while s<strong>at</strong>isfying certain criteria of randomness (such<br />

as possessing an absolutely continuous invariant measure<br />

and exhibiting a positive Lyapunov exponent (compare with<br />

Eckmann and Ruelle 1985)) <strong>at</strong> the same time exhibits some<br />

regularities on short time scales, since it is d<strong>et</strong>erministic.<br />

Our mo<strong>de</strong>l thus establishes th<strong>at</strong> straightforward fundamental<br />

conditions may suffice to gener<strong>at</strong>e chaotic stock mark<strong>et</strong><br />

behaviour, <strong>de</strong>pending on the param<strong>et</strong>er values. If the mark<strong>et</strong><br />

adjusts present mark<strong>et</strong> price on the basis of expect<strong>at</strong>ions and<br />

mimicry—self-referred behaviour—then chaotic evolution of<br />

the popul<strong>at</strong>ion will also imply chaotic evolution of prices.<br />

4. Quantit<strong>at</strong>ive analysis of the<br />

specul<strong>at</strong>ive bubbles within the chaotic<br />

regime in the symm<strong>et</strong>ric case<br />

For an infinite number N of agents and in the symm<strong>et</strong>ric case<br />

ρhb = ρbh ≡ ρ1 and ρhh = ρbb ≡ ρ2, l<strong>et</strong> us rewrite the<br />

270<br />

p t –1/2<br />

p t –1/2<br />

0.25<br />

167<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

0 100 200 300 400 500 600<br />

10 0<br />

t<br />

10 –1<br />

10 –2<br />

10 –3<br />

10 –4<br />

0 100 200 300<br />

t<br />

400 500 600<br />

Figure 5. The first bubble of figure 4 for N =∞agents with<br />

m = 60 polled agents and param<strong>et</strong>ers ρhb = ρbh = 0.72 and<br />

ρhh = ρbb = 0.85.<br />

dynamical evolution (2) of the system as<br />

p ′ m<br />

<br />

m<br />

= p − p p<br />

j j=0<br />

m−j (1 − p) j <br />

j<br />

f<br />

m<br />

m<br />

<br />

m<br />

+ (1 − p) (1 − p)<br />

j j=0<br />

m−j p j <br />

j<br />

f ,<br />

m<br />

where<br />

(9)<br />

<br />

1,<br />

f(x)=<br />

0,<br />

if x ρ1 or x


168 6. Comportements mimétiques <strong>et</strong> antagonistes : bulles hyperboliques, krachs <strong>et</strong> chaos<br />

Q UANTITATIVE F INANCE Imit<strong>at</strong>ion and contrarian behaviour: hyperbolic bubbles, crashes and chaos<br />

Fr,m(p)–p<br />

10 0<br />

10 –1<br />

10 –2<br />

10 –3<br />

10 –4<br />

10 –5<br />

10 –6<br />

10 –7<br />

m = 30<br />

m = 60<br />

m = 100<br />

10 –3 10 –2<br />

slope m(m = 60)=3<br />

p–1/2<br />

10 –1<br />

Figure 6. The logarithm of Fm(p) − p versus the logarithm of<br />

p − 1/2 for three different values of m = 30, 60 and 100, with<br />

ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85. Note the transition from a<br />

slope 1 to a large effective slope before the reinjection due to the<br />

contrarian mechanism.<br />

κ>0) followed by a super-exponential growth acceler<strong>at</strong>ing<br />

so much as to give the impression of reaching a singularity in<br />

finite-time.<br />

To un<strong>de</strong>rstand this phenomenon, we plot the logarithm of<br />

Fm(p)−p versus the logarithm of p −1/2 in figure 6 for three<br />

different values of m = 30, 60 and 100. Two regimes can be<br />

observed.<br />

(1) For small p − 1/2, the slope of log 10 (Fm(p) − p) versus<br />

log 10 (p − 1/2) is 1, i.e.<br />

10 0<br />

p ′ − p ≡ Fm(p) − p α(m)(p − 1<br />

). (13)<br />

2<br />

This expression (13) explains the exponential growth<br />

observed <strong>at</strong> early times in figure 5.<br />

(2) For larger p − 1/2, the slope of log 10 (Fm(p) − p) versus<br />

log 10 (p − 1/2) increases above 1 and stabilizes to a<br />

value µ(m) before <strong>de</strong>creasing again due to the reinjection<br />

produced by the contrarian mechanism. The interval in<br />

p − 1/2 in which the slope is approxim<strong>at</strong>ely stabilized <strong>at</strong><br />

the value µ(m) enables us to write<br />

Fm(p)−p β(m)(p − 1<br />

2 )µ(m) , with µ>1. (14)<br />

These two regimes can be summarized in the following<br />

phenomenological expression for Fm(p):<br />

Fm(p) = 1<br />

+ (1 − 2gm(1/2)<br />

2<br />

− g ′ 1<br />

1<br />

m (1/2))(p − ) + β(m)(p − 2 2 )µ(m) , (15)<br />

= 1<br />

2<br />

+ (p − 1<br />

2<br />

) + α(m)(p − 1<br />

2 )<br />

+ β(m)(p − 1<br />

2 )µ(m) with µ>1, (16)<br />

and<br />

α(m) =−2gm(1/2) − g ′ m (1/2). (17)<br />

Figure 7. Approxim<strong>at</strong>ion of the function Fm(p) − 1<br />

2<br />

function f(p)= [1 + α](p + 1<br />

2<br />

by the<br />

) + β(p + 1<br />

2 )µ over different<br />

p-intervals, for m = 60 interacting agents and param<strong>et</strong>ers<br />

ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85.<br />

Table 1. Optimized param<strong>et</strong>ers α, β and µ for several optimiz<strong>at</strong>ion<br />

intervals with m = 60 interacting agents and ρhb = ρbh = 0.72 and<br />

ρhh = ρbb = 0.85.<br />

Optimiz<strong>at</strong>ion domain α β µ<br />

0 p − 1<br />

0.05 2 0.011 11.67 3.27<br />

0 p − 1<br />

0.10 2 0.013 43.66 3.77<br />

0 p − 1<br />

0.15 2<br />

0 p −<br />

0.014 60.32 3.91<br />

1<br />

0.20 2 0.004 30.64 3.54<br />

This expression can be obtained as an approxim<strong>at</strong>ion of the<br />

exact expansion <strong>de</strong>rived in the appendix.<br />

In or<strong>de</strong>r to check the hypothesis (16), we numerically solve<br />

the following problem<br />

min<br />

{α,β,µ} Fm(p) − 1<br />

2<br />

1<br />

1<br />

− [1 + α](p − ) − β(p − 2 2 )µ 2 , (18)<br />

which amounts to constructing the best approxim<strong>at</strong>ion of<br />

the exact map Fm(p) in terms of an effective power-law<br />

acceler<strong>at</strong>ion (see (20) below). The results obtained for m =<br />

60 interacting agents and ρhb = ρbh = 0.72 and ρhh =<br />

ρbb = 0.85 are given in table 1 and shown in figure 7.<br />

The numerical values of α are in good agreement with the<br />

theor<strong>et</strong>ical prediction: α(m) = F ′ m (1/2) − 1 which yields<br />

α(m) 0.011 in the present case (m = 60, ρhb = ρbh = 0.72<br />

and ρhh = ρbb = 0.85). As a first approxim<strong>at</strong>ion, we<br />

can consi<strong>de</strong>r th<strong>at</strong> the exponent µ is fixed over the interval<br />

of interest, which is reasonable according to the very good<br />

quality of the fits shown in figure 7. We can conclu<strong>de</strong> from<br />

this numerical investig<strong>at</strong>ion th<strong>at</strong> µ(m) ∈ [3, 4]. A finer<br />

analysis shows, however, th<strong>at</strong> the exponent µ is in fact not<br />

perfectly constant but shifts slowly from about 3 to 4 as p<br />

increases. This should be expected as the function Fm(p)<br />

contains many higher-or<strong>de</strong>r terms. We can also note th<strong>at</strong> the<br />

param<strong>et</strong>er pc = (β/α) −1/µ , which <strong>de</strong>fines the typical scale<br />

of the crossover remains constant and equal to pc 0.70 for<br />

271


A Corcos <strong>et</strong> al Q UANTITATIVE F INANCE<br />

all the fits (except for the largest interval p − 1/2 < 0.2,<br />

for which pc = 0.8). In sum, the procedure (18) and its<br />

results show th<strong>at</strong> the effective power-law represent<strong>at</strong>ion (16) is<br />

a crossover phenomenon: it is not domin<strong>at</strong>ed by the ‘critical’<br />

value ρhb = ρbh of the jump of the map obtained in the limit<br />

of large m.<br />

Introducing the not<strong>at</strong>ion ɛ = p − 1/2, the dynamics<br />

associ<strong>at</strong>ed with the effective map (16) can be rewritten<br />

ɛ ′ − ɛ = α(m)ɛ + β(m)ɛ µ(m) , (19)<br />

which, in the continuous time limit, yields<br />

dɛ<br />

dt = α(m)ɛ + β(m)ɛµ(m) . (20)<br />

Thus, for small ɛ, we obtain an exponential growth r<strong>at</strong>e<br />

while for large enough ɛ<br />

ɛt ∝ e α(m)t , (21)<br />

1<br />

−<br />

ɛt ∝ (tc − t) µ(m)−1 . (22)<br />

Of course, these behaviours become invalid for t too close to<br />

tc for which the reinjection mechanism oper<strong>at</strong>es and ensures<br />

th<strong>at</strong> the probability remains less than one.<br />

For example, for m = 60 with ρhb = ρbh = 0.72 and<br />

ρhh = ρbb = 0.85, we can check on figure 6 th<strong>at</strong> µ(m) = 3,<br />

which yields for large ɛ:<br />

pt − 1<br />

2 ∝<br />

1<br />

√ . (23)<br />

tc − t<br />

The prediction (23) implies th<strong>at</strong> plotting (pt − 1/2) −2 as a<br />

function of t should be a straight line in this regime. This<br />

non-param<strong>et</strong>ric test is checked in figure 8 on five successive<br />

bubbles. This provi<strong>de</strong>s a confirm<strong>at</strong>ion of the effective powerlaw<br />

represent<strong>at</strong>ion (16) of the map. The fact th<strong>at</strong> it is the lowest<br />

estim<strong>at</strong>e µ ≈ 3 shown in table 1 which domin<strong>at</strong>es in figure 8<br />

results simply from the fact th<strong>at</strong> it is the longest transient<br />

corresponding to the regime where p is closest to the unstable<br />

fixed point 1/2. This is visualized in figure 8 by the horizontal<br />

dashed lines indic<strong>at</strong>ing the levels p−1/2 = 0.05, 0.01 and 0.2.<br />

This <strong>de</strong>monstr<strong>at</strong>es th<strong>at</strong> most of the visited values are close to<br />

the unstable fixed point, which d<strong>et</strong>ermines the effective value<br />

of the nonlinear exponent µ ≈ 3.<br />

With the price dynamics (8), the prediction (22) implies<br />

th<strong>at</strong> the r<strong>et</strong>urns rt should increase in an acceler<strong>at</strong>ing superexponential<br />

fashion <strong>at</strong> the end of a bubble, leading to a price<br />

trajectory<br />

πt = πc − C(tc − t) µ(m)−2<br />

µ(m)−1 , (24)<br />

where πc is the culmin<strong>at</strong>ing price of the bubble reached <strong>at</strong><br />

t = tc when µ(m) > 2, such th<strong>at</strong> the finite-time singularity<br />

in rt gives rise only to an infinite slope of the price trajectory.<br />

The behaviour (24) with an exponent 0 < µ(m)−2<br />

< 1 has been<br />

µ(m)−1<br />

documented in many bubbles (Sorn<strong>et</strong>te <strong>et</strong> al 1996, Johansen<br />

<strong>et</strong> al 1999, 2000, Johansen and Sorn<strong>et</strong>te 1999, 2000, Sorn<strong>et</strong>te<br />

and Johansen 2001, Sorn<strong>et</strong>te and An<strong>de</strong>rsen 2001, Sorn<strong>et</strong>te<br />

2001). The case m = 60 with ρhb = ρbh = 0.72 and<br />

272<br />

169<br />

1<br />

Figure 8. (pt −1/2) 2 versus t to qualify the finite-time singularity<br />

predicted by (23) for m = 60 with ρhb = ρbh = 0.72 and<br />

ρhh = ρbb = 0.85. The points are obtained from the time series pt<br />

and the straight continuous lines are the best linear fits. The<br />

horizontal dashed lines indic<strong>at</strong>e the levels p − 1/2 = 0.05, 0.01 and<br />

0.2 to <strong>de</strong>monstr<strong>at</strong>e th<strong>at</strong> most of the visited values are close to the<br />

unstable fixed point, which d<strong>et</strong>ermines the effective value of the<br />

nonlinear exponent µ ≈ 3.<br />

ρhh = ρbb = 0.85 shown in figure 6 leads to µ(m)−2<br />

= 1/2,<br />

µ(m)−1<br />

which is in reasonable agreement with previously reported<br />

values.<br />

Interpr<strong>et</strong>ed within the present mo<strong>de</strong>l, the exponent µ(m)−2<br />

µ(m)−1<br />

of the price singularity gives an estim<strong>at</strong>ion of the ‘connectivity’<br />

number m through the <strong>de</strong>pen<strong>de</strong>nce of µ on m documented<br />

in figure 6. Such a rel<strong>at</strong>ionship has already been argued by<br />

Johansen <strong>et</strong> al (2000) <strong>at</strong> a phenomenological level using a<br />

mean-field equ<strong>at</strong>ion in which the exponent is directly rel<strong>at</strong>ed<br />

to the number of connections to a given agent.<br />

5. St<strong>at</strong>istical properties of price r<strong>et</strong>urns<br />

in the symm<strong>et</strong>ric case<br />

Using the price dynamics (8), the distribution of p − 1/2 is the<br />

same as the distribution of r<strong>et</strong>urns, which is the first st<strong>at</strong>istical<br />

property analysed in econom<strong>et</strong>ric work (Campbell <strong>et</strong> al 1997,<br />

Lo and MacKinlay 1999, Lux 1996, Pagan 1996, Plerou <strong>et</strong> al<br />

1999, Laherrère and Sorn<strong>et</strong>te 1998). Note th<strong>at</strong> the distribution<br />

of p − 1/2 is nothing but the invariant measure of the chaotic<br />

map p ′ (p) which can be shown to be continuous with respect to<br />

the Lebesgue measure (Eckmann and Ruelle 1985). Figure 9<br />

shows the cumul<strong>at</strong>ive distribution of rt ∝ pt −1/2. Notice the<br />

two breaks <strong>at</strong> |p − 1/2| =0.28, which are due to the existence<br />

of weakly unstable periodic orbits corresponding to a transient<br />

oscill<strong>at</strong>ion b<strong>et</strong>ween bullish and bearish st<strong>at</strong>es.<br />

Figure 10 plots in double-logarithmic scales the survival<br />

(i.e. complementary cumul<strong>at</strong>ive) distribution of rt ∝ pt − 1/2<br />

for m = 30, 60 and 100. For m = 60, we can observe an<br />

approxim<strong>at</strong>e power-law tail but the exponent is smaller than<br />

1 in contradiction to the empirical evi<strong>de</strong>nce which suggests<br />

a tail of the survival probability with exponents 3–5. In


170 6. Comportements mimétiques <strong>et</strong> antagonistes : bulles hyperboliques, krachs <strong>et</strong> chaos<br />

Q UANTITATIVE F INANCE Imit<strong>at</strong>ion and contrarian behaviour: hyperbolic bubbles, crashes and chaos<br />

Probability<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Effect of periodic orbits<br />

0.0<br />

–0.4 –0.3 –0.2 –0.1 0.0 0.1 0.2 0.3 0.4<br />

p–1/2<br />

Figure 9. Cumul<strong>at</strong>ive distribution for m = 60 polled agents and the<br />

param<strong>et</strong>ers ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85.<br />

the other cases, we cannot conclu<strong>de</strong> on the existence of a<br />

power-law regime, but it is obvious th<strong>at</strong> the tail behaviour of<br />

the distribution function <strong>de</strong>pends on the number m of polled<br />

agents.<br />

Figure 11 shows the behaviour of the autocorrel<strong>at</strong>ion<br />

function for m = 60 and 100, with the same values of the<br />

other param<strong>et</strong>ers ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85.<br />

For m = 100, the presence of the weakly unstable orbits is felt<br />

much stronger, which is reflected in (i) a very strong periodic<br />

component of the correl<strong>at</strong>ion function and (ii) its slow <strong>de</strong>cay.<br />

Even for m = 60, the correl<strong>at</strong>ion function does not <strong>de</strong>cay<br />

fast enough compared to the typical dur<strong>at</strong>ion of specul<strong>at</strong>ive<br />

bubbles to be in quantit<strong>at</strong>ive agreement with empirical d<strong>at</strong>a.<br />

This anomalously large correl<strong>at</strong>ion of the r<strong>et</strong>urns is obviously<br />

rel<strong>at</strong>ed to the d<strong>et</strong>erministic dynamics of the r<strong>et</strong>urns. We thus<br />

expect th<strong>at</strong> including stochastic noise due to a finite number N<br />

of agents (see below) and adding external noise due to ‘news’<br />

will whiten rt significantly.<br />

Figure 12 compares the correl<strong>at</strong>ion function for the r<strong>et</strong>urns<br />

time series rt ∝ pt − 1/2 and the vol<strong>at</strong>ility time series <strong>de</strong>fined<br />

as |rt|. The vol<strong>at</strong>ility is an important measure of risks and thus<br />

plays an important role in portfolio managements and option<br />

pricing and hedging. Note th<strong>at</strong> taking the absolute value of the<br />

r<strong>et</strong>urn removes the one source of irregularity stemming from<br />

the change of sign of rt ∝ pt − 1/2 to focus on the local<br />

amplitu<strong>de</strong>s. We observe in figure 12 a significantly longer<br />

correl<strong>at</strong>ion time for the vol<strong>at</strong>ility. Moreover, the correl<strong>at</strong>ion<br />

function of the vol<strong>at</strong>ility first <strong>de</strong>cays exponentially and then as a<br />

power law. This behaviour has previously been documented in<br />

many econom<strong>et</strong>ric works (Ding <strong>et</strong> al 1993, Ding and Granger<br />

1996, Müller <strong>et</strong> al 1997, Dacorogna <strong>et</strong> al 1998, Arneodo <strong>et</strong> al<br />

1998, Ballocchi <strong>et</strong> al 1999, Muzy <strong>et</strong> al 2001).<br />

6. Asymm<strong>et</strong>ric cases<br />

We have seen th<strong>at</strong> the symm<strong>et</strong>ric case ρhb = ρbh and ρhh = ρbb<br />

is plagued by the weakly unstable periodic orbits which put a<br />

Probability<br />

10 0<br />

10 –1<br />

10 –5<br />

m = 30<br />

m = 60<br />

m = 100<br />

10 –4 10 –3<br />

Survival distribution<br />

10 –2<br />

1/2–p<br />

10 –1<br />

Figure 10. Survival (i.e. complementary cumul<strong>at</strong>ive) distribution<br />

for m = 30, 60 and 100 polled ‘friends’ per agent and param<strong>et</strong>ers<br />

ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85. The total number N of<br />

agents is infinite.<br />

strong and unrealistic imprint on the st<strong>at</strong>istical properties of<br />

the r<strong>et</strong>urn time series. It is n<strong>at</strong>ural to argue th<strong>at</strong> breaking the<br />

symm<strong>et</strong>ry will <strong>de</strong>stroy the strength of these periodic orbits.<br />

From a behavioural point of view, it is also quite clear th<strong>at</strong><br />

the <strong>at</strong>titu<strong>de</strong> of an investor is not symm<strong>et</strong>ric. One can expect<br />

a priori a stronger bullish buy-and-hold in<strong>de</strong>x ρhb − 1/2 than<br />

bearish buy-and-hold in<strong>de</strong>x ρbh − 1/2: one is a priori more<br />

prone to hold a position in a bullish mark<strong>et</strong> than in a bearish one.<br />

Similarly, we expect a smaller bullish reversal in<strong>de</strong>x 1 − ρhh<br />

than bearish reversal in<strong>de</strong>x 1 − ρbb: specul<strong>at</strong>ive bubbles are<br />

rarely seen on downward trends as it is much more common<br />

th<strong>at</strong> increasing prices are favourably perceived and can be sustained<br />

much longer without reference to the fundamental price.<br />

Such an asymm<strong>et</strong>ry has been clearly <strong>de</strong>monstr<strong>at</strong>ed<br />

empirically in the difference b<strong>et</strong>ween the r<strong>at</strong>e of occurrence<br />

and size of extreme drawdowns compared to drawups in stock<br />

mark<strong>et</strong> time series (Johansen and Sorn<strong>et</strong>te 2001). Drawdowns<br />

(drawups) are <strong>de</strong>fined as the cumul<strong>at</strong>ive losses (gains) from<br />

the last local maximum (minimum) to the next local minimum<br />

(maximum). Drawdowns and drawups are very interesting<br />

because they offer a more n<strong>at</strong>ural measure of real mark<strong>et</strong> risks<br />

than the variance, the value-<strong>at</strong>-risk or other measures based<br />

on fixed time scale distributions of r<strong>et</strong>urns. For the major<br />

stock mark<strong>et</strong> indices, there are very large drawdowns which are<br />

‘outliers’ while drawups do not exhibit such a drastic change<br />

of regime. For major companies, drawups of amplitu<strong>de</strong> larger<br />

than 15% occur <strong>at</strong> a r<strong>at</strong>e about twice as large as the r<strong>at</strong>e of<br />

drawdowns, but with lower absolute amplitu<strong>de</strong>. An asymm<strong>et</strong>ry<br />

ρhh = ρbb could result from the mechanism of asymm<strong>et</strong>ric<br />

inform<strong>at</strong>ion, in which actors on one si<strong>de</strong> of the mark<strong>et</strong> have<br />

b<strong>et</strong>ter inform<strong>at</strong>ion than those on the other (see Riley (2001) for<br />

a survey of <strong>de</strong>velopments in the economics of inform<strong>at</strong>ion over<br />

the last 25 years and The Bank of Swe<strong>de</strong>n Prize in Economics<br />

Sciences in Memory of Alfred Nobel 2001, document entitled<br />

‘Mark<strong>et</strong>s with Asymm<strong>et</strong>ric Inform<strong>at</strong>ion’, 10 October 2001).<br />

10 0<br />

273


A Corcos <strong>et</strong> al Q UANTITATIVE F INANCE<br />

p t<br />

Autocorrel<strong>at</strong>ion<br />

1.0<br />

m = 60<br />

1.0<br />

m = 100<br />

0.8<br />

0.8<br />

0.6<br />

0.6<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

0.0<br />

0.0<br />

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000<br />

t t<br />

1.0<br />

1.0<br />

0.5<br />

0.5<br />

0.0<br />

–0.5<br />

–1.0<br />

0 20 40 60 80 100 120 140 160 180<br />

200<br />

p t<br />

Autocorrel<strong>at</strong>ion<br />

0.0<br />

–0.5<br />

–1.0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Time lag Time lag<br />

Figure 11. The upper panels represent the time series pt for m = 60 (left) and m = 100 (right). The lower panels represent the<br />

corresponding autocorrel<strong>at</strong>ion function of rt ∝ p − 1/2 for m = 60 (left) and m = 100 (right) with the same param<strong>et</strong>ers ρhb = ρbh = 0.72<br />

and ρhh = ρbb = 0.85.<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Exponential<br />

<strong>de</strong>cay<br />

Power-law<br />

<strong>de</strong>cay<br />

R<strong>et</strong>urn<br />

Vol<strong>at</strong>ility<br />

0 50 100 150 200 250 300<br />

Figure 12. Autocorrel<strong>at</strong>ion function of the r<strong>et</strong>urns and of the<br />

vol<strong>at</strong>ility for m = 60 polled agents and the param<strong>et</strong>ers<br />

ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85.<br />

Figure 13 compares the dynamics for the symm<strong>et</strong>ric<br />

system (upper panel (a)) and for the asymm<strong>et</strong>ric system<br />

(lower panel (b)). It is clear th<strong>at</strong>, as expected, the number<br />

of periodic orbits <strong>de</strong>creases significantly in the asymm<strong>et</strong>ric<br />

system. However, there are still an unrealistic number of<br />

neg<strong>at</strong>ive bubbles. It is not possible to increase the asymm<strong>et</strong>ry<br />

sufficiently strongly without exiting from the chaotic regime.<br />

This unrealistic fe<strong>at</strong>ure is thus an intrinsic property and<br />

limit<strong>at</strong>ion of the present mo<strong>de</strong>l. We shall indic<strong>at</strong>e in the<br />

conclusion possible extensions and remedies.<br />

Figure 14 compares the cumul<strong>at</strong>ive distributions of p−1/2<br />

for m = 60 for the symm<strong>et</strong>ric and asymm<strong>et</strong>ric cases. The<br />

strong effect of the weakly unstable periodic orbits observed<br />

in the periodic case has disappeared. In addition, the tail of<br />

274<br />

171<br />

(a)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

(b)<br />

t<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

t<br />

p t<br />

p t<br />

Figure 13. Time evolution of pt over 100 00 time steps for m = 60<br />

polled agents in (a) a symm<strong>et</strong>ric case ρhb = ρbh = 0.72 and<br />

ρhh = ρbb = 0.85 and (b) an asymm<strong>et</strong>ric case ρhb = 0.72,<br />

ρbh = 0.74, ρhh = 0.85 and ρbb = 0.87.<br />

the distribution <strong>de</strong>cays faster in the asymm<strong>et</strong>ric case, in b<strong>et</strong>ter<br />

(but still not very good) agreement with empirical d<strong>at</strong>a.<br />

Figure 15 shows the correl<strong>at</strong>ion function of the r<strong>et</strong>urns for<br />

a symm<strong>et</strong>ric and an asymm<strong>et</strong>ric case. In the asymm<strong>et</strong>ric case,<br />

there is no trace of oscill<strong>at</strong>ions but the <strong>de</strong>cay is slightly slower.<br />

7. Finite-size effects<br />

Until now, our analysis has focused on the limit of an infinite<br />

number N →∞of agents, in which each agent polls randomly<br />

m agents among N. In this limit, we have shown th<strong>at</strong>, for a large<br />

domain in the param<strong>et</strong>er space, the dynamics of the r<strong>et</strong>urns is<br />

chaotic with interesting and qualit<strong>at</strong>ively realistic properties.


172 6. Comportements mimétiques <strong>et</strong> antagonistes : bulles hyperboliques, krachs <strong>et</strong> chaos<br />

Q UANTITATIVE F INANCE Imit<strong>at</strong>ion and contrarian behaviour: hyperbolic bubbles, crashes and chaos<br />

Probability<br />

1.0<br />

Symm<strong>et</strong>ric dynamics<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

Asymm<strong>et</strong>ric dynamics<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Effect of periodic<br />

orbits<br />

–0.5 –0.4 –0.3 –0.2 –0.1 0.0<br />

p–1/2<br />

0.1 0.2 0.3 0.4 0.5<br />

Figure 14. Cumul<strong>at</strong>ive distribution function of p − 1/2 for m = 60<br />

polled agents and param<strong>et</strong>ers ρhb = ρbh = 0.72 and<br />

ρhh = ρbb = 0.85 (dashed line) and ρhb = 0.72, ρbh = 0.74,<br />

ρhh = 0.85 and ρbb = 0.87 (continuous line). Note th<strong>at</strong> the<br />

asymm<strong>et</strong>ric dynamics has the effect of shifting the cumul<strong>at</strong>ive<br />

distribution to the right.<br />

7.1. Finite-size effects in other mo<strong>de</strong>ls<br />

We now investig<strong>at</strong>e finite-size effects resulting from a finite<br />

number N of interacting agents trading on the stock mark<strong>et</strong>.<br />

This issue of the role of the number of agents has recently been<br />

investig<strong>at</strong>ed vigorously with surprising results.<br />

Hellthaler (1995) studied the N-<strong>de</strong>pen<strong>de</strong>nce of the<br />

dynamical properties of price time series of the Levy <strong>et</strong> al<br />

mo<strong>de</strong>l (1995, 2000). Egenter <strong>et</strong> al (1999) did the same for the<br />

Kim and Markowitz (1989) and the Lux and Marchesi (1999)<br />

mo<strong>de</strong>ls. They found th<strong>at</strong>, if this number N goes to infinity,<br />

nearly periodic oscill<strong>at</strong>ions occur and the st<strong>at</strong>istical properties<br />

of the price time series become compl<strong>et</strong>ely unrealistic. Stauffer<br />

(1999) reviewed this work and others such as the Levy <strong>et</strong> al<br />

(1995, 2000) mo<strong>de</strong>l: realistically looking price fluctu<strong>at</strong>ions<br />

are obtained for N ∝ 102 , but for N ∝ 106 the prices<br />

vary smoothly in a nearly periodic and thus unrealistic way.<br />

The mo<strong>de</strong>l proposed by Farmer (1998) suffers from the same<br />

problem: with a few hundred investors, most investors are<br />

fundamentalists during calm times, but bursts of high vol<strong>at</strong>ility<br />

coinci<strong>de</strong> with large fractions of noise tra<strong>de</strong>rs. When N<br />

becomes much larger, the fraction of noise tra<strong>de</strong>rs goes to zero<br />

in contradiction to reality. On a somewh<strong>at</strong> different issue,<br />

Huang and Solomon (2001) have studied finite-size effects<br />

in dynamical systems of price evolution with multiplic<strong>at</strong>ive<br />

noise. They find th<strong>at</strong> the exponent of the Par<strong>et</strong>o law<br />

obtained in stochastic multiplic<strong>at</strong>ive mark<strong>et</strong> mo<strong>de</strong>ls is crucially<br />

affected by a finite N and may cause, in the absence of<br />

an appropri<strong>at</strong>e social policy, extreme wealth inequality and<br />

mark<strong>et</strong> instability. Another mo<strong>de</strong>l (apart from ours) where<br />

the mark<strong>et</strong> may stay realistic even for N →∞seems to be<br />

the Cont and Bouchaud percol<strong>at</strong>ion mo<strong>de</strong>l (2001). However,<br />

this only occurs for an unrealistic tuning of the percol<strong>at</strong>ion<br />

concentr<strong>at</strong>ion to its critical value. Thus, in most cases, the<br />

limit N →∞leads to a behaviour of the simul<strong>at</strong>ed mark<strong>et</strong>s<br />

Correl<strong>at</strong>ion<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

–0.2<br />

Symm<strong>et</strong>ric dynamics<br />

Asymm<strong>et</strong>ric dynamics<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Time lag<br />

Figure 15. Correl<strong>at</strong>ion function for m = 60 polled agents and<br />

param<strong>et</strong>ers ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85 (dashed line)<br />

and ρhb = 0.72, ρbh = 0.74, ρhh = 0.85 and ρbb = 0.87 (continuous<br />

line). Note th<strong>at</strong> the correl<strong>at</strong>ion function of r<strong>et</strong>urns goes to zero<br />

(within the noise level) <strong>at</strong> time lags larger than about 100. This<br />

unrealistic fe<strong>at</strong>ure of a long-range correl<strong>at</strong>ion in the r<strong>et</strong>urns makes it<br />

unnecessary to show the even longer-range correl<strong>at</strong>ion of the<br />

absolute values of the r<strong>et</strong>urns.<br />

which becomes quite smooth or periodic and thus predictable,<br />

in contrast to real mark<strong>et</strong>s. Our mo<strong>de</strong>l, which remains<br />

(d<strong>et</strong>erministically) chaotic, is thus a significant improvement<br />

upon this behaviour. We trace this improvement on the highly<br />

nonlinear behaviour resulting from the interplay b<strong>et</strong>ween<br />

the imit<strong>at</strong>ive and contrarian behaviour. It has thus been<br />

argued (Stauffer 1999) th<strong>at</strong>, if these previous mo<strong>de</strong>ls are good<br />

<strong>de</strong>scriptions of mark<strong>et</strong>s, then real mark<strong>et</strong>s with their strong<br />

random fluctu<strong>at</strong>ions are domin<strong>at</strong>ed by a r<strong>at</strong>her limited number<br />

of large players: this amounts to the assumption th<strong>at</strong> the<br />

hundred most important investors or investment companies<br />

have much more influence than the millions of less wealthy<br />

priv<strong>at</strong>e investors.<br />

There is another class of mo<strong>de</strong>ls, the minority games<br />

(Chall<strong>et</strong> and Zhang 1997), in which the dynamics remains<br />

complex even in the limit N →∞. It has been established<br />

th<strong>at</strong> the fluctu<strong>at</strong>ions of the sum of the aggreg<strong>at</strong>e <strong>de</strong>mand<br />

have an approxim<strong>at</strong>e scaling with similar sized fluctu<strong>at</strong>ions<br />

(vol<strong>at</strong>ility/standard <strong>de</strong>vi<strong>at</strong>ion) for any N and m for the scale<br />

scaled variable 2 m /N, where m is the memory length (Chall<strong>et</strong><br />

<strong>et</strong> al 2000). In a generaliz<strong>at</strong>ion, the so-called grand canonical<br />

version of the minority game (Jefferies <strong>et</strong> al 2001), where the<br />

agents have a confi<strong>de</strong>nce threshold th<strong>at</strong> prevents them from<br />

playing if their str<strong>at</strong>egies have not been successful over the<br />

last T turns, the dynamics can <strong>de</strong>pend more sensitively on N:<br />

as N becomes small, the dynamics can become quite different.<br />

For large N, the complexity remains.<br />

The difference b<strong>et</strong>ween the limit N →∞consi<strong>de</strong>red up<br />

to now in this paper and the case of finite N is th<strong>at</strong> pt is no<br />

longer the fraction of bullish agents. For finite N, pt must<br />

be interpr<strong>et</strong>ed as the probability for an agent to be bullish.<br />

Of course, in the limit of large N, the law of large numbers<br />

275


A Corcos <strong>et</strong> al Q UANTITATIVE F INANCE<br />

(a)<br />

1.0<br />

p t<br />

0.5<br />

0.0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

(b)<br />

t<br />

1.0<br />

p t<br />

p t<br />

0.5<br />

0.0<br />

(c)<br />

0.4<br />

0.2<br />

0<br />

–0.2<br />

–0.4<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

t<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

t<br />

Figure 16. Time evolution of pt over 10 000 time steps for m = 60<br />

polled agents with (a) N =∞, (b) N = m +1= 61 agents and<br />

param<strong>et</strong>ers ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85. Panel<br />

(c) represents the noise due to the finite size of the system and is<br />

obtained by subtracting the time series in panel (a) from the time<br />

series in panel (b).<br />

ensures th<strong>at</strong> the fraction of bullish agents becomes equal to the<br />

probability for an agent to be bullish. There are several ways<br />

to implement a finite-size effect. We here discuss only the two<br />

simplest ones.<br />

7.2. Finite external sampling of an infinite system<br />

Consi<strong>de</strong>r a system with an infinite number of agents for which<br />

the fraction pt of bullish agents is governed by the d<strong>et</strong>erministic<br />

dynamics (2). At each time step t, l<strong>et</strong> us sample a finite number<br />

N of them to d<strong>et</strong>ermine the fraction of bullish agents. We g<strong>et</strong><br />

a number n, which is in general close but not exactly equal to<br />

Npt due to st<strong>at</strong>istical fluctu<strong>at</strong>ions. The probability of finding n<br />

bullish agents among N agents is in<strong>de</strong>ed given by the binomial<br />

law<br />

<br />

N<br />

Pr(n) = p<br />

n<br />

n (1 − p) N−n . (25)<br />

This shows th<strong>at</strong> the observed proportion ˜p = n/N of bullish<br />

agents is asymptotically normal with mean p and standard<br />

<strong>de</strong>vi<strong>at</strong>ion 1/ √ p(1 − p)N :Pr( ˜p) ∝ N (p, 1/ √ p(1 − p)N).<br />

Iter<strong>at</strong>ing the sampling among N agents <strong>at</strong> each time step gives<br />

a noisy dynamics ˜pt shadowing the true d<strong>et</strong>erministic one.<br />

Figure 16 compares the dynamics of the d<strong>et</strong>erministic pt<br />

corresponding to N →∞(panel (a)) with ˜pt for a number<br />

N = m +1 = 61 of sampled agents among the infinite<br />

ensemble of them (panel (b)). Panel (c) is the ‘noise’ time<br />

series <strong>de</strong>fined as ˜pt − pt, i.e. by subtracting the time series<br />

of panel (a) from the time series of panel (b). The noise time<br />

series of panel (c) thus represents the st<strong>at</strong>istical fluctu<strong>at</strong>ions<br />

due to the finite sampling of agents’ opinions. Figure 16(b)<br />

shows the characteristic vol<strong>at</strong>ility clusters which is one of the<br />

most important stylized properties of empirical time series.<br />

276<br />

Correl<strong>at</strong>ion<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

–0.1<br />

173<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Time lag<br />

Figure 17. Correl<strong>at</strong>ion function for m = 60 polled agents with<br />

N =∞(thin curve), N = 600 (dashed curve) and N = 61<br />

(continuous curve) agents and param<strong>et</strong>ers ρhb = ρbh = 0.72 and<br />

ρhh = ρbb = 0.85.<br />

For large N, we can write<br />

˜pt = pt +<br />

1<br />

√ pt(1 − pt)N Wt<br />

(26)<br />

where {Wt} are in<strong>de</strong>pen<strong>de</strong>nt and i<strong>de</strong>ntically distributed<br />

Gaussian variables with zero mean and unit variance.<br />

Therefore, the correl<strong>at</strong>ion function corrN(τ) <strong>at</strong> lag τ = 0is<br />

obtained from th<strong>at</strong> for N →∞by multiplic<strong>at</strong>ion by a constant<br />

factor:<br />

Nvar(p)<br />

corrN(τ) =<br />

E[1/{p(1 − p)}]+Nvar(p)<br />

× corr∞(τ) and τ = 0, (27)<br />

corr∞(τ) for large N, (28)<br />

where E[x] <strong>de</strong>notes the expect<strong>at</strong>ion of x with respect to the<br />

continuous invariant measure of the dynamical system (2).<br />

Note th<strong>at</strong> E[1/{p(1 − p)}] always exists for m


174 6. Comportements mimétiques <strong>et</strong> antagonistes : bulles hyperboliques, krachs <strong>et</strong> chaos<br />

Q UANTITATIVE F INANCE Imit<strong>at</strong>ion and contrarian behaviour: hyperbolic bubbles, crashes and chaos<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

p¢ 0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

p<br />

Figure 18. R<strong>et</strong>urn map of the fraction of bullish agents for m = 60<br />

polled agents among N = 61 agents (points) and the d<strong>et</strong>erministic<br />

trajectory (continuous curve) corresponding to N =∞agents. The<br />

param<strong>et</strong>ers are ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85.<br />

agents in the mark<strong>et</strong> (this is realistic) and they are in contact<br />

with only m other agents th<strong>at</strong> they poll <strong>at</strong> each time period. Not<br />

knowing the true value of N but assuming it to be large, it is<br />

r<strong>at</strong>ional for them to <strong>de</strong>velop the best predictor of the dynamics<br />

by assuming the i<strong>de</strong>al case of an infinite number of agents with<br />

m polled agents and thus use the d<strong>et</strong>erministic dynamics (2) as<br />

their best predictor.<br />

At each time period t, each agent thus chooses randomly<br />

m agents th<strong>at</strong> she polls. She then counts the number of bullish<br />

and bearish agents among her polled sample of m agents.<br />

This number divi<strong>de</strong>d by m gives her an estim<strong>at</strong>ion ˆpt of<br />

the probability pt being bullish <strong>at</strong> time t. Introducing this<br />

estim<strong>at</strong>ion in the d<strong>et</strong>erministic equ<strong>at</strong>ion (2), the agent obtains<br />

a forecast ˆp ′ of the true probability p ′ being bullish <strong>at</strong> the next<br />

time step.<br />

Results of the simul<strong>at</strong>ions of this mo<strong>de</strong>l are shown in figure<br />

21. We observe a significantly stronger ‘noise’ compared<br />

to the previous section, which is expected since the noise is<br />

itself injected in the dynamical equ<strong>at</strong>ion <strong>at</strong> each time step. As<br />

a consequence, the correl<strong>at</strong>ion function of the r<strong>et</strong>urns and of<br />

the vol<strong>at</strong>ility <strong>de</strong>cay faster than their d<strong>et</strong>erministic counterpart.<br />

The correl<strong>at</strong>ion of the vol<strong>at</strong>ility still <strong>de</strong>cays about ten times<br />

slower than the correl<strong>at</strong>ion of the r<strong>et</strong>urns, but this clustering of<br />

vol<strong>at</strong>ility is not sufficiently strong compared to empirical facts.<br />

As in the <strong>de</strong>finition of the mo<strong>de</strong>l presented in section 2,<br />

we use here again a ‘mean-field’ approxim<strong>at</strong>ion, valid only if<br />

each agent selects randomly her m agents to w<strong>at</strong>ch, with a new<br />

selection compl<strong>et</strong>ely in<strong>de</strong>pen<strong>de</strong>nt of the previous one ma<strong>de</strong> <strong>at</strong><br />

every new time step. This unrealistic but simplifying fe<strong>at</strong>ure<br />

is the one we have followed in our simul<strong>at</strong>ions. If each agent<br />

has some neighbouring agents which she will w<strong>at</strong>ch again<br />

and again, then correl<strong>at</strong>ions will build up which are ignored<br />

compl<strong>et</strong>ely here; some correl<strong>at</strong>ions of this type are presumably<br />

more realistic. This is left for future works.<br />

Other more realistic mo<strong>de</strong>ls of a finite number of agents<br />

can be introduced. For instance, <strong>at</strong> time t, consi<strong>de</strong>r an agent<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

p¢<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

p<br />

0.6 0.7 0.8 0.9 1.0<br />

Figure 19. R<strong>et</strong>urn map of the fraction of bullish agents for m = 60<br />

polled agents among N = 600 agents (points) and the d<strong>et</strong>erministic<br />

trajectory (continuous curve) corresponding to N =∞agents. The<br />

param<strong>et</strong>ers are ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85.<br />

among the N. She chooses m other agents randomly and<br />

polls them. Each of them is either bullish or bearish as a<br />

result of <strong>de</strong>cisions taken during the previous time period. She<br />

then counts the number of bullish agents among the m, and<br />

then d<strong>et</strong>ermines her new <strong>at</strong>titu<strong>de</strong> using the rules (1). If she is<br />

polled <strong>at</strong> time t + 1 by another agent, her <strong>at</strong>titu<strong>de</strong> will be the<br />

one d<strong>et</strong>ermined from t to t + 1. In this way, we never refer<br />

to the d<strong>et</strong>erministic dynamics pt but only to its un<strong>de</strong>rlying<br />

rules. As a consequence, this d<strong>et</strong>erministic dynamics does<br />

not exert an <strong>at</strong>traction th<strong>at</strong> minimizes the effect of st<strong>at</strong>istical<br />

fluctu<strong>at</strong>ions due to finite sizes. This approach is similar to<br />

going from a Fokker–Planck equ<strong>at</strong>ion (equ<strong>at</strong>ion (2)) to a<br />

Langevin equ<strong>at</strong>ion with finite-size effects. This class of mo<strong>de</strong>ls<br />

will be investig<strong>at</strong>ed elsewhere.<br />

8. Conclusions<br />

The traditional concept of stock mark<strong>et</strong> dynamics envisions a<br />

stream of stochastic ‘news’ th<strong>at</strong> may move prices in random<br />

directions. This paper, in contrast, <strong>de</strong>monstr<strong>at</strong>es th<strong>at</strong> certain<br />

types of d<strong>et</strong>erministic behaviour—mimicry and contradictory<br />

behaviour alone—can already lead to chaotic prices.<br />

If the mark<strong>et</strong> prices are assumed to follow the pt<br />

behaviour, our <strong>de</strong>scription refers to the well-known evolution<br />

of the specul<strong>at</strong>ive bubbles. Such apparent regularities often<br />

occur in the stock mark<strong>et</strong> and form the basis of the so-called<br />

‘technical analysis’ whereby tra<strong>de</strong>rs <strong>at</strong>tempt to predict future<br />

price movements by extrapol<strong>at</strong>ing certain p<strong>at</strong>terns from recent<br />

historical prices. Our mo<strong>de</strong>l provi<strong>de</strong>s an explan<strong>at</strong>ion of birth,<br />

life and <strong>de</strong><strong>at</strong>h of the specul<strong>at</strong>ive bubbles in this context.<br />

While the traditional theory of r<strong>at</strong>ional anticip<strong>at</strong>ions<br />

exhibits and emphasizes self-reinforcing mechanisms, without<br />

either predicting their inception nor their collapse, the strength<br />

of our mo<strong>de</strong>l is to justify the occurrence of specul<strong>at</strong>ive<br />

bubbles. It allows for their collapse by taking into account<br />

277


A Corcos <strong>et</strong> al Q UANTITATIVE F INANCE<br />

p t<br />

p t<br />

p t<br />

0.5<br />

0.0<br />

–0.5<br />

0 1 2 3 4 5 6 7 8 9 10<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

t<br />

0 1 2 3 4 5<br />

t<br />

6 7 8 9 10<br />

10 1<br />

10 0<br />

10 –1<br />

0 1 2 3 4 5<br />

t<br />

6 7 8 9 10<br />

Figure 20. Upper panel: r<strong>et</strong>urn trajectory ˜rt = γ ˜pt − 1/2 for<br />

m = 100, N = 100, ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85 and<br />

γ = 0.01. Middle panel: price trajectory obtained by<br />

πt = πt−1 exp[˜rt]. Lower panel: same as the middle panel with πt<br />

shown on a logarithmic scale. Note the ‘fl<strong>at</strong> trough–sharp peak’<br />

structure of the log-price trajectory (Roehner and Sorn<strong>et</strong>te 1998).<br />

the combin<strong>at</strong>ion of mim<strong>et</strong>ic and antagonistic behaviour in the<br />

form<strong>at</strong>ion of expect<strong>at</strong>ions about prices.<br />

The specific fe<strong>at</strong>ure of the mo<strong>de</strong>l is to combine these two<br />

Keynesian aspects of specul<strong>at</strong>ion and enterprise and to <strong>de</strong>rive<br />

from them behavioural rules based on collective opinion: the<br />

agents can adopt an imit<strong>at</strong>ive and gregarious behaviour or,<br />

on the contrary, anticip<strong>at</strong>e a reversal of ten<strong>de</strong>ncy, thereby<br />

d<strong>et</strong>aching themselves from the current trend. It is this duality,<br />

the continuous coexistence of these two elements, which is <strong>at</strong><br />

the origin of the properties of our mo<strong>de</strong>l: chaotic behaviour<br />

and the gener<strong>at</strong>ion of bubbles.<br />

It is a common wisdom th<strong>at</strong> d<strong>et</strong>erministic chaos leads to<br />

fundamental limits of predictability because the tiny inevitable<br />

fluctu<strong>at</strong>ions in those chaotic systems quickly snowball in<br />

unpredictable ways. This has been investig<strong>at</strong>ed in rel<strong>at</strong>ion<br />

to, for instance, long-term we<strong>at</strong>her p<strong>at</strong>terns. However, in<br />

the context of our mo<strong>de</strong>ls, we have shown th<strong>at</strong> the chaotic<br />

dynamics of the r<strong>et</strong>urns alone cannot be the limiting factor<br />

for predictability, as it contains too many residual correl<strong>at</strong>ions.<br />

Endogenous fluctu<strong>at</strong>ions due to finite-size effects and external<br />

news (noise) seem to be nee<strong>de</strong>d as important factors leading to<br />

the observed randomness of stock mark<strong>et</strong> prices. The rel<strong>at</strong>ion<br />

b<strong>et</strong>ween these extrinsic factors and the intrinsic ones studied<br />

in this paper will be explored elsewhere.<br />

Remarks and acknowledgements<br />

This paper is an outgrowth and extension of unpublished work<br />

(1994) by three of us (AC, JPE, AM) which was in turn based<br />

on the PhD of Anne Corcos in 1993. We are gr<strong>at</strong>eful to<br />

J V An<strong>de</strong>rsen for useful discussions. This work was partially<br />

supported by the Fonds N<strong>at</strong>ional Suisse (JPE and AM) and<br />

278<br />

Figure 21. Evolution of the system over 10 000 time steps for<br />

m = 60 polled agents with (upper panel) N =∞, (second panel)<br />

N = m +1= 61 and param<strong>et</strong>ers ρhb = ρbh = 0.72 and<br />

ρhh = ρbb = 0.85. The lower panel represents the ‘noise’<br />

introduced by the finite size of the system and is obtained by<br />

subtracting the upper panel from the second panel.<br />

175<br />

by the James S Mc Donnell Found<strong>at</strong>ion 21st century scientist<br />

award/studying complex system (DS).<br />

Appendix<br />

We expand Fm(p) around the fixed point p = 1/2, so th<strong>at</strong>,<br />

using the symm<strong>et</strong>ry of Fm(p)<br />

Fm(p) = 1<br />

2 +F ′ m<br />

1<br />

(1/2)(p− 2<br />

(3)<br />

1<br />

)+F m (1/2)(p− 2 )3 +···. (29)<br />

First of all, it is obvious to show by recursion th<strong>at</strong><br />

F ′ m (1/2) = 1 − 2gm(1/2) − g ′ m (1/2)<br />

F<br />

(30)<br />

(2k+1)<br />

m (1/2) =−2(2k +1)g (2k)<br />

m (1/2)<br />

− g (2k+1)<br />

m (1/2) if k>0. (31)<br />

The problem thus amounts to calcul<strong>at</strong>ing the <strong>de</strong>riv<strong>at</strong>ives of gm.<br />

Some simple algebraic manipul<strong>at</strong>ions allow us to obtain<br />

g ′ m−1 <br />

<br />

m − 1<br />

m (p) = m<br />

p<br />

j<br />

j=0<br />

m1−j (1 − p) j<br />

<br />

j j +1<br />

× f − f<br />

m m<br />

m−1 <br />

<br />

m − 1<br />

=−m<br />

p<br />

j<br />

j=0<br />

(32)<br />

m1−j (1 − p) j 1fm(j), (33)<br />

where 1fm(·) is the first-or<strong>de</strong>r discr<strong>et</strong>e <strong>de</strong>riv<strong>at</strong>ive of f( ·<br />

m ),<br />

which yields<br />

<br />

1<br />

=−<br />

2<br />

m<br />

2m−1 m−1 <br />

<br />

m − 1<br />

1fm(j). (34)<br />

j<br />

g ′ m<br />

j=0


176 6. Comportements mimétiques <strong>et</strong> antagonistes : bulles hyperboliques, krachs <strong>et</strong> chaos<br />

Q UANTITATIVE F INANCE Imit<strong>at</strong>ion and contrarian behaviour: hyperbolic bubbles, crashes and chaos<br />

By recursion, it is easy to prove th<strong>at</strong><br />

g (k)<br />

m<br />

<br />

1<br />

2<br />

<br />

= (−1)k m!<br />

2m−k m−k <br />

<br />

m − k<br />

kfm(j) (35)<br />

k! j<br />

j=0<br />

and kfm(·) is the k th or<strong>de</strong>r discr<strong>et</strong>e <strong>de</strong>riv<strong>at</strong>ive of f( ·<br />

m ):<br />

Finally,<br />

kfm(j) =<br />

k<br />

i=0<br />

<br />

k<br />

(−1)<br />

i<br />

i f<br />

j + i<br />

m<br />

<br />

. (36)<br />

F (2k+1)<br />

m!<br />

m (1/2) =<br />

2m−2k−1 (2k)!<br />

m−2k−1<br />

1 <br />

<br />

m − 2k − 1<br />

×<br />

2k+1fm(j).<br />

2k +1<br />

j<br />

j=0<br />

m−2k <br />

<br />

m − 2k<br />

− (2k +1)<br />

2kfm(j) . (37)<br />

j<br />

References<br />

j=0<br />

Arneodo A, Muzy J F and Sorn<strong>et</strong>te D 1998 ‘Direct’ causal casca<strong>de</strong><br />

in the stock mark<strong>et</strong> Eur. Phys. J. B 2 277–82<br />

Arthur W B 1987 Self-reinforcing mechanisms in economics Center<br />

Econ. Policy Res. 111 1–20<br />

Azariadis C 1981 Self fulfilling prophecies J. Econ. Theory 25<br />

380–96<br />

Azariadis C and Guesnerie R 1982 Prophéties autoréalis<strong>at</strong>rices <strong>et</strong><br />

persistance <strong>de</strong>s <strong>théorie</strong>s, Rev. Économique 33 878–906<br />

Ballocchi G, Dacorogna M M and Gencay R 1999 Intraday<br />

st<strong>at</strong>istical properties of eurofutures by barbara piccin<strong>at</strong>o<br />

Deriv<strong>at</strong>ives Q. 6 28–44<br />

Benhabib J and Day R H 1981 R<strong>at</strong>ional choice and err<strong>at</strong>ic behaviour<br />

Rev. Econ. Studies July 153<br />

Bikhchandani S, Hirshleifer D and Welch I 1992 A theory of fads,<br />

fashion, custom and cultural changes as inform<strong>at</strong>ional casca<strong>de</strong>s<br />

J. Political Economy 100 992–1026<br />

Blanchard O and W<strong>at</strong>son M W 1982 Bubbles, r<strong>at</strong>ional expect<strong>at</strong>ions<br />

and financial mark<strong>et</strong>s ed P Wachtel Crises in the Economic and<br />

Financial Structure (Lexington Books) pp 295–315<br />

Bollerslev T 1987 A conditional h<strong>et</strong>eroskedastic time series mo<strong>de</strong>l<br />

for specul<strong>at</strong>ive prices and r<strong>at</strong>es of r<strong>et</strong>urn Rev. Econ. St<strong>at</strong>istics<br />

69 542–7<br />

Bollerslev T, Chou R Y, Jayaraman N and Kroner K F 1991 Les<br />

modèles ARCH en finance: un point sur la <strong>théorie</strong> <strong>et</strong> les<br />

résult<strong>at</strong>s empiriques Ann. d’Economie St<strong>at</strong>istiques 24 1–59<br />

Bouchaud J-P and Cont R 1998 A Langevin approach to stock<br />

mark<strong>et</strong> fluctu<strong>at</strong>ions and crashes Eur. Phys. J. B 6 543–50<br />

Brock W A 1988 Nonlinearity and complex dynamics in economics<br />

and finance The Economy as an Evolving Complex System ed<br />

P W An<strong>de</strong>rson, K J Arrow and D Pines (Reading, MA:<br />

Addison-Wesley)<br />

Brock W A and Dechert W D 1988 Theorems on distinguishing<br />

d<strong>et</strong>erministic from random systems Dynamic Econom<strong>et</strong>ric<br />

Mo<strong>de</strong>ling ed W A Barn<strong>et</strong>t, E R Berndt and H White<br />

(Cambridge: Cambridge University Press) ch 12 pp 247–65<br />

Brock W A, Dechert W D and Scheinkman J 1987 A test for<br />

in<strong>de</strong>pen<strong>de</strong>nce based on the correl<strong>at</strong>ion dimension Working<br />

paper University of Wisconsin <strong>at</strong> Madison, University of<br />

Houston and University of Chicago<br />

Brock W A, Hsieh D and LeBaron B 1991 Nonlinear Dynamics,<br />

Chaos and Instability: St<strong>at</strong>istical Theory and Economic<br />

Evi<strong>de</strong>nce (Cambridge: MAD Press)<br />

Campbell J Y, Lo A W and MacKinlay A C 1997 The Econom<strong>et</strong>rics<br />

of Financial Mark<strong>et</strong>s (Princ<strong>et</strong>on, NJ: Princ<strong>et</strong>on University<br />

Press)<br />

Chall<strong>et</strong> D, Marsili M and Zecchina R 2000 St<strong>at</strong>istical mechanics of<br />

systems with h<strong>et</strong>erogeneous agents: minority games Phys. Rev.<br />

L<strong>et</strong>t. 84 1824–7<br />

Chall<strong>et</strong> D, Marsili M and Zhang Y C 2000 Mo<strong>de</strong>ling mark<strong>et</strong><br />

mechanism with minority game Physica A 276 284–315<br />

Chall<strong>et</strong> D and Zhang Y C 1997 Emergence of cooper<strong>at</strong>ion and<br />

organiz<strong>at</strong>ion in an evolutionary game Physica A 246 407–18<br />

Coll<strong>et</strong> P and Eckmann J-P 1980 Iter<strong>at</strong>ed Maps on the Interval as<br />

Dynamical Systems (Boston, MA: Birkhäuser)<br />

Cont R and Bouchaud J-P 2000 Herd behaviour and aggreg<strong>at</strong>e<br />

fluctu<strong>at</strong>ions in financial mark<strong>et</strong>s Macroeconomic Dynamics 4<br />

170–96<br />

Corcos A 1993 Bruit <strong>et</strong> chaos sur les marchés financiers Thèse <strong>de</strong><br />

Doctor<strong>at</strong> Université Panthéon-Assas, Paris<br />

Dacorogna M M, Müller U A, Olsen R B and Pict<strong>et</strong> O V 1998<br />

Mo<strong>de</strong>lling short-term vol<strong>at</strong>ility with garch and harch mo<strong>de</strong>ls<br />

Nonlinear Mo<strong>de</strong>lling of High Frequency Financial Time Series<br />

ed C Dunis and B Zhou (New York: Wiley)<br />

Day R H 1982 Irregular growth cycles Am. Econ. Rev. 72 406–14<br />

Day R H 1983 The emergence of chaos from classical economic<br />

growth Q. J. Economics 48 201–13<br />

De Bondt WFMandThaler R H 1995 Financial <strong>de</strong>cision-making<br />

in mark<strong>et</strong>s and firms: a behavioural perspective Finance<br />

Handbooks in Oper<strong>at</strong>ions Research and Management Science<br />

vol 9 ed R A Jarrow, V Maksimovic, W T Ziemba (Amsterdam:<br />

Elsevier) pp 385–410<br />

De Grauwe P, Dewachter H and Embrechts M 1993 Foreign<br />

Exchange Mo<strong>de</strong>ls (Oxford: Blackwell)<br />

De Grauwe P and Vansanten K 1990 D<strong>et</strong>erministic chaos in the<br />

foreign exchange mark<strong>et</strong> Working Paper, CEPR K<strong>at</strong>holieke<br />

Universiteit Leuven, Belgium<br />

Ding Z and Granger CWJ1996 Mo<strong>de</strong>ling vol<strong>at</strong>ility persistence of<br />

specul<strong>at</strong>ive r<strong>et</strong>urns: a new approach J. Econom<strong>et</strong>rics 73<br />

185–215<br />

Ding Z, Granger CWJandEngle R 1993 A long memory property<br />

of stock r<strong>et</strong>urns and a new mo<strong>de</strong>l J. Empirical Finance 1<br />

83–106<br />

Eckmann J-P 1981 Roads to turbulence in dissip<strong>at</strong>ive dynamical<br />

systems Rev. Mod. Phys. 53 643–54 (P Cvitanović (ed) 1984<br />

Universality in Chaos (Bristol: Adam Hilger) (reprint))<br />

Eckmann J-P, Oliffson Kamphorst S, Ruelle D and Scheinkman J<br />

1988 Lyapunov exponents for stock r<strong>et</strong>urns The Economy as an<br />

Evolving Complex System ed P W An<strong>de</strong>rson, K J Arrow and<br />

D Pines (Reading, MA: Addison-Wesley)<br />

Eckmann J-P and Ruelle D 1985 Ergodic theory of chaos and<br />

strange <strong>at</strong>tractors Rev. Mod. Phys. 57 617–56<br />

Eckmann J-P and Ruelle D 1992 Fundamental limit<strong>at</strong>ions for<br />

estim<strong>at</strong>ing dimensions and lyapunov exponents in dynamical<br />

systems Physica D 56 185–7<br />

Egenter E, Lux T and Stauffer D 1999 Finite-size effects in Monte<br />

Carlo simul<strong>at</strong>ions of two stock mark<strong>et</strong> mo<strong>de</strong>ls Physica A 268<br />

250–6<br />

Engle R F 1982 Autoregressive conditional h<strong>et</strong>eroskedasticity with<br />

estim<strong>at</strong>es of the variance of UK infl<strong>at</strong>ion Econom<strong>et</strong>rica 50<br />

987–1008<br />

Fama E 1965 The behaviour of stock mark<strong>et</strong> prices J. Business 38<br />

34–105<br />

Farmer J D 1998 Mark<strong>et</strong> force, ecology and evolution Preprint<br />

adap-org/9812005<br />

Farmer J D and Joshi S 2002 The price dynamics of common<br />

str<strong>at</strong>egies J. Econ. Behav. Organ. (preprint) <strong>at</strong> press<br />

Feller W 1966 An Introduction to Probability Theory and its<br />

Applic<strong>at</strong>ions vol 2 (New York: Wiley)<br />

Flavin M A 1983 Excess vol<strong>at</strong>ility in the financial mark<strong>et</strong>s: a<br />

reassessment of the empirical evi<strong>de</strong>nce J. Political Economy 91<br />

929–56<br />

279


A Corcos <strong>et</strong> al Q UANTITATIVE F INANCE<br />

Galam S 1997 R<strong>at</strong>ional group <strong>de</strong>cision making: a random field Ising<br />

mo<strong>de</strong>l <strong>at</strong> T = 0 Physica A 238 66–80<br />

Galam S and Moscovici S 1991 Towards a theory of collective<br />

phenomena: consensus and <strong>at</strong>titu<strong>de</strong> changes in groups Eur. J.<br />

Social Psy. 21 49–74<br />

Goldberg J and von Nitzsch R 2001 (transl<strong>at</strong>ed Morris A)<br />

Behavioural Finance (Chichester: Wiley)<br />

Graham B and Dodd D L 1934 Security Analysis 1st edn (New<br />

York: McGraw-Hill)<br />

Grandmont J-P 1985 On endogenous comp<strong>et</strong>itive business cycles<br />

Econom<strong>et</strong>rica 53 995–1045<br />

Grandmont J-P 1987 Nonlinear Economic Dynamics (New York:<br />

Aca<strong>de</strong>mic)<br />

Grandmont J-P and Malgrange P 1986 Nonlinear economic<br />

dynamics: introduction J. Econ. Theory 40 3–11<br />

Grossman S J 1977 The existence of future mark<strong>et</strong>s, noisy r<strong>at</strong>ional<br />

expect<strong>at</strong>ions and inform<strong>at</strong>ional externalities Rev. Econ. Studies<br />

44 431–49<br />

Grossman S J 1981 An introduction to the theory of r<strong>at</strong>ional<br />

expect<strong>at</strong>ions un<strong>de</strong>r asymm<strong>et</strong>ric inform<strong>at</strong>ion Rev. Econ. Studies<br />

48 541–59<br />

Grossman S J and Shiller R J 1981 The d<strong>et</strong>erminants of the<br />

variability of stock mark<strong>et</strong> prices Am. Econ. Rev. 71 222–7<br />

Grossman S J and Stiglitz J 1980 The impossibility of<br />

inform<strong>at</strong>ionally efficient mark<strong>et</strong>s Am. Econ. Rev. 70 393–408<br />

Hellthaler T 1995 The influence of investor number on a<br />

microscopic mark<strong>et</strong> mo<strong>de</strong>l J. Mod. Phys. C 6 845–52<br />

Hsieh D 1989 Testing for nonlinearity in daily foreign exchange r<strong>at</strong>e<br />

changes J. Business 62 339–68<br />

Hsieh D 1991 Chaos and nonlinear dynamics: applic<strong>at</strong>ion to<br />

financial mark<strong>et</strong>s J. Finance 46 1839–77<br />

Hsieh D 1992 Implic<strong>at</strong>ions of nonlinear dynamics for financial risk<br />

management Workshop on Nonlinear Dynamics in Economics,<br />

July European University Institute<br />

Hsieh D and LeBaron B 1988 Finite sample properties of the BDS<br />

st<strong>at</strong>istics Working Paper University of Chicago and University<br />

of Wisconsin<br />

Huang Z-F and Solomon S 2001 Finite mark<strong>et</strong> size as a source of<br />

extreme wealth inequality and mark<strong>et</strong> instability Physica A 294<br />

503–13<br />

I<strong>de</strong> K and Sorn<strong>et</strong>te D 2001 Oscill<strong>at</strong>ory finite-time singularities in<br />

finance, popul<strong>at</strong>ion and rupture Preprint<br />

http://arXiv.org/abs/cond-m<strong>at</strong>/0106047<br />

Jefferies P, Hart M L, Hui P M and Johnson N F 2001 From mark<strong>et</strong><br />

games to real-world mark<strong>et</strong>s, Eur. Phys. J. B 20 493–501<br />

Jevons S 1871 Theory of Political Economy (Pelican Classics)<br />

Johansen A, Ledoit O and Sorn<strong>et</strong>te D 2000 Crashes as critical points<br />

Int. J. Theor. Appl. Finance 3 219–55<br />

Johansen A and Sorn<strong>et</strong>te D 1999 Critical crashes Risk 12 91–4<br />

Johansen A and Sorn<strong>et</strong>te D 2000 The Nasdaq crash of April 2000:<br />

y<strong>et</strong> another example of log-periodicity in a specul<strong>at</strong>ive bubble<br />

ending in a crash Eur. Phys. J. B 17 319–28<br />

Johansen A and Sorn<strong>et</strong>te D 2001 Large stock mark<strong>et</strong> price<br />

drawdowns are outliers J. Risk (Preprint<br />

http://arXiv.org/abs/cond-m<strong>at</strong>/0010050) <strong>at</strong> press<br />

Johansen A, Sorn<strong>et</strong>te D and Ledoit O 1999 Predicting financial<br />

crashes using discr<strong>et</strong>e scale invariance J. Risk 1 5–32<br />

Keynes J M 1936 The General Theory of Employment, Interest and<br />

Money (London: McMillan)<br />

Kim G W and Markowitz H M 1989 J. Portfolio Management 16 45<br />

Kreps D 1977 Fulfilled expect<strong>at</strong>ions equilibria J. Econ. Theory 14<br />

32–43<br />

Laherrère J and Sorn<strong>et</strong>te D 1998 Str<strong>et</strong>ched exponential distributions<br />

in n<strong>at</strong>ure and economy: ‘f<strong>at</strong> tails’ with characteristic scales<br />

Eur. Phys. J. B 2 525–39<br />

LeBaron B 1988 The changing structure of stock r<strong>et</strong>urns Working<br />

Paper University of Wisconsin<br />

Levy M, Levy H and Solomon S 1995 Microscopic simul<strong>at</strong>ion of<br />

the stock mark<strong>et</strong>—the effect of microscopic diversity J.<br />

280<br />

177<br />

Physique I 5 1087–107<br />

Levy M, Levy H and Solomon S 2000 The Microscopic Simul<strong>at</strong>ion<br />

of Financial Mark<strong>et</strong>s: from Investor Behaviour to Mark<strong>et</strong><br />

Phenomena (San Diego, CA: Aca<strong>de</strong>mic)<br />

Lo A W and MacKinlay A C 1999 A Non-Random Walk down Wall<br />

Stre<strong>et</strong> (Princ<strong>et</strong>on, NJ: Princ<strong>et</strong>on University Press)<br />

Lorenz E 1963 D<strong>et</strong>erministic nonperiodic flow J. Atmos. Sci. 20<br />

130–41<br />

Lux L 1996 The stable Par<strong>et</strong>ian hypothesis and the frequency of<br />

large r<strong>et</strong>urns: an examin<strong>at</strong>ion of major German stocks Appl.<br />

Financial Economics 6 463–75<br />

Lux T and Marchesi M 1999 Scaling and criticality in a stochastic<br />

multi-agent mo<strong>de</strong>l of a financial mark<strong>et</strong> N<strong>at</strong>ure 297 498–500<br />

Manneville P 1991 Structures Dissip<strong>at</strong>ives, Chaos <strong>et</strong> Turbulence<br />

(Saclay: CEA)<br />

Maug E and Naik N 1995 Herding and <strong>de</strong>leg<strong>at</strong>ed portfolio<br />

management: the impact of rel<strong>at</strong>ive performance evalu<strong>at</strong>ion on<br />

ass<strong>et</strong> alloc<strong>at</strong>ion Working Paper Duke University<br />

May R 1976 Simple m<strong>at</strong>hem<strong>at</strong>ical mo<strong>de</strong>ls with very complic<strong>at</strong>ed<br />

dynamics N<strong>at</strong>ure 261 459–67<br />

Müller U A, Dacorogna M M, Davé R, Olsen R B, Pict<strong>et</strong> OVand<br />

von Weizsäcker J E 1997 Vol<strong>at</strong>ilities of different time<br />

resolutions-analyzing the dynamics of mark<strong>et</strong> components J.<br />

Empirical Finance 4 213–40<br />

Muth J 1961 R<strong>at</strong>ional expect<strong>at</strong>ions and the theory of price<br />

movements Econom<strong>et</strong>rica 29 315–25<br />

Muzy J-F, Sorn<strong>et</strong>te D, Delour J and Arneodo A 2001 Multifractal<br />

r<strong>et</strong>urns and hierarchical portfolio theory Quantit<strong>at</strong>ive Finance<br />

1 131–s48<br />

Orléan A 1986 Mimétisme <strong>et</strong> anticip<strong>at</strong>ions r<strong>at</strong>ionnelles: perspectives<br />

keynésiennes Recherches Economiques <strong>de</strong> Louvain 52 45–66<br />

Orléan A 1989 Comportements mimétiques <strong>et</strong> diversité <strong>de</strong>s opinions<br />

sur les marchés financiers Théorie Economique <strong>et</strong> Crise <strong>de</strong>s<br />

Marchés Financiers ed H Bourguin<strong>at</strong> and P Artus (Paris:<br />

Economica) pp 45–65<br />

Orléan A 1990 Le rôle <strong>de</strong>s influences interpersonnelles dans la<br />

détermin<strong>at</strong>ion <strong>de</strong>s cours boursiers Rev. Economique 41 839–68<br />

Orléan A 1992 Contagion <strong>de</strong>s opinions <strong>et</strong> fonctionnement <strong>de</strong>s<br />

marchés financiers Rev. Economique 43 685–97<br />

Pagan A 1996 The econom<strong>et</strong>rics of financial mark<strong>et</strong>s J. Empirical<br />

Finance 3 15–102<br />

Pan<strong>de</strong>y R B and Stauffer D 2000 Search for log-periodicity<br />

oscill<strong>at</strong>ions in stock mark<strong>et</strong> simul<strong>at</strong>ions Int. Theor. Appl.<br />

Finance 3 479–82<br />

Plerou V, Gopikrishnan P, AmaralLAN,MeyerMandStanley H E<br />

1999 Scaling of distribution of price fluctu<strong>at</strong>ions of individual<br />

companies Phys. Rev. E 60 6519–29<br />

Plerou V, Gopikrishnan P, Gabaix X and Stanley H E 2001<br />

Quantifying stock price response to <strong>de</strong>mand fluctu<strong>at</strong>ions<br />

Preprint cond-m<strong>at</strong>/0106657<br />

Radner R 1972 Existence of equilibrium of plans, prices and price<br />

expect<strong>at</strong>ions in a sequence of mark<strong>et</strong>s Econom<strong>et</strong>rica 40<br />

289–304<br />

Radner R 1979 R<strong>at</strong>ional expect<strong>at</strong>ions equilibrium: generic existence<br />

and the inform<strong>at</strong>ion revealed by price Econom<strong>et</strong>rica 47 255–78<br />

Riley J 2001 Silver signals: twenty-five years of screening and<br />

signaling J. Econ. Liter<strong>at</strong>ure 39 432–78<br />

Roehner B M and Sorn<strong>et</strong>te D 1998 The sharp peak-fl<strong>at</strong> trough<br />

p<strong>at</strong>tern and critical specul<strong>at</strong>ion Eur. Phys. J. B 4 387–99<br />

Scharfstein D and Stein J 1990 Herd behaviour and investment Am.<br />

Econ. Rev. 80 465–79<br />

Scheinkman J A and LeBaron B 1989a Nonlinear dynamics and<br />

GNP d<strong>at</strong>a Economic Complexity: Chaos, Sunspots, Bubbles<br />

and Nonlinearity ed W A Barn<strong>et</strong>t, Geweke J and Shell K<br />

(Cambridge: Cambridge University Press)<br />

Scheinkman J A and LeBaron B 1989b Nonlinear dynamics and<br />

stock r<strong>et</strong>urns J. Business 62<br />

Shefrin H 2000 Beyond Greed and Fear: Un<strong>de</strong>rstanding<br />

Behavioural Finance and the Psychology of Investing (Boston,


178 6. Comportements mimétiques <strong>et</strong> antagonistes : bulles hyperboliques, krachs <strong>et</strong> chaos<br />

Q UANTITATIVE F INANCE Imit<strong>at</strong>ion and contrarian behaviour: hyperbolic bubbles, crashes and chaos<br />

MA: Harvard Business School Press)<br />

Shiller R 1981 Do stock prices move too much to be justified by<br />

subsequent changes in divi<strong>de</strong>nds? Am. Econ. Rev. 71 421–36<br />

Shiller R 1984 Stock prices and social dynamics Brookings Papers<br />

on Economic Activity pp 457–98<br />

Shiller R J 2000 Irr<strong>at</strong>ional Exuberance (Princ<strong>et</strong>on, NJ: Princ<strong>et</strong>on<br />

University Press)<br />

Shleifer A 2000 Inefficient Mark<strong>et</strong>s: An Introduction to Behavioural<br />

Finance (New York: Oxford University Press)<br />

Sorn<strong>et</strong>te D 2001 Critical Mark<strong>et</strong> Crashes (Princ<strong>et</strong>on, NJ: Princ<strong>et</strong>on<br />

University Press) <strong>at</strong> press<br />

Sorn<strong>et</strong>te D and An<strong>de</strong>rsen J V 2001 A nonlinear super-exponential<br />

r<strong>at</strong>ional mo<strong>de</strong>l of specul<strong>at</strong>ive financial bubbles Preprint<br />

webpage http://arXiv.org/abs/cond-m<strong>at</strong>/0104341<br />

Sorn<strong>et</strong>te D and I<strong>de</strong> K 2001 Theory of self-similar oscill<strong>at</strong>ory<br />

finite-time singularities in finance, popul<strong>at</strong>ion and rupture<br />

Preprint webpage http://arXiv.org/abs/cond-m<strong>at</strong>/0106054<br />

Sorn<strong>et</strong>te D and Johansen A 2001 Significance of log-periodic<br />

precursors to financial crashes Quantit<strong>at</strong>ive Finance 1 452–71<br />

Sorn<strong>et</strong>te D, Johansen A and Bouchaud J-P 1996 Stock mark<strong>et</strong><br />

crashes precursors and replicas J. Physique I 6 167–75<br />

Stauffer D 1999 Finite-size effects in lux-marchesi and other<br />

microscopic mark<strong>et</strong> mo<strong>de</strong>ls Genoa Economics Me<strong>et</strong>ing, June<br />

(electronic distribution only, ed M Marchesi<br />

http://dibe.unige.it/wehia)<br />

Stauffer D and Sorn<strong>et</strong>te D 1999 Self-organized percol<strong>at</strong>ion mo<strong>de</strong>l<br />

for stock mark<strong>et</strong> fluctu<strong>at</strong>ions Physica A 271 N3-4 496–506<br />

Stutzer M 1980 Chaotic dynamics and bifurc<strong>at</strong>ion in a macro-mo<strong>de</strong>l<br />

J. Econ. Dyn. Control<br />

Thaler R H (ed) 1993 Advances in Behavioural Finance (New York:<br />

Russell Sage Found<strong>at</strong>ion)<br />

Topol R 1991 Bubbles and vol<strong>at</strong>ility of stock prices: effect of<br />

mim<strong>et</strong>ic contagion Economic J. 101 786–800<br />

Trueman B 1994 Analyst forecasts and herding behaviour Rev.<br />

Financial Studies 7 97–124<br />

Van <strong>de</strong>r Ploeg F 1986 R<strong>at</strong>ional expect<strong>at</strong>ions, risk and chaos in<br />

financial mark<strong>et</strong>s Econ. J. 96 (suppl.)<br />

Welch I 1992 Sequential sales, learning, and casca<strong>de</strong>s J. Finance 47<br />

695–732<br />

see also webpage http://welch.som.yale.edu/casca<strong>de</strong>s for an<br />

annot<strong>at</strong>ed bibliography and resource reference on inform<strong>at</strong>ion<br />

casca<strong>de</strong>s<br />

West K D 1988 Bubbles, fads and stock price vol<strong>at</strong>ility tests: a<br />

partial evalu<strong>at</strong>ion J. Finance 43 639–55<br />

Zwiebel J 1995 Corpor<strong>at</strong>e conserv<strong>at</strong>ism and rel<strong>at</strong>ive compens<strong>at</strong>ion<br />

J. Political Economy 103 1–25<br />

281


Deuxième partie<br />

Etu<strong>de</strong> <strong>de</strong>s propriétés <strong>de</strong> dépendances entre<br />

actifs financiers<br />

179


Chapitre 7<br />

Etu<strong>de</strong> <strong>de</strong> la dépendance à l’ai<strong>de</strong> <strong>de</strong>s<br />

copules<br />

Nous abordons maintenant l’étu<strong>de</strong> <strong>de</strong> la dépendance entres actifs financiers. Nous avons déjà évoqué aux<br />

chapitres 1 <strong>et</strong> 4 le problème <strong>de</strong> la dépendance temporelle pour un actif donné, <strong>et</strong> c’est pourquoi nous<br />

nous bornerons ici à présenter l’aspect que l’on peut qualifier - en référence au langage <strong>de</strong> la physique -<br />

<strong>de</strong> “sp<strong>at</strong>ial”, <strong>et</strong> qui consiste en l’étu<strong>de</strong> <strong>de</strong>s interactions entre différents actifs à un instant donné.<br />

Jusqu’à une pério<strong>de</strong> récente, le coefficient <strong>de</strong> corrél<strong>at</strong>ion était l’outil <strong>de</strong> prédilection utilisé pour quantifier<br />

l’intensité <strong>de</strong> la dépendance entre <strong>de</strong>ux actifs. Ceci est bien sûr à r<strong>at</strong>tacher au fait que l’on pensait<br />

que non seulement la distribution marginale <strong>de</strong>s ren<strong>de</strong>ments était gaussienne, mais aussi, par une extension<br />

somme toute très n<strong>at</strong>urelle, leur distribution multivariée. L’hypothèse gaussienne s’effondrant<br />

peu à peu (voir Richardson <strong>et</strong> Smith (1993) pour un test spécifique du caractère gaussien multivarié<br />

<strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ments), la pertinence du coefficient corrél<strong>at</strong>ion comme mesure <strong>de</strong> dépendance<br />

était elle-même remise en cause, si bien qu’il semble désormais admis qu’une telle mesure est totalement<br />

insuffisante pour donner une idée juste <strong>de</strong>s propriétés <strong>de</strong> dépendance entre <strong>de</strong>ux actifs (Blum, Dias<br />

<strong>et</strong> Embrechts 2002, Embrechts, McNeil <strong>et</strong> Straumann 2002) <strong>et</strong> qu’il est nécessaire d’avoir recours à la<br />

distribution jointe <strong>de</strong>s probabilités <strong>de</strong> leurs ren<strong>de</strong>ments 1 pour obtenir une <strong>de</strong>scription aussi complète<br />

que possible <strong>de</strong> leur structure <strong>de</strong> dépendance 2 . En fait, cela est d’autant plus crucial que l’on souhaite<br />

s’intéresser aux événements rares (<strong>et</strong> donc extrêmes).<br />

Il convient toutefois <strong>de</strong> prendre conscience que la distribution bivariée <strong>de</strong>s ren<strong>de</strong>ments contient <strong>de</strong>ux<br />

types d’inform<strong>at</strong>ion : d’une part <strong>de</strong> l’inform<strong>at</strong>ion sur la distribution individuelle (monovariée) <strong>de</strong>s ren<strong>de</strong>ments<br />

<strong>de</strong> chacun <strong>de</strong>s actifs <strong>et</strong> d’autre part <strong>de</strong> l’inform<strong>at</strong>ion concernant la seule dépendance entre ces <strong>de</strong>ux<br />

actifs, indépendamment <strong>de</strong> leur comportement individuel. Il va donc être souhaitable <strong>de</strong> pouvoir séparer<br />

ces <strong>de</strong>ux sources d’inform<strong>at</strong>ion, afin <strong>de</strong> ne conserver que celle qui nous intéresse ici, à savoir l’inform<strong>at</strong>ion<br />

sur le comportement collectif (ou comportement joint) <strong>de</strong>s <strong>de</strong>ux actifs. Ceci est rendu possible grâce<br />

à l’emploi d’obj<strong>et</strong>s m<strong>at</strong>hém<strong>at</strong>iques dénommés copules, dont le rôle est précisément <strong>de</strong> décrire <strong>de</strong> manière<br />

complète <strong>et</strong> généralement unique la structure <strong>de</strong> dépendance présentée par les <strong>de</strong>ux actifs financiers, à<br />

l’exclusion <strong>de</strong> tout autre inform<strong>at</strong>ion sur leur comportement marginal.<br />

C<strong>et</strong>te approche <strong>de</strong> la dépendance sp<strong>at</strong>iale en terme <strong>de</strong> copule s’est abondamment développée ces <strong>de</strong>rnières<br />

1 Nous l’avons déjà fait remarquer dans la partie précé<strong>de</strong>nte, les ren<strong>de</strong>ments <strong>de</strong>s actifs financiers semblent être mieux adaptés<br />

que les prix eux-mêmes du fait du manque <strong>de</strong> st<strong>at</strong>ionnarité flagrant dont font preuve ces <strong>de</strong>rniers. Ainsi, dans toute la suite <strong>de</strong><br />

c<strong>et</strong>te partie la distribution bivariée <strong>de</strong>s ren<strong>de</strong>ments sera un <strong>de</strong>s obj<strong>et</strong>s fondamentaux <strong>de</strong> notre étu<strong>de</strong>.<br />

2 Pour <strong>de</strong>s raisons <strong>de</strong> simplicité <strong>et</strong> <strong>de</strong> clarté <strong>de</strong> l’exposé, nous limitons notre présent<strong>at</strong>ion au cas où seuls <strong>de</strong>ux actifs sont<br />

présents. Il va <strong>de</strong> soit que cela n’est en rien restrictif <strong>et</strong> que le cas général pourrait être traité <strong>de</strong> la même manière.<br />

181


182 7. Etu<strong>de</strong> <strong>de</strong> la dépendance à l’ai<strong>de</strong> <strong>de</strong>s copules<br />

années <strong>et</strong> semble prom<strong>et</strong>teuse aussi bien d’un point <strong>de</strong> vue pr<strong>at</strong>ique que théorique. En eff<strong>et</strong>, sur le plan<br />

pr<strong>at</strong>ique, la dépendance entre les actifs est l’un <strong>de</strong>s piliers <strong>de</strong> la <strong>gestion</strong> <strong>de</strong>s risques, puisque c’est <strong>de</strong> c<strong>et</strong>te<br />

étu<strong>de</strong> <strong>de</strong> la dépendance que va découler la str<strong>at</strong>égie <strong>de</strong> <strong>gestion</strong> à m<strong>et</strong>tre en œuvre selon que l’on souhaite<br />

diversifier les risques en les agrégeant sous forme <strong>de</strong> <strong>portefeuille</strong>s, ou bien que l’on déci<strong>de</strong> <strong>de</strong> couvrir<br />

ces risques à l’ai<strong>de</strong> <strong>de</strong> produits dérivés, ou enfin que l’on choisisse <strong>de</strong> les titriser, c’est-à-dire les m<strong>et</strong>tre<br />

sur le marché, ce qui revient à les cé<strong>de</strong>r à une tierce partie. Or, l’apport <strong>de</strong>s copules est <strong>de</strong> perm<strong>et</strong>tre une<br />

meilleure compréhension <strong>et</strong> quantific<strong>at</strong>ion <strong>de</strong> l’eff<strong>et</strong> <strong>de</strong> l’interaction entre actifs par l’étu<strong>de</strong> <strong>de</strong> l’influence<br />

<strong>de</strong> diverses structures <strong>de</strong> dépendance entre les multiples sources <strong>de</strong> risques. Les exemples d’applic<strong>at</strong>ions<br />

sont nombreux, aussi bien en finance 3 que dans d’autres domaines tels que l’assurance 4 .<br />

Sur le plan théorique, l’étu<strong>de</strong> <strong>de</strong> la dépendance entre actifs est fondamentale car elle perm<strong>et</strong> <strong>de</strong> son<strong>de</strong>r<br />

la structure sous-jacente <strong>de</strong>s mécanismes <strong>de</strong> marché. En eff<strong>et</strong>, il est très raisonnable <strong>de</strong> penser que la<br />

dépendance entre actifs résulte, du moins en partie 5 , <strong>de</strong> l’interaction entre les agents agissant sur ces<br />

marchés. De part les positions qu’ils prennent, ceux-ci sont responsables <strong>de</strong> l’évolution individuelle<br />

(en fait, <strong>de</strong>s fluctu<strong>at</strong>ions) <strong>de</strong>s prix <strong>de</strong>s actifs, mais aussi <strong>de</strong> part les choix qu’ils opèrent - vendant ou<br />

ach<strong>et</strong>ant tel titre plutôt que tel autre - ils créent <strong>de</strong> la dépendance entre ces actifs. Donc, l’étu<strong>de</strong> <strong>de</strong> la<br />

dépendance entre actifs doit perm<strong>et</strong>tre <strong>de</strong> compléter la compréhension <strong>de</strong>s mécanismes en jeu sur les<br />

marchés financiers <strong>et</strong> ainsi <strong>de</strong> mieux saisir les interactions entre les agents. Elle doit aussi amener à<br />

cerner les paramètres macroscopiques auxquels les agents sont sensibles.<br />

Avant d’entrer dans le vif du suj<strong>et</strong> <strong>et</strong> <strong>de</strong> faire tout d’abord quelques rappels sur la notion <strong>de</strong> copule <strong>et</strong><br />

quelques unes <strong>de</strong> leurs propriétés fondamentales, puis <strong>de</strong> présenter certaines familles <strong>de</strong> copules dont<br />

nous aurons à nous servir par la suite, <strong>et</strong> enfin d’en venir aux résult<strong>at</strong>s empiriques que nous avons pu<br />

obtenir sur la dépendance entre actifs financiers, nous souhaitons préciser une hypothèse importante sur<br />

laquelle nous nous appuierons dans la suite. En eff<strong>et</strong>, nous avons affirmé qu’il était n<strong>at</strong>urel <strong>de</strong> découpler<br />

l’étu<strong>de</strong> <strong>de</strong> la dépendance sp<strong>at</strong>iale <strong>de</strong> celle <strong>de</strong> la dépendance temporelle. Or, pour <strong>de</strong>meurer dans un cadre<br />

complètement général, il convient <strong>de</strong> gar<strong>de</strong>r à l’esprit que la dépendance entre <strong>de</strong>ux actifs peut tout<br />

à fait évoluer au cours du temps, elle n’a aucune raison <strong>de</strong> rester constante (P<strong>at</strong>ton 2001, Rockinger <strong>et</strong><br />

Jon<strong>de</strong>au 2001), donc il conviendrait aussi d’étudier sa dynamique. Cela dit, dans un cadre aussi vaste, une<br />

étu<strong>de</strong> aussi bien empirique que théorique <strong>de</strong>vient extrêmement délic<strong>at</strong>e. C’est pourquoi nous avons choisi<br />

<strong>de</strong> faire une hypothèse simplific<strong>at</strong>rice en considérerant que la dépendance temporelle est entièrement<br />

capturée par l’évolution marginale <strong>de</strong> chaque actif <strong>et</strong> donc que leurs propriétés <strong>de</strong> dépendance sp<strong>at</strong>iale<br />

<strong>de</strong>meurent les mêmes à tout instant.<br />

7.1 Les copules<br />

Nous allons exposer brièvement dans ce paragraphe les propriétés principales <strong>de</strong>s copules. Pour une<br />

présent<strong>at</strong>ion complète du suj<strong>et</strong> le lecteur est invité à se référer aux ouvrages <strong>de</strong> Joe (1997) <strong>et</strong> Nelsen<br />

(1998) notamment <strong>et</strong> aux articles <strong>de</strong> revues <strong>de</strong> Frees <strong>et</strong> Val<strong>de</strong>z (1998) ou Bouyé, Durrleman, Nikeghbali,<br />

Riboul<strong>et</strong> <strong>et</strong> Roncalli (2000) pour une présent<strong>at</strong>ion plus orientée vers les applic<strong>at</strong>ions financières <strong>et</strong><br />

3<br />

Voir notamment Embrechts, Hoeing <strong>et</strong> Juri (2001) pour les conséquences sur le calcul <strong>de</strong> VaR <strong>et</strong> la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong> ou<br />

encore Cherubini <strong>et</strong> Luciano (2000) <strong>et</strong> Coutant, Durrleman, Rapuch <strong>et</strong> Roncalli (2001) pour une applic<strong>at</strong>ion au calcul d’options<br />

<strong>et</strong> Frey <strong>et</strong> McNeil (2001), Frey, McNeil <strong>et</strong> Nyfeler (2001) pour ce qui est du risque <strong>de</strong> crédit.<br />

4<br />

Voir notamment Frees <strong>et</strong> Val<strong>de</strong>z (1998), Val<strong>de</strong>z (2001), ou Coss<strong>et</strong>te, Gaillard<strong>et</strong>z, Marceau <strong>et</strong> Rioux (2002) pour certaines<br />

applic<strong>at</strong>ions<br />

5<br />

Bien évi<strong>de</strong>mment, la dépendance observée entre différents actifs n’a pas pour seule <strong>et</strong> unique source l’action <strong>de</strong>s agents<br />

économiques sur les marchés financiers. Les facteurs macroéconomiques jouent aussi un rôle important en ce qui concerne<br />

c<strong>et</strong>te dépendance, qui est par exemple d’autant plus forte que les actifs considérés appartiennent au même secteur économique<br />

<strong>et</strong> sont donc <strong>de</strong> ce fait sensibles aux mêmes variables, aux mêmes évolutions <strong>de</strong> l’environnement économique.


7.2. Quelques familles <strong>de</strong> copules 183<br />

actuarielles.<br />

Commençons par rappeler les propriétés m<strong>at</strong>hém<strong>at</strong>iques que vérifient les copules :<br />

DÉFINITION 1 (COPULE)<br />

Une fonction C : [0, 1] × [0, 1] −→ [0, 1] est une copule si elle s<strong>at</strong>isfait les propriétés suivantes :<br />

– ∀u ∈ [0, 1], C(1, u) = C(u, 1) = u ,<br />

– ∀ui ∈ [0, 1], C(u1, u2) = 0 si au moins un <strong>de</strong>s ui est nul,<br />

– C est croissante dans le sens où le C-volume <strong>de</strong> chaque rectangle dont les somm<strong>et</strong>s se situent dans<br />

[0, 1] 2 est positif.<br />

Cela signifie simplement qu’une copule n’est rien d’autre qu’une distribution multivariée dont les distributions<br />

marginales sont uniformes. Leur principal intérêt provient en fait du théorème <strong>de</strong> représent<strong>at</strong>ion<br />

<strong>de</strong> Sklar (1959), qui stipule que toute distribution multivariée peut être exprimée comme une fonction <strong>de</strong><br />

ses marginales :<br />

THÉORÈME 1 (SKLAR (1959))<br />

Etant donné <strong>de</strong>ux variables alé<strong>at</strong>oires X <strong>et</strong> Y dont la fonction <strong>de</strong> distribution est notée F <strong>et</strong> dont les<br />

distributions marginales sont FX <strong>et</strong> FY , il existe une copule C : [0, 1] 2 −→ [0, 1] telle que :<br />

F (x, y) = C(FX(x), FY (y)) . (7.1)<br />

Dans le cas où les distributions marginales <strong>de</strong>s variables X <strong>et</strong> Y sont continues, c<strong>et</strong>te copule est unique<br />

<strong>et</strong> C(·, ·) est alors la copule du couple <strong>de</strong> variables alé<strong>at</strong>oires (X, Y ). Bien évi<strong>de</strong>mment, ce théorème<br />

s’étend au cas d’un nombre quelconque <strong>de</strong> variables alé<strong>at</strong>oires. Une <strong>de</strong> ces conséquences immédi<strong>at</strong>es est<br />

que la fonction F (FX −1 (x), FY −1 (y)) est une copule, <strong>et</strong> plus précisément la copule <strong>de</strong> (X, Y ). Donc,<br />

partant <strong>de</strong> n’importe quelle distribution jointe, il est aisé d’en dériver une copule. C’est une <strong>de</strong>s métho<strong>de</strong>s<br />

les plus employées pour construire <strong>de</strong>s copules.<br />

Enfin, cela perm<strong>et</strong> aisément <strong>de</strong> comprendre que la copule <strong>de</strong> <strong>de</strong>ux variables alé<strong>at</strong>oires est invariante par<br />

changement <strong>de</strong> variable strictement croissant, ce qui est démontré dans Lindskog (2000) notamment.<br />

Ce résult<strong>at</strong> est particulièrement important car il justifie que la copule est une mesure intrinsèque <strong>de</strong><br />

la dépendance entre variables alé<strong>at</strong>oires. En eff<strong>et</strong>, par changement <strong>de</strong> variable strictement croissant,<br />

l’ancienne <strong>et</strong> la nouvelle variable sont comonotones. Or, il est n<strong>at</strong>urel <strong>de</strong> requérir d’une mesure <strong>de</strong> la<br />

dépendance entre <strong>de</strong>ux variables alé<strong>at</strong>oires qu’elle soit indifférente à la substitution par une variable<br />

comonotone : si X <strong>et</strong> X ′ sont <strong>de</strong>ux variables comonotones, il est normal que la structure <strong>de</strong> dépendance<br />

entre (X, Y ) d’une part <strong>et</strong> (X ′ , Y ) d’autre part soit la même. C’est exactement ce que traduit ce théorème<br />

<strong>et</strong> dont rend compte la copule. Bien entendu, <strong>de</strong>s quantités telles que le coefficient <strong>de</strong> corrél<strong>at</strong>ion, qui<br />

sont fonction à la fois <strong>de</strong> la copule <strong>et</strong> <strong>de</strong>s marginales, ne sont pas invariantes par une telle transform<strong>at</strong>ion<br />

<strong>et</strong> ne constituent donc pas <strong>de</strong>s mesures <strong>de</strong> la seule dépendance.<br />

En résumé, les copules sont <strong>de</strong>s obj<strong>et</strong>s perm<strong>et</strong>tant <strong>de</strong> décrire <strong>de</strong> manière complète <strong>et</strong> généralement unique<br />

les propriétés <strong>de</strong> dépendance entre <strong>de</strong>ux variables alé<strong>at</strong>oires. En cela, elles autorisent l’étu<strong>de</strong> séparée <strong>de</strong>s<br />

distributions marginales <strong>de</strong> chaque actif financier <strong>et</strong> <strong>de</strong> leur dépendance, ce qui va être le point auquel<br />

nous allons nous intéresser maintenant. Mais avant cela, nous allons présenter quelques copules d’usage<br />

courant dont nous aurons à traiter dans la suite.<br />

7.2 Quelques familles <strong>de</strong> copules<br />

Comme nous l’avons indiqué après avoir rappelé le théorème <strong>de</strong> Sklar (1959), il est possible <strong>de</strong> dériver<br />

une copule <strong>de</strong> toute distribution multivariée. Leur nombre est donc considérable. Cependant quelques co-


184 7. Etu<strong>de</strong> <strong>de</strong> la dépendance à l’ai<strong>de</strong> <strong>de</strong>s copules<br />

pules ou familles <strong>de</strong> copules occupent une place plus importante que d’autres <strong>et</strong> nous allons en présenter<br />

quelques unes.<br />

7.2.1 Les copules gaussiennes <strong>et</strong> copules <strong>de</strong> Stu<strong>de</strong>nt<br />

Comme leurs noms l’indiquent ces <strong>de</strong>ux classes <strong>de</strong> copules sont respectivement issues <strong>de</strong> la distribution<br />

gaussienne <strong>et</strong> <strong>de</strong>s distributions <strong>de</strong> Stu<strong>de</strong>nt. Et, <strong>de</strong> même que la distribution gaussienne est un cas limite <strong>de</strong><br />

distribution <strong>de</strong> Stu<strong>de</strong>nt, la copule gaussienne est aussi un cas limite <strong>de</strong> copule <strong>de</strong> Stu<strong>de</strong>nt. C’est pourquoi<br />

nous traitons ces copules, a priori différentes, dans le même paragraphe. Une autre raison vient <strong>de</strong> ce<br />

que l’une comme l’autre sont <strong>de</strong>s copules elliptiques, c’est-à-dire <strong>de</strong>s copules dérivées <strong>de</strong>s distributions<br />

elliptiques.<br />

L’intérêt <strong>de</strong> c<strong>et</strong>te classe <strong>de</strong> copules vient simplement du fait qu’elle ouvre la voie à la généralis<strong>at</strong>ion <strong>de</strong>s<br />

distributions gaussiennes <strong>et</strong> elliptiques à <strong>de</strong>s distributions dites “méta-gaussiennes” - dont l’introduction<br />

est originellement due à Krzysztofowicz <strong>et</strong> Kelly (1996) <strong>et</strong> dont l’intérêt pr<strong>at</strong>ique a été démontré par Karlen<br />

(1998) dans le domaine du traitement d’expériences <strong>de</strong> physique <strong>de</strong>s particules <strong>et</strong> par Sorn<strong>et</strong>te, Simon<strong>et</strong>ti<br />

<strong>et</strong> An<strong>de</strong>rsen (2000) pour ce qui est <strong>de</strong> la finance - <strong>et</strong> “méta-elliptiques” (Fang, Fang <strong>et</strong> Kotz 2002).<br />

Ces “méta-distributions” possè<strong>de</strong>nt la même structure <strong>de</strong> dépendance que les distributions gaussiennes<br />

ou elliptiques mais en différent par leurs marginales qui peuvent être quelconques. Or, on sait que les<br />

distributions elliptiques peuvent aisément être obtenues par <strong>de</strong>s modèles à vol<strong>at</strong>ilité stochastiques, ce qui<br />

fait <strong>de</strong>s copules elliptiques en général <strong>et</strong> <strong>de</strong>s copules gaussiennes <strong>et</strong> <strong>de</strong> Stu<strong>de</strong>nt en particulier, <strong>de</strong>s copules<br />

tout à fait pertinentes pour la modélis<strong>at</strong>ion <strong>de</strong> la dépendance entre actifs financiers.<br />

Utilisant le théorème <strong>de</strong> Sklar (1959), on obtient simplement leurs expressions, même s’il n’est pas<br />

possible d’en donner une forme fermée :<br />

DÉFINITION 2 (COPULE GAUSSIENNE)<br />

Soit Φ la distribution gaussienne standard <strong>et</strong> Φρ,N la distribution Gaussienne en dimension N, dont la<br />

m<strong>at</strong>rice <strong>de</strong> corrél<strong>at</strong>ion est ρ. La copule gaussienne <strong>de</strong> m<strong>at</strong>rice <strong>de</strong> corrél<strong>at</strong>ion ρ est alors :<br />

<strong>et</strong> sa <strong>de</strong>nsité est donnée par<br />

avec yk(u) = Φ −1 (uk).<br />

Cρ,N(u1, · · · , uN) = Φρ,N(Φ −1 (u1), · · · , Φ −1 (uN)) (7.2)<br />

cρ,N(u1, · · · , uN) =<br />

<br />

1<br />

√ exp −<br />

d<strong>et</strong> ρ 1<br />

2 yt (u) (ρ−1 <br />

− Id)y (u)<br />

DÉFINITION 3 (COPULE DE STUDENT)<br />

Soit Tν la distribution <strong>de</strong> Stu<strong>de</strong>nt avec ν <strong>de</strong>grés <strong>de</strong> liberté <strong>et</strong> Tν,ρ,N la distribution <strong>de</strong> Stu<strong>de</strong>nt avec ν<br />

<strong>de</strong>grés <strong>de</strong> liberté en dimension N, dont la m<strong>at</strong>rice <strong>de</strong> corrél<strong>at</strong>ion est ρ. La copule <strong>de</strong> Stu<strong>de</strong>nt avec ν<br />

<strong>de</strong>grés <strong>de</strong> liberté <strong>et</strong> <strong>de</strong> m<strong>at</strong>rice <strong>de</strong> corrél<strong>at</strong>ion ρ est alors :<br />

<strong>et</strong> sa <strong>de</strong>nsité est donnée par<br />

avec yk(u) = T −1<br />

ν (uk).<br />

(7.3)<br />

Cρ,ν,N (u1, · · · , uN) = Tν,ρ,N (T −1<br />

ν (u1), · · · , Tnu −1 (uN)) (7.4)<br />

cρ,ν,N (u1, · · · , uN) =<br />

1 Γ<br />

√<br />

d<strong>et</strong> ρ<br />

<br />

ν+N ν<br />

2 Γ<br />

<br />

ν+1 Γ 2<br />

N−1 2<br />

N <br />

N<br />

k=1<br />

<br />

1 + y2 k<br />

ν<br />

1 + yt ρy<br />

ν<br />

ν+1<br />

2<br />

ν+N<br />

2<br />

, (7.5)


7.2. Quelques familles <strong>de</strong> copules 185<br />

Par construction même, les copules <strong>de</strong> Stu<strong>de</strong>nt <strong>et</strong> la copule gaussienne sont très proches dans leur région<br />

centrale, <strong>et</strong> l’on observe que le domaine où ces <strong>de</strong>ux copules sont quasiment i<strong>de</strong>ntiques s’étend <strong>de</strong> plus<br />

en plus au fur <strong>et</strong> à mesure que le nombre <strong>de</strong> <strong>de</strong>grés <strong>de</strong> liberté <strong>de</strong> la copule <strong>de</strong> Stu<strong>de</strong>nt augmente. En<br />

conséquence, il est parfois délic<strong>at</strong> <strong>de</strong> les distinguer, même avec <strong>de</strong>s tests assez fins. Or, nous verrons plus<br />

loin en détail que la confusion entre ces <strong>de</strong>ux copules à <strong>de</strong>s conséquences importantes pour l’étu<strong>de</strong> <strong>de</strong>s<br />

risques extrêmes.<br />

Enfin, signalons que ces copules présentent en outre l’intérêt d’être aisément synthétisables, ce qui est<br />

très utile en pr<strong>at</strong>ique pour la simul<strong>at</strong>ion numérique ou l’étu<strong>de</strong> <strong>de</strong> scénarii. En eff<strong>et</strong>, il est facile <strong>de</strong> générer<br />

<strong>de</strong>s variables alé<strong>at</strong>oires gaussiennes ou <strong>de</strong> Stu<strong>de</strong>nt, ce qui, après un changement <strong>de</strong> variable (croissant),<br />

perm<strong>et</strong> d’obtenir les distributions marginales recherchées tout en conservant la copule inchangée.<br />

7.2.2 Les copules archimédiennes<br />

Les copules d’Archimè<strong>de</strong> revêtent un intérêt tout particulier dans la mesure où un très grand nombre <strong>de</strong><br />

copules appartiennent à c<strong>et</strong>te classe, qui <strong>de</strong> plus jouit d’un certain nombre <strong>de</strong> propriétés intéressantes. En<br />

outre, comme souligné par Frees <strong>et</strong> Val<strong>de</strong>z (1998), nombre <strong>de</strong> modèles - essentiellement issus du domaine<br />

<strong>de</strong> l’assurance - visant à rendre compte <strong>de</strong> la dépendance entre diverses sources <strong>de</strong> risques conduisent<br />

à <strong>de</strong>s copules archimédiennes. Une exception notable cependant est celle <strong>de</strong>s modèles à facteurs, qui<br />

jouent un rôle fondamental dans la <strong>de</strong>scription phénoménologique <strong>de</strong> l’interaction entre actifs financiers,<br />

<strong>et</strong> dont les copules archimédiennes ne suffisent à rendre compte.<br />

Avant d’aller plus loin, commençons par définir ce qu’est une copule archimédienne :<br />

DÉFINITION 4 (COPULE ARCHIMÉDIENNE)<br />

Soit ϕ une fonction continue, strictement décroissante <strong>de</strong> [0, 1] dans [0, ∞] <strong>et</strong> telle que ϕ(1) = 0. Soit<br />

ϕ [−1] le pseudo-inverse <strong>de</strong> ϕ :<br />

ϕ [−1] <br />

ϕ−1 (t), si 0 ≤ t ≤ ϕ(0) ,<br />

(t) =<br />

(7.6)<br />

0, si t ≥ ϕ(0) ,<br />

alors la fonction<br />

est une copule dite archimédienne <strong>de</strong> génér<strong>at</strong>eur ϕ.<br />

C(u, v) = ϕ [−1] (ϕ(u) + ϕ(v)) (7.7)<br />

On remarque donc que c<strong>et</strong>te classe <strong>de</strong> copules est particulièrement simple dans la mesure où toute la<br />

complexité <strong>de</strong> la structure <strong>de</strong> dépendance, décrite <strong>de</strong> manière générale par une fonction <strong>de</strong> <strong>de</strong>ux (ou N)<br />

variables, est totalement contenue dans l’expression du génér<strong>at</strong>eur ϕ, qui n’est qu’une fonction d’une<br />

seule variable. On passe ainsi d’un problème multidimensionnel - <strong>et</strong> donc généralement délic<strong>at</strong> - à un<br />

problème unidimensionnel, <strong>et</strong> ainsi beaucoup plus simple.<br />

Parmi les nombreux membres <strong>de</strong> c<strong>et</strong>te famille, citons par exemple la copule <strong>de</strong> Clayton :<br />

Cθ(u, v) = max u θ + v θ <br />

−1/θ<br />

− 1 , 0 , (7.8)<br />

mais aussi la copule <strong>de</strong> Gumbel, qui joue un rôle particulier pour la <strong>de</strong>scription <strong>de</strong> la dépendance dans la<br />

<strong>théorie</strong> <strong>de</strong>s valeurs extrêmes :<br />

<br />

Cθ(u, v) = exp − (− ln u) θ + (− ln v) θ 1/θ <br />

, (7.9)


186 7. Etu<strong>de</strong> <strong>de</strong> la dépendance à l’ai<strong>de</strong> <strong>de</strong>s copules<br />

ou encore la copule <strong>de</strong> Frank :<br />

Cθ(u, v) = − 1<br />

θ ln<br />

<br />

1 + (e−θu − 1)(e−θv − 1)<br />

e−θ <br />

. (7.10)<br />

− 1<br />

Notons que les copules gaussiennes ou <strong>de</strong> Stu<strong>de</strong>nt ne font pas partie <strong>de</strong> c<strong>et</strong>te famille. En fait, on peut<br />

montrer que toutes les copules archimédiennes sont d’une part associ<strong>at</strong>ives 6 , ce que clairement les copules<br />

gaussiennes <strong>et</strong> <strong>de</strong> Stu<strong>de</strong>nt ne s<strong>at</strong>isfont pas, <strong>et</strong> d’autre part leurs valeurs sur la première bissectrice<br />

vérifient C(u, u) < u pour tout u ∈]0, 1[. Réciproquement, on peut démontrer que (Nelsen 1998) toute<br />

copule possédant ces <strong>de</strong>ux propriétés est archimédienne, ce qui donne une idée <strong>de</strong> la généralité <strong>de</strong> c<strong>et</strong>te<br />

famille.<br />

Enfin, précisons que Juri <strong>et</strong> Wüthrich (2002) ont établi, pour c<strong>et</strong>te classe <strong>de</strong> copules, un théorème limite<br />

équivalent au théorème <strong>de</strong> Gne<strong>de</strong>nko - Pikand - Balkema - <strong>de</strong> Haan (Embrechts <strong>et</strong> al. 1997, par exemple),<br />

montrant la convergence vers la copule <strong>de</strong> Clayton (7.8) <strong>de</strong> la copule <strong>de</strong> la distribution <strong>de</strong>s excé<strong>de</strong>nts <strong>de</strong><br />

plusieurs variables alé<strong>at</strong>oires au-<strong>de</strong>ssus d’un seuil, quand celui-ci tend vers l’infini. Ainsi, la copule <strong>de</strong><br />

Clayton joue un rôle similaire (en dimension N) à celui <strong>de</strong>s distributions <strong>de</strong> Par<strong>et</strong>o généralisées (un<br />

dimension un). Ceci est particulièrement intéressant lorsque l’on s’intéresse à la <strong>st<strong>at</strong>istique</strong> multivariée<br />

<strong>de</strong>s extrêmes.<br />

7.3 Tests empiriques<br />

Les tests empiriques visent à déterminer la n<strong>at</strong>ure <strong>de</strong> la copule perm<strong>et</strong>tant <strong>de</strong> décrire la structure <strong>de</strong><br />

dépendance entre <strong>de</strong>ux actifs <strong>et</strong> peuvent être soit paramétriques soit non paramétriques. C<strong>et</strong>te <strong>de</strong>rnière<br />

métho<strong>de</strong> est bien évi<strong>de</strong>mment beaucoup plus générale puisqu’elle ne requière pas le choix d’un modèle<br />

a priori, <strong>et</strong> n’est donc pas suj<strong>et</strong>te à l’erreur <strong>de</strong> spécific<strong>at</strong>ion. Cependant, si le modèle est correctement<br />

spécifié, l’estim<strong>at</strong>ion paramétrique est beaucoup plus précise. De plus, le p<strong>et</strong>it nombre <strong>de</strong> paramètres intervenant<br />

dans la <strong>de</strong>scription <strong>de</strong> la copule sélectionnée apparaît alors comme l’ensemble <strong>de</strong>s paramètres<br />

pertinents pour résumer les propriétés <strong>de</strong> dépendance entre actifs. Que l’on pense, par exemple, à la<br />

représent<strong>at</strong>ion gaussienne (ou plus généralement à toute représent<strong>at</strong>ion en terme <strong>de</strong> distribution elliptique)<br />

dont la dépendance est complètement capturée par le coefficient <strong>de</strong> corrél<strong>at</strong>ion linéaire. Ainsi, ces<br />

paramètres vont pouvoir jouer un rôle particulier <strong>et</strong> il est tentant <strong>de</strong> les interpréter comme <strong>de</strong>s variables<br />

macroscopiques (ou phénoménologiques) synthétisant l’ensemble <strong>de</strong>s interactions microscopiques entre<br />

les agents économiques dont résulte la dépendance observée. Or, l’i<strong>de</strong>ntific<strong>at</strong>ion <strong>de</strong>s “ bonnes variables”<br />

est la première étape <strong>de</strong> la construction <strong>de</strong> modèles dont on peut espérer qu’ils seront mieux à même <strong>de</strong><br />

rendre compte <strong>de</strong>s phénomènes observés. L’intérêt <strong>de</strong> l’estim<strong>at</strong>ion paramétrique est donc grand <strong>et</strong> c’est<br />

pour cela que nous nous sommes tout particulièrement focalisés sur c<strong>et</strong>te approche.<br />

7.3.1 Tests paramétriques<br />

Le paradigme gaussien a longtemps été en vigueur en finance. Certes, l’on a vu que les distributions<br />

marginales ne sauraient être modélisées par <strong>de</strong>s distributions gaussiennes dont les queues sont trop fines<br />

pour rendre compte <strong>de</strong>s gran<strong>de</strong>s dévi<strong>at</strong>ions observées sur les distributions <strong>de</strong>s ren<strong>de</strong>ments, mais a priori,<br />

la structure <strong>de</strong> dépendance entre <strong>de</strong>ux actifs étant fort peu connue, rien ne perm<strong>et</strong> <strong>de</strong> rej<strong>et</strong>er le fait que la<br />

copule gaussienne soit à même <strong>de</strong> décrire correctement c<strong>et</strong>te structure <strong>de</strong> dépendance. De plus, suivant<br />

une idée initialement développée par Karlen (1998) <strong>et</strong> Sorn<strong>et</strong>te, Simon<strong>et</strong>ti <strong>et</strong> An<strong>de</strong>rsen (2000), il apparaît<br />

6 Une copule est associ<strong>at</strong>ive si C(u, C(v, w)) = C(C(u, v), w).


7.3. Tests empiriques 187<br />

Y<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

Copule Gaussienne<br />

−5<br />

−5 −4 −3 −2 −1 0<br />

X<br />

1 2 3 4 5<br />

Y<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

Copule <strong>de</strong> Stu<strong>de</strong>nt<br />

−5<br />

−5 −4 −3 −2 −1 0<br />

X<br />

1 2 3 4 5<br />

FIG. 7.1 – Représent<strong>at</strong>ion <strong>de</strong>s réalis<strong>at</strong>ions <strong>de</strong> <strong>de</strong>ux variables alé<strong>at</strong>oires dont les marginales sont gaussiennes<br />

<strong>et</strong> la copule est soit gaussienne (figure <strong>de</strong> gauche) soit <strong>de</strong> Stu<strong>de</strong>nt avec trois <strong>de</strong>grés <strong>de</strong> liberté<br />

(figure <strong>de</strong> droite), le coefficient <strong>de</strong> corrél<strong>at</strong>ion étant le même : ρ = 0.8.<br />

que la copule gaussienne est obtenue <strong>de</strong> manière n<strong>at</strong>urelle à partir du principe <strong>de</strong> maximum d’entropie 7 .<br />

En outre, c<strong>et</strong>te copule est sans doute la copule la plus simple <strong>de</strong> la classe <strong>de</strong>s copules elliptiques, puisqu’elle<br />

est entièrement spécifiée par son seul coefficient <strong>de</strong> corrél<strong>at</strong>ion <strong>et</strong> ne dépend donc que d’un seul<br />

paramètre, contrairement à la copule <strong>de</strong> Stu<strong>de</strong>nt, par exemple, qui est aussi fonction d’un certain nombre<br />

<strong>de</strong> <strong>de</strong>grés <strong>de</strong> liberté. Ainsi, la copule gaussienne semble être un point <strong>de</strong> départ logique pour l’étu<strong>de</strong> <strong>de</strong> la<br />

dépendance entre actifs <strong>et</strong> nous avons donc choisi <strong>de</strong> tester sa capacité à rendre compte <strong>de</strong>s données (voir<br />

Malevergne <strong>et</strong> Sorn<strong>et</strong>te (2001b), présenté au chapitre suivant). Les tests ont été conduits sur différents<br />

types d’actifs : <strong>de</strong>s actions, <strong>de</strong>s taux <strong>de</strong> change <strong>et</strong> <strong>de</strong>s m<strong>at</strong>ières premières (métaux). Pour ces <strong>de</strong>ux <strong>de</strong>rniers,<br />

la copule gaussienne ne semble pas une très bonne approxim<strong>at</strong>ion. En fait, pour les métaux, elle est<br />

quasi systém<strong>at</strong>iquement rej<strong>et</strong>ée, tandis que pour les monnaies la situ<strong>at</strong>ion est plus complexe. Il semble<br />

en eff<strong>et</strong> que pour les monnaies pour lesquelles n’existe pas <strong>de</strong> mécanisme <strong>de</strong> régul<strong>at</strong>ion <strong>de</strong> la parité l’hypothèse<br />

<strong>de</strong> copule gaussienne soit raisonnable alors que dans le cas contraire (cf. les monnaies <strong>de</strong>s pays<br />

membres du SME) c<strong>et</strong>te hypothèse est fortement rej<strong>et</strong>ée, ce qui, somme toute, est parfaitement cohérent.<br />

Pour ce qui est <strong>de</strong>s actions, la copule gaussienne semble fournir une bonne approxim<strong>at</strong>ion, y compris<br />

pour <strong>de</strong>s actions appartenant à un même secteur d’activité.<br />

D’autres tests paramétriques ont été menés par Klugman <strong>et</strong> Parsa (1999) sur <strong>de</strong>s données touchant aux<br />

domaines <strong>de</strong> l’assurance, où il semble que la famille <strong>de</strong>s copules <strong>de</strong> Frank soient à même <strong>de</strong> rendre<br />

compte <strong>de</strong> la dépendance pour ce genre <strong>de</strong> données. P<strong>at</strong>ton (2001) s’est quant à lui intéressé plus en<br />

détail à la dépendance entre taux <strong>de</strong> change, <strong>et</strong> conclut que la copule gaussienne n’est pas la mieux<br />

adaptée. Au contraire, la copule <strong>de</strong> Clayton fournit une meilleure <strong>de</strong>scription <strong>de</strong>s données.<br />

En fait, une <strong>de</strong>s limites <strong>de</strong>s tests que nous avons conduits sur les copules gaussiennes est <strong>de</strong> ne pas<br />

pouvoir distinguer une copule <strong>de</strong> Stu<strong>de</strong>nt d’une copule gaussienne dès lors que le nombre <strong>de</strong> <strong>de</strong>grés<br />

<strong>de</strong> liberté <strong>de</strong> celle-là <strong>de</strong>vient trop grand. Typiquement, lorsque le nombre <strong>de</strong> <strong>de</strong>grés <strong>de</strong> liberté dépasse<br />

quinze ou vingt, les tests que nous avons utilisés ne sont plus capables <strong>de</strong> distinguer entre ces <strong>de</strong>ux types<br />

<strong>de</strong> copules. Ceci n’est pas très grave tant que l’on ne s’occupe que <strong>de</strong>s événements “normaux” <strong>et</strong> pas <strong>de</strong>s<br />

événements extrêmes. En eff<strong>et</strong>, comme nous l’avons déjà signalé, les copules <strong>de</strong> Stu<strong>de</strong>nt <strong>et</strong> les copules<br />

gaussiennes sont très semblables dans leur cœur, <strong>et</strong> ce n’est que lorsque l’on s’en éloigne que l’on <strong>de</strong>vient<br />

7 Pour d’autres exemples <strong>de</strong> détermin<strong>at</strong>ion <strong>de</strong> distributions à l’ai<strong>de</strong> du principe <strong>de</strong> maximum d’entropie, voir notamment<br />

Rockinger <strong>et</strong> Jon<strong>de</strong>au (2002)


188 7. Etu<strong>de</strong> <strong>de</strong> la dépendance à l’ai<strong>de</strong> <strong>de</strong>s copules<br />

sensible à la différence. Concrètement, la distinction essentielle entre ces <strong>de</strong>ux familles provient du fait<br />

que les copules gaussiennes produisent <strong>de</strong>s événements extrêmes indépendants tandis que les copules <strong>de</strong><br />

Stu<strong>de</strong>nt produisent <strong>de</strong>s événements extrêmes concomitants avec une probabilité non nulle, celle-ci étant<br />

d’autant plus importante que le nombre <strong>de</strong> <strong>de</strong>grés <strong>de</strong> liberté <strong>de</strong> la copule est faible <strong>et</strong> que la corrél<strong>at</strong>ion<br />

est importante. Ceci est clairement illustré par la figure 7.1. où l’on a représenté les réalis<strong>at</strong>ions <strong>de</strong> <strong>de</strong>ux<br />

variables alé<strong>at</strong>oires dont les marginales sont gaussiennes <strong>et</strong> la copule est soit gaussienne soit <strong>de</strong> Stu<strong>de</strong>nt<br />

avec trois <strong>de</strong>grés <strong>de</strong> liberté, le coefficient <strong>de</strong> corrél<strong>at</strong>ion étant le même : ρ = 0.8.<br />

Pour quantifier c<strong>et</strong>te propension <strong>de</strong>s extrêmes à se produire simultanément, il est commo<strong>de</strong> d’introduire<br />

le coefficient <strong>de</strong> dépendance <strong>de</strong> queue λ défini comme la probabilité que l’une <strong>de</strong>s variables, X par<br />

exemple, soit extrême conditionnée au fait que l’autre variable, Y , soit elle-même extrême. Ceci nous<br />

conduit à la définition m<strong>at</strong>hém<strong>at</strong>ique suivante :<br />

λ = lim<br />

u→1 Pr{X > FX −1 (u) | Y > FY −1 (u)} (7.11)<br />

= lim<br />

u→1<br />

1 − 2u + C(u, u)<br />

, (7.12)<br />

1 − u<br />

qui démontre que le coefficient <strong>de</strong> dépendance <strong>de</strong> queue n’est fonction que <strong>de</strong> la copule <strong>et</strong> non <strong>de</strong>s<br />

marginales.<br />

Dans le cas <strong>de</strong> la copule gaussienne, il est démontré que la dépendance <strong>de</strong> queue est nulle pour toute<br />

valeur du coefficient <strong>de</strong> corrél<strong>at</strong>ion (différent <strong>de</strong> un), tandis que pour les copules <strong>de</strong> Stu<strong>de</strong>nt, elle dépend<br />

à la fois <strong>de</strong> la corrél<strong>at</strong>ion <strong>et</strong> du nombre <strong>de</strong> <strong>de</strong>grés <strong>de</strong> liberté. Dans le premier cas, on dit que les extrêmes se<br />

produisent asymptotiquement indépendamment alors que dans le second cas ils sont asymptotiquement<br />

dépendants. C<strong>et</strong>te différence <strong>de</strong> comportement est illustrée sur la figure 7.1, où dans le cas <strong>de</strong> la copule<br />

<strong>de</strong> Stu<strong>de</strong>nt on remarque que les points se répartissent à l’intérieur <strong>de</strong> fuseaux <strong>de</strong> plus en plus étroits au fur<br />

<strong>et</strong> à mesure que l’on considère les réalis<strong>at</strong>ions <strong>de</strong> plus en plus extrêmes. On observe que ce phénomène<br />

se produit non seulement dans les quadrans inférieur-gauche <strong>et</strong> supérieur-droit, mais aussi dans les <strong>de</strong>ux<br />

autres quadrans, ce qui vient du fait que le coefficient <strong>de</strong> dépendance <strong>de</strong> queue n’est pas nul pour les<br />

coefficients <strong>de</strong> corrél<strong>at</strong>ion nég<strong>at</strong>ifs (voir figure 1 dans Malevergne <strong>et</strong> Sorn<strong>et</strong>te (2001b) page 214).<br />

L’utilis<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue nous a permis d’estimer le risque potentiel qu’il y<br />

a à considérer une modélis<strong>at</strong>ion en terme <strong>de</strong> copule gaussienne, <strong>et</strong> il s’avère que pour <strong>de</strong>s corrél<strong>at</strong>ions<br />

élevées entre actifs il est dangereux d’utiliser c<strong>et</strong>te représent<strong>at</strong>ion tant que l’on n’a pas d’idée plus précise<br />

sur la dépendance <strong>de</strong> queue, quantité à laquelle ne nous donne pas accès les tests paramétriques. En eff<strong>et</strong>,<br />

choisir une forme paramétrique <strong>de</strong> la copule revient à fixer a priori l’existence ou non <strong>de</strong> dépendance <strong>de</strong><br />

queue <strong>et</strong> ne perm<strong>et</strong> donc pas <strong>de</strong> trancher c<strong>et</strong>te question. Donc, pour aller plus avant, une approche non<br />

paramétrique pourrait s’avérer utile.<br />

7.3.2 Tests non paramétriques<br />

Les tests non paramétriques ont, par rapport aux tests paramétriques, l’avantage d’être beaucoup plus<br />

généraux puisqu’ils ne conduisent pas à imposer a priori <strong>de</strong> modèle. Donc, on peut espérer qu’ils apporteront<br />

une réponse au problème auquel nous sommes désormais confrontés. Diverses métho<strong>de</strong>s d’estim<strong>at</strong>ion<br />

non paramétriques ont vu le jour. Citons notamment les approches basées sur l’estim<strong>at</strong>ion à<br />

l’ai<strong>de</strong> <strong>de</strong> familles <strong>de</strong> polynômes, tels les polynômes <strong>de</strong> Bernstein (Li, Mikusinski <strong>et</strong> Taylor 1998), <strong>et</strong> que<br />

Durrleman, Nikeghbali <strong>et</strong> Roncalli (2000) passent en revue. Citons encore les métho<strong>de</strong>s s’appuyant sur<br />

<strong>de</strong>s estim<strong>at</strong>eurs à noyau, telle celle développée par Scaill<strong>et</strong> (2000b).<br />

Toutes ces métho<strong>de</strong>s ont l’avantage <strong>de</strong> produire <strong>de</strong>s copules estimées qui sont lisses <strong>et</strong> dérivables en<br />

tout point, ce qui présente un grand nombre d’avantages lorsque l’on souhaite les réemployer à <strong>de</strong>s


7.4. Conclusion 189<br />

fins plus appliquées. Cela perm<strong>et</strong> notamment <strong>de</strong> réaliser <strong>de</strong>s étu<strong>de</strong>s <strong>de</strong> sensibilité, ou <strong>de</strong> simuler <strong>de</strong>s<br />

variables alé<strong>at</strong>oires ayant la même copule que celle qui a été estimée (Embrechts <strong>et</strong> al. 2002). Cependant,<br />

c<strong>et</strong> avantage est en même temps le principal défaut <strong>de</strong> ces métho<strong>de</strong>s. En eff<strong>et</strong>, on peut montrer très<br />

simplement (Durrleman <strong>et</strong> al. 2000) que toute copule dérivable dans le voisinage du point (1, 1) (ou du<br />

point (0, 0)) n’adm<strong>et</strong> pas <strong>de</strong> dépendance <strong>de</strong> queue. En eff<strong>et</strong>, il est nécessaire que la copule ne soit pas<br />

dérivable au voisinage <strong>de</strong> (1, 1) pour que λ soit non nul 8 .<br />

Ainsi, les métho<strong>de</strong>s d’estim<strong>at</strong>ion non paramétriques <strong>de</strong> la copule que nous venons <strong>de</strong> mentionner souffrent<br />

toutes du même défaut : négliger les événements extrêmes concomitants. Nous avons cherché<br />

d’autres métho<strong>de</strong>s d’estim<strong>at</strong>ion <strong>de</strong>s copules qui ne pâtissent pas <strong>de</strong> ce problème, mais nos recherches<br />

se sont révélées infructueuses. Aussi avons-nous choisi d’<strong>at</strong>taquer le problème <strong>de</strong> l’estim<strong>at</strong>ion <strong>de</strong> la<br />

dépendance <strong>de</strong> queue <strong>de</strong> manière directe. En eff<strong>et</strong>, cela nous est apparu être le seul moyen <strong>de</strong> déci<strong>de</strong>r<br />

si la copule gaussienne, qui est une bonne approxim<strong>at</strong>ion dans le cœur, <strong>de</strong>meurait s<strong>at</strong>isfaisante dans les<br />

extrêmes ou bien s’il valait mieux considérer les copules <strong>de</strong> Stu<strong>de</strong>nt, dont nous avons rappelé qu’elles<br />

étaient très proches <strong>de</strong> la copule gaussienne dans la région centrale mais qu’elles conduisaient à <strong>de</strong>s<br />

réalis<strong>at</strong>ions extrêmes pouvant se produirent simultanément.<br />

7.4 Conclusion<br />

Les copules fournissent le moyen le plus simple, le plus compl<strong>et</strong> <strong>et</strong> le plus n<strong>at</strong>urel <strong>de</strong> décrire <strong>et</strong> <strong>de</strong> mesurer<br />

la dépendance entre plusieurs variables alé<strong>at</strong>oires. Parmi la très gran<strong>de</strong> variété <strong>de</strong> copules, quelques<br />

familles présentent un intérêt particulier pour la modélis<strong>at</strong>ion <strong>de</strong>s interactions entre actifs financiers,<br />

comme par exemple la famille <strong>de</strong>s copules elliptiques, dont les copules gaussiennes <strong>et</strong> les copules <strong>de</strong><br />

Stu<strong>de</strong>nt sont les exemples les plus célèbres, mais aussi la famille <strong>de</strong>s copules archimédiennes. Le rôle<br />

prépondérant <strong>de</strong> ces <strong>de</strong>ux familles vient du fait qu’elles peuvent être reliées simplement à <strong>de</strong>s modèles<br />

phénoménologiques standards en sciences financières (ou actuarielles).<br />

Ceci nous a incité à tenter d’estimer la copule décrivant l’interaction entre actifs financiers. Il nous est<br />

apparu que la copule gaussienne pouvait être un bon candid<strong>at</strong>, ce que nos tests ont confirmé, du moins<br />

pour ce qui est <strong>de</strong>s actions. Cependant, une forte incertitu<strong>de</strong> <strong>de</strong>meure sur le fait <strong>de</strong> savoir si une copule<br />

<strong>de</strong> Stu<strong>de</strong>nt avec un nombre <strong>de</strong> <strong>de</strong>grés <strong>de</strong> liberté élevés ne serait pas mieux adaptée. Tout l’enjeu <strong>de</strong> c<strong>et</strong>te<br />

question est <strong>de</strong> savoir si les extrêmes ont tendance à se produire <strong>de</strong> manière simultanée pour les divers<br />

actifs ou indépendamment, point crucial pour la <strong>gestion</strong> <strong>de</strong>s risques <strong>et</strong> la str<strong>at</strong>égie à m<strong>et</strong>tre en œuvre pour<br />

les diversifier. Ceci n’ayant pas pu être résolu par une approche globale, nous allons <strong>de</strong>voir trouver une<br />

métho<strong>de</strong> perm<strong>et</strong>tant l’estim<strong>at</strong>ion directe <strong>de</strong> la dépendance <strong>de</strong> queue, ce qui sera l’obj<strong>et</strong> du chapitre 9.<br />

8 Notons au passage que c<strong>et</strong>te condition nécessaire n’est cependant pas suffisante comme le prouve l’exemple <strong>de</strong> la copule<br />

gaussienne qui ne présente pas <strong>de</strong> dépendance <strong>de</strong> queue, mais n’en est pas pour autant dérivable en (1, 1).


190 7. Etu<strong>de</strong> <strong>de</strong> la dépendance à l’ai<strong>de</strong> <strong>de</strong>s copules


Chapitre 8<br />

Tests <strong>de</strong> copule gaussienne<br />

Nous utilisons la propriété d’invariance <strong>de</strong>s copules par changement <strong>de</strong> variable strictement croissant<br />

pour tester l’hypothèse nulle selon laquelle la dépendance entre actifs financiers peut-être modélisée à<br />

l’ai<strong>de</strong> d’une copule gaussienne. Nous trouvons que certaines <strong>de</strong>vises ainsi que la plupart <strong>de</strong>s principales<br />

actions cotées sur le NYSE sont comp<strong>at</strong>ibles avec c<strong>et</strong>te hypothèse, tandis qu’elle est fortement rej<strong>et</strong>ée<br />

quand il s’agit <strong>de</strong> décrire la dépendance entre m<strong>at</strong>ières premières (métaux). Cependant, en dépit <strong>de</strong><br />

l’apparente qualific<strong>at</strong>ion <strong>de</strong> l’hypothèse <strong>de</strong> copule gaussienne pour la plupart <strong>de</strong>s actions <strong>et</strong> <strong>de</strong>vises, une<br />

copule non gaussienne, telle qu’une copule <strong>de</strong> Stu<strong>de</strong>nt, ne peut être rej<strong>et</strong>ée par nos tests si elle a un<br />

nombre <strong>de</strong> <strong>de</strong>grés <strong>de</strong> liberté suffisamment grand . En conséquence, il peut être dangereux d’accepter<br />

aveuglément l’hypothèse <strong>de</strong> copule gaussienne, tout particulièrement quand le coefficient <strong>de</strong> corrél<strong>at</strong>ion<br />

entre les paires d’actifs est important <strong>de</strong> sorte que l’existence d’une dépendance <strong>de</strong> queue, totalement<br />

ignorée par la copule gaussienne, peut conduire à négliger <strong>de</strong>s événements extrêmes se produisant <strong>de</strong><br />

manière concomitante.<br />

191


192 8. Tests <strong>de</strong> copule gaussienne


Testing the Gaussian Copula Hypothesis<br />

for Financial Ass<strong>et</strong>s Depen<strong>de</strong>nces ∗<br />

Y. Malevergne 1,2 and D. Sorn<strong>et</strong>te 1,3<br />

1 Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>ière Con<strong>de</strong>nsée CNRS UMR 6622<br />

Université <strong>de</strong> Nice-Sophia Antipolis, 06108 Nice Ce<strong>de</strong>x 2, France<br />

2 Institut <strong>de</strong> Science Financière <strong>et</strong> d’Assurances - Université Lyon I<br />

43, Bd du 11 Novembre 1918, 69622 Villeurbanne Ce<strong>de</strong>x<br />

3 Institute of Geophysics and Plan<strong>et</strong>ary Physics and Department of Earth and Space Science<br />

University of California, Los Angeles, California 90095, USA<br />

Corresponding author: D. Sorn<strong>et</strong>te<br />

Institute of Geophysics and Plan<strong>et</strong>ary Physics<br />

University of California, Los Angeles, California 90095, USA<br />

email: sorn<strong>et</strong>te@ess.ucla.edu tel: (310) 825 28 63 Fax: (310) 206 30 51<br />

Submitted to Quantit<strong>at</strong>ive Finance<br />

Abstract<br />

Using one of the key property of copulas th<strong>at</strong> they remain invariant un<strong>de</strong>r an arbitrary monotonous<br />

change of variable, we investig<strong>at</strong>e the null hypothesis th<strong>at</strong> the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween financial ass<strong>et</strong>s<br />

can be mo<strong>de</strong>led by the Gaussian copula. We find th<strong>at</strong> most pairs of currencies and pairs of major<br />

stocks are comp<strong>at</strong>ible with the Gaussian copula hypothesis, while this hypothesis can be rejected for<br />

the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween pairs of commodities (m<strong>et</strong>als). Notwithstanding the apparent qualific<strong>at</strong>ion<br />

of the Gaussian copula hypothesis for most of the currencies and the stocks, a non-Gaussian copula,<br />

such as the Stu<strong>de</strong>nt’s copula, cannot be rejected if it has sufficiently many “<strong>de</strong>grees of freedom”. As a<br />

consequence, it may be very dangerous to embrace blindly the Gaussian copula hypothesis, especially<br />

when the correl<strong>at</strong>ion coefficient b<strong>et</strong>ween the pair of ass<strong>et</strong> is too high as the tail <strong>de</strong>pen<strong>de</strong>nce neglected<br />

by the Gaussian copula can be as large as 0.6, i.e., three out five extreme events which occur in unison<br />

are missed.<br />

JEL Classific<strong>at</strong>ion: C12, C15, F31, G19<br />

Keywords: Copulas, Depen<strong>de</strong>nce Mo<strong>de</strong>lis<strong>at</strong>ion, Risk Management, Tail Depen<strong>de</strong>nce.<br />

∗ We acknowledge helpful discussions and exchanges with J. An<strong>de</strong>rsen, P. Embrechts, J.P. Laurent, F. Lindskog, V. Pisarenko<br />

and R. Valkanov. This work was partially supported by the James S. Mc Donnell Found<strong>at</strong>ion 21st century scientist<br />

award/studying complex system.<br />

1<br />

193


194 8. Tests <strong>de</strong> copule gaussienne<br />

1 Introduction<br />

The d<strong>et</strong>ermin<strong>at</strong>ion of the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s un<strong>de</strong>rlies many financial activities, such as risk<br />

assessment and portfolio management, as well as option pricing and hedging. Following (Markovitz<br />

1959), the covariance and correl<strong>at</strong>ion m<strong>at</strong>rices have, for a long time, been consi<strong>de</strong>red as the main tools<br />

for quantifying the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s. But the dimension of risk captured by the correl<strong>at</strong>ion<br />

m<strong>at</strong>rices is only s<strong>at</strong>isfying for elliptic distributions and for mo<strong>de</strong>r<strong>at</strong>e risk amplitu<strong>de</strong>s (Sorn<strong>et</strong>te <strong>et</strong> al.<br />

2000a). In all other cases, this measure of risk is severely incompl<strong>et</strong>e and can lead to a very strong<br />

un<strong>de</strong>restim<strong>at</strong>ion of the real incurred risks (Embrechts <strong>et</strong> al. 1999).<br />

Although the unidimensional (marginal) distributions of ass<strong>et</strong> r<strong>et</strong>urns are reasonably constrained<br />

by empirical d<strong>at</strong>a and are more or less s<strong>at</strong>isfactorily <strong>de</strong>scribed by a power law with tail in<strong>de</strong>x ranging<br />

b<strong>et</strong>ween 2 and 4 (De Vries 1994, Lux 1996, Pagan 1996, Guillaume <strong>et</strong> al. 1997, Gopikrishnan <strong>et</strong> al. 1998)<br />

or by str<strong>et</strong>ched exponentials (Laherrère and Sorn<strong>et</strong>te 1998, Gouriéroux and Jasiak 1999, Sorn<strong>et</strong>te <strong>et</strong><br />

al. 2000a, Sorn<strong>et</strong>te <strong>et</strong> al. 2000b), no equivalent results have been obtained for multivari<strong>at</strong>e distributions<br />

of ass<strong>et</strong> r<strong>et</strong>urns. In<strong>de</strong>ed, a brute force d<strong>et</strong>ermin<strong>at</strong>ion of multivari<strong>at</strong>e distributions is unreliable due to the<br />

limited d<strong>at</strong>a s<strong>et</strong> (the curse of dimensionality), while the sole knowledge of marginals (one-point st<strong>at</strong>istics)<br />

of each ass<strong>et</strong> is not sufficient to obtain inform<strong>at</strong>ion on the multivari<strong>at</strong>e distribution of these ass<strong>et</strong>s which<br />

involves all the n-points st<strong>at</strong>istics.<br />

Some progress may be expected from the concept of copulas, recently proposed to be useful for financial<br />

applic<strong>at</strong>ions (Embrechts <strong>et</strong> al. 2001, Frees and Val<strong>de</strong>z 1998, Haas 1999, Klugman and Parsa 1999).<br />

This concept has the <strong>de</strong>sirable property of <strong>de</strong>coupling the study of the marginal distribution of each ass<strong>et</strong><br />

from the study of their collective behavior or <strong>de</strong>pen<strong>de</strong>nce. In<strong>de</strong>ed, the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s is<br />

entirely embed<strong>de</strong>d in the copula, so th<strong>at</strong> a copula allows for a simple <strong>de</strong>scription of the <strong>de</strong>pen<strong>de</strong>nce structure<br />

b<strong>et</strong>ween ass<strong>et</strong>s in<strong>de</strong>pen<strong>de</strong>ntly of the marginals. For instance, ass<strong>et</strong>s can have power law marginals<br />

and a Gaussian copula or altern<strong>at</strong>ively Gaussian marginals and a non-Gaussian copula, and any possible<br />

combin<strong>at</strong>ion thereof. Therefore, the d<strong>et</strong>ermin<strong>at</strong>ion of the multivari<strong>at</strong>e distribution of ass<strong>et</strong>s can be<br />

performed in two steps : (i) an in<strong>de</strong>pen<strong>de</strong>nt d<strong>et</strong>ermin<strong>at</strong>ion of the marginal distributions using standard<br />

techniques for distributions of a single variable ; (ii) a study of the n<strong>at</strong>ure of the copula characterizing<br />

compl<strong>et</strong>ely the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the ass<strong>et</strong>s. This exact separ<strong>at</strong>ion b<strong>et</strong>ween the marginal distributions<br />

and the <strong>de</strong>pen<strong>de</strong>nce is potentially very useful for risk management or option pricing and sensitivity analysis<br />

since it allows for testing several scenarios with different kind of <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween ass<strong>et</strong>s while<br />

the marginals can be s<strong>et</strong> to their well-calibr<strong>at</strong>ed empirical estim<strong>at</strong>es. Such an approach has been used by<br />

(Embrechts <strong>et</strong> al. 2001) to provi<strong>de</strong> various bounds for the Value-<strong>at</strong>-Risk of a portfolio ma<strong>de</strong> of <strong>de</strong>pend<br />

risks, and by (Rosenberg 1999) or (Cherubini and Luciano 2000) to price and to analyse the pricing<br />

sensitivity of binary digital options or options on the minimum of a bask<strong>et</strong> of ass<strong>et</strong>s.<br />

A fundamental limit<strong>at</strong>ion of the copula approach is th<strong>at</strong> there is in principle an infinite number of possible<br />

copulas (Genest and MacKay 1986, Genest 1987, Genest and Rivest 1993, Joe 1993, Nelsen 1998)<br />

and, up to now, no general empirical study has d<strong>et</strong>ermined the classes of copulas th<strong>at</strong> are acceptable for<br />

financial problems. In general, the choice of a given copula is gui<strong>de</strong>d both by the empirical evi<strong>de</strong>nces<br />

and the technical constraints, i.e., the number of param<strong>et</strong>ers necessary to <strong>de</strong>scribe the copula, the possibility<br />

to obtain efficient estim<strong>at</strong>ors of these param<strong>et</strong>ers and also the possiblity offered by the chosen<br />

param<strong>et</strong>eriz<strong>at</strong>ion to allow for tractable analytical calcul<strong>at</strong>ion. It is in<strong>de</strong>ed som<strong>et</strong>imes more advantageous<br />

to prefer a simplest copula to one th<strong>at</strong> fit b<strong>et</strong>ter the d<strong>at</strong>a, provi<strong>de</strong>d th<strong>at</strong> we can clearly quantify the effects<br />

of this substitution.<br />

In this vein, the first goal of the present article is to show th<strong>at</strong>, in most cases, the Gaussian copula<br />

2


can provi<strong>de</strong> an approxim<strong>at</strong>ion of the unknown true copula th<strong>at</strong> is sufficiently good so th<strong>at</strong> it cannot be<br />

rejected on a st<strong>at</strong>istical basis. Our second goal is to draw the consequences of the param<strong>et</strong>eriz<strong>at</strong>ion<br />

involved in the Gaussian copula in term of potential over/un<strong>de</strong>restim<strong>at</strong>ion of the risks, in particular for<br />

large and extreme events.<br />

The paper is organized as follows.<br />

In section 2, we first recall some important general <strong>de</strong>finitions and theorems about copulas th<strong>at</strong> will<br />

be useful in the sequel. We then introduce the concept of tail <strong>de</strong>pen<strong>de</strong>nce th<strong>at</strong> will allow us to quantify<br />

the probability th<strong>at</strong> two extreme events might occur simultaneously. We <strong>de</strong>fine and <strong>de</strong>scribe the two<br />

copulas th<strong>at</strong> will be <strong>at</strong> the core of our study : the Gaussian copula and the Stu<strong>de</strong>nt’s copula and compare<br />

their properties particularly in the tails.<br />

In section 3, we present our st<strong>at</strong>istical testing procedure which is applied to pairs of financial time<br />

series. First of all, we d<strong>et</strong>ermine a test st<strong>at</strong>istics which leads us to compare the empirical distribution of<br />

the d<strong>at</strong>a with a χ 2 -distribution using a bootstrap m<strong>et</strong>hod. We also test the sensitivity of our procedure<br />

by applying it to synth<strong>et</strong>ic multivari<strong>at</strong>e Stu<strong>de</strong>nt’s time series. This allows us to d<strong>et</strong>ermine the minimum<br />

st<strong>at</strong>istical test value nee<strong>de</strong>d to be able to distinguish b<strong>et</strong>ween a Gaussian and a Stu<strong>de</strong>nt’s copula, as a<br />

function of the number of <strong>de</strong>grees of freedom and of the correl<strong>at</strong>ion strength.<br />

Section 4 presents the empirical results obtained for the following ass<strong>et</strong>s which are combined pairwise<br />

in the test st<strong>at</strong>istics:<br />

• 6 currencies,<br />

• 6 m<strong>et</strong>als tra<strong>de</strong>d on the London M<strong>et</strong>al Exchange,<br />

• 22 stocks choosen among the largest companies quoted on the New York Stocks Exchange.<br />

We show th<strong>at</strong> the Gaussian copula hypothesis is very reasonnable for most stocks and currencies, while<br />

it is hardly comp<strong>at</strong>ible with the <strong>de</strong>scription of multivari<strong>at</strong>e behavior for m<strong>et</strong>als.<br />

Section 5 summarizes our results and conclu<strong>de</strong>s.<br />

2 Generalities about copulas<br />

2.1 Definitions and important results about copulas<br />

This section does not pr<strong>et</strong>end to provi<strong>de</strong> a rigorous m<strong>at</strong>hem<strong>at</strong>ical exposition of the concept of copula. We<br />

only recall a few basic <strong>de</strong>finitions and theorems th<strong>at</strong> will be useful in the following (for more inform<strong>at</strong>ion<br />

about the concept of copula, see for instance (Lindskog 1999, Nelsen 1998)).<br />

We first give the <strong>de</strong>finition of a copula of n random variables.<br />

DEFINITION 1 (COPULA)<br />

A function C : [0, 1] n −→ [0, 1] is a n-copula if it enjoys the following properties :<br />

• ∀u ∈ [0, 1], C(1, · · · , 1, u, 1 · · · , 1) = u ,<br />

• ∀ui ∈ [0, 1], C(u1, · · · , un) = 0 if <strong>at</strong> least one of the ui equals zero ,<br />

3<br />

195


196 8. Tests <strong>de</strong> copule gaussienne<br />

• C is groun<strong>de</strong>d and n-increasing, i.e., the C-volume of every boxes whose vertices lie in [0, 1] n is<br />

positive.<br />

It is clear from this <strong>de</strong>finition th<strong>at</strong> a copula is nothing but a multivari<strong>at</strong>e distribution with support<br />

in [0,1] n and with uniform marginals. The fact th<strong>at</strong> such copulas can be very useful for representing<br />

multivari<strong>at</strong>e distributions with arbitrary marginals is seen from the following result.<br />

THEOREM 1 (SKLAR’S THEOREM)<br />

Given an n-dimensional distribution function F with continuous marginal (cumul<strong>at</strong>ive) distributions<br />

F1, · · · , Fn, there exists a unique n-copula C : [0, 1] n −→ [0, 1] such th<strong>at</strong> :<br />

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)) . (1)<br />

This theorem provi<strong>de</strong>s both a param<strong>et</strong>eriz<strong>at</strong>ion of multivari<strong>at</strong>e distributions and a construction scheme<br />

for copulas. In<strong>de</strong>ed, given a multivari<strong>at</strong>e distribution F with marginals F1, · · · , Fn, the function<br />

C(u1, · · · , un) = F F −1<br />

1 (u1), · · · , F −1<br />

n (un) <br />

is autom<strong>at</strong>ically a n-copula. This copula is the copula of the multivari<strong>at</strong>e distribution F . We will use this<br />

m<strong>et</strong>hod in the sequel to <strong>de</strong>rive the expressions of standard copulas such as the Gaussian copula or the<br />

Stu<strong>de</strong>nt’s copula.<br />

A very powerful property of copulas is their invariance un<strong>de</strong>r arbitrary strictly increasing mapping<br />

of the random variables :<br />

THEOREM 2 (INVARIANCE THEOREM)<br />

Consi<strong>de</strong>r n continuous random variables X1, · · · , Xn with copula C. Then, if g1(X1), · · · , gn(Xn) are<br />

strictly increasing on the ranges of X1, · · · , Xn, the random variables Y1 = g1(X1), · · · , Yn = gn(Xn)<br />

have exactly the same copula C.<br />

It is this result th<strong>at</strong> shows us th<strong>at</strong> the full <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the n random variables is compl<strong>et</strong>ely<br />

captured by the copula, in<strong>de</strong>pen<strong>de</strong>ntly of the shape of the marginal distributions. This result is <strong>at</strong> the<br />

basis of our st<strong>at</strong>istical study presented in section 3.<br />

2.2 Depen<strong>de</strong>nce b<strong>et</strong>ween random variables<br />

The <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two time series is usually <strong>de</strong>scribed by their correl<strong>at</strong>ion coefficient. This measure<br />

is fully s<strong>at</strong>isfactory only for elliptic distributions (Embrechts <strong>et</strong> al. 1999), which are functions of a<br />

quadr<strong>at</strong>ic form of the random variables, when one is interested in mo<strong>de</strong>r<strong>at</strong>ely size events. However, an<br />

important issue for risk management concerns the d<strong>et</strong>ermin<strong>at</strong>ion of the <strong>de</strong>pen<strong>de</strong>nce of the distributions in<br />

the tails. Practically, the question is wh<strong>et</strong>her it is more probable th<strong>at</strong> large or extreme events occur simultaneously<br />

or on the contrary more or less in<strong>de</strong>pen<strong>de</strong>ntly. This is refered to as the presence or abscence<br />

of “tail <strong>de</strong>pen<strong>de</strong>nce”.<br />

The tail <strong>de</strong>pen<strong>de</strong>nce is also an interesting concept in studying the contagion of crises b<strong>et</strong>ween mark<strong>et</strong>s<br />

or countries. These questions have recently been addressed by (Ang and Cheng 2001, Longin and Solnik<br />

2001, Starica 1999) among several others. Large neg<strong>at</strong>ive moves in a country or mark<strong>et</strong> are often found<br />

to imply large neg<strong>at</strong>ive moves in others.<br />

Technically, we need to d<strong>et</strong>ermine the probability th<strong>at</strong> a random variable X is large, knowing th<strong>at</strong><br />

the random variable Y is large.<br />

4<br />

(2)


DEFINITION 2 (TAIL DEPENDENCE 1)<br />

L<strong>et</strong> X and Y be random variables with continuous marginals FX and FY . The (upper) tail <strong>de</strong>pen<strong>de</strong>nce<br />

coefficient of X and Y is, if it exists,<br />

lim<br />

u→1<br />

Pr{X > F −1<br />

X<br />

197<br />

−1<br />

(u)|Y > F (u)} = λ ∈ [0, 1] . (3)<br />

In words, given th<strong>at</strong> Y is very large (which occurs with probability 1 − u), the probability th<strong>at</strong> X is very<br />

large <strong>at</strong> the same probability level u <strong>de</strong>fines asymptotically the tail <strong>de</strong>pen<strong>de</strong>nce coefficient λ.<br />

It turns out th<strong>at</strong> this tail <strong>de</strong>pen<strong>de</strong>nce is a pure copula property which is in<strong>de</strong>pen<strong>de</strong>nt of the marginals. L<strong>et</strong><br />

C be the copula of the variables X and Y , then<br />

THEOREM 3<br />

if the bivari<strong>at</strong>e copula C is such th<strong>at</strong><br />

lim<br />

u→1<br />

¯C(u, u)<br />

1 − u<br />

Y<br />

= λ (4)<br />

exists (where ¯ C(u, u) = 1 − 2u − C(u, u)), then C has an upper tail <strong>de</strong>pen<strong>de</strong>nce coefficient λ.<br />

If λ > 0, the copula presents tail <strong>de</strong>pen<strong>de</strong>nce and large events tend to occur simultanously, with the<br />

probabilty λ. On the contrary, when λ = 0, the copula has no tail <strong>de</strong>pen<strong>de</strong>nce in this sense and large<br />

events appear to occur essentially in<strong>de</strong>pen<strong>de</strong>ntly. There is however a subtl<strong>et</strong>y in this <strong>de</strong>finition of tail<br />

<strong>de</strong>pen<strong>de</strong>nce. To make it clear, first consi<strong>de</strong>r the case where for large X and Y the distribution function<br />

F (x, y) factorizes such th<strong>at</strong><br />

lim<br />

x,y→∞<br />

F (x, y)<br />

= 1 . (5)<br />

FX(x)FY (y)<br />

This means th<strong>at</strong>, for X and Y sufficiently large, these two variables can be consi<strong>de</strong>red as in<strong>de</strong>pen<strong>de</strong>nt. It<br />

is then easy to show th<strong>at</strong><br />

lim<br />

u→1<br />

Pr{X > F −1<br />

X<br />

−1<br />

(u)|Y > F (u)} = lim<br />

Y<br />

u→1<br />

so th<strong>at</strong> in<strong>de</strong>pen<strong>de</strong>nt variables really have no tail <strong>de</strong>pen<strong>de</strong>nce, as one can expect.<br />

−1<br />

1 − FX(FX (u)) (6)<br />

= lim<br />

u→1 1 − u = 0, (7)<br />

Unfortun<strong>at</strong>ly, the converse does not holds : a value λ = 0 does not autom<strong>at</strong>ically imply true in<strong>de</strong>pen<strong>de</strong>nce,<br />

namely th<strong>at</strong> F (x, y) s<strong>at</strong>isfies equ<strong>at</strong>ion (5). In<strong>de</strong>ed, the tail in<strong>de</strong>pen<strong>de</strong>nce criterion λ = 0 may<br />

still be associ<strong>at</strong>ed with an absence of factoriz<strong>at</strong>ion of the multivari<strong>at</strong>e distribution for large X and Y .<br />

In a weaker sense, there may still be a <strong>de</strong>pen<strong>de</strong>nce in the tail even when λ = 0. Such behavior is for<br />

instance exhibited by the Gaussian copula, which has zero tail <strong>de</strong>pen<strong>de</strong>nce according to the <strong>de</strong>finition 2<br />

but nevertheless does not have a factorizable multivari<strong>at</strong>e distribution, since the non-diagonal term of the<br />

quadr<strong>at</strong>ic form in the exponential function does not become negligible in general as X and Y go to infinity.<br />

To summarize, the tail in<strong>de</strong>pen<strong>de</strong>nce, according to <strong>de</strong>finition 2, is not equivalent to the in<strong>de</strong>pen<strong>de</strong>nce<br />

in the tail as <strong>de</strong>fined in equ<strong>at</strong>ion (5).<br />

After this brief review of the main concepts un<strong>de</strong>rlying copulas, we now present two special families<br />

of copulas : the Gaussian copula and the Stu<strong>de</strong>nt’s copula.<br />

5


198 8. Tests <strong>de</strong> copule gaussienne<br />

2.3 The Gaussian copula<br />

The Gaussian copula is the copula <strong>de</strong>rived from the multivari<strong>at</strong>e Gaussian distribution. L<strong>et</strong> Φ <strong>de</strong>note<br />

the standard Normal (cumul<strong>at</strong>ive) distribution and Φρ,n the n-dimensional Gaussian distribution with<br />

correl<strong>at</strong>ion m<strong>at</strong>rix ρ. Then, the Gaussian n-copula with correl<strong>at</strong>ion m<strong>at</strong>rix ρ is<br />

whose <strong>de</strong>nsity<br />

reads<br />

−1<br />

Cρ(u1, · · · , un) = Φρ,n Φ (u1), · · · , Φ −1 (un) , (8)<br />

cρ(u1, · · · , un) =<br />

cρ(u1, · · · , un) = ∂Cρ(u1, · · · , un)<br />

∂u1 · · · ∂un<br />

<br />

1<br />

√ exp −<br />

d<strong>et</strong> ρ 1<br />

2 yt (u) (ρ−1 <br />

− Id)y (u)<br />

with yk(u) = Φ −1 (uk). Note th<strong>at</strong> theorem 1 and equ<strong>at</strong>ion (2) ensure th<strong>at</strong> Cρ(u1, · · · , un) in equ<strong>at</strong>ion (8)<br />

is a copula.<br />

As we said before, the Gaussian copula does not have a tail <strong>de</strong>pen<strong>de</strong>nce :<br />

lim<br />

u→1<br />

¯Cρ(u, u)<br />

1 − u<br />

(9)<br />

(10)<br />

= 0, ∀ρ ∈ (−1, 1). (11)<br />

This results is <strong>de</strong>rived for example in (Embrechts <strong>et</strong> al. 2001). But this does not mean th<strong>at</strong> the Gaussian<br />

copula goes to the in<strong>de</strong>pen<strong>de</strong>nt (or product) copula Π(u1, u2) = u1 · u2 when (u1, u2) goes to one.<br />

In<strong>de</strong>ed, consi<strong>de</strong>r a distribution F (x, y) with Gaussian copula :<br />

Its <strong>de</strong>nsity is<br />

where fX and fY are the <strong>de</strong>nsities of X and Y . Thus,<br />

F (x, y) = Cρ(FX(x), FY (y)). (12)<br />

f(x, y) = cρ(FX(x), FY (y)) · fX(x) · fY (y), (13)<br />

f(x, y)<br />

lim<br />

= lim<br />

(x,y)→∞ fX(x) · fY (y) (x,y)→∞ cρ(FX(x), FY (y)), (14)<br />

which should equal 1 if the variables X and Y were in<strong>de</strong>pen<strong>de</strong>nt in the tail. Reasoning in the quantile<br />

space, we s<strong>et</strong> x = F −1<br />

−1<br />

X (u) and y = FY (u), which yield<br />

f(x, y)<br />

lim<br />

= lim<br />

(x,y)→∞ fX(x) · fY (y) u→1 cρ(u, u). (15)<br />

Using equ<strong>at</strong>ion (10), it is now obvious to show th<strong>at</strong> cρ(u, u) goes to one when u goes to one, if and<br />

only if ρ = 0 which is equivalent to Cρ=0(u1, u2) = Π(u1, u2) for every (u1, u2). When ρ > 0, cρ(u, u)<br />

goes to infinity, while for ρ neg<strong>at</strong>ive, cρ(u, u) goes to zero as u → 1. Thus, the <strong>de</strong>pen<strong>de</strong>nce structure<br />

<strong>de</strong>scribed by the Gaussian copula is very different from the <strong>de</strong>pen<strong>de</strong>nce structure of the in<strong>de</strong>pen<strong>de</strong>nt<br />

copula, except for ρ = 0.<br />

The Gaussian copula is compl<strong>et</strong>ly d<strong>et</strong>ermined by the knowledge of the correl<strong>at</strong>ion m<strong>at</strong>rix ρ. The<br />

param<strong>et</strong>ers involved in the <strong>de</strong>scription of the Gaussian copula are very simple to estim<strong>at</strong>e, as we shall<br />

see in the following.<br />

6


In our tests presented below, we focus on pairs of ass<strong>et</strong>s, i.e., on Gaussian copulas involving only<br />

two random variables. Testing the Gaussian copula hypothesis for two random variables gives useful<br />

inform<strong>at</strong>ion for a larger number of <strong>de</strong>pen<strong>de</strong>nt variables constituting a large bask<strong>et</strong> or portfolio. In<strong>de</strong>ed,<br />

l<strong>et</strong> us assume th<strong>at</strong> each pair (a, b), (b, c) and (c, a) have a gaussian copula. Then, the tripl<strong>et</strong> (a, b, c) has<br />

also a Gaussian copula. This result generalizes to an arbitrary number of random variables.<br />

2.4 The Stu<strong>de</strong>nt’s copula<br />

The Stu<strong>de</strong>nt’s copula is <strong>de</strong>rived from the Stu<strong>de</strong>nt’s multivari<strong>at</strong>e distribution. Given a multivari<strong>at</strong>e Stu<strong>de</strong>nt’s<br />

distribution Tρ,ν with ν <strong>de</strong>grees of freedom and a correl<strong>at</strong>ion m<strong>at</strong>rix ρ<br />

1 Γ<br />

Tρ,ν(x) = √<br />

d<strong>et</strong> ρ<br />

<br />

ν+n<br />

2<br />

Γ <br />

ν<br />

2 (πν) N/2<br />

the corresponding Stu<strong>de</strong>nt’s copula reads :<br />

Cρ,ν(u1, · · · , un) = Tρ,ν<br />

x1<br />

−∞<br />

xN<br />

· · ·<br />

−∞<br />

<br />

dx<br />

1 + xt ρx<br />

ν<br />

ν+n<br />

2<br />

199<br />

, (16)<br />

t −1<br />

ν (u1), · · · , t −1<br />

ν (un) , (17)<br />

where tν is the univari<strong>at</strong>e Stu<strong>de</strong>nt’s distribution with ν <strong>de</strong>grees of freedom. The <strong>de</strong>nsity of the Stu<strong>de</strong>nt’s<br />

copula is thus<br />

where yk = t −1<br />

ν (uk).<br />

cρ,ν(u1, · · · , un) =<br />

1 Γ<br />

√<br />

d<strong>et</strong> ρ<br />

<br />

ν+n ν<br />

2 Γ<br />

<br />

ν+1 Γ 2<br />

n−1 2<br />

n<br />

<br />

n<br />

k=1<br />

<br />

1 + y2 k<br />

ν<br />

1 + yt ρy<br />

ν<br />

ν+1<br />

2<br />

ν+n<br />

2<br />

, (18)<br />

Since the Stu<strong>de</strong>nt’s distribution tends to the normal distribution when ν goes to infinity, the Stu<strong>de</strong>nt’s<br />

copula tends to the Gaussian copula as ν → +∞. In contrast to the Gaussian copula, the Stu<strong>de</strong>nt’s<br />

copula for ν finite presents a tail <strong>de</strong>pen<strong>de</strong>nce given by :<br />

λν(ρ) = lim<br />

u→1<br />

¯Cρ,ν(u, u)<br />

1 − u<br />

= 2¯tν+1<br />

√ √ <br />

ν + 1 1 − ρ<br />

√<br />

1 + ρ<br />

, (19)<br />

where ¯tν+1 is the complementary cumul<strong>at</strong>ive univari<strong>at</strong>e Stu<strong>de</strong>nt’s distribution with ν + 1 <strong>de</strong>grees of<br />

freedom (see (Embrechts <strong>et</strong> al. 2001) for the proof). Figure 1 shows the upper tail <strong>de</strong>pen<strong>de</strong>nce coefficient<br />

as a function of the correl<strong>at</strong>ion coefficient ρ for different values of the number ν of <strong>de</strong>grees of freedom.<br />

As expected from the fact th<strong>at</strong> the Stu<strong>de</strong>nt’s copula becomes i<strong>de</strong>ntical to the Gaussian copula for ν →<br />

+∞ for all ρ = 1, λν(ρ) exhibits a regular <strong>de</strong>cay to zero as ν increases. Moreover, for ν sufficiently large,<br />

the tail <strong>de</strong>pen<strong>de</strong>nce is significantly different from 0 only when the correl<strong>at</strong>ion coefficient is sufficiently<br />

close to 1. This suggests th<strong>at</strong>, for mo<strong>de</strong>r<strong>at</strong>e values of the correl<strong>at</strong>ion coefficient, a Stu<strong>de</strong>nt’s copula with<br />

a large number of <strong>de</strong>grees of freedom may be difficult to distinguish from the Gaussian copula from a<br />

st<strong>at</strong>istical point of view. This st<strong>at</strong>ement will be ma<strong>de</strong> quantit<strong>at</strong>ive in the following.<br />

Figure 2 presents the same inform<strong>at</strong>ion in a different way by showing the maximum value of the<br />

correl<strong>at</strong>ion coefficient ρ as a function of ν, below which the tail <strong>de</strong>pen<strong>de</strong>nce λν(ρ) of a Stu<strong>de</strong>nt’s copula<br />

is smaller than a given small value, here taken equal to 1%, 2.5%, 5% and 10%. The choice λν(ρ) = 5%<br />

for instance corresponds to 1 event in 20 for which the pair of variables are asymptotically coupled. At<br />

7


200 8. Tests <strong>de</strong> copule gaussienne<br />

the 95% probability level, values of λν(ρ) ≤ 5% are undistinguishable from 0, which means th<strong>at</strong> the<br />

Stu<strong>de</strong>nt’s copula can be approxim<strong>at</strong>ed by a Gaussian copula.<br />

The <strong>de</strong>scription of a Stu<strong>de</strong>nt’s copula relies on two param<strong>et</strong>ers : the correl<strong>at</strong>ion m<strong>at</strong>rix ρ, as in the<br />

Gaussian case, and in addition the number of <strong>de</strong>grees of freedom ν. The estim<strong>at</strong>ion of the param<strong>et</strong>er ν<br />

is r<strong>at</strong>her difficult and this has an important impact on the estim<strong>at</strong>ed value of the correl<strong>at</strong>ion m<strong>at</strong>rix. As a<br />

consequence, the Stu<strong>de</strong>nt’s copula is more difficult to calibr<strong>at</strong>e and use than the Gaussian copula.<br />

3 Testing the Gaussian copula hypothesis<br />

In view of the central role th<strong>at</strong> the Gaussian paradigm has played and still plays in particular in finance, it<br />

is n<strong>at</strong>ural to start with the simplest choice of <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween different random variables, namely the<br />

Gaussian copula. It is also a n<strong>at</strong>ural first step as the Gaussian copula imposes itself in an approach which<br />

consists in (1) performing a nonlinear transform<strong>at</strong>ion on the random variables into Normal random variables<br />

(for the marginals) which is always possible and (2) invoking a maximum entropy principle (which<br />

amounts to add the least additional inform<strong>at</strong>ion in the Shannon sense) to construct the multivariable distribution<br />

of these Gaussianized random variables (Sorn<strong>et</strong>te <strong>et</strong> al. 2000a, Sorn<strong>et</strong>te <strong>et</strong> al. 2000b, An<strong>de</strong>rsen<br />

and Sorn<strong>et</strong>te 2001).<br />

In the sequel, we will <strong>de</strong>note by H0 the null hypothesis according to which the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween<br />

two (or more) random variables X and Y can be <strong>de</strong>scribed by the Gaussian copula.<br />

3.1 Test St<strong>at</strong>istics<br />

We now <strong>de</strong>rive the test st<strong>at</strong>istics which will allow us to reject or not our null hypothesis H0 and st<strong>at</strong>e the<br />

following proposition:<br />

PROPOSITION 1<br />

Assuming th<strong>at</strong> the N-dimensionnal random vector x = (x1, · · · , xN) with distribution function F and<br />

marginals Fi, s<strong>at</strong>isfies the null hypothesis H0, then, the variable<br />

where the m<strong>at</strong>rix ρ is<br />

z 2 =<br />

N<br />

j,i=1<br />

follows a χ 2 -distribution with N <strong>de</strong>grees of freedom.<br />

Φ −1 (Fi(xi)) (ρ −1 )ij Φ −1 (Fj(xj)), (20)<br />

ρij = Cov[Φ −1 (Fi(xi)), Φ −1 (Fj(xj))], (21)<br />

To proove the proposition above, first consi<strong>de</strong>r an N-dimensionnal random vector x = (x1, · · · , xN).<br />

L<strong>et</strong> us <strong>de</strong>note by F its distribution function and by Fi the marginal distribution of each xi. L<strong>et</strong> us now<br />

assume th<strong>at</strong> the distribution function F s<strong>at</strong>isfies H0, so th<strong>at</strong> F has a Gaussian copula with correl<strong>at</strong>ion<br />

m<strong>at</strong>rix ρ while the Fi’s can be any distribution function. According to theorem 1, the distribution F can<br />

be represented as :<br />

F (x1, · · · , xN) = Φρ,N(Φ −1 (F1(x1)), · · · , Φ −1 (FN(xN))) . (22)<br />

L<strong>et</strong> us now transform the xi’s into Normal random variables yi’s :<br />

yi = Φ −1 (Fi(xi)) . (23)<br />

8


Since the mapping Φ −1 (Fi(·)) is obviously increasing, theorem 2 allows us to conclu<strong>de</strong> th<strong>at</strong> the copula<br />

of the variables yi’s is i<strong>de</strong>ntical to the copula of the variables xi’s. Therefore, the variables yi’s have<br />

Normal marginal distributions and a Gaussian copula with correl<strong>at</strong>ion m<strong>at</strong>rix ρ. Thus, by <strong>de</strong>finition, the<br />

multivari<strong>at</strong>e distribution of the yi’s is the multivari<strong>at</strong>e Gaussian distribution with correl<strong>at</strong>ion m<strong>at</strong>rix ρ :<br />

201<br />

G(y) = Φρ,N(Φ −1 (F1(x1)), · · · , Φ −1 (FN(xN))) (24)<br />

= Φρ,N(y1, · · · , yN), (25)<br />

and y is a Gaussian random vector. From equ<strong>at</strong>ions (24-25), we obviously have<br />

Consi<strong>de</strong>r now the random variable<br />

ρij = Cov[Φ −1 (Fi(xi)), Φ −1 (Fj(xj))]. (26)<br />

z 2 = y t ρ −1 y =<br />

N<br />

yi (ρ −1 )ij yj , (27)<br />

i,j=1<br />

where · t <strong>de</strong>notes the transpose oper<strong>at</strong>or. This variable has already been consi<strong>de</strong>red in (Sorn<strong>et</strong>te <strong>et</strong> al.<br />

2000a) in preliminary st<strong>at</strong>istical tests of the transform<strong>at</strong>ion (23). It is well-known th<strong>at</strong> the variable z 2<br />

follows a χ 2 -distribution with N <strong>de</strong>grees of freedom. In<strong>de</strong>ed, since y is a Gaussian random vector with<br />

covariance m<strong>at</strong>rix 1 ρ, it follows th<strong>at</strong> the components of the vector<br />

˜y = ρ −1/2 y, (28)<br />

are in<strong>de</strong>pen<strong>de</strong>nt Normal random variables. Here, ρ −1/2 <strong>de</strong>notes the square root of the m<strong>at</strong>rix ρ −1 , which<br />

can be obtain by the Cholevsky <strong>de</strong>composition, for instance. Thus, the sum ˜y t ˜y = z 2 is the sum of the<br />

squares of N in<strong>de</strong>pen<strong>de</strong>nt Normal random variables, which follows a χ 2 -distribution with N <strong>de</strong>grees of<br />

freedom.<br />

3.2 Testing procedure<br />

The testing procedure used in the sequel is now <strong>de</strong>scribed. We consi<strong>de</strong>r two financial series (N = 2) of<br />

size T : {x1(1), · · · , x1(t), · · · , x1(T )} and {x2(1), · · · , x2(t), · · · , x2(T )}. We assume th<strong>at</strong> the vectors<br />

x(t) = (x1(t), x2(t)), t ∈ {1, · · · , T } are in<strong>de</strong>pen<strong>de</strong>nt and i<strong>de</strong>nticaly distributed with distribution F ,<br />

which implies th<strong>at</strong> the variables x1(t) (respectively x2(t)), t ∈ {1, · · · , T }, are also in<strong>de</strong>pen<strong>de</strong>nt and<br />

i<strong>de</strong>ntically distributed, with distributions F1 (respectively F2).<br />

The cumul<strong>at</strong>ive distribution ˆ Fi of each variable xi, which is estim<strong>at</strong>ed empirically, is given by<br />

ˆFi(xi) = 1<br />

T<br />

T<br />

1 {xi


202 8. Tests <strong>de</strong> copule gaussienne<br />

The sample covariance m<strong>at</strong>rix ˆρ is estim<strong>at</strong>ed by the expression :<br />

which allows us to calcul<strong>at</strong>e the variable<br />

ˆz 2 (k) =<br />

ˆρ = 1<br />

T<br />

2<br />

i,j=1<br />

T<br />

ˆy(i) · ˆy(i) t<br />

i=1<br />

(31)<br />

ˆyi(k) ( ˆ<br />

ρ −1 )ij ˆyj(k) , (32)<br />

as <strong>de</strong>fined in (27) for k ∈ {1, · · · , T }, which should be asymptotically distributed according to a χ 2 -<br />

distribution if the Gaussian copula hypothesis is correct.<br />

The usual way for comparing an empirical with a theor<strong>et</strong>ical distribution is to measure the distance<br />

b<strong>et</strong>ween these two distributions and to perform the Kolmogorov test or the An<strong>de</strong>rson-Darling (An<strong>de</strong>rson<br />

and Darling 1952) test (for a b<strong>et</strong>ter accuracy in the tails of the distribution). The Kolmogorov distance<br />

is the maximum local distance along the quantile which most often occur in the bulk of the distribution,<br />

while the An<strong>de</strong>rson-Darling distance puts the emphasis on the tails of the two distributions by a suitable<br />

normaliz<strong>at</strong>ion. We propose to complement these two distances by two additional measures which are<br />

<strong>de</strong>fined as averages of the Kolmogorov distance and of the An<strong>de</strong>rson-Darling distance respectively:<br />

Kolmogorov : d1 = max |Fz2(z z<br />

2 ) − Fχ2(z 2 )|<br />

<br />

(33)<br />

average Kolmogorov : d2 = |Fz2(z 2 ) − Fz2(z 2 )| dFχ2(z 2 ) (34)<br />

An<strong>de</strong>rson − Darling : d3 = max<br />

z<br />

average An<strong>de</strong>rson − Darling : d4 =<br />

<br />

|F z 2(z 2 ) − F χ 2(z 2 )|<br />

<br />

F χ 2(z 2 )[1 − F χ 2(z 2 )]<br />

(35)<br />

|Fz2(z 2 ) − Fχ2(z2 )|<br />

<br />

Fχ2(z2 )[1 − Fχ2(z2 dFχ2(z )]<br />

2 ) (36)<br />

The Kolmogorov distance d1 and its average d2 are more sensitive to the <strong>de</strong>vi<strong>at</strong>ions occurring in the bulk<br />

of the distributions. In contrast, the An<strong>de</strong>rson-Darling distance d3 and its average d4 are more accur<strong>at</strong>e<br />

in the tails of the distributions. We present our st<strong>at</strong>istical tests for these four distances in or<strong>de</strong>r to be as<br />

compl<strong>et</strong>e as possible with respect to the different sensitivity of the tests.<br />

The distances d2 and d4 are not of common use in st<strong>at</strong>istics, so l<strong>et</strong> us justify our choice. One usually<br />

uses distances similar to d2 and d4 but which differ by the square instead of the modulus of F z 2(z 2 ) −<br />

F χ 2(z 2 ) and lead respectively to the ω-test and the Ω-test, whose st<strong>at</strong>itics are theor<strong>et</strong>ically known. The<br />

main advantage of the distances d2 and d4 with respect to the more usual distances ω and Ω is th<strong>at</strong> they<br />

are simply equal to the average of d1 and d3. This averaging is very interesting and provi<strong>de</strong>s important<br />

inform<strong>at</strong>ion. In<strong>de</strong>ed, the distances d1 and d3 are mainly controlled by the point th<strong>at</strong> maximizes the<br />

argument within the max(·) function. They are thus sensitive to the presence of an outlier. By averaging,<br />

d2 and d4 become less sensitive to outliers, since the weight of such points is only of or<strong>de</strong>r 1/T (where<br />

T is the size of the sample) while it equals one for d1 and d3. Of course, the distances ω and Ω also<br />

perform a smoothing since they are averaged quantities too. But they are the average of the square of<br />

d1 and d3 which leads to an un<strong>de</strong>sired overweighting of the largest events. In fact, this weight function<br />

is chosen as a convenient analytical form th<strong>at</strong> allows one to <strong>de</strong>rive explicitely the theor<strong>et</strong>ical asymptotic<br />

st<strong>at</strong>istics for the ω and Ω-tests. In contrast, using the modulus of F z 2(z 2 ) − F χ 2(z 2 ) instead of its<br />

square in the expression of d2 and d4, no theor<strong>et</strong>ical test st<strong>at</strong>istics can be <strong>de</strong>rived analytically. In other<br />

10


words, the presence of the square instead of the modulus of F z 2(z 2 ) − F χ 2(z 2 ) in the <strong>de</strong>finition of<br />

the distances ω and Ω is motiv<strong>at</strong>ed by m<strong>at</strong>hem<strong>at</strong>ical convenience r<strong>at</strong>her than by st<strong>at</strong>istical pertinence.<br />

In sum, the sole advantage of the standard distances ω and Ω with respect to the distances d2 and d4<br />

introduced here is the theor<strong>et</strong>ical knowledge of their distributions. However, this advantage disappears<br />

in our present case in which the covariance m<strong>at</strong>rix is not known a priori and needs to be estim<strong>at</strong>ed from<br />

the empirical d<strong>at</strong>a: in<strong>de</strong>ed, the exact knowledge of all the param<strong>et</strong>ers is necessary in the <strong>de</strong>riv<strong>at</strong>ion of<br />

the theor<strong>et</strong>ical st<strong>at</strong>istics of the ω and Ω-tests (as well as the Kolmogorov test). Therefore, we cannot<br />

directly use the results of these standard st<strong>at</strong>istical tests. As a remedy, we propose a bootstrap m<strong>et</strong>hod<br />

(Efron and Tibshirani 1986), whose accuracy is proved by (Chen and Lo 1997) to be <strong>at</strong> least as good<br />

as th<strong>at</strong> given by asymptotic m<strong>et</strong>hods used to <strong>de</strong>rive the theor<strong>et</strong>ical distributions. For the present work,<br />

we have d<strong>et</strong>ermined th<strong>at</strong> the gener<strong>at</strong>ion of 10,000 synth<strong>et</strong>ic time series was sufficient to obtain a good<br />

approxim<strong>at</strong>ion of the distribution of distances <strong>de</strong>scribed above. Since a bootstrap m<strong>et</strong>hod is nee<strong>de</strong>d to<br />

d<strong>et</strong>ermine the tests st<strong>at</strong>istics in every case, it is convenient to choose functional forms different from the<br />

usual ones in the ω and Ω-tests as they provi<strong>de</strong> an improvement with respect to st<strong>at</strong>istical reliability, as<br />

obtained with the d2 and d4 distances introduced here.<br />

To summarize, our test procedure is as follows.<br />

1. Given the original time series x(t), t ∈ {1, · · · , T }, we gener<strong>at</strong>e the Gaussian variables ˆy(t),<br />

t ∈ {1, · · · , T }.<br />

2. We then estim<strong>at</strong>e the covariance m<strong>at</strong>rix ˆρ of the Gaussian variables ˆy, which allows us to compute<br />

the variables ˆz 2 and then measure the distance of its estim<strong>at</strong>ed distribution to the χ 2 -distribution.<br />

3. Given this covariance m<strong>at</strong>rix ˆρ, we gener<strong>at</strong>e numerically a time series of T Gaussian random<br />

vectors with the same covariance m<strong>at</strong>rix ˆρ.<br />

4. For the time series of Gaussian vectors synth<strong>et</strong>ically gener<strong>at</strong>ed with covariance m<strong>at</strong>rix ˆρ, we estim<strong>at</strong>e<br />

its sample covariance m<strong>at</strong>rix ˜ρ.<br />

5. To each of the T vectors of the synth<strong>et</strong>ic Gaussian time series, we associ<strong>at</strong>e the corresponding<br />

realiz<strong>at</strong>ion of the random variable z 2 , called ˜z 2 (t).<br />

6. We can then construct the empirical distribution for the variable ˜z 2 and measure the distance<br />

b<strong>et</strong>ween this distribution and the χ 2 -distribution.<br />

7. Repe<strong>at</strong>ing 10,000 times the steps 3 to 6, we obtain an accur<strong>at</strong>e estim<strong>at</strong>e of the cumul<strong>at</strong>ive distribution<br />

of distances b<strong>et</strong>ween the distribution of the synth<strong>et</strong>ic Gaussian variables and the theor<strong>et</strong>ical<br />

χ 2 -distribution.<br />

8. Then, the distance obtained <strong>at</strong> step 2 for the true variables can be transformed into a significance<br />

level by reading the value of this synth<strong>et</strong>ically d<strong>et</strong>ermined distribution of distances b<strong>et</strong>ween the<br />

distribution of the synth<strong>et</strong>ic Gaussian variables and the theor<strong>et</strong>ical χ 2 -distribution as a function<br />

of the distance: this provi<strong>de</strong>s the probability to observe a distance smaller than the chosen or<br />

empirically d<strong>et</strong>ermined distance.<br />

3.3 Sensitivity of the m<strong>et</strong>hod<br />

Before presenting the st<strong>at</strong>istical tests, it is important to investig<strong>at</strong>e the sensitivity of our testing procedure.<br />

More precisely, can we distinguish for instance b<strong>et</strong>ween a Gaussian copula and a Stu<strong>de</strong>nt’s copula with<br />

11<br />

203


204 8. Tests <strong>de</strong> copule gaussienne<br />

a large number of <strong>de</strong>grees of freedom, for a given value of the correl<strong>at</strong>ion coefficient? Formaly, <strong>de</strong>noting<br />

by Hν the hypothesis according to which the true copula of the d<strong>at</strong>a is the Stu<strong>de</strong>nt’s copula with ν <strong>de</strong>grees<br />

of freedom, we want to d<strong>et</strong>ermine the minimum significance level allowing us to distinguish b<strong>et</strong>ween H0<br />

and Hν.<br />

3.3.1 Importance of the distinction b<strong>et</strong>ween Gaussian and Stu<strong>de</strong>nt’s copulas<br />

This question has important practical implic<strong>at</strong>ions because, as discussed in section 2.4, the Stu<strong>de</strong>nt’s<br />

copula presents a significant tail <strong>de</strong>pen<strong>de</strong>nce while the Gaussian copula has no asymptotic tail <strong>de</strong>pen<strong>de</strong>nce.<br />

Therefore, if our tests are unable to distinguish b<strong>et</strong>ween a Stu<strong>de</strong>nt’s and a Gaussian copula,<br />

we may be led to choose the l<strong>at</strong>er for the sake of simplicity and parsimony and, as a consequence, we<br />

may un<strong>de</strong>restim<strong>at</strong>e severely the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween extreme events if the correct <strong>de</strong>scription turns out<br />

to be the Stu<strong>de</strong>nt’s copula. This may have c<strong>at</strong>astrophic consequences in risk assessment and portfolio<br />

management.<br />

Figure 1 provi<strong>de</strong>s a quantific<strong>at</strong>ion of the dangers incurred by mistaking a Stu<strong>de</strong>nt’s copula for a<br />

Gaussian one. Consi<strong>de</strong>r the case of a Stu<strong>de</strong>nt’s copula with ν = 20 <strong>de</strong>grees of freedom with a correl<strong>at</strong>ion<br />

coefficient ρ lower than 0.3 ∼ 0.4 ; its tail <strong>de</strong>pen<strong>de</strong>nce λν(ρ) turns out to be less than 0.7%, i.e., the<br />

probability th<strong>at</strong> one variable becomes extreme knowing th<strong>at</strong> the other one is extreme is less than 0.7%.<br />

In this case. the Gaussian copula with zero probability of simultaneous extreme events is not a bad<br />

approxim<strong>at</strong>ion of the Stu<strong>de</strong>nt’s copula. In contrast, l<strong>et</strong> us take a correl<strong>at</strong>ion ρ larger than 0.7 − 0.8 for<br />

which the tail <strong>de</strong>pen<strong>de</strong>nce becomes larger than 10%, corresponding to a non-negligible probability of<br />

simultaneous extreme events. The effect of tail <strong>de</strong>pen<strong>de</strong>nce becomes of course much stronger as the<br />

number ν of <strong>de</strong>grees of freedom <strong>de</strong>creases.<br />

These examples stress the importance of knowing wh<strong>et</strong>her our testing procedure allows us to distinguish<br />

b<strong>et</strong>ween a Stu<strong>de</strong>nt’s copula with ν = 20 (or less) <strong>de</strong>grees of freedom and a given correl<strong>at</strong>ion<br />

coefficient ρ = 0.5, for instance, and a Gaussian copula with an appropri<strong>at</strong>e correl<strong>at</strong>ion coefficient ρ ′ .<br />

3.3.2 St<strong>at</strong>istical test on the distinction b<strong>et</strong>ween Gaussian and Stu<strong>de</strong>nt’s copulas<br />

To address this question, we have gener<strong>at</strong>ed 1,000 pairs of time series of size T = 1250, each pair of<br />

random variables following a Stu<strong>de</strong>nt’s bivari<strong>at</strong>e distribution with ν <strong>de</strong>grees of freedom and a correl<strong>at</strong>ion<br />

coefficient ρ b<strong>et</strong>ween the two simultaneous variables of the same pair, while the variables along the time<br />

axis are all in<strong>de</strong>pen<strong>de</strong>nt. We have then applied the previous testing procedure to each of the pairs of time<br />

series.<br />

Specifically, for each pair of time series, we construct the marginals distributions and transform the<br />

Stu<strong>de</strong>nt’s variables xi(k) into their Gaussian counterparts yi(k) via the transform<strong>at</strong>ion (23). For each<br />

pair (y1(k), y2(k)), k ∈ {1, · · · , T }, we estim<strong>at</strong>e its correl<strong>at</strong>ion m<strong>at</strong>rix, then construct the time series<br />

with T realiz<strong>at</strong>ions of the random variable z 2 (k) <strong>de</strong>fined in (27). The s<strong>et</strong> of T variables z 2 then allows<br />

us to construct the distribution of z 2 (with N = 2) and to compare it with the χ 2 -distribution with two<br />

<strong>de</strong>grees of freedom. We then measure the distances d1, d2, d3 and d4 <strong>de</strong>fined by (33-36) b<strong>et</strong>ween the<br />

distribution of z 2 and the χ 2 -distribution. Using the 1,000 pairs of such time series with the same ν<br />

and ρ, we then construct the distribution Di(di), i ∈ {1, 2, 3, 4} of each of these distances di. Using<br />

the previously d<strong>et</strong>ermined distribution of distances expected for the synth<strong>et</strong>ic Gaussian variables, we can<br />

transl<strong>at</strong>e each distance d obtained for the Stu<strong>de</strong>nt’s vectors into a corresponding Gaussian probability<br />

p: p is the probability th<strong>at</strong> pairs of Gaussian random variables with the correl<strong>at</strong>ion coefficient ρ have<br />

12


a distance equal to or larger than the distance obtained for the Stu<strong>de</strong>nt’s vector time series. A small<br />

p corresponds to a clear distinction b<strong>et</strong>ween Stu<strong>de</strong>nt’s and Gaussian vectors, as it is improbable th<strong>at</strong><br />

Gaussian vectors exhibit a distance larger than found for the Stu<strong>de</strong>nt’s vectors. The “distribution of<br />

probabilities” D(p) ≡ D(p(d)) then assesses how often this “improbable” event occurs among the s<strong>et</strong> of<br />

1,000 Stu<strong>de</strong>nt’s vectors, i.e., <strong>at</strong>tempts to quantify the rar<strong>et</strong>y of such large <strong>de</strong>vi<strong>at</strong>ions. In other words, the<br />

“distribution of probabilities” D(p) gives the number of Stu<strong>de</strong>nt’s vectors th<strong>at</strong> exhibit the value p for the<br />

probability th<strong>at</strong> Gaussian vectors can have a similar or larger distance. Then, fixing a confi<strong>de</strong>nce level<br />

D ∗ , this procedure allows us to reject or not the null hypothesis th<strong>at</strong> the empirical vector of r<strong>et</strong>urns is<br />

<strong>de</strong>scribed by a Gaussian copula: this will occur when the observed p gives a “distribution of probabilities”<br />

D(p) larger than D ∗ .<br />

The “distributions of probabilities” D(p) for each of the four distances di, i ∈ {1, 2, 3, 4} are shown<br />

in figure 3 for ν = 4 <strong>de</strong>grees of freedom and in figure 4 for ν = 20 <strong>de</strong>grees of freedom, for 5 different<br />

values of the correl<strong>at</strong>ion coefficient ρ = 0.1, 0.3, 0.5, 0.7 and 0.9. The very steep increase observed for<br />

almost all cases in figure 3 reflects the fact th<strong>at</strong> most of the 1,000 Stu<strong>de</strong>nt’s vectors with ν = 4 <strong>de</strong>grees of<br />

freedom have a small p, i.e., their copula is easily distinguishable from the Gaussian copula. The same<br />

cannot be st<strong>at</strong>ed for Stu<strong>de</strong>nt’s vectors with ν = 20 <strong>de</strong>grees of freedom. Note also th<strong>at</strong> the distances d1,<br />

d2 and d4 give essentially the same result while the An<strong>de</strong>rson-Darling distance d3 is more sensitive to ρ,<br />

especially for small ν.<br />

Fixing for instance the confi<strong>de</strong>nce level <strong>at</strong> D ∗ = 95%, we can read from each of these curves in<br />

figures 3 and 4 the minimum p 95%-value necessary to distinguish a Stu<strong>de</strong>nt’s copula with a given ν from<br />

a Gaussian copula. This p 95% is the abscissa corresponding to the ordin<strong>at</strong>e D(p 95%) = 0.95. These<br />

values p 95% are reported in table 1, for different values of the number ν of <strong>de</strong>grees of freedom ranging<br />

from ν = 3 to ν = 50 and correl<strong>at</strong>ion coefficients ρ = 0.1 to 0.9. The values of p 95%(ν, ρ) reported<br />

in table 1 are the maximum values th<strong>at</strong> the probability p should take in or<strong>de</strong>r to be able to reject the<br />

hypothesis th<strong>at</strong> a Stu<strong>de</strong>nt’s copula with ν <strong>de</strong>grees and correl<strong>at</strong>ion ρ can be mistaken with a Gaussian<br />

copula <strong>at</strong> the 95% confi<strong>de</strong>nce level.<br />

The results of the table 1 are <strong>de</strong>picted in figures 5-6 and represent the conventional “power/size”<br />

st<strong>at</strong>istics. The st<strong>at</strong>istical “power” is usually <strong>de</strong>fined as the rejection of null hypothesis when false. When<br />

the null hypothesis H0 and the altern<strong>at</strong>ive hypothesis Hν are i<strong>de</strong>ntical, the power should be equal to<br />

= 0.05, corresponding to the 95% confi<strong>de</strong>nce level. In our framework, this amounts to plot the abscissa<br />

as the inverse ν −1 of the number ν of <strong>de</strong>grees of freedom, which provi<strong>de</strong>s a n<strong>at</strong>ural “distance” b<strong>et</strong>ween<br />

the Gaussian copula hypothesis H0 and the Stu<strong>de</strong>nt’s copula hypothesis Hν. In the ordin<strong>at</strong>e, the “power”<br />

is represented by the minimum significance level (1−p 95%) necessary to distinguish b<strong>et</strong>ween H0 and Hν.<br />

The typical shape of these curves is a sigmoid, starting from a very small value for ν −1 → 0, increasing<br />

as ν −1 increases and going to 1 as ν −1 becomes large enough. This typical shape simply expresses the<br />

fact th<strong>at</strong> it is easy to separ<strong>at</strong>e a Gaussian copula from a Stu<strong>de</strong>nt’s copula with a small number of <strong>de</strong>grees<br />

of freedom, while it is difficult and even impossible for too large a number of <strong>de</strong>grees of freedom.<br />

The figure 5 shows us th<strong>at</strong> the distances d1, d2 and d3 are not sensitive to the value of the correl<strong>at</strong>ion<br />

coefficient ρ, while the discrimin<strong>at</strong>ing power of d3 increases with ρ. On figure 6, we note th<strong>at</strong> d2 and d4<br />

have the same discrimin<strong>at</strong>ing power for all ρ’s (which makes them somewh<strong>at</strong> redundant) and th<strong>at</strong> they<br />

are the most efficient to differenti<strong>at</strong>e Hν from H0 for small ρ. When ρ is about 0.5, d2, d3 and d4 (and<br />

maybe d1) are equivalent with respect to the differential power, while for large ρ, d3 becomes the most<br />

discrimin<strong>at</strong>ing one with high significance.<br />

This study of the test sensitivity involves a non-param<strong>et</strong>ric approach and the question may arise why<br />

it should be prefered to a direct param<strong>et</strong>ric test involving for instance the calibr<strong>at</strong>ion of the Stu<strong>de</strong>nt<br />

13<br />

205


206 8. Tests <strong>de</strong> copule gaussienne<br />

copula. First, a param<strong>et</strong>ric test of copulas would face the “curse of dimensionality”, i.e., the estim<strong>at</strong>ion<br />

of functions of several variables. With the limited d<strong>at</strong>a s<strong>et</strong> available, this does not seem a reasonable<br />

approach. Second, we have taken the Stu<strong>de</strong>nt copula as an example of an altern<strong>at</strong>ive to the Gaussian<br />

copula. However, our tests are in<strong>de</strong>pen<strong>de</strong>nt of this choice and aim mainly <strong>at</strong> testing the rejection of<br />

the Gaussian copula hypothesis. They are thus of a more general n<strong>at</strong>ure than would be a param<strong>et</strong>ric<br />

test which would be forced to choose one family of copulas with the problem of excluding others. The<br />

param<strong>et</strong>ric test would then be exposed to the criticism th<strong>at</strong> the rejection of a given choice might not be<br />

of a general n<strong>at</strong>ure.<br />

In the sequel, we will choose the level of 95% as the level of rejection, which leads us to neglect<br />

one extreme event out of twenty. This is not unreasonable in view of the other significant sources of<br />

errors resulting in particular from the empirical d<strong>et</strong>ermin<strong>at</strong>ion of the marginals and from the presence of<br />

outliers for instance.<br />

4 Empirical results<br />

We investig<strong>at</strong>e the following ass<strong>et</strong>s :<br />

• foreign exchange r<strong>at</strong>es,<br />

• m<strong>et</strong>als tra<strong>de</strong>d on the London M<strong>et</strong>al Exchange,<br />

• stocks tra<strong>de</strong>d on the New York Stocks Exchange.<br />

4.1 Currencies<br />

The sample we have consi<strong>de</strong>red is ma<strong>de</strong> of the daily r<strong>et</strong>urns for the spot foreign exchanges for 6 currencies<br />

2 : the Swiss Franc (CHF), the German Mark (DEM), the Japanese Yen (JPY), the Malaysian Ringgit<br />

(MYR), the Thai Baht (THA) and the Bristish Pound (UKP). All the exchange r<strong>at</strong>es are expressed against<br />

the US dollar. The time interval runs over ten years, from January 25, 1989 to December 31, 1998, so<br />

th<strong>at</strong> each sample contains 2500 d<strong>at</strong>a points.<br />

We apply our test procedure to the entire sample and to two sub-samples of 1250 d<strong>at</strong>a points so th<strong>at</strong><br />

the first one covers the time interval from January 25, 1989 to January 11, 1994 and the second one from<br />

January 12, 1994 to December 31, 1998. The results are presented in tables 2 to 4 and <strong>de</strong>picted in figures<br />

7 to 9.<br />

Tables 2-4 give, for the total time interval and for each of the two sub-intervals, the probability p(d) to<br />

obtain from the Gaussian hypothesis a <strong>de</strong>vi<strong>at</strong>ion b<strong>et</strong>ween the distribution of the z 2 and the χ 2 -distribution<br />

with two <strong>de</strong>grees of freedom larger than the observed one for each of the 15 pairs of currencies according<br />

to the distances d1-d4 <strong>de</strong>fined by (33)-(36).<br />

The figures 7-9 organize the inform<strong>at</strong>ion shown in the tables 2-4 by representing, for each distance<br />

d1 to d4, the number of currency pairs th<strong>at</strong> give a test-value p within a bin interval of width 0.05. A<br />

clustering close to the origin signals a significant rejection of the Gaussian copula hypothesis.<br />

At the 95% significance level, table 2 and figure 7 show th<strong>at</strong> only 40% (according to d1 and d3) but<br />

60% (according to d2 and d4) of the tested pairs of currencies are comp<strong>at</strong>ible with the Gaussian copula<br />

2 The d<strong>at</strong>a come from the historical d<strong>at</strong>abase of the Fe<strong>de</strong>ral Reserve Board.<br />

14


hypothesis over the entire time interval. During the first half-period from January 25, 1989 to Januray<br />

11, 1994 (table 3 and figure 8), 47% (according to d3) and up to about 75 % (according to d2 and d4)<br />

of the tested currency pairs are comp<strong>at</strong>ible with the assumption of Gaussian copula, while during the<br />

second sub-period from January 12, 1994 to December 31, 1998 (table 4 and figure 9), b<strong>et</strong>ween 66%<br />

(according to d1) and about 75% (according to d2, d3 and d4) of the currency pairs remain comp<strong>at</strong>ible<br />

with the Gaussian copula hypothesis. These results raise several comments both on a st<strong>at</strong>istical and an<br />

economic point of view.<br />

We first note th<strong>at</strong> the most significant rejection of the Gaussian copula hypothesis is obtained for<br />

the distance d3, which is in<strong>de</strong>ed the most sensitive to the events in the tail of the distributions. The test<br />

st<strong>at</strong>istics given by this distance can in<strong>de</strong>ed be very sensitive to the presence of a single large event in the<br />

sample, so much so th<strong>at</strong> the Gaussian copula hypothesis can be rejected only because of the presence<br />

of this single event (outlier). The difference b<strong>et</strong>ween the results given by d3 and d4 (the averaged d3)<br />

are very significant in this respect. Consi<strong>de</strong>r for instance the case of the German Mark and the Swiss<br />

Franc. During the time interval from January 12, 1994 to December 31, 1998, we check on table 4 th<strong>at</strong><br />

the non-rejection probability p(d) is very significant according to d1, d2 and d4 (p(d) ≥ 31%) while<br />

it is very low according to d3: p(d) = 0.05%, and should lead to the rejection of the Gaussian copula<br />

hypothesis. This suggests the presence of an outlier in the sample.<br />

To check this hypothesis, we show in the upper panel of figure 10 the function<br />

f3(t) = |Fz2(z2 (t) − Fχ2(χ2 (t))|<br />

<br />

Fχ2(χ2 )[1 − Fχ2(χ2 )]<br />

207<br />

, (37)<br />

used in the <strong>de</strong>finition of the An<strong>de</strong>rson-Darling distance d3 = maxz f3(z) (see <strong>de</strong>finition (35)), expressed<br />

in terms of time t r<strong>at</strong>her than z 2 . The function have been computed over the two time sub-intervals<br />

separ<strong>at</strong>ely.<br />

Apart from three extreme peaks occurring on June 20, 1989, August 19, 1991 and September 16,<br />

1992 during the first time sub-interval and one extreme peak on September 10, 1997 during the second<br />

time sub-interval, the st<strong>at</strong>istical fluctu<strong>at</strong>ions measured by f3(t) remain small and of the same or<strong>de</strong>r.<br />

Excluding the contribution of these outlier events to d3, the new st<strong>at</strong>istical significance <strong>de</strong>rived according<br />

to d3 becomes similar to th<strong>at</strong> obtained with d1, d2 and d4 on each sub-interval. From the upper pannel<br />

of figure 10, it is clear th<strong>at</strong> the An<strong>de</strong>rson-Darling distance d3 is equal to the height of the largest peak<br />

corresponding to the event on August 19, 1991 for the the first period and to the event on September 10,<br />

1997 for the second period. These events are <strong>de</strong>picted by a circled dot in the two lower panels of figure<br />

10, which represent the r<strong>et</strong>urn of the German Mark versus the r<strong>et</strong>urn of the Swiss Franc over the two<br />

consi<strong>de</strong>red time periods.<br />

The event on August 19, 1991 is associ<strong>at</strong>ed with the coup against Gorbachev in Moscow: the German<br />

mark (respectively the Swiss franc) lost 3.37% (respectively 0.74%) in daily annualized value against the<br />

US dollar. The 3.37% drop of the German Mark is the largest daily move of this currency against the<br />

US dollar over the whole first period. On September 10, 1997, the German Mark appreci<strong>at</strong>ed by 0.60%<br />

against the US dollar while the Swiss Franc lost 0.79% which represents a mo<strong>de</strong>r<strong>at</strong>e move for each<br />

currency, but a large joint move. This event is rel<strong>at</strong>ed to the contradictory announcements of the Swiss<br />

N<strong>at</strong>ional Bank about the mon<strong>et</strong>ary policy, which put an end to a rally of the Swiss Franc along with the<br />

German mark against the US dollar.<br />

Thus, neglecting the large moves associ<strong>at</strong>ed with major historical events or events associ<strong>at</strong>ed with<br />

unexpected incoming inform<strong>at</strong>ion, which cannot be taken into account by a st<strong>at</strong>istical study, we obtain,<br />

for d3, significance levels comp<strong>at</strong>ible with those obtained with the other distances. We can thus conclu<strong>de</strong><br />

15


208 8. Tests <strong>de</strong> copule gaussienne<br />

th<strong>at</strong>, according to the four distances, during the time interval from January 12, 1994 to December 31,<br />

1998 the Gaussian copula hypothesis cannot be rejected for the couple German Mark / Swiss Franc.<br />

However, the non-rejection of the Gaussian copula hypothesis does not always have minor consequences<br />

and may even lead to serious problem in stress scenarios. As shown in section 3.3, the nonrejection<br />

of the Gaussian copula hypothesis does not exclu<strong>de</strong>, <strong>at</strong> the 95% significance level, th<strong>at</strong> the<br />

<strong>de</strong>pen<strong>de</strong>nce of the currency pairs may be accounted for by a Stu<strong>de</strong>nt’s copula with a<strong>de</strong>qu<strong>at</strong>e values of ν<br />

and ρ. Still consi<strong>de</strong>ring the pair German Mark / Swiss Franc, we see in table 1 th<strong>at</strong>, according to d1, d2<br />

and d4, a Stu<strong>de</strong>nt’s copula with about five <strong>de</strong>grees of freedom allows to reach the test values given in table<br />

4. But, with the correl<strong>at</strong>ion coefficient ρ = 0.92 for the German Mark/Swiss Franc couple, the Gaussian<br />

copula assumption could lead to neglect a tail <strong>de</strong>pen<strong>de</strong>nce coefficient λ5(0.92) = 63% according to the<br />

Stu<strong>de</strong>nt’s copula prediction. Such a large value of λ5(0.92) means th<strong>at</strong> when an extreme event occurs<br />

for the German Mark it also occurs for the Swiss Franc with a probabilty equals to 0.63. Therefore, a<br />

stress scenario based on a Gaussian copula assumption would fail to account for such coupled extreme<br />

events, which may represent as many as two third of all the extreme events, if it would turn out th<strong>at</strong> the<br />

true copula would be the Stu<strong>de</strong>nt’s copula with five <strong>de</strong>grees of freedom. In fact, with such a value of the<br />

correl<strong>at</strong>ion coefficient, the tail <strong>de</strong>pen<strong>de</strong>nce remains high even if the number of <strong>de</strong>grees of fredom reach<br />

twenty or more (see figure 1).<br />

The case of the Swiss Franc and the Malaysian Ringgit offers a striking difference. For instance,<br />

in the second half-period, the test st<strong>at</strong>istics p(d) are gre<strong>at</strong>er than 70% and even reach 91% while the<br />

correl<strong>at</strong>ion coefficient is only ρ = 0.16, so th<strong>at</strong> a Stu<strong>de</strong>nt’s copula with 7-10 <strong>de</strong>grees of freedom can be<br />

mistaken with the Gaussian copula (see table 1). Even in the most pessimistic situ<strong>at</strong>ion ν = 7, the choice<br />

of the Gaussian copula amounts to neglecting a tail <strong>de</strong>pen<strong>de</strong>nce coefficient λ5(0.16) = 4% predicted by<br />

the Stu<strong>de</strong>nt’s copula. In this case, stress scenarios based on the Gaussian copula would predict uncoupled<br />

extreme events, which would be shown wrong only once out of twenty five times.<br />

These two examples show th<strong>at</strong>, more than the number of <strong>de</strong>grees of freedom of the Stu<strong>de</strong>nt’s copula<br />

necessary to <strong>de</strong>scribe the d<strong>at</strong>a, the key param<strong>et</strong>er is the correl<strong>at</strong>ion coefficient.<br />

¿From an economic point of view, the impact of regul<strong>at</strong>ory mechanisms b<strong>et</strong>ween currencies or mon<strong>et</strong>ary<br />

crisis can be well i<strong>de</strong>ntified by the rejection or absence of rejection of our null hypothesis. In<strong>de</strong>ed,<br />

consi<strong>de</strong>r the couple German Mark / British Pound. During the first half period, their correl<strong>at</strong>ion coefficient<br />

is very high (ρ = 0.82) and the Gaussian copula hypothesis is strongly rejected according to the<br />

four distances. On the contrary, during the second half period, the correl<strong>at</strong>ion coefficient significantly<br />

<strong>de</strong>creases (ρ = 0.56) and none of the four distances allows us to reject our null hypothesis. Such a<br />

non-st<strong>at</strong>ionarity can be easily explained. In<strong>de</strong>ed, on January 1, 1990, the British Pound entered the European<br />

Mon<strong>et</strong>ary System (EMS), so th<strong>at</strong> the exchange r<strong>at</strong>e b<strong>et</strong>ween the German Mark and the Bristish<br />

Pound was not allowed to fluctu<strong>at</strong>e beyond a margin of 2.25%. However, due to a strong specul<strong>at</strong>ive<br />

<strong>at</strong>tack, the British Pound was <strong>de</strong>valu<strong>at</strong>ed on September 1992 and had to leave the EMS. Thus, b<strong>et</strong>ween<br />

January 1990 and September 1992, the exchange r<strong>at</strong>e of the German Mark and the British Pound was<br />

confined within a narrow spread, incomp<strong>at</strong>ible with the Gaussian copula <strong>de</strong>scription. After 1992, the<br />

British Pound exchange r<strong>at</strong>e flo<strong>at</strong>ed with respect to German Mark, the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the two currencies<br />

<strong>de</strong>creased, as shown by their correl<strong>at</strong>ion coefficient. In this regime, we can no more reject the<br />

Gaussian copula hypothesis.<br />

The impact of major crisis on the copula can be also clearly i<strong>de</strong>ntified. Such a case is exhibited by the<br />

couple Malaysian Ringgit/Thai Baht. In<strong>de</strong>ed, during the period from Januray 1989 to January 1994, these<br />

two currencies have only un<strong>de</strong>rgone mo<strong>de</strong>r<strong>at</strong>e and weakly correl<strong>at</strong>ed (ρ = 0.29) fluctu<strong>at</strong>ions, so th<strong>at</strong> our<br />

null hypothesis cannot be rejected <strong>at</strong> the 95% significance level. On the contrary, during the period from<br />

16


January 1994 to October 1998, the Gaussian copula hypothesis is strongly rejected. This rejection is<br />

obviously due to the persistent and <strong>de</strong>pen<strong>de</strong>nt (ρ = 0.44) shocks incured by the Asian financial and<br />

mon<strong>et</strong>ary mark<strong>et</strong>s during the seven months of the Asian Crisis from July 1997 to January 1998 (Baig and<br />

Goldfajn 1998, Kaminsky and Schlmukler 1999).<br />

These two cases show th<strong>at</strong> the Gaussian copula hypothesis can be consi<strong>de</strong>red reasonable for currencies<br />

in absence of regul<strong>at</strong>ory mechanisms and of strong and persistent crises. They also allows us to<br />

un<strong>de</strong>rstand why the results of the test over the entire sample are so much weaker than the results obtained<br />

for the two sub-intervals: the time series are strongly non-st<strong>at</strong>ionnary.<br />

4.2 Commodities: m<strong>et</strong>als<br />

We consi<strong>de</strong>r a s<strong>et</strong> of 6 m<strong>et</strong>als tra<strong>de</strong>d on the London M<strong>et</strong>al Exchange: aluminium, copper, lead, nickel,<br />

tin and zinc. Each sample contains 2270 d<strong>at</strong>a points and covers the time interval from January 4, 1989<br />

to December 30, 1997. The results are synth<strong>et</strong>ized in table 5 and in figure 11.<br />

Table 5 gives, for each of the 15 pairs of commodities, the probability p(d) to obtain from the Gaussian<br />

hypothesis a <strong>de</strong>vi<strong>at</strong>ion b<strong>et</strong>ween the distribution of the z 2 and the χ 2 -distribution with two <strong>de</strong>grees<br />

of freedom larger than the observed one for the commodity pair according to the distances d1-d4 <strong>de</strong>fined<br />

by (33)-(36).<br />

The figure 11 organizes the inform<strong>at</strong>ion shown in table 5 by representing, for each distance, the<br />

number of commodity pairs th<strong>at</strong> give a test-value p within a bin interval of width 0.05. A clustering<br />

close to the origin signals a significant rejection of the Gaussian copula hypothesis.<br />

According to the three distances d1, d2 and d4, <strong>at</strong> least two third and up to 93% of the s<strong>et</strong> of 15<br />

pairs of commodities are inconsistent with the Gaussian copula hypothesis. Surprisingly, according to<br />

the distance d3, <strong>at</strong> the 95% significance level, two third of the s<strong>et</strong> of 15 pairs of commodities remain<br />

comp<strong>at</strong>ible with the Gaussian copula hypothesis. This is the reverse to the previous situ<strong>at</strong>ion found for<br />

currencies. These test values lead to globally reject the Gaussian copula hypothesis.<br />

Moreover, the largest value obtained for the distance d3 is p = 65% for the pair copper-tin, which is<br />

significantly smaller than the 80% or 90% reached for some currencies over a similar time interval. Thus,<br />

even in the few cases where the Gaussian copula assumption is not rejected, the test values obtained are<br />

not really sufficient to distinguish b<strong>et</strong>ween the Gaussian copula and a Stu<strong>de</strong>nt’s copula with ν = 5 ∼ 6<br />

<strong>de</strong>grees of freedom. In such a case, with correl<strong>at</strong>ion coefficients ranging b<strong>et</strong>ween 0.31 and 0.46, the<br />

tail <strong>de</strong>pen<strong>de</strong>nce neglected by keeping the Gaussian copula is no less than 10% and can reach 15%. One<br />

extreme event out of seven or ten might occur simultaneously on both marginals, which would be missed<br />

by the Gaussian copula.<br />

To summarize, the Gaussian copula does not seem a reasonnable assumption for m<strong>et</strong>als, and it has<br />

not appeared necessary to test these d<strong>at</strong>a over smaller time interval.<br />

4.3 Stocks<br />

We now study the daily r<strong>et</strong>urns distibutions for 22 stocks among the largest compagnies quoted on the<br />

New York Stock Exchange 3 : Appl. M<strong>at</strong>erials (AMAT), AT&T (T), Citigroup (C), Coca Cola (KO),<br />

EMC, Exxon-Mobil (XOM), Ford (F), General Electric (GE), General Motors (GM), Hewl<strong>et</strong>t Packard<br />

3 The d<strong>at</strong>a come from the Center for Research in Security Prices (CRSP) d<strong>at</strong>abase.<br />

17<br />

209


210 8. Tests <strong>de</strong> copule gaussienne<br />

(HPW), IBM, Intel (INTC), MCI WorldCom (WCOM), Medtronic (MDT), Merck (MRK), Microsoft<br />

(MSFT), Pfizer (PFE), Procter&Gamble (PG), SBC Communic<strong>at</strong>ion (SBC), Sun Microsystem (SUNW),<br />

Texas Instruments (TXN), Wal Mart (WMT).<br />

Each sample contains 2500 d<strong>at</strong>a points and covers the time interval from February 8, 1991 to December<br />

29, 2000 and have been divi<strong>de</strong>d into two sub-samples of 1250 d<strong>at</strong>a points, so th<strong>at</strong> the first one<br />

covers the time interval from February 8, 1991 to January 18, 1996 and the second one from January<br />

19, 1996 to December 20, 2000. The results of fifteen randomly chosen pairs of ass<strong>et</strong>s are presented in<br />

tables 6 to 8 while the results obtain for the entire s<strong>et</strong> are represented in figures 12 to 14.<br />

At the 95% significance level, figure 12 shows th<strong>at</strong> 75% of the pairs of stocks are comp<strong>at</strong>ible with the<br />

Gaussian copula hypothesis. Figure 13 shows th<strong>at</strong> over the time interval from February 1991 to January<br />

1996, this percentage becomes larger than 99% for d1, d2 and d4 while it equals 94% according to d3. It<br />

is striking to note th<strong>at</strong>, during this period, according to d1, d2 and d4, more than a quarter of the stocks<br />

obtain a test-value p larger than 90%, so th<strong>at</strong> we can assert th<strong>at</strong> they are compl<strong>et</strong>ely inconsistent with the<br />

Stu<strong>de</strong>nt’s copula hypothesis for Stu<strong>de</strong>nt’s copulas with less than 10 <strong>de</strong>grees of freedom. Among this s<strong>et</strong><br />

of stocks, not a single one has a correl<strong>at</strong>ion coefficient larger than 0.4, so th<strong>at</strong> a scenario based on the<br />

Gaussian copula hypothesis leads to neglecting a tail <strong>de</strong>pen<strong>de</strong>nce of less than 5% as would be predicted<br />

by the Stu<strong>de</strong>nt’s copula with 10 <strong>de</strong>grees of freedom. In addition, about 80% of the pairs of stocks lead<br />

to a test-value p larger than 50% according to the distances d1, d2 and d4, so th<strong>at</strong> as much as 80% of<br />

the pairs of stocks are incomp<strong>at</strong>ible with a Stu<strong>de</strong>nt’s copula with a number of <strong>de</strong>grees of freedom less<br />

than or equal to 5. Thus, for correl<strong>at</strong>ion coefficients smaller than 0.3, the Gaussian copula hypothesis<br />

leads to neglecting a tail <strong>de</strong>pen<strong>de</strong>nce less than 10%. For correl<strong>at</strong>ion coefficients smaller than 0.1 which<br />

corresponds to 13% of the total number of pairs, the Gaussian copula hypothesis leads to neglecting a<br />

tail <strong>de</strong>pen<strong>de</strong>nce less than 5%.<br />

Figure 14 shows th<strong>at</strong>, over the time interval from January 1996 to December 2000, 92% of the pairs<br />

of stocks are comp<strong>at</strong>ible with the Gaussian copula hypothesis according to d1, d2 and d4 and more than<br />

79% according to d3. About a quarter of the pair of stocks have a test-value p larger than 50% according<br />

to the four measures and thus are inconsistent with a Stu<strong>de</strong>nt’s copula with less than five <strong>de</strong>grees of<br />

freedom.<br />

For compl<strong>et</strong>eness, we present in table 9 the results of the tests performed for five stocks belonging<br />

to the computer area : Hewl<strong>et</strong>t Packard, IBM, Intel, Microsoft and Sun Microsystem. We observe th<strong>at</strong>,<br />

during the first half period, all the pairs of stocks qualify the Gaussian copula Hypothesis <strong>at</strong> the 95%<br />

significance level. The results are r<strong>at</strong>her different for the second half period since about 40% of the pairs<br />

of stocks reject the Gaussian copula hypothesis according to d1, d2 and d3. This is probably due to the<br />

existence of a few shocks, notably associ<strong>at</strong>ed with the crash of the “new economy” in March-April 2000.<br />

On the whole, it appears however th<strong>at</strong> there is no system<strong>at</strong>ic rejection of the Gaussian copula hypothesis<br />

for stocks within the same industrial area, notwithstanding the fact th<strong>at</strong> one can expect stronger<br />

correl<strong>at</strong>ions b<strong>et</strong>ween such stocks than for currencies for instance.<br />

5 Conclusion<br />

We have studied the null hypothesis th<strong>at</strong> the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween pairs of financial ass<strong>et</strong>s can be mo<strong>de</strong>led<br />

by the Gaussian copula.<br />

Our test procedure is based on the following simple i<strong>de</strong>a. Assuming th<strong>at</strong> the copula of two ass<strong>et</strong>s<br />

18


X and Y is Gaussian, then the multivari<strong>at</strong>e distribution of (X, Y ) can be mapped into a Gaussian multivari<strong>at</strong>e<br />

distribution, by a transform<strong>at</strong>ion of each marginal into a normal distribution, which leaves the<br />

copula of X and Y unchanged. Testing the Gaussian copula hypothesis is therefore equivalent to the<br />

more standard problem of testing a two-dimensional multivari<strong>at</strong>e Gaussian distribution. We have used<br />

a bootstrap m<strong>et</strong>hod to d<strong>et</strong>ermine and calibr<strong>at</strong>e the test st<strong>at</strong>istics. Four different measures of distances<br />

b<strong>et</strong>ween distributions, more or less sensitive to the <strong>de</strong>parture in the bulk or in the tail of distributions,<br />

have been proposed to quantify the probability of rejection of our null hypothesis.<br />

Our tests have been performed over three types of ass<strong>et</strong>s: currencies, commodities (m<strong>et</strong>als) and<br />

stocks. In most cases, for currencies and stocks, the Gaussian copula hypothesis can not be rejected <strong>at</strong><br />

the 95% confi<strong>de</strong>nce level. For currencies, according to three of the four distances <strong>at</strong> least,<br />

• 40% of the pairs of currencies, over a 10 years time interval (due to non-st<strong>at</strong>ionnary d<strong>at</strong>a),<br />

• 67% of the pairs of currencies, over the first 5 years time interval,<br />

• 73% of the pairs of currencies, over the second 5 years time interval,<br />

are comp<strong>at</strong>ible with the Gaussian copula hypothesis. For stocks, we have shown th<strong>at</strong><br />

• 75% of the pairs of stocks, over a 10 years time interval,<br />

• 93% of the pairs of stocks, over the first 5 years time interval,<br />

• 92% of the pairs of stocks, over the second 5 years time interval,<br />

are comp<strong>at</strong>ible with the Gaussian copula hypothesis. In constrast, the Gaussian copula hypothesis cannot<br />

be consi<strong>de</strong>red as reasonable for m<strong>et</strong>als : b<strong>et</strong>ween 66% and 93% of the pairs of m<strong>et</strong>als reject the null<br />

hypothesis <strong>at</strong> the 95% confi<strong>de</strong>nce level.<br />

Notwithstanding the apparent qualific<strong>at</strong>ion of the Gaussian copula hypothesis for most of the currencies<br />

and the stocks we have analyzed, we must bear in mind the fact th<strong>at</strong> a non-Gaussian copula cannot<br />

be rejected. In particular, we have shown th<strong>at</strong> a Stu<strong>de</strong>nt’s copula can always be mistaken for a Gaussian<br />

copula if its number of <strong>de</strong>grees of freedom is sufficiently large. Then, <strong>de</strong>pending on the correl<strong>at</strong>ion coefficient,<br />

the Stu<strong>de</strong>nt’s copula can predict a non-negligible tail <strong>de</strong>pen<strong>de</strong>nce which is compl<strong>et</strong>ely missed<br />

by the Gaussian copula assumption. In other words, the Gaussian copula predicts no tail <strong>de</strong>pen<strong>de</strong>nces<br />

and therefore does not account for extreme events th<strong>at</strong> may occur simultaneously but nevertheless too<br />

rarely to modify the test st<strong>at</strong>istics. To quantify the probability for neglecting such events, we have investig<strong>at</strong>ed<br />

the situ<strong>at</strong>ions when one is unable to distinguish b<strong>et</strong>ween the Gaussian and Stu<strong>de</strong>nt’s copulas for<br />

a given number of <strong>de</strong>grees of freedom. Our study leads to the conclusion th<strong>at</strong> it may be very dangerous<br />

to embrace blindly the Gaussian copula hypothesis when the correl<strong>at</strong>ion coefficient b<strong>et</strong>ween the pair of<br />

ass<strong>et</strong> is too high as the tail <strong>de</strong>pen<strong>de</strong>nce neglected by the Gaussian copula can be as large as 0.6. In this<br />

respect, the case of the Swiss Franc and the German Mark is striking. The test values p obtained are very<br />

significant (about 33%), so th<strong>at</strong> we cannot mistake the Gaussian copula for a Stu<strong>de</strong>nt’s copula with less<br />

than 5-7 <strong>de</strong>grees of freedom. However, their correl<strong>at</strong>ion coefficient is so high (ρ = 0.9) th<strong>at</strong> a Stu<strong>de</strong>nt’s<br />

copula with, say ν = 30 <strong>de</strong>grees of freedom, still has a large tail <strong>de</strong>pen<strong>de</strong>nce.<br />

This remark shows th<strong>at</strong> it is highly <strong>de</strong>sirable to <strong>de</strong>velop tests th<strong>at</strong> are specific to the d<strong>et</strong>ection of a<br />

possible tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two time series. This task is very difficult but we hope to report useful<br />

progress in the near future. Another approach is to test for other non-Gaussian copulas, such as the<br />

Stu<strong>de</strong>nt’s copula.<br />

19<br />

211


212 8. Tests <strong>de</strong> copule gaussienne<br />

References<br />

An<strong>de</strong>rsen, J.V. and D. Sorn<strong>et</strong>te, 2001, Have your cake and e<strong>at</strong> it too: increasing r<strong>et</strong>urns while lowering<br />

large risks! Journal of Risk Finance 2, 70-82.<br />

An<strong>de</strong>rson T. W. and D.A. Darling, 1952, Asymptotic theory of certain “goodness of fit” criteria, Annals<br />

of M<strong>at</strong>hem<strong>at</strong>ical St<strong>at</strong>istics 23, 193-212.<br />

Ang, A. and J. Chen, 2001, Asymm<strong>et</strong>ric correl<strong>at</strong>ions of equity portfolio, Working Paper.<br />

Baig, T. and I. Goldfjn, 1998, Financial Mark<strong>et</strong>s Contagion in the Asian crisis, Mimeo, Intern<strong>at</strong>ional<br />

Mon<strong>et</strong>ary Fund.<br />

Chen, K. and S.-H. Lo, 1997, On a Mapping Approach to Investig<strong>at</strong>ing the Bootstrap Accuracy, Probability<br />

Theory and Rel<strong>at</strong>ed Fields 107, 197-217.<br />

Cherubini, U. and E. Luciano, 2000, Multivari<strong>at</strong>e option pricing with copulas, Working Paper.<br />

Efron, B., and R.Tibshirani, 1986, Bootstrap m<strong>et</strong>hod for standard errors, confi<strong>de</strong>nce intervals and other<br />

measures of st<strong>at</strong>istical accuracy, St<strong>at</strong>istical Science 1, 54-77.<br />

Embrechs P., A.J. McNeil and D. Straumann, 1999, Correl<strong>at</strong>ion : Pitfalls and Altern<strong>at</strong>ives. Risk, 69-71.<br />

2001. Embrechts, P., A. Hoeing, A. Juri, 2001, Using Copulae to bound the Value-<strong>at</strong>-Risk for functions<br />

of <strong>de</strong>pen<strong>de</strong>nt risk, ETH Zurick Working Paper.<br />

Embrechts P., A.J. McNeil and D. Straumann, 2001, Correl<strong>at</strong>ion and Depen<strong>de</strong>ncy in Risk Management :<br />

Properties and Pitfalls, in : Dempster, M., ed., Value <strong>at</strong> Risk and Beyond (Cambridge University<br />

Press).<br />

Frees, E. and E. Val<strong>de</strong>z, 1998, Un<strong>de</strong>rstanding Rel<strong>at</strong>ionships using copula,. North Americam Actuarial<br />

Journal 2, 1-25.<br />

Genest, C. and R. MacKay, 1986, The Joy of Copulas, American St<strong>at</strong>istician 40, 280-283.<br />

Genest, C., 1987, Frank’s Family of Bivari<strong>at</strong>e Distributions, Biom<strong>et</strong>rika 74, 549-555.<br />

Genest, C. and J.P. Rivest, 1993, St<strong>at</strong>istical Inference Procedures for Bivari<strong>at</strong>e Archime<strong>de</strong>an Copulas,<br />

Journal of American St<strong>at</strong>istical Associ<strong>at</strong>ion 88, 1034-1043.<br />

Gopikrishnan, P., M. Meyer, L.A.N. Amaral and H.E. Stanley, 1998, Inverse Cubic Law for the Distribution<br />

of Stock Price Vari<strong>at</strong>ion, European Physical Journal B 3, 139-140.<br />

Gouriéroux, C. and J. Jasiak, 1999, Trunc<strong>at</strong>ed Local Likelyhood and Non-paaram<strong>et</strong>ric tail analysis, DP<br />

99 CREST.<br />

Guillaume, D.M., M.M Dacorogna, R.R. Davé, J.A Muller, R.B. Olsen and O.V. Pict<strong>et</strong>, 1997, From<br />

the Bird Eye to the Microscope : A Survey of the New Stylized Facts of the Intra-Dayly Foreign<br />

Exchange Mark<strong>et</strong>s, Finance and Stochastics 1, 95-129.<br />

Haas, C.N., 1999, On Mo<strong>de</strong>ling Correl<strong>at</strong>ed Random Variables in Risk Assessment, Risk Analysis 19,<br />

1205-1214.<br />

Joe, H., 1993, Param<strong>et</strong>ric Families of Multivari<strong>at</strong>e Distributions with Given Marginals, Journal of Multivari<strong>at</strong>e<br />

Analysis 46, 262-282.<br />

20


Kaminsky, G.L. and S.L. Schmukler, 1999, Wh<strong>at</strong> Triggers Mark<strong>et</strong> Jitters? A Chronicle of the Asian<br />

Crisis, Journal of Intern<strong>at</strong>ional Money and Finance 18, 537-560.<br />

Klugman, S.A. and R. Parsa, 1999, Fitting Bivari<strong>at</strong>e Loss Distribution with Copulas, Insurance : M<strong>at</strong>hem<strong>at</strong>ics<br />

and Economics 24, 139-148.<br />

Laherrère, J. and D. Sorn<strong>et</strong>te, 1999, Str<strong>et</strong>ched exponential distributions in N<strong>at</strong>ure and Economy: “F<strong>at</strong><br />

tails” with characteristic scales, European Physical Journal B 2, 525-539.<br />

Longin F. and B. Solnik, Extreme Correl<strong>at</strong>ion of Intern<strong>at</strong>ional Equity Mark<strong>et</strong>s, The Journal of Finance<br />

LVI, 649-676 (2001).<br />

Lindskog, F., 1999, Mo<strong>de</strong>lling Depen<strong>de</strong>nce with Copulas,<br />

http : //www.risklab.ch/P apers.html#MT Lindskog<br />

Lux, L., 1996, The Stable Par<strong>et</strong>ian Hypothesis and the Frequency of Large R<strong>et</strong>urns : an Examin<strong>at</strong>ion of<br />

Major German Stocks, Applied Financial Economics 6, 463-475.<br />

Markovitz, H., 1959, Portfolio selection : Efficient diversific<strong>at</strong>ion of investments (John Wiley and Sons,<br />

New York).<br />

Nelsen, R.B., 1998, An Introduction to Copulas. Lectures Notes in st<strong>at</strong>istic 139 (Springer Verlag, New<br />

York).<br />

Pagan, A., 1996, The Econom<strong>et</strong>rics of Financial Mark<strong>et</strong>s, Journal of Empirical Finance 3, 15-102.<br />

Rosenberg, J.V., 1999, Semiparam<strong>et</strong>ric pricing of multivari<strong>at</strong>e contingent claims, NYU-Stern School of<br />

Business Working Paper.<br />

Sorn<strong>et</strong>te, D., P. Simon<strong>et</strong>ti and J. V. An<strong>de</strong>rsen, 2000, φ q -field theory for Portfolio optimiz<strong>at</strong>ion: “f<strong>at</strong> tails”<br />

and non-linear correl<strong>at</strong>ions, Physics Report 335, 19-92.<br />

Sorn<strong>et</strong>te, D., J. V. An<strong>de</strong>rsen and P. Simon<strong>et</strong>ti, 2000, Portfolio Theory for “F<strong>at</strong> Tails”, Intern<strong>at</strong>ional Journal<br />

of Theor<strong>et</strong>ical and Applied Finance 3 , 523-535.<br />

Starica, C., 1999, Multivari<strong>at</strong>e extremes for mo<strong>de</strong>ls with constant conditional correl<strong>at</strong>ions. Journal of<br />

Empirical Finance, 6, 515-553.<br />

Vries, C.G. <strong>de</strong>, 1994, Stylized Facts of Nominal Exchange R<strong>at</strong>e R<strong>et</strong>urns, in : Van <strong>de</strong>r Ploeg, F., ed., The<br />

Handbook of intern<strong>at</strong>ional Macroeconomics (Blackwell, Oxford) 348-389.<br />

21<br />

213


214 8. Tests <strong>de</strong> copule gaussienne<br />

λ ν (ρ)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

ν=3<br />

ν=5<br />

ν=10<br />

ν=20<br />

ν=50<br />

ν=100<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0<br />

ρ<br />

0.2 0.4 0.6 0.8 1<br />

Figure 1: Upper tail <strong>de</strong>pen<strong>de</strong>nce coefficient λν(ρ) for the Stu<strong>de</strong>nt’s copula with ν <strong>de</strong>grees of freedom as<br />

a function of the correl<strong>at</strong>ion coefficient ρ, for different values of ν.<br />

22


ρ<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

λ ν (ρ) = 1%<br />

λ ν (ρ) = 2.5%<br />

λ ν (ρ) = 5%<br />

λ ν (ρ) = 10%<br />

−1<br />

0 10 20 30 40 50<br />

ν<br />

60 70 80 90 100<br />

Figure 2: Maximum value of the correl<strong>at</strong>ion coefficient ρ as a function of ν, below which the tail<br />

<strong>de</strong>pen<strong>de</strong>nce λν(ρ) of a Stu<strong>de</strong>nt’ copula is smaller than a given small value, here taken equal to<br />

λν(ρ) = 1%, 2.5%, 5% and 10%. The choice λν(ρ) = 5% for instance corresponds to 1 event in 20<br />

for which the pair of variables are asymptotically coupled. At the 1 − λν(ρ) probability level, values of<br />

λ ≤ λν(ρ) are undistinguishable from 0, which means th<strong>at</strong> the Stu<strong>de</strong>nt’s copula can be approxim<strong>at</strong>ed by<br />

a Gaussian copula.<br />

23<br />

215


216 8. Tests <strong>de</strong> copule gaussienne<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

ρ=0.1<br />

ρ=0.3<br />

0.2<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

ρ=0.1<br />

ρ=0.3<br />

0.2<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

d 1<br />

d 3<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

ρ=0.1<br />

ρ=0.3<br />

0.2<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

ρ=0.1<br />

ρ=0.3<br />

0.2<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Figure 3: Cumul<strong>at</strong>ive “distribution of probabilities” D(p) ≡ D(p(d)) obtained as the fraction of Stu<strong>de</strong>nt’s<br />

pairs with ν = 4 <strong>de</strong>grees of freedom th<strong>at</strong> exhibit the value p for the probability th<strong>at</strong> Gaussian<br />

vectors can have a similar or larger distance. See the text for a d<strong>et</strong>ailled <strong>de</strong>scription of how D(p) is <strong>de</strong>fined<br />

and constructed. Each panel corresponds to one of the four distances di, i ∈ {1, 2, 3, 4}, <strong>de</strong>fined in<br />

the text by equ<strong>at</strong>ions (33-36). In each panel, we construct the cumul<strong>at</strong>ive “distribution of probabilities”<br />

D(p) for 5 different values of the correl<strong>at</strong>ion coefficient ρ = 0.1, 0.3, 0.5, 0.7 and 0.9 of the Stu<strong>de</strong>nt’s<br />

copula.<br />

24<br />

d 2<br />

d 4


1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

ρ=0.1<br />

ρ=0.3<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

ρ=0.1<br />

ρ=0.3<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

d 1<br />

d 3<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

ρ=0.1<br />

ρ=0.3<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

d 2<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

ρ=0.1<br />

ρ=0.3<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

d 4<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Figure 4: Same as figure 3 for Stu<strong>de</strong>nt’s distributions with ν = 20 <strong>de</strong>grees of freedom.<br />

25<br />

217


218 8. Tests <strong>de</strong> copule gaussienne<br />

ν = 3<br />

ν = 5<br />

ν = 8<br />

ν = 20<br />

ρ 0.1 0.3 0.5 0.7 0.9<br />

d1 0.07 0.08 0.07 0.04 0.07<br />

d2 0.03 0.03 0.07 0.04 0.06<br />

d3 0.22 0.17 0.08 0.03 0.01<br />

d4 0.03 0.03 0.08 0.03 0.04<br />

ρ 0.1 0.3 0.5 0.7 0.9<br />

d1 0.46 0.47 0.46 0.52 0.52<br />

d2 0.36 0.34 0.39 0.44 0.43<br />

d3 0.52 0.54 0.47 0.30 0.14<br />

d4 0.37 0.36 0.43 0.45 0.45<br />

ρ 0.1 0.3 0.5 0.7 0.9<br />

d1 0.85 0.86 0.87 0.88 0.89<br />

d2 0.85 0.84 0.86 0.87 0.88<br />

d3 0.91 0.91 0.91 0.81 0.70<br />

d4 0.86 0.85 0.90 0.89 0.90<br />

ρ 0.1 0.3 0.5 0.7 0.9<br />

d1 0.97 0.99 0.97 0.99 0.99<br />

d2 0.99 0.99 0.97 0.99 0.99<br />

d3 0.99 0.99 0.98 0.99 0.97<br />

d4 0.99 0.99 0.98 0.99 0.99<br />

ν = 4<br />

ν = 7<br />

ν = 10<br />

ν = 50<br />

ρ 0.1 0.3 0.5 0.7 0.9<br />

d1 0.28 0.26 0.32 0.30 0.29<br />

d2 0.18 0.17 0.21 0.21 0.24<br />

d3 0.36 0.33 0.26 0.15 0.03<br />

d4 0.18 0.17 0.23 0.21 0.21<br />

ρ 0.1 0.3 0.5 0.7 0.9<br />

d1 0.78 0.81 0.81 0.81 0.86<br />

d2 0.71 0.78 0.76 0.77 0.82<br />

d3 0.80 0.81 0.82 0.73 0.52<br />

d4 0.75 0.81 0.79 0.80 0.83<br />

ρ 0.1 0.3 0.5 0.7 0.9<br />

d1 0.92 0.93 0.96 0.95 0.94<br />

d2 0.93 0.92 0.95 0.96 0.94<br />

d3 0.96 0.96 0.96 0.95 0.88<br />

d4 0.94 0.94 0.96 0.97 0.95<br />

ρ 0.1 0.3 0.5 0.7 0.9<br />

d1 0.99 0.99 0.99 0.99 0.99<br />

d2 0.99 0.99 0.99 0.99 0.99<br />

d3 0.99 0.99 0.99 0.99 0.99<br />

d4 0.99 0.99 0.99 0.99 0.99<br />

Table 1: The values p 95%(ν, ρ) shown in this table give the maximum values th<strong>at</strong> the probability p should<br />

take in or<strong>de</strong>r to be able to reject the hypothesis th<strong>at</strong> a Stu<strong>de</strong>nt’s copula with ν <strong>de</strong>grees and correl<strong>at</strong>ion<br />

ρ is undistinguishable from a Gaussian copula <strong>at</strong> the 95% confi<strong>de</strong>nce level. p 95% is the abscissa corresponding<br />

to the ordin<strong>at</strong>e D(p 95%) = 0.95 shown in figures 3 and 4. p is the probability th<strong>at</strong> pairs of<br />

Gaussian random variables with the correl<strong>at</strong>ion coefficient ρ have a distance (b<strong>et</strong>ween the distribution of<br />

z 2 and the theor<strong>et</strong>ical χ 2 distribution) equal to or larger than the corresponding distance obtained for the<br />

Stu<strong>de</strong>nt’s vector time series. A small p corresponds to a clear distinction b<strong>et</strong>ween Stu<strong>de</strong>nt’s and Gaussian<br />

vectors, as it is improbable th<strong>at</strong> Gaussian vectors exhibit a distance larger than found for the Stu<strong>de</strong>nt’s<br />

vectors. Different values of the number ν of <strong>de</strong>grees of freedom ranging from ν = 3 to ν = 50 and of<br />

the correl<strong>at</strong>ion coefficient ρ = 0.1 to 0.9 are shown. L<strong>et</strong> us take for instance the example with ν = 4 and<br />

ρ = 0.3. The table indic<strong>at</strong>es th<strong>at</strong> p should be less than about 0.3 (resp. 0.2) according to the distances d1<br />

and d3 (resp. d2 and d4) for being able to distinguish this Stu<strong>de</strong>nt’s copula from the Gaussian copula <strong>at</strong><br />

the 95% confi<strong>de</strong>nce level. This means th<strong>at</strong> less than 20−30% of Gaussian vectors should have a distance<br />

for their z 2 larger than the one found for the Stu<strong>de</strong>nt’s. See text for further explan<strong>at</strong>ions.<br />

26


1−p 95%<br />

1−p 95%<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

ρ=0.1<br />

ρ=0.3<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

d 1<br />

0<br />

0 0.1 0.2<br />

1/ν<br />

0.3<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

ρ=0.1<br />

ρ=0.3<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

d 3<br />

0<br />

0 0.1 0.2<br />

1/ν<br />

0.3 0.4<br />

1−p 95%<br />

1−p 95%<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

ρ=0.1<br />

ρ=0.3<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

d 2<br />

0<br />

0 0.1 0.2<br />

1/ν<br />

0.3<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

ρ=0.1<br />

ρ=0.3<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

d 4<br />

0<br />

0 0.1 0.2<br />

1/ν<br />

0.3<br />

Figure 5: Graph of the minimun significance level (1 − p 95%) necessary to distinguish the Gaussian<br />

copula hypothesis H0 from the hypothesis of a stu<strong>de</strong>nt copula with ν <strong>de</strong>grees of freedom, as a function<br />

of 1/ν, for a given distance di and various correl<strong>at</strong>ion coefficients ρ = 0.1, 0.3, 0.5, 0.7 and 0.9.<br />

27<br />

219


220 8. Tests <strong>de</strong> copule gaussienne<br />

1−p 95%<br />

1−p 95%<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

d<br />

1<br />

d<br />

2<br />

d<br />

3<br />

d<br />

4<br />

ρ =0.1 − 0.3<br />

0<br />

0 0.1 0.2<br />

1/ν<br />

0.3 0.4<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

d<br />

1<br />

d<br />

2<br />

d<br />

3<br />

d<br />

4<br />

ρ =0.7<br />

0<br />

0 0.1 0.2<br />

1/ν<br />

0.3 0.4<br />

1−p 95%<br />

1−p 95%<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

d<br />

1<br />

d<br />

2<br />

d<br />

3<br />

d<br />

4<br />

ρ =0.5<br />

0<br />

0 0.1 0.2<br />

1/ν<br />

0.3 0.4<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

d<br />

1<br />

d<br />

2<br />

d<br />

3<br />

d<br />

4<br />

ρ =0.9<br />

0<br />

0 0.1 0.2<br />

1/ν<br />

0.3 0.4<br />

Figure 6: Same as figure 5 but comparing different distances for the same correl<strong>at</strong>ion coefficient ρ.<br />

28


ˆρ d1 d2 d3 d4<br />

CHF DEM 0.92 1.01e-02 6.70e-03 0.00e+00 7.20e-03<br />

CHF JPY 0.53 3.44e-01 2.71e-01 2.32e-02 2.83e-01<br />

CHF MYR 0.23 7.27e-01 8.71e-01 5.77e-01 9.26e-01<br />

CHF THA 0.21 3.08e-02 9.47e-02 3.31e-02 9.52e-02<br />

CHF UKP 0.69 2.80e-03 1.80e-03 6.00e-04 1.30e-03<br />

DEM JPY 0.54 2.26e-02 1.33e-01 1.00e-01 1.51e-01<br />

DEM MYR 0.26 4.25e-01 6.77e-01 6.22e-01 7.35e-01<br />

DEM THA 0.24 6.53e-02 1.35e-01 3.26e-02 1.32e-01<br />

DEM UKP 0.72 1.70e-03 4.00e-04 0.00e+00 4.00e-04<br />

JPY MYR 0.31 2.45e-02 6.34e-02 2.26e-01 6.86e-02<br />

JPY THA 0.34 0.00e+00 0.00e+00 3.24e-02 0.00e+00<br />

JPY UKP 0.41 2.85e-02 3.72e-02 5.22e-02 3.09e-02<br />

MYR THA 0.40 0.00e+00 0.00e+00 2.22e-02 0.00e+00<br />

MYR UKP 0.21 6.94e-01 7.94e-01 6.23e-01 8.31e-01<br />

THA UKP 0.15 5.22e-01 6.23e-01 3.21e-02 7.05e-01<br />

Table 2: Each row gives the st<strong>at</strong>istics of our test for each of the 15 pairs of currencies over a 10 years<br />

time interval from January 25, 1989 to December 31, 1998. The column ˆρ gives the empirical correl<strong>at</strong>ion<br />

coefficient for each pair d<strong>et</strong>ermined as in section 3.1 and <strong>de</strong>fined in (31). The columns d1, d2, d3 and d4<br />

gives the probability to obtain, from the Gaussian hypothesis, a <strong>de</strong>vi<strong>at</strong>ion b<strong>et</strong>ween the distribution of the<br />

z 2 and the χ 2 -distribution with two <strong>de</strong>grees of freedom larger than the observed one for the currency pair<br />

according to the distances d1-d4 <strong>de</strong>fined by (33)-(36).<br />

29<br />

221


222 8. Tests <strong>de</strong> copule gaussienne<br />

ˆρ d1 d2 d3 d4<br />

CHF DEM 0.92 1.73e-02 1.33e-02 0.00e+00 1.31e-02<br />

CHF JPY 0.55 1.34e-01 1.49e-01 3.83e-01 1.41e-01<br />

CHF MYR 0.32 8.47e-01 7.00e-01 3.56e-01 7.40e-01<br />

CHF THA 0.17 4.40e-01 7.10e-01 3.53e-02 7.11e-01<br />

CHF UKP 0.79 3.10e-03 1.00e-03 0.00e+00 5.00e-04<br />

DEM JPY 0.56 2.46e-02 9.43e-02 1.63e-01 9.26e-02<br />

DEM MYR 0.35 9.32e-01 7.95e-01 3.51e-01 7.95e-01<br />

DEM THA 0.21 4.36e-01 8.77e-01 3.47e-02 8.74e-01<br />

DEM UKP 0.82 0.00e+00 0.00e+00 0.00e+00 0.00e+00<br />

JPY MYR 0.34 4.90e-01 5.49e-01 3.66e-01 5.94e-01<br />

JPY THA 0.27 3.89e-01 3.06e-01 3.37e-02 3.59e-01<br />

JPY UKP 0.53 9.00e-04 1.66e-02 6.72e-02 1.67e-02<br />

MYR THA 0.29 1.08e-01 8.71e-02 3.42e-02 9.30e-02<br />

MYR UKP 0.33 1.12e-01 2.86e-01 3.54e-01 3.45e-01<br />

THA UKP 0.21 4.34e-01 8.62e-01 3.13e-02 8.67e-01<br />

Table 3: Same as table 2 for currencies over a 5 years time interval from January 25, 1989 to Januay 11,<br />

1994.<br />

30


ˆρ d1 d2 d3 d4<br />

CHF DEM 0.92 3.15e-01 3.11e-01 5.00e-04 3.41e-01<br />

CHF JPY 0.52 5.84e-01 6.44e-01 1.98e-02 6.74e-01<br />

CHF MYR 0.16 7.11e-01 9.15e-01 8.83e-01 9.22e-01<br />

CHF THA 0.25 1.10e-02 3.87e-02 1.05e-01 3.34e-02<br />

CHF UKP 0.53 9.75e-02 1.03e-01 2.33e-01 9.29e-02<br />

DEM JPY 0.53 3.63e-01 5.40e-01 1.77e-02 6.54e-01<br />

DEM MYR 0.18 3.55e-01 5.00e-01 5.84e-01 5.67e-01<br />

DEM THA 0.28 1.28e-02 2.18e-02 1.08e-01 1.51e-02<br />

DEM UKP 0.56 1.15e-01 1.10e-01 3.02e-01 1.06e-01<br />

JPY MYR 0.29 7.63e-02 2.14e-01 6.67e-02 2.23e-01<br />

JPY THA 0.38 0.00e+00 2.00e-04 3.09e-02 2.00e-04<br />

JPY UKP 0.28 4.62e-01 2.30e-01 1.23e-01 2.07e-01<br />

MYR THA 0.44 5.00e-04 1.20e-03 5.34e-02 1.20e-03<br />

MYR UKP 0.11 5.94e-01 7.44e-01 6.95e-01 7.82e-01<br />

THA UKP 0.12 1.26e-02 7.66e-02 1.19e-01 6.51e-02<br />

Table 4: Same as table 2 for currencies over a 5 years time interval from January 12, 1994 to December<br />

31, 1998.<br />

31<br />

223


224 8. Tests <strong>de</strong> copule gaussienne<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Figure 7: For each distance d1-d4 <strong>de</strong>fined in equ<strong>at</strong>ions (33)-(36), this figure shows the number of currency<br />

pairs th<strong>at</strong> give a given p (shown on the abscissa) within a bin interval of width 0.05 for different currencies<br />

over a 10 years time interval from January 25, 1989 to December 31, 1998. p is the probability th<strong>at</strong><br />

pairs of Gaussian random variables with the same correl<strong>at</strong>ion coefficient ρ have a distance (b<strong>et</strong>ween the<br />

distribution of z 2 and the theor<strong>et</strong>ical chi 2 distribution) equal to or larger than the corresponding distance<br />

obtained for each currency pair. A clustering close to the origin signals a significant rejection of the<br />

Gaussian copula hypothesis.<br />

32<br />

d<br />

1<br />

d<br />

2<br />

d<br />

1<br />

d<br />

4


8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Figure 8: Same as figure 7 for currencies over a 5 years time interval from January 25, 1989 to January<br />

11, 1994.<br />

33<br />

d<br />

1<br />

d<br />

2<br />

d<br />

1<br />

d<br />

4<br />

225


226 8. Tests <strong>de</strong> copule gaussienne<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Figure 9: Same as figure 7 for currencies over a 5 years time interval from January 12, 1994 to December<br />

1998.<br />

34<br />

d<br />

1<br />

d<br />

2<br />

d<br />

1<br />

d<br />

4


ˆρ d1 d2 d3 d4<br />

aluminium copper 0.46 6.46e-02 4.48e-02 1.45e-02 4.00e-02<br />

aluminium lead 0.35 1.14e-01 5.01e-02 1.70e-01 4.59e-02<br />

aluminium nickel 0.36 3.30e-03 5.10e-03 3.41e-02 6.20e-03<br />

aluminium tin 0.34 1.34e-01 1.38e-01 1.25e-02 1.59e-01<br />

aluminium zinc 0.36 2.30e-03 2.20e-03 6.21e-02 2.30e-03<br />

copper lead 0.35 4.71e-02 1.74e-02 1.79e-01 1.34e-02<br />

copper nickel 0.38 4.91e-02 4.60e-02 1.48e-01 3.80e-02<br />

copper tin 0.32 1.94e-01 1.35e-01 6.53e-01 1.47e-01<br />

copper zinc 0.40 3.24e-02 2.05e-02 1.75e-01 1.94e-02<br />

lead nickel 0.32 6.71e-02 3.78e-02 2.74e-01 3.62e-02<br />

lead tin 0.33 7.86e-02 4.04e-02 4.91e-02 3 .31e-02<br />

lead zinc 0.42 2.00e-04 1.00e-04 4.59e-02 3.00e-04<br />

nickel tin 0.35 9.10e-03 9.20e-03 8.70e-02 7.60e-03<br />

nickel zinc 0.33 8.00e-04 3.40e-03 8.91e-02 3.50e-03<br />

tin zinc 0.31 5.30e-03 2.02e-02 1.03e-01 1.75e-02<br />

Table 5: Same as table 2 for m<strong>et</strong>als over a 9 years time interval from January 4, 1989 to December 30,<br />

1997.<br />

35<br />

227


228 8. Tests <strong>de</strong> copule gaussienne<br />

f 3<br />

German Mark<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Jan 89 Jan 94 Dec 98<br />

4<br />

2<br />

0<br />

−2<br />

20/06/1989<br />

19/08/1991<br />

−4<br />

−4 −2 0<br />

Swiss Franc<br />

2 4<br />

16/09/1992<br />

German Mark<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

10/09/97<br />

−3<br />

−6 −4 −2 0 2 4<br />

Swiss Franc<br />

Figure 10: The upper panel represents the graph of the function f3(t) <strong>de</strong>fined in (37) used in the <strong>de</strong>finition<br />

of the distance d3 for the couple Swiss Franc/German Mark as a function of time t, over the time intervals<br />

from January 25, 1989 to January 11, 1994 and from January 12, 1994 to December 31, 1998. The two<br />

lower panels represent the sc<strong>at</strong>ter plot of the r<strong>et</strong>urn of the German Mark versus the r<strong>et</strong>urn of the Swiss<br />

Franc during the two previous time periods. The circled dot, in each figure, shows the pair of r<strong>et</strong>urns<br />

responsible for the largest <strong>de</strong>vi<strong>at</strong>ion of f3 during the consi<strong>de</strong>red time interval.<br />

36


14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Figure 11: Same as figure 7 for m<strong>et</strong>als over a 9 years time interval from January 4, 1989 to December<br />

30, 1997.<br />

37<br />

d<br />

1<br />

d<br />

2<br />

d<br />

3<br />

d<br />

4<br />

229


230 8. Tests <strong>de</strong> copule gaussienne<br />

ˆρ d1 d2 d3 d4<br />

am<strong>at</strong> pfe 0.15 7.41e-02 1.12e-01 8.40e-03 1.14e-01<br />

c sunw 0.28 2.56e-01 4.87e-01 1.09e-01 5.39e-01<br />

f ge 0.33 2.52e-01 2.74e-01 1.15e-01 2.90e-01<br />

gm ibm 0.21 1.49e-01 3.85e-01 1.62e-01 4.18e-01<br />

hwp sbc 0.12 4.23e-01 1.69e-01 2.52e-01 1.72e-01<br />

intc mrk 0.17 2.48e-01 1.09e-01 6.46e-01 1.04e-01<br />

ko sunw 0.14 1.41e-01 1.01e-01 2.12e-01 9.35e-02<br />

mdt t 0.16 1.21e-01 2.81e-01 8.41e-02 2.98e-01<br />

mrk xom 0.19 1.54e-01 1.50e-01 1.12e-01 1.45e-01<br />

msft sunw 0.44 3.40e-02 1.85e-02 2.60e-03 1.74e-02<br />

pfe wmt 0.27 4.24e-02 4.12e-02 1.54e-01 3.74e-02<br />

t wcom 0.27 5.67e-02 8.02e-02 5.44e-02 9.07e-02<br />

txn wcom 0.28 4.79e-01 3.77e-01 1.52e-01 3.75e-01<br />

wmt xom 0.20 3.20e-03 0.00e+00 6.02e-02 0.00e+00<br />

Table 6: Same as table 2 for stocks over a 10 years time interval from February 8, 1991 to December 29,<br />

2000.<br />

38


ˆρ d1 d2 d3 d4<br />

am<strong>at</strong> pfe 0.10 5.83e-01 5.81e-01 1.18e-01 6.38e-01<br />

c sunw 0.23 4.66e-01 5.94e-01 4.34e-01 6.16e-01<br />

f ge 0.31 8.73e-01 7.87e-01 1.54e-01 8.48e-01<br />

gm ibm 0.21 6.00e-01 6.53e-01 1.03e-01 5.27e-01<br />

hwp sbc 0.11 8.73e-01 8.06e-01 2.84e-01 8.59e-01<br />

intc mrk 0.13 8.59e-01 8.21e-01 5.48e-02 8.65e-01<br />

ko sunw 0.20 3.53e-01 5.98e-01 4.51e-01 6.79e-01<br />

mdt t 0.14 9.09e-01 8.98e-01 1.68e-01 9.15e-01<br />

mrk xom 0.12 5.36e-01 6.21e-01 1.20e-01 6.18e-01<br />

msft sunw 0.40 2.68e-01 1.38e-01 1.60e-01 1.39e-01<br />

pfe wmt 0.23 2.94e-01 4.66e-01 1.41e-01 5.23e-01<br />

t wcom 0.19 7.92e-01 9.36e-01 4.95e-02 9.49e-01<br />

txn wcom 0.23 9.10e-01 9.83e-01 1.00e-01 9.93e-01<br />

wmt xom 0.22 7.16e-01 6.71e-01 7.35e-02 6.89e-01<br />

Table 7: Same as table 2 for stocks over a 5 years time interval from February 8, 1991 to January 18,<br />

1996.<br />

39<br />

231


232 8. Tests <strong>de</strong> copule gaussienne<br />

ˆρ d1 d2 d3 d4<br />

am<strong>at</strong> pfe 0.19 2.96e-01 3.39e-01 3.10e-02 3.95e-01<br />

c sunw 0.31 7.12e-01 6.58e-01 9.47e-01 7.08e-01<br />

f ge 0.34 3.80e-01 2.36e-01 3.22e-01 2.18e-01<br />

gm ibm 0.21 3.05e-02 1.79e-01 2.37e-01 2.19e-01<br />

hwp sbc 0.11 3.47e-01 6.13e-01 7.17e-01 6.40e-01<br />

intc mrk 0.20 1.31e-01 2.06e-01 5.57e-01 2.05e-01<br />

ko sunw 0.10 6.89e-01 3.44e-01 8.59e-01 3.52e-01<br />

mdt t 0.19 4.28e-01 6.11e-01 5.01e-01 5.79e-01<br />

mrk xom 0.23 3.57e-01 6.64e-01 1.13e-01 7.38e-01<br />

msft sunw 0.46 5.79e-02 7.60e-02 8.00e-04 8.07e-02<br />

pfe wmt 0.30 2.31e-01 2.12e-01 5.59e-01 1.98e-01<br />

t wcom 0.33 1.20e-01 1.37e-01 1.73e-01 1.40e-01<br />

txn wcom 0.31 5.63e-01 4.06e-01 4.64e-01 4.17e-01<br />

wmt xom 0.19 1.61e-01 5.38e-02 3.78e-02 4.94e-02<br />

Table 8: Same as table 2 for stocks over a 5 years time interval from January 19, 1996 to December 29,<br />

2000.<br />

40


70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Figure 12: Same as figure 7 for stocks over a 10 years time interval from February 8, 1991 to December<br />

29, 2000.<br />

41<br />

d<br />

1<br />

d<br />

2<br />

d<br />

3<br />

d<br />

4<br />

233


234 8. Tests <strong>de</strong> copule gaussienne<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Figure 13: Same as figure 7 for stocks over a 5 years time interval from February 8, 1991 to January 18,<br />

1996.<br />

42<br />

d<br />

1<br />

d<br />

2<br />

d<br />

3<br />

d<br />

4


50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Figure 14: Same as figure 7 for stocks over a 5 years time interval from January 19, 1996 to December<br />

30, 2000.<br />

43<br />

d<br />

1<br />

d<br />

2<br />

d<br />

3<br />

d<br />

4<br />

235


236 8. Tests <strong>de</strong> copule gaussienne<br />

Time interval from<br />

Frebruary 8, 1991<br />

to January 18, 1996<br />

Time interval from<br />

January 19, 1996 to<br />

December 29, 2000<br />

ˆρ d1 d2 d3 d4<br />

hwp ibm 0.34 3.36e-01 2.26e-01 3.33e-01 2.35e-01<br />

hwp intc 0.46 3.01e-01 4.73e-01 5.12e-01 5.21e-01<br />

hwp msft 0.41 7.63e-01 4.72e-01 3.23e-01 4.53e-01<br />

hwp sunw 0.40 2.96e-01 2.98e-01 7.66e-01 3.54e-01<br />

ibm intc 0.30 4.81e-01 3.54e-01 4.18e-02 3.34e-01<br />

ibm msft 0.24 3.93e-01 6.61e-01 5.88e-01 7.07e-01<br />

ibm sunw 0.29 9.65e-01 9.71e-01 3.46e-01 9.86e-01<br />

intc msft 0.47 2.59e-01 1.45e-01 4.50e-02 1.53e-01<br />

intc sunw 0.40 4.81e-01 3.86e-01 4.47e-02 3.95e-01<br />

msft sunw 0.40 2.68e-01 1.38e-01 1.66e-01 1.39e-01<br />

ˆρ d1 d2 d3 d4<br />

hwp ibm 0.46 2.02e-02 3.21e-02 9.60e-03 3.96e-02<br />

hwp intc 0.44 2.88e-02 4.89e-02 6.00e-04 5.80e-02<br />

hwp msft 0.37 5.23e-02 9.88e-02 3.36e-01 1.18e-01<br />

hwp sunw 0.45 5.66e-01 5.65e-01 1.08e-01 6.23e-01<br />

ibm intc 0.43 5.34e-02 3.31e-02 1.68e-02 2.44e-02<br />

ibm msft 0.39 1.00e-02 9.50e-03 2.28e-02 8.80e-03<br />

ibm sunw 0.46 2.35e-01 1.56e-01 3.38e-01 1.49e-01<br />

intc msft 0.57 3.18e-01 1.61e-01 1.15e-01 1.71e-01<br />

intc sunw 0.50 6.68e-02 3.55e-02 1.00e-04 4.37e-02<br />

msft sunw 0.46 5.79e-02 7.60e-02 8.00e-04 8.07e-02<br />

Table 9: Same as table 2 for stocks belonging to the inform<strong>at</strong>ic sector, over two time intervals of 5 years.<br />

44


Chapitre 9<br />

Mesure <strong>de</strong> la dépendance extrême entre<br />

<strong>de</strong>ux actifs financiers<br />

Les <strong>de</strong>ux chapitres précé<strong>de</strong>nts nous ont permis <strong>de</strong> comprendre l’importance <strong>de</strong> l’étu<strong>de</strong> <strong>de</strong> la dépendance<br />

extrême entre <strong>de</strong>ux actifs financiers. En eff<strong>et</strong>, nous avons montré qu’il était très difficile, par une estim<strong>at</strong>ion<br />

directe <strong>de</strong> la copule, <strong>de</strong> pouvoir obtenir une mesure fiable <strong>de</strong> ces propriétés <strong>de</strong> dépendances<br />

extrêmes. Or, celles-ci ont un impact très important sur la <strong>gestion</strong> <strong>de</strong>s risques, <strong>et</strong> plus particulièrement<br />

<strong>de</strong>s grands risques, puisque selon que les extrêmes auront tendance à se produire ensemble ou <strong>de</strong> manière<br />

indépendante, la constitution <strong>de</strong> <strong>portefeuille</strong>s agrégeant ces risques perm<strong>et</strong>tra, ou non, <strong>de</strong> les diversifier.<br />

Nous avons mentionné, au chapitre 7, le coefficient <strong>de</strong> dépendance <strong>de</strong> queue comme moyen <strong>de</strong> quantifier<br />

la propension <strong>de</strong>s extrêmes à se produire <strong>de</strong> manière concomitante. Cependant, bien d’autres mesures <strong>de</strong><br />

dépendances entre les événements <strong>de</strong> gran<strong>de</strong>s amplitu<strong>de</strong>s peuvent être imaginées comme par exemple <strong>de</strong>s<br />

coefficients <strong>de</strong> corrél<strong>at</strong>ion conditionnés, <strong>et</strong> il convient donc <strong>de</strong> se <strong>de</strong>man<strong>de</strong>r pourquoi choisir telle mesure<br />

plutôt que telle autre. Ce sera l’obj<strong>et</strong> <strong>de</strong> la première partie <strong>de</strong> ce chapitre, où nous comparons ces diverses<br />

métho<strong>de</strong>s <strong>de</strong> mesures <strong>de</strong>s dépendances extrêmes <strong>et</strong> montrons qu’elles conduisent à <strong>de</strong>s résult<strong>at</strong>s parfois<br />

surprenants <strong>et</strong> contradictoires. Ceci nous perm<strong>et</strong>tra <strong>de</strong> justifier notre choix concernant le coefficient <strong>de</strong><br />

dépendance <strong>de</strong> queue, dont nous passons également en revue les différents moyens d’estim<strong>at</strong>ion, ce qui<br />

est en fait assez délic<strong>at</strong> <strong>et</strong> ne peut être réalisé <strong>de</strong> manière (rel<strong>at</strong>ivement) précise que dans quelques cas<br />

particuliers.<br />

Une <strong>de</strong>s métho<strong>de</strong>s d’estim<strong>at</strong>ion à laquelle nous nous sommes particulièrement intéressés s’appuie sur<br />

les propriétés <strong>de</strong> la classe <strong>de</strong>s modèles à facteurs, dont on sait qu’elle joue un rôle prépondérant dans la<br />

modélis<strong>at</strong>ion <strong>de</strong>s ren<strong>de</strong>ments <strong>de</strong>s actifs financiers. C<strong>et</strong>te métho<strong>de</strong> est présentée en détail dans la secon<strong>de</strong><br />

partie <strong>de</strong> ce chapitre. Elle nous a permis d’estimer les coefficients <strong>de</strong> dépendance <strong>de</strong> queue d’un ensemble<br />

d’actions sous l’hypothèse que l’indice <strong>de</strong> marché peut être considéré comme le facteur commun<br />

principal expliquant la dépendance entre ces divers actifs.<br />

Enfin, dans la <strong>de</strong>rnière partie <strong>de</strong> ce chapitre, nous utilisons ces résult<strong>at</strong>s pour répondre à la question que<br />

nous nous posions à la fin du chapitre 7 sur la pertinence <strong>de</strong> l’approxim<strong>at</strong>ion par la copule gaussienne, <strong>et</strong><br />

plus généralement elliptique, <strong>de</strong> la structure <strong>de</strong> dépendance entre actifs.<br />

237


238 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

9.1 Les différentes mesures <strong>de</strong> dépendances extrêmes<br />

Nous allons étudier l’inform<strong>at</strong>ion rel<strong>at</strong>ive contenue dans diverses mesures <strong>de</strong> dépendance entre <strong>de</strong>ux<br />

variables alé<strong>at</strong>oires X <strong>et</strong> Y pour <strong>de</strong>s événements grands <strong>et</strong> extrêmes <strong>et</strong> différents modèles <strong>de</strong> séries<br />

financières. Les mesures considérées comprennent à la fois <strong>de</strong>s quantités conditionnées <strong>et</strong> non conditionnées<br />

telles que le coefficient <strong>de</strong> corrél<strong>at</strong>ion au-<strong>de</strong>là d’un seuil donné ou le coefficient <strong>de</strong> dépendance<br />

<strong>de</strong> queue. Nous présentons <strong>de</strong>s formules analytiques explicites ainsi que <strong>de</strong>s résult<strong>at</strong>s numériques <strong>et</strong> <strong>de</strong>s<br />

estim<strong>at</strong>ions empiriques <strong>de</strong> ces mesures <strong>de</strong> dépendance, ce qui nous perm<strong>et</strong> <strong>de</strong> prouver quantit<strong>at</strong>ivement<br />

que les dépendances conditionnées peuvent être très différentes <strong>de</strong>s dépendances non conditionnées. C<strong>et</strong><br />

eff<strong>et</strong> <strong>de</strong> conditionnement fournit un mécanisme simple <strong>et</strong> général pour expliquer les changements <strong>de</strong><br />

corrél<strong>at</strong>ions basés sur <strong>de</strong>s changements <strong>de</strong> vol<strong>at</strong>ilité ou <strong>de</strong> tendance. Ainsi, les outils basés sur <strong>de</strong>s quantités<br />

conditionnées doivent être utilisés avec précaution puisque le conditionnement à lui seul induit <strong>de</strong>s<br />

changements dans la structure <strong>de</strong> dépendance, qui n’ont rien à voir avec <strong>de</strong> réels changements <strong>de</strong> la<br />

dépendance non conditionnée. Pour cela, le coefficient <strong>de</strong> dépendance <strong>de</strong> queue nous semble <strong>de</strong>voir être<br />

préféré aux corrél<strong>at</strong>ions conditionnées. De plus, ces mesures <strong>de</strong> dépendances présentent <strong>de</strong>s comportements<br />

différents <strong>et</strong> parfois opposés, suggérant que les propriétés <strong>de</strong> dépendances extrêmes possè<strong>de</strong>nt un<br />

caractère multidimensionnel qui peut être quantifié <strong>de</strong> diverses manières conduisant à <strong>de</strong>s conclusions<br />

différentes.<br />

Nous appliquons nos résult<strong>at</strong>s théoriques au problème controversé <strong>de</strong> la contagion entre les marchés<br />

sud-américains durant les pério<strong>de</strong>s <strong>de</strong> turbulence associées aux crises financières mexicaine <strong>de</strong> 1994<br />

<strong>et</strong> argentine débutée en 2001 1 . Notre analyse <strong>de</strong>s différentes mesures <strong>de</strong> dépendance entre les marchés<br />

argentin, brésilien, chilien <strong>et</strong> mexicain montre que les eff<strong>et</strong>s <strong>de</strong> conditionnement n’expliquent pas totalement<br />

le comportement <strong>de</strong>s marchés sud-américains ce qui confirme l’existence d’une possible contagion.<br />

Nous trouvons que la crise mexicaine <strong>de</strong> 1994 s’est étendue aux marchés argentin <strong>et</strong> brésilien par<br />

un mécanisme <strong>de</strong> contagion alors que <strong>de</strong> simples co-mouvements suffisent à expliquer les fluctu<strong>at</strong>ions<br />

concomitantes du marché chilien. Au suj<strong>et</strong> <strong>de</strong> la récente crise argentine débutée en 2001, nous ne trouvons<br />

pas <strong>de</strong> preuve <strong>de</strong> contagion vers les autres marchés sud-américains (excepté peut-être le Brésil)<br />

mais i<strong>de</strong>ntifions <strong>de</strong>s co-mouvements signific<strong>at</strong>ifs.<br />

1 C<strong>et</strong>te étu<strong>de</strong> empirique semble déconnectée <strong>de</strong>s autres étu<strong>de</strong>s menées jusqu’ici, <strong>et</strong> l’on peut se <strong>de</strong>man<strong>de</strong>r pourquoi nous<br />

n’avons pas continué à étudier le même jeu d’actifs que précé<strong>de</strong>mment. Ceci est simplement dû à l’exigence du referee <strong>de</strong> la<br />

revue à laquelle le papier a été soumis.


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 239<br />

Investig<strong>at</strong>ing Extreme Depen<strong>de</strong>nces: Conditioning Effect Versus<br />

Contagion in L<strong>at</strong>in-American Crises ∗<br />

Y. Malevergne 1,2 and D. Sorn<strong>et</strong>te 1,3<br />

1 Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>ière Con<strong>de</strong>nsée CNRS UMR 6622<br />

Université <strong>de</strong> Nice-Sophia Antipolis, 06108 Nice Ce<strong>de</strong>x 2, France<br />

2 Institut <strong>de</strong> Science Financière <strong>et</strong> d’Assurances - Université Lyon I<br />

43, Bd du 11 Novembre 1918, 69622 Villeurbanne Ce<strong>de</strong>x<br />

3 Institute of Geophysics and Plan<strong>et</strong>ary Physics and Department of Earth and Space Science<br />

University of California, Los Angeles, California 90095, USA<br />

email: Yannick.Malevergne@unice.fr and sorn<strong>et</strong>te@unice.fr<br />

fax: (33) 4 92 07 67 54<br />

Abstract<br />

We investig<strong>at</strong>e the rel<strong>at</strong>ive inform<strong>at</strong>ion content of several measures of <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two random<br />

variables X and Y for large or extreme events in various mo<strong>de</strong>ls of financial time series. The consi<strong>de</strong>red<br />

measures involve both conditional and unconditional quantities such as the conditional correl<strong>at</strong>ion<br />

coefficient over a given threshold or the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce. We offer explicit analytical formulas<br />

as well as numerical and empirical estim<strong>at</strong>ions for these measures of <strong>de</strong>pen<strong>de</strong>nce, which allow us<br />

to provi<strong>de</strong> a quantit<strong>at</strong>ive proof th<strong>at</strong> conditional <strong>de</strong>pen<strong>de</strong>nces may be very different from the unconditional<br />

ones. This conditioning effect provi<strong>de</strong>s a straightforward and general mechanism for explaining changes<br />

of correl<strong>at</strong>ions based on changes of vol<strong>at</strong>ility or of trends. Thus, tools based upon conditional quantities<br />

should be used with caution since conditioning alone induces a change in the <strong>de</strong>pen<strong>de</strong>nce structure<br />

which has nothing to do with a genuine change of unconditional <strong>de</strong>pen<strong>de</strong>nce. In this respect, for its<br />

stability, the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce should be prefered to the conditional correl<strong>at</strong>ions. Moreover,<br />

the various measures of <strong>de</strong>pen<strong>de</strong>nce exhibit different and som<strong>et</strong>imes opposite behaviors, suggesting th<strong>at</strong><br />

extreme <strong>de</strong>pen<strong>de</strong>nce properties possess a multidimensional character th<strong>at</strong> can be quantified in various<br />

ways leading to different conclusions. We apply our theor<strong>et</strong>ical results to the controversial contagion<br />

problem across L<strong>at</strong>in American mark<strong>et</strong>s during the turmoil period associ<strong>at</strong>ed with the Mexican crisis in<br />

1994 and with the Argentina crisis th<strong>at</strong> started in 2001. Our analysis of several measures of <strong>de</strong>pen<strong>de</strong>nce<br />

b<strong>et</strong>ween the Argentina, Brazilian, Chilean and Mexican mark<strong>et</strong>s shows th<strong>at</strong> the conditioning effect does<br />

not fully explain the behavior of the L<strong>at</strong>in American stock in<strong>de</strong>xes, confirming the existence of a possible<br />

contagion. We find th<strong>at</strong> the 1994 Mexican crisis has spread over to Argentina and Brazil through<br />

contagion mechanisms and to Chile only through co-movements. Concerning the recent Argentina crisis<br />

starting in 2001, we find no evi<strong>de</strong>nce of contagion to the other L<strong>at</strong>in American countries (except perhaps<br />

in the direction of Brazil) but i<strong>de</strong>ntify significant co-movements.<br />

∗ We acknowledge helpful discussions and exchanges with J.P. Laurent, F. Lindskog and V. Pisarenko. This work was partially<br />

supported by the James S. Mc Donnell Found<strong>at</strong>ion 21st century scientist award/studying complex system.<br />

1


240 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Introduction<br />

The October 19, 1987, stock-mark<strong>et</strong> crash stunned Wall Stre<strong>et</strong> professionals, hacked about $1 trillion off<br />

the value of all U.S. stocks, and elicited predictions of another Gre<strong>at</strong> Depression. On “Black Monday,” the<br />

Dow Jones industrial average plumm<strong>et</strong>ed 508 points, or 22.6 percent, to 1, 738.74. Contrary to common<br />

belief, the US was not the first to <strong>de</strong>cline sharply. Non-Japanese Asian mark<strong>et</strong>s began a severe <strong>de</strong>cline on<br />

October 19, 1987, their time, and this <strong>de</strong>cline was echoed first on a number of European mark<strong>et</strong>s, then in<br />

North American, and finally in Japan. However, most of the same mark<strong>et</strong>s had experienced significant but<br />

less severe <strong>de</strong>clines in the l<strong>at</strong>ter part of the previous week. With the exception of the US and Canada, other<br />

mark<strong>et</strong>s continued downward through the end of October, and some of these <strong>de</strong>clines were as large as the<br />

gre<strong>at</strong> crash on October 19.<br />

On December 19, 1994, the Mexican government, facing a solvency crisis, chose to <strong>de</strong>valu<strong>at</strong>e the peso and<br />

abandoned its exchange r<strong>at</strong>e parity. This <strong>de</strong>valu<strong>at</strong>ion plunged the country into a major financial crisis which<br />

quickly propag<strong>at</strong>ed to the rest of the L<strong>at</strong>in American countries.<br />

From July 1997 to December 1997, several East Asian mark<strong>et</strong>s crashed, starting with the Thai mark<strong>et</strong> on<br />

July 2, 1997 and ending with the Hong Kong mark<strong>et</strong> on October 17, 1997. After this regional event, the<br />

turmoil spread over to the American and European mark<strong>et</strong>s.<br />

The “slow” crash and in particular the turbulent behavior of the stock mark<strong>et</strong>s worldwi<strong>de</strong> starting midaugust<br />

1998 are wi<strong>de</strong>ly associ<strong>at</strong>ed with and even <strong>at</strong>tributed to the plunge of the Russian financial mark<strong>et</strong>s,<br />

the <strong>de</strong>valu<strong>at</strong>ion of its currency and the <strong>de</strong>fault of the government on its <strong>de</strong>bts oblig<strong>at</strong>ions.<br />

The Nasdaq Composite in<strong>de</strong>x dropped precipiteously with a low of 3227 on April 17, 2000, corresponding<br />

to a cumul<strong>at</strong>ive loss of 37% counted from its all-time high of 5133 reached on March 10, 2000. The drop<br />

was mostly driven by the so-called “New Economy” stocks which have risen nearly fourfold over 1998 and<br />

1999 compared to a gain of only 50% for the S&P500 in<strong>de</strong>x. And without technology, the benchmark would<br />

be fl<strong>at</strong>.<br />

All these events epitomize the observ<strong>at</strong>ion often reported by mark<strong>et</strong> professionals th<strong>at</strong>, “during major mark<strong>et</strong><br />

events, correl<strong>at</strong>ions change dram<strong>at</strong>ically” (Bookstaber 1997). The possible existence of changes of correl<strong>at</strong>ion,<br />

or more precisely of changes of <strong>de</strong>pen<strong>de</strong>nce, b<strong>et</strong>ween ass<strong>et</strong>s and b<strong>et</strong>ween mark<strong>et</strong>s in different mark<strong>et</strong><br />

phases has obvious implic<strong>at</strong>ions in risk assessment, portfolio management and in the way policy and regul<strong>at</strong>ion<br />

should be performed. Concerning portfolio management, (Ang and Bekaert 2001, Ang and Chen 2001)<br />

for instance, have stressed th<strong>at</strong> these questions rel<strong>at</strong>ed to st<strong>at</strong>e-varying-<strong>de</strong>pen<strong>de</strong>nce are important for practical<br />

applic<strong>at</strong>ions since in such a case the optimal portfolio will also become st<strong>at</strong>e-<strong>de</strong>pen<strong>de</strong>nt, and neglecting<br />

this point can lead to very inefficient ass<strong>et</strong> alloc<strong>at</strong>ions. In this spirit, the recent Argentine crisis in 2001 has<br />

triggered fears of a contagion to other L<strong>at</strong>in American mark<strong>et</strong>. Also, the Enron financial scandal <strong>at</strong> the end<br />

of 2001 seems to have opened a flux of similar bankrupcies in other “new economy” companies.<br />

From an aca<strong>de</strong>mic perspective, all these manifest<strong>at</strong>ions of propag<strong>at</strong>ing crisis have given birth to an intense<br />

activity concerning the notion of contagion (see (Claessens <strong>et</strong> al. 2001) for a review) which is <strong>de</strong>fined,<br />

according to the most commonly accepted <strong>de</strong>finition, as an increase in the correl<strong>at</strong>ion (or linkage) across<br />

mark<strong>et</strong>s during turmoil periods. In fact, as we shall see, there are two distinct classes of mechanisms for<br />

un<strong>de</strong>rstanding “changes of correl<strong>at</strong>ions”, not necessarily mutually exclusive.<br />

• It is possible th<strong>at</strong> there are genuine changes with time of the unconditional (with respect to amplitu<strong>de</strong>s)<br />

correl<strong>at</strong>ions and thus of the un<strong>de</strong>rlying structure of the dynamical processes, as observed by i<strong>de</strong>ntifying<br />

shifts in ARMA-ARCH/GARCH processes (Silvapulle and Granger 2001), in regime-switching<br />

mo<strong>de</strong>ls (Ang and Bekaert 2001, Ang and Chen 2001) or in contagion mo<strong>de</strong>ls<br />

2


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 241<br />

(Quintos 2001, Quintos <strong>et</strong> al. 2001). (Longin and Solnik 1995, Tsui and Yu 1999) and many others<br />

have shown th<strong>at</strong> the hypothesis of a constant conditional correl<strong>at</strong>ion for stock r<strong>et</strong>urns or intern<strong>at</strong>ional<br />

equity r<strong>et</strong>urns must be rejected. In fact, there is strong evi<strong>de</strong>nce th<strong>at</strong> the correl<strong>at</strong>ions are not only<br />

time <strong>de</strong>pen<strong>de</strong>nt but also st<strong>at</strong>e <strong>de</strong>pen<strong>de</strong>nt. In<strong>de</strong>ed, as shown by (King and Wadhwani 1990, Ramchand<br />

and Susmel 1998), the correl<strong>at</strong>ions increase in periods of large vol<strong>at</strong>ility. Moreover, (Longin<br />

and Solnik 2001) have proved th<strong>at</strong> the correl<strong>at</strong>ions across intern<strong>at</strong>ional equity mark<strong>et</strong>s are also trend<br />

<strong>de</strong>pen<strong>de</strong>nt.<br />

• In contrast, a second class of explan<strong>at</strong>ion is th<strong>at</strong> correl<strong>at</strong>ions b<strong>et</strong>ween two variables conditioned on<br />

signed exceedance (one-si<strong>de</strong>d) or on absolute value (vol<strong>at</strong>ility) exceedance of one or both variables<br />

may <strong>de</strong>vi<strong>at</strong>e significantly from the unconditional correl<strong>at</strong>ion (Boyer <strong>et</strong> al. 1997, Lor<strong>et</strong>an 2000, Lor<strong>et</strong>an<br />

and English 2000). In other words, with a fixed unconditional correl<strong>at</strong>ion ρ, the measured correl<strong>at</strong>ion<br />

conditioned of a given bullish trend, bearish trend, high or low mark<strong>et</strong> vol<strong>at</strong>ility, may in general differ<br />

from ρ and be a function of the specific mark<strong>et</strong> phase. According to this explan<strong>at</strong>ion, changes of<br />

correl<strong>at</strong>ion may be only a fallacious appearance th<strong>at</strong> stems from a change of vol<strong>at</strong>ility or a change of<br />

trend of the mark<strong>et</strong> and not from a real change of unconditional correl<strong>at</strong>ion or <strong>de</strong>pen<strong>de</strong>nce.<br />

The existence of the second class of explan<strong>at</strong>ion is appealing by its parsimony, as it posits th<strong>at</strong> observed<br />

“changes of correl<strong>at</strong>ion” may simply result from the way the measure of <strong>de</strong>pen<strong>de</strong>nce is performed. This<br />

approach has been followed by several authors but is often open to misinterpr<strong>et</strong><strong>at</strong>ion,<br />

as stressed by (Forbes and Rigobon 2002). In addition, it may also be misleading since it does not provi<strong>de</strong><br />

a sign<strong>at</strong>ure or procedure to i<strong>de</strong>ntify the existence of a genuine contagion phenomenon, if any. Therefore,<br />

in or<strong>de</strong>r to clarify the situ<strong>at</strong>ion and eventually <strong>de</strong>velop more a<strong>de</strong>qu<strong>at</strong>e tools for probing the <strong>de</strong>pen<strong>de</strong>nces<br />

b<strong>et</strong>ween ass<strong>et</strong>s and b<strong>et</strong>ween mark<strong>et</strong>s, it is highly <strong>de</strong>sirable to characterize the different possible ways with<br />

which higher or lower conditional <strong>de</strong>pen<strong>de</strong>nce can occur in mo<strong>de</strong>ls with constant unconditional <strong>de</strong>pen<strong>de</strong>nce.<br />

In or<strong>de</strong>r to make progress, it is necessary to first distinguish b<strong>et</strong>ween the different measures of <strong>de</strong>pen<strong>de</strong>nce<br />

b<strong>et</strong>ween two variables for large or extreme events th<strong>at</strong> have been introduced in the liter<strong>at</strong>ure, because the<br />

conclusions th<strong>at</strong> one can draw about the variability of <strong>de</strong>pen<strong>de</strong>nce are sensitive to the choice of its measure.<br />

These measures inclu<strong>de</strong><br />

1. the correl<strong>at</strong>ion conditioned on signed exceedance of one or both variables (Boyer <strong>et</strong> al. 1997, Lor<strong>et</strong>an<br />

2000, Lor<strong>et</strong>an and English 2000, Cizeau <strong>et</strong> al. 2001), th<strong>at</strong> we call respectively ρ + v and ρu, where u<br />

and v <strong>de</strong>note the thresholds above which the exceedances are calcul<strong>at</strong>ed,<br />

2. the correl<strong>at</strong>ion conditioned on absolute value exceedance (or large vol<strong>at</strong>ility), above the threshold<br />

v, of one or both variables (Boyer <strong>et</strong> al. 1997, Lor<strong>et</strong>an 2000, Lor<strong>et</strong>an and English 2000, Cizeau <strong>et</strong><br />

al. 2001), th<strong>at</strong> we call ρ s v (for a condition of exceedance on one variable),<br />

3. the tail-<strong>de</strong>pen<strong>de</strong>nce param<strong>et</strong>er λ, which has a simple analytical expression when using copulas<br />

(Embrechts <strong>et</strong> al. 2001, Lindskog 1999) such as the Gumbel copula (Longin and Solnik 2001),<br />

and whose estim<strong>at</strong>ion provi<strong>de</strong>s useful inform<strong>at</strong>ion about the occurrence of extreme co-movements<br />

(Malevergne and Sorn<strong>et</strong>te 2001, Poon <strong>et</strong> al. 2001, Juri and Wüthrich 2002),<br />

4. the spectral measure associ<strong>at</strong>ed with the tail in<strong>de</strong>x (assumed to be the same of all ass<strong>et</strong>s) of extreme<br />

value multivari<strong>at</strong>e distributions (Davis <strong>et</strong> al. 1999, Starica 1999, Hauksson <strong>et</strong> al. 2001),<br />

5. tail indices of extremal correl<strong>at</strong>ions <strong>de</strong>fined as the upper or lower correl<strong>at</strong>ion of exceedances of or<strong>de</strong>red<br />

log-values (Quintos 2001),<br />

6. confi<strong>de</strong>nce weighted forecast correl<strong>at</strong>ions (Bhansali and Wise 2001) or algorithmic complexity measures<br />

(Mansilla 2001).<br />

3


242 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Our contribution to the liter<strong>at</strong>ure is both m<strong>et</strong>hological and empirical. On the m<strong>et</strong>hodological front, firstof-all,<br />

we review the existing tools available for probing the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween large or extreme events<br />

for several mo<strong>de</strong>ls of interest for financial time series; second, we provi<strong>de</strong> explicit analytical expressions<br />

for these measures of <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two variables; third, this allows us to quantify the misleading<br />

intrepr<strong>et</strong><strong>at</strong>ions of certain conditional coefficients commomly used for exploring the evolution of the <strong>de</strong>pen<strong>de</strong>nce<br />

associ<strong>at</strong>ed with a change in the mark<strong>et</strong> conditions (an increase of the vol<strong>at</strong>ility, for instance). On the<br />

empirical front, we apply our theor<strong>et</strong>ical results to the controversial problem of the occurrence or not of a<br />

contagion phenomenon across L<strong>at</strong>in American mark<strong>et</strong>s during the turmoil period associ<strong>at</strong>ed with the Mexican<br />

crisis in 1994 or with the recent Argentina crisis. In this purpose, we use the novel insight <strong>de</strong>rived from<br />

our analysis on several measures of <strong>de</strong>pen<strong>de</strong>nce and apply them to the question of a possible evolution of<br />

the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the Argentina, Brazilian, Chilean and Mexican mark<strong>et</strong>s with respect to the mark<strong>et</strong><br />

conditions.<br />

The <strong>de</strong>pen<strong>de</strong>nce measures we study are the conditional correl<strong>at</strong>ion coefficients ρ + v , ρ s v, ρu, the conditional<br />

Spearman’s rho ρs(v) and the tail <strong>de</strong>pen<strong>de</strong>nce coefficients λ and ¯ λ, whose properties are investig<strong>at</strong>ed for<br />

several mo<strong>de</strong>ls among which are the bivari<strong>at</strong>e Gaussian distribution, the bivari<strong>at</strong>e Stu<strong>de</strong>nt’s distribution,<br />

and the one factor mo<strong>de</strong>l for various distributions of the factor. Initially, we hoped to show the existence<br />

of logical links b<strong>et</strong>ween some of these measures, such as a vanishing tail-<strong>de</strong>pen<strong>de</strong>nce param<strong>et</strong>er λ implies<br />

vanishing asymptotic conditional correl<strong>at</strong>ion coefficients. In fact, we will show th<strong>at</strong> this turns out to be<br />

wrong and one can construct simple examples for which all possible combin<strong>at</strong>ions occur. Therefore, each<br />

of these measures probe a different quality of the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two variables for large or extreme<br />

events. In addition, even if the conditional correl<strong>at</strong>ion coefficients are asymptotically zero, they <strong>de</strong>cay in<br />

general extremely slowly, as inverse powers of the value of the threshold, and may thus remain significant<br />

for most pr<strong>at</strong>ical applic<strong>at</strong>ions. These results will allow us to assert th<strong>at</strong>, somewh<strong>at</strong> similarly to risks whose<br />

a<strong>de</strong>qu<strong>at</strong>e characteriz<strong>at</strong>ion requires an extension beyond the restricted one-dimensional measure in terms of<br />

the variance (vol<strong>at</strong>ility) to inclu<strong>de</strong> all higher or<strong>de</strong>r cumulants or more generally the knowledge of the full<br />

distribution (Sorn<strong>et</strong>te <strong>et</strong> al. 2000a, Sorn<strong>et</strong>te <strong>et</strong> al. 2000b, An<strong>de</strong>rsen and Sorn<strong>et</strong>te 2001), our results suggest<br />

th<strong>at</strong> tail-<strong>de</strong>pen<strong>de</strong>nce has also a multidimensional character.<br />

The paper is organized as follows.<br />

Section 1 <strong>de</strong>scribes three conditional correl<strong>at</strong>ion coefficients, namely the correl<strong>at</strong>ion ρ + v conditioned on<br />

signed exceedance of one variable, or on both variables (ρu) and the correl<strong>at</strong>ion ρ s v conditioned on absolute<br />

value exceedance (or large vol<strong>at</strong>ility) of one variable. (Boyer <strong>et</strong> al. 1997) have already provi<strong>de</strong>d the general<br />

expression of ρ + v and ρ s v for the Gaussian bivari<strong>at</strong>e mo<strong>de</strong>l, which are used to <strong>de</strong>rive their v <strong>de</strong>pen<strong>de</strong>nce for<br />

large v, and to show th<strong>at</strong>, for a given distribution, the conditional correl<strong>at</strong>ion coefficient changes even if the<br />

unconditional correl<strong>at</strong>ion is l<strong>et</strong> unchanged and the n<strong>at</strong>ure of this change <strong>de</strong>pends on the conditioning s<strong>et</strong>.<br />

We then provi<strong>de</strong> the general expression of ρ + v and ρ s v for the Stu<strong>de</strong>nt’s bivari<strong>at</strong>e mo<strong>de</strong>l with ν <strong>de</strong>grees of<br />

freedom and for the factor mo<strong>de</strong>l X = αY + ɛ, for which we give a general expression of the conditional<br />

correl<strong>at</strong>ion coefficient wh<strong>at</strong>ever the distributions of Y and ɛ may be. This leads us to conclu<strong>de</strong> by comparision<br />

with the Gaussian mo<strong>de</strong>l th<strong>at</strong>, for a fixed conditioning s<strong>et</strong>, the behavior of the conditional correl<strong>at</strong>ion<br />

change dram<strong>at</strong>ically from a distribution to another one. Conditioning now on both variables, we are able to<br />

provi<strong>de</strong> the asymptotic <strong>de</strong>pen<strong>de</strong>nce of ρu only for the bivari<strong>at</strong>e Gaussian mo<strong>de</strong>l and show th<strong>at</strong> it essentially<br />

behaves like ρ + v . We then apply these results to show th<strong>at</strong> we cannot entirely explain the behavior of the conditional<br />

correl<strong>at</strong>ion coefficient of the L<strong>at</strong>in American stock in<strong>de</strong>xes by the conditioning effect, suggesting<br />

the existence of a possible contagion.<br />

In section 2, to account for several <strong>de</strong>ficiencies of the correl<strong>at</strong>ion coefficient, we propose an altern<strong>at</strong>ive<br />

measure of <strong>de</strong>pen<strong>de</strong>nce, the conditional Spearman’s rho, which is rel<strong>at</strong>ed to the probability of concordance<br />

and discordance of several events drawn from the same probability distribution. This measure provi<strong>de</strong>s<br />

an important improvement with respect to the correl<strong>at</strong>ion coefficient since it only takes into account the<br />

4


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 243<br />

<strong>de</strong>pen<strong>de</strong>nce structure of the variable and is not sensitive to the marginal behavior of each variable. We<br />

perform numerical comput<strong>at</strong>ions to <strong>de</strong>rive the behavior of the conditional Spearman’s rho, <strong>de</strong>noted by ρs(v).<br />

This allows us to prove th<strong>at</strong> there is no direct rel<strong>at</strong>ion b<strong>et</strong>ween the Spearman’s rho conditioned on large<br />

values and the correl<strong>at</strong>ion coefficient conditioned on the same values. Therefore, each of these coefficients<br />

quantifies a different kind of extreme <strong>de</strong>pen<strong>de</strong>nce. Then, calibr<strong>at</strong>ing our mo<strong>de</strong>ls on the L<strong>at</strong>in American<br />

mark<strong>et</strong> d<strong>at</strong>a, we confirm th<strong>at</strong> the conditional effect cannot fully explain the observed <strong>de</strong>pen<strong>de</strong>nce and th<strong>at</strong><br />

contagion can therefore be invoked. This results are much clearer for the conditional Spearman’s rho than<br />

for the condition (linear) correl<strong>at</strong>ion coefficient, due to the much larger impact of large st<strong>at</strong>istical fluctu<strong>at</strong>ions<br />

in the l<strong>at</strong>er.<br />

Section 3 discusses the tail-<strong>de</strong>pen<strong>de</strong>nce param<strong>et</strong>ers λ and ¯ λ. We first recall their <strong>de</strong>finitions and their values<br />

for Gaussian and Stu<strong>de</strong>nt’s bivari<strong>at</strong>e distributions of X and Y , already known in the liter<strong>at</strong>ure. For the<br />

Gaussian factor mo<strong>de</strong>l, it is trivial to show th<strong>at</strong> λ = 0. A non-trivial result is obtained for the Stu<strong>de</strong>nt’s factor<br />

mo<strong>de</strong>l: λ is found non-zero and a function only of α and of the scale factor of ɛ. More generally, a theorem<br />

established in (Malevergne and Sorn<strong>et</strong>te 2002) allows one to calcul<strong>at</strong>e the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce<br />

for any distribution of the factor and shows th<strong>at</strong> λ vanishes for any rapidly varying factor. We then apply<br />

the (Poon <strong>et</strong> al. 2001)’s procedure to estim<strong>at</strong>e non-param<strong>et</strong>rically the tail <strong>de</strong>pen<strong>de</strong>nce coefficients. We find<br />

them significant and thus conclu<strong>de</strong> th<strong>at</strong> with or without contagion mechanism, extreme co-movements must<br />

n<strong>at</strong>urally occur on the various L<strong>at</strong>in American mark<strong>et</strong>s as soon as one of them enters a crisis.<br />

Section 4 provi<strong>de</strong>s a synthesis and comparison b<strong>et</strong>ween these different results. A first important message is<br />

th<strong>at</strong> there is no unique measure of extreme <strong>de</strong>pen<strong>de</strong>nce. Each of the coefficients of extreme <strong>de</strong>pen<strong>de</strong>nce th<strong>at</strong><br />

we have studied provi<strong>de</strong>s a specific quantific<strong>at</strong>ion th<strong>at</strong> is sensitive to a certain combin<strong>at</strong>ion of the marginals<br />

and of the copula of the two random variables. Similarly to risks whose a<strong>de</strong>qu<strong>at</strong>e characteriz<strong>at</strong>ion requires<br />

an extension beyond the restricted one-dimensional measure in terms of the variance (vol<strong>at</strong>ility) to inclu<strong>de</strong><br />

the knowledge of the full distribution, tail-<strong>de</strong>pen<strong>de</strong>nce has also a multidimensional character. A second<br />

important message is th<strong>at</strong> the increase of some of the conditional coefficients of extreme <strong>de</strong>pen<strong>de</strong>nce as<br />

one goes more in the tails does not necessarily signals a genuine increase of the unconditional correl<strong>at</strong>ion<br />

or <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the two variables. Our calcul<strong>at</strong>ions firmly confirm th<strong>at</strong> this increase is a general<br />

and unvoidable result of the st<strong>at</strong>istical properties of many multivari<strong>at</strong>e mo<strong>de</strong>ls of <strong>de</strong>pen<strong>de</strong>nce. From the<br />

standpoint of the contagion across L<strong>at</strong>in American mark<strong>et</strong>s, our theor<strong>et</strong>ical and empirical results suggest an<br />

asymm<strong>et</strong>ric contagion phenomenon from Chile and Mexico onto Argentina and Brazil: large moves of the<br />

Chilean and Mexican mark<strong>et</strong>s tend to propag<strong>at</strong>e to Argentina and Brazil through contagion mechanisms, i.e.,<br />

with a change in the <strong>de</strong>pen<strong>de</strong>nce structure, while the converse does not hold. As a consequence, our study<br />

seems to prove th<strong>at</strong> the 1994 Mexican crisis have spread over to Argentina and Brazil through contagion<br />

mechanisms and to Chile only through co-movements. Concerning the recent Argentina crisis starting in<br />

2001, we find no evi<strong>de</strong>nce of contagion to the other L<strong>at</strong>in American countries (except perhaps in the direction<br />

of Brazil) but i<strong>de</strong>ntify only co-movements.<br />

1 Conditional correl<strong>at</strong>ion coefficient<br />

In this section, we discuss the properties of the correl<strong>at</strong>ion coefficient conditioned on one variable. We study<br />

the difference b<strong>et</strong>ween conditioning on the signed values or on absolute values of the variable (conditioning<br />

on the absolute value of the variable of interest is only meaningful when its distribution is symm<strong>et</strong>ric).<br />

This allows us to conclu<strong>de</strong> th<strong>at</strong> conditioning on signed values generally provi<strong>de</strong>s more inform<strong>at</strong>ion than<br />

conditioning on absolute values, and th<strong>at</strong>, as already un<strong>de</strong>rlined by (Boyer <strong>et</strong> al. 1997, for instance), the<br />

conditional correl<strong>at</strong>ion coefficient suffers from a bias which forbids its use as a measure of a change in the<br />

correl<strong>at</strong>ion b<strong>et</strong>ween two ass<strong>et</strong>s when the vol<strong>at</strong>ility increases, as seen in many papers about contagion. We<br />

5


244 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

then present an empirical illustr<strong>at</strong>ion of the evolution of the correl<strong>at</strong>ion b<strong>et</strong>ween several stock in<strong>de</strong>xes of<br />

L<strong>at</strong>in American mark<strong>et</strong>s.<br />

1.1 Definition<br />

We study the correl<strong>at</strong>ion coefficient ρA of two real random variables X and Y conditioned on Y ∈ A, where<br />

A is a subs<strong>et</strong> of R such th<strong>at</strong> Pr{Y ∈ A} > 0.<br />

By <strong>de</strong>finition, the conditional correl<strong>at</strong>ion coefficient ρA is given by<br />

ρA =<br />

Cov(X, Y | Y ∈ A)<br />

Var(X | Y ∈ A) · Var(Y | Y ∈ A) . (1)<br />

Applying this general expression of the conditional correl<strong>at</strong>ion coefficient, we will give closed formula for<br />

several standard distributions and mo<strong>de</strong>ls. This will allow us to investig<strong>at</strong>e the influence of the conditionning<br />

s<strong>et</strong> and the un<strong>de</strong>rlying mo<strong>de</strong>l on the behavior of ρA.<br />

1.2 Influence of the conditioning s<strong>et</strong><br />

L<strong>et</strong> the variables X and Y have a multivari<strong>at</strong>e Gaussian distribution with (unconditional) correl<strong>at</strong>ion coefficient<br />

ρ. The following result have been proved by (Boyer <strong>et</strong> al. 1997) :<br />

ρ<br />

<br />

. (2)<br />

ρA =<br />

ρ2 + (1 − ρ2 Var(Y )<br />

) Var(Y | Y ∈A)<br />

We can note th<strong>at</strong> ρ and ρA have the same sign, th<strong>at</strong> ρA = 0 if and only if ρ = 0 and th<strong>at</strong> ρA does not <strong>de</strong>pend<br />

directly on Var(X). Note also th<strong>at</strong> ρA can be either gre<strong>at</strong>er or smaller than ρ since Var(Y | Y ∈ A) can be<br />

either gre<strong>at</strong>er or smaller than Var(Y ). We will illustr<strong>at</strong>e this property in the two following examples, where<br />

we consi<strong>de</strong>r a conditioning on large positive (or neg<strong>at</strong>ive) r<strong>et</strong>urns and a conditioning on large vol<strong>at</strong>ility.<br />

The difference comes from the fact th<strong>at</strong> in the first case, we account for the trend while we neglect this<br />

inform<strong>at</strong>ion in the second case.<br />

Example 1: conditioning on large (positive) r<strong>et</strong>urns. L<strong>et</strong> us first consi<strong>de</strong>r the conditioning s<strong>et</strong> A =<br />

[v, +∞), with v ∈ R+. Thus ρA is the correl<strong>at</strong>ion coefficient conditioned on the r<strong>et</strong>urns Y larger than a<br />

given positive threshold v. It will be <strong>de</strong>noted by ρ + v in the sequel. Assuming for simplicity, but without loss<br />

of generality, th<strong>at</strong> Var(Y ) = 1, we can easily show (see appendix A.1.1 for an exact calcul<strong>at</strong>ion) th<strong>at</strong> for<br />

large v<br />

ρ + v ∼v→∞<br />

ρ 1<br />

· , (3)<br />

1 − ρ2 v<br />

which slowly goes to zero as v goes to infinity. Obviously, by symm<strong>et</strong>ry, the conditional correl<strong>at</strong>ion coefficient<br />

ρ − v , conditioned on Y smaller than v, obeys the same formula.<br />

Example 2: conditioning on large vol<strong>at</strong>ilities. L<strong>et</strong> now the conditioning s<strong>et</strong> be A = (−∞, −v] ∪<br />

[v, +∞), with v ∈ R+. Thus ρA is the correl<strong>at</strong>ion coefficient conditioned on |Y | larger than v, i.e., it<br />

is conditioned on large vol<strong>at</strong>ility of Y . Still assuming Var(Y ) = 1, we <strong>de</strong>note this correl<strong>at</strong>ion coefficient by<br />

ρ s v and, as shown in appendix A.1.2, we can conclu<strong>de</strong> th<strong>at</strong>, for large v,<br />

ρ s v ∼v→∞<br />

ρ<br />

<br />

ρ2 + 1−ρ2<br />

2+v2 , (4)<br />

6


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 245<br />

which goes to one as v goes to infinity as 1 − ρ s v ∼v→∞ 1−ρ2<br />

ρ 2<br />

These two simple examples clearly show th<strong>at</strong>, in the case of two Gaussian random variables, the two conditional<br />

correl<strong>at</strong>ion coefficients ρ + v and ρ s v exhibit opposite behavior since the conditional correl<strong>at</strong>ion coefficient<br />

ρ + v is a <strong>de</strong>creasing function of v which goes to zero as v → +∞ while the conditional correl<strong>at</strong>ion<br />

coefficient ρ s v is an increasing function of v and goes to one as v → ∞. These opposite behaviors are very<br />

general and do not <strong>de</strong>pend on the particular choice of the joint distribution of X and Y , namely the Gaussian<br />

distribution studied until now, as it will be seen in the sequel.<br />

This result un<strong>de</strong>rlines the importance of the choice of the conditioning s<strong>et</strong> with the following two cave<strong>at</strong>s.<br />

First, as already stressed by many authors, the conditional correl<strong>at</strong>ion ρ + v ou ρ s v change with the value of the<br />

threshod v even if the unconditional correl<strong>at</strong>ion ρ remains unchanged. Thus, the observ<strong>at</strong>ion of a change<br />

in the conditional correl<strong>at</strong>ion does not provi<strong>de</strong> a reliable sign<strong>at</strong>ure of a change in the true (unconditional)<br />

correl<strong>at</strong>ion. Second, the conditional correl<strong>at</strong>ions can exhibit really opposite behaviors <strong>de</strong>pending on the<br />

conditioning s<strong>et</strong>s. Specifically, we have seen th<strong>at</strong> accounting for a signed trend or only for its amplitu<strong>de</strong><br />

may yield a <strong>de</strong>crease or an increase of the conditional correl<strong>at</strong>ion with respect to the unconditional one, so<br />

th<strong>at</strong> these changes cannot be interpr<strong>et</strong>ed as a strengthening or a weakening of the correl<strong>at</strong>ions.<br />

v −2 .<br />

1.3 Influence of the un<strong>de</strong>rlying distribution for a given conditioning s<strong>et</strong><br />

For a fixed conditioning s<strong>et</strong> <strong>de</strong>fining a specific conditional correl<strong>at</strong>ion coefficient like ρ + v or ρ s v, the behavior<br />

of these coefficients can be dram<strong>at</strong>ically different from a pair of random variables to another one, <strong>de</strong>pending<br />

on their un<strong>de</strong>rlying joint distribution. As an example, l<strong>et</strong> the variables X and Y have a multivari<strong>at</strong>e Stu<strong>de</strong>nt’s<br />

distribution with ν <strong>de</strong>grees of freedom and an (unconditional) correl<strong>at</strong>ion coefficient ρ. According to the<br />

proposition st<strong>at</strong>ed in appendix B.1, we have the exact formula<br />

ρA =<br />

ρ<br />

<br />

ρ2 + E[E(X2 | Y )−ρ2Y 2 . (5)<br />

| Y ∈A]<br />

Var(Y | Y ∈A)<br />

Appendix B.1 gives the explicit formulas of E[E(X 2 | Y ) − ρ 2 Y 2 | Y ∈ A] and Var(Y | Y ∈ A).<br />

Expression (5) is the analog for a Stu<strong>de</strong>nt bivari<strong>at</strong>e distribution to (2) <strong>de</strong>rived above for the Gaussian bivari<strong>at</strong>e<br />

distribution. Again, ρ and ρA share the following properties: they have the same sign, ρA equals zero if and<br />

only if ρ equals zero and ρA can be either gre<strong>at</strong>er or smaller than ρ. We now apply this general formula (5)<br />

to the calculus of ρ + v and ρ s v and we find (see appendices B.3 and B.4) th<strong>at</strong>, conditioning on large r<strong>et</strong>urns,<br />

ρ + v −→<br />

<br />

while when conditionning on large vol<strong>at</strong>ility,<br />

ρ s v −→<br />

<br />

ρ 2 + (ν − 1)<br />

ρ 2 + 1<br />

(ν−1)<br />

ρ<br />

<br />

ν−2<br />

ν (1 − ρ2 )<br />

ρ<br />

ν−2<br />

ν (1 − ρ 2 )<br />

, (6)<br />

. (7)<br />

In both cases, ρ + v and ρ s v goes, <strong>at</strong> infinity, to non vanishing constant (exepted for ρ = 0). Moreover, for ν<br />

larger than νc 2.839, this constant is smaller than the unconditional correl<strong>at</strong>ion coefficient ρ, for all value<br />

of ρ, in the case of ρ + v , while for ρ s v it is always larger than ρ, wh<strong>at</strong>ever ν (larger than two) may be.<br />

These results show th<strong>at</strong>, conditioned on large r<strong>et</strong>urns, ρ + v is a <strong>de</strong>creasing function of the threshold v (<strong>at</strong><br />

least when ν ≥ 2.839), while, conditioned on large vol<strong>at</strong>ilities, ρ s v is an increasing function of v. Thus, for<br />

7


246 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Stu<strong>de</strong>nt’s random variables, ρ + v and ρ s v exhibit behaviors exactly opposite to those observed for Gaussian<br />

random variables, namely <strong>de</strong>creasing ρ + v and increasing ρ s v, as shown in the previous paragraph.<br />

To give another example, l<strong>et</strong> us now assume th<strong>at</strong> X and Y are two random variables following the equ<strong>at</strong>ion<br />

X = αY + ɛ , (8)<br />

where α is a non random real coefficient and ɛ an idiosyncr<strong>at</strong>ic noise in<strong>de</strong>pen<strong>de</strong>nt of Y , whose distribution<br />

admits a centered moment of second or<strong>de</strong>r σ 2 ɛ . L<strong>et</strong> us also <strong>de</strong>note by σ 2 y the second centered moment of the<br />

variable Y . This kind of rel<strong>at</strong>ion b<strong>et</strong>ween X and Y is the so-called one factor mo<strong>de</strong>l whose applic<strong>at</strong>ions<br />

in finance can be traced back to (Ross 1976). This one factor mo<strong>de</strong>l with in<strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween Y and<br />

ɛ is of course naive for concr<strong>et</strong>e applic<strong>at</strong>ions, as it neglects the potential influence of other factors in the<br />

d<strong>et</strong>ermin<strong>at</strong>ion of X. However, it has been argued to be a useful mo<strong>de</strong>l in the context of the contagion,<br />

and several studies have been based upon it (see (Baig and Goldfajn 1998) or (Forbes and Rigobon 2002),<br />

for instance). Moreover for our purpose, it provi<strong>de</strong>s a simple illustr<strong>at</strong>ive mo<strong>de</strong>l with rich and somewh<strong>at</strong><br />

surprising results.<br />

Appendix C shows th<strong>at</strong> the conditional correl<strong>at</strong>ion coefficient of X and Y is<br />

ρ<br />

ρA = <br />

ρ2 + (1 − ρ2 )<br />

Var(y)<br />

, (9)<br />

where<br />

α · σy<br />

ρ = <br />

α2 · σ2 y + σ2 ɛ<br />

Var(y | y∈A)<br />

<strong>de</strong>notes the unconditional correl<strong>at</strong>ion coefficient of X and Y . Note th<strong>at</strong> the term σ 2 ɛ in the expression (10)<br />

of ρ is the only place where the influence of the idiosynchr<strong>at</strong>ic noise is felt.<br />

Expression (9) is the same as (2) for the bivari<strong>at</strong>e Gaussian situ<strong>at</strong>ion studied in 1.2. This is not surprising<br />

since, in the case where Y and ɛ have univari<strong>at</strong>e Gaussian distributions, the joint distribution of X and<br />

Y is a bivari<strong>at</strong>e Gaussian distribution. The new fact is th<strong>at</strong> this expression (9) remains true wh<strong>at</strong>ever the<br />

distribution of Y and ɛ, provi<strong>de</strong>d th<strong>at</strong> their second moments exist.<br />

We now present the asymptotic expression of ρA for Y with a Gaussian or a Stu<strong>de</strong>nt’s distribution. Note<br />

th<strong>at</strong> the expression of ρA is simple enough to allow for exact calcul<strong>at</strong>ions for a larger class of distributions,<br />

but for our purpose, these two simple case will be sufficient.<br />

Assuming th<strong>at</strong> Y has a Gaussian distribution, while the distribution of ɛ can be everything (provi<strong>de</strong>d th<strong>at</strong><br />

E[ɛ 2 ] < ∞) allows us to show th<strong>at</strong> the same results as those given by equ<strong>at</strong>ions (3) and (4) still hold, so th<strong>at</strong><br />

ρ + v goes to zero, while ρ s v goes to one.<br />

On the contrary, assuming th<strong>at</strong> Y has a Stu<strong>de</strong>nt’s distribution yields both for ρ + v and ρ s v:<br />

ρ +,s<br />

v<br />

∼<br />

1<br />

<br />

1 + K<br />

v 2<br />

(10)<br />

, (11)<br />

where K is a positive constant. ρ +,s<br />

v thus goes to 1 as v goes to infinity with 1 − ρ +,s<br />

v ∝ 1/v2 , which shows<br />

th<strong>at</strong> they can have similar behavior.<br />

1.4 Conditional correl<strong>at</strong>ion coefficient on both variables as an altern<strong>at</strong>ive?<br />

Since our intensive explor<strong>at</strong>ion of the behavior of the correl<strong>at</strong>ion coefficient conditionned on only one variable<br />

clearly indic<strong>at</strong>es th<strong>at</strong> it exhibits any kind of behavior, it is n<strong>at</strong>ural to look for the effect of a more<br />

8


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 247<br />

constraining conditioning. To this aim, we consi<strong>de</strong>r two random variables X and Y and <strong>de</strong>fine their conditional<br />

correl<strong>at</strong>ion coefficient ρA,B, conditioned upon X ∈ A and Y ∈ B, where A and B are two subs<strong>et</strong>s of<br />

R such th<strong>at</strong> Pr{X ∈ A, Y ∈ B} > 0, by<br />

ρA,B =<br />

Cov(X, Y | X ∈ A, Y ∈ B)<br />

Var(X | X ∈ A, Y ∈ B) · Var(Y | X ∈ A, Y ∈ B) . (12)<br />

In this case, it is much more difficult to obtain general results for any specified class of distributions compared<br />

to the previous case of conditioning on a single variable. We have only been able to give the asymptotic<br />

behavior for a Gaussian distribution in the situ<strong>at</strong>ion d<strong>et</strong>ailed below, using the expressions in (Johnson and<br />

Kotz 1972, p 113) or proposition A.1 of (Ang and Chen 2001).<br />

L<strong>et</strong> us assume th<strong>at</strong> the pair of random variables (X,Y) has a Normal distribution with unit unconditional variance<br />

and unconditional correl<strong>at</strong>ion coefficient ρ. The subs<strong>et</strong>s A and B are both choosen equal to [u, +∞),<br />

with u ∈ R+, so th<strong>at</strong> we focus on the correl<strong>at</strong>ion coefficient conditional on the r<strong>et</strong>urns of both X and Y<br />

larger than the threshold u. Denoting by ρu the correl<strong>at</strong>ion coefficient conditional on this particular choice<br />

for the subs<strong>et</strong>s A and B, we are able to show (see eppendix A.2) th<strong>at</strong>, for large u:<br />

ρu ∼u→∞ ρ<br />

1 + ρ<br />

1 − ρ<br />

1<br />

· , (13)<br />

u2 which goes to zero. This <strong>de</strong>cay is faster than in the case governed by (3) resulting from the conditioning on<br />

a single variable leading to ρ + v ∼v→+∞ 1/v, but, unfortun<strong>at</strong>ely, we do not observe a qualit<strong>at</strong>ive change.<br />

Thus, the correl<strong>at</strong>ion coefficient conditioned on both variables does not yield new significant inform<strong>at</strong>ion<br />

and does not provi<strong>de</strong> any special improvement with respect to the correl<strong>at</strong>ion coefficient conditioned on a<br />

single variable.<br />

1.5 Empirical evi<strong>de</strong>nce<br />

We consi<strong>de</strong>r four n<strong>at</strong>ional stock mark<strong>et</strong>s in L<strong>at</strong>in America, namely Argentina (MERVAL in<strong>de</strong>x), Brazil<br />

(IBOV in<strong>de</strong>x), Chile (IPSA in<strong>de</strong>x) and Mexico (MEXBOL in<strong>de</strong>x). We are particularly interested in the<br />

contagion effects which may have occurred across these mark<strong>et</strong>s. We will study this question for the mark<strong>et</strong><br />

in<strong>de</strong>xes expressed in US Dollar to emphasize the effect of the <strong>de</strong>valu<strong>at</strong>ions of local currencies and so to<br />

account for mon<strong>et</strong>ary crises. Doing so, we follow the same m<strong>et</strong>hodology as in most contagion papers (see<br />

(Forbes and Rigobon 2002), for instance). Our sample contains the daily (log) r<strong>et</strong>urns of each stock in<br />

local currency and US dollar during the time interval from January 15, 1992 to June 15, 2002 and thus<br />

encompasses both the Mexican crisis as well as the current Argentina crisis.<br />

Before applying the theor<strong>et</strong>ical results <strong>de</strong>rived above, we first need to check wh<strong>et</strong>her we are allowed to do<br />

so. Namely, we have to test wh<strong>et</strong>her the in<strong>de</strong>x r<strong>et</strong>urns distributions are not too f<strong>at</strong> tailed. In<strong>de</strong>ed, it its well<br />

known th<strong>at</strong> the correl<strong>at</strong>ion coefficient exists if and only if the tail of the distribution <strong>de</strong>cays faster than a<br />

power law with tail in<strong>de</strong>x α = 2, and its estim<strong>at</strong>or given by the Pearson’s coefficient is well behaved if <strong>at</strong><br />

least the fourth moment of the distribution is finite.<br />

Figure 1 represents the complementary distribution of the positive and neg<strong>at</strong>ive tails of the in<strong>de</strong>x r<strong>et</strong>urns in<br />

US dollar. We observe th<strong>at</strong> the positive tail clearly <strong>de</strong>cays faster than a power law with tail in<strong>de</strong>x µ = 2.<br />

In fact, Hill’s estim<strong>at</strong>or provi<strong>de</strong>s a value ranging b<strong>et</strong>ween 3 and 4 for the four in<strong>de</strong>xes. The case of the<br />

neg<strong>at</strong>ive tail is slightly different, particularly for the Brazilian in<strong>de</strong>x. In<strong>de</strong>ed, for the Argentina, the Chilean<br />

and the Mexican in<strong>de</strong>xes, the neg<strong>at</strong>ive tail behaves almost like the positive one, but for the Brazilian in<strong>de</strong>x,<br />

the neg<strong>at</strong>ive tail exponent is hardly larger than two, as confirmed by Hill’s estim<strong>at</strong>or. This means th<strong>at</strong>, in<br />

9


248 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

the Brazilian case, the estim<strong>at</strong>es of the correl<strong>at</strong>ion coefficient will be particularly noisy and thus of weak<br />

st<strong>at</strong>istical value.<br />

We have checked th<strong>at</strong> the f<strong>at</strong> tailness of the in<strong>de</strong>xes expressed in US dollar comes from the impact of the<br />

exchange r<strong>at</strong>es. Thus, an altern<strong>at</strong>ive should be to consi<strong>de</strong>r the in<strong>de</strong>xes in local currency, following (Longin<br />

and Solnik 1995) and (Longin and Solnik 2001)’s m<strong>et</strong>hodology, but it would lead to focus on the linkages<br />

b<strong>et</strong>ween mark<strong>et</strong>s only and to neglect the impact of the <strong>de</strong>valu<strong>at</strong>ions, which is precisely the main concern of<br />

many studies about the contagion in L<strong>at</strong>in America.<br />

Figures 2, 4 and 6 give the conditional correl<strong>at</strong>ion coefficient ρ +,−<br />

v<br />

(plain thick line) for the pairs Ar-<br />

gentina / Brazil, Brazil / Chile and Chile / Mexico while figures 3, 5 and 7 show the conditional correl<strong>at</strong>ion<br />

coefficient ρ s v for the same pairs. For each figure, the dashed thick line gives the theor<strong>et</strong>ical curve obtained<br />

un<strong>de</strong>r the bivari<strong>at</strong>e Gaussian assumption whose analytical expressions can be found in appendices A.1.1<br />

and A.1.2. The unconditional correl<strong>at</strong>ion coefficient of the Gaussian mo<strong>de</strong>l is s<strong>et</strong> to the empirically estim<strong>at</strong>ed<br />

unconditional correl<strong>at</strong>ion coefficent. The two dashed thin lines represent the interval within which<br />

we cannot reject, <strong>at</strong> the 95% confi<strong>de</strong>nce level, the hypothesis according to which the estim<strong>at</strong>ed conditional<br />

correl<strong>at</strong>ion coefficient is equal to the theor<strong>et</strong>ical one. This confi<strong>de</strong>nce interval has been estim<strong>at</strong>ed using the<br />

Fisher’s st<strong>at</strong>istics. Similarly, the thick dotted curve graphs the theor<strong>et</strong>ical curve obtained un<strong>de</strong>r the bivari<strong>at</strong>e<br />

Stu<strong>de</strong>nt’s assumption with ν = 3 <strong>de</strong>grees of freedom (whose expressions are given in appendices B.3<br />

and B.4) and the two thin dotted lines are its 95% confi<strong>de</strong>nce level. Here, the Fisher’s st<strong>at</strong>istics cannot be<br />

applied, since it requires <strong>at</strong> least th<strong>at</strong> the fourth moment of the distribution exists. In fact, (Meerschaert and<br />

Scheffler 2001) have shown th<strong>at</strong>, in such a case, the distribution of the sample correl<strong>at</strong>ion converges to a<br />

stable law with in<strong>de</strong>x 3/2, which justifies why the confi<strong>de</strong>nce interval for the Stu<strong>de</strong>nt’s mo<strong>de</strong>l with three<br />

<strong>de</strong>gres of freedom is much larger than the confi<strong>de</strong>nce interval for the Gaussian mo<strong>de</strong>l. In the present study,<br />

we have used a bootstrap m<strong>et</strong>hod to <strong>de</strong>rive this confi<strong>de</strong>nce interval since the scale factor intervening in the<br />

stable law is difficult to calcul<strong>at</strong>e.<br />

In figures 2, 4 and 6, we observe th<strong>at</strong> the change in the conditional correl<strong>at</strong>ion coefficients ρ +,−<br />

v<br />

are not sig-<br />

nificantly different, <strong>at</strong> the 95% confi<strong>de</strong>nce level, from those obtained with a bivari<strong>at</strong>e Stu<strong>de</strong>nt’s mo<strong>de</strong>l with<br />

three <strong>de</strong>grees of freedom. In contrast, the Gaussian mo<strong>de</strong>l is often rejected. In fact, similar results hold (but<br />

are not <strong>de</strong>picted here) for the three others pairs Argentina / Chile, Argentina / Mexico and Brazil / Mexico.<br />

Thus, these observ<strong>at</strong>ions should lead us to conclu<strong>de</strong> th<strong>at</strong>, in these cases, no change in the correl<strong>at</strong>ions, and<br />

therefore no contagion mechanism, needs to be invoked to explain the d<strong>at</strong>a, since they are comp<strong>at</strong>ible with<br />

a Stu<strong>de</strong>nt’s mo<strong>de</strong>l with constant correl<strong>at</strong>ion.<br />

L<strong>et</strong> us now discuss the results obtained for the correl<strong>at</strong>ion coefficient conditioned on the vol<strong>at</strong>ility. Figures<br />

3 and 7 show th<strong>at</strong> the estim<strong>at</strong>ed correl<strong>at</strong>ion coefficients conditioned on vol<strong>at</strong>ility remain consistent with the<br />

Stu<strong>de</strong>nt’s mo<strong>de</strong>l with three <strong>de</strong>gres of freedom, while they still reject the Gaussian mo<strong>de</strong>l. In contrast, figure<br />

5 shows th<strong>at</strong> the increase of the correl<strong>at</strong>ion cannot be explained by any of the Gaussian or Stu<strong>de</strong>nt mo<strong>de</strong>ls,<br />

when conditioning on the Mexican in<strong>de</strong>x vol<strong>at</strong>ilty. In<strong>de</strong>ed, when the Mexican in<strong>de</strong>x vol<strong>at</strong>ility becomes larger<br />

than 2.5 times its standard <strong>de</strong>vi<strong>at</strong>ion, none of our mo<strong>de</strong>ls can account for the increase of the correl<strong>at</strong>ion. The<br />

same discrepancy is observed for the pairs Argentina / Chile, Argentina / Mexico and Brazil / Mexico which<br />

have not been represented here. In each case, the Chilean or the Mexican mark<strong>et</strong> have an impact on the<br />

Argentina or the Brazilian mark<strong>et</strong> which cannot be accounted for by neither the Gaussian or Stu<strong>de</strong>nt mo<strong>de</strong>ls<br />

with constant correl<strong>at</strong>ion.<br />

To conclu<strong>de</strong> this empirical part, there is no significant increase in the real correl<strong>at</strong>ion b<strong>et</strong>ween Argentina<br />

and Brazil in the one hand and b<strong>et</strong>ween Chile and Mexico in the other hand, when the vol<strong>at</strong>ility or the<br />

r<strong>et</strong>urns exhibit large moves. But, in period of high vol<strong>at</strong>ility, the Chilean and Mexican mark<strong>et</strong> may have an<br />

genuine impact on the Argentina and Brazilian mark<strong>et</strong>s. Thus, a priori, this should lead us to conclu<strong>de</strong> on<br />

the existence of a contagion across these mark<strong>et</strong>s. However, this conclusion is based on the investig<strong>at</strong>ion of<br />

10


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 249<br />

only two theor<strong>et</strong>ical mo<strong>de</strong>ls and it would be a little bit too hasty to conclu<strong>de</strong> on the existence of contagion<br />

on the sole basis of these results. This is all the more so since our theor<strong>et</strong>ical mo<strong>de</strong>ls are all symm<strong>et</strong>ric in<br />

their positive and neg<strong>at</strong>ive tails, a crucial property nee<strong>de</strong>d for the <strong>de</strong>riv<strong>at</strong>ion of the expressions of ρ s v, while<br />

the empirical sample distributions are certainly not symm<strong>et</strong>ric, as shown in figure 1.<br />

1.6 Summary<br />

The previous sections have shown th<strong>at</strong> the conditional correl<strong>at</strong>ion coefficients can exhibit any behavior,<br />

<strong>de</strong>pending on their conditioning s<strong>et</strong> and the un<strong>de</strong>rlying distributions of r<strong>et</strong>urns. More precisely, we have<br />

shown th<strong>at</strong> the correl<strong>at</strong>ion coefficients, conditioned on large r<strong>et</strong>urns or vol<strong>at</strong>ility above a threshold v, can be<br />

either increasing or <strong>de</strong>creasing functions of the threshold, can go to any value b<strong>et</strong>ween zero and one when<br />

the threshold goes to infinity and can produce contradictory results in the sense th<strong>at</strong> accounting for a trend or<br />

not can lead to conclu<strong>de</strong> on an absence of linear correl<strong>at</strong>ion or on a perfect linear correl<strong>at</strong>ion. Moreover, due<br />

to the large st<strong>at</strong>istical fluctu<strong>at</strong>ions of the empirical estim<strong>at</strong>es, one should be very careful when concluding<br />

on an increase or <strong>de</strong>crease of the genuine correl<strong>at</strong>ions.<br />

Thus, from the general standpoint of the study of extreme <strong>de</strong>pen<strong>de</strong>nces, but more particularly for the specific<br />

problem of the contagion across countries, the use of conditional correl<strong>at</strong>ion does not seem very inform<strong>at</strong>ive<br />

and is som<strong>et</strong>imes misleading since it leads to spurious changes in the observed correl<strong>at</strong>ions: even when<br />

the unconditional correl<strong>at</strong>ion remains constant, conditional correl<strong>at</strong>ions yield artificial changes as we have<br />

forcefully shown. Since one of the most commonly accepted and used <strong>de</strong>finition of contagion is the d<strong>et</strong>ection<br />

of an increase of the conditional correl<strong>at</strong>ions during a period of turmoil, namely when the vol<strong>at</strong>ility increases,<br />

our results cast serious shadows on previous results. In this respect, the conclusions of (Calvo and Reinhart<br />

1996) about the occurrence of contagion across L<strong>at</strong>in American mark<strong>et</strong>s during the 1994 Mexican crisis but<br />

more generally also the results of (King and Wadhwani 1990), or (Lee and Kim 1993) on the effect of the<br />

October 1987 crash on the linkage of n<strong>at</strong>ional mark<strong>et</strong>s, must be consi<strong>de</strong>red with some caution. It is quite<br />

<strong>de</strong>sirable to find a more reliable tool for studying extreme <strong>de</strong>pen<strong>de</strong>nces.<br />

2 Conditional concordance measures<br />

The (conditional) correl<strong>at</strong>ion coefficients, which have just been investig<strong>at</strong>ed, suffer from several theor<strong>et</strong>ical<br />

as well as empirical <strong>de</strong>ficiencies. From the theor<strong>et</strong>ical point of view, it is only a measure of linear <strong>de</strong>pen<strong>de</strong>nce.<br />

Thus, as stressed by (Embrechts <strong>et</strong> al. 1999), it is fully s<strong>at</strong>isfying only for the <strong>de</strong>scription of the<br />

<strong>de</strong>pen<strong>de</strong>nce of variables with elliptical distributions. Moreover, the correl<strong>at</strong>ion coefficient aggreg<strong>at</strong>es the<br />

inform<strong>at</strong>ion contained both in the marginal and in the collective behavior. The correl<strong>at</strong>ion coefficient is<br />

not invariant un<strong>de</strong>r an increasing change of variable, a transform<strong>at</strong>ion which is known to l<strong>et</strong> unchanged the<br />

<strong>de</strong>pen<strong>de</strong>nce structure. From the empirical standpoint, we have seen th<strong>at</strong>, for some consi<strong>de</strong>red d<strong>at</strong>a, the correl<strong>at</strong>ion<br />

coefficient may not always exist, and even when it exits, it cannot always be accur<strong>at</strong>ly estim<strong>at</strong>ed, due<br />

to som<strong>et</strong>imes “wild” st<strong>at</strong>istical fluctu<strong>at</strong>ions. Thus, it is <strong>de</strong>sirable to find another measure of the <strong>de</strong>pen<strong>de</strong>nce<br />

b<strong>et</strong>ween two ass<strong>et</strong>s or more generally b<strong>et</strong>ween two random variables, which, contrarily to the linear correl<strong>at</strong>ion<br />

coefficient, is always well-<strong>de</strong>fined and only <strong>de</strong>pends on the copula properties. This ensures th<strong>at</strong> this<br />

measure is not affected by a change in the marginal distributions (provi<strong>de</strong>d th<strong>at</strong> the mapping is increasing).<br />

It turns out th<strong>at</strong> this <strong>de</strong>sirable property is shared by all measures of concordance. Among these measures<br />

are the well-known Kendall’s tau, Spearman’s rho or Gini’s b<strong>et</strong>a (see (Nelsen 1998) for d<strong>et</strong>ails).<br />

However, these concordance measures are not well-adapted, as such, to the study of extreme <strong>de</strong>pen<strong>de</strong>nce,<br />

because they are functions of the whole distribution, including the mo<strong>de</strong>r<strong>at</strong>e and small r<strong>et</strong>urns. A simple i<strong>de</strong>a<br />

11


250 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

to investig<strong>at</strong>e the extreme concordance properties of two random variables is to calcul<strong>at</strong>e these quantities<br />

conditioned on values larger than a given threshold and l<strong>et</strong> this threshold go to infinity.<br />

In the sequel, we will only focus on the Spearman’s rho which can be easily estim<strong>at</strong>ed empirically. It offers a<br />

n<strong>at</strong>ural generaliz<strong>at</strong>ion of the (linear) correl<strong>at</strong>ion coefficient. In<strong>de</strong>ed, the correl<strong>at</strong>ion coefficient quantifies the<br />

<strong>de</strong>gree of linear <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two random variables, while the Spearman’s rho quantifies the <strong>de</strong>gree<br />

of functional <strong>de</strong>pen<strong>de</strong>nce, wh<strong>at</strong>ever the functional <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the two random variables may be.<br />

This represents a very interesting improvement. Perfect correl<strong>at</strong>ions (respectively anti-correl<strong>at</strong>ion) give a<br />

value 1 (respectively −1) both for the standard correl<strong>at</strong>ion coefficient and for the Spearman’s rho. Otherwise,<br />

there is no general rel<strong>at</strong>ion allowing us to <strong>de</strong>duce the Spearman’s rho from the correl<strong>at</strong>ion coefficient and<br />

vice-versa.<br />

2.1 Definition<br />

The Spearman’s rho, <strong>de</strong>noted ρs in the sequel, measures the difference b<strong>et</strong>ween the probability of concordance<br />

and the probability of discordance for the two pairs of random variables (X1, Y1) and (X2, Y3),<br />

where the pairs (X1, Y1), (X2, Y2) and (X3, Y3) are three in<strong>de</strong>pen<strong>de</strong>nt realiz<strong>at</strong>ions drawn from the same<br />

distribution:<br />

ρs = 3 (Pr[(X1 − X2)(Y1 − Y3) > 0] − Pr[(X1 − X2)(Y1 − Y3) < 0]) . (14)<br />

The Spearman’s rho can also be expressed with the copula C of the two variables X and Y (see (Nelsen<br />

1998), for instance):<br />

ρs = 12<br />

1 1<br />

0<br />

0<br />

C(u, v) du dv − 3, (15)<br />

which allows us to easily calcul<strong>at</strong>e ρs when the copula C is known in closed form.<br />

Denoting U = FX(X) and V = FY (V ), it is easy to show th<strong>at</strong> ρs is nothing but the (linear) correl<strong>at</strong>ion<br />

coefficient of the uniform random variables U and V :<br />

Cov(U, V )<br />

ρs = . (16)<br />

Var(U)Var(V )<br />

This justifies its name as a correl<strong>at</strong>ion coefficient of the rank, and shows th<strong>at</strong> it can easily be estim<strong>at</strong>ed.<br />

An <strong>at</strong>tractive fe<strong>at</strong>ure of the Spearman’s rho is to be in<strong>de</strong>pen<strong>de</strong>nt of the margins, as we can see in equ<strong>at</strong>ion<br />

(15). Thus, contrarily to the linear correl<strong>at</strong>ion coefficient, which aggreg<strong>at</strong>es the marginal properties<br />

of the variables with their collective behavior, the rank correl<strong>at</strong>ion coefficient takes into account only the<br />

<strong>de</strong>pen<strong>de</strong>nce structure of the variables.<br />

Using expression (16), we propose a n<strong>at</strong>ural <strong>de</strong>finition of the conditional rank correl<strong>at</strong>ion, conditioned on V<br />

larger than a given threshold ˜v:<br />

ρs(˜v) =<br />

whose expression in term of the copula C(·, ·) is given in appendix D.<br />

2.2 Example<br />

Cov(U, V | V ≥ ˜v)<br />

Var(U | V ≥ ˜v)Var(V | V ≥ ˜v) , (17)<br />

Contrarily to the conditional correl<strong>at</strong>ion coefficient, we have not been able to obtain analytical expressions<br />

for the conditional Spearman’s rho, <strong>at</strong> least for the distributions th<strong>at</strong> we have consi<strong>de</strong>red up to now. Obviously,<br />

for many families of copulas known in closed form, equ<strong>at</strong>ion (17) allows for an explicit calcul<strong>at</strong>ion<br />

12


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 251<br />

of ρs(v). However, most copulas of interest in finance have no simple closed form, so th<strong>at</strong> it is necessary to<br />

resort to numerical comput<strong>at</strong>ions.<br />

As an example, l<strong>et</strong> us consi<strong>de</strong>r the bivari<strong>at</strong>e Gaussian distribution (or copula) with unconditional correl<strong>at</strong>ion<br />

coefficent ρ. It is well-known th<strong>at</strong> its unconditional Spearman’s rho is given by<br />

ρs = 6 ρ<br />

· arcsin . (18)<br />

π 2<br />

The left panel of figure 8 shows the conditional Spearman’s rho ρs(v) <strong>de</strong>fined by (17) obtained from a<br />

numerical integr<strong>at</strong>ion. We observe the same bias as for the conditional correl<strong>at</strong>ion coefficient, namely the<br />

conditional rank correl<strong>at</strong>ion changes with v eventhough the unconditional correl<strong>at</strong>ion is fixed to a constant<br />

value. Non<strong>et</strong>heless, this conditional Spearman’s rho seems more sensitive than the conditional correl<strong>at</strong>ion<br />

coefficient since we can observe in the left panel of figure 8 th<strong>at</strong>, as v goes to one, the conditional Spearman’s<br />

rho ρs(v) does not go to zero for all values of ρ (<strong>at</strong> the precision of our bootstrap estim<strong>at</strong>es), as previously<br />

observed with the conditional correl<strong>at</strong>ion coefficient (see equ<strong>at</strong>ion (3)).<br />

The right panel of figure 8 <strong>de</strong>picts the conditional Spearman’s rho of the Stu<strong>de</strong>nt’s copula with three <strong>de</strong>gres<br />

of freedom. The results are the same concerning the bias, but this time ρs(v) goes to zero for all value<br />

of ρ when v goes to one. Thus, here again, many different behaviours can be observed <strong>de</strong>pending on the<br />

un<strong>de</strong>rlying copula of the random variables. Moreover, these two examples show th<strong>at</strong> the quantific<strong>at</strong>ion of<br />

extreme <strong>de</strong>pen<strong>de</strong>nce is a function of the tools used to quantify this <strong>de</strong>pen<strong>de</strong>nce. Here, the conditional Spearman’s<br />

ρ goes to a non-vanishing constant for the Gaussian mo<strong>de</strong>l, while the conditional (linear) correl<strong>at</strong>ion<br />

coefficient goes to zero, contrarily to the Stu<strong>de</strong>nt’s distribution for which the situ<strong>at</strong>ion is exactly the opposite.<br />

2.3 Empirical evi<strong>de</strong>nce<br />

Figures 9, 10 and 11 give the conditionnal Spearman’s rho respectively for the Argentina / Brazilian stock<br />

mark<strong>et</strong>s, the Brazilian / Chilean stock mark<strong>et</strong>s and the Chilean / Mexican stock mark<strong>et</strong>s. As previously, the<br />

plain thick line refers to the estim<strong>at</strong>ed correl<strong>at</strong>ion, while the dashed lines refer to the Gaussian copula and<br />

its 95% confi<strong>de</strong>nce levels and and dotted lines to the Stu<strong>de</strong>nt’s copula with three <strong>de</strong>grees of freedom and its<br />

95% confi<strong>de</strong>nce levels.<br />

We first observe th<strong>at</strong> contrarily to the cases of the conditional (linear) correl<strong>at</strong>ion coefficient exhibited in<br />

figures 2, 4 and 6, the empirical conditional Spearman’s ρ does not always comply with the Stu<strong>de</strong>nt’s mo<strong>de</strong>l<br />

(neither with the Gaussian one), and thus confirm the discrepancies observed in figures 3, 5 and 7. In all<br />

cases, for thresholds v larger than the quantile 0.5 corresponding to the positive r<strong>et</strong>urns, the Stu<strong>de</strong>nt’s mo<strong>de</strong>l<br />

with three <strong>de</strong>grees of freedom is always sufficient to explain the d<strong>at</strong>a. In contrast, for the neg<strong>at</strong>ive r<strong>et</strong>urns<br />

and thus thresholds v lower then the quantile 0.5, only the interaction b<strong>et</strong>ween the Chilean and the Mexican<br />

mark<strong>et</strong>s is well <strong>de</strong>scribed by the Stu<strong>de</strong>nt copula and does not nee<strong>de</strong>d any additional ingredient such as the<br />

contagion mechanism. For all other pairs, none of our mo<strong>de</strong>ls explain the d<strong>at</strong>a s<strong>at</strong>isfyingly. Therefore, for<br />

these cases and from the perspective of our mo<strong>de</strong>ls, the contagion hypothesis seems to be nee<strong>de</strong>d.<br />

There are however several cave<strong>at</strong>s. First, even though we have consi<strong>de</strong>red the most n<strong>at</strong>ural financial mo<strong>de</strong>ls,<br />

there may be other mo<strong>de</strong>ls, th<strong>at</strong> we have ignored, with constant <strong>de</strong>pen<strong>de</strong>nce structure which can account for<br />

the observed evolutions of the conditional Spearman’s ρ. If this is true, then the contagion hypothesis would<br />

not be nee<strong>de</strong>d. Second, the discrepancy b<strong>et</strong>ween the empirical conditional Spearman’s ρ and the prediction<br />

of the the Stu<strong>de</strong>nt’s mo<strong>de</strong>l does not occur in the tails the distribution, i.e for large and extreme movements,<br />

but in the bulk. Thus, during periods of turmoil, the Stu<strong>de</strong>nt’s mo<strong>de</strong>l with three <strong>de</strong>grees fo freedom seems to<br />

remain a good mo<strong>de</strong>l of co-movements. Third, the contagion effect is never necessary for upwards moves.<br />

In<strong>de</strong>ed, we observe the same asymm<strong>et</strong>ry or trend <strong>de</strong>pen<strong>de</strong>nce as found by (Longin and Solnik 2001) for five<br />

13


252 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

major equity mark<strong>et</strong>s. This was apparent in figures 2, 4 and 6 for ρ +,−<br />

v , and is strongly confirmed on the<br />

conditional Spearman’s ρ.<br />

Interestingly, there is also an asymm<strong>et</strong>ry or directivity in the mutual influence b<strong>et</strong>ween mark<strong>et</strong>s. For instance,<br />

the Chilean and Mexican mark<strong>et</strong>s have an influence on the Argentina and Brazilian mark<strong>et</strong>s, but the l<strong>at</strong>er do<br />

not have any impact on the Chile and Mexican mark<strong>et</strong>s. Chile and Mexico have no contagion effect on each<br />

other while Argentina and Brazil have.<br />

These empirical results on the conditional Spearman’s ρ are different from and often opposite to the conclu-<br />

sion <strong>de</strong>rived from the conditional correl<strong>at</strong>ion coefficients ρ +,−<br />

v . This puts in light the difficulty in obtaining<br />

reliable, unambiguous and sensitive estim<strong>at</strong>ions of conditional correl<strong>at</strong>ion measures. In particular, the Pearson’s<br />

coefficient usually employed to estim<strong>at</strong>e the correl<strong>at</strong>ion coefficient b<strong>et</strong>ween two variables is known<br />

to be not very efficient when the variables are f<strong>at</strong>-tailed and when the estim<strong>at</strong>ion is performed on a small<br />

sample. In<strong>de</strong>ed, with small samples, the Pearson’s coefficient is very sensitive to the largest value, which<br />

can lead to an important bias in the estim<strong>at</strong>ion. Moreover, even with large sample sizes, (Meerschaert and<br />

Scheffler 2001) have shown th<strong>at</strong> the n<strong>at</strong>ure of convergence as the sample size T tends to infinity of the Pearson’s<br />

coefficient of two times series with tail in<strong>de</strong>x µ towards the theor<strong>et</strong>ical correl<strong>at</strong>ion is sensitive to the<br />

existence and strength of the theor<strong>et</strong>ical correl<strong>at</strong>ion. If there is no theor<strong>et</strong>ical correl<strong>at</strong>ion b<strong>et</strong>ween the two<br />

times series, the sample correl<strong>at</strong>ion tends to zero with Gaussian fluctu<strong>at</strong>ions. If the theor<strong>et</strong>ical correl<strong>at</strong>ion is<br />

non-zero, the difference b<strong>et</strong>ween the sample correl<strong>at</strong>ion and the theor<strong>et</strong>ical correl<strong>at</strong>ion times T 1−2/µ converges<br />

in distribution to a stable law with in<strong>de</strong>x µ/2. These large st<strong>at</strong>istical fluctu<strong>at</strong>ions are responsible for<br />

the lack of accuracy of the estim<strong>at</strong>ed conditional correl<strong>at</strong>ion coefficient encountered in the previous section.<br />

Thus, we think th<strong>at</strong> the conditional Spearman’s ρ provi<strong>de</strong>s a good altern<strong>at</strong>ive both from a theor<strong>et</strong>ical and an<br />

empirical viewpoint.<br />

3 Tail <strong>de</strong>pen<strong>de</strong>nce<br />

For the sake of compl<strong>et</strong>eness, and since it is directly rel<strong>at</strong>ed to the multivari<strong>at</strong>e extreme values theory, we<br />

study the so-called coefficient of tail <strong>de</strong>pen<strong>de</strong>nce λ. To our knowledge, its interest for financial applic<strong>at</strong>ions<br />

has been first un<strong>de</strong>rlined by (Embrechts <strong>et</strong> al. 2001).<br />

The coefficient of tail <strong>de</strong>pen<strong>de</strong>nce characterizes an important property of the extreme <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween<br />

X and Y , using the (original or unconditional) copula of X and Y . In constrast, the conditional spearman’s<br />

rho is <strong>de</strong>fined in terms of a conditional copula, and can be seen as the “unconditional Spearman’s rho” of the<br />

copula of X and Y conditioned on Y larger than the threshold v. This copula of X and Y conditioned on<br />

Y larger than the threshold v is not the true copula of X and Y because it is modified by the conditioning.<br />

In this sense, the tail <strong>de</strong>pen<strong>de</strong>nce param<strong>et</strong>er λ is a more n<strong>at</strong>ural property directly rel<strong>at</strong>ed to the copula of X<br />

and Y .<br />

To begin with, we recall the <strong>de</strong>finition of the coefficient λ as well as of ¯ λ (see below) which allows one to<br />

quantify the amount of <strong>de</strong>pen<strong>de</strong>nce in the tail. Then, we present several results concerning the coefficient λ<br />

of tail <strong>de</strong>pen<strong>de</strong>nce for various distributions and mo<strong>de</strong>ls, and finally, we discuss the problems encountered in<br />

the estim<strong>at</strong>ion of these quantities.<br />

14


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 253<br />

3.1 Definition<br />

The concept of tail <strong>de</strong>pen<strong>de</strong>nce is appealing by its simplicity. By <strong>de</strong>finition, the (upper) tail <strong>de</strong>pen<strong>de</strong>nce<br />

coefficient is:<br />

−1<br />

λ = lim<br />

(u)|Y > F (u)] , (19)<br />

Pr[X > F<br />

u→1 −1<br />

X<br />

and quantifies the probability to observe a large X, assuming th<strong>at</strong> Y is large itself. For a survey of the<br />

properties of the tail <strong>de</strong>pen<strong>de</strong>nce coefficient, the rea<strong>de</strong>r is refered to (Coles <strong>et</strong> al. 1999, Embrechts <strong>et</strong> al.<br />

2001, Lindskog 1999), for instance. In words, given th<strong>at</strong> Y is very large (which occurs with probability<br />

1 − u), the probability th<strong>at</strong> X is very large <strong>at</strong> the same probability level u <strong>de</strong>fines asymptotically the tail<br />

<strong>de</strong>pen<strong>de</strong>nce coefficient λ. As an example, consi<strong>de</strong>ring th<strong>at</strong> X and Y represent the vol<strong>at</strong>ility of two different<br />

n<strong>at</strong>ional mark<strong>et</strong>s, the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce λ gives the probabilty th<strong>at</strong> both mark<strong>et</strong>s exhibit tog<strong>et</strong>her<br />

very high vol<strong>at</strong>ility.<br />

One of the appeal of this <strong>de</strong>finition of tail <strong>de</strong>pen<strong>de</strong>nce is th<strong>at</strong> it is a pure copula property, i.e., it is in<strong>de</strong>pen<strong>de</strong>nt<br />

of the margins of X and Y . In<strong>de</strong>ed, l<strong>et</strong> C be the copula of the variables X and Y , then if the bivari<strong>at</strong>e copula<br />

C is such th<strong>at</strong><br />

Y<br />

1 − 2u + C(u, u)<br />

log C(u, u)<br />

lim<br />

= lim 2 − = λ (20)<br />

u→1 1 − u<br />

u→1 log u<br />

exists, then C has an upper tail <strong>de</strong>pen<strong>de</strong>nce coefficient λ (see (Coles <strong>et</strong> al. 1999, Embrechts <strong>et</strong> al. 2001,<br />

Lindskog 1999)).<br />

If λ > 0, the copula presents tail <strong>de</strong>pen<strong>de</strong>nce and large events tend to occur simultaneously, with the<br />

probability λ. On the contrary, when λ = 0, the copula has no tail <strong>de</strong>pen<strong>de</strong>nce and the variables X and Y<br />

are said asymptotically in<strong>de</strong>pen<strong>de</strong>nt. There is however a subtl<strong>et</strong>y in this <strong>de</strong>finition (19) of tail <strong>de</strong>pen<strong>de</strong>nce.<br />

To make it clear, first consi<strong>de</strong>r the case where for large X and Y the cumul<strong>at</strong>ive distribution function H(x, y)<br />

factorizes such th<strong>at</strong><br />

F (x, y)<br />

lim<br />

= 1 , (21)<br />

x,y→∞ FX(x)FY (y)<br />

where FX(x) and FY (y) are the margins of X and Y respectively. This means th<strong>at</strong>, for X and Y sufficiently<br />

large, these two variables can be consi<strong>de</strong>red as in<strong>de</strong>pen<strong>de</strong>nt. It is then easy to show th<strong>at</strong><br />

lim<br />

u→1 Pr{X > FX −1 (u)|Y > FY −1 (u)} = lim 1 − FX(FX<br />

u→1 −1 (u)) (22)<br />

= lim<br />

u→1 1 − u = 0, (23)<br />

so th<strong>at</strong> in<strong>de</strong>pen<strong>de</strong>nt variables really have no tail <strong>de</strong>pen<strong>de</strong>nce λ = 0, as one can expect.<br />

However, the result λ = 0 does not imply th<strong>at</strong> the multivari<strong>at</strong>e distribution can be autom<strong>at</strong>ically factorized<br />

asymptotically, as shown by the Gaussian example. In<strong>de</strong>ed, the Gaussian multivari<strong>at</strong>e distribution does not<br />

have a factorizable multivari<strong>at</strong>e distribution, even asymptotically for extreme values, since the non-diagonal<br />

term of the quadr<strong>at</strong>ic form in the exponential function does not become negligible in general as X and Y go<br />

to infinity. Therefore, in a weaker sense, there may still be a <strong>de</strong>pen<strong>de</strong>nce in the tail even when λ = 0.<br />

To make this st<strong>at</strong>ement more precise, following (Coles <strong>et</strong> al. 1999), l<strong>et</strong> us introduce the coefficient<br />

¯λ = lim<br />

u→1<br />

2 log Pr{X > FX −1 (u)}<br />

log Pr{X > FX −1 (u), Y > FY −1 (u)}<br />

− 1 (24)<br />

2 log(1 − u)<br />

= lim<br />

− 1 . (25)<br />

u→1 log[1 − 2u + C(u, u)]<br />

It can be shown th<strong>at</strong> the coefficient ¯ λ = 1 if and only if the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce λ > 0, while ¯ λ<br />

takes values in [−1, 1) when λ = 0, allowing us to quantify the strength of the <strong>de</strong>pen<strong>de</strong>nce in the tail in such<br />

15


254 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

a case. In fact, it has been established th<strong>at</strong>, when ¯ λ > 0, the variables X and Y are simultaneously large more<br />

frequently than in<strong>de</strong>pen<strong>de</strong>nt variables, while simultaneous large <strong>de</strong>vi<strong>at</strong>ions of X and Y occur less frequenlty<br />

than un<strong>de</strong>r in<strong>de</strong>pen<strong>de</strong>nce when ¯ λ < 0 (the interested rea<strong>de</strong>r is refered to (Ledford and Tawn 1996, Ledford<br />

and Tawn 1998)).<br />

To summarize, in<strong>de</strong>pen<strong>de</strong>nce (factoriz<strong>at</strong>ion of the bivari<strong>at</strong>e distribution) implies no tail <strong>de</strong>pen<strong>de</strong>nce λ = 0.<br />

But λ = 0 is not sufficient to imply factoriz<strong>at</strong>ion and thus true in<strong>de</strong>pen<strong>de</strong>nce. It also requires, as a necessary<br />

condition, th<strong>at</strong> ¯ λ = 0.<br />

We will first recall the expression of the tail <strong>de</strong>pen<strong>de</strong>nce coefficient for usual distributions, and then calcul<strong>at</strong>e<br />

it in the case of a one-factor mo<strong>de</strong>l for different distributions of the factor.<br />

3.2 Tail <strong>de</strong>pen<strong>de</strong>nce for Gaussian distributions and Stu<strong>de</strong>nt’s distributions<br />

Assuming th<strong>at</strong> (X, Y ) are normally distributed with correl<strong>at</strong>ion coefficient ρ, (Embrechts <strong>et</strong> al. 2001) shows<br />

th<strong>at</strong> for all ρ ∈ [−1, 1), λ = 0, while (Heffernan 2000) gives ¯ λ = ρ, which expresses, as one can expect,<br />

th<strong>at</strong> extremes appear more likely tog<strong>et</strong>her for positively correl<strong>at</strong>ed variables.<br />

In constrast, if (X, Y ) have a Stu<strong>de</strong>nt’s distribution, (Embrechts <strong>et</strong> al. 2001) shows th<strong>at</strong> the tail <strong>de</strong>pen<strong>de</strong>nce<br />

coefficient is<br />

λ = 2 · ¯ <br />

√ν 1 − ρ<br />

Tν+1 + 1 ,<br />

1 + ρ<br />

(26)<br />

which is gre<strong>at</strong>er than zero for all ρ > −1, and thus ¯ λ = 1. This last example proves th<strong>at</strong> extremes appear<br />

more likely tog<strong>et</strong>her wh<strong>at</strong>ever the correl<strong>at</strong>ion coefficient may be, showing th<strong>at</strong>, in fact, there is no general<br />

rel<strong>at</strong>ionship b<strong>et</strong>ween the asymptotic <strong>de</strong>pen<strong>de</strong>nce and the linear correl<strong>at</strong>ion coefficient.<br />

The Gaussian and Stu<strong>de</strong>nt’s distributions are elliptical, for which the following general result is known:<br />

(Hult and Lindskog 2001) have shown th<strong>at</strong> ellipticaly distributed random variables presents tail <strong>de</strong>pen<strong>de</strong>nce<br />

if and only if they are regularly varing, i.e., behaves asymptotically like power laws with some exponent<br />

ν > 0. In such a case, for every regularly varying pair of random variables elliptically distributed, the<br />

coefficent of tail <strong>de</strong>pen<strong>de</strong>nce λ is given by expression (26). This result is very n<strong>at</strong>ural since the correl<strong>at</strong>ion<br />

coefficient is an invariant quantity within the class of elliptical distributions and since the coefficient of tail<br />

<strong>de</strong>pen<strong>de</strong>nce is only d<strong>et</strong>ermined by the asymptotic behavior of the distribution, so th<strong>at</strong> it does not m<strong>at</strong>ter th<strong>at</strong><br />

the distribution is a Stu<strong>de</strong>nt’s distribution with ν <strong>de</strong>grees of freedom or any other elliptical distribution as<br />

long as they have the same asymptotic behavior in the tail.<br />

3.3 Tail <strong>de</strong>pen<strong>de</strong>nce gener<strong>at</strong>ed by a factor mo<strong>de</strong>l<br />

Consi<strong>de</strong>r the one-factor mo<strong>de</strong>l<br />

X1 = α1 · Y + ɛ1, (27)<br />

X2 = α2 · Y + ɛ2, (28)<br />

where the ɛi’s are random variables in<strong>de</strong>pen<strong>de</strong>nt of Y and the αi’s non-random positive coefficients.<br />

(Malevergne and Sorn<strong>et</strong>te 2002) have shown th<strong>at</strong> the tail <strong>de</strong>pen<strong>de</strong>nce λ of X1 and X2 can be simply expressed<br />

as the minimum of the tail <strong>de</strong>pen<strong>de</strong>nce coefficients λ1 and λ2 b<strong>et</strong>ween the two random variables X1<br />

and Y and X2 and Y respectively:<br />

λ = min{λ1, λ2}. (29)<br />

16


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 255<br />

To un<strong>de</strong>rstand this result, note th<strong>at</strong> the tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween X1 and X2 is cre<strong>at</strong>ed only through the<br />

common factor Y . It is thus n<strong>at</strong>ural th<strong>at</strong> the tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween X1 and X2 is boun<strong>de</strong>d from above<br />

by the weakest tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the Xi’s and Y while <strong>de</strong>riving the equality requires more work<br />

(Malevergne and Sorn<strong>et</strong>te 2002). Thus, it it only necessary to focus our study on the tail <strong>de</strong>pen<strong>de</strong>nce<br />

b<strong>et</strong>ween any Xi and Y . So, in or<strong>de</strong>r to simplify the not<strong>at</strong>ions, we neglect the subscripts 1 or 2, since<br />

they are irrelevant for the <strong>de</strong>pen<strong>de</strong>nce of X1 (or X2) and Y .<br />

A general result concerning the tail <strong>de</strong>pen<strong>de</strong>nce gener<strong>at</strong>ed by factor mo<strong>de</strong>ls for every kind of factor and<br />

noise distributions can be found in (Malevergne and Sorn<strong>et</strong>te 2002). It has been proved th<strong>at</strong> the coefficient<br />

of (upper) tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween X and Y is given by<br />

∞<br />

where, provi<strong>de</strong>d th<strong>at</strong> they exist,<br />

λ =<br />

max{1, l<br />

α}<br />

l = lim<br />

u→1<br />

dx f(x) , (30)<br />

FX −1 (u)<br />

FY −1 , (31)<br />

(u)<br />

t · PY (t · x)<br />

f(x) = lim<br />

. (32)<br />

t→∞ ¯FY (t)<br />

As a direct consequence, one can show th<strong>at</strong> any rapidly varying factor, which encompasses the Gaussian, the<br />

exponential or the gamma distributed factors for instance, leads to a vanishing coefficient of tail <strong>de</strong>pen<strong>de</strong>nce,<br />

wh<strong>at</strong>ever the distribution of the idiosyncr<strong>at</strong>ic noise may be. This resut is obvious when both the factor and<br />

the idiosyncr<strong>at</strong>ic are Gaussianly distributed, since then X and Y follow a bivari<strong>at</strong>e Gaussian distibution,<br />

whose tail <strong>de</strong>pen<strong>de</strong>nce has been said to be zero.<br />

On the contrary, regularly vaying factors, like the Stu<strong>de</strong>nt’s distributed factors, lead to a tail <strong>de</strong>pen<strong>de</strong>nce,<br />

provi<strong>de</strong>d th<strong>at</strong> the distribution of the idiosycr<strong>at</strong>ic noise does not become f<strong>at</strong>ter-tailed than the factor distribution.<br />

One can thus conclu<strong>de</strong> th<strong>at</strong>, in or<strong>de</strong>r to gener<strong>at</strong>e tail <strong>de</strong>pen<strong>de</strong>nce, the factor must have a sufficiently<br />

‘wild’ distribution. To present an explicit example, l<strong>et</strong> us assume now th<strong>at</strong> the factor Y and the idiosyncr<strong>at</strong>ic<br />

noise ɛ have centered Stu<strong>de</strong>nt’s distributions with the same number ν of <strong>de</strong>grees of freedom and scale factors<br />

respectively equal to 1 and σ. The choice of the scale factor equal to 1 for Y is not restrictive but only<br />

provi<strong>de</strong>s a convenient normaliz<strong>at</strong>ion for σ. Appendix E shows th<strong>at</strong> the tail <strong>de</strong>pen<strong>de</strong>nce coefficient is<br />

1<br />

λ =<br />

1 + <br />

σ ν . (33)<br />

α<br />

As is reasonable intuitively, the larger the typical scale σ of the fluctu<strong>at</strong>ion of ɛ and the weaker is the coupling<br />

coefficient α, the smaller is the tail <strong>de</strong>pen<strong>de</strong>nce.<br />

L<strong>et</strong> us recall th<strong>at</strong> the unconditional correl<strong>at</strong>ion coefficient ρ can be writen as ρ = (1+ σ2<br />

α 2 ) −1/2 , which allows<br />

us to rewrite the coefficient of upper tail <strong>de</strong>pen<strong>de</strong>nce as<br />

λ =<br />

ρν ρν + (1 − ρ2 . (34)<br />

) ν/2<br />

Surprinsingly, λ does not go to zero for all ρ’s as ν goes to infinity, as one would expect intuitively. In<strong>de</strong>ed,<br />

a n<strong>at</strong>ural reasoning would be th<strong>at</strong>, as ν goes to infinity, the Stu<strong>de</strong>nt’s distribution goes to the Gaussian<br />

distribution. Therefore, one could a priori expect to find again the result given in the previous section for<br />

the Gaussian factor mo<strong>de</strong>l. We note th<strong>at</strong> λ → 0 when ν → ∞ for all ρ’s smaller than 1/ √ 2. But, and<br />

here lies the surprise, λ → 1 for all ρ larger than 1/ √ 2 when ν → ∞. This counter-intuitive result is due<br />

17


256 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

to a non-uniform convergence which makes the or<strong>de</strong>r to two limits non-commut<strong>at</strong>ive: taking first the limit<br />

u → 1 and then ν → ∞ is different from taking first the limit ν → ∞ and then u → 1. In a sense, by taking<br />

first the limit u → 1, we always ensure somehow the power law regime even if ν is l<strong>at</strong>er taken to infinity.<br />

This is different from first “sitting” on the Gaussian limit ν → ∞. It then is a posteriori reasonable th<strong>at</strong> the<br />

absence of uniform convergence is ma<strong>de</strong> strongly apparent in its consequences when measuring a quantity<br />

probing the extreme tails of the distributions.<br />

As an illustr<strong>at</strong>ion, figure 12 represents the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce for the Stu<strong>de</strong>nt’s copula and Stu<strong>de</strong>nt’s<br />

factor mo<strong>de</strong>l as a function of ρ for various value of ν. It is interesting to note th<strong>at</strong> λ equals zero for all<br />

neg<strong>at</strong>ive ρ in the case of the factor mo<strong>de</strong>l, while λ remains non-zero for neg<strong>at</strong>ive values of the correl<strong>at</strong>ion<br />

coefficient for bivari<strong>at</strong>e Stu<strong>de</strong>nt’s variables.<br />

If Y and ɛ have different numbers νY and νɛ of <strong>de</strong>grees of freedom, two cases occur. For νY < νɛ, ɛ is<br />

negligible asymptotically and λ = 1. For νY > νɛ, X becomes asymptotically i<strong>de</strong>ntical to ɛ. Then, X and<br />

Y have the same tail-<strong>de</strong>pen<strong>de</strong>nce as ɛ and Y , which is 0 by construction.<br />

3.4 Estim<strong>at</strong>ion of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce<br />

It would seem th<strong>at</strong> the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce could provi<strong>de</strong> a useful measure of the extreme <strong>de</strong>pen<strong>de</strong>nce<br />

b<strong>et</strong>ween two random variables which could then be useful for the analysis of contagion b<strong>et</strong>ween<br />

mark<strong>et</strong>s. In<strong>de</strong>ed, either the whole d<strong>at</strong>a s<strong>et</strong> does not exhibit tail <strong>de</strong>pen<strong>de</strong>nce, and a contagion mechanism<br />

seems necessary to explain the occurrence of concomitant large movements during turmoil periods, or it<br />

exhibits tail <strong>de</strong>pen<strong>de</strong>nce so th<strong>at</strong> the usual <strong>de</strong>pen<strong>de</strong>nce structure is such th<strong>at</strong> it is able to produce by itself<br />

concomitant extremes.<br />

Unfortun<strong>at</strong>ely, the empirical estim<strong>at</strong>ion of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce is a strenuous task. In<strong>de</strong>ed, a<br />

direct estim<strong>at</strong>ion of the conditional probability Pr{X > FX −1 (u) | Y > FY −1 (u)}, which should tend<br />

to λ when u → 1 is impossible to put in practice due to the combin<strong>at</strong>ion of the curse of dimensionality<br />

and the drastic <strong>de</strong>crease of the number of realis<strong>at</strong>ions as u become close to one. A b<strong>et</strong>ter approach consists<br />

in using kernel estim<strong>at</strong>ors, which generally provi<strong>de</strong> smooth and accur<strong>at</strong>e estim<strong>at</strong>ors (Kulpa 1999, Li <strong>et</strong><br />

al. 1998, Scaill<strong>et</strong> 2000). However, these smooth estim<strong>at</strong>ors lead to differentiable estim<strong>at</strong>ed copulas which<br />

have autom<strong>at</strong>ically vanishing tail <strong>de</strong>pen<strong>de</strong>nce. In<strong>de</strong>ed, in or<strong>de</strong>r to obtain a non-vanishing coefficient of tail<br />

<strong>de</strong>pen<strong>de</strong>nce, it is necessary for the corresponding copula to be non-differentiable <strong>at</strong> the point (1, 1) (or <strong>at</strong><br />

(0, 0)). An altern<strong>at</strong>ive is then the fully param<strong>et</strong>ric approach. One can choose to mo<strong>de</strong>l <strong>de</strong>pen<strong>de</strong>nce via a<br />

specific copula, and thus to d<strong>et</strong>ermine the associ<strong>at</strong>ed tail <strong>de</strong>pen<strong>de</strong>nce (Longin and Solnik 2001, Malevergne<br />

and Sorn<strong>et</strong>te 2001, P<strong>at</strong>ton 2001). The problem with such a m<strong>et</strong>hod is th<strong>at</strong> the choice of the param<strong>et</strong>eriz<strong>at</strong>ion<br />

of the copula amounts to choose a priori wh<strong>et</strong>her or not the d<strong>at</strong>a presents tail <strong>de</strong>pen<strong>de</strong>nce.<br />

In fact, there exist three ways to estim<strong>at</strong>e the tail <strong>de</strong>pen<strong>de</strong>nce coefficient. The two first ones are specific to a<br />

class of copulas or of mo<strong>de</strong>ls, while the last one is very general, but obvioulsy less accur<strong>at</strong>e. The first m<strong>et</strong>hod<br />

is only reliable when it is known th<strong>at</strong> the un<strong>de</strong>rlying copula is Archimedian (see (Joe 1997) or (Nelsen 1998)<br />

for the <strong>de</strong>finition). In such a case, a limit theorem established by (Juri and Wüthrich 2002) allows to estim<strong>at</strong>e<br />

the tail <strong>de</strong>pen<strong>de</strong>nce. The problem is th<strong>at</strong> it is not obvious th<strong>at</strong> the Archimedian copulas provi<strong>de</strong> a good<br />

represent<strong>at</strong>ion of the <strong>de</strong>pen<strong>de</strong>nce structure for financial ass<strong>et</strong>s. For instance, the Achimedian copulas are<br />

generally inconsistent with a represent<strong>at</strong>ion of ass<strong>et</strong>s by factor mo<strong>de</strong>ls. In such case, a second m<strong>et</strong>hod<br />

provi<strong>de</strong>d by (Malevergne and Sorn<strong>et</strong>te 2002) offers good results allowing to estim<strong>at</strong>e the tail <strong>de</strong>pen<strong>de</strong>nce in<br />

a semi-param<strong>et</strong>ric way, which solely relies on the estim<strong>at</strong>ion of marginal distributions, a significantly easier<br />

task.<br />

When none of these situ<strong>at</strong>ions occur, or when the factors are too difficult to extract, a third and fully non-<br />

18


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 257<br />

param<strong>et</strong>ric m<strong>et</strong>hod exists, which is based upon the m<strong>at</strong>hem<strong>at</strong>ical results by (Ledford and Tawn 1996, Ledford<br />

and Tawn 1998) and (Coles <strong>et</strong> al. 1999) and has recently been applied by (Poon <strong>et</strong> al. 2001). The m<strong>et</strong>hod<br />

consists in tranforming the original random variables X and Y into Fréch<strong>et</strong> random variables <strong>de</strong>noted by S<br />

and T respectively. Then, consi<strong>de</strong>ring the variable Z = min{S, T }, its survival distribution is:<br />

Pr{Z > z} = d · z 1/η<br />

as z → ∞, (35)<br />

and ¯ λ = 2 · η − 1, with λ = 0 if ¯ λ < 1 or ¯ λ = 1 and λ = d. The param<strong>et</strong>ers η and d can be estim<strong>at</strong>ed<br />

by maximum likelihood, and <strong>de</strong>riving their asymptotic st<strong>at</strong>istics allows one to test wh<strong>et</strong>her the hypothesis<br />

¯λ = 1 can be rejected or not, and consequently, wh<strong>et</strong>her the d<strong>at</strong>a present tail <strong>de</strong>pen<strong>de</strong>nce or not.<br />

We have implemented this procedure and the estim<strong>at</strong>ed values of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce are given<br />

in table 1 both for the positive and the neg<strong>at</strong>ive tails. Our tests show th<strong>at</strong> we cannot reject the hypothesis of<br />

tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the four consi<strong>de</strong>red L<strong>at</strong>in American mark<strong>et</strong>s (Argentina, Brazil, Chile and Mexico).<br />

Notice th<strong>at</strong> the positive tail <strong>de</strong>pen<strong>de</strong>nce is almost always slightly smaller than the neg<strong>at</strong>ive one, which could<br />

be linked with the trend asymm<strong>et</strong>ry of (Longin and Solnik 2001), but it turns out th<strong>at</strong> these differences are<br />

not st<strong>at</strong>istically significant. These results indic<strong>at</strong>e th<strong>at</strong>, according to this analysis of the extreme <strong>de</strong>pen<strong>de</strong>nce<br />

coefficient, the propensity of extreme co-movements is almost the same for each pair of stock mark<strong>et</strong>s:<br />

even if the transmission mechanisms of a crisis are different from a country to another one, the propag<strong>at</strong>ion<br />

occur with the same probability overall. Thus, the subsequent risks are the same. In table 2, we also<br />

give the coefficients of tail <strong>de</strong>pen<strong>de</strong>nce estim<strong>at</strong>ed un<strong>de</strong>r the Stu<strong>de</strong>nt’s copula (or in fact any copula <strong>de</strong>rived<br />

from an elliptical distribution) with three dregrees of freedom, given by expression (26). One can observe<br />

a remarkable agreement b<strong>et</strong>ween these values and the non-param<strong>et</strong>ric estim<strong>at</strong>es given in table 1. This<br />

is consistent with the results given by the conditional Spearman’s ρ, for which we have shown th<strong>at</strong> the<br />

Stu<strong>de</strong>nt’s copula seems to reasonably account for the extreme <strong>de</strong>pen<strong>de</strong>nce.<br />

4 Summary and Discussion<br />

Table 3 summarizes the asymptotic <strong>de</strong>pen<strong>de</strong>nces for large v and u of the signed conditional correl<strong>at</strong>ion<br />

coefficient ρ + v , the unsigned conditional correl<strong>at</strong>ion coefficient ρ s v and the correl<strong>at</strong>ion coefficient ρu conditioned<br />

on both variables for the bivari<strong>at</strong>e Gaussian, the Stu<strong>de</strong>nt’s mo<strong>de</strong>l, the Gaussian factor mo<strong>de</strong>l and<br />

the Stu<strong>de</strong>nt’s factor mo<strong>de</strong>l. Our results provi<strong>de</strong> a quantit<strong>at</strong>ive proof th<strong>at</strong> conditioning on exceedance leads<br />

to conditional correl<strong>at</strong>ion coefficients th<strong>at</strong> may be very different from the unconditional correl<strong>at</strong>ion. This<br />

provi<strong>de</strong>s a straightforward mechanism for fluctu<strong>at</strong>ions or changes of correl<strong>at</strong>ions, based on fluctu<strong>at</strong>ions of<br />

vol<strong>at</strong>ility or changes of trends. In other words, the many reported vari<strong>at</strong>ions of correl<strong>at</strong>ion structure might<br />

be in large part <strong>at</strong>tributed to changes in vol<strong>at</strong>ility (and st<strong>at</strong>isical uncertainty).<br />

We also suggest th<strong>at</strong> the distinct <strong>de</strong>pen<strong>de</strong>nces as a function of exceedance v and u of the conditional correl<strong>at</strong>ion<br />

coefficients may offer novel tools for characterizing the st<strong>at</strong>istical multivari<strong>at</strong>e distributions of extreme<br />

events. Since their direct characteriz<strong>at</strong>ion is in general restricted by the curse of dimensionality and the scarsity<br />

of d<strong>at</strong>a, the conditional correl<strong>at</strong>ion coefficients provi<strong>de</strong> reduced robust st<strong>at</strong>istics which can be estim<strong>at</strong>ed<br />

with reasonable accuracy and reliability. In this respect, our empirical results encourage us to assert th<strong>at</strong><br />

a Stu<strong>de</strong>nt’s copula, or more generally and elliptical copula, with a tail in<strong>de</strong>x of about three seems able to<br />

account for the main extreme <strong>de</strong>pen<strong>de</strong>nce properties investig<strong>at</strong>ed here.<br />

Table 4 gives the asymptotic values of ρ + v , ρ s v and ρu for v → +∞ and u → ∞ in or<strong>de</strong>r to compare them<br />

with the tail-<strong>de</strong>pen<strong>de</strong>nce λ.<br />

These two tables only scr<strong>at</strong>ch the surface of the rich s<strong>et</strong>s of measures of tail and extreme <strong>de</strong>pen<strong>de</strong>nces. We<br />

have shown th<strong>at</strong> compl<strong>et</strong>e in<strong>de</strong>pen<strong>de</strong>nce implies the absence of tail <strong>de</strong>pen<strong>de</strong>nce: λ = 0. But λ = 0 does not<br />

19


258 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

implies in<strong>de</strong>pen<strong>de</strong>nce, <strong>at</strong> least in the intermedi<strong>at</strong>e range, since it is only an asymptotic property. Conversely,<br />

a non-zero tail <strong>de</strong>pen<strong>de</strong>nce λ implies the absence of asymptotic in<strong>de</strong>pen<strong>de</strong>nce. Non<strong>et</strong>heless, it does not<br />

imply necessarily th<strong>at</strong> the conditional correl<strong>at</strong>ion coefficients ρ + v=∞ and ρ s v=∞ are non-zero, as one would<br />

have expected naively.<br />

Note th<strong>at</strong> the examples of Table 4 are such th<strong>at</strong> λ = 0 seems to go hand-in-hand with ρ + v→∞ = 0. However,<br />

the logical implic<strong>at</strong>ion (λ = 0) ⇒ (ρ + v→∞ = 0) does not hold in general. A counter example is offered by<br />

the Stu<strong>de</strong>nt’s factor mo<strong>de</strong>l in the case where νY > νɛ (the tail of the distribution of the idiosynchr<strong>at</strong>ic noise<br />

is f<strong>at</strong>ter than th<strong>at</strong> of the distribution of the factor). In this case, X and Y have the same tail-<strong>de</strong>pen<strong>de</strong>nce<br />

as ɛ and Y , which is 0 by construction. But, ρ + v=∞ and ρ s v=∞ are both 1 because a large Y almost always<br />

gives a large X and the simultaneous occurrence of a large Y and a large ɛ can be neglected. The reason for<br />

this absence of tail <strong>de</strong>pen<strong>de</strong>nce (in the sense of λ) coming tog<strong>et</strong>her with asymptotically strong conditional<br />

correl<strong>at</strong>ion coefficients stems from two facts:<br />

• first, the conditional correl<strong>at</strong>ion coefficients put much less weight on the extreme tails th<strong>at</strong> the tail<strong>de</strong>pen<strong>de</strong>nce<br />

param<strong>et</strong>er λ. In other words, ρ + v=∞ and ρ s v=∞ are sensitive to the marginals, i.e., there are<br />

d<strong>et</strong>ermined by the full bivari<strong>at</strong>e distribution, while, as we said, λ is a pure copula property in<strong>de</strong>pen<strong>de</strong>nt<br />

of the marginals. Since ρ + v=∞ and ρ s v=∞ are measures of tail <strong>de</strong>pen<strong>de</strong>nce weighted by the specific<br />

shapes of the marginals, it is n<strong>at</strong>ural th<strong>at</strong> they may behave differently.<br />

• Secondly, the tail <strong>de</strong>pen<strong>de</strong>nce λ probes the extreme <strong>de</strong>pen<strong>de</strong>nce property of the original copula of the<br />

random variables X and Y . On the contrary, when conditioning on Y , one changes the copula of X<br />

and Y , so th<strong>at</strong> the extreme <strong>de</strong>pen<strong>de</strong>nce properties investig<strong>at</strong>ed by the conditional correl<strong>at</strong>ions are not<br />

exactly those of the original copula. This last remark explains clearly why we observe wh<strong>at</strong> (Boyer <strong>et</strong><br />

al. 1997) call a “bias” in the conditional correl<strong>at</strong>ions. In<strong>de</strong>ed, changing the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two<br />

random variables obviously leads to changing their correl<strong>at</strong>ions.<br />

The consequences are of importance. In such a situ<strong>at</strong>ion, one measure (λ) would conclu<strong>de</strong> on asymptotic<br />

tail-in<strong>de</strong>pen<strong>de</strong>nce while the other measures ρ + v=∞ and ρ s v=∞ would conclu<strong>de</strong> the opposite. Thus, before<br />

concluding on a change in the <strong>de</strong>pen<strong>de</strong>nce structure with respect to a given param<strong>et</strong>er - the vol<strong>at</strong>ility or<br />

the trend, for instance - one should check th<strong>at</strong> this change does not result from the tool used to probe the<br />

<strong>de</strong>pen<strong>de</strong>nce. In this respect, our study allows us to shed new lights on recent controversial results about the<br />

occurrence or abscence of contagion during the L<strong>at</strong>in American crises. As in every previous works, we find<br />

no contagion evi<strong>de</strong>nce b<strong>et</strong>ween Chile and Mexico, but contrarily to (Forbes and Rigobon 2002), we think it<br />

is difficult to ignore the possibility of contagion towards Argentina and Brazil, and in this respect we agree<br />

with (Calvo and Reinhart 1996).<br />

In fact, we think th<strong>at</strong> most of the discrepancies b<strong>et</strong>ween these different studies stem from the fact th<strong>at</strong><br />

the conditional correl<strong>at</strong>ion coefficient does not provi<strong>de</strong> an accur<strong>at</strong>e tool for probing the potential changes<br />

of <strong>de</strong>pen<strong>de</strong>nce. In<strong>de</strong>ed, even when the bias have been accounted for, the f<strong>at</strong>-tailness of the distributions<br />

of r<strong>et</strong>urns are such th<strong>at</strong> the Pearson’s coefficient is subjected to very strong st<strong>at</strong>istical fluctu<strong>at</strong>ions which<br />

forbid an accur<strong>at</strong>e estim<strong>at</strong>ion of the correl<strong>at</strong>ion. Moreover, when studying the <strong>de</strong>pen<strong>de</strong>nce properties, it is<br />

interesting to free oneself from the marginal behavior of each random variable. This is why the conditional<br />

Spearman’s rho seems a good tool: it only <strong>de</strong>pends on the copula and is st<strong>at</strong>istically well-behaved.<br />

The conditional Spearman’s rho has allowed us to i<strong>de</strong>ntify a change in the <strong>de</strong>pen<strong>de</strong>nce structure during<br />

downward trends in L<strong>at</strong>in American mark<strong>et</strong>s, similar to th<strong>at</strong> found by (Longin and Solnik 2001) in their<br />

study of the contagion across five major equity mark<strong>et</strong>s. It has also enabled us to put in light the asymm<strong>et</strong>ry<br />

in the contagion effects: Mexico and Chile can be potential source sof contagion toward Argentina and<br />

Brazil, while reverse does not seem to hold. This phenomenom has been observed during the 1994 Mexican<br />

20


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 259<br />

crisis and appears to remain true in the recent Argentina crisis, for which only Brazil seems to exhibit the<br />

sign<strong>at</strong>ure of a possible contagion.<br />

We suggest th<strong>at</strong> a possible origin for the discovered asymm<strong>et</strong>ry may lie in the difference in the more mark<strong>et</strong>oriented<br />

countries versus more st<strong>at</strong>e intervention oriented economies, giving rise to either currency flo<strong>at</strong>ing<br />

regimes adapted to an important manufacturing sector which tend to <strong>de</strong>liver more comp<strong>et</strong>itive real exchange<br />

r<strong>at</strong>es (Chile and Mexico) or fixed r<strong>at</strong>e pegs (Argentina until the 2001 crisis and Brazil until the early 1999<br />

crisis) (Frie<strong>de</strong>n 1992, Frie<strong>de</strong>n <strong>et</strong> al. 2000a, Frie<strong>de</strong>n <strong>et</strong> al. 2000b). The asymm<strong>et</strong>ry of the contagion is comp<strong>at</strong>ible<br />

with the view th<strong>at</strong> fixed echange r<strong>at</strong>es tighten more strickly an economy and its stock mark<strong>et</strong> to external<br />

shocks (case of Argentina and Brazil) while a more flexible exchange r<strong>at</strong>e seems to provi<strong>de</strong> a cushion allowing<br />

a <strong>de</strong>coupling b<strong>et</strong>ween the stock mark<strong>et</strong> and external influences.<br />

Finally, the absence of contagion does not imply necessarily the absence of “contamin<strong>at</strong>ion.” In<strong>de</strong>ed, the<br />

study of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce has proven th<strong>at</strong> with or without contagion mechanisms - i.e.,<br />

increase in the linkage b<strong>et</strong>ween mark<strong>et</strong>s during crisis - the probability of extreme co-movements during the<br />

crisis - i.e., the contamin<strong>at</strong>ion - is almost the same for all pairs of mark<strong>et</strong>s. Thus, wh<strong>at</strong>ever the propag<strong>at</strong>ion<br />

mechanism may be - historically closed rel<strong>at</strong>ionship or irr<strong>at</strong>ional fear and herd behavior - the observed<br />

effects are the same: the propag<strong>at</strong>ion of the crisis. From the practical perspective of risk management or<br />

regul<strong>at</strong>ory policy, this last point is may be more important than the real knowledge of the occurrence or not<br />

of contagion.<br />

21


260 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Figure legends<br />

Figure 1: The upper (respectively lower) panel graphs the complementary distribution of the positive (respectively<br />

the minus neg<strong>at</strong>ive) r<strong>et</strong>urns in US dollar. The straight line represents the slope of a power law<br />

with tail exponent α = 2.<br />

Figure 2: In the upper panel, the thick plain curve <strong>de</strong>picts the correl<strong>at</strong>ion coefficient b<strong>et</strong>ween the Argentina<br />

stock in<strong>de</strong>x daily r<strong>et</strong>urns and the Mexican stock in<strong>de</strong>x daily r<strong>et</strong>urns conditional on the Mexican stock in<strong>de</strong>x<br />

daily r<strong>et</strong>urns larger than (smaller than) a given positive (neg<strong>at</strong>ive) value v (after normaliz<strong>at</strong>ion by the stan-<br />

dard <strong>de</strong>vi<strong>at</strong>ion). The thick dashed curve represents the theor<strong>et</strong>ical conditional correl<strong>at</strong>ion coefficient ρ +,−<br />

v<br />

calcul<strong>at</strong>ed for a bivari<strong>at</strong>e Gaussian mo<strong>de</strong>l, while the two thin dashed curves represent the area within which<br />

we cannot consi<strong>de</strong>r, <strong>at</strong> the 95% confi<strong>de</strong>nce level, th<strong>at</strong> the estim<strong>at</strong>ed correl<strong>at</strong>ion coefficient is significantly<br />

different from its Gaussian theor<strong>et</strong>ical value. The dotted curves provi<strong>de</strong> the same inform<strong>at</strong>ion un<strong>de</strong>r the<br />

assumption of a bivari<strong>at</strong>e Stu<strong>de</strong>nt’s mo<strong>de</strong>l with ν = 3 <strong>de</strong>grees of freedom.<br />

The lower panel gives the same kind of inform<strong>at</strong>ion for the correl<strong>at</strong>ion coefficient conditioned on the Argentina<br />

stock in<strong>de</strong>x daily r<strong>et</strong>urns larger than (smaller than) a given positive (neg<strong>at</strong>ive) value v.<br />

Figure 3: In the upper panel, the thick plain curve gives the correl<strong>at</strong>ion coefficient b<strong>et</strong>ween the Argentina<br />

stock in<strong>de</strong>x daily r<strong>et</strong>urns and the Mexican stock in<strong>de</strong>x daily r<strong>et</strong>urns conditioned on the Mexican stock in<strong>de</strong>x<br />

daily vol<strong>at</strong>ility larger than a give value v (after normaliz<strong>at</strong>ion by the standard <strong>de</strong>vi<strong>at</strong>ion). The thick dashed<br />

curve represents the theor<strong>et</strong>ical conditional correl<strong>at</strong>ion coefficient ρ +,−<br />

v calcul<strong>at</strong>ed for a bivari<strong>at</strong>e Gaussian<br />

mo<strong>de</strong>l, while the two thin dashed curves represent the area within which we cannot consi<strong>de</strong>r, <strong>at</strong> the 95%<br />

confi<strong>de</strong>nce level, th<strong>at</strong> the estim<strong>at</strong>ed correl<strong>at</strong>ion coefficient is significantly different from its Gaussian theor<strong>et</strong>ical<br />

value. The dotted curves provi<strong>de</strong> the same inform<strong>at</strong>ion un<strong>de</strong>r the assumption of a bivari<strong>at</strong>e Stu<strong>de</strong>nt’s<br />

mo<strong>de</strong>l with ν = 3 <strong>de</strong>grees of freedom.<br />

The lower panel gives the same kind of inform<strong>at</strong>ion for the correl<strong>at</strong>ion coefficient conditioned on the Argentina<br />

stock in<strong>de</strong>x daily vol<strong>at</strong>ility larger than a given value v.<br />

Figure 4: In the upper panel, the thick plain curve gives the correl<strong>at</strong>ion coefficient b<strong>et</strong>ween the Brazilian<br />

stock in<strong>de</strong>x daily r<strong>et</strong>urns and the Chilean stock in<strong>de</strong>x daily r<strong>et</strong>urns conditioned on the Chilean stock in<strong>de</strong>x<br />

daily r<strong>et</strong>urns larger than (smaller than) a given positive (neg<strong>at</strong>ive) value v (after normaliz<strong>at</strong>ion by the stan-<br />

dard <strong>de</strong>vi<strong>at</strong>ion). The thick dashed curve represents the theor<strong>et</strong>ical conditional correl<strong>at</strong>ion coefficient ρ +,−<br />

v<br />

calcul<strong>at</strong>ed for a bivari<strong>at</strong>e Gaussian mo<strong>de</strong>l, while the two thin dashed curves represent the area within which<br />

we cannot consi<strong>de</strong>r, <strong>at</strong> the 95% confi<strong>de</strong>nce level, th<strong>at</strong> the estim<strong>at</strong>ed correl<strong>at</strong>ion coefficient is significantly<br />

different from its Gaussian theor<strong>et</strong>ical value. The dotted curves provi<strong>de</strong> the same inform<strong>at</strong>ion un<strong>de</strong>r the<br />

assumption of a bivari<strong>at</strong>e Stu<strong>de</strong>nt’s mo<strong>de</strong>l with ν = 3 <strong>de</strong>grees of freedom.<br />

The lower panel gives the same kind of inform<strong>at</strong>ion for the correl<strong>at</strong>ion coefficient conditioned on the Brazilian<br />

stock in<strong>de</strong>x daily r<strong>et</strong>urns larger than (smaller than) a given positive (neg<strong>at</strong>ive) value v.<br />

Figure 5: In the upper panel, the thick plain curve shows the correl<strong>at</strong>ion coefficient b<strong>et</strong>ween the Brazilian<br />

stock in<strong>de</strong>x daily r<strong>et</strong>urns and the Chilean stock in<strong>de</strong>x daily r<strong>et</strong>urns conditional on the Chilean stock in<strong>de</strong>x<br />

daily vol<strong>at</strong>ility larger than a given value v (after normaliz<strong>at</strong>ion by the standard <strong>de</strong>vi<strong>at</strong>ion). The thick dashed<br />

curve represents the theor<strong>et</strong>ical conditional correl<strong>at</strong>ion coefficient ρ +,−<br />

v calcul<strong>at</strong>ed for a bivari<strong>at</strong>e Gaussian<br />

mo<strong>de</strong>l, while the two thin dashed curves represent the area within which we cannot consi<strong>de</strong>r, <strong>at</strong> the 95%<br />

confi<strong>de</strong>nce level, th<strong>at</strong> the estim<strong>at</strong>ed correl<strong>at</strong>ion coefficient is significantly different from its Gaussian theor<strong>et</strong>ical<br />

value. The dotted curves provi<strong>de</strong> the same inform<strong>at</strong>ion un<strong>de</strong>r the assumption of a bivari<strong>at</strong>e Stu<strong>de</strong>nt’s<br />

mo<strong>de</strong>l with ν = 3 <strong>de</strong>grees of freedom.<br />

The lower panel gives the same kind of inform<strong>at</strong>ion for the correl<strong>at</strong>ion coefficient conditioned on the Brazil-<br />

22


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 261<br />

ian stock in<strong>de</strong>x daily vol<strong>at</strong>ility larger than a given value v.<br />

Figure 6: In the upper panel, the thick plain curve shows the correl<strong>at</strong>ion coefficient b<strong>et</strong>ween the Chilean<br />

stock in<strong>de</strong>x daily r<strong>et</strong>urns and the Mexican stock in<strong>de</strong>x daily r<strong>et</strong>urns conditioned on the Mexican stock in<strong>de</strong>x<br />

daily r<strong>et</strong>urns larger than (smaller than) a given positive (neg<strong>at</strong>ive) value v (after normaliz<strong>at</strong>ion by the standard<br />

<strong>de</strong>vi<strong>at</strong>ion). The thick dashed curve represents the theor<strong>et</strong>ical conditional correl<strong>at</strong>ion coefficient ρ +,−<br />

v<br />

calcul<strong>at</strong>ed for a bivari<strong>at</strong>e Gaussian mo<strong>de</strong>l, while the two thin dashed curves represent the area within which<br />

we cannot consi<strong>de</strong>r, <strong>at</strong> the 95% confi<strong>de</strong>nce level, th<strong>at</strong> the estim<strong>at</strong>ed correl<strong>at</strong>ion coefficient is significantly<br />

different from its Gaussian theor<strong>et</strong>ical value. The dotted curves provi<strong>de</strong> the same inform<strong>at</strong>ion un<strong>de</strong>r the<br />

assumption of a bivari<strong>at</strong>e Stu<strong>de</strong>nt’s mo<strong>de</strong>l with ν = 3 <strong>de</strong>grees of freedom.<br />

The lower panel gives the same kind of inform<strong>at</strong>ion for the correl<strong>at</strong>ion coefficient conditioned on the Chilean<br />

stock in<strong>de</strong>x daily r<strong>et</strong>urns larger than (smaller than) a given positive (neg<strong>at</strong>ive) value v.<br />

Figure 7: In the upper panel, the thick plain curve <strong>de</strong>picts the correl<strong>at</strong>ion coefficient b<strong>et</strong>ween the Chilean<br />

stock in<strong>de</strong>x daily r<strong>et</strong>urns and the Mexican stock in<strong>de</strong>x daily r<strong>et</strong>urns conditioned on the Mexican stock in<strong>de</strong>x<br />

daily vol<strong>at</strong>ility larger than a give value v (after normaliz<strong>at</strong>ion by the standard <strong>de</strong>vi<strong>at</strong>ion). The thick dashed<br />

curve represents the theor<strong>et</strong>ical conditional correl<strong>at</strong>ion coefficient ρ +,−<br />

v calcul<strong>at</strong>ed for a bivari<strong>at</strong>e Gaussian<br />

mo<strong>de</strong>l, while the two thin dashed curves represent the area within which we cannot consi<strong>de</strong>r, <strong>at</strong> the 95%<br />

confi<strong>de</strong>nce level, th<strong>at</strong> the estim<strong>at</strong>ed correl<strong>at</strong>ion coefficient is significantly different from its Gaussian theor<strong>et</strong>ical<br />

value. The dotted curves provi<strong>de</strong> the same inform<strong>at</strong>ion un<strong>de</strong>r the assumption of a bivari<strong>at</strong>e Stu<strong>de</strong>nt’s<br />

mo<strong>de</strong>l with ν = 3 <strong>de</strong>grees of freedom.<br />

The lower panel gives the same kind of inform<strong>at</strong>ion for the correl<strong>at</strong>ion coefficient conditioned on the Chilean<br />

stock in<strong>de</strong>x daily vol<strong>at</strong>ility larger than a given value v.<br />

Figure 8: Conditional Spearman’s rho for a bivari<strong>at</strong>e Gaussian copula (left panel) and a Stu<strong>de</strong>nt’s copula<br />

with three <strong>de</strong>grees of freedom (right panel), with an unconditional linear correl<strong>at</strong>ion coefficient ρ =<br />

0.1, 0.3, 0.5, 0.7, 0.9.<br />

Figure 9: In the upper panel, the thick curve shows the Spearman’s rho b<strong>et</strong>ween the Argentina stock in<strong>de</strong>x<br />

daily r<strong>et</strong>urns and the Brazilian stock in<strong>de</strong>x daily r<strong>et</strong>urns. Above the quantile v = 0.5, the Spearman’s rho is<br />

conditioned on the Brazilian in<strong>de</strong>x daily r<strong>et</strong>urns whose quantiles are larger than v, while below the quantile<br />

v = 0.5 it is conditioned on the Brazilian in<strong>de</strong>x daily r<strong>et</strong>urns whose quantiles are smaller than v. As in the<br />

above figures for the correl<strong>at</strong>ion coefficients, the dashed lines refer to the prediction of the Gaussian copula<br />

and its 95% confi<strong>de</strong>nce levels and the dotted lines to the Stu<strong>de</strong>nt’s copula with three <strong>de</strong>grees of freedom<br />

and its 95% confi<strong>de</strong>nce levels. The lower panel gives the same kind of inform<strong>at</strong>ion for the Spearman’s rho<br />

conditioned on the realiz<strong>at</strong>ions of the Argentina in<strong>de</strong>x daily r<strong>et</strong>urns.<br />

Figure 10: In the upper panel, the thick curve shows the Spearman’s rho b<strong>et</strong>ween the Brazilian stock in<strong>de</strong>x<br />

daily r<strong>et</strong>urns and the chilean stock in<strong>de</strong>x daily r<strong>et</strong>urns. Above the quantile v = 0.5, the Spearman’s rho is<br />

conditioned on the Chilean in<strong>de</strong>x daily r<strong>et</strong>urns whose quantiles are larger than v, while below the quantile<br />

v = 0.5 it is conditioned on the Mexican in<strong>de</strong>x daily r<strong>et</strong>urns whose quantiles are smaller than v. The dashed<br />

lines refer to the prediction of the Gaussian copula and its 95% confi<strong>de</strong>nce levels and the dotted lines to the<br />

Stu<strong>de</strong>nt’s copula with three <strong>de</strong>grees of freedom and its 95% confi<strong>de</strong>nce levels. The lower panel gives the<br />

same kind of inform<strong>at</strong>ion for the Spearman’s rho conditioned on the realiz<strong>at</strong>ions of the Brazilian in<strong>de</strong>x daily<br />

r<strong>et</strong>urns.<br />

Figure 11: In the upper panel, the thick curve <strong>de</strong>picts the Spearman’s rho b<strong>et</strong>ween the Chilean stock in<strong>de</strong>x<br />

daily r<strong>et</strong>urns and the Mexican stock in<strong>de</strong>x daily r<strong>et</strong>urns. Above the quantile v = 0.5, the Spearman’s rho is<br />

conditioned on the Mexican in<strong>de</strong>x daily r<strong>et</strong>urns whose quantiles are larger than v, while below the quantile<br />

v = 0.5 it is conditioned on the Mexican in<strong>de</strong>x daily r<strong>et</strong>urns whose quantiles are smaller than v. The dashed<br />

lines refer to the prediction of the Gaussian copula and its 95% confi<strong>de</strong>nce levels and the dotted lines to the<br />

23


262 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Stu<strong>de</strong>nt’s copula with three <strong>de</strong>grees of freedom and its 95% confi<strong>de</strong>nce levels. The lower panel gives the<br />

same kind of inform<strong>at</strong>ion for the Spearman’s rho conditioned on the realiz<strong>at</strong>ions of the Chilean in<strong>de</strong>x daily<br />

r<strong>et</strong>urns.<br />

Figure 12: Coefficient of upper tail <strong>de</strong>pen<strong>de</strong>nce as a function of the correl<strong>at</strong>ion coefficient ρ for various<br />

values of the number of <strong>de</strong>gres of freedomn ν for the stu<strong>de</strong>nt’s Copula (left panel) and the Stu<strong>de</strong>nt’s factor<br />

mo<strong>de</strong>l (right panel).<br />

<br />

<br />

Figure 13: The graph of the function 1<br />

(1+ ɛu<br />

) x0 ν <br />

<br />

− 1<br />

(thick solid line), the string which gives an upper bound<br />

of the function within 1−x0<br />

ɛ , 0 (dashed line) and the tangent in 0 + which gives an upper bound of the<br />

function within 0, x0<br />

<br />

ɛ (dash dotted line).<br />

24


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 263<br />

A Conditional correl<strong>at</strong>ion coefficient for Gaussian variables<br />

L<strong>et</strong> us consi<strong>de</strong>r a pair of Normal random variables (X, Y ) ∼ N (0, Σ) where Σ is their covariance m<strong>at</strong>rix<br />

with unconditional correl<strong>at</strong>ion coefficient ρ. Without loss of generality, and for simplicity, we shall assume<br />

Σ with unit unconditional variances.<br />

A.1 Conditioning on one variable<br />

A.1.1 Conditioning on Y larger than v<br />

Given a conditioning s<strong>et</strong> A = [v, +∞), v ∈ R+, ρA = ρ + v is the correl<strong>at</strong>ion coefficient conditioned on Y<br />

larger than v:<br />

ρ + v =<br />

<br />

ρ 2 +<br />

ρ<br />

1−ρ 2<br />

Var(Y | Y >v)<br />

√ v<br />

πe 2 = v +<br />

v√2<br />

2 erfc<br />

1<br />

v<br />

. (A.1)<br />

We start with the calcul<strong>at</strong>ion of the first and the second moment of Y conditioned on Y larger than v:<br />

E(Y | Y > v) =<br />

√<br />

2<br />

<br />

2 1<br />

− + O<br />

v3 v5 <br />

, (A.2)<br />

E(Y 2 | Y > v) = 1 +<br />

√ 2v<br />

√ v<br />

πe 2 <br />

v√2<br />

2 erfc<br />

which allows us to obtain the variance of Y conditioned on Y larger than v:<br />

Var(Y | Y > v) = 1 +<br />

which, for large v, yields:<br />

√ 2v<br />

√ v<br />

πe 2 <br />

v√2<br />

2 erfc<br />

A.1.2 Conditioning on |Y | larger than v<br />

⎛<br />

− ⎝<br />

ρ + v ∼v→∞<br />

= v 2 + 2 − 2<br />

<br />

1<br />

+ O<br />

v2 v4 <br />

, (A.3)<br />

√ 2<br />

√ v<br />

πe 2 <br />

v√2<br />

2 erfc<br />

⎞<br />

⎠<br />

2<br />

= 1<br />

<br />

1<br />

+ O<br />

v2 v4 <br />

, (A.4)<br />

ρ 1<br />

· . (A.5)<br />

1 − ρ2 v<br />

Given a conditioning s<strong>et</strong> A = (−∞, −v] ∪ [v, +∞), v ∈ R+, ρA = ρ s v is the correl<strong>at</strong>ion coefficient<br />

conditioned on |Y | larger than v:<br />

ρ s v =<br />

<br />

ρ 2 +<br />

ρ<br />

1−ρ 2<br />

Var(Y | |Y |>v)<br />

. (A.6)<br />

The first and second moment of Y conditioned on |Y | larger than v can be easily calcul<strong>at</strong>ed:<br />

E(Y | |Y | > v) = 0, (A.7)<br />

E(Y 2 √<br />

2v<br />

| |Y | > v) = 1 +<br />

= v 2 + 2 − 2<br />

<br />

1<br />

+ O<br />

v2 v4 <br />

. (A.8)<br />

√ v<br />

πe 2 <br />

v√2<br />

2 erfc<br />

25


264 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Expression (A.8) is the same as (A.4) as it should. This gives the following conditional variance:<br />

Var(Y | |Y | > v) = 1 +<br />

√<br />

2v<br />

<br />

1<br />

v2 <br />

, (A.9)<br />

and finally yields, for large v,<br />

A.1.3 Intuitive meaning<br />

ρ s v ∼v→∞<br />

ρ<br />

<br />

ρ 2 + 1−ρ2<br />

2+v 2<br />

√ v<br />

πe 2 = v<br />

v√2<br />

2 erfc<br />

2 + 2 + O<br />

∼v→∞ 1 − 1<br />

2<br />

1 − ρ 2<br />

ρ 2<br />

1<br />

. (A.10)<br />

v2 L<strong>et</strong> us provi<strong>de</strong> an intuitive explan<strong>at</strong>ion (see also (Longin and Solnik 2001)). As seen from (A.1), ρ + v is<br />

controlled by the <strong>de</strong>pen<strong>de</strong>nce Var(Y | Y > v) ∝ 1/v 2 <strong>de</strong>rived in Appendix A.1.1. In contrast, as seen from<br />

(A.6), ρ s v is controlled by Var(Y | |Y | > v) ∝ v 2 given in Appendix A.1.2. The difference b<strong>et</strong>ween ρ + v and<br />

ρ s v can thus be traced back to th<strong>at</strong> b<strong>et</strong>ween Var(Y | Y > v) ∝ 1/v 2 and Var(Y | |Y | > v) ∝ v 2 for large v.<br />

This results from the following effect. For Y > v, one can picture the possible realiz<strong>at</strong>ions of Y as those of<br />

a random particle on the line, which is strongly <strong>at</strong>tracted to the origin by a spring (the Gaussian distribution<br />

th<strong>at</strong> prevents Y from performing significant fluctu<strong>at</strong>ions beyond a few standard <strong>de</strong>vi<strong>at</strong>ions) while being<br />

forced to be on the right to a wall <strong>at</strong> Y = v. It is clear th<strong>at</strong> the fluctu<strong>at</strong>ions of the position of this particle<br />

are very small as it is strongly glued to the unpen<strong>et</strong>rable wall by the restoring spring, hence the result<br />

Var(Y | Y > v) ∝ 1/v 2 . In constrast, for the condition |Y | > v, by the same argument, the fluctu<strong>at</strong>ions<br />

of the particle are hin<strong>de</strong>red to be very close to |Y | = v, i.e., very close to Y = +v or Y = −v. Thus, the<br />

fluctu<strong>at</strong>ions of Y typically flip from −v to +v and vice-versa. It is thus not surprising to find Var(Y | |Y | ><br />

v) ∝ v 2 .<br />

This argument makes intuitive the results Var(Y | Y > v) ∝ 1/v2 and Var(Y | |Y | > v) ∝ v2 for large<br />

v and thus the results for ρ + v and for ρs v if we use (A.1) and (A.6). We now <strong>at</strong>tempt to justify ρ + v ∼v→∞ 1<br />

v<br />

and 1 − ρs v ∼v→∞ 1/v2 directly by the following intuitive argument. Using the picture of particles, X<br />

and Y can be visualized as the positions of two particles which fluctu<strong>at</strong>e randomly. Their joint bivari<strong>at</strong>e<br />

Gaussian distribution with non-zero unconditional correl<strong>at</strong>ion amounts to the existence of a spring th<strong>at</strong> ties<br />

them tog<strong>et</strong>her. Their Gaussian marginals also exert a spring-like force <strong>at</strong>taching them to the origin. When<br />

Y > v, the X-particle is teared off b<strong>et</strong>ween two extremes, b<strong>et</strong>ween 0 and v. When the unconditional<br />

correl<strong>at</strong>ion ρ is less than 1, the spring <strong>at</strong>tracting to the origin is stronger than the spring <strong>at</strong>tracting to the<br />

wall <strong>at</strong> v. The particle X thus un<strong>de</strong>rgoes tiny fluctu<strong>at</strong>ions around the origin th<strong>at</strong> are rel<strong>at</strong>ively less and less<br />

<strong>at</strong>tracted by the Y -particle, hence the result ρ + v ∼v→∞ 1<br />

v → 0. In constrast, for |Y | > v, notwithstanding<br />

the still strong <strong>at</strong>traction of the X-particle to the origin, it can follow the sign of the Y -particle without<br />

paying too much cost in m<strong>at</strong>ching its amplitu<strong>de</strong> |v|. Rel<strong>at</strong>ively tiny fluctu<strong>at</strong>ion of the X-particle but of the<br />

same sign as Y ≈ ±v will result in a strong ρs v, thus justifying th<strong>at</strong> ρs v → 1 for v → +∞.<br />

A.2 Conditioning on both X and Y larger than u<br />

By <strong>de</strong>finition, the conditional correl<strong>at</strong>ion coefficient ρu, conditioned on both X and Y larger than u, is<br />

ρu =<br />

=<br />

Cov[X, Y | X > u, Y > u]<br />

Var[X | X > u, Y > u] Var[Y | X > u, Y > u] , (A.11)<br />

m11 − m10 · m01<br />

√<br />

m20 − m10 2√ , (A.12)<br />

m02 − m01<br />

2<br />

26


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 265<br />

where mij <strong>de</strong>notes E[X i · Y j | X > u, Y > u].<br />

Using the proposition A.1 of (Ang and Chen 2001) or the expressions in (Johnson and Kotz 1972, p 113),<br />

we can assert th<strong>at</strong><br />

m10 L(u, u; ρ) =<br />

<br />

1 − ρ<br />

(1 + ρ) φ(u) 1 − Φ<br />

1 + ρ u<br />

m20 L(u, u; ρ) =<br />

<br />

, (A.13)<br />

(1 + ρ 2 <br />

1 − ρ<br />

) u φ(u) 1 − Φ<br />

1 + ρ u<br />

<br />

+ ρ 1 − ρ2 <br />

2<br />

√ φ<br />

2π 1 + ρ u<br />

m11 L(u, u; ρ) =<br />

<br />

+ L(u, u; ρ),(A.14)<br />

<br />

1 − ρ<br />

2ρ u φ(u) 1 − Φ<br />

1 + ρ u<br />

<br />

1 − ρ2 2<br />

+ √ φ<br />

2π 1 + ρ u<br />

<br />

+ ρ L(u, u; ρ) , (A.15)<br />

where L(·, ·; ·) <strong>de</strong>notes the bivari<strong>at</strong>e Gaussian survival (or complementary cumul<strong>at</strong>ive) distribution:<br />

1<br />

L(h, k; ρ) =<br />

2π 1 − ρ2 ∞ ∞ <br />

dx dy exp −<br />

h k<br />

1 x<br />

2<br />

2 − 2ρxy + y2 1 − ρ2 <br />

, (A.16)<br />

φ(·) is the Gaussian <strong>de</strong>nsity:<br />

and Φ(·) is the cumul<strong>at</strong>ive Gaussian distribution:<br />

A.2.1 Asymptotic behavior of L(u, u; ρ)<br />

φ(x) = 1 x2<br />

− √ e 2 , (A.17)<br />

2π<br />

Φ(x) =<br />

x<br />

−∞<br />

We focus on the asymptotic behavior of<br />

1<br />

L(u, u; ρ) =<br />

2π 1 − ρ2 ∞ ∞<br />

dx<br />

u u<br />

du φ(u). (A.18)<br />

<br />

dy exp − 1<br />

2<br />

x 2 − 2ρxy + y 2<br />

1 − ρ 2<br />

for large u. Performing the change of variables x ′ = x − u and y ′ = y − u, we can write<br />

u2<br />

e− 1+ρ<br />

L(u, u; ρ) =<br />

2π 1 − ρ2 ∞<br />

dx<br />

0<br />

′<br />

∞<br />

0<br />

dy ′ <br />

exp −u x′ + y ′ <br />

1 + ρ<br />

<br />

exp − 1<br />

2<br />

x ′2 − 2ρx ′ y ′ + y ′2<br />

1 − ρ 2<br />

<br />

, (A.19)<br />

<br />

. (A.20)<br />

Using the fact th<strong>at</strong><br />

<br />

exp − 1 x<br />

2<br />

′2 − 2ρx ′ y ′ + y ′2<br />

1 − ρ2 <br />

= 1− x′2 − 2ρx ′ y ′ + y ′2<br />

2(1 − ρ2 +<br />

)<br />

(x′2 − 2ρx ′ y ′ + y ′2 ) 2<br />

8(1 − ρ2 ) 2 − (x′2 − 2ρx ′ y ′ + y ′2 ) 3<br />

48(1 − ρ2 ) 3 +· · · ,<br />

(A.21)<br />

and applying theorem 3.1.1 in (Jensen 1995, p 58) (Laplace’s m<strong>et</strong>hod), equ<strong>at</strong>ions (A.20) and (A.21) yield<br />

and<br />

(1 + ρ)2<br />

L(u, u; ρ) =<br />

2π 1 − ρ<br />

u2<br />

e− 1+ρ<br />

·<br />

2<br />

1/L(u, u; ρ) = 2π u2 1 − ρ 2<br />

(1 + ρ) 2<br />

u 2<br />

<br />

(2 − ρ)(1 + ρ)<br />

1 − ·<br />

1 − ρ<br />

1<br />

u2 + (2ρ2 − 6ρ + 7)(1 + ρ) 2<br />

(1 − ρ) 2<br />

−3 (12 − 13ρ + 8ρ2 − 2ρ 3 )(1 + ρ) 3<br />

(1 − ρ) 3<br />

· e u2<br />

<br />

(2 − ρ)(1 + ρ)<br />

1+ρ 1 + ·<br />

1 − ρ<br />

1<br />

+ (16 − 13ρ + 10ρ2 − 3ρ 3 )(1 + ρ) 3<br />

(1 − ρ) 3<br />

27<br />

· 1<br />

u4 · 1<br />

<br />

1<br />

+ O<br />

u6 u8 <br />

, (A.22)<br />

u2 − 3 − 2ρ + ρ2 )(1 + ρ) 2<br />

(1 − ρ) 2<br />

· 1<br />

u4 · 1<br />

<br />

1<br />

+ O<br />

u6 u8 <br />

. (A.23)


266 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

A.2.2 Asymptotic behavior of the first moment m10<br />

The first moment m10 = E[X | X > u, Y > u] is given by (A.13). For large u,<br />

<br />

1 − ρ<br />

1 − Φ<br />

1 + ρ u<br />

<br />

= 1<br />

2 erfc<br />

<br />

1 − ρ<br />

2(1 + ρ) u<br />

<br />

=<br />

<br />

1 + ρ<br />

1 − ρ<br />

<br />

1 + ρ<br />

−15<br />

1 − ρ<br />

1−ρ<br />

−<br />

e 2(1+ρ) u2<br />

√<br />

2π u<br />

3<br />

(A.24)<br />

<br />

2 1 + ρ 1 1 + ρ<br />

1 − · + 3 ·<br />

1 − ρ u2 1 − ρ<br />

1<br />

u4 · 1<br />

<br />

1<br />

+ O<br />

u6 u8 , (A.25)<br />

so th<strong>at</strong> multiplying by (1 + ρ) φ(u), we obtain<br />

u2 <br />

− <br />

(1 + ρ)2 e 1+ρ<br />

2<br />

1 + ρ 1 1 + ρ<br />

m10 L(u, u; ρ) = 1 − · + 3 ·<br />

1 − ρ2 2π u 1 − ρ u2 1 − ρ<br />

1<br />

3 1 + ρ<br />

− 15 ·<br />

u4 1 − ρ<br />

1<br />

<br />

1<br />

+ O<br />

u6 u8 .<br />

(A.26)<br />

Using the result given by equ<strong>at</strong>ion (A.22), we can conclu<strong>de</strong> th<strong>at</strong><br />

m10 = u + (1 + ρ) · 1<br />

u − (1 + ρ)2 (2 − ρ)<br />

·<br />

(1 − ρ)<br />

1<br />

u3 + (10 − 8ρ + 3ρ2 )(1 + ρ) 3<br />

(1 − ρ) 2<br />

In the sequel, we will also need the behavior of m10 2 :<br />

m10 2 = u 2 + 2 (1 + ρ) − (1 + ρ)2 (3 − ρ)<br />

(1 − ρ)<br />

A.2.3 Asymptotic behavior of the second moment m20<br />

· 1<br />

u2 + 2(8 − 5ρ + 2ρ2 )(1 + ρ) 3<br />

(1 − ρ) 2<br />

· 1<br />

<br />

1<br />

+ O<br />

u5 u7 <br />

. (A.27)<br />

· 1<br />

<br />

1<br />

+ O<br />

u4 u6 <br />

. (A.28)<br />

The second moment m20 = E[X2 | X > u, Y > u] is given by expression (A.14). The first term in the<br />

right hand si<strong>de</strong> of (A.14) yields<br />

(1 + ρ 2 <br />

1 − ρ<br />

) u φ(u) 1 − Φ<br />

1 + ρ u<br />

<br />

= (1 + ρ 2 u2 <br />

− <br />

1 + ρ e 1+ρ<br />

2<br />

1 + ρ 1 1 + ρ<br />

)<br />

1 − · + 3 ·<br />

1 − ρ 2π 1 − ρ u2 1 − ρ<br />

1<br />

u4 3 1 + ρ<br />

−15 ·<br />

1 − ρ<br />

1<br />

<br />

1<br />

+ O<br />

u6 u8 (A.29) ,<br />

while the second term gives<br />

ρ 1 − ρ 2<br />

√ 2π<br />

<br />

2<br />

φ<br />

1 + ρ u<br />

<br />

= ρ 1 − ρ<br />

2 e− u2<br />

1+ρ<br />

2π<br />

. (A.30)<br />

Putting these two expressions tog<strong>et</strong>her and factorizing the term (1 + ρ)/(1 + ρ 2 ) allows us to obtain<br />

m20 L(u, u; ρ) =<br />

(1 + ρ)2<br />

1 − ρ 2<br />

u2<br />

−<br />

e 1+ρ<br />

2π<br />

<br />

1 + ρ2 1<br />

1 − ·<br />

1 − ρ<br />

−15 (1 + ρ2 )(1 + ρ) 2<br />

(1 − ρ) 3<br />

28<br />

u2 + 3(1 + ρ2 )(1 + ρ)<br />

(1 − ρ) 2<br />

· 1<br />

+ O<br />

u6 1<br />

u 8<br />

· 1<br />

u 4<br />

<br />

+ L(u, u; ρ) , (A.31)


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 267<br />

which finally yields<br />

m20 = u 2 (1 + ρ)2 1<br />

+ 2 (1 + ρ) − 2 ·<br />

1 − ρ u2 + 2(5 + 4ρ + ρ3 )(1 + ρ) 2<br />

(1 − ρ) 2<br />

<br />

1 1<br />

+ O<br />

u4 u6 <br />

. (A.32)<br />

A.2.4 Asymptotic behavior of the cross moment m11<br />

The cross moment m11 = E[X · Y | X > u, Y > u] is given by expression (A.15). The first and second<br />

terms in the right hand si<strong>de</strong> of (A.15) respectively give<br />

2ρ u φ(u)[1 − Φ(u)] = 2ρ<br />

1 − ρ 2<br />

√ 2π<br />

1 + ρ<br />

1 − ρ<br />

which, after factoriz<strong>at</strong>ion by (1 + ρ)/ρ, yields<br />

and finally<br />

m11 L(u, u; ρ) =<br />

(1 + ρ)2<br />

1 − ρ 2<br />

u2<br />

−<br />

e 1+ρ<br />

2π<br />

<br />

2 1 + ρ 1 1 + ρ<br />

1 − · + 3 ·<br />

1 − ρ u2 1 − ρ<br />

1<br />

u4 3 1 + ρ<br />

−15 ·<br />

1 − ρ<br />

1<br />

<br />

1<br />

+ O<br />

u6 u8 , (A.33)<br />

<br />

2<br />

φ<br />

1 + ρ u<br />

<br />

= 1 − ρ<br />

−30<br />

m11 = u 2 + 2 (1 + ρ) − (1 + ρ)2 (3 − ρ)<br />

(1 − ρ)<br />

u2<br />

−<br />

e 1+ρ<br />

2π<br />

<br />

ρ<br />

1 − 2<br />

1 − ρ<br />

ρ(1 + ρ)2 1<br />

·<br />

(1 − ρ) 3 u<br />

A.2.5 Asymptotic behavior of the correl<strong>at</strong>ion coefficient<br />

6 + O<br />

2 e− u2<br />

1+ρ<br />

2π<br />

· 1<br />

u2 + (16 − 9ρ + 3ρ2 )(1 + ρ) 3<br />

(1 − ρ) 2<br />

, (A.34)<br />

1 ρ(1 + ρ) 1<br />

· + 6 ·<br />

u2 (1 − ρ) 2 u4 <br />

1<br />

u8 <br />

+ ρ L(u, u; ρ), (A.35)<br />

· 1<br />

<br />

1<br />

+ O<br />

u4 u6 <br />

. (A.36)<br />

The conditional correl<strong>at</strong>ion coefficient conditioned on both X and Y larger than u is <strong>de</strong>fined by (A.12).<br />

Using the symm<strong>et</strong>ry b<strong>et</strong>ween X and Y , we have m10 = m01 and m20 = m02, which allows us to rewrite<br />

(A.12) as follows<br />

ρu = m11 − m10 2<br />

. (A.37)<br />

m20 − m10<br />

2<br />

Putting tog<strong>et</strong>her the previous results, we have<br />

which proves th<strong>at</strong><br />

m20 − m10 2 =<br />

m11 − m10 2 = ρ<br />

ρu = ρ<br />

(1 + ρ)2<br />

u 2<br />

(1 + ρ)3<br />

1 − ρ<br />

1 + ρ<br />

1 − ρ<br />

− 2 (4 − ρ + 3ρ2 + 3ρ3 )(1 + ρ) 2<br />

·<br />

1 − ρ<br />

1<br />

<br />

1<br />

+ O<br />

u4 u6 <br />

, (A.38)<br />

<br />

1 1<br />

· + O<br />

u4 u6 <br />

, (A.39)<br />

<br />

1 1<br />

· + O<br />

u2 u4 <br />

29<br />

and ρ ∈ [−1, 1). (A.40)


268 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

B Conditional correl<strong>at</strong>ion coefficient for Stu<strong>de</strong>nt’s variables<br />

B.1 Proposition<br />

L<strong>et</strong> us consi<strong>de</strong>r a pair of Stu<strong>de</strong>nt’s random variables (X, Y ) with ν <strong>de</strong>grees of freedom and unconditional<br />

correl<strong>at</strong>ion coefficient ρ. L<strong>et</strong> A be a subs<strong>et</strong> of R such th<strong>at</strong> Pr{Y ∈ A} > 0. The correl<strong>at</strong>ion coefficient of<br />

(X, Y ), conditioned on Y ∈ A <strong>de</strong>fined by<br />

can be expressed as<br />

with<br />

and<br />

⎡<br />

ρA =<br />

Cov(X, Y | Y ∈ A)<br />

Var(X | Y ∈ A) Var(Y | Y ∈ A) . (B.41)<br />

ρA =<br />

⎢ν<br />

− 1<br />

Var(Y | Y ∈ A) = ν ⎣<br />

ν − 2 ·<br />

ρ<br />

<br />

ρ 2 + E[E(x2 | Y )−ρ 2 Y 2 | Y ∈A]<br />

Var(Y | Y ∈A)<br />

<br />

ν Pr ν−2 Y ∈ A | ν − 2<br />

Pr{Y ∈ A | ν}<br />

E[E(X 2 | Y ) − ρ 2 Y 2 | Y ∈ A] = (1 − ρ 2 )<br />

B.2 Proof of the proposition<br />

ν<br />

ν − 2 ·<br />

<br />

ν Pr ν−2<br />

, (B.42)<br />

⎤<br />

<br />

2 ⎥ dy y · ty(y)<br />

y∈A<br />

− 1⎦<br />

−<br />

, (B.43)<br />

Pr{Y ∈ A | ν}<br />

<br />

Y ∈ A | ν − 2<br />

Pr{Y ∈ A | ν}<br />

. (B.44)<br />

L<strong>et</strong> the variables X and Y have a multivari<strong>at</strong>e Stu<strong>de</strong>nt’s distribution with ν <strong>de</strong>grees of freedom and a<br />

correl<strong>at</strong>ion coefficient ρ :<br />

PXY (x, y) =<br />

=<br />

Γ <br />

ν+2<br />

2<br />

νπ Γ <br />

ν+1<br />

2 1 − ρ2 <br />

ν + 1<br />

ν + y2 1/2 <br />

1 + x2 − 2ρxy + y 2<br />

ν (1 − ρ 2 )<br />

1<br />

<br />

1 − ρ2 tν(y)<br />

ν + 1<br />

· tν+1<br />

ν + y2 where tν(·) <strong>de</strong>notes the univari<strong>at</strong>e Stu<strong>de</strong>nt’s <strong>de</strong>nsity with ν <strong>de</strong>grees of freedom<br />

tν(x) =<br />

Γ <br />

ν+1<br />

2<br />

Γ <br />

ν<br />

2 (νπ) 1/2 ·<br />

1<br />

<br />

1 + x2<br />

Cν<br />

ν+1 = <br />

2<br />

ν 1 + x2<br />

ν<br />

L<strong>et</strong> us evalu<strong>at</strong>e Cov(X, Y | Y ∈ A):<br />

− ν+2<br />

2<br />

, (B.45)<br />

<br />

1/2<br />

x − ρy<br />

, (B.46)<br />

1 − ρ2 ν+1<br />

2<br />

. (B.47)<br />

Cov(X, Y | Y ∈ A) = E(X · Y | Y ∈ A) − E(X | Y ∈ A) · E(Y | Y ∈ A), (B.48)<br />

= E(E(X | Y ) · Y | Y ∈ A) − E(E(X | Y ) | Y ∈ A) · E(Y | Y ∈ A).(B.49)<br />

As it can be seen in equ<strong>at</strong>ion (B.46), E(X | Y ) = ρY , which gives<br />

Cov(X, Y | Y ∈ A) = ρ · E(Y 2 | Y ∈ A) − ρ · E(Y | Y ∈ A) 2 , (B.50)<br />

= ρ · Var(Y | Y ∈ A). (B.51)<br />

30


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 269<br />

Thus, we have<br />

<br />

ρA = ρ<br />

Var(Y | Y ∈ A)<br />

.<br />

Var(X | Y ∈ A)<br />

(B.52)<br />

Using the same m<strong>et</strong>hod as for the calcul<strong>at</strong>ion of Cov(X, Y | Y ∈ A), we find<br />

which yields<br />

as asserted in (B.42).<br />

Var(X | Y ∈ A) = E[E(X 2 | Y ) | Y ∈ A)] − E[E(X | Y ) | Y ∈ A)] 2 , (B.53)<br />

= E[E(X 2 | Y ) | Y ∈ A)] − ρ 2 · E[Y | Y ∈ A] 2 , (B.54)<br />

= E[E(X 2 | Y ) − ρ 2 Y 2 | Y ∈ A)] − ρ 2 · Var[Y | Y ∈ A], (B.55)<br />

ρA =<br />

<br />

ρ<br />

ρ 2 + E[E(x2 | Y )−ρ 2 Y 2 | Y ∈A]<br />

Var(Y | Y ∈A)<br />

(B.56)<br />

, (B.57)<br />

To go one step further, we have to evalu<strong>at</strong>e the three terms E(Y | Y ∈ A), E(Y 2 | Y ∈ A), and<br />

E[E(X 2 | Y ) | Y ∈ A].<br />

The first one is trivial to calcul<strong>at</strong>e :<br />

<br />

y∈A dy y · ty(y)<br />

E(Y | Y ∈ A) =<br />

. (B.58)<br />

Pr{Y ∈ A | ν}<br />

The second one gives<br />

so th<strong>at</strong><br />

<br />

y∈A dy y2 · ty(y)<br />

E(Y 2 | Y ∈ A) =<br />

, (B.59)<br />

Pr{Y ∈ A | ν}<br />

⎡<br />

⎢ν<br />

− 1<br />

= ν ⎣<br />

ν − 2 ·<br />

⎤<br />

ν Pr ν−2 Y ∈ A | ν − 2<br />

⎥<br />

− 1⎦<br />

, (B.60)<br />

Pr{Y ∈ A | ν}<br />

⎡<br />

⎢ν<br />

− 1<br />

Var(Y | Y ∈ A) = ν ⎣<br />

ν − 2 ·<br />

<br />

ν Pr ν−2 Y ∈ A | ν − 2<br />

Pr{Y ∈ A | ν}<br />

⎤<br />

<br />

2 ⎥ y∈A dy y · ty(y)<br />

− 1⎦<br />

−<br />

. (B.61)<br />

Pr{Y ∈ A | ν}<br />

To calcul<strong>at</strong>e the third term, we first need to evalu<strong>at</strong>e E(X2 | Y ). Using equ<strong>at</strong>ion (B.46) and the results given<br />

in (Abramovitz and Stegun 1972), we find<br />

which yields<br />

E(X 2 | Y ) =<br />

= ν + y2<br />

<br />

dx<br />

<br />

ν + 1<br />

ν + y2 1/2 x2 ν + 1<br />

· tν+1<br />

1 − ρ2 ν + y2 <br />

1/2<br />

x − ρy<br />

, (B.62)<br />

1 − ρ2 ν − 1 (1 − ρ2 ) − ρ 2 y 2 , (B.63)<br />

E[E(X 2 | Y ) − ρ 2 Y 2 | Y ∈ A] = ν<br />

ν − 1 (1 − ρ2 1 − ρ2<br />

) +<br />

ν − 1 E[Y 2 | Y ∈ A] , (B.64)<br />

31


270 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

and applying the result given in eq<strong>at</strong>ion (B.60), we finally obtain<br />

E[E(X 2 | Y ) − ρ 2 Y 2 | Y ∈ A] = (1 − ρ 2 )<br />

which conclu<strong>de</strong>s the proof.<br />

B.3 Conditioning on Y larger than v<br />

The conditioning s<strong>et</strong> is A = [v, +∞), thus<br />

Pr{Y ∈ A | ν} = ¯ Tν(v) = ν ν−1<br />

2<br />

y∈A<br />

Cν<br />

ν<br />

ν − 2 ·<br />

Pr<br />

+ O<br />

vν <br />

ν<br />

Pr Y ∈ A | ν − p =<br />

ν − p ¯ <br />

ν − p<br />

Tν−p v =<br />

ν<br />

ν ν−p<br />

2<br />

<br />

<br />

ν<br />

dy y · ty(y) =<br />

ν − 2 tν−2<br />

<br />

ν − 2<br />

v =<br />

ν<br />

ν ν<br />

<br />

ν<br />

ν−2 Y ∈ A | ν − 2<br />

Pr{Y ∈ A | ν}<br />

, (B.65)<br />

<br />

v −(ν+2)<br />

, (B.66)<br />

(ν − p) 1<br />

2<br />

<br />

Cν−p<br />

+ O v<br />

vν−p −(ν−p+2)<br />

, (B.67)<br />

2<br />

√ ν − 2<br />

<br />

Cν−2<br />

+ O<br />

vν−1 v −(ν−3)<br />

(B.68) ,<br />

where tν(·) and ¯ Tν(·) <strong>de</strong>note respectively the <strong>de</strong>nsity and the Stu<strong>de</strong>nt’s survival distribution with ν <strong>de</strong>grees<br />

of freedom and Cν is <strong>de</strong>fined in (B.47).<br />

Using equ<strong>at</strong>ion (B.42), one can thus give the exact expression of ρ + v . Since it is very cumbersomme, we will<br />

not write it explicitely. We will only give the asymptotic expression of ρ + v . In this respect, we can show th<strong>at</strong><br />

Thus, for large v,<br />

Var(Y | Y ∈ A) =<br />

E[E(X 2 | Y ) − ρ 2 Y 2 | Y ∈ A] =<br />

B.4 Conditioning on |Y | larger than v<br />

ν<br />

(ν − 2)(ν − 1) 2 v2 + O(1) (B.69)<br />

<br />

ν 1 − ρ<br />

ν − 2<br />

2<br />

ν − 1 v2 + O(1) . (B.70)<br />

ρ + ρ<br />

v −→ <br />

ρ2 <br />

ν−2<br />

+ (ν − 1) ν (1 − ρ2 . (B.71)<br />

)<br />

The conditioning s<strong>et</strong> is now A = (−∞, −v]∪[v, +∞), with v ∈ R+. Thus, the right hand si<strong>de</strong>s of equ<strong>at</strong>ions<br />

(B.66) and (B.67) have to be multiplied by two while<br />

<br />

dy y · ty(y) = 0, (B.72)<br />

y∈A<br />

for symm<strong>et</strong>ry reasons. So the equ<strong>at</strong>ion (B.70) still holds while<br />

Thus, for large v,<br />

Var(Y | Y ∈ A) =<br />

ρ s v −→<br />

<br />

ν<br />

(ν − 2) v2 + O(1) . (B.73)<br />

ρ<br />

ρ2 + 1<br />

<br />

ν−2<br />

(ν−1) ν (1 − ρ2 )<br />

32<br />

. (B.74)


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 271<br />

B.5 Conditioning on Y > v versus on |Y | > v<br />

The results (B.71) and (B.74) are valid for ν > 2, as one can expect since the second moment has to<br />

exist for the correl<strong>at</strong>ion coefficient to be <strong>de</strong>fined. We remark th<strong>at</strong> here, contrarily to the Gaussian case, the<br />

conditioning s<strong>et</strong> is not really important. In<strong>de</strong>ed with both conditioning s<strong>et</strong>, ρ + v and ρ s v goes to a constant<br />

different from zero and one, when v goes to infinity. This striking difference can be explained by the large<br />

fluctu<strong>at</strong>ions allowed by the Stu<strong>de</strong>nt’s distribution, and can be rel<strong>at</strong>ed to the fact th<strong>at</strong> the coefficient of tail<br />

<strong>de</strong>pen<strong>de</strong>nce for this distribution does not vanish even though the variables are anti-correl<strong>at</strong>ed (see section<br />

3.2 below).<br />

Contrarily to the Gaussian distribution which binds the fluctu<strong>at</strong>ions of the variables near the origin, the Stu<strong>de</strong>nt’s<br />

distribution allows for ‘wild’ fluctu<strong>at</strong>ions. These properties are thus responsible for the result th<strong>at</strong>,<br />

contrarily to the Gaussian case for which the conditional correl<strong>at</strong>ion coefficient goes to zero when conditioned<br />

on large signed values and goes to one when conditioned on large unsigned values, the conditional<br />

correl<strong>at</strong>ion coefficient for Stu<strong>de</strong>nt’s variables have a similar behavior in both cases. Intuitively, the large<br />

fluctu<strong>at</strong>ions of X for large v domin<strong>at</strong>e and control the asymptotic <strong>de</strong>pen<strong>de</strong>nce.<br />

33


272 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

C Proof of equ<strong>at</strong>ion (9)<br />

We assume th<strong>at</strong> X and Y are rel<strong>at</strong>ed by the equ<strong>at</strong>ion<br />

X = αY + ɛ , (C.75)<br />

where α is a non random real coefficient and ɛ an idiosyncr<strong>at</strong>ic noise in<strong>de</strong>pen<strong>de</strong>nt of Y , whose distribution<br />

is assumed to admit a moment of second or<strong>de</strong>r σ 2 ɛ . L<strong>et</strong> us also <strong>de</strong>note by σ 2 y the second moment of the<br />

variable Y .<br />

We have<br />

Cov(X, Y | Y ∈ A) = Cov(αY + ɛ, Y | Y ∈ A), (C.76)<br />

since Y and ɛ are in<strong>de</strong>pen<strong>de</strong>nt. We have also<br />

= αVar(Y | Y ∈ A) + Cov(ɛ, Y | Y ∈ A), (C.77)<br />

= αVar(Y | Y ∈ A), (C.78)<br />

Var(X | Y ∈ A) = = α 2 Var(Y | Y ∈ A) + 2 Cov(ɛ, Y | Y ∈ A) + Var(ɛ | Y ∈ A), (C.79)<br />

= α 2 Var(Y | Y ∈ A) + σ 2 ɛ , (C.80)<br />

where, again, we have used the in<strong>de</strong>pen<strong>de</strong>nce of Y and ɛ. This allows us to write<br />

Since<br />

we finally obtain<br />

which conclu<strong>de</strong> the proof.<br />

ρA =<br />

=<br />

αVar(Y | Y ∈ A)<br />

, (C.81)<br />

Var(Y | Y ∈ A)(α2Var(Y | Y ∈ A) + σ2 ɛ )<br />

sgn(α)<br />

<br />

1 + σ2 ɛ<br />

α2 1 · Var(Y | Y ∈A)<br />

ρA =<br />

ρ =<br />

sgn(α)<br />

<br />

1 + σ2 ɛ<br />

α 2 · 1<br />

Var(Y )<br />

ρ<br />

<br />

ρ2 + (1 − ρ2 )<br />

34<br />

. (C.82)<br />

Var(y)<br />

Var(y | y∈A)<br />

, (C.83)<br />

, (C.84)


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 273<br />

D Conditional Spearman’s rho<br />

The conditional Spearman’s rho has been <strong>de</strong>fined by<br />

We have<br />

ρs(˜v) =<br />

Cov(U, V | V ≥ ˜v)<br />

Var(U | V ≥ ˜v)Var(V | V ≥ ˜v) , (D.85)<br />

1 1<br />

<br />

˜v 0 · dC(u, v)<br />

1 1 1<br />

E[· | V ≥ ˜v] =<br />

=<br />

dC(u, v) 1 − ˜v ˜v 0<br />

1<br />

˜v<br />

1<br />

0<br />

· dC(u, v) , (D.86)<br />

thus, performing a simple integr<strong>at</strong>ion by parts, we obtain<br />

E[U | V ≥ ˜v] = 1 + 1<br />

1<br />

du C(u, ˜v) −<br />

1 − ˜v 0<br />

1<br />

<br />

,<br />

2<br />

(D.87)<br />

E[V | V ≥ ˜v]<br />

E[U<br />

=<br />

1 + ˜v<br />

,<br />

2<br />

(D.88)<br />

2 | V ≥ ˜v] = 1 + 2<br />

1<br />

du u C(u, ˜v) −<br />

1 − ˜v<br />

1<br />

<br />

,<br />

3<br />

(D.89)<br />

which yields<br />

so th<strong>at</strong><br />

0<br />

E[V 2 | V ≥ ˜v] = ˜v2 + ˜v + 1<br />

, (D.90)<br />

3<br />

1 1<br />

1<br />

1 + ˜v 1<br />

E[U · V | V ≥ ˜v] = + dv du C(u, v) + ˜v du C(u, ˜v) −<br />

2 1 − ˜v<br />

1<br />

<br />

, (D.91)<br />

2<br />

Cov(U, V | V ≥ ˜v) =<br />

ρs(˜v) = <br />

Var(U | V ≥ ˜v) =<br />

Var(V | V ≥ ˜v) =<br />

1 − 4˜v + 24 (1 − ˜v) 1<br />

˜v<br />

0<br />

1 1<br />

1<br />

dv du C(u, v) −<br />

1 − ˜v ˜v 0<br />

1<br />

1<br />

du C(u, ˜v) −<br />

2 0<br />

1<br />

, (D.92)<br />

4<br />

1<br />

1 − 4˜v 2<br />

2˜v − 1<br />

+ du u C(u, ˜v) +<br />

12 (1 − ˜v) 2 1 − ˜v 0<br />

(1 − ˜v) 2<br />

1<br />

du C(u, ˜v)<br />

0<br />

1<br />

−<br />

(1 − ˜v) 2<br />

1<br />

2<br />

du C(u, ˜v) , (D.93)<br />

(1 − ˜v)2<br />

12<br />

0<br />

, (D.94)<br />

<br />

12 1<br />

1−˜v ˜v dv 1<br />

0 du C(u, v) − 6 1<br />

0<br />

0 du u C(u, ˜v) + 12 (2˜v − 1) 1<br />

0<br />

0<br />

du C(u, ˜v) − 3<br />

du C(u, ˜v) − 12<br />

E Tail <strong>de</strong>pen<strong>de</strong>nce gener<strong>at</strong>ed by the Stu<strong>de</strong>nt’s factor mo<strong>de</strong>l<br />

We consi<strong>de</strong>r two random variables X and Y , rel<strong>at</strong>ed by the rel<strong>at</strong>ion<br />

<br />

1<br />

2<br />

0 du C(u, ˜v)<br />

(D.95)<br />

X = αY + ɛ, (E.96)<br />

35


274 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

where ɛ is a random variable in<strong>de</strong>pen<strong>de</strong>nt of Y and α a non random positive coefficient. Assume th<strong>at</strong> Y and<br />

ɛ have a Stu<strong>de</strong>nt’s distribution with <strong>de</strong>nsity:<br />

Cν<br />

PY (y) = <br />

1 + y2<br />

ν<br />

Pɛ(ɛ) =<br />

Cν<br />

<br />

σ 1 + ɛ2<br />

ν σ2 ν+1<br />

2<br />

ν+1<br />

2<br />

, (E.97)<br />

. (E.98)<br />

We first give a general expression for the probability for X to be larger than F −1<br />

X (u) knowing th<strong>at</strong> Y is<br />

(u) :<br />

larger than F −1<br />

Y<br />

LEMMA 1<br />

The probability th<strong>at</strong> X is larger than F −1<br />

X<br />

with<br />

Pr[X > F −1<br />

−1<br />

X (u)|Y > FY (u)] = ¯ Fɛ(η) + α<br />

∞<br />

1 − u F −1<br />

Y (u)<br />

−1<br />

(u) knowing th<strong>at</strong> Y is larger than F (u) is given by :<br />

η = F −1<br />

X<br />

Y<br />

dy ¯ FY (y) · Pɛ[αF −1<br />

Y (u) + η − αy] , (E.99)<br />

−1<br />

(u) − αF (u). (E.100)<br />

The proof of this lemma relies on a simple integr<strong>at</strong>ion by part and a change of variable, which are d<strong>et</strong>ailed<br />

in appendix E.1.<br />

Introducing the not<strong>at</strong>ion<br />

we can show th<strong>at</strong><br />

η = α 1 +<br />

Y<br />

˜Yu = F −1<br />

Y (u) , (E.101)<br />

<br />

σ<br />

<br />

ν1/ν − 1 ˜Yu + O(<br />

α<br />

˜ Y −1<br />

u ), (E.102)<br />

which allows us to conclu<strong>de</strong> th<strong>at</strong> η goes to infinity as u goes to 1 (see appendix E.2 for the <strong>de</strong>riv<strong>at</strong>ion of this<br />

result). Thus, ¯ Fɛ(η) goes to zero as u goes to 1 and<br />

∞ α<br />

λ = lim dy<br />

u→1 1 − u<br />

¯ FY (y) · Pɛ(α ˜ Yu + η − αy) . (E.103)<br />

Now, using the following result :<br />

LEMMA 2<br />

Assuming ν > 0 and x0 > 1,<br />

1<br />

lim<br />

ɛ→0 ɛ<br />

∞<br />

1<br />

˜Yu<br />

dx 1<br />

x ν<br />

<br />

Cν<br />

1 + x−x0<br />

ɛ<br />

2 ν+1<br />

2<br />

whose proof is given in appendix E.3, it is straigthforward to show th<strong>at</strong><br />

The final steps of this calcul<strong>at</strong>ion are given in appendix E.4.<br />

= 1<br />

xν , (E.104)<br />

0<br />

1<br />

λ =<br />

1 + <br />

σ ν . (E.105)<br />

α<br />

36


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 275<br />

E.1 Proof of Lemma 1<br />

By <strong>de</strong>finition,<br />

Pr[X > F −1<br />

X<br />

−1<br />

(u), Y > F (u)] =<br />

L<strong>et</strong> us perform an integr<strong>at</strong>ion by part :<br />

Defining η = F −1<br />

X<br />

Pr[X > F −1<br />

−1<br />

X (u), Y > F<br />

we obtain the result given in (E.99)<br />

Y<br />

=<br />

∞<br />

F −1<br />

X (u)<br />

∞<br />

F −1<br />

Y (u)<br />

dx<br />

∞<br />

F −1<br />

Y (u)<br />

dy PY (y) · Pɛ(x − αy) (E.106)<br />

dy PY (y) · ¯ Fɛ[F −1<br />

X (u) − αy]. (E.107)<br />

Y (u)] = − ¯ FY (y) · ¯ Fɛ(F −1<br />

X (u) − αy) ∞<br />

+ α<br />

∞<br />

F −1<br />

Y (u)<br />

F −1<br />

Y<br />

(u) +<br />

dy ¯ FY (y) · Pɛ(F −1<br />

X (u) − αy) (E.108)<br />

= (1 − u) ¯ Fɛ(F −1<br />

−1<br />

(u) − αF (u)) +<br />

+ α<br />

∞<br />

F −1<br />

Y (u)<br />

−1<br />

(u) − αF (u) (see equ<strong>at</strong>ion(E.100)), and dividing each term by<br />

E.2 Deriv<strong>at</strong>ion of equ<strong>at</strong>ion (E.102)<br />

Y<br />

X<br />

Y<br />

dy ¯ FY (y) · Pɛ(F −1<br />

X (u) − αy) (E.109)<br />

Pr[Y > F −1<br />

Y (u)] = 1 − u, (E.110)<br />

The factor Y and the idiosyncr<strong>at</strong>ic noise ɛ have Stu<strong>de</strong>nt’s distributions with ν <strong>de</strong>grees of freedom given by<br />

(E.97) and (E.98) respectively. It follows th<strong>at</strong> the survival distributions of Y and ɛ are :<br />

and<br />

¯FY (y) =<br />

ν ν−1<br />

2 Cν<br />

y ν + O(y −(ν+2) ), (E.111)<br />

¯Fɛ(ɛ) = σν ν ν−1<br />

2 Cν<br />

ɛ ν + O(ɛ −(ν+2) ), (E.112)<br />

(E.113)<br />

¯FX(x) = (αν + σ ν ) ν ν−1<br />

2 Cν<br />

x ν + O(x −(ν+2) ). (E.114)<br />

Using the not<strong>at</strong>ion (E.101), equ<strong>at</strong>ion (E.100) can be rewritten as<br />

whose solution for large ˜ Yu (or equivalently as u goes to 1) is<br />

<br />

σ<br />

<br />

ν1/ν η = α 1 + − 1<br />

α<br />

¯FX(η + α ˜ Yu) = ¯ FY ( ˜ Yu) = 1 − u, (E.115)<br />

˜Yu + O( ˜ Y −1<br />

u ). (E.116)<br />

To obain this equ<strong>at</strong>ion, we have used the asymptotic expressions of ¯ FX and ¯ FY given in (E.114) and (E.111).<br />

37


276 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

E.3 Proof of lemma 2<br />

We want to prove th<strong>at</strong>, assuming ν > 0 and x0 > 1,<br />

The change of variable<br />

gives<br />

1<br />

ɛ<br />

∞<br />

1<br />

dx 1<br />

x ν<br />

1<br />

lim<br />

ɛ→0 ɛ<br />

<br />

1 + 1<br />

ν<br />

∞<br />

1<br />

Cν<br />

x−x0<br />

ɛ<br />

Consi<strong>de</strong>r the second integral. We have<br />

which allows us to write<br />

so th<strong>at</strong><br />

<br />

<br />

<br />

<br />

<br />

∞<br />

x 0<br />

ɛ<br />

du<br />

1<br />

dx 1<br />

x ν<br />

2 ν+1<br />

2<br />

1<br />

<br />

1 + 1<br />

ν<br />

u =<br />

=<br />

(1 + u2 ) ν+1<br />

2<br />

(1 + ɛu<br />

x0 )ν<br />

Cν<br />

(1 + u2 ) ν+1<br />

2<br />

The next step of the proof is to show th<strong>at</strong><br />

L<strong>et</strong> us calcul<strong>at</strong>e<br />

<br />

<br />

x0 ɛ<br />

du<br />

<br />

1−x 0<br />

ɛ<br />

1<br />

(1 + ɛu<br />

x0 )ν<br />

x 0<br />

ɛ<br />

1−x 0<br />

ɛ<br />

Cν<br />

du<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

1<br />

(1 + ɛu<br />

x0 )ν<br />

<br />

<br />

<br />

− 1<br />

=<br />

x − x0<br />

ɛ<br />

Cν<br />

x−x0<br />

ɛ<br />

∞<br />

1−x 0<br />

ɛ<br />

= 1<br />

xν ∞<br />

1−x0 0 ɛ<br />

= 1<br />

x ν 0<br />

2 ν+1<br />

2<br />

= 1<br />

xν . (E.117)<br />

0<br />

, (E.118)<br />

x 0<br />

ɛ<br />

1−x0 ɛ<br />

+ 1<br />

xν ∞<br />

x0 0 ɛ<br />

1<br />

du<br />

(ɛu + x0) ν<br />

du<br />

du<br />

du<br />

1<br />

(1 + ɛu<br />

x0 )ν<br />

1<br />

(1 + ɛu<br />

x0 )ν<br />

1<br />

(1 + ɛu<br />

x0 )ν<br />

Cν<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

Cν<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

Cν<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

Cν<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

+<br />

(E.119)<br />

(E.120)<br />

. (E.121)<br />

u ≥ x0<br />

, (E.122)<br />

ɛ<br />

<br />

<br />

<br />

<br />

<br />

≤<br />

Cν<br />

ν ν+1<br />

2 ɛ ν+1<br />

x ν+1<br />

0<br />

≤ ν ν+1<br />

2 ɛ ν+1<br />

x ν+1<br />

= ν ν+1<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

<br />

<br />

<br />

<br />

<br />

x0 ɛ<br />

0<br />

2 ɛ ν<br />

x ν 0<br />

, (E.123)<br />

∞<br />

1<br />

∞<br />

x 0<br />

ɛ<br />

du<br />

Cν<br />

(1 + ɛu<br />

x0 )ν<br />

dv Cν<br />

(1 + v) ν<br />

(E.124)<br />

(E.125)<br />

= O(ɛ ν ). (E.126)<br />

1−x 0<br />

ɛ<br />

38<br />

du<br />

−→ 1 as ɛ −→ 0. (E.127)<br />

1<br />

(1 + ɛu<br />

x0 )ν<br />

Cν<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 277<br />

∞<br />

Cν<br />

− du<br />

−∞ (1 + u2<br />

<br />

<br />

<br />

ν+1 <br />

(E.128)<br />

ν ) 2 <br />

<br />

<br />

x <br />

0<br />

ɛ 1<br />

= du<br />

1−x0 (1 +<br />

ɛ<br />

ɛu<br />

<br />

Cν<br />

− 1<br />

)ν<br />

x0 (1 + u2<br />

ν+1 −<br />

ν ) 2<br />

1−x0 ɛ Cν<br />

− du<br />

−∞ (1 + u2<br />

∞<br />

Cν<br />

ν+1 − du<br />

x<br />

ν ) 2<br />

0<br />

ɛ (1 + u2<br />

<br />

<br />

<br />

ν+1 <br />

ν ) 2 (E.129)<br />

<br />

<br />

x <br />

0<br />

ɛ 1<br />

≤ du<br />

1−x0 (1 +<br />

ɛ<br />

ɛu<br />

<br />

Cν<br />

− 1<br />

)ν<br />

x0 (1 + u2<br />

<br />

<br />

<br />

ν+1 <br />

ν ) 2 +<br />

<br />

<br />

1−x0 ɛ Cν<br />

+ du<br />

−∞ (1 + u2<br />

<br />

<br />

<br />

ν+1 <br />

ν ) 2 +<br />

<br />

<br />

∞<br />

<br />

Cν<br />

du<br />

x0 ɛ (1 + u2<br />

<br />

<br />

<br />

ν+1 <br />

ν ) 2 . (E.130)<br />

The second and third integrals obviously behave like O(ɛν ) when ɛ goes to zero since we have assumed<br />

x0<br />

→ −∞ and ɛ → ∞ when ɛ → 0. For the first integral, we have<br />

<br />

<br />

x0 ɛ<br />

<br />

<br />

<br />

1<br />

du<br />

(1 + ɛu<br />

<br />

− 1<br />

)ν<br />

x0<br />

Cν<br />

<br />

<br />

<br />

<br />

≤<br />

x0 ɛ<br />

<br />

<br />

1<br />

du <br />

(1<br />

+ ɛu<br />

<br />

<br />

<br />

− 1<br />

)ν <br />

x0<br />

Cν<br />

. (E.131)<br />

x0 > 1 wh<strong>at</strong> ensures th<strong>at</strong> 1−x0<br />

ɛ<br />

1−x 0<br />

ɛ<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

1−x 0<br />

ɛ<br />

The function <br />

<br />

1<br />

(1 + ɛu<br />

<br />

<br />

<br />

− 1<br />

)ν <br />

x0<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

(E.132)<br />

vanishes <strong>at</strong> u = 0, is convex for u ∈ [ 1−x0<br />

ɛ , 0] and concave for u ∈ [0, x0<br />

ɛ ] (see also figure 13), so th<strong>at</strong> there<br />

are two constants A, B > 0 such th<strong>at</strong><br />

<br />

<br />

1<br />

<br />

(1<br />

+ ɛu<br />

<br />

<br />

<br />

− 1<br />

)ν x0 ≤ −xν <br />

<br />

1<br />

<br />

(1<br />

+<br />

<br />

0 − 1<br />

1 − x0<br />

ɛ · u = −A · ɛ · u, ∀u ∈ , 0<br />

x0 − 1 ɛ<br />

(E.133)<br />

ɛu<br />

<br />

<br />

<br />

− 1<br />

)ν x0<br />

≤<br />

νɛ<br />

<br />

u = B · ɛ · u, ∀u ∈ 0,<br />

x0<br />

x0<br />

<br />

.<br />

ɛ<br />

(E.134)<br />

We can thus conclu<strong>de</strong> th<strong>at</strong><br />

<br />

<br />

x <br />

0<br />

ɛ 1<br />

du<br />

(1 + ɛu<br />

<br />

− 1<br />

)ν<br />

x0<br />

1−x 0<br />

ɛ<br />

Cν<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

<br />

<br />

<br />

<br />

<br />

0<br />

≤ −A · ɛ<br />

1−x0 ɛ<br />

x0 ɛ<br />

+ B · ɛ du<br />

0<br />

du<br />

u · Cν<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

u · Cν<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

(E.135)<br />

= O(ɛ α ), (E.136)<br />

with α = min{ν, 1}. In<strong>de</strong>ed, the two integrals can be perfomed exactly, which shows th<strong>at</strong> they behave as<br />

O(1) if ν > 1 and as O(ɛν−1 ) otherwise. Thus, we finally obtain<br />

<br />

<br />

x0 ɛ 1<br />

du<br />

(1 + ɛu<br />

x0 )ν<br />

<br />

<br />

Cν <br />

− 1<br />

= O(ɛα ). (E.137)<br />

1−x 0<br />

ɛ<br />

(1 + u2<br />

ν+1<br />

ν ) 2<br />

39


278 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Putting tog<strong>et</strong>her equ<strong>at</strong>ions (E.126) and (E.137) we obtain<br />

<br />

<br />

∞<br />

1<br />

dx<br />

ɛ<br />

1<br />

1<br />

xν Cν<br />

which conclu<strong>de</strong>s the proof.<br />

<br />

1 + 1<br />

ν<br />

E.4 Deriv<strong>at</strong>ion of equ<strong>at</strong>ion (E.105)<br />

From equ<strong>at</strong>ion (E.111), we can <strong>de</strong>duce<br />

¯FY (y) =<br />

Using equ<strong>at</strong>ions (E.98) and (E.102), we obtain<br />

where<br />

x−x0<br />

ɛ<br />

2 ν+1<br />

2<br />

Pɛ(α ˜ Yu + η − αy) = Pɛ(γ ˜ Yu − αy) ·<br />

− 1<br />

xν <br />

<br />

<br />

<br />

= O(ɛ<br />

0 <br />

<br />

min{ν,1} ) , (E.138)<br />

ν−1<br />

ν 2 Cν<br />

yν −2<br />

1 + O(y ) . (E.139)<br />

<br />

γ = α 1 +<br />

Putting tog<strong>et</strong>her these results yields for the leading or<strong>de</strong>r<br />

∞<br />

dy ¯ FY (y) · Pɛ(α ˜ Yu + η − αy) =<br />

˜Yu<br />

= ν ν−1<br />

<br />

1 + O( ˜ Y −2<br />

<br />

u ) , (E.140)<br />

<br />

σ<br />

ν1/ν . (E.141)<br />

α<br />

∞<br />

dy<br />

˜Yu<br />

2 Cν<br />

ν<br />

α ˜ Yu<br />

ν−1<br />

ν 2 Cν<br />

yν ·<br />

∞<br />

1<br />

<br />

σ<br />

dx 1<br />

·<br />

xν where the change of variable x = y<br />

has been performed in the last equ<strong>at</strong>ion.<br />

˜Yu<br />

Cν<br />

1 + (γ ˜ Yu−αy) 2<br />

ν σ 2<br />

<br />

1 + 1<br />

ν<br />

Cν α ˜ Yu<br />

σ<br />

x− γ<br />

α<br />

σ<br />

α ˜ Yu<br />

ν+1<br />

2<br />

2 ν+1<br />

2<br />

, (E.142)<br />

We now apply lemma 2 with x0 = γ<br />

σ<br />

α > 1 and ɛ =<br />

α ˜ which goes to zero as u goes to 1. This gives<br />

Yu<br />

which shows th<strong>at</strong><br />

thus<br />

which finally yields<br />

∞<br />

dy ¯ FY (y) · Pɛ(α ˜ Yu + η − αy) ∼u→1<br />

˜Yu<br />

Pr[X > F −1<br />

−1<br />

X (u), Y > FY (u)] ∼u→1 F −1<br />

Y ( ˜ Yu)<br />

Pr[X > F −1<br />

X<br />

−1<br />

(u)|Y > F (u)] ∼u→1<br />

λ =<br />

Y<br />

1<br />

1 + σ<br />

α<br />

40<br />

ν ν−1<br />

2 Cν<br />

α ˜ Y ν u<br />

ν α<br />

γ<br />

ν α<br />

= (1 − u)<br />

γ<br />

, (E.143)<br />

, (E.144)<br />

ν α<br />

, (E.145)<br />

γ<br />

ν α<br />

, (E.146)<br />

γ<br />

ν . (E.147)


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 279<br />

References<br />

Abramovitz, E. and I.A. Stegun, 1972, Handbook of M<strong>at</strong>hem<strong>at</strong>ical functions (Dover Public<strong>at</strong>ions, New<br />

York).<br />

An<strong>de</strong>rsen, J.V. and D. Sorn<strong>et</strong>te, 2001, Have your cake and e<strong>at</strong> it too: increasing r<strong>et</strong>urns while lowering large<br />

risks! Journal of Risk Finance 2, 70-82.<br />

Ang, A. and G. Bekaert, 2001, Intern<strong>at</strong>ional ass<strong>et</strong> alloc<strong>at</strong>ion with regime shifts, forthcoming Review of<br />

Financial Studies. .<br />

Ang, A. and J. Chen, 2001, Asymm<strong>et</strong>ric correl<strong>at</strong>ions of equity portfolios, forthcoming Journal of Financial<br />

Economics.<br />

Baig, T. and I. Golgfajn, 1998, Financial mark<strong>et</strong> contagion in the Asian crisis, IMF Working Paper.<br />

Bhansali, V. and M.B. Wise, 2001, Forecasting portfolio risk in normal and stressed mark<strong>et</strong>s, working paper<br />

(preprint <strong>at</strong> http://xxx.lanl.gov/abs/nlin.AO/0108022)<br />

Bookstaber, R., 1997, Global risk management: are we missing the point? Journal of Portfolio Management,<br />

23, 102-107.<br />

Boyer, B.H., M.S Gibson and M. Laur<strong>et</strong>an, 1997, Pitfalls in tests for changes in correl<strong>at</strong>ions, Intern<strong>at</strong>ional<br />

Finance Discussion Paper 597, Board of the Governors of the Fe<strong>de</strong>ral Reserve System.<br />

Davis, R.A., T. Mikosch and B. Basrak, 1999, Sample ACF of multivari<strong>at</strong>e stochastic recurrence equ<strong>at</strong>ions<br />

with applic<strong>at</strong>ion to GARCH, Working paper.<br />

Calvo, S. and C.M. Reinhart, 1995, Capital flows to L<strong>at</strong>in Americ: Is there evi<strong>de</strong>nce of contagion effects?,<br />

in G.A. Calvo, M. Goldstein and E. Haochreiter,eds: Priv<strong>at</strong>e Captial Flows to Emerging Mark<strong>et</strong> After<br />

the Mexican Crisis (Institue for Interno<strong>at</strong>ional Economics, Washington DC)<br />

Cizeau, P., M. Potters and J.P. Bouchaud, 2001, Correl<strong>at</strong>ion structure of extreme stock r<strong>et</strong>urns, Quantit<strong>at</strong>ive<br />

Finance 1, 217-222.<br />

Claessen, S., R.W. Dornbush and Y.C. Park, 2001, Contagion: Why crises spread and how this can be<br />

stopped, in S. Cleassens and K.J. Forbes eds, Intern<strong>at</strong>ional Financial Contagion (Kluwer Aca<strong>de</strong>mic<br />

Press).<br />

Coles, S., J. Heffernan and J. Tawn, 1999, Depen<strong>de</strong>nce measures for extreme value analyses, Extremes 2,<br />

339-365.<br />

Embrechs, P., A.J. McNeil and D. Straumann, 1999, Correl<strong>at</strong>ion : Pitfalls and Altern<strong>at</strong>ives. Risk, 69-71.<br />

Embrechts, P., A.J. McNeil and D. Straumann, 2001, Correl<strong>at</strong>ion and Depen<strong>de</strong>ncy in Risk Management :<br />

Properties and Pitfalls, in : Dempster, M., ed., Value <strong>at</strong> Risk and Beyond (Cambridge University<br />

Press).<br />

Forbes, K.J. and R. Rigobon, 2002, No contagion, only inter<strong>de</strong>pen<strong>de</strong>nce: measuring stock mark<strong>et</strong> comovements,<br />

forthcoming Journal of Finance.<br />

Frees, E. and E. Val<strong>de</strong>z, 1998, Un<strong>de</strong>rstanding Rel<strong>at</strong>ionships using copulas, North Americam Actuarial Journal<br />

2, 1-25.<br />

41


280 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Frie<strong>de</strong>n, J.A., Debt, Development, and Democracy: Mo<strong>de</strong>rn Political Economy and L<strong>at</strong>in America, 1965-<br />

1985, Princ<strong>et</strong>on University Press, 1992.<br />

J.A. Frie<strong>de</strong>n, P. Ghezzi and E. Stein, Politics and Exchange R<strong>at</strong>es: A Cross-Country Approach to L<strong>at</strong>in<br />

America, Harvard University working paper, October 2000<br />

J.A. Frie<strong>de</strong>n and E. Stein, The Political Economy of Exchange R<strong>at</strong>e Policy in L<strong>at</strong>in America: An Analytical<br />

Overview, Harvard University working paper, October 2000<br />

Hartman, P., S. Stra<strong>et</strong>mans and C.G. <strong>de</strong> Vries, 2001, Ass<strong>et</strong> mark<strong>et</strong> linkages in crisis periods, European<br />

Central Bank, Working paper n o 71.<br />

Hauksson, H.A., M.M. Dacorogna, T. Domenig, U.A. Müller and G. Samorodnitsky, 2001, Multivari<strong>at</strong>e<br />

Extremes, Aggreg<strong>at</strong>ion and Risk Estim<strong>at</strong>ion, Quantit<strong>at</strong>ive Finance 1, 79-95.<br />

Herffernan J.E., 2000, A directory of tail <strong>de</strong>pen<strong>de</strong>nce, Extremes 3, 279-290.<br />

Hult, H. and F. Lindskog, 2001, Multivari<strong>at</strong>e extremes, aggreg<strong>at</strong>ion and <strong>de</strong>pen<strong>de</strong>nce in elliptical distributions,<br />

Risklab working paper.<br />

Jensen, J.L., 1995, Saddlepoint Approxim<strong>at</strong>ions (Oxford University Press).<br />

Joe, H., 1997, Multivari<strong>at</strong>e mo<strong>de</strong>ls and <strong>de</strong>pen<strong>de</strong>nce concepts (Chapman & Hall, London)<br />

Johnson, N.L. and S. Kotz, 1972, Distributions in st<strong>at</strong>istics: Continuous multivari<strong>at</strong>e distributions (John<br />

Willey and Sons).<br />

Juri, A. and M.V. Wüthrich, 2002, Copula convergence theorem for tail events, working paper, Risklab.<br />

King, M. and S. Wadhwani, 1990, Transmission of vol<strong>at</strong>ility b<strong>et</strong>ween stock mark<strong>et</strong>s, The Review of Financial<br />

Studies 3, 5-330.<br />

Kulpa, T., 1999, On approxim<strong>at</strong>ions of copulas, intern<strong>at</strong>ional Journal of M<strong>at</strong>hem<strong>at</strong>ics and M<strong>at</strong>hem<strong>at</strong>ical<br />

sciences 22, 259-269.<br />

Ledford, A.W. and J.A. Tawn,1996 St<strong>at</strong>istics for near in<strong>de</strong>pen<strong>de</strong>nce in multivari<strong>at</strong>e extrem values,<br />

Biom<strong>et</strong>rika 83, 169-187.<br />

Ledford, A.W. and J.A. Tawn, 1998, Concomitant tail behavior for extremes, Adv. Appl. Prob. 30, 197-215.<br />

Lee, S.B. and K.J. Kim, 1993, Does the October 1987 crash strengthen the co-movements among n<strong>at</strong>ional<br />

stock mark<strong>et</strong>s?, Review of Financial Economics 3, 89-102.<br />

Li, X., P. Mikusincki and M.D. Taylor, 1998, Strong approxim<strong>at</strong>ion of copulas, Journal of M<strong>at</strong>hem<strong>et</strong>ical<br />

Analisys and Applic<strong>at</strong>ions 225, 608-623.<br />

Lindskog, F., Mo<strong>de</strong>lling Depen<strong>de</strong>nce with Copulas, Risklab working paper.<br />

Longin F. and B. Solnik, 1995, Is the correl<strong>at</strong>ion in intern<strong>at</strong>ional equity r<strong>et</strong>urns constant: 1960-1990? Journal<br />

of Intern<strong>at</strong>ional Money and Finance 14, 3-26.<br />

Longin F. and B. Solnik, 2001, Extreme Correl<strong>at</strong>ion of Intern<strong>at</strong>ional Equity Mark<strong>et</strong>s, The Journal of Finance<br />

LVI, 649-676.<br />

Lor<strong>et</strong>an, M., 2000, Evalu<strong>at</strong>ing changes in correl<strong>at</strong>ions during periods of high mark<strong>et</strong> vol<strong>at</strong>ility, Global Investor<br />

135, 65-68.<br />

42


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 281<br />

Lor<strong>et</strong>an, M. and W.B. English, 2000, Working paper 000-658, Board of Governors of the Fe<strong>de</strong>ral Reserve<br />

System<br />

Malevergne, Y. and D.Sorn<strong>et</strong>te, 2001, Testing the Gaussian copula hypothesis for financial ass<strong>et</strong>s <strong>de</strong>pen<strong>de</strong>nce,<br />

Working paper.<br />

Malevergne, Y. and D.Sorn<strong>et</strong>te, 2002, Tail <strong>de</strong>pen<strong>de</strong>nce for factor mo<strong>de</strong>ls, Working paper.<br />

Mansilla, R., 2001, Algorithmic complexity of real financial mark<strong>et</strong>s, Physica A 301, 483-492.<br />

Meerschaert, M.M. and H.P. Scheffler, 2001, Sample cross-correl<strong>at</strong>ions for moving averages with regularly<br />

varying tails, Journal of Time Series Analysis 22, 481-492.<br />

Nelsen, R.B., 1998, An Introduction to Copulas. Lectures Notes in st<strong>at</strong>istic 139 (Springer Verlag, New<br />

York).<br />

P<strong>at</strong>ton, J.A., 2001, Estim<strong>at</strong>ion of copula mo<strong>de</strong>ls for time series of possibly different lengths, U of California,<br />

Econ. Disc. Paper No. 2001-17.<br />

Poon, S.H., M. Rockinger and J. Tawn, 2001, New extreme-value <strong>de</strong>pen<strong>de</strong>nce measures and finance applic<strong>at</strong>ions,<br />

working paper.<br />

Quintos, C.E., 2001, Estim<strong>at</strong>ing tail <strong>de</strong>pen<strong>de</strong>nce and testing for contagion using tail indices, working paper.<br />

Quintos, C.E., Z.H. Fan and P.C.B. Phillips, 2001, Structural change tests in tail behaviour and the Asian<br />

crisis, Review of Economic Studies 68, 633-663.<br />

Ramchand, L. and R. Susmel, 1998, Vol<strong>at</strong>ility and cross correl<strong>at</strong>ion across major stock mark<strong>et</strong>s, Journal of<br />

Empirical Finance 5, 397-416.<br />

Ross, S., 1976, The arbitrage theory of capital ass<strong>et</strong> pricing, Journal of Economic Theory 17, 254-286.<br />

Scaill<strong>et</strong>, O. 2000, Nonparam<strong>et</strong>ric estim<strong>at</strong>ion of copulas for time series, Working paper.<br />

Sharpe, W., 1964, Capital ass<strong>et</strong>s prices: a theory of mark<strong>et</strong> equilibrium un<strong>de</strong>r conditions of risk, Journal of<br />

Finance, 19, 425-442.<br />

Silvapulle, P. and C.W.J. Granger, 2001, Large r<strong>et</strong>urns, conditional correl<strong>at</strong>ion and portfolio diversific<strong>at</strong>ion:<br />

a value-<strong>at</strong>-risk approach, Quantit<strong>at</strong>ive Finance 1, 542-551.<br />

Sorn<strong>et</strong>te, D. P. Simon<strong>et</strong>ti and J. V. An<strong>de</strong>rsen, 2000, φ q -field theory for Portfolio optimiz<strong>at</strong>ion: “f<strong>at</strong> tails” and<br />

non-linear correl<strong>at</strong>ions, Physics Report 335, 19-92.<br />

Sorn<strong>et</strong>te, D., J.V. An<strong>de</strong>rsen and P. Simon<strong>et</strong>ti, 2000, Portfolio Theory for “F<strong>at</strong> Tails”, Intern<strong>at</strong>ional Journal<br />

of Theor<strong>et</strong>ical and Applied Finance 3, 523-535.<br />

Starica, C., 1999, Multivari<strong>at</strong>e extremes for mo<strong>de</strong>ls with constant conditional correl<strong>at</strong>ions, Journal of Empirical<br />

Finance 6, 515-553.<br />

Tsui, A.K. and Q. Yu, 1999, Constant conditional correl<strong>at</strong>ion in a bivari<strong>at</strong>e GARCH mo<strong>de</strong>l: evi<strong>de</strong>nce from<br />

the stock mark<strong>et</strong>s of China, M<strong>at</strong>hem<strong>at</strong>ics and Computers in Simul<strong>at</strong>ion 48, 503-509.<br />

43


282 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Neg<strong>at</strong>ive Tail<br />

Argentina Brazil Chile Mexico<br />

Argentina - 0.28 (0.04) 0.25 (0.04) 0.25 (0.05)<br />

Brazil - 0.19 (0.03) 0.25 (0.05)<br />

Chile - 0.24 (0.07)<br />

Mexico -<br />

Positive Tail<br />

Argentina Brazil Chile Mexico<br />

Argentina - 0.21 (0.06) 0.20 (0.04) 0.22 (0.04)<br />

Brazil - 0.28 (0.04) 0.19 (0.04)<br />

Chile - 0.19 (0.03)<br />

Mexico -<br />

Table 1: Coefficients of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the four L<strong>at</strong>in American mark<strong>et</strong>s. The figure within<br />

parenthesis gives the standard <strong>de</strong>vi<strong>at</strong>ion of the estim<strong>at</strong>ed value <strong>de</strong>rived un<strong>de</strong>r the assumption of asymptotic<br />

normality of the estim<strong>at</strong>ors. Only the coefficients above the diagonal are indic<strong>at</strong>ed since they are symm<strong>et</strong>ric.<br />

44


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 283<br />

Stu<strong>de</strong>nt Hypothesis nu=3<br />

Argentina Brazil Chile Mexico<br />

Argentina - 0.24 0.25 0.27<br />

Brazil - 0.24 0.27<br />

Chile - 0.28<br />

Mexico -<br />

Table 2: Coefficients of tail <strong>de</strong>pen<strong>de</strong>nce <strong>de</strong>rived un<strong>de</strong>r the assumption of a Stu<strong>de</strong>nt’s copula with three<br />

<strong>de</strong>grees of freedom<br />

45


284 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Bivari<strong>at</strong>e Gaussian<br />

Bivari<strong>at</strong>e Stu<strong>de</strong>nt’s<br />

√ ρ 1 ·<br />

1−ρ2 v<br />

ρ<br />

ρ<br />

2 +(ν−1)ν−2<br />

(1−ρ ν<br />

2 )<br />

ρ + v ρ s v ρu<br />

(3) 1 − 1<br />

2<br />

(6)<br />

1−ρ 2<br />

ρ 2<br />

ρ<br />

ρ<br />

2 + 1<br />

(1−ρ (ν−1)ν−2<br />

ν<br />

2 )<br />

1<br />

v2 (4) ρ 1+ρ 1<br />

1−ρ · u2 (13)<br />

(7) -<br />

Gaussian Factor Mo<strong>de</strong>l same as (3) same as (4) same as (13)<br />

Stu<strong>de</strong>nt’s Factor Mo<strong>de</strong>l 1 − K<br />

v 2 (11) 1 − K<br />

v 2 (11) -<br />

Table 3: Large v and u <strong>de</strong>pen<strong>de</strong>nce of the conditional correl<strong>at</strong>ions ρ + v (signed condition), ρ s v (unsigned<br />

condition) and ρu (on both variables) for the different mo<strong>de</strong>ls studied in the present paper, <strong>de</strong>scribed in the<br />

first column. The numbers in parentheses give the equ<strong>at</strong>ion numbers from which the formulas are <strong>de</strong>rived.<br />

The factor mo<strong>de</strong>l is <strong>de</strong>fined by (8), i.e., X = αY + ɛ. ρ is the unconditional correl<strong>at</strong>ion coefficient.<br />

46


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 285<br />

ρ + v=∞ ρ s v=∞ ρu=∞ λ ¯ λ<br />

Bivari<strong>at</strong>e Gaussian 0 1 0 0 ρ<br />

Bivari<strong>at</strong>e Stu<strong>de</strong>nt’s see Table 3 see Table 3 - 2 · ¯ Tν+1<br />

√ν + 1<br />

1−ρ<br />

1+ρ<br />

Gaussian Factor Mo<strong>de</strong>l 0 1 0 0 ρ<br />

Stu<strong>de</strong>nt’s Factor Mo<strong>de</strong>l 1 1 -<br />

ρ ν<br />

ρ ν +(1−ρ 2 ) ν/2<br />

Table 4: Asymptotic values of ρ + v , ρs v and ρu for v → +∞ and u → ∞ and comparison with the tail<strong>de</strong>pen<strong>de</strong>nce<br />

λ and ¯ λ for the four mo<strong>de</strong>ls indic<strong>at</strong>ed in the first column. The factor mo<strong>de</strong>l is <strong>de</strong>fined by (8),<br />

i.e., X = αY + ɛ. ρ is the unconditional correl<strong>at</strong>ion coefficient. For the Stu<strong>de</strong>nt’s factor mo<strong>de</strong>l, Y and ɛ<br />

have centered Stu<strong>de</strong>nt’s distributions with the same number ν of <strong>de</strong>grees of freedom and their scale factors<br />

are respectively equal to 1 and σ, so th<strong>at</strong> ρ = (1 + σ2<br />

α2 ) −1/2 . For the Bivari<strong>at</strong>e Stu<strong>de</strong>nt’s distribution, we<br />

refer to Table 1 for the constant values of ρ + v=∞ and ρs v=∞.<br />

47<br />

<br />

1<br />

1


286 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

10 0<br />

10 −1<br />

10 −2<br />

10 −3<br />

10 −4<br />

10 0<br />

10 −1<br />

10 −2<br />

10 −3<br />

10 −4<br />

10 −4<br />

10 −4<br />

Argentina<br />

Brazil<br />

Chile<br />

Mexico<br />

Argentina<br />

Brazil<br />

Chile<br />

Mexico<br />

10 −3<br />

10 −3<br />

Positive Tail<br />

10 −2<br />

Neg<strong>at</strong>ive Tail<br />

10 −2<br />

Figure 1:<br />

48<br />

μ=2<br />

10 −1<br />

μ=2<br />

10 −1<br />

10 0<br />

10 0


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 287<br />

+,−<br />

ρ ,y=Brazil<br />

v<br />

+,−<br />

ρ ,y=Argentina<br />

v<br />

1<br />

0.5<br />

0<br />

−0.5<br />

Argentina−Brazil<br />

−1<br />

−5 −4 −3 −2 −1<br />

v<br />

0 1 2 3<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−4 −3 −2 −1 0<br />

v<br />

1 2 3 4<br />

Figure 2:<br />

49


288 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

s<br />

ρ ,y=Brazil<br />

v<br />

s<br />

ρ ,y=Argentina<br />

v<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Argentina−Brazil<br />

−0.2<br />

0 0.5 1 1.5 2 2.5<br />

v<br />

3 3.5 4 4.5 5<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

0 0.5 1 1.5 2<br />

v<br />

2.5 3 3.5 4<br />

Figure 3:<br />

50


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 289<br />

+,−<br />

ρ ,y=Chile<br />

v<br />

+,−<br />

ρ ,y=Brazil<br />

v<br />

1<br />

0.5<br />

0<br />

−0.5<br />

Brazil−Chile<br />

−1<br />

−4 −3 −2 −1 0<br />

v<br />

1 2 3 4<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−4 −3 −2 −1 0 1 2 3<br />

v<br />

Figure 4:<br />

51


290 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

s<br />

ρ ,y=Chile<br />

v<br />

s<br />

ρ ,y=Brazil<br />

v<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Brazil−Chile<br />

−0.2<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

v<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

0 1 2 3<br />

v<br />

4 5 6<br />

Figure 5:<br />

52


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 291<br />

+,−<br />

ρ ,y=Mexico<br />

v<br />

+,−<br />

ρ ,y=Chile<br />

v<br />

1<br />

0.5<br />

0<br />

−0.5<br />

Chile−Mexico<br />

−1<br />

−4 −3 −2 −1 0<br />

v<br />

1 2 3 4<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−4 −3 −2 −1 0<br />

v<br />

1 2 3 4<br />

Figure 6:<br />

53


292 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

s<br />

ρ ,y=Mexico<br />

v<br />

s<br />

ρ ,y=Chile<br />

v<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Chile−Mexico<br />

−0.2<br />

0 1 2 3<br />

v<br />

4 5 6<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

v<br />

Figure 7:<br />

54


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 293<br />

0.9<br />

0.9<br />

ρ=0.1<br />

ρ=0.3<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

0.8<br />

ρ=0.1<br />

ρ=0.3<br />

ρ=0.5<br />

ρ=0.7<br />

ρ=0.9<br />

0.8<br />

0.7<br />

0.7<br />

0.6<br />

0.6<br />

0.5<br />

0.5<br />

ρ s (v)<br />

ρ s (v)<br />

0.4<br />

0.4<br />

55<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0.1<br />

0.1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

v<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

v<br />

Figure 8:


294 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

+,−<br />

ρ ,y=Brazil<br />

v<br />

+,−<br />

ρ ,y=Argentina<br />

v<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

Argentina−Brazil<br />

0 0.1 0.2 0.3 0.4 0.5<br />

v<br />

0.6 0.7 0.8 0.9 1<br />

−0.4<br />

0 0.1 0.2 0.3 0.4 0.5<br />

v<br />

0.6 0.7 0.8 0.9 1<br />

Figure 9:<br />

56


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 295<br />

+,−<br />

ρ ,y=Chile<br />

v<br />

+,−<br />

ρ ,y=Brazil<br />

v<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

Brazil−Chile<br />

0 0.1 0.2 0.3 0.4 0.5<br />

v<br />

0.6 0.7 0.8 0.9 1<br />

−0.8<br />

0 0.1 0.2 0.3 0.4 0.5<br />

v<br />

0.6 0.7 0.8 0.9 1<br />

Figure 10:<br />

57


296 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

+,−<br />

ρ ,y=Mexico<br />

v<br />

+,−<br />

ρ ,y=Chile<br />

v<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

Chile−Mexico<br />

−0.2<br />

0 0.1 0.2 0.3 0.4 0.5<br />

v<br />

0.6 0.7 0.8 0.9 1<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

0 0.1 0.2 0.3 0.4 0.5<br />

v<br />

0.6 0.7 0.8 0.9 1<br />

Figure 11:<br />

58


9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 297<br />

Stu<strong>de</strong>nt’s Factor Mo<strong>de</strong>l<br />

Stu<strong>de</strong>nt’s Copula<br />

1<br />

1<br />

ν=3<br />

ν=5<br />

ν=10<br />

ν=20<br />

ν=50<br />

ν=100<br />

0.9<br />

0.9<br />

0.8<br />

ν=3<br />

ν=5<br />

ν=10<br />

ν=20<br />

ν=50<br />

ν=100<br />

0.8<br />

0.7<br />

0.7<br />

0.6<br />

0.6<br />

0.5<br />

λ<br />

0.5<br />

λ<br />

0.4<br />

0.4<br />

59<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0.1<br />

0.1<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

0<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

ρ<br />

ρ<br />

Figure 12:


298 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

0<br />

(1−x )/ε<br />

0<br />

−<br />

ν<br />

x −1<br />

0 ⋅ ε ⋅ u<br />

x −1<br />

0<br />

0<br />

u<br />

Figure 13:<br />

60<br />

ν ⋅ ε<br />

⋅ u<br />

x<br />

0<br />

x 0 /ε


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 299<br />

9.2 Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue<br />

Utilisant le cadre <strong>de</strong>s modèles à facteurs, nous étudions les co-mouvements extrêmes entre <strong>de</strong>ux actifs<br />

financiers ou entre un actif <strong>et</strong> le marché. A c<strong>et</strong>te fin, nous établissons l’expression générale du coefficient<br />

<strong>de</strong> dépendance <strong>de</strong> queue entre le marché <strong>et</strong> un actif (c’est-à-dire, la probabilité qu’un actif subisse une<br />

perte extrême, sachant que le marché a lui-même subi une perte extrême) <strong>et</strong> entre <strong>de</strong>ux actifs comme<br />

une fonction <strong>de</strong>s paramètres du modèle à facteur <strong>et</strong> <strong>de</strong>s paramètres <strong>de</strong> queue <strong>de</strong>s distributions du facteur<br />

<strong>et</strong> du bruit idiosynchr<strong>at</strong>ique. Notre formule est valable pour <strong>de</strong>s distributions marginales quelconques<br />

<strong>et</strong> ne requièrt aucune paramètris<strong>at</strong>ion <strong>de</strong> la distribution jointe du marché <strong>et</strong> <strong>de</strong>s actifs. La détermin<strong>at</strong>ion<br />

<strong>de</strong> ce paramètre extrême, qui n’est pas accessible par inférence <strong>st<strong>at</strong>istique</strong> directe, est rendue possible<br />

par la mesure <strong>de</strong> paramètres dont l’estim<strong>at</strong>ion implique une quantité signific<strong>at</strong>ive <strong>de</strong> données. Nos tests<br />

empiriques démontrent un bon accord entre le coefficient <strong>de</strong> dépendance <strong>de</strong> queue calibré <strong>et</strong> les gran<strong>de</strong>s<br />

pertes réalisées entre 1962 <strong>et</strong> 2000. Néanmoins, un biais systém<strong>at</strong>ique est détecté, suggérant l’existence<br />

d’un “ outlier” lors du krach d’octobre 1987 <strong>et</strong> pouvant inciter à penser que le modèle à un facteur<br />

(CAPM) que nous avons considéré ne suffit pas totalement à rendre compte <strong>de</strong>s propriétés extrêmes dans<br />

certaines phases critiques <strong>de</strong> marché.


300 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

How to account for extreme co-movements b<strong>et</strong>ween individual<br />

stocks and the mark<strong>et</strong> ∗<br />

Y. Malevergne 1,2 and D. Sorn<strong>et</strong>te 1,3<br />

1 Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>ière Con<strong>de</strong>nsée CNRS UMR 6622<br />

Université <strong>de</strong> Nice-Sophia Antipolis, 06108 Nice Ce<strong>de</strong>x 2, France<br />

2 Institut <strong>de</strong> Science Financière <strong>et</strong> d’Assurances - Université Lyon I<br />

43, Bd du 11 Novembre 1918, 69622 Villeurbanne Ce<strong>de</strong>x, France<br />

3 Institute of Geophysics and Plan<strong>et</strong>ary Physics and Department of Earth and Space Science<br />

University of California, Los Angeles, California 90095, USA<br />

email: Yannick.Malevergne@unice.fr and sorn<strong>et</strong>te@unice.fr<br />

fax: (33) 4 92 07 67 54<br />

August 8, 2002<br />

Abstract<br />

Using the framework of factor mo<strong>de</strong>ls, we study the extreme co-movements b<strong>et</strong>ween two<br />

stocks and b<strong>et</strong>ween a stock and the mark<strong>et</strong>. In this goal, we establish the general expression of<br />

the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the mark<strong>et</strong> and a stock (th<strong>at</strong> is, the probability th<strong>at</strong><br />

the stock incurs a large loss, assuming th<strong>at</strong> the mark<strong>et</strong> has also un<strong>de</strong>rgone a large loss) and<br />

b<strong>et</strong>ween two stocks as a function of the param<strong>et</strong>ers of the un<strong>de</strong>rlying factor mo<strong>de</strong>l and of the<br />

tail param<strong>et</strong>ers of the distributions of the factor and of the idiosyncr<strong>at</strong>ic noise of each stock.<br />

Our formula holds for arbitrary marginal distributions and in addition does not require any<br />

param<strong>et</strong>eriz<strong>at</strong>ion of the multivari<strong>at</strong>e distributions of the mark<strong>et</strong> and stocks. The d<strong>et</strong>ermin<strong>at</strong>ion<br />

of the extreme param<strong>et</strong>er, which is not accessible by a direct st<strong>at</strong>istical inference, is ma<strong>de</strong><br />

possible by the measurement of param<strong>et</strong>ers whose estim<strong>at</strong>ion involves a significant part of the<br />

d<strong>at</strong>a with sufficient st<strong>at</strong>istics. Our empirical tests find a good agreement b<strong>et</strong>ween the calibr<strong>at</strong>ion<br />

of the tail <strong>de</strong>pen<strong>de</strong>nce coefficient and the realized large losses over the period from 1962 to 2000.<br />

Nevertheless, a bias is d<strong>et</strong>ected which suggests the presence of an outlier in the form of the crash<br />

of October 1987.<br />

∗ We acknowledge helpful discussions and exchanges with C.W.G. Granger, J.P. Laurent, V. Pisarenko, R. Valkanov<br />

and D. Zaj<strong>de</strong>nweber. This work was partially supported by the James S. Mc Donnell Found<strong>at</strong>ion 21st century scientist<br />

award/studying complex system.<br />

1


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 301<br />

Introduction<br />

The concept of extreme or “tail <strong>de</strong>pen<strong>de</strong>nce” probes the reaction of a variable to the realiz<strong>at</strong>ion<br />

of another variable when this realiz<strong>at</strong>ion is of extreme amplitu<strong>de</strong> and very low probability. The<br />

<strong>de</strong>pen<strong>de</strong>nce, and especially the extreme <strong>de</strong>pen<strong>de</strong>nce, b<strong>et</strong>ween two ass<strong>et</strong>s or b<strong>et</strong>ween an ass<strong>et</strong> and<br />

any other exogeneous economic variable is an issue of major importance both for practioners and<br />

for aca<strong>de</strong>mics. The d<strong>et</strong>ermin<strong>at</strong>ion of extreme <strong>de</strong>pen<strong>de</strong>nces is crucial for financial and for insurance<br />

institutions involved in risk management. It is also fundamental for the establishment of a r<strong>at</strong>ional<br />

investment policy striving for the best diversific<strong>at</strong>ion of the various sources of risk. In all these<br />

situ<strong>at</strong>ions, the objective is to prevent or <strong>at</strong> least minimize the simultaneous occurrence of large<br />

losses across the different positions held in the portfolio.<br />

From an aca<strong>de</strong>mic perspective, taking into account the extreme <strong>de</strong>pen<strong>de</strong>nce properties provi<strong>de</strong><br />

useful yardsticks and important constraints for the construction of mo<strong>de</strong>ls, which should not un<strong>de</strong>restim<strong>at</strong>e<br />

or overestim<strong>at</strong>e risks. From the point of view of univari<strong>at</strong>e st<strong>at</strong>istics, extreme values<br />

theory provi<strong>de</strong>s the m<strong>at</strong>hem<strong>at</strong>ical framework for the classific<strong>at</strong>ion and quantific<strong>at</strong>ion of very large<br />

risks. This has been ma<strong>de</strong> possible by the existence of a “universal” behavior summarized by<br />

the Gne<strong>de</strong>nko-Pickands-Balkema-<strong>de</strong> Haan theorem which gives a n<strong>at</strong>ural limit law for peak-overthreshold<br />

values in the form of the Generalized Par<strong>et</strong>o Distribution (see Embrechts, Kluppelberg,<br />

and Mikosh (1997, pp 152-168)). Moreover, most of these univari<strong>at</strong>e extreme values results are robust<br />

with respect to the time <strong>de</strong>pen<strong>de</strong>nces observed in financial time series (see <strong>de</strong> Haan, Resnick,<br />

Rootzen and <strong>de</strong> Vries (1989) or Starica (1999) for instance). In contrast, no such result is y<strong>et</strong> available<br />

in the multivari<strong>at</strong>e case. In such absence of theor<strong>et</strong>ical gui<strong>de</strong>lines, the altern<strong>at</strong>ive is therefore<br />

to impose some <strong>de</strong>pen<strong>de</strong>nce structure in a r<strong>at</strong>her ad hoc and arbitrary way. This was the stance<br />

taken for instance in Longin and Solnik (2001) in their study of the phenomenon of contagion across<br />

intern<strong>at</strong>ional equity mark<strong>et</strong>s.<br />

This approach, where the <strong>de</strong>pen<strong>de</strong>nce structure is not d<strong>et</strong>ermined from empirical facts or from<br />

an economic mo<strong>de</strong>l, is not fully s<strong>at</strong>isfying. As a remedy, we propose a new approach, which does<br />

not directly rely on multivari<strong>at</strong>e extreme values theory, but r<strong>at</strong>her <strong>de</strong>rives the extreme <strong>de</strong>pen<strong>de</strong>nce<br />

structure from the characteristics of a financial mo<strong>de</strong>l of ass<strong>et</strong>s. Specifically, we use the general<br />

class of factor mo<strong>de</strong>ls, which is probably one of the most vers<strong>at</strong>ile and relevant one, and whose<br />

introduction in finance can be traced back <strong>at</strong> least to Ross (1976). The factor mo<strong>de</strong>ls are now wi<strong>de</strong>ly<br />

used in many branches of finance, including stock r<strong>et</strong>urn mo<strong>de</strong>ls, interest r<strong>at</strong>e mo<strong>de</strong>ls (Vasicek<br />

(1977), Brennan and Schwarz (1978), Cox, Ingersoll, and Ross (1985)), credit risks mo<strong>de</strong>ls (Carey<br />

(1998), Gorby (2000), Lucas, Klaassen, Spreij and Stra<strong>et</strong>mans (2001)), and so on, and are found<br />

<strong>at</strong> the core of many theories and equilibrium mo<strong>de</strong>ls.<br />

Here, we shall first focus on the characteriz<strong>at</strong>ion of the extreme <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween stock r<strong>et</strong>urns<br />

and the mark<strong>et</strong> r<strong>et</strong>urn and then on the extreme <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two stocks which share a<br />

common explaining factor. The role of the mark<strong>et</strong> r<strong>et</strong>urn as a factor explaining the evolution of<br />

individual stock r<strong>et</strong>urns is supported both by theor<strong>et</strong>ical mo<strong>de</strong>ls such as the Capital Ass<strong>et</strong> Pricing<br />

Mo<strong>de</strong>l (CAPM) (Sharpe (1964), Lintner (1965), Mossin (1966)) or the Arbitrage Pricing Theory<br />

(APT) (Ross (1976)) and by empirical studies (Fama and B<strong>et</strong>h (1973), Kan<strong>de</strong>l and Staumbaugh<br />

(1987) among many others). It has even been shown in Roll (1988) th<strong>at</strong> in certain dram<strong>at</strong>ic<br />

circumstances, such as the October 1987 stock-mark<strong>et</strong> crash, the (global) mark<strong>et</strong> was the sole<br />

relevant factor nee<strong>de</strong>d to explain the stock mark<strong>et</strong> movements and the propag<strong>at</strong>ion of the crash<br />

across countries. Thus, the choice of factor mo<strong>de</strong>ls is a very n<strong>at</strong>ural starting point for studying<br />

extreme <strong>de</strong>pen<strong>de</strong>nces from a general point of view. The main gain is th<strong>at</strong>, without imposing any<br />

a priori ad hoc <strong>de</strong>pen<strong>de</strong>nces other than the <strong>de</strong>finition of the factor mo<strong>de</strong>l, we shall be able to<br />

2


302 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

<strong>de</strong>rive the general properties of extreme <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween an ass<strong>et</strong> and one of its factor and to<br />

empirically d<strong>et</strong>ermine these properties by a simple estim<strong>at</strong>ion of the factor mo<strong>de</strong>l param<strong>et</strong>ers.<br />

Our results are directly relevant to a portfolio manager using any of the factor mo<strong>de</strong>ls such as the<br />

CAPM or the APT to estim<strong>at</strong>e the impact on her extreme risks upon the addition or removal of an<br />

ass<strong>et</strong> in her portfolio. In this framework, our results st<strong>at</strong>ed for single ass<strong>et</strong>s can easily be exten<strong>de</strong>d<br />

to an entire portfolio, and some examples will be given. This problem is acute in particular in<br />

funds of funds. From a more global perspective, our analysis of the tail <strong>de</strong>pen<strong>de</strong>nce of two ass<strong>et</strong>s is<br />

the correct s<strong>et</strong>ting for analyzing the str<strong>at</strong>egic ass<strong>et</strong> alloc<strong>at</strong>ion facing a portofolio manager striving<br />

to diversify b<strong>et</strong>ween a portfolio of stocks and a portfolio of bonds or b<strong>et</strong>ween portfolios constituted<br />

of domestic and of intern<strong>at</strong>ional ass<strong>et</strong>s.<br />

Our main addition to the liter<strong>at</strong>ure is to provi<strong>de</strong> a compl<strong>et</strong>ely general analytical formula for the<br />

extreme <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween any two ass<strong>et</strong>s, which holds for any distribution of r<strong>et</strong>urns of these<br />

two ass<strong>et</strong>s and of their common factor and which thus embodies their intrinsic <strong>de</strong>pen<strong>de</strong>nce. Our<br />

second innov<strong>at</strong>ion is to provi<strong>de</strong> a novel and robust m<strong>et</strong>hod for estim<strong>at</strong>ing empirically the extreme<br />

<strong>de</strong>pen<strong>de</strong>nce which we test on twenty majors stocks of the NYSE. Comparing with historical comovements<br />

in the last forty years, we check th<strong>at</strong> our prediction is valid<strong>at</strong>ed out-of-sample and thus<br />

provi<strong>de</strong> an ex-ante m<strong>et</strong>hod to quantify futur stressful periods, so th<strong>at</strong> our results can be directly<br />

used to construct a portfolio aiming <strong>at</strong> minimizing the impact of extreme events. We are also able<br />

to d<strong>et</strong>ect an anomalous co-monoticity associ<strong>at</strong>ed with the October 1987 crash.<br />

The plan of our present<strong>at</strong>ion is as follows. The first section <strong>de</strong>fines the concepts nee<strong>de</strong>d for the<br />

characteriz<strong>at</strong>ion and quantific<strong>at</strong>ion of extreme <strong>de</strong>pen<strong>de</strong>nces. In particular, we recall the <strong>de</strong>finition<br />

of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce, which captures in a single number the properties of extreme<br />

<strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two random variables: the tail <strong>de</strong>pen<strong>de</strong>nce is <strong>de</strong>fined as the probability for<br />

a given random variable to be large assuming th<strong>at</strong> another random variable is large, <strong>at</strong> the same<br />

probability level. We shall also need some basic notions on <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween random variables<br />

using the m<strong>at</strong>hem<strong>at</strong>ical concept of copulas. In or<strong>de</strong>r to provi<strong>de</strong> some perspective on the following<br />

results, this section also contains the expression of some classical exemples of tail <strong>de</strong>pen<strong>de</strong>nce<br />

coefficients for specific multivari<strong>at</strong>e distributions.<br />

The second section st<strong>at</strong>es our main result in the form of a general theorem allowing the calcul<strong>at</strong>ion<br />

of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce for any factor mo<strong>de</strong>l with arbitrary distribution functions of<br />

the factors and of the idiosyncr<strong>at</strong>ic noise. We find th<strong>at</strong> the factor must have sufficiently “wild”<br />

fluctu<strong>at</strong>ions (to be ma<strong>de</strong> precise below) in or<strong>de</strong>r for the tail <strong>de</strong>pen<strong>de</strong>nce not to vanish. For normal<br />

distributions of the factor, the tail <strong>de</strong>pen<strong>de</strong>nce is i<strong>de</strong>ntically zero, while for regularly varying distributions<br />

(power laws), the tail <strong>de</strong>pen<strong>de</strong>nce is in general non-zero. We also show th<strong>at</strong> the most<br />

interesting coefficients of tail <strong>de</strong>pen<strong>de</strong>nce are those b<strong>et</strong>ween each individual stock and their common<br />

factor, since the tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween any pair of ass<strong>et</strong>s is shown to be nothing but the<br />

minimum of the tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween each ass<strong>et</strong> and their common factor.<br />

The third section is <strong>de</strong>voted to the empirical estim<strong>at</strong>ion of the coefficients of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween<br />

individual stock r<strong>et</strong>urns and the mark<strong>et</strong> r<strong>et</strong>urn. The tests are performed for daily stock r<strong>et</strong>urns.<br />

The estim<strong>at</strong>ed coefficients of tail <strong>de</strong>pen<strong>de</strong>nce are found in good agreement with the fraction of<br />

historically realized extreme events th<strong>at</strong> occur simultaneously with any of the ten largest losses of<br />

the mark<strong>et</strong> factor (these ten largest losses were not used to calibr<strong>at</strong>e the tail <strong>de</strong>pen<strong>de</strong>nce coefficient).<br />

We also find some evi<strong>de</strong>nce for comonotonicity in the crash of Oct. 1987, suggesting th<strong>at</strong> this event<br />

is an “outlier,” providing additional support to a previous analysis of large and extreme drawdowns.<br />

We summarize our results and conclu<strong>de</strong> in the fourth section.<br />

3


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 303<br />

1 Intrinsic measure of casual and of extreme <strong>de</strong>pen<strong>de</strong>nces<br />

This section provi<strong>de</strong>s a brief informal summary of the m<strong>at</strong>hem<strong>at</strong>ical concepts used in this paper to<br />

characterize the normal and extreme <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween ass<strong>et</strong> r<strong>et</strong>urns.<br />

1.1 How to characterize uniquely the full <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two random<br />

variables?<br />

The answer to this question is provi<strong>de</strong>d by the m<strong>at</strong>hem<strong>at</strong>ical notion of “copulas,” initially introduced<br />

by Sklar (1959) 1 , which allows one to study the <strong>de</strong>pen<strong>de</strong>nce of random variables in<strong>de</strong>pen<strong>de</strong>ntly<br />

of the behavior of their marginal distributions. Our present<strong>at</strong>ion focuses on two variables<br />

but is easily exten<strong>de</strong>d to the case of N random variables, wh<strong>at</strong>ever N may be. Sklar’s Theorem<br />

st<strong>at</strong>es th<strong>at</strong>, given the joint distribution function F (·, ·) of two random variables X and Y with<br />

marginal distribution FX(·) and FY (·) respectively, there exists a function C(·, ·) with range in<br />

[0, 1] × [0, 1] such th<strong>at</strong><br />

F (x, y) = C(FX(x), FY (y)) , (1)<br />

for all (x, y). This function C is the copula of the two random variables X and Y , and is unique if<br />

the random variables have continous marginal distributions. Moreover, the following result shows<br />

th<strong>at</strong> copulas are intrinsic measures of <strong>de</strong>pen<strong>de</strong>nce. If g1(X), g2(Y ) are strictly increasing on the<br />

ranges of X, Y , the random variables ˜ X = g1(X), ˜ Y = g2(Y ) have exactly the same copula C<br />

(see Lindskog (2000)). The copula is thus invariant un<strong>de</strong>r strictly increasing transform<strong>at</strong>ion of the<br />

variables. This provi<strong>de</strong>s a powerful way of studying scale-invariant measures of associ<strong>at</strong>ions. It is<br />

also a n<strong>at</strong>ural starting point for construction of multivari<strong>at</strong>e distributions.<br />

1.2 Tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two random variables<br />

A standard measure of <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two random variables is provi<strong>de</strong>d by the correl<strong>at</strong>ion<br />

coefficient. However, it suffers from <strong>at</strong> least three <strong>de</strong>ficiencies. First, as stressed by Embrechts,<br />

McNeil, and Straumann (1999), the correl<strong>at</strong>ion coefficient is an a<strong>de</strong>qu<strong>at</strong>e measure of <strong>de</strong>pen<strong>de</strong>nce<br />

only for elliptical distributions and for events of mo<strong>de</strong>r<strong>at</strong>e sizes. Second, the correl<strong>at</strong>ion coefficient<br />

measures only the <strong>de</strong>gree of linear <strong>de</strong>pen<strong>de</strong>nce and does not account of any other nonlinear functional<br />

<strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the random variables. Third, it agreg<strong>at</strong>es both the marginal behavior<br />

of each random variable and their <strong>de</strong>pen<strong>de</strong>nce. For instance, a simple change in the marginals<br />

implies in general a change in the correl<strong>at</strong>ion coefficient, while the copula and, therefore the <strong>de</strong>pen<strong>de</strong>nce,<br />

remains unchanged. M<strong>at</strong>hem<strong>at</strong>ically speaking, the correl<strong>at</strong>ion coefficient is said to lack<br />

the property of invariance un<strong>de</strong>r increasing changes of variables.<br />

Since the copula is the unique and intrinsic measure of <strong>de</strong>pen<strong>de</strong>nce, it is <strong>de</strong>sirable to <strong>de</strong>fine measures<br />

of <strong>de</strong>pen<strong>de</strong>nces which <strong>de</strong>pend only on the copula. Such measures have in fact been known for a long<br />

time. Examples are provi<strong>de</strong>d by the concordance measures, among which the most famous are the<br />

Kendall’s tau and the Spearman’s rho (see Nelsen (1998) for a d<strong>et</strong>ailed exposition). In particular,<br />

the Spearman’s rho quantifies the <strong>de</strong>gres of functional <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two random variables: it<br />

equals one (minus one) when and only when the first variable is an increasing (<strong>de</strong>creasing) function<br />

of the second variable. However, as for the correl<strong>at</strong>ion coefficient, these concordance measures do<br />

1 The rea<strong>de</strong>r is refered to Joe (1997), Frees and Val<strong>de</strong>z (1998) or Nelsen (1998) for a d<strong>et</strong>ailed survey of the notion<br />

of copulas and a m<strong>at</strong>hem<strong>at</strong>ically rigorous <strong>de</strong>scription of their properties.<br />

4


304 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

not provi<strong>de</strong> a useful measure of the <strong>de</strong>pen<strong>de</strong>nce for extreme events, since they are constructed over<br />

the whole distributions.<br />

Another n<strong>at</strong>ural i<strong>de</strong>a, wi<strong>de</strong>ly used in the contagion liter<strong>at</strong>ure, is to work with the conditional correl<strong>at</strong>ion<br />

coefficient, conditioned only on the largest events. But, as stressed by Boyer, Gibson,<br />

and Laur<strong>et</strong>an (1997), such conditional correl<strong>at</strong>ion coefficient suffers from a bias: even for a constant<br />

unconditional correl<strong>at</strong>ion coefficient, the conditional correl<strong>at</strong>ion coefficient changes with the<br />

conditioning s<strong>et</strong>. Therefore, changes in the conditional correl<strong>at</strong>ion do not provi<strong>de</strong> a characteristic<br />

sign<strong>at</strong>ure of a change in the true correl<strong>at</strong>ions. The conditional concordance measures suffer from<br />

the same problem.<br />

In view of these <strong>de</strong>ficiencies, it is n<strong>at</strong>ural to come back to a fundamental <strong>de</strong>finition of <strong>de</strong>pen<strong>de</strong>nce<br />

through the use of probabilities. We thus study the conditional probability th<strong>at</strong> the first variable is<br />

large conditioned on the second variable being large too: ¯ F (x|y) = Pr{X > x|Y > y}, when x and<br />

y goes to infinity. Since the convergence of ¯ F (x|y) may <strong>de</strong>pend on the manner with which x and y<br />

go to infinity (the convergence is not uniform), we need to specify the p<strong>at</strong>h taken by the variables<br />

to reach the infinity. Recalling th<strong>at</strong> it would be preferable to have a measure which is in<strong>de</strong>pen<strong>de</strong>nt<br />

of the marginal distributions of X and Y , it is n<strong>at</strong>ural to reason in the quantile space. This leads<br />

to choose x = FX −1 (u) and y = FY −1 (u) and replace the conditions x, y → ∞ by u → 1. Doing so,<br />

we <strong>de</strong>fine the so-called coefficient of upper tail <strong>de</strong>pen<strong>de</strong>nce (see Coles, Heffernan, and Tawn (1999),<br />

Lindskog (2000), or Embrechts, McNeil, and Straumann (2001)):<br />

λ+ = lim<br />

u→1 − Pr{X > FX −1 (u) | Y > FY −1 (u)} . (2)<br />

As required, this measure of <strong>de</strong>pen<strong>de</strong>nce is in<strong>de</strong>pen<strong>de</strong>nt of the marginals, since it can be expressed<br />

in term of the copula of X and Y as<br />

λ+ = lim<br />

u→1− 1 − 2u + C(u, u)<br />

1 − u<br />

. (3)<br />

This represent<strong>at</strong>ion shows th<strong>at</strong> λ+ is symm<strong>et</strong>ric in X and Y , as it should for a reasonable measure<br />

of <strong>de</strong>pen<strong>de</strong>nce.<br />

In a similar way, we <strong>de</strong>fine the coefficient of lower tail <strong>de</strong>pen<strong>de</strong>nce as the probability th<strong>at</strong> X incurs<br />

a large loss assuming th<strong>at</strong> Y incurs a large loss <strong>at</strong> the same probability level<br />

λ− = lim<br />

u→0 + Pr{X < FX −1 (u) | Y < FY −1 (u)} = lim<br />

u→0 +<br />

C(u, u)<br />

u<br />

. (4)<br />

This last expression has a simple interpr<strong>et</strong><strong>at</strong>ion in term of Value-<strong>at</strong>-Risk. In<strong>de</strong>ed, the quantiles<br />

F −1<br />

−1<br />

X (u) and FY (u) are nothing but the Values-<strong>at</strong>-Risk of ass<strong>et</strong>s (or portfolios) X and Y <strong>at</strong> the<br />

confi<strong>de</strong>nce level 1 − u. Thus, the coefficient λ− simply provi<strong>de</strong>s the probability th<strong>at</strong> X exceeds the<br />

VaR <strong>at</strong> level 1 − u, assuming th<strong>at</strong> Y has excee<strong>de</strong>d the VaR <strong>at</strong> the same level confi<strong>de</strong>nce level 1 − u,<br />

when this level goes to one. As a consequence, the probability th<strong>at</strong> both X and Y exceed their VaR<br />

<strong>at</strong> the level 1 − u is asymptotically given by λ− · (1 − u) as u → 0. As an example, consi<strong>de</strong>r a daily<br />

VaR calcul<strong>at</strong>ed <strong>at</strong> the 99% confi<strong>de</strong>nce level. Then, the probability th<strong>at</strong> both X and Y un<strong>de</strong>rgo a<br />

loss larger than their VaR <strong>at</strong> the 99% level is approxim<strong>at</strong>ely given by λ−/100. Thus, when λ− is<br />

about 0.1, the typical recurrence time b<strong>et</strong>ween such concomitant large losses is about four years,<br />

while for λ− ≈ 0.5 it is less than ten months.<br />

The values of the coefficients of tail <strong>de</strong>pen<strong>de</strong>nce are known explicitely for a large number of different<br />

copulas. For instance, the Gaussian copula, which is the copula <strong>de</strong>rived from <strong>de</strong> Gaussian multivari<strong>at</strong>e<br />

distribution, has a zero coefficient of tail <strong>de</strong>pen<strong>de</strong>nce. In contrast, the Gumbel’s copula used<br />

5


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 305<br />

by Longin and Solnik (2001) in the study of the contagion b<strong>et</strong>ween intern<strong>at</strong>ional equity mark<strong>et</strong>s,<br />

which is <strong>de</strong>fined by<br />

<br />

Cθ(u, v) = exp − (− ln u) θ 1 <br />

+ (− ln v)<br />

θ θ<br />

, θ ∈ [0, 1], (5)<br />

has an upper tail coefficient λ+ = 2 − 2 θ . For all θ’s smaller than one, λ+ is positive and the<br />

Gumbel’s copula is said to present tail <strong>de</strong>pen<strong>de</strong>nce, while for θ = 1, the Gumbel copula is said to<br />

be asymptotically in<strong>de</strong>pen<strong>de</strong>nt. One should however use this terminology with a grain of salt as<br />

“tail in<strong>de</strong>pen<strong>de</strong>nce” (quantified by λ+ = 0 or λ− = 0) does not imply necessarily th<strong>at</strong> large events<br />

occur in<strong>de</strong>pen<strong>de</strong>ntly (see Coles, Heffernan, and Tawn (1999) for a precise discussion of this point).<br />

2 Tail <strong>de</strong>pen<strong>de</strong>nce of factor mo<strong>de</strong>ls<br />

2.1 Tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween an ass<strong>et</strong> and one of its explaining factors<br />

Now we st<strong>at</strong>e the first part of our main theor<strong>et</strong>ical result. L<strong>et</strong> us consi<strong>de</strong>r two random variables<br />

X and Y of cumul<strong>at</strong>ive distribution functions FX(X) and FY (Y ), where X represents the r<strong>et</strong>urn<br />

of a single stock and Y is the mark<strong>et</strong> r<strong>et</strong>urn for instance. L<strong>et</strong> us also introduce an idiosyncr<strong>at</strong>ic<br />

noise ε, which is assumed in<strong>de</strong>pen<strong>de</strong>nt of the mark<strong>et</strong> r<strong>et</strong>urn Y . The factor mo<strong>de</strong>l is <strong>de</strong>fined by<br />

the following rel<strong>at</strong>ionship b<strong>et</strong>ween the individual stock r<strong>et</strong>urn X, the mark<strong>et</strong> r<strong>et</strong>urn Y and the<br />

idiosyncr<strong>at</strong>ic noise ε:<br />

X = β · Y + ε . (6)<br />

β is the usual coefficient introduced by the Capital Ass<strong>et</strong> Pricing Mo<strong>de</strong>l Sharpe (1964). L<strong>et</strong> us stress<br />

th<strong>at</strong> ε may embody other factors Y ′ , Y ′′ , . . ., as long as they remain in<strong>de</strong>pen<strong>de</strong>nt of Y . Un<strong>de</strong>r such<br />

conditions and a few other technical assumptions d<strong>et</strong>ailed in the theorem established in appendix<br />

A.1, the coefficient of (upper) tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween X and Y <strong>de</strong>fined in (2) is obtained as<br />

∞<br />

λ+ =<br />

max1, l β dx f(x) , (7)<br />

where l <strong>de</strong>notes the limit, when u → 1, of the r<strong>at</strong>io of the quantiles of X and Y ,<br />

l = lim<br />

u→1<br />

FX −1 (u)<br />

FY −1 (u)<br />

and f(x) is the limit, when t → +∞, of t · PY (tx)/ ¯ FY (t):<br />

f(x) = lim<br />

t→+∞ t PY (tx)<br />

¯FY (t)<br />

, (8)<br />

. (9)<br />

PY is the distribution <strong>de</strong>nsity of Y and ¯ FY = 1 − FY is the complementary cumul<strong>at</strong>ive distribution<br />

function of Y . A similar expression obviously holds, mut<strong>at</strong>is mutandis, for the coefficient of lower<br />

tail <strong>de</strong>pen<strong>de</strong>nce.<br />

The measure of tail <strong>de</strong>pen<strong>de</strong>nce given by equ<strong>at</strong>ion (7) <strong>de</strong>pends on two limits <strong>de</strong>fined in (8) and<br />

(9) and thus seems likely difficult to estim<strong>at</strong>e. As it turns out, we will show th<strong>at</strong> this is not the<br />

case in the empirical section below. In<strong>de</strong>ed, the first limit (8) is nothing but a r<strong>at</strong>io of quantiles,<br />

while the second limit (9) can be easily calcul<strong>at</strong>ed for almost all distributions of the factor. For<br />

6


306 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

instance, l<strong>et</strong> us consi<strong>de</strong>r the Par<strong>et</strong>o distribution ¯ FY (y) = 1/(y/y0) µ <strong>de</strong>fined for y ≥ y0, whose<br />

<strong>de</strong>nsity is equal to PY (y) = (µ/y0)/(y/y0) 1+µ ; the limit (9) gives f(x) = µ/x 1+µ . In contrast,<br />

for the Poisson law ¯ FY (y) = e −ry <strong>de</strong>fined for y ≥ 0 with <strong>de</strong>nsity PY (y) = re −ry , the limit (9)<br />

gives f(x) = limt→∞ r t e −rt(x−1) = 0 for x > 1. Thus an estim<strong>at</strong>ion of the tail of the factor<br />

distribution is sufficient to infer the limit function f(x). Moreover, equ<strong>at</strong>ion (7) has a r<strong>at</strong>her simple<br />

interpr<strong>et</strong><strong>at</strong>ion since it shows th<strong>at</strong> a non-vanishing coefficient of tail <strong>de</strong>pen<strong>de</strong>nce results from the<br />

combin<strong>at</strong>ion of two phenomena. First, the limit function f(x), which only <strong>de</strong>pends on the behavior<br />

of the factor distribution, must be non-zero. Second, the constant l must remain finite to ensure<br />

th<strong>at</strong> the integral in (7) does not vanish. Thus, the value of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce is<br />

controlled by f(x) solely function of the factor and a second variable l quantifying the comp<strong>et</strong>ition<br />

of the tails of the distribution of the factor Y and of the idiosyncr<strong>at</strong>ic noise ε.<br />

The fundamental result (7) should be of vivid interest to financial economists because it provi<strong>de</strong>s a<br />

general, rigorous and simple m<strong>et</strong>hod for estim<strong>at</strong>ing one of the key variable embodying the occurrence<br />

of and the risks associ<strong>at</strong>ed with extremes in joint distributions. From a theor<strong>et</strong>ical view point, it<br />

also anchors the <strong>de</strong>riv<strong>at</strong>ion and quantific<strong>at</strong>ion of a key variable on extremes in the general class of<br />

financial factor mo<strong>de</strong>ls, thus extending their use and relevance also to this r<strong>at</strong>her novel domain of<br />

extreme <strong>de</strong>pen<strong>de</strong>nce, extreme risks and extreme losses.<br />

Up to now, we have assumed th<strong>at</strong> the factor Y and the idiosyncr<strong>at</strong>ic noise ε were in<strong>de</strong>pen<strong>de</strong>nt. In<br />

fact, it is important to stress for the sake of generality th<strong>at</strong> the result (7) holds even when they are<br />

<strong>de</strong>pen<strong>de</strong>nt, provi<strong>de</strong>d th<strong>at</strong> this <strong>de</strong>pen<strong>de</strong>nce is not too strong, as explained and ma<strong>de</strong> specific <strong>at</strong> the<br />

end of Appendix A.1.<br />

We now <strong>de</strong>rive two direct consequences of this result (7) (see corollary 1 and 2 in appendix B),<br />

concerning rapidly varying and regularly varying factors 2 , which clearly illustr<strong>at</strong>e the role the<br />

factor itself and the impact of the tra<strong>de</strong> off b<strong>et</strong>ween the factor and the idiosyncr<strong>at</strong>ic noise.<br />

2.2 Absence of tail <strong>de</strong>pen<strong>de</strong>nce for rapidly varying factors<br />

L<strong>et</strong> us assume th<strong>at</strong> the factor Y and the idiosyncr<strong>at</strong>ic noise ε are normally distributed (the second<br />

assumption is ma<strong>de</strong> for simplicity and will be relaxed below). As a consequence, the joint distribution<br />

of (X, Y ) is the bivari<strong>at</strong>e Gaussian distribution. Refering to the results st<strong>at</strong>ed in section 1.1.2,<br />

we conclu<strong>de</strong> th<strong>at</strong> the copula of (X, Y ) is the Gaussian copula whose coefficient of tail <strong>de</strong>pen<strong>de</strong>nce<br />

is zero. In fact, it is easy to show th<strong>at</strong> λ = 0 for any non-<strong>de</strong>gener<strong>at</strong>ed distribution of ε.<br />

More generally, l<strong>et</strong> us assume th<strong>at</strong> the distribution of the factor Y is rapidly varying, which <strong>de</strong>scribes<br />

the Gaussian, exponential and any distribution <strong>de</strong>caying faster than any power-law. Then, the<br />

coefficient of tail <strong>de</strong>pen<strong>de</strong>nce is i<strong>de</strong>ntically zero. This result holds for any arbitrary distribution of<br />

the idiosyncr<strong>at</strong>ic noise (see corollary 1 in appendix B). It also holds for mixtures of normals or other<br />

distributions f<strong>at</strong>ter than Gaussians, some of which are thought to be reasonable approxim<strong>at</strong>ions to<br />

empirical stock r<strong>et</strong>urn distributions.<br />

These st<strong>at</strong>ements are somewh<strong>at</strong> counter-intuitive since one could expect a priori th<strong>at</strong> the coefficient<br />

of tail <strong>de</strong>pen<strong>de</strong>nce does not vanish as soon as the tail of the distribution of factor r<strong>et</strong>urns is f<strong>at</strong>ter<br />

than the tail the distribution noise r<strong>et</strong>urns. Said differently, when the standard <strong>de</strong>vi<strong>at</strong>ion of the<br />

idiosynchr<strong>at</strong>ic noise ε is small (but not zero), then the idiosynchr<strong>at</strong>ic noise component is small and<br />

X and Y are practically i<strong>de</strong>ntical, and it seems strange th<strong>at</strong> their tail <strong>de</strong>pen<strong>de</strong>nce can be equal<br />

2 see Bigham, Goldie, and Teugel (1987) or Embrechts, Kluppelberg, and Mikosh (1997) for a survey of the<br />

properties of rapidly and regularly varying functions<br />

7


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 307<br />

to zero. This non-intuitive result stems from the fact th<strong>at</strong> the tail <strong>de</strong>pen<strong>de</strong>nce is quantifying not<br />

just a <strong>de</strong>pen<strong>de</strong>nce but a specific <strong>de</strong>pen<strong>de</strong>nce for extreme co-movements. Thus, in or<strong>de</strong>r to g<strong>et</strong><br />

a non-vanishing tail-<strong>de</strong>pen<strong>de</strong>nce, the fluctu<strong>at</strong>ions of the factor must be ‘wild’ enough, which is<br />

not realized with rapidly varying distributions, irrespective of the rel<strong>at</strong>ive values of the standard<br />

<strong>de</strong>vi<strong>at</strong>ions of the factor and the idosyncr<strong>at</strong>ic noise.<br />

2.3 Coefficient of tail <strong>de</strong>pen<strong>de</strong>nce for regularly varying factors<br />

2.3.1 Example of the factor mo<strong>de</strong>l with Stu<strong>de</strong>nt distribution<br />

In or<strong>de</strong>r to account for the power-law tail behavior observed for the distributions of ass<strong>et</strong>s r<strong>et</strong>urns<br />

it is logical to consi<strong>de</strong>r th<strong>at</strong> the factor and the indiosyncr<strong>at</strong>ic noise also have power-law tailed<br />

distributions. As an illustr<strong>at</strong>ion, we will assume th<strong>at</strong> Y and ε are distributed according to a<br />

Stu<strong>de</strong>nt’s distribution with the same number of <strong>de</strong>grees of freedom ν (and thus same tail exponent<br />

ν). L<strong>et</strong> us <strong>de</strong>note by σ the scale factor of the distribution of ε while the scale factor of the<br />

distribution of Y is chosen equal to one 3 . Applying the theorem previously established, we find<br />

th<strong>at</strong> f(x) = ν/x ν+1 and l = β<br />

<br />

1 +<br />

σ<br />

β<br />

1<br />

λ± =<br />

1 +<br />

ν 1/ν<br />

, so th<strong>at</strong> the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce is<br />

σ<br />

β<br />

ν , and β > 0. (10)<br />

As expected, the tail <strong>de</strong>pen<strong>de</strong>nce increases as β increases and as σ <strong>de</strong>creases. Since the idiosyncr<strong>at</strong>ic<br />

vol<strong>at</strong>ility of the ass<strong>et</strong> increases when the scale factor σ increases, this results simply means th<strong>at</strong><br />

the tail <strong>de</strong>pen<strong>de</strong>nce <strong>de</strong>creases when the idiosyncr<strong>at</strong>ic vol<strong>at</strong>ility of a stock increases rel<strong>at</strong>ive to the<br />

mark<strong>et</strong> vol<strong>at</strong>ility. The <strong>de</strong>pen<strong>de</strong>nce with respect to ν is less intuitive. In particular, l<strong>et</strong> ν go to<br />

infinity. Then, λ → 0 if σ > β and λ → 1 for σ < β. This is surprising as one could argue th<strong>at</strong>, as<br />

ν → ∞, the Stu<strong>de</strong>nt distribution tends to the Gaussian law. As a consequence, one would expect<br />

the same coefficient of <strong>de</strong>pen<strong>de</strong>nce λ± = 0 as for rapidly varying functions. The reason for the<br />

non-certain convergence of λ± to zero as ν → ∞ is rooted in a subtle non-commut<strong>at</strong>ivity (and<br />

non-uniform convergence) of the two limits ν → ∞ and u → 1. In<strong>de</strong>ed, when taking first the limit<br />

u → 1, the result λ → 1 for β > σ indic<strong>at</strong>es th<strong>at</strong> a sufficiently strong factor coefficient β always<br />

ensures the validity of the power law regime, wh<strong>at</strong>ever the value of ν. Correl<strong>at</strong>ively, in this regime<br />

β > σ, λ± is an increasing function of ν.<br />

The result (10) is of interest for financial economics purpose because it provi<strong>de</strong>s a simple param<strong>et</strong>ric<br />

illustr<strong>at</strong>ion and interpr<strong>et</strong><strong>at</strong>ion of how the risk of large co-movements is affected by the three key<br />

param<strong>et</strong>ers entering in the <strong>de</strong>finition of the factor mo<strong>de</strong>l. It allows one to weight how the ingredients<br />

of the factor mo<strong>de</strong>l impact on the large risks captured by λ± and thus links the financial basis<br />

un<strong>de</strong>rlying the factor mo<strong>de</strong>l to the extreme multivari<strong>at</strong>e risks.<br />

2.3.2 General result<br />

We now provi<strong>de</strong> the general result valid for any regularly varying distribution. L<strong>et</strong> the factor<br />

Y follows a regularly varying distribution with tail in<strong>de</strong>x α: in other words, the complementary<br />

cumul<strong>at</strong>ive distribution of Y is such th<strong>at</strong> ¯ FY (y) = L(y) · y −α , where L(y) is a slowly varying<br />

3 Such a choice is always possible via a rescaling of the coefficient β.<br />

8


308 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

function, i.e:<br />

Corollary 2 in appendix B.2 shows th<strong>at</strong><br />

L(ty)<br />

lim = 1, ∀y > 0. (11)<br />

t→∞ L(t)<br />

λ =<br />

1<br />

<br />

max<br />

1, l<br />

β<br />

α , (12)<br />

where l <strong>de</strong>notes the limit, when u → 1, of the r<strong>at</strong>io FX −1 (u)/FY −1 (u). In the case of particular<br />

interest when the distribution of ε is also regularly varying with tail in<strong>de</strong>x α and if, in addition, we<br />

have ¯ FY (y) ∼ Cy ·y −α and ¯ Fε(ε) ∼ Cε ·ε −α , for large y and ε, then the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce<br />

is a simple function of the r<strong>at</strong>io Cε/Cy of the scale factors:<br />

λ =<br />

1<br />

1 + β −α · Cε<br />

Cy<br />

. (13)<br />

When the tail in<strong>de</strong>xes αY and αε of the distribution of the factor and the residue are different,<br />

then λ = 0 for αY < αε and λ = 1 for αY > αε.<br />

The results (12) and (13) are very important both for a financial and and economic perseptive<br />

because they express in the most general and straightforward way the risk of extreme co-movements<br />

quantified by the tail <strong>de</strong>pen<strong>de</strong>nce param<strong>et</strong>er λ within the important class of factor mo<strong>de</strong>ls. Th<strong>at</strong> λ<br />

increases with the β factor is intuitively clear. Less obvious is the <strong>de</strong>pen<strong>de</strong>nce of λ on the structure<br />

of the marginal distributions of the factor and of the idiosynchr<strong>at</strong>ic noise, which is found to be<br />

captured uniquely in terms of the r<strong>at</strong>io of their scale factors Cε and Cy. The scale factors Cε and<br />

Cy tog<strong>et</strong>her with the factor β thus replace the variance and covariance in their role as the sole<br />

quantifiers of the extreme risks occurring in co-movements.<br />

Until now, we have only consi<strong>de</strong>red a single ass<strong>et</strong> X. L<strong>et</strong> us now consi<strong>de</strong>r a portfolio of ass<strong>et</strong>s Xi,<br />

each of the ass<strong>et</strong>s following exactly the one factor mo<strong>de</strong>l (6)<br />

Xi = βi · Y + εi, (14)<br />

with in<strong>de</strong>pen<strong>de</strong>nt noises εi, whose scale factors are Cεi . The portfolio X = wiXi, with weights<br />

wi, also follows the factor mo<strong>de</strong>l with a param<strong>et</strong>er β = wiβi and noise ε, whose scale factor is<br />

Cε = |wi| α · 4<br />

Cεi . Thus, equ<strong>at</strong>ion (13) shows th<strong>at</strong> the tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the portfolio and<br />

the factor is<br />

<br />

|wi|<br />

λ = 1 +<br />

α · Cεi<br />

( wiβi) α −1 . (15)<br />

· CY<br />

When unlimited short sells are allowed, one can follow a “mark<strong>et</strong> neutral” str<strong>at</strong>egy yielding β = 0<br />

and thus λ = 0. But in the more realistic case where only limited short sells are authorized, one<br />

cannot reach β = 0, and the best portfolio, which is the less “correl<strong>at</strong>ed” with the large mark<strong>et</strong><br />

moves, has to minimze the tail <strong>de</strong>pen<strong>de</strong>nce (15).<br />

This simple example clearly shows th<strong>at</strong> it is very different to minimize the extreme co-movements,<br />

according to (15), and to minimize the (linear) correl<strong>at</strong>ion ρ b<strong>et</strong>ween the portfolio and the mark<strong>et</strong><br />

factor given by<br />

ρ =<br />

<br />

1 +<br />

w 2 i · V ar(εi)<br />

( wiβi) 2 V ar(Y )<br />

−1/2<br />

. (16)<br />

4 In the more realistic case where the εi’s are not in<strong>de</strong>pen<strong>de</strong>nt but still embody one or several common factors<br />

Y ′ , Y ′′ , · · ·, the resulting scale factor Cε can be calcul<strong>at</strong>ed with the m<strong>et</strong>hod <strong>de</strong>scribed in Bouchaud, Sorn<strong>et</strong>te, Walter<br />

and Aguilar (1998)<br />

9


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 309<br />

Thus, since the minimum of ρ may be very different from the minimum of λ, minimizing ρ almost<br />

surely leads to accept a level of extreme risks which is not optimal.<br />

2.4 Tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two ass<strong>et</strong>s rel<strong>at</strong>ed by a factor mo<strong>de</strong>l<br />

We now present the second part of our theor<strong>et</strong>ical result. L<strong>et</strong> X1 and X2 be two random variables<br />

(two ass<strong>et</strong>s) of cumul<strong>at</strong>ive distributions functions F1, F2 with a common factor Y . L<strong>et</strong> ε1 and ε2<br />

be the idiosyncr<strong>at</strong>ic noises associ<strong>at</strong>ed with these two ass<strong>et</strong>s X1 and X2. We allow the idiosyncr<strong>at</strong>ic<br />

noises to be <strong>de</strong>pen<strong>de</strong>nt random variables, as occurs for instance if they embody the effect of other<br />

factors Y ′ , Y ′′ , ... which are in<strong>de</strong>pen<strong>de</strong>nt of Y . Our essential assumption is th<strong>at</strong> the distribution of<br />

the factor Y must have a tail not thinner than the tail of the distributions of the other factors Y ′ ,<br />

Y ′′ , ... This hypothesis is crucial in or<strong>de</strong>r to d<strong>et</strong>ect the existence of tail-<strong>de</strong>pen<strong>de</strong>nce. This means<br />

th<strong>at</strong>, for purposes of characterizing tail <strong>de</strong>pen<strong>de</strong>ncies in factor mo<strong>de</strong>ls, our mo<strong>de</strong>l can always be<br />

re-st<strong>at</strong>ed as a single factor mo<strong>de</strong>l where the single factor is the factor with the thickest tail. This<br />

makes our results quite general. Then, the mo<strong>de</strong>l can be written as<br />

X1 = β1 · Y + ε1 , (17)<br />

X2 = β2 · Y + ε2 . (18)<br />

We prove in appendix A.2, th<strong>at</strong> the coefficient of (upper) tail <strong>de</strong>pen<strong>de</strong>nce λ+ = limu→1 Pr{X1 ><br />

F1 −1 (u) | X2 > F2 −1 (u)}, b<strong>et</strong>ween the ass<strong>et</strong>s X1 and X2, is given by the expression<br />

λ+ =<br />

∞<br />

maxl 1<br />

β1 , l 2<br />

β2 dx f(x) , (19)<br />

which is very similar to th<strong>at</strong> found for the tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween an ass<strong>et</strong> and one of its explaining<br />

factor (see equ<strong>at</strong>ion (7)). As previously, l1,2 <strong>de</strong>notes the limit, when u → 1, of the r<strong>at</strong>io<br />

F1,2 −1 (u)/FY −1 (u), and f(x) is the limit, when t → +∞, of t · PY (tx)/ ¯ FY (t).<br />

The result (19) can be cast in a different illumin<strong>at</strong>ing way. L<strong>et</strong> λ(X1, Y ) (resp. λ(X2, Y )) <strong>de</strong>note<br />

the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the ass<strong>et</strong> X1 (resp. X2) and their common factor Y . L<strong>et</strong><br />

λ(X1, X2) <strong>de</strong>note the tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the two ass<strong>et</strong>s. Equ<strong>at</strong>ion (19) allows us to assert<br />

th<strong>at</strong><br />

λ(X1, X2) = min{λ(X1, Y ), λ(X2, Y )}. (20)<br />

The tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the two ass<strong>et</strong>s X1 and X2 is nothing but the smallest tail <strong>de</strong>pen<strong>de</strong>nce<br />

b<strong>et</strong>ween each ass<strong>et</strong> and the common factor. Therefore, a <strong>de</strong>crease of the tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween<br />

the ass<strong>et</strong>s and the mark<strong>et</strong> will also lead autom<strong>at</strong>ically to a <strong>de</strong>crease of the tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween<br />

the two ass<strong>et</strong>s. This result also shows th<strong>at</strong> it is sufficient to study the tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the<br />

ass<strong>et</strong>s and their common factor to obtain the tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween any pair of ass<strong>et</strong>s.<br />

The result (20) is also useful in the context of portfolio analysis. Not only does it provi<strong>de</strong> a tool<br />

for assessing the probability of large losses of a portfolio composed of ass<strong>et</strong>s driven by a common<br />

factor, it also allows us to <strong>de</strong>fine novel str<strong>at</strong>egies of portfolio optimiz<strong>at</strong>ion based on the selection<br />

and weighting of stocks chosen so as to balance to risks associ<strong>at</strong>ed with extreme co-movements.<br />

Such an approach has been tested in (Malevergne and Sorn<strong>et</strong>te 2002) with encouraging results.<br />

3 Empirical study<br />

We now apply our theor<strong>et</strong>ical results to the daily r<strong>et</strong>urns of a s<strong>et</strong> of stocks tra<strong>de</strong>d on the New York<br />

Stock Exchange. In or<strong>de</strong>r to estim<strong>at</strong>e the param<strong>et</strong>ers of the factor mo<strong>de</strong>l (6), the Standard and<br />

10


310 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Poor’s 500 in<strong>de</strong>x is chosen to represent the common “mark<strong>et</strong> factor.” It has been prefered over the<br />

Dow Jones Industrial Averages In<strong>de</strong>x for instance, because, although less diversified, it represents<br />

about 80% of the total mark<strong>et</strong> capitaliz<strong>at</strong>ion.<br />

We <strong>de</strong>scribe the s<strong>et</strong> of selected stocks in the next sub-section. Next, we estim<strong>at</strong>e the param<strong>et</strong>er<br />

β in (6) and check the in<strong>de</strong>pen<strong>de</strong>nce of the mark<strong>et</strong> r<strong>et</strong>urns and the residues. Then, applying the<br />

commonly used hypothesis according to which the tail of the distribution of ass<strong>et</strong>s r<strong>et</strong>urn is a power<br />

law or <strong>at</strong> leastregularly varying (see Longin (1996), Lux (1996), Pagan (1996), or Gopikrishnan,<br />

Meyer, Amaral, and Stanley (1998)), we estim<strong>at</strong>e the tail in<strong>de</strong>x and the scale factor of these<br />

distributions, which allows us to calcul<strong>at</strong>e the coefficients of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween each ass<strong>et</strong><br />

r<strong>et</strong>urn and the mark<strong>et</strong> r<strong>et</strong>urn. Finally, we perform an analysis of the historical d<strong>at</strong>a to check<br />

the comp<strong>at</strong>ibility of our prediction on the fraction of realized large losses of the ass<strong>et</strong>s th<strong>at</strong> occur<br />

simultaneously with the large losses of the mark<strong>et</strong>.<br />

The results of our analysis are reported below in terms of the r<strong>et</strong>urns r<strong>at</strong>her than in terms of the<br />

excess r<strong>et</strong>urns above the risk free interest r<strong>at</strong>e, in apparent contradiction with the prescription of the<br />

CAPM. However, for daily r<strong>et</strong>urns, the difference b<strong>et</strong>ween r<strong>et</strong>urns and excess r<strong>et</strong>urns is negligible.<br />

In<strong>de</strong>ed, we checked th<strong>at</strong> neglecting the difference b<strong>et</strong>ween the r<strong>et</strong>urns and the excess r<strong>et</strong>urns does<br />

not affect our results by re-running all the study <strong>de</strong>scribed below in terms of the excess r<strong>et</strong>urns and<br />

found th<strong>at</strong> the tail <strong>de</strong>pen<strong>de</strong>nce did not change by more than 0.1%.<br />

3.1 Description of the d<strong>at</strong>a<br />

We study a s<strong>et</strong> of twenty ass<strong>et</strong>s tra<strong>de</strong>d on the New York Stock Exchange. The criteria presiding<br />

over the selection of the ass<strong>et</strong>s (see column 1 of table 1) are th<strong>at</strong> (1) they are among the stocks<br />

with the largest capitaliz<strong>at</strong>ions, but (2) each of them should have a weight smaller than 1% in the<br />

Standard and Poor’s 500 in<strong>de</strong>x, so th<strong>at</strong> the <strong>de</strong>pen<strong>de</strong>nce studied here does not stem trivially from<br />

their overlap with the mark<strong>et</strong> factor (taken as the Standard and Poor’s 500 in<strong>de</strong>x).<br />

The time interval we have consi<strong>de</strong>red ranges from July 03, 1962 to December 29, 2000, corresponding<br />

to 9694 d<strong>at</strong>a points, and represents the largest s<strong>et</strong> of daily d<strong>at</strong>a available from the Center for<br />

Research in Security Prices (CRSP). This large time interval is important to l<strong>et</strong> us collect as many<br />

large fluctu<strong>at</strong>ions of the r<strong>et</strong>urns as is possible in or<strong>de</strong>r to sample the extreme tail <strong>de</strong>pen<strong>de</strong>nce.<br />

Moreover, in or<strong>de</strong>r to allow for a non-st<strong>at</strong>ionarity over the four <strong>de</strong>ca<strong>de</strong>s of the study, to check the<br />

stability of our results and to test the st<strong>at</strong>ionnarity of the tail <strong>de</strong>pen<strong>de</strong>nce over the time, we split<br />

this s<strong>et</strong> into two subs<strong>et</strong>s. The first one ranges from July 1962 to December 1979, a period with<br />

few very large r<strong>et</strong>urn amplitu<strong>de</strong>s, while the second one ranges from January 1980 to December<br />

2000, a period which witnessed several very large price changes (see table 1 which shows the good<br />

stability of the standard <strong>de</strong>vi<strong>at</strong>ion b<strong>et</strong>ween the two sub-periods while the higher cumulants such<br />

as the excess kurtosis often increased dram<strong>at</strong>ically in the second sub-period for most ass<strong>et</strong>s). The<br />

table 1 presents the main st<strong>at</strong>istical properties of our s<strong>et</strong> of stocks during the three time intervals.<br />

All ass<strong>et</strong>s exhibit an excess kurtosis significantly different from zero over the three time interval,<br />

which is inconsistent with the assumption of Gaussianly distributed r<strong>et</strong>urns. While the standard<br />

<strong>de</strong>vi<strong>at</strong>ions remain stable over time, the excess kurtosis increases significantly from the first to the<br />

second period. This is in resonance with the financial community’s belief th<strong>at</strong> stock price vol<strong>at</strong>ility<br />

has increased over time, a still controversial result (Jones and J.W.Wilson (1989), Campbell, L<strong>et</strong>tau,<br />

Malkiel, and Xu (2001) or Xu and Malkiel (2002)).<br />

11


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 311<br />

3.2 Calibr<strong>at</strong>ion of the factor mo<strong>de</strong>l<br />

The d<strong>et</strong>ermin<strong>at</strong>ion of the param<strong>et</strong>ers β and of the residues ε entering in the <strong>de</strong>finition of the factor<br />

mo<strong>de</strong>l (6) is performed for each ass<strong>et</strong> by regressing the stocks r<strong>et</strong>urns on the mark<strong>et</strong> r<strong>et</strong>urn. The<br />

coefficient β is thus given by the ordinary least square estim<strong>at</strong>or, which is consistent as long as<br />

the residues are weak white noise and with zero mean and finite variance. The idiosyncr<strong>at</strong>ic noise<br />

ε is obtained by substracting β times the mark<strong>et</strong> r<strong>et</strong>urn to the stock r<strong>et</strong>urn. Table 2 presents<br />

the results for the three periods we consi<strong>de</strong>r. For each period, we give the value of the estim<strong>at</strong>ed<br />

coefficient β (first columns of table 2 for each time interval). We then calcul<strong>at</strong>e the correl<strong>at</strong>ion<br />

coefficient b<strong>et</strong>ween the mark<strong>et</strong> r<strong>et</strong>urns and the estim<strong>at</strong>ed idiosyncr<strong>at</strong>ic noise. All of them are less<br />

than 10 −8 , so th<strong>at</strong> none of them is significantly different from zero, which allows us to conclu<strong>de</strong><br />

th<strong>at</strong> there is no linear correl<strong>at</strong>ion b<strong>et</strong>ween the factor and the residues. To check one step further<br />

the in<strong>de</strong>pen<strong>de</strong>nce hypothesis, we have estim<strong>at</strong>ed the correl<strong>at</strong>ion coefficient b<strong>et</strong>ween the square of<br />

the factor and the square of the error-terms. In table 2, their values are given in the second of the<br />

pair of columns presented for each period. A Fisher’s test shows th<strong>at</strong>, <strong>at</strong> the 95% confi<strong>de</strong>nce level,<br />

all these correl<strong>at</strong>ion coefficients are significantly different from zero. This result is not surprising<br />

and shows the existence of small but significant correl<strong>at</strong>ions b<strong>et</strong>ween the mark<strong>et</strong> vol<strong>at</strong>ility and<br />

the idiosyncr<strong>at</strong>ic vol<strong>at</strong>ility. However, this will not invalid<strong>at</strong>e the empirical tests of our theor<strong>et</strong>ical<br />

results, since they hold even in presence of weakly <strong>de</strong>pen<strong>de</strong>nt factor and noise.<br />

The coefficient β’s we obtain by regressing each ass<strong>et</strong> r<strong>et</strong>urns on the Standard & Poor’s 500 r<strong>et</strong>urns<br />

are very close to within their uncertainties to the β’s given by the CRSP d<strong>at</strong>abase, which are<br />

estim<strong>at</strong>ed by regressing the ass<strong>et</strong>s r<strong>et</strong>urns on the value-weighted mark<strong>et</strong> portfolio. Thus, the choice<br />

of the Standard and Poor’s 500 in<strong>de</strong>x to represent the whole mark<strong>et</strong> portfolio is reasonable.<br />

3.3 Estim<strong>at</strong>ion of the tail in<strong>de</strong>xes<br />

Assuming th<strong>at</strong> the distributions of stocks and mark<strong>et</strong> r<strong>et</strong>urns are asymptotically power laws (Longin<br />

(1996), Lux (1996), Pagan (1996) or Gopikrishnan, Meyer, Amaral, and Stanley (1998)), we now<br />

estim<strong>at</strong>e the tail in<strong>de</strong>x of the distribution of each stock and their corresponding residue by the factor<br />

mo<strong>de</strong>l, both for the positive and neg<strong>at</strong>ive tails. Each tail in<strong>de</strong>x α is given by Hill’s estim<strong>at</strong>or:<br />

ˆα =<br />

⎡<br />

⎣ 1<br />

k<br />

⎤<br />

k<br />

log xj,N − log xk,N⎦<br />

j=1<br />

−1<br />

, (21)<br />

where x1,N ≥ x2,N ≥ · · · ≥ xN,N <strong>de</strong>notes the or<strong>de</strong>red st<strong>at</strong>istics of the sample containing N in<strong>de</strong>pen<strong>de</strong>nt<br />

and i<strong>de</strong>ntically distributed realiz<strong>at</strong>ions of the variable X.<br />

Hill’s estim<strong>at</strong>or is asymptotically normally distributed with mean α and variance α 2 /k. But,<br />

for finite k, it is known th<strong>at</strong> the estim<strong>at</strong>or is biased. As the range k increases, the variance of the<br />

estim<strong>at</strong>or <strong>de</strong>creases while its bias increases. The comp<strong>et</strong>ition b<strong>et</strong>ween these two effects implies th<strong>at</strong><br />

there is an optimal choice for k = k ∗ which minimizes the mean squared error of the estim<strong>at</strong>or.<br />

To select this value k ∗ , one can apply the Danielsson and <strong>de</strong> Vries (1997)’s algorithm which is an<br />

improvement over the Hall (1990)’s subsample bootstrap procedure. One can also prefer the more<br />

recent Danielsson, <strong>de</strong> Haan, Peng, and <strong>de</strong> Vries (2001)’s algorithm for the sake of parsimony. We<br />

have tested all three algorithms to d<strong>et</strong>ermine the optimal k ∗ . It turns out th<strong>at</strong> the Danielsson,<br />

<strong>de</strong> Haan, Peng, and <strong>de</strong> Vries (2001)’s algorithm <strong>de</strong>veloped for high frequency d<strong>at</strong>a is not well<br />

adapted to samples containing less than 100,000 d<strong>at</strong>a points, as is the case here. Thus, we have<br />

focused on the two other algorithms. An accur<strong>at</strong>e d<strong>et</strong>ermin<strong>at</strong>ion of k ∗ is r<strong>at</strong>her difficult with any of<br />

12


312 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

them, but in every case, we found th<strong>at</strong> the relevant range for the tail in<strong>de</strong>x estim<strong>at</strong>ion was b<strong>et</strong>ween<br />

the 1% and 5% quantiles. Tables 3 and 4 give the estim<strong>at</strong>ed tail in<strong>de</strong>x for each ass<strong>et</strong> and residues<br />

<strong>at</strong> the 1%, 2.5% and 5% quantile, for both the positive and the neg<strong>at</strong>ive tails for the two time<br />

sub-intervals. The second time interval from January 1980 to December 2000 is characterized by<br />

values of the tail in<strong>de</strong>xes th<strong>at</strong> are homogeneous over the various quantiles and range b<strong>et</strong>ween 3 and<br />

4 for the neg<strong>at</strong>ive tails and b<strong>et</strong>ween 3 and 5 for the positive tails. There is slightly more dispersions<br />

in the first time interval from July 1962 to December 1979.<br />

For each ass<strong>et</strong> and their residue of the regression on the mark<strong>et</strong> factor, we tested wh<strong>et</strong>her the<br />

hypothesis, according to which the tail in<strong>de</strong>x measured for each ass<strong>et</strong> and each residue is the same<br />

as the tail in<strong>de</strong>x of the Standard & Poor’s 500 in<strong>de</strong>x, can be rejected <strong>at</strong> the 95% confi<strong>de</strong>nce level,<br />

for a given quantile. Before proceding with the present<strong>at</strong>ion of our tests, two cave<strong>at</strong>s have to<br />

be accounted for. First, due to the phenomenon of vol<strong>at</strong>ility clustering in financial time series,<br />

extremes are more likely to occur tog<strong>et</strong>her. In this situ<strong>at</strong>ion, Hill’s estim<strong>at</strong>or is no more normally<br />

distributed with variance α 2 /k. In fact, for weakly <strong>de</strong>pen<strong>de</strong>nt time series, it can only be asserted<br />

th<strong>at</strong> the estim<strong>at</strong>or remains consistent (see Rootzén and <strong>de</strong> Haan (1998)). Moreover, as shown by<br />

Kearns and Pagan (1997) for h<strong>et</strong>eroskedastic time series, the variance of the estim<strong>at</strong>ed tail in<strong>de</strong>x<br />

can be seven times larger than the variance given by the asymptic normality assumption. Second,<br />

the idiosyncr<strong>at</strong>ic noise is estim<strong>at</strong>ed by substracting β times the factor from the ass<strong>et</strong> r<strong>et</strong>urn. Thus,<br />

even when the factor and the error-term are in<strong>de</strong>pen<strong>de</strong>nt, the empirically estim<strong>at</strong>ed residues <strong>de</strong>pend<br />

on the realiz<strong>at</strong>ions of the factor. As a consequence, the tail in<strong>de</strong>x estim<strong>at</strong>ors for the factor and for<br />

the idiosyncr<strong>at</strong>ic noise are correl<strong>at</strong>ed. This correl<strong>at</strong>ion obviously <strong>de</strong>pends on the exact form of the<br />

distributions of the factor and the indiosyncr<strong>at</strong>ic noise. Even without the knowledge of the true<br />

test st<strong>at</strong>istics, for both problem<strong>at</strong>ic points, we can assert th<strong>at</strong> the fluctu<strong>at</strong>ions of the estim<strong>at</strong>ors<br />

are larger than those given by the asymptotically normal st<strong>at</strong>isics for i.i.d realiz<strong>at</strong>ions. Thus,<br />

performing the test un<strong>de</strong>r the asymptotic normality assumption is more constraining than un<strong>de</strong>r<br />

the true (but unknown) test st<strong>at</strong>istics, so th<strong>at</strong> the non-rejection of the equality hypothesis un<strong>de</strong>r<br />

the assumption of a normally distributed estim<strong>at</strong>or ensures th<strong>at</strong> we would not be able to reject this<br />

hypothesis un<strong>de</strong>r the real st<strong>at</strong>istics of the estim<strong>at</strong>or.<br />

The values which reject the equality hypothesis are indic<strong>at</strong>ed by a star in the tables 3 and 4. During<br />

the second time interval from January 1980 to December 2000, only four residues have a tail in<strong>de</strong>x<br />

significantly different from th<strong>at</strong> of th<strong>at</strong> Standard & Poor’s 500, and only in the neg<strong>at</strong>ive tail. The<br />

situ<strong>at</strong>ion is not as good during the first time interval, especially for the neg<strong>at</strong>ive tail, for which<br />

no less than 13 ass<strong>et</strong>s and 10 residues out of 20 have a tail in<strong>de</strong>x significantly different from the<br />

Standard & Poor’s 500 ones, for the 5% quantile. Recall th<strong>at</strong> the the equality tests have been<br />

performed un<strong>de</strong>r the assumption of a normally distributed estim<strong>at</strong>or with variance α 2 /k which, as<br />

explained above, is too strong an hypothesis. As a consequence, a rejection un<strong>de</strong>r the normality<br />

hypothesis does not imply necessarily th<strong>at</strong> the equality hypothesis would have been rejected un<strong>de</strong>r<br />

the true st<strong>at</strong>istics. While providing a note of caution, this st<strong>at</strong>ement is nevertheless not very useful<br />

from a practical point of view. More importantly, we stress th<strong>at</strong> the equality of the tail indices of<br />

the distribution of the factor and of the idiosyncr<strong>at</strong>ic noise is not crucial. In<strong>de</strong>ed, we shall propose<br />

below two different estim<strong>at</strong>ors for the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce. One of them does not rely on<br />

the equality of these two tail indices and thus remains oper<strong>at</strong>ional even when they are different<br />

and in particular when the tail in<strong>de</strong>x of the idiosyncr<strong>at</strong>ic noise appears larger than the tail of the<br />

factor.<br />

To summarize, our tests confirm th<strong>at</strong> the tail in<strong>de</strong>xes of most stock r<strong>et</strong>urn distributions range<br />

b<strong>et</strong>ween three and four, even though no b<strong>et</strong>ter precision can be given with good significance.<br />

Moreover, in most cases, we can assume th<strong>at</strong> both the ass<strong>et</strong>, the factor and the residue have the<br />

13


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 313<br />

same tail in<strong>de</strong>x. We can also add th<strong>at</strong>, as asserted by Lor<strong>et</strong>an and Phillips (1994) or Longin (1996),<br />

we cannot reject the hypothesis th<strong>at</strong> the tail in<strong>de</strong>x remains the same over time. Nevertheless, it<br />

seems th<strong>at</strong> during the first period from July 1962 to December 1979, the tail in<strong>de</strong>xes were sightly<br />

larger than during the second period from January 1980 to <strong>de</strong>cember 2000.<br />

3.4 D<strong>et</strong>ermin<strong>at</strong>ion of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce<br />

Using the just established empirical fact th<strong>at</strong> we cannot reject the hypothesis th<strong>at</strong> the ass<strong>et</strong>s, the<br />

mark<strong>et</strong> and the residues have the same tail in<strong>de</strong>x, we can use the theorem of Appendix A and<br />

its second corollary st<strong>at</strong>ed in section 2. This allows us to conclu<strong>de</strong> th<strong>at</strong> one cannot reject the<br />

hypothesis of a non-vanishing tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the ass<strong>et</strong>s and the mark<strong>et</strong>.<br />

In addition, the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce is given by equ<strong>at</strong>ions (12) and (13). These equ<strong>at</strong>ions<br />

provi<strong>de</strong> two ways for estim<strong>at</strong>ing the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce: non-param<strong>et</strong>ric with (12) and<br />

param<strong>et</strong>ric with (13). The first one is more general since it only requires the hypothesis of a regular<br />

vari<strong>at</strong>ion, while the second one explicitly assumes th<strong>at</strong> the factor and the residues have distributions<br />

with power law tails.<br />

To estim<strong>at</strong>e the tail <strong>de</strong>pen<strong>de</strong>nce according equ<strong>at</strong>ion (12), we need only to d<strong>et</strong>ermine the constant l<br />

<strong>de</strong>fined (8). Consi<strong>de</strong>r N sorted realiz<strong>at</strong>ions of X and Y <strong>de</strong>noted by x1,N ≥ x2,N ≥ · · · ≥ xN,N and<br />

y1,N ≥ y2,N ≥ · · · ≥ yN,N, the quantile of F −1<br />

−1<br />

X (u) and of FY (u) are estim<strong>at</strong>ed by<br />

−1 −1<br />

FX<br />

ˆ (u) = x[(1−u)·N],N and FY<br />

ˆ (u) = y[(1−u)·N],N, (22)<br />

where [·] <strong>de</strong>notes the integer part. Thus, the constant l is non-param<strong>et</strong>rically estim<strong>at</strong>ed by<br />

ˆ lk = xk,N<br />

yk,N<br />

as k → 0 or N. (23)<br />

As u goes to zero or one (or k goes to zero or N), the number of observ<strong>at</strong>ions <strong>de</strong>creases dram<strong>at</strong>ically.<br />

However, we observe a large interval of small or large k’s such th<strong>at</strong> the r<strong>at</strong>io of the empirical<br />

quantiles remains remarkably stable and thus allows for an accur<strong>at</strong>e estim<strong>at</strong>ion of l. A more<br />

precise estim<strong>at</strong>ion could be performed with a kernel-based quantile estim<strong>at</strong>or (see Shealter and<br />

Marron (1990) or Pagan and Ullah (1999) for instance). A non-param<strong>et</strong>ric estim<strong>at</strong>or for λ is then<br />

obtained by replacing l by its estim<strong>at</strong>ed value in equ<strong>at</strong>ion (12)<br />

ˆλNP =<br />

1<br />

<br />

max 1, ˆ 1<br />

α = <br />

l<br />

ˆβ max 1, xk,N<br />

α . (24)<br />

ˆβ·yk,N<br />

It can also be advantageous to follow a param<strong>et</strong>ric approach, which generally allows for a more<br />

accur<strong>at</strong>e estim<strong>at</strong>ion of (the r<strong>at</strong>io of) the quantiles, provi<strong>de</strong>d th<strong>at</strong> the assumed param<strong>et</strong>ric form of<br />

the distributions is not too far from the true one. For this purpose, we will use formula (13) which<br />

requires the estim<strong>at</strong>ion of the scale factors for the different ass<strong>et</strong>s. To g<strong>et</strong> the scale factors, we<br />

proceed as follows. Consi<strong>de</strong>r a variable X which asymptotically follows a power law distribution<br />

Pr{X > x} ∼ C · x −α . Given a rank or<strong>de</strong>red sample x1,N ≥ x2,N ≥ · · · ≥ xN,N, the scale factor C<br />

can be consistently estim<strong>at</strong>ed from the k largest realiz<strong>at</strong>ions by<br />

Ĉ = k<br />

N · (xk,N) α . (25)<br />

The estim<strong>at</strong>ed value of the scale factor must not <strong>de</strong>pends on the rank k for k large enough, in or<strong>de</strong>r<br />

for the param<strong>et</strong>eriz<strong>at</strong>ion of the distribution in terms of a power law to hold true. Thus, <strong>de</strong>noting<br />

14


314 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

by ĈY and Ĉε the estim<strong>at</strong>ed scale factors of the factor Y and of the noise ε <strong>de</strong>fined in equ<strong>at</strong>ion (6),<br />

the estim<strong>at</strong>or of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce is<br />

ˆλ =<br />

1<br />

1 + ˆ β −α · ĈY<br />

Ĉε<br />

=<br />

1 +<br />

1<br />

εk,N<br />

ˆβ·yk,N<br />

α , (26)<br />

where ˆ β <strong>de</strong>notes the estim<strong>at</strong>ed coefficient β. Since the estim<strong>at</strong>ors ĈY , Ĉε and ˆ β are consistent and<br />

using the continuous mapping theorem, we can assert th<strong>at</strong> the estim<strong>at</strong>or ˆ λ is also consistent.<br />

Since the tail indices α are impossible to d<strong>et</strong>ermine with sufficient accuracy other than saying th<strong>at</strong><br />

the α probably fall in the interval 3 − 4 as we have seen above, our str<strong>at</strong>egy is to d<strong>et</strong>ermine the<br />

coefficient of tail <strong>de</strong>pen<strong>de</strong>nce using (24) and (26) for three different common values α = 3, 3.5 and<br />

4. This procedure allows us to test for the sensitivity of the scale factor and therefore of the tail<br />

coefficient with respect to the uncertain value of the tail in<strong>de</strong>x.<br />

Tables 5 and 6 give the values of the coefficients of lower tail <strong>de</strong>pen<strong>de</strong>nce over the whole time<br />

interval from July 1962 to December 2000, un<strong>de</strong>r the assumption th<strong>at</strong> the tail in<strong>de</strong>x α equals 3,<br />

for the non-param<strong>et</strong>ric estim<strong>at</strong>or (table 5) and the param<strong>et</strong>ric one (table 6). For each table, the<br />

coefficient of tail <strong>de</strong>pen<strong>de</strong>nce is estim<strong>at</strong>ed over the first centile, the first quintile and the first <strong>de</strong>cile<br />

to also test for any possible sensitivity on the tail asymptotics. For each of these quantiles, the<br />

mean values, their standard <strong>de</strong>vi<strong>at</strong>ions and their minimum and maximum values are given. We<br />

first remark th<strong>at</strong> the standard <strong>de</strong>vi<strong>at</strong>ion of the tail <strong>de</strong>pen<strong>de</strong>nce coefficient remains small compared<br />

with its average value and th<strong>at</strong> the minimum and maximum values cluster closely around its mean<br />

value. This shows th<strong>at</strong> the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce is well-estim<strong>at</strong>ed by its mean over a given<br />

quantile. Secondly, we find th<strong>at</strong> these estim<strong>at</strong>ed coefficients of tail <strong>de</strong>pen<strong>de</strong>nce exhibit a good<br />

stability over the various quantiles. These two observ<strong>at</strong>ions enable us to conclu<strong>de</strong> th<strong>at</strong> the average<br />

coefficient of tail <strong>de</strong>pen<strong>de</strong>nce over the first centile is sufficient to provi<strong>de</strong> a good estim<strong>at</strong>e of the<br />

true coefficient of tail <strong>de</strong>pen<strong>de</strong>nce.<br />

Note th<strong>at</strong> the two estim<strong>at</strong>ors yield essentially equivalent results, even if the coefficients of tail<br />

<strong>de</strong>pen<strong>de</strong>nce given by the non-param<strong>et</strong>ric estim<strong>at</strong>or exhibit a system<strong>at</strong>ic ten<strong>de</strong>ncy to be slightly<br />

smaller than the estim<strong>at</strong>es provi<strong>de</strong>d by the param<strong>et</strong>ric estim<strong>at</strong>or. Since the results given by these<br />

two estim<strong>at</strong>ors are very close to each other, we choose to present below only those given by the<br />

param<strong>et</strong>ric one. This choice has also been gui<strong>de</strong>d by the lower sensibility of this last estim<strong>at</strong>or<br />

to small changes of the tail exponent α. In<strong>de</strong>ed, since the evalu<strong>at</strong>ion of the scale factors ĈY and<br />

Ĉε by the formula (25) involves the tail exponent α, the small <strong>de</strong>vi<strong>at</strong>ions from its true value are<br />

compens<strong>at</strong>ed by the estim<strong>at</strong>ed scale factors. This explains the observ<strong>at</strong>ion th<strong>at</strong> the param<strong>et</strong>ric<br />

estim<strong>at</strong>or appears more robust than the non-param<strong>et</strong>ric one with respect to small changes in α.<br />

Tables 7, 8 and 9 summarize the different values of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce for both the<br />

positive and the neg<strong>at</strong>ive tails, un<strong>de</strong>r the assumptions th<strong>at</strong> the tail in<strong>de</strong>x α equals 3, 3.5 and 4<br />

respectively, over the three consi<strong>de</strong>red time intervals. Overall, we find th<strong>at</strong> the coefficients of tail<br />

<strong>de</strong>pen<strong>de</strong>nce are almost equal for both the neg<strong>at</strong>ive and the positive tail and th<strong>at</strong> they are not very<br />

sensitive to the value of the tail in<strong>de</strong>x in the interval consi<strong>de</strong>red. More precisely, during the first<br />

time interval from July 1962 to December 1979 (table 7), the tail <strong>de</strong>pen<strong>de</strong>nce is symm<strong>et</strong>ric in both<br />

the upper and the lower tail. During the second time interval from January 1980 to December 2000<br />

and over the whole time interval (tables 8 and 9), the coefficient of lower tail <strong>de</strong>pen<strong>de</strong>nce is slightly<br />

but system<strong>at</strong>ically larger than the upper one. Moreover, since these coefficients of tail <strong>de</strong>pen<strong>de</strong>nce<br />

are all less than 1/2, they <strong>de</strong>crease when the tail in<strong>de</strong>x α increases and the smaller the coefficient<br />

of tail <strong>de</strong>pen<strong>de</strong>nce, the larger the <strong>de</strong>cay.<br />

During the first time interval, most of the coefficients of tail <strong>de</strong>pen<strong>de</strong>nce range b<strong>et</strong>ween 0.15 and<br />

15


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 315<br />

0.35 in both tails, while during the second time interval, almost all range b<strong>et</strong>ween 0.10 and 0.25 in<br />

the lower tail and b<strong>et</strong>ween 0.10 and 0.20 in the upper one. Thus, the tail <strong>de</strong>pen<strong>de</strong>nce is smaller<br />

during the last period compared to the first one. This result is interesting because it is in agreement<br />

and confirms the recent studies by Campbell, L<strong>et</strong>tau, Malkiel, and Xu (2001) and Xu and Malkiel<br />

(2002), showing th<strong>at</strong> the idiosyncr<strong>at</strong>ic vol<strong>at</strong>ility of each stocks have increased rel<strong>at</strong>ive to the mark<strong>et</strong><br />

vol<strong>at</strong>ility. And, as already discussed, the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce given by equ<strong>at</strong>ion (10) must<br />

<strong>de</strong>crease when the idiosynchr<strong>at</strong>ic vol<strong>at</strong>ility of the stocks increases rel<strong>at</strong>ive to the mark<strong>et</strong> vol<strong>at</strong>ility.<br />

The strong similarity of the tail <strong>de</strong>pen<strong>de</strong>ncies in the upper and lower tails is an interesting empirical<br />

finding which suggests th<strong>at</strong> extreme co-movements reflect behaviors of agents which are more<br />

sensitive to large amplitu<strong>de</strong>s r<strong>at</strong>her than to a specific direction (loss or gain). Pictorially, the<br />

specific mechanism triggering co-movements of extreme amplitu<strong>de</strong>s may well be different for losses<br />

compared to gains, such as fear for the former and greed for the l<strong>at</strong>ter, but the resulting large<br />

co-movements have similar frequencies of occurrence.<br />

The observed lack of st<strong>at</strong>ionarity of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce in the two time sub-intervals<br />

suggests th<strong>at</strong> it could be necessary to have a mo<strong>de</strong>l where the tail <strong>de</strong>pen<strong>de</strong>nce in<strong>de</strong>x is not constant<br />

but varies as a function of past shocks (just as the vol<strong>at</strong>ility varies with time in a GARCH mo<strong>de</strong>l)<br />

in or<strong>de</strong>r to investig<strong>at</strong>e wh<strong>et</strong>her large recent common shocks lead to higher future tail <strong>de</strong>pen<strong>de</strong>nce.<br />

This point is beyond the scope of the present study, but we will provi<strong>de</strong> in our concluding remarks<br />

some ways for explicitely accounting for this lack of st<strong>at</strong>ionarity.<br />

3.5 Comparison with the historical extremes<br />

Our d<strong>et</strong>ermin<strong>at</strong>ion of the coefficients of tail <strong>de</strong>pen<strong>de</strong>nce provi<strong>de</strong>s predictions on the probability<br />

th<strong>at</strong> future large moves of stocks may be simultaneous to large moves of the mark<strong>et</strong>. This begs for<br />

a check over the available historical period to d<strong>et</strong>ermine wh<strong>et</strong>her our estim<strong>at</strong>ed coefficients of tail<br />

<strong>de</strong>pen<strong>de</strong>nce are comp<strong>at</strong>ible with the realized historical extremes.<br />

For this, we consi<strong>de</strong>r the ten largest losses of the Standard & Poor’s 500 in<strong>de</strong>x during the two time<br />

sub-intervals5 . Since λ− is by <strong>de</strong>finition equal to the probability th<strong>at</strong> a given ass<strong>et</strong> incurs a large<br />

loss (say, one of its ten largest losses) conditional on the occurrence of one of the ten largest losses<br />

of the Standard & Poor’s 500 in<strong>de</strong>x, the probability, for this ass<strong>et</strong>, to un<strong>de</strong>rgo n of its ten largest<br />

losses simultaneously with any of the ten largest losses of the Standard & Poor’s 500 in<strong>de</strong>x is given<br />

by the binomial law with param<strong>et</strong>er λ−:<br />

Pλ− (n) =<br />

<br />

10<br />

λ−<br />

n<br />

n (1 − λ−) (10−n) . (27)<br />

We stress th<strong>at</strong> our consi<strong>de</strong>r<strong>at</strong>ion of only the ten largest drops ensures th<strong>at</strong> the present test is not<br />

embodied in the d<strong>et</strong>ermin<strong>at</strong>ion of the tail <strong>de</strong>pen<strong>de</strong>nce coefficient, which has been d<strong>et</strong>ermined on<br />

a robust procedure over the 1%, 5% and 10% quantiles. We checked th<strong>at</strong> removing these then<br />

largest drops does not modify the d<strong>et</strong>ermin<strong>at</strong>ion of λ−. Our present test can thus be consi<strong>de</strong>red as<br />

“out-of-sample,” in this sense.<br />

Table 10 presents, for the two time sub-intervals, the number of extreme losses among the ten<br />

largest losses incured by a given ass<strong>et</strong> which occured simultaneously with one of the ten largest<br />

losses of the standard & Poor’s 500 in<strong>de</strong>x. For each ass<strong>et</strong>, we give the probability of occurence of<br />

such a realis<strong>at</strong>ion, according to (27). We notice th<strong>at</strong> during the first time interval, only two ass<strong>et</strong>s<br />

5 We do not consi<strong>de</strong>r the whole time interval since the ten largest losses over the whole period coinci<strong>de</strong> with the<br />

ten largest ones over the second time subinterval, which would bias the st<strong>at</strong>istics towards the second time interval.<br />

16


316 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

are incomp<strong>at</strong>ible, <strong>at</strong> the 95% confi<strong>de</strong>nce level, with the value of λ− previously d<strong>et</strong>ermined: Du Pont<br />

(E.I.) <strong>de</strong> Nemours & Co. and Texas Instruments Inc. In contrast, during the second time interval,<br />

four ass<strong>et</strong>s reject the value of λ−: Coca Cola Corp., Pepsico Inc., Pharmicia Corp. and Texaco Inc.<br />

These results are very encouraging. However, there is a noticeable system<strong>at</strong>ic bias. In<strong>de</strong>ed, during<br />

the first time interval, 17 out of the 20 ass<strong>et</strong>s have a realized number of large losses lower than<br />

their expected number (according to the estim<strong>at</strong>ed λ−), while during the second time interval, 19<br />

out of the 20 ass<strong>et</strong>s have a realized number of large losses larger than their expected one. Thus, it<br />

seems th<strong>at</strong> during the first time interval the number of large losses is overestim<strong>at</strong>ed by λ− while it<br />

is un<strong>de</strong>restim<strong>at</strong>ed during the second time interval.<br />

We propose to explain the un<strong>de</strong>restim<strong>at</strong>ion of the number of large losses b<strong>et</strong>ween January 1980<br />

and December 2000 by a possible comonitonicity th<strong>at</strong> occurred during the October 1987 crash.<br />

In<strong>de</strong>ed, on October 19, 1987, 12 out of the 20 consi<strong>de</strong>red ass<strong>et</strong>s incurred their most severe loss,<br />

which strongly suggests a comonotonic effect. Table 11 shows the same results as in table 10 but<br />

corrected by substracting this comonotonic effect to the number of large losses. The comp<strong>at</strong>ibility<br />

b<strong>et</strong>ween the number of large losses and the estim<strong>at</strong>ed λ− becomes significantly b<strong>et</strong>ter since only<br />

Pepsico Inc. and Pharmicia Corp. are still rejected, and only 16 ass<strong>et</strong>s out of 20 are un<strong>de</strong>restim<strong>at</strong>ed,<br />

representing a slight <strong>de</strong>crease of the bias.<br />

Previous works have shown th<strong>at</strong>, in period of crashes, the mark<strong>et</strong> conditions change, herding effects<br />

may become more important and almost dominant, so th<strong>at</strong> the mark<strong>et</strong> enters an unusual regime,<br />

which can be characterized by outliers present in the distribution of drawdowns Johansen and<br />

Sorn<strong>et</strong>te (2002). Our d<strong>et</strong>ection of an anomalous comonotonicity can thus be consi<strong>de</strong>red as an<br />

in<strong>de</strong>pen<strong>de</strong>nt confirm<strong>at</strong>ion of the existence of this abnormal regime.<br />

Another explain<strong>at</strong>ion for this slight discrepancy may be ascribed to a limit<strong>at</strong>ion of the CAPM.<br />

In<strong>de</strong>ed, the CAPM is known to explain the rel<strong>at</strong>ion b<strong>et</strong>ween the expected r<strong>et</strong>urn on an ass<strong>et</strong> and<br />

its amount of system<strong>at</strong>ic risk. But, it is questionable wh<strong>et</strong>her extreme system<strong>at</strong>ic risks as those<br />

measured by the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce are really accounted for by the economic agents and<br />

then effectively priced.<br />

Concerning the overestim<strong>at</strong>ion of the number of large losses during the first time interval, it can<br />

obviously not be ascribed to the comonotonicity of very large events, which in fact only occurred<br />

once for the Coca-Cola Corp. This overestim<strong>at</strong>ion is probably linked with the low “vol<strong>at</strong>ility” of<br />

the mark<strong>et</strong> during this period, which can have two effects. The first one is to lead to a less accur<strong>at</strong>e<br />

estim<strong>at</strong>ion of the scale factor of the power-law distribution of the ass<strong>et</strong>s. The second one is th<strong>at</strong><br />

a mark<strong>et</strong> with smaller vol<strong>at</strong>ility produces fewer large losses. As a consequence, the asymptotic<br />

regime for which the rel<strong>at</strong>ion Pr{X < FX −1 (u)|Y < FY −1 (u)} λ− holds may not be reached<br />

in the sample, and the number of recor<strong>de</strong>d large losses remain lower than th<strong>at</strong> asymptotically<br />

expected.<br />

4 Concluding remarks<br />

We have used the framework offered by factor mo<strong>de</strong>ls in or<strong>de</strong>r to <strong>de</strong>rive a general theor<strong>et</strong>ical<br />

expression for the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween an ass<strong>et</strong> and any of its explan<strong>at</strong>ory factor<br />

or b<strong>et</strong>ween any two ass<strong>et</strong>s. The coefficient of tail <strong>de</strong>pen<strong>de</strong>nce represents the probability th<strong>at</strong> a given<br />

ass<strong>et</strong> incurs a large loss (say), assuming th<strong>at</strong> the mark<strong>et</strong> (or another ass<strong>et</strong>) has also un<strong>de</strong>rgone a<br />

large loss. We find th<strong>at</strong> factors characterized by rapidly varying distributions, such as Normal<br />

or exponential distributions, always lead to a vanishing coefficient of tail <strong>de</strong>pen<strong>de</strong>nce with other<br />

17


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 317<br />

stocks. In contrast, factors with regularly varying distributions, such as power-law distributions,<br />

can exhibit tail <strong>de</strong>pen<strong>de</strong>nce with other stocks, provi<strong>de</strong>d th<strong>at</strong> the idiosyncr<strong>at</strong>ic noise distributions<br />

of the corresponding stocks are not f<strong>at</strong>ter-tailed than the factor.<br />

Applying this general result to individual daily stock r<strong>et</strong>urns, we have been able to estim<strong>at</strong>e the<br />

coefficient of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the r<strong>et</strong>urns of each stock and those of the mark<strong>et</strong>. This<br />

d<strong>et</strong>ermin<strong>at</strong>ion of the tail <strong>de</strong>pen<strong>de</strong>nce relies only on the simple estim<strong>at</strong>ion of the param<strong>et</strong>ers of the<br />

un<strong>de</strong>rlying factor mo<strong>de</strong>l and on the tail param<strong>et</strong>ers of the distribution of the factor and of the<br />

idiosyncr<strong>at</strong>ic noise of each stock. As a consequence, the two strong advantages of our approach are<br />

the following.<br />

- The coefficients of tail <strong>de</strong>pen<strong>de</strong>nce are estim<strong>at</strong>ed non-param<strong>et</strong>rically. In<strong>de</strong>ed, we never specify<br />

any explicit expression of the <strong>de</strong>pen<strong>de</strong>nce structure, contrary to most previous works (see<br />

Longin and Solnik (2001), Malevergne and Sorn<strong>et</strong>te (2001) or P<strong>at</strong>ton (2001) for instance);<br />

- Our theor<strong>et</strong>ical result enables us to estim<strong>at</strong>e an extreme param<strong>et</strong>er, not accessible by a direct<br />

st<strong>at</strong>istical inference. This is achieved by the measurement of param<strong>et</strong>ers whose estim<strong>at</strong>ion<br />

involves a significant part of the d<strong>at</strong>a with sufficient st<strong>at</strong>istics.<br />

Having performed this estim<strong>at</strong>ion, we have checked the compt<strong>at</strong>ibility of these estim<strong>at</strong>ed coefficients<br />

of tail <strong>de</strong>pen<strong>de</strong>nce with the historically realized extreme losses observed in the empirical time<br />

series. A good agreement is found, notwithstanding a slight bias which leads to an overestim<strong>at</strong>e<br />

of the occurence of large events during the period from July 1962 to December 1979 and to an<br />

un<strong>de</strong>restim<strong>at</strong>e during the time interval from January 1980 to December 2000.<br />

This bias can be explained by the low vol<strong>at</strong>ility of the mark<strong>et</strong> during the first period and by a<br />

comonotonicity effect, due to the October 1987 crach, during the second period. In<strong>de</strong>ed, from july<br />

1962 to December 1979, the vol<strong>at</strong>ility was so low th<strong>at</strong> the distributions of r<strong>et</strong>urns have probably not<br />

sampled their tails sufficiently for the probability of large conditional losses to be represented by<br />

its asymptotic expression given by the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce. The situ<strong>at</strong>ion is very different<br />

for the period from january 1980 to December 2000. On October 19, 1987, many ass<strong>et</strong>s incurred<br />

their largest loss ever. This is presumably the manifest<strong>at</strong>ion of an ‘abnormal’ regime probably<br />

due to herding effects and irr<strong>at</strong>ional behaviors and has been previously characterized as yielding<br />

sign<strong>at</strong>ures in the form of outliers in the distribution of drawdowns.<br />

Finally, the observed lack of st<strong>at</strong>ionarity exhibited by the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce across the<br />

two time sub-intervals suggests the importance of going beyond a st<strong>at</strong>ionary view of tail <strong>de</strong>pen<strong>de</strong>nce<br />

and of studying its dynamics. This question, which could be of gre<strong>at</strong> interest in the context of the<br />

contagion problem, could be easily tre<strong>at</strong>ed with the new conditional quantile dynamics proposed<br />

by Engle and Manganelli (1999). Moreover, it should be interesting to account for the change of<br />

the β’s with incoming bad or good news, as shown by Cho and Engle (2000), for instance. These<br />

points are left for a future work.<br />

From a practical point of view, we stress th<strong>at</strong> the coefficient λ studied here can be seen as a<br />

generaliz<strong>at</strong>ion or a tool complementary to the CAPM’s β. These two coefficients have in common<br />

th<strong>at</strong> they probe the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween a given stock and the mark<strong>et</strong>. However, the coefficient β<br />

quantifies only the correl<strong>at</strong>ions b<strong>et</strong>ween mo<strong>de</strong>r<strong>at</strong>e movements of both an ass<strong>et</strong> and the mark<strong>et</strong>. In<br />

contrast, the coefficient λ offers a measure of extreme co-movements, which is particularly useful<br />

in period of high mark<strong>et</strong> vol<strong>at</strong>ility. In such periods, a pru<strong>de</strong>nt fund manager should overweight its<br />

portofolio with ass<strong>et</strong>s whose λ is very small such as Texaco or Walgreen, for instance.<br />

Moreover, the observed <strong>de</strong>crease of the tail <strong>de</strong>pen<strong>de</strong>nce during the last year concomitant with the<br />

18


318 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

increase of the idiosyncr<strong>at</strong>ic vol<strong>at</strong>ility suggests th<strong>at</strong> the main source of risk in such a period does<br />

not consist in the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s but r<strong>at</strong>her in their instrinsic fluctu<strong>at</strong>ions measured<br />

by the idiosyncr<strong>at</strong>ic volality.<br />

Our study has focused on the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween different risks. In fact, our theorem can obviously<br />

be applied to extreme temporal <strong>de</strong>pen<strong>de</strong>nces, when the variable follows an autoregressive process.<br />

This should provi<strong>de</strong> an estim<strong>at</strong>e of the probability th<strong>at</strong> a large loss (respectively gain) is followed<br />

by another large loss (resp. gain) in the following period. Such inform<strong>at</strong>ion is very interesting in<br />

investment and hedging str<strong>at</strong>egies.<br />

19


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 319<br />

A Proof of the theorem<br />

A.1 Tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween an ass<strong>et</strong> and the factor<br />

A.1.1 St<strong>at</strong>ement<br />

We consi<strong>de</strong>r two random variables X and Y , rel<strong>at</strong>ed by the rel<strong>at</strong>ion<br />

X = β · Y + ε, (28)<br />

where ε is a random variable in<strong>de</strong>pen<strong>de</strong>nt of Y and β a non-random positive coefficient.<br />

L<strong>et</strong> PY and FY <strong>de</strong>note respectively the <strong>de</strong>nsity with respect to the Lebesgue measure and the<br />

distribution function of the variable Y . L<strong>et</strong> FX <strong>de</strong>notes the distribution function of X and Fε the<br />

distribution function of ε. We st<strong>at</strong>e the following theorem:<br />

Theorem 1<br />

Assuming th<strong>at</strong><br />

H0: The variables Y and ε have distribution functions with infinite support,<br />

H1: For all x ∈ [1, ∞),<br />

lim<br />

t→∞<br />

t PY (tx)<br />

¯<br />

FY (t)<br />

= f(x), (29)<br />

H2: There are real numbers t0 > 0, δ > 0 and A > 0, such th<strong>at</strong> for all t ≥ t0 and all x ≥ 1<br />

H3: There is a constant l ∈ R+, such th<strong>at</strong><br />

¯FY (tx)<br />

¯FY (t)<br />

then, the coefficient of (upper) tail <strong>de</strong>pen<strong>de</strong>nce of (X, Y ) is given by<br />

A.1.2 Proof<br />

λ =<br />

A<br />

≤ , (30)<br />

xδ FX<br />

lim<br />

u→1<br />

−1 (u)<br />

FY −1 = l, (31)<br />

(u)<br />

∞<br />

max{1, l<br />

β }<br />

dx f(x). (32)<br />

We first give a general expression for the probability for X to be larger than F −1<br />

X (u) knowing th<strong>at</strong><br />

(u) :<br />

Y is larger than F −1<br />

Y<br />

Lemma 1<br />

The probability th<strong>at</strong> X is larger than F −1<br />

−1<br />

X (u) knowing th<strong>at</strong> Y is larger than FY (u) is given by :<br />

Pr X > F −1<br />

−1<br />

X (u)|Y > FY (u) =<br />

F −1<br />

Y (u)<br />

1 − u<br />

∞<br />

dx PY<br />

1<br />

20<br />

−1<br />

FY (u) x · ¯ <br />

Fε FX −1 (u) − βF −1<br />

Y (u) x .<br />

(33)


320 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Proof :<br />

Pr{X > FX −1 (u), Y > FY −1 (u)} =<br />

<br />

E 1 {X>FX −1 (u)} · 1 {Y >FY −1 <br />

(u)}<br />

<br />

= E E 1 {X>FX −1 (u)} · 1 {Y >FY −1 (u)} |Y<br />

<br />

<br />

= E 1 {Y >FY −1 <br />

(u)} · E 1 {X>FX −1 (u)} |Y<br />

<br />

<br />

= E 1 {Y >FY −1 <br />

(u)} · E 1 {ε>FX −1 <br />

=<br />

(u)−βY }<br />

<br />

E 1 {Y >FY −1 (u)} · ¯ Fε(FX −1 <br />

(u) − βY )<br />

Assuming th<strong>at</strong> the variable Y admits a <strong>de</strong>nsity PY with respect to the Lebesgue measure, this<br />

yields<br />

Pr{X > FX −1 (u), Y > FY −1 ∞<br />

(u)} =<br />

F −1<br />

Y (u)<br />

(34)<br />

(35)<br />

(36)<br />

(37)<br />

(38)<br />

dy PY (y) · ¯ Fε[FX −1 (u) − βy] . (39)<br />

Performing the change of variable y = FY −1 (u) · x, in the equ<strong>at</strong>ion above, we obtain<br />

Pr{X > FX −1 (u), Y > FY −1 (u)} = F −1<br />

Y (u)<br />

∞<br />

1<br />

dx PY (F −1<br />

and, dividing by ¯<br />

<br />

FY FY −1 (u) = 1 − u, this conclu<strong>de</strong>s the proof. <br />

L<strong>et</strong> us now <strong>de</strong>fine the function<br />

fu(x) =<br />

We can st<strong>at</strong>e the following result<br />

−1<br />

FY (u)<br />

1 − u PY (F −1<br />

Y (u) x) · ¯ Fε[FX −1 (u) − βF −1<br />

Y<br />

Lemma 2<br />

Un<strong>de</strong>r assumption H1 and H3, for all x ∈ [1, ∞),<br />

almost everywhere, as u goes to 1.<br />

fu(x) −→ 1x> l<br />

Proof: L<strong>et</strong> us apply the assumption H1. We have<br />

lim<br />

u→1<br />

F −1<br />

Y (u)<br />

Applying now the assumption H3, we have<br />

lim<br />

u→1 FX −1 (u) − βF −1<br />

Y<br />

Y (u) x) · ¯ Fε[FX −1 (u) − βF −1<br />

Y<br />

(u) x] ,<br />

(40)<br />

(u) x] . (41)<br />

β · f(x), (42)<br />

1 − u PY (F −1<br />

Y (u) x) =<br />

t PY (t x)<br />

lim<br />

t→∞ FY<br />

¯<br />

,<br />

(t)<br />

(43)<br />

= f(x). (44)<br />

(u) x = lim<br />

=<br />

21<br />

u→1<br />

βF −1<br />

Y (u)<br />

<br />

−∞ if x > l<br />

β ,<br />

∞ if x < l<br />

β ,<br />

FX −1 (u)<br />

βF −1 − x<br />

Y (u)<br />

<br />

(45)<br />

(46)<br />

(47)


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 321<br />

which gives<br />

and finally<br />

lim<br />

u→1<br />

lim<br />

u→1 fu(x) = lim<br />

u→1<br />

= 1x> l<br />

which conclu<strong>de</strong>s the proof. <br />

¯Fε[FX −1 (u) − βF −1<br />

β Y (u) x] = 1x><br />

l , (48)<br />

F −1<br />

Y (u)<br />

1 − u PY (F −1<br />

Y (u) x) · lim ¯Fε[FX<br />

u→1<br />

−1 (u) − βF −1<br />

Y (u) x], (49)<br />

β · f(x), (50)<br />

L<strong>et</strong> us now prove th<strong>at</strong> there exists an integrable function g(x) such th<strong>at</strong>, for all t ≥ t0 and all x ≥ 1,<br />

we have ft(x) ≤ g(x). In<strong>de</strong>ed, l<strong>et</strong> us write<br />

t PY (tx)<br />

¯FY (t) = t PY (tx)<br />

¯FY (tx) · ¯ FY (tx)<br />

¯FY (t)<br />

For the leftmost factor in the right-hand-si<strong>de</strong> of equ<strong>at</strong>ion (51), we easily obtain<br />

∀t, ∀x ≥ 1,<br />

t PY (tx)<br />

¯FY (tx) ≤ x∗ PY (x ∗ )<br />

¯FY (x ∗ )<br />

. (51)<br />

· 1<br />

, (52)<br />

x<br />

where x∗ <strong>de</strong>notes the point where the function x PY (x)<br />

¯FY<br />

reaches its maximum. The rightmost factor<br />

(x)<br />

in the right-hand-si<strong>de</strong> of (51) is smaller than A/xδ by assumption H2, so th<strong>at</strong><br />

Posing<br />

∀t ≥ t0, ∀x ≥ 1,<br />

t PY (tx)<br />

¯FY (t) ≤ x∗ PY (x ∗ )<br />

¯FY (x ∗ )<br />

g(x) = x∗ PY (x ∗ )<br />

¯FY (x ∗ )<br />

· A<br />

. (53)<br />

x1+δ · A<br />

, (54)<br />

x1+δ and recalling th<strong>at</strong>, for all ε ∈ R, ¯ Fε(ε) ≤ 1, we have found an integrable function such th<strong>at</strong> for<br />

some u0 ≥ 0, we have<br />

∀u ∈ [u0, 1), ∀x ≥ 1, fu(x) ≤ g(x) . (55)<br />

Thus, applying Lebesgue’s theorem of domin<strong>at</strong>ed convergence, we can assert th<strong>at</strong><br />

∞<br />

∞<br />

lim dx fu(x) = dx 1x> u→1 1<br />

1<br />

l β · f(x). (56)<br />

Since<br />

lim<br />

u→1<br />

∞<br />

the proof of theorem 1 is conclu<strong>de</strong>d. <br />

1<br />

dx fu(x) = lim Pr<br />

u→1 X > F −1<br />

−1<br />

X (u)|Y > FY (u) , (57)<br />

= λ, (58)<br />

Remark: This result still holds in the presence of <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the factor and the idiosyncr<strong>at</strong>ic<br />

noise. In<strong>de</strong>ed, <strong>de</strong>noting by ¯ Fε|Y the survival distribution of ε conditional on Y , lemma 1 can<br />

easily be generalized:<br />

Pr X > F −1<br />

−1<br />

X (u)|Y > FY (u) =<br />

F −1<br />

Y (u)<br />

1 − u<br />

∞<br />

dx PY<br />

1<br />

22<br />

F −1<br />

Y (u) x · ¯ F −1<br />

ε|Y =FY (u) x<br />

FX −1 (u) − βF −1<br />

Y (u) x ,<br />

(59)


322 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

where the only change in (59) compared to (33) is to replace ¯ Fε(·) by ¯ F −1<br />

ε|Y =FY (u) x(·). L<strong>et</strong> us<br />

now assume th<strong>at</strong> the function ¯ Fε|Y =y(x) admits a uniform limit when x and y tend to ±∞. Then,<br />

equ<strong>at</strong>ion (48) still holds and lemma 2 remains true.<br />

As an example, l<strong>et</strong> F <strong>de</strong>note any one-dimensional distribution fonction. Then, one can easily check<br />

th<strong>at</strong>, for any conditional distribution whose form is<br />

¯F ε|Y =y(x) = ¯ <br />

y2 F x , (60)<br />

+ y2<br />

the uniform limit condition is s<strong>at</strong>isfied and theorem 1 and lemma 2 still hold. In contrast, conditional<br />

distributions of the form<br />

¯F ε|Y =y(x) = ¯ F (x − ρy) (61)<br />

do not fulfill the uniform limit condition, so th<strong>at</strong> the result given by theorem 1 does not hold.<br />

The full un<strong>de</strong>rstanding of the impact of more general <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween the factor and the<br />

idiosyncr<strong>at</strong>ic noise on the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce requires a full-fledge investig<strong>at</strong>ion th<strong>at</strong> we<br />

<strong>de</strong>fer to a future work. Our goal here has been to show th<strong>at</strong> one can reasonably expect our results<br />

to survice in the presence of weak <strong>de</strong>pen<strong>de</strong>nce.<br />

A.2 Tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two ass<strong>et</strong>s<br />

A.2.1 St<strong>at</strong>ement<br />

We consi<strong>de</strong>r three random variables X1, X2 and Y , rel<strong>at</strong>ed by the rel<strong>at</strong>ions<br />

y 2 0<br />

X1 = β1 · Y + ε1 (62)<br />

X2 = β2 · Y + ε2, (63)<br />

where ε1 and ε2 are two random variables in<strong>de</strong>pen<strong>de</strong>nt of Y and β1, β2 two non-random positive<br />

coefficients.<br />

L<strong>et</strong> PY and FY <strong>de</strong>note respectively the <strong>de</strong>nsity with respect to the Lebesgue measure and the<br />

distribution function of the variable Y . L<strong>et</strong> F1, (resp. F2) <strong>de</strong>notes the distribution function of<br />

X1 (resp. X2) and Fε1 (resp. Fε2 ) the marginal distribution function of ε1 (resp. ε2). L<strong>et</strong> Fε1,ε2<br />

<strong>de</strong>notes the joined distribution of (ε1, ε2). We st<strong>at</strong>e the following theorem:<br />

Theorem 2<br />

Assuming th<strong>at</strong><br />

H0: The variables Y , ε1 and ε2 have distribution functions with infinite support,<br />

H1: For all x ∈ [1, ∞),<br />

lim<br />

t→∞<br />

t PY (tx)<br />

¯<br />

FY (t)<br />

= f(x), (64)<br />

H2: There are real numbers t0 > 0, δ > 0 and A > 0, such th<strong>at</strong> for all t ≥ t0 and all x ≥ 1<br />

¯FY (tx)<br />

¯FY (t)<br />

23<br />

A<br />

≤ , (65)<br />


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 323<br />

H3: There is two constant (l1, l2) ∈ R+ × R+, such th<strong>at</strong><br />

F1<br />

lim<br />

u→1<br />

−1 (u)<br />

FY −1 (u) = l1,<br />

F2<br />

and lim<br />

u→1<br />

−1 (u)<br />

FY −1 (u) = l2, (66)<br />

then, the coefficient of (upper) tail <strong>de</strong>pen<strong>de</strong>nce of (X, Y ) is given by<br />

A.2.2 Proof<br />

λ =<br />

∞<br />

maxl 1<br />

β1 , l 2<br />

β2 dx f(x). (67)<br />

We first give a general expression for the probability for X to be larger than F −1<br />

X (u) knowing th<strong>at</strong><br />

(u) :<br />

Y is larger than F −1<br />

Y<br />

Lemma 3<br />

The probability th<strong>at</strong> X is larger than F −1<br />

X<br />

F −1<br />

Y (u)<br />

<br />

1 − u<br />

dx PY<br />

−1<br />

(u) knowing th<strong>at</strong> Y is larger than F (u) is given by :<br />

Pr X > F −1<br />

−1<br />

X (u)|Y > FY (u) =<br />

−1<br />

FY (u) x · ¯ <br />

Fε1,ε2 F1 −1 (u) − β1F −1<br />

Y (u) x, F2 −1 (u) − β1F −1<br />

Y (u) x . (68)<br />

Proof : The proof is the same for lemma 1. <br />

L<strong>et</strong> us now <strong>de</strong>fine the function<br />

F −1<br />

Y (u)<br />

fu(x) =<br />

1 − u PY (F −1<br />

We can st<strong>at</strong>e the following result<br />

Lemma 4<br />

Un<strong>de</strong>r assumption H1 and H3, for all x ∈ [1, ∞),<br />

almost everywhere, as u goes to 1.<br />

Y (u) x) · ¯ Fε1,ε2 [F1 −1 (u) − β1F −1<br />

Y (u) x, F2 −1 (u) − β2F −1<br />

Y<br />

fu(x) −→ 1x>maxl 1<br />

β1 , l 2<br />

Proof: Applying the assumption H3, we have<br />

and<br />

lim<br />

u→1 F1 −1 (u) − β1F −1<br />

Y<br />

lim<br />

u→1 F2 −1 (u) − β2F −1<br />

Y<br />

(u) x = lim<br />

=<br />

u→1<br />

(u) x = lim<br />

=<br />

Y<br />

(u) x] . (69)<br />

β2 · f(x), (70)<br />

β1F −1<br />

Y (u)<br />

<br />

−∞ if x > l1<br />

β1 ,<br />

∞ if x < l1<br />

β1 ,<br />

u→1<br />

β2F −1<br />

Y (u)<br />

<br />

−∞ if x > l2<br />

β2 ,<br />

∞ if x < l2<br />

β2 ,<br />

24<br />

F1 −1 (u)<br />

β1F −1 − x<br />

Y (u)<br />

F2 −1 (u)<br />

β2F −1 − x<br />

Y (u)<br />

<br />

<br />

(71)<br />

(72)<br />

(73)<br />

(74)<br />

(75)<br />

(76)


324 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

which give<br />

lim ¯Fε1,ε2<br />

u→1<br />

[F1 −1 (u) − β1F −1<br />

Y (u) x, F2 −1 (u) − β2F −1<br />

Y (u) x] = 1x>maxl 1 , β1 l2 and following the same calcul<strong>at</strong>ions as in part A.1, it conclu<strong>de</strong>s the proof. <br />

β2 , (77)<br />

We can now apply Lebesgue’s theorem of domin<strong>at</strong>ed convergence (see part A.1 for the justific<strong>at</strong>ion),<br />

which allows us to assert th<strong>at</strong><br />

<br />

<br />

lim dx fu(x) =<br />

u→1<br />

Since<br />

<br />

lim<br />

u→1<br />

the proof of theorem 2 is conclu<strong>de</strong>d. <br />

dx 1x>maxl 1 , β1 l β2 2 · f(x). (78)<br />

dx fu(x) = lim<br />

u→1 Pr X1 > F −1<br />

1 (u)|X2 > F −1<br />

2 (u) , (79)<br />

= λ, (80)<br />

25


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 325<br />

B Proofs of the corollaries<br />

B.1 First corollary<br />

Corollary 1<br />

If the random variable Y has a rapidly varying distribution function, then λ = 0.<br />

Proof : L<strong>et</strong> us write<br />

For a rapidly varying function ¯ FY , we have<br />

t PY (tx)<br />

FY<br />

¯ (t) = t PY (tx)<br />

¯<br />

FY (tx)<br />

∀x > 1, lim<br />

t→∞<br />

FY (tx)<br />

FY (t)<br />

¯<br />

·<br />

¯<br />

¯FY (tx)<br />

¯FY (t)<br />

. (81)<br />

= 0, (82)<br />

while the leftmost factor of the right-hand-si<strong>de</strong> of equ<strong>at</strong>ion (81) remains boun<strong>de</strong>d as t goes to<br />

infinity, so th<strong>at</strong><br />

t PY (tx) FY<br />

¯ (tx)<br />

lim<br />

t→∞ FY<br />

¯<br />

·<br />

(tx) FY<br />

¯<br />

= f(x) = 0 . (83)<br />

(t)<br />

Since f(x) = 0, we can apply lemma 2 without the hypothesis H3, which conclu<strong>de</strong>s the proof. <br />

B.2 Second corollary<br />

Corollary 2<br />

L<strong>et</strong> Y be regularly varying with in<strong>de</strong>x (−α), and assume th<strong>at</strong> hypothesis H3 is s<strong>at</strong>isfied. Then, the<br />

coefficient of (upper) tail <strong>de</strong>pen<strong>de</strong>nce is<br />

λ =<br />

1<br />

<br />

max<br />

1, l<br />

β<br />

where l <strong>de</strong>notes the limit, when u → 1, of the r<strong>at</strong>io FX −1 (u)/FY −1 (u).<br />

α , (84)<br />

Proof : Karam<strong>at</strong>a’s theorem (see Embrechts, Kluppelberg, and Mikosh (1997, p 567)) ensures th<strong>at</strong><br />

H1 is s<strong>at</strong>isfied with f(x) = α<br />

xα+1 , which is sufficient to prove the corollary. To go one step further,<br />

l<strong>et</strong> us <strong>de</strong>fine<br />

where L1(·) and L2(·) are slowly varying functions.<br />

¯Fy(y) = y −α · L1(y), (85)<br />

¯Fε(ε) = ε −α · L2(ε), (86)<br />

Using the proposition st<strong>at</strong>ed in Feller (1971, p 278), we obtain, for the distribution of the variable<br />

X<br />

¯FX(x) ∼ x −α<br />

<br />

β α for large x.<br />

<br />

x<br />

· L1 + L2(x) ,<br />

β<br />

(87)<br />

Assuming now, for simplicity, th<strong>at</strong> L1 (resp. L2) goes to a constant C1 (resp. C2), this implies th<strong>at</strong><br />

H3 is s<strong>at</strong>istified, since<br />

FX<br />

l = lim<br />

u→1<br />

−1 (u)<br />

FY −1 <br />

= β 1 +<br />

(u) C2<br />

βα 1<br />

α<br />

C1<br />

This allows us to obtain the equ<strong>at</strong>ions (10) and (13). <br />

26<br />

. (88)


326 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

References<br />

Bigham, N.H., C.M. Goldie, and J.L. Teugel, 1987, Regular Vari<strong>at</strong>ion. (Cambridge university press<br />

Cambridge).<br />

Bouchaus, J.P., D. Sorn<strong>et</strong>te, C. Walter and J.P. Aguilar, 1998, Taming large events: Optimal<br />

portfolio theory for strongly fluctu<strong>at</strong>ing ass<strong>et</strong>s, Intern<strong>at</strong>ional Journal of Theor<strong>et</strong>ical and Applied<br />

Finance, 1, 25-41.<br />

Boyer, B.H., M.S. Gibson, and M. Laur<strong>et</strong>an, 1997, Pitfalls in tests for changes in correl<strong>at</strong>ions,<br />

Working paper, Intern<strong>at</strong>ional Finance Discussion Paper 597, Board of the Governors of the<br />

Fe<strong>de</strong>ral Reserve System.<br />

Brennan, M.J., and E.J. Schwarz, 1978, A continuous time approach to the pricing of bonds,<br />

Journal of Banking and Finance 3, 133–155.<br />

Campbell, J.Y., M. L<strong>et</strong>tau, B. G. Malkiel, and Y. Xu, 2001, Have individual stocks become more<br />

vol<strong>at</strong>ile? An empirical explor<strong>at</strong>ion of idiosyncr<strong>at</strong>ic risk, Journal of Finance 56, 1–43.<br />

Carey, M., 1998, Credit risk in priv<strong>at</strong>e <strong>de</strong>bt portfolio, Journal of Finance 53, 56–61.<br />

Cho, Y.-H., and R.F. Engle, 2000, Time-varying b<strong>et</strong>as and asymm<strong>et</strong>ric effects of news : empirical<br />

analysis of blue chip stocks, Working paper, University of California, San Diego.<br />

Coles, S., J. Heffernan, and J. Tawn, 1999, Depen<strong>de</strong>nce measures for extreme value analyses,<br />

Extremes 2, 339–365.<br />

Cox, J.C, J.E. Ingersoll, and S.A. Ross, 1985, A theory of the term structure of interest r<strong>at</strong>es,<br />

Econom<strong>et</strong>rica 51, 385–408.<br />

Danielsson, J., L. <strong>de</strong> Haan, L. Peng, and C.G. <strong>de</strong> Vries, 2001, Using a bootstrap m<strong>et</strong>hod to choose<br />

the optimal sample fraction in tail in<strong>de</strong>x estim<strong>at</strong>ion, Journal of Multivari<strong>at</strong>e analysis 76, 226–248.<br />

Danielsson, J., and C.G. <strong>de</strong> Vries, 1997, Tail in<strong>de</strong>x and quantile estim<strong>at</strong>ion with very high frequency<br />

d<strong>at</strong>a, Journal of Empirical Finance 4, 241–257.<br />

<strong>de</strong> Haan, L., S.I. Resnick, H. Rootzen, and C.G. <strong>de</strong> Vries, 1989, Extremal behaviour of solutions to<br />

a stochastic difference equ<strong>at</strong>ion with applic<strong>at</strong>ion to ARCH processes, Stochastic Processes and<br />

their Applic<strong>at</strong>ions 32, 213–224.<br />

Embrechts, P., C.P. Kluppelberg, and T. Mikosh, 1997, Mo<strong>de</strong>lling Extremal Events. (Springer-<br />

Verlag Berlin).<br />

Embrechts, P., A.J. McNeil, and D. Straumann, 1999, Correl<strong>at</strong>ion: Pitfalls and Altern<strong>at</strong>ives, Risk<br />

pp. 69–71.<br />

Embrechts, P., A.J. McNeil, and D. Straumann, 2001, Correl<strong>at</strong>ion and Depen<strong>de</strong>ncy in Risk Management:<br />

Properties and Pitfalls, in M. Dempster, eds.: Value <strong>at</strong> Risk and Beyond (Cambridge<br />

University Press, ).<br />

Engle, R.F., and S. Manganelli, 1999, CAViaR: Conditional autoregressive Value-<strong>at</strong>-Risk by regression<br />

quantiles, Working paper, University of California, San Diego.<br />

Fama, E., and J. Mc B<strong>et</strong>h, 1973, Risk, r<strong>et</strong>urn and equilibrium: empirical tests, Journal of Political<br />

Economy 81, 607–636.<br />

27


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 327<br />

Feller, W., 1971, An introduction to probability theory and its applic<strong>at</strong>ions II. (Wiley New-York).<br />

Frees, E., and E. Val<strong>de</strong>z, 1998, Un<strong>de</strong>rstanding rel<strong>at</strong>ionships using copulas, North Americam Actuarial<br />

Journal 2, 1–25.<br />

Gopikrishnan, P., M. Meyer, L.A.N. Amaral, and H.E. Stanley, 1998, Inverse Cubic Law for the<br />

Distribution of Stock Price Vari<strong>at</strong>ions, European Physical Journal B 3, 139 –140.<br />

Gorby, M.B., 2000, A compar<strong>at</strong>ive an<strong>at</strong>omy of credit risk mo<strong>de</strong>ls, Journal of Banking and Finance<br />

24, 119–149.<br />

Hall, P., 1990, Using the bootstrap m<strong>et</strong>hod to estim<strong>at</strong>e mean squared error and select smoothing<br />

param<strong>et</strong>er in non param<strong>et</strong>ric problems, Journal of Multivari<strong>at</strong>e Analysis 32, 177–203.<br />

Joe, H., 1997, Multivari<strong>at</strong>e mo<strong>de</strong>ls and <strong>de</strong>pen<strong>de</strong>nce concepts. (Chapman & Hall London).<br />

Johansen, A., and D. Sorn<strong>et</strong>te, 2002, Large stock mark<strong>et</strong> price drawdowns are outliers, Journal of<br />

Risk 4, 69–110.<br />

Jones, C.P., and J.W.Wilson, 1989, Is stock price vol<strong>at</strong>ility increasing?, Financial Analysts Journal<br />

45, 20–26.<br />

Kan<strong>de</strong>l, S., and R. Staumbaugh, 1987, On correl<strong>at</strong>ions and the sensitivity of inference about meanvariance<br />

efficiency, Journal of Financial Economics 18, 61–90.<br />

Kearns, P., and A.R. Pagan, 1997, Estim<strong>at</strong>ing the <strong>de</strong>nsity tail in<strong>de</strong>x for financial time series, Review<br />

of Economics and St<strong>at</strong>istics 79, 171–175.<br />

Lindskog, F., 2000, Mo<strong>de</strong>lling Depen<strong>de</strong>nce with Copulas, Working paper, RiskLab, http :<br />

//www.risklab.ch/P apers.html#MT Lindskog.<br />

Lintner, J., 1965, The valu<strong>at</strong>ion of risk ass<strong>et</strong>s and the selection of risky investments in stock<br />

portfolios and the capital bug<strong>et</strong>s, Review of Economics and St<strong>at</strong>itics 41, 13–37.<br />

Longin, F.M., 1996, The asymptotic distribution of extrem stock mark<strong>et</strong> r<strong>et</strong>urns, Journal of Business<br />

96, 383–408.<br />

Longin, F.M., and B. Solnik, 2001, Extreme Correl<strong>at</strong>ion of Intern<strong>at</strong>ional Equity Mark<strong>et</strong>s, Journal<br />

of Finance 56, 649–676.<br />

Lor<strong>et</strong>an, M., and P.C.B. Phillips, 1994, Testing the covariance st<strong>at</strong>ionarity of heavy-tailed times<br />

series, Journal of Empirical Finance 1, 211–248.<br />

Lucas, A., P. Klaassen, P. Spreij, and S. Stra<strong>et</strong>mans, 2001, An analytic approach to credit risk of<br />

large corpor<strong>at</strong>e bond and loan portfolios, Journal of Banking and Finance 25, 1635–1664.<br />

Lux, T., 1996, The stable Par<strong>et</strong>ian hypothesis and the frequency of large r<strong>et</strong>urns: an examin<strong>at</strong>ion<br />

of major German stocks, Applied Financial Economics 6, 463–475.<br />

Malevergne, Y., and D. Sorn<strong>et</strong>te, 2001, Testing the Gaussian copula hypothesis for financial ass<strong>et</strong>s<br />

<strong>de</strong>pen<strong>de</strong>nces, Working paper, (e-print available <strong>at</strong> http://papers.ssrn.com/abstract=291140).<br />

Malevergne, Y., and D. Sorn<strong>et</strong>te, 2002, Hedging Extreme Co-Movements, submitted to RISK,<br />

preprint <strong>at</strong> http://arXiv.org/abs/cond-m<strong>at</strong>/0205636.<br />

Mossin, J., 1966, Equilibrium in capital ass<strong>et</strong> mark<strong>et</strong>, Econom<strong>et</strong>rica 35, 768–783.<br />

28


328 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Nelsen, R.B., 1998, An introduction to copulas. (Springer Verlag New York).<br />

Pagan, A., 1996, The econom<strong>et</strong>rics of financial mark<strong>et</strong>s, Journal of Empirical Finance 3, 15 – 102.<br />

Pagan, A., and A. Ullah, 1999, Non param<strong>et</strong>rics econom<strong>et</strong>rics. (Cambridge University Press Cambridge).<br />

P<strong>at</strong>ton, J.A., 2001, Estim<strong>at</strong>ion of copula mo<strong>de</strong>ls for time series of possibly different lengths, Working<br />

paper, University of California, Econ. Disc. Paper No. 2001-17.<br />

Roll, R., 1988, The Intern<strong>at</strong>ional Crash of October 1987, Financial Analysts Journal pp. 19–35.<br />

Rootzén, H., M.R. Leadb<strong>et</strong>ter, and L. <strong>de</strong> Haan, 1998, On the distribution tail array sums for<br />

strongly mixing st<strong>at</strong>ionary sequences, Annals of Applied Probability 8, 868–885.<br />

Ross, S.A., 1976, The arbitrage theory of capital ass<strong>et</strong> pricing, Journal of Economic Theory 17,<br />

254–286.<br />

Sharpe, W., 1964, Capital ass<strong>et</strong>s prices: a theory of mark<strong>et</strong> equilibrium un<strong>de</strong>r conditions of risk,<br />

Journal of Finance 19, 425–442.<br />

Shealter, S.J., and J.S. Marron, 1990, Kernel quantile estim<strong>at</strong>ors, Journal of the Americam St<strong>at</strong>istical<br />

Associ<strong>at</strong>ion 85, 410–415.<br />

Sklar, A., 1959, Fonction <strong>de</strong> répartition à n dimensions <strong>et</strong> leurs marges, Publ. Inst. St<strong>at</strong>ist. Univ.<br />

Paris 8, 229–231.<br />

Starica, C., 1999, Multivari<strong>at</strong>e extremes for mo<strong>de</strong>ls with constant conditional correl<strong>at</strong>ions, Journal<br />

of Empirical Finance 6, 515–553.<br />

Vasicek, O., 1977, An equilibrium characteris<strong>at</strong>ion of the term structure of interest r<strong>at</strong>es, Journal<br />

of Financial Economics 5, 177–188.<br />

Xu, Y., and B.G. Malkiel, 2002, Investig<strong>at</strong>ing the behavior of idiosyncr<strong>at</strong>ic vol<strong>at</strong>ility, forthcoming<br />

Journal of Business.<br />

29


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 329<br />

July 1962 - December 1979 January 1980 - December 2000 July 1962 - December 2000<br />

Mean Std. Skew. Kurt. Mean Std. Skew. Kurt. Mean Std. Skew. Kurt.<br />

Abbott Labs 0.6677 0.0154 0.2235 2.192 0.9217 0.0174 -0.0434 2.248 0.8066 0.0165 0.0570 2.300<br />

American Home Products Corp. 0.4755 0.0136 0.2985 3.632 0.8486 0.0166 0.1007 8.519 0.6803 0.0154 0.1717 7.557<br />

Boeing Co. 0.8460 0.0228 0.6753 4.629 0.7752 0.0193 0.1311 4.785 0.8068 0.0209 0.4495 4.901<br />

Bristol-Myers Squibb Co. 0.5342 0.0152 -0.0811 2.808 0.9353 0.0175 -0.3437 16.733 0.7546 0.0165 -0.2485 12.573<br />

Chevron Corp. 0.4916 0.0134 0.2144 2.442 0.6693 0.0169 0.0491 4.355 0.5885 0.0154 0.1033 4.209<br />

Du Pont (E.I.) <strong>de</strong> Nemours & Co. 0.2193 0.0126 0.3493 2.754 0.6792 0.0172 -0.1021 4.731 0.4715 0.0153 0.0231 4.937<br />

Disney (Walt) Co. 0.9272 0.0215 0.2420 2.762 0.8759 0.0195 -0.6661 17.655 0.8997 0.0204 -0.1881 9.568<br />

General Motors Corp. 0.3547 0.0126 0.4138 4.302 0.5338 0.0183 -0.0128 5.373 0.4538 0.0160 0.0872 6.164<br />

Hewl<strong>et</strong>t-Packard Co. 0.7823 0.0199 0.0212 3.063 0.8913 0.0238 0.0254 4.921 0.8420 0.0221 0.0256 4.624<br />

Coca-Cola Co. 0.4829 0.0138 0.0342 5.436 0.9674 0.0170 -0.1012 14.377 0.7483 0.0157 -0.0513 12.611<br />

Minnesota Mining & MFG Co. 0.3459 0.0139 0.3016 2.997 0.6885 0.0150 -0.7861 20.609 0.5333 0.0145 -0.3550 14.066<br />

Philip Morris Cos Inc. 0.7930 0.0153 0.2751 2.799 0.9664 0.0180 -0.2602 10.954 0.8863 0.0169 -0.0784 8.790<br />

Pepsico Inc. 0.4982 0.0147 0.2380 2.867 0.9443 0.0180 0.1372 4.594 0.7431 0.0166 0.1786 4.413<br />

Procter & Gamble Co. 0.3569 0.0115 0.3911 4.343 0.7916 0.0164 -1.6610 46.916 0.5947 0.0144 -1.2408 44.363<br />

Pharmacia Corp. 0.3801 0.0145 0.2699 3.508 0.9027 0.0191 -0.6133 13.587 0.6666 0.0172 -0.3773 12.378<br />

Schering-Plough Corp. 0.6328 0.0163 0.2619 3.112 1.0663 0.0192 0.1781 7.9979 0.8703 0.0179 0.2139 6.757<br />

Texaco Inc. 0.3416 0.0134 0.2656 2.596 0.6644 0.0166 0.1192 6.477 0.5197 0.0152 0.1725 5.829<br />

Texas Instruments Inc. 0.6839 0.0198 0.2076 3.174 1.0299 0.0268 0.1595 7.848 0.8726 0.0239 0.1831 7.737<br />

United Technologies Corp 0.5801 0.0185 0.3397 2.826 0.7752 0.0170 0.0396 3.190 0.6876 0.0177 0.1933 3.034<br />

Walgreen Co. 0.5851 0.0165 0.3530 3.030 1.1996 0.0185 0.1412 3.316 0.9217 0.0176 0.2260 3.295<br />

30<br />

Standart & Poor’s 500 0.1783 0.0075 0.2554 3.131 0.5237 0.0101 -1.6974 36.657 0.3674 0.0090 -1.2236 32.406<br />

Table 1: This table gives the main st<strong>at</strong>istical fe<strong>at</strong>ures of the three samples we have consi<strong>de</strong>red. The columns Mean, Std., Skew. and Kurt.<br />

respectively give the average r<strong>et</strong>urn multiplied by one thousand, the standard <strong>de</strong>vi<strong>at</strong>ion, the skewness and the excess kurtosis of each ass<strong>et</strong><br />

over the time intervals form July 1962 to December 1979, January 1980 to Decemeber 2000 and July 1962 to December 2000. The excess<br />

kurtosis is given as indic<strong>at</strong>ive of the rel<strong>at</strong>ive weight of large r<strong>et</strong>urn amplitu<strong>de</strong>s, and can always be calcul<strong>at</strong>ed over a finite time series even if<br />

it may not be asymptotically <strong>de</strong>fined for power tails with exponents less than 4.


330 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

July 1962 - December 1979 January 1979 - December 2000 July 1962 - December 2000<br />

β ρY 2 ,ε2 β ρY 2 ,ε2 β ρY 2 ,ε2 Abbott Labs 0.8994 0.0879 0.9122 0.1879 0.9081 0.1597<br />

American Home Products Corp. 0.9855 0.1253 0.8102 0.0587 0.8652 0.0736<br />

Boeing Co. 1.4416 0.1196 0.9036 0.0928 1.0715 0.1279<br />

Bristol-Myers Squibb Co. 1.0832 0.1056 1.0435 0.0457 1.0559 0.0481<br />

Chevron Corp. 1.0062 0.1191 0.8333 0.0776 0.8873 0.0906<br />

Du Pont (E.I.) <strong>de</strong> Nemours & Co. 1.0818 0.0960 0.9451 0.0433 0.9880 0.0595<br />

Disney (Walt) Co. 1.5530 0.0960 1.0016 0.1304 1.1736 0.0641<br />

General Motors Corp. 1.0945 0.1531 1.0112 0.0400 1.0371 0.0563<br />

Hewl<strong>et</strong>t-Packard Co. 1.3910 0.1023 1.3074 0.0739 1.3332 0.0832<br />

Coca-Cola Co. 1.0347 0.2146 0.9833 0.1254 0.9995 0.1238<br />

Minnesota Mining & MFG Co. 1.1339 0.1203 0.8756 0.2605 0.9564 0.1706<br />

Philip Morris Cos Inc. 1.0894 0.0723 0.8598 0.0340 0.9314 0.0545<br />

Pepsico Inc. 0.9587 0.1233 0.9004 0.3294 0.9187 0.3169<br />

Procter & Gamble Co. 0.8293 0.1873 0.8938 0.1188 0.8738 0.1287<br />

Pharmacia Corp. 1.0750 0.0783 0.8824 0.0373 0.9429 0.0357<br />

Schering-Plough Corp. 1.1244 0.1284 1.0480 0.0494 1.0720 0.0540<br />

Texaco Inc. 1.4578 0.1410 1.3811 0.0674 1.4049 0.0766<br />

Texas Instruments Inc. 0.9414 0.1354 0.6600 0.0823 0.7481 0.1053<br />

United Technologies Corp 1.1336 0.1243 0.9049 0.1175 0.9763 0.1098<br />

Walgreen Co. 0.6354 0.1052 0.8554 0.1087 0.7869 0.0798<br />

31<br />

Table 2: This table presents the estim<strong>at</strong>ed coefficient β for the factor mo<strong>de</strong>l (6) and the correl<strong>at</strong>ion coefficient ρY 2 ,ε2 b<strong>et</strong>ween the square of<br />

factor and the square of the estim<strong>at</strong>ed idiosyncr<strong>at</strong>ic noise, for the different time intervals we have consi<strong>de</strong>red. A Fisher’s test shows th<strong>at</strong><br />

these correl<strong>at</strong>ion coefficients are all significantly different from zero.


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 331<br />

Neg<strong>at</strong>ive Tail Positive Tail<br />

q = 1% q = 2.5% q = 5% q = 1% q = 2.5% q = 5%<br />

Ass<strong>et</strong> ε Ass<strong>et</strong> ε Ass<strong>et</strong> ε Ass<strong>et</strong> ε Ass<strong>et</strong> ε Ass<strong>et</strong> ε<br />

Abbott Labs 5.54 5.31 3.94 4.02 3.27 3.31 5.10 4.50 4.09 3.71 3.53∗ 3.14<br />

American Home Products Corp. 4.58 5.11 3.89 3.81 3.02∗ 3.21∗ 3.64 4.66 3.60 3.81 3.11 3.15<br />

Boeing Co. 6.07 4.90 4.57 3.74 3.32 3.49 4.04 4.27 3.95 4.19 3.35∗ 2.93<br />

Bristol-Myers Squibb Co. 4.32 4.27 3.31 3.95 2.99∗ 3.16∗ 5.96∗ 5.19 3.94 4.82∗ 3.62∗ 4.03∗ Chevron Corp. 5.24 4.78 3.75 3.29 2.91 3.12∗ 5.21 5.15 3.90 4.26 3.25∗ 3.07<br />

Du Pont (E.I.) <strong>de</strong> Nemours & Co. 5.26 4.36 3.69 3.76 3.17∗ 3.23∗ 5.35 5.15 4.00 3.37 3.13 3.04<br />

Disney (Walt) Co. 3.59 4.23 3.59 3.84 3.08∗ 3.22∗ 4.90 4.34 4.26 3.73 3.33∗ 3.29∗ General Motors Corp. 4.82 3.50 3.72 3.66 2.94∗ 3.36 3.91 4.78 3.64 3.86 2.94 3.07<br />

Hewl<strong>et</strong>t-Packard Co. 3.76 3.89 3.12∗ 3.05∗ 2.81∗ 3.00∗ 4.64 5.08 4.08 4.20 3.41∗ 3.42∗ Coca-Cola Co. 3.45 3.45 3.05∗ 3.71 2.75∗ 3.17∗ 3.91 4.26 3.16 3.61 2.81 3.16<br />

Minnesota Mining & MFG Co. 5.16 4.86 4.06 4.35 3.43 3.71 4.35 4.47 3.96 3.31 3.14 3.06<br />

Philip Morris Cos Inc. 4.63 3.79 3.82 3.90 3.38 3.48 4.10 4.64 3.59 3.85 3.03 3.06<br />

Pepsico Inc. 4.89 5.35 3.93 4.49 3.02∗ 3.27 4.07 4.67 3.49 3.86 3.15 3.21∗ Procter & Gamble Co. 4.42 3.77 3.77 3.74 3.13∗ 3.42 4.14 5.39 3.59 3.73 2.97 3.40∗ Pharmacia Corp. 4.73 4.24 4.05 3.45 2.88∗ 3.34 4.46 3.72 3.95 3.90 3.14 2.99<br />

Schering-Plough Corp. 4.59 4.70 4.20 3.87 3.37 3.33 4.60 5.88∗ 3.50 3.91 3.07 3.22∗ Texaco Inc. 5.34 4.59 3.99 3.84 3.07∗ 3.19∗ 3.83 4.10 3.94 3.67 3.14 2.98<br />

Texas Instruments Inc. 4.08 4.54 3.36 3.13∗ 3.22∗ 2.87∗ 4.52 4.20 3.67 3.79 3.16 3.07<br />

United Technologies Corp 4.00 4.49 3.52 3.92 3.27 3.46 4.78 4.97 3.73 3.98 3.26∗ 3.49∗ Walgreen Co. 4.63 6.50 3.85 4.26 2.94∗ 3.18∗ 5.16 4.56 3.47 3.30 3.15 2.82<br />

32<br />

Standart & Poor’s 500 5.17 - 4.16 - 3.91 - 3.74 - 3.34 - 2.64 -<br />

Table 3: This table gives the estim<strong>at</strong>ed value of the tail in<strong>de</strong>x for the twenty consi<strong>de</strong>red ass<strong>et</strong>s, the Standard & Poor’s 500 in<strong>de</strong>x and the<br />

residues ε obtained by regressing each ass<strong>et</strong> on the Standard & Poor’s 500 in<strong>de</strong>x, for both the neg<strong>at</strong>ive and the positive tails, during the<br />

time interval from July 1962 to December 1979. The tail in<strong>de</strong>xes are estimed by Hill’s estim<strong>at</strong>or <strong>at</strong> the quantile 1%, 2.5% and 5% which are<br />

the optimal quantiles given by the Hall (1990) and Danielsson and <strong>de</strong> Vries (1997)’s algorithms. The values <strong>de</strong>corr<strong>at</strong>ed with stars represent<br />

the tail in<strong>de</strong>xes which cannot be consi<strong>de</strong>red equal to the Standard & Poor’s 500 in<strong>de</strong>x’s tail in<strong>de</strong>x <strong>at</strong> the 95% confi<strong>de</strong>nce level.


332 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Neg<strong>at</strong>ive Tail Positive Tail<br />

q = 1% q = 2.5% q = 5% q = 1% q = 2.5% q = 5%<br />

Ass<strong>et</strong> ε Ass<strong>et</strong> ε Ass<strong>et</strong> ε Ass<strong>et</strong> ε Ass<strong>et</strong> ε Ass<strong>et</strong> ε<br />

Abbott Labs 3.59 3.60 3.35 3.62 3.22 3.39 5.14 4.60 4.16 3.76 3.77 3.07<br />

American Home Products Corp. 3.03 3.07 3.11 2.78 2.73 2.49∗ 4.01 3.47 3.28 3.02 2.87 2.79<br />

Boeing Co. 3.39 3.97 3.23 3.53 3.02 3.21 4.86 3.65 3.45 3.16 3.13 3.23<br />

Bristol-Myers Squibb Co. 3.21 3.15 2.90 3.41 2.80 3.16 2.98 3.74 3.35 3.12 3.20 2.75<br />

Chevron Corp. 4.13 4.48 3.99 3.91 3.30 3.45 5.16 4.53 3.88 3.81 3.01 3.06<br />

Du Pont (E.I.) <strong>de</strong> Nemours & Co. 3.99 3.49 3.76 3.23 3.02 3.04 5.36 4.33 4.31 3.35 3.44 2.76<br />

Disney (Walt) Co. 2.83 3.24 2.76 2.97 2.85 2.83 3.97 3.70 3.68 3.33 3.15 2.87<br />

General Motors Corp. 4.44 4.79 3.88 4.27∗ 3.44 3.56 5.76 5.32 4.45 3.86 3.43 3.22<br />

Hewl<strong>et</strong>t-Packard Co. 3.73 3.45 3.52 3.12 3.00 2.73 4.31 3.40 3.47 3.29 3.24 2.99<br />

Coca-Cola Co. 3.01 3.76 3.14 3.48 2.99 2.86 4.06 3.47 3.45 3.16 3.37 2.87<br />

Minnesota Mining & MFG Co. 3.52 3.38 3.21 3.39 2.88 3.04 3.76 3.46 3.95 3.22 3.10 2.76<br />

Philip Morris Cos Inc. 3.58 3.34 3.33 3.12 2.68 2.53∗ 3.42 3.16 3.70 3.07 2.85 2.81<br />

Pepsico Inc. 4.14 4.46 3.39 3.60 2.99 3.27 4.00 3.87 3.61 3.34 3.44 3.31<br />

Procter & Gamble Co. 2.65 2.46 3.29 3.19 3.19 2.87 4.35 3.90 3.48 3.20 3.14 2.91<br />

Pharmacia Corp. 2.96 3.20 3.09 2.79 2.80 2.70 4.12 4.70 3.44 3.50 3.31 2.89<br />

Schering-Plough Corp. 4.22 5.20∗ 3.29 3.68 3.11 3.05 3.23 3.51 3.45 3.08 3.06 2.87<br />

Texaco Inc. 3.09 3.20 3.10 3.15 2.88 2.84 3.65 3.36 3.20 3.04 2.86 2.70<br />

Texas Instruments Inc. 3.49 3.53 3.35 3.31 2.89 2.99 4.00 3.42 3.36 3.30 2.97 3.06<br />

United Technologies Corp 4.21 3.98 3.82 3.46 3.34 3.18 5.39 4.50 4.00 3.80 3.51 3.26<br />

Walgreen Co. 4.06 4.35 3.81 4.04 3.20 3.40 4.60 5.12 3.79 3.54 3.20 3.07<br />

33<br />

Standart & Poor’s 500 3.16 - 3.17 - 3.16 - 4.00 - 3.65 - 3.19 -<br />

Table 4: This table gives the estim<strong>at</strong>ed value of the tail in<strong>de</strong>x for the twenty consi<strong>de</strong>red ass<strong>et</strong>s, the Standard & Poor’s 500 in<strong>de</strong>x and the<br />

residues ε obtained by regressing each ass<strong>et</strong> on the Standard & Poor’s 500 in<strong>de</strong>x, for both the neg<strong>at</strong>ive and the positive tails, during the time<br />

interval from January 1980 to December 2000. The tail in<strong>de</strong>xes are estimed by Hill’s estim<strong>at</strong>or <strong>at</strong> the quantile 1%, 2.5% and 5% which are<br />

the optimal quantiles given by the Hall (1990) and Danielsson and <strong>de</strong> Vries (1997)’s algorithms. The values <strong>de</strong>corr<strong>at</strong>ed with stars represent<br />

the tail in<strong>de</strong>xes whose value cannot be consi<strong>de</strong>red equal to the Standard & Poor’s 500 in<strong>de</strong>x’s tail in<strong>de</strong>x <strong>at</strong> the 95% confi<strong>de</strong>nce level.


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 333<br />

First Centile First Quintile First Decile<br />

mean std. min. max. mean std. min. max. mean std. min. max.<br />

Abbott Labs 0.1264 0.0106 0.1039 0.1745 0.1232 0.0058 0.1039 0.1745 0.1185 0.0069 0.1039 0.1745<br />

American Home Products Corp. 0.1181 0.0091 0.0796 0.1288 0.1349 0.0111 0.0796 0.1494 0.1401 0.0096 0.0796 0.1505<br />

Boeing Co. 0.1116 0.0128 0.0954 0.1653 0.1090 0.0074 0.0954 0.1653 0.1066 0.0066 0.0954 0.1653<br />

Bristol-Myers Squibb Co. 0.1927 0.0171 0.1407 0.2175 0.2220 0.0220 0.1407 0.2474 0.2180 0.0180 0.1407 0.2474<br />

Chevron Corp. 0.1566 0.0194 0.1334 0.2368 0.1407 0.0121 0.1265 0.2368 0.1365 0.0101 0.1257 0.2368<br />

Du Pont (E.I.) <strong>de</strong> Nemours & Co. 0.2089 0.0142 0.1785 0.2424 0.2067 0.0105 0.1785 0.2424 0.2021 0.0106 0.1785 0.2424<br />

Disney (Walt) Co. 0.1317 0.0160 0.0930 0.1613 0.1587 0.0161 0.0930 0.1754 0.1566 0.0123 0.0930 0.1754<br />

General Motors Corp. 0.2210 0.0149 0.2045 0.2996 0.2109 0.0096 0.1947 0.2996 0.2020 0.0120 0.1808 0.2996<br />

Hewl<strong>et</strong>t-Packard Co. 0.1455 0.0103 0.1188 0.1769 0.1615 0.0116 0.1188 0.1776 0.1603 0.0095 0.1188 0.1776<br />

Coca-Cola Co. 0.1870 0.0259 0.1199 0.2522 0.2159 0.0204 0.1199 0.2522 0.2160 0.0164 0.1199 0.2522<br />

Minnesota Mining & MGF Co. 0.2311 0.0254 0.1851 0.3268 0.2262 0.0126 0.1851 0.3268 0.2218 0.0115 0.1851 0.3268<br />

Philip Morris Cos Inc. 0.1251 0.0078 0.1050 0.1526 0.1334 0.0089 0.1050 0.1526 0.1340 0.0070 0.1050 0.1526<br />

Pepsico Inc. 0.1263 0.0111 0.1014 0.1706 0.1242 0.0071 0.1014 0.1706 0.1239 0.0057 0.1014 0.1706<br />

Procter & Gamble Co. 0.1980 0.0325 0.1131 0.2351 0.2017 0.0153 0.1131 0.2351 0.1972 0.0131 0.1131 0.2351<br />

Pharmacia Corp. 0.1180 0.0172 0.0596 0.1378 0.1291 0.0109 0.0596 0.1432 0.1337 0.0091 0.0596 0.1434<br />

Schering-Plough Corp. 0.1759 0.0143 0.1320 0.2403 0.1733 0.0078 0.1320 0.2403 0.1663 0.0102 0.1320 0.2403<br />

Texaco Inc. 0.0214 0.0017 0.0170 0.0269 0.0246 0.0023 0.0170 0.0278 0.0248 0.0018 0.0170 0.0278<br />

Texas Instruments Inc. 0.5657 0.0687 0.3897 0.6572 0.6162 0.0438 0.3897 0.6623 0.6168 0.0368 0.3897 0.6761<br />

United Technologies Corp 0.1300 0.0123 0.0990 0.1872 0.1254 0.0073 0.0990 0.1872 0.1192 0.0086 0.0990 0.1872<br />

Walgreen Co. 0.0739 0.0109 0.0664 0.1185 0.0682 0.0058 0.0629 0.1185 0.0674 0.0044 0.0629 0.1185<br />

34<br />

Table 5: This table gives the average (mean), the standard <strong>de</strong>vi<strong>at</strong>ion (std.), the minimum (min.) and the maximum (max.) values of the<br />

coefficient of lower tail <strong>de</strong>pen<strong>de</strong>nce estim<strong>at</strong>ed over the first centile, quintile and <strong>de</strong>cile during the entire time interval from July 1962 to<br />

December 2000, un<strong>de</strong>r the assumption th<strong>at</strong> the tail of the distributions of the ass<strong>et</strong>s and the mark<strong>et</strong> are regularly varying with a in<strong>de</strong>x equal<br />

to three.


334 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

First Centile First Quintile First Decile<br />

mean std. min. max. mean std. min. max. mean std. min. max.<br />

Abbott Labs 0.1670 0.0127 0.1442 0.2137 0.1633 0.0071 0.1442 0.2137 0.1540 0.0120 0.1331 0.2137<br />

American Home Products Corp. 0.1423 0.0207 0.0910 0.1720 0.1728 0.0205 0.091 0.1963 0.1823 0.0175 0.0910 0.2020<br />

Boeing Co. 0.1372 0.0127 0.1101 0.1804 0.1349 0.0064 0.1101 0.1804 0.1289 0.0078 0.1101 0.1804<br />

Bristol-Myers Squibb Co. 0.2720 0.0231 0.1878 0.3052 0.2751 0.0115 0.1878 0.3052 0.2696 0.0110 0.1878 0.3052<br />

Chevron Corp. 0.1853 0.0188 0.1656 0.2564 0.1790 0.0105 0.1634 0.2564 0.1748 0.0096 0.1606 0.2564<br />

Du Pont (E.I.) <strong>de</strong> Nemours & Co. 0.2547 0.0148 0.2127 0.2871 0.2695 0.0117 0.2127 0.2876 0.2685 0.0103 0.2127 0.2876<br />

Disney (Walt) Co. 0.1772 0.0149 0.1368 0.1957 0.1938 0.0123 0.1368 0.2094 0.1900 0.0109 0.1368 0.2094<br />

General Motors Corp. 0.2641 0.0259 0.2393 0.3652 0.2565 0.0138 0.2349 0.3652 0.2545 0.0108 0.2349 0.3652<br />

Hewl<strong>et</strong>t-Packard Co. 0.1701 0.0096 0.1389 0.1914 0.2018 0.0230 0.1389 0.2303 0.2039 0.0176 0.1389 0.2303<br />

Coca-Cola Co. 0.2343 0.0223 0.1686 0.2719 0.2576 0.0163 0.1686 0.2731 0.2579 0.0123 0.1686 0.2731<br />

Minnesota Mining & MFG Co. 0.2844 0.0196 0.2399 0.3407 0.2873 0.0099 0.2399 0.3407 0.2802 0.0117 0.2399 0.3407<br />

Philip Morris Cos Inc. 0.1369 0.0168 0.0983 0.1673 0.1700 0.0206 0.0983 0.1919 0.1729 0.0155 0.0983 0.1919<br />

Pepsico Inc. 0.1634 0.0132 0.1483 0.2106 0.1535 0.0083 0.1448 0.2106 0.1512 0.0067 0.1434 0.2106<br />

Procter & Gamble Co. 0.2284 0.0292 0.1434 0.2673 0.2461 0.0169 0.1434 0.2673 0.2413 0.0141 0.1434 0.2673<br />

Pharmacia Corp. 0.1279 0.0104 0.0863 0.1432 0.1588 0.0192 0.0863 0.1822 0.1643 0.0149 0.0863 0.1822<br />

Schering-Plough Corp. 0.2195 0.0190 0.1920 0.2863 0.2179 0.0103 0.1920 0.2863 0.2107 0.0123 0.1877 0.2863<br />

Texaco Inc. 0.0327 0.0027 0.0243 0.0369 0.0369 0.0033 0.0243 0.0414 0.0371 0.0027 0.0243 0.0414<br />

Texas Instruments Inc. 0.4355 0.0195 0.3389 0.4906 0.4500 0.0142 0.3389 0.4906 0.4515 0.011 0.3389 0.4906<br />

United Technologies Corp 0.1570 0.0153 0.1298 0.2182 0.1562 0.0075 0.1298 0.2182 0.1511 0.0084 0.1298 0.2182<br />

Walgreen Co. 0.0937 0.0112 0.0808 0.1384 0.0837 0.0071 0.0776 0.1384 0.0786 0.0078 0.0669 0.1384<br />

35<br />

Table 6: This table gives the average (mean), the standard <strong>de</strong>vi<strong>at</strong>ion (std.), the minimum (min.) and the maximum (max.) values of the<br />

coefficient of lower tail <strong>de</strong>pen<strong>de</strong>nce estim<strong>at</strong>ed over the first centile, quintile and <strong>de</strong>cile during the entire time interval from July 1962 to<br />

December 2000, un<strong>de</strong>r the assumption th<strong>at</strong> the tail of the distributions of the ass<strong>et</strong>s and the mark<strong>et</strong> are power laws with an exponent equal<br />

to three.


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 335<br />

Neg<strong>at</strong>ive Tail Positive Tail<br />

α = 3 α = 3.5 α = 4 α = 3 α = 3.5 α = 4<br />

Abbott Labs 0.12 0.09 0.06 0.11 0.08 0.06<br />

American Home Products Corp. 0.22 0.18 0.15 0.25 0.22 0.19<br />

Boeing Co. 0.16 0.13 0.10 0.13 0.10 0.07<br />

Bristol-Myers Squibb Co. 0.22 0.19 0.16 0.28 0.25 0.23<br />

Chevron Corp. 0.21 0.17 0.14 0.26 0.23 0.20<br />

Du Pont (E.I.) <strong>de</strong> Nemours & Co. 0.38 0.37 0.35 0.37 0.35 0.33<br />

Disney (Walt) Co. 0.24 0.20 0.17 0.23 0.19 0.16<br />

General Motors Corp. 0.39 0.37 0.35 0.48 0.47 0.47<br />

Hewl<strong>et</strong>t-Packard Co. 0.15 0.12 0.09 0.23 0.20 0.17<br />

Coca-Cola Co. 0.26 0.22 0.19 0.26 0.23 0.20<br />

Minnesota Mining & MFG Co. 0.35 0.32 0.30 0.35 0.33 0.31<br />

Philip Morris Cos Inc. 0.25 0.22 0.19 0.20 0.17 0.14<br />

Pepsico Inc. 0.15 0.12 0.09 0.17 0.14 0.11<br />

Procter & Gamble Co. 0.23 0.19 0.16 0.24 0.21 0.18<br />

Pharmacia Corp. 0.23 0.19 0.16 0.26 0.23 0.20<br />

Schering-Plough Corp. 0.21 0.18 0.15 0.20 0.17 0.14<br />

Texaco Inc. 0.06 0.04 0.03 0.07 0.05 0.03<br />

Texas Instruments Inc. 0.47 0.46 0.46 0.49 0.49 0.49<br />

United Technologies Corp 0.13 0.10 0.07 0.13 0.10 0.07<br />

Walgreen Co. 0.03 0.02 0.01 0.02 0.01 0.01<br />

Table 7: This table summarizes the mean values over the first centile of the distribution of the<br />

coefficients of (upper or lower) tail <strong>de</strong>pen<strong>de</strong>nce for the positive and neg<strong>at</strong>ive tails during the time<br />

interval from July 1962 to December 1979, for three values of the tail in<strong>de</strong>x α = 3, 3.5, 4.<br />

36


336 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Neg<strong>at</strong>ive Tail Positive Tail<br />

α = 3 α = 3.5 α = 4 α = 3 α = 3.5 α = 4<br />

Abbott Labs 0.20 0.17 0.14 0.16 0.13 0.10<br />

American Home Products Corp. 0.12 0.09 0.06 0.10 0.08 0.05<br />

Boeing Co. 0.14 0.11 0.08 0.10 0.07 0.05<br />

Bristol-Myers Squibb Co. 0.32 0.29 0.26 0.25 0.21 0.19<br />

Chevron Corp. 0.18 0.14 0.11 0.13 0.09 0.07<br />

Du Pont (E.I.) <strong>de</strong> Nemours & Co. 0.23 0.20 0.17 0.16 0.13 0.10<br />

Disney (Walt) Co. 0.16 0.13 0.10 0.15 0.12 0.09<br />

General Motors Corp. 0.26 0.22 0.19 0.20 0.16 0.13<br />

Hewl<strong>et</strong>t-Packard Co. 0.19 0.15 0.13 0.21 0.18 0.15<br />

Coca-Cola Co. 0.24 0.20 0.18 0.20 0.17 0.14<br />

Minnesota Mining & MFG Co. 0.26 0.23 0.20 0.20 0.17 0.14<br />

Philip Morris Cos Inc. 0.11 0.08 0.06 0.11 0.08 0.06<br />

Pepsico Inc. 0.17 0.14 0.11 0.14 0.11 0.09<br />

Procter & Gamble Co. 0.24 0.21 0.18 0.20 0.16 0.13<br />

Pharmacia Corp. 0.10 0.08 0.05 0.10 0.07 0.05<br />

Schering-Plough Corp. 0.23 0.20 0.17 0.16 0.13 0.10<br />

Texaco Inc. 0.02 0.01 0.01 0.02 0.01 0.01<br />

Texas Instruments Inc. 0.43 0.42 0.41 0.31 0.28 0.26<br />

United Technologies Corp 0.20 0.16 0.14 0.18 0.14 0.11<br />

Walgreen Co. 0.15 0.12 0.09 0.09 0.07 0.05<br />

Table 8: This table summarizes the mean values over the first centile of the distribution of the<br />

coefficients of (upper or lower) tail <strong>de</strong>pen<strong>de</strong>nce for the positive and neg<strong>at</strong>ive tails during the time<br />

interval from January 1980 to December 2000, for three values of the tail in<strong>de</strong>x α = 3, 3.5, 4.<br />

37


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 337<br />

Neg<strong>at</strong>ive Tail Positive Tail<br />

α = 3 α = 3.5 α = 4 α = 3 α = 3.5 α = 4<br />

Abbott Labs 0.17 0.13 0.11 0.15 0.12 0.09<br />

American Home Products Corp. 0.14 0.11 0.08 0.15 0.11 0.09<br />

Boeing Co. 0.14 0.10 0.08 0.10 0.07 0.05<br />

Bristol-Myers Squibb Co. 0.27 0.24 0.21 0.27 0.24 0.21<br />

Chevron Corp. 0.19 0.15 0.12 0.17 0.13 0.10<br />

Du Pont (E.I.) <strong>de</strong> Nemours & Co. 0.25 0.22 0.19 0.23 0.19 0.16<br />

Disney (Walt) Co. 0.18 0.14 0.11 0.17 0.13 0.11<br />

General Motors Corp. 0.26 0.23 0.20 0.24 0.21 0.18<br />

Hewl<strong>et</strong>t-Packard Co. 0.17 0.14 0.11 0.23 0.19 0.16<br />

Coca-Cola Co. 0.23 0.20 0.17 0.23 0.20 0.17<br />

Minnesota Mining & MFG Co. 0.28 0.25 0.23 0.25 0.22 0.19<br />

Philip Morris Cos Inc. 0.14 0.10 0.08 0.14 0.11 0.08<br />

Pepsico Inc. 0.16 0.13 0.10 0.16 0.12 0.10<br />

Procter & Gamble Co. 0.23 0.20 0.17 0.22 0.18 0.15<br />

Pharmacia Corp. 0.13 0.10 0.07 0.14 0.10 0.08<br />

Schering-Plough Corp. 0.22 0.19 0.16 0.19 0.15 0.12<br />

Texaco Inc. 0.03 0.02 0.01 0.03 0.02 0.01<br />

Texas Instruments Inc. 0.44 0.42 0.41 0.37 0.35 0.33<br />

United Technologies Corp 0.16 0.12 0.10 0.15 0.12 0.09<br />

Walgreen Co. 0.09 0.07 0.05 0.06 0.04 0.03<br />

Table 9: This table summarizes the mean values over the first centile of the distribution of the<br />

coefficients of (upper or lower) tail <strong>de</strong>pen<strong>de</strong>nce for the positive and neg<strong>at</strong>ive tails during the time<br />

interval from July 1962 to December 2000, for three values of the tail in<strong>de</strong>x α = 3, 3.5, 4.<br />

38


338 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

July 1962 - Dec. 1979 Jan.1980 - Dec. 2000<br />

Extremes λ− p-value Extremes λ− p-value<br />

Abbott Labs 0 0.12 0.2937 4 0.20 0.0904<br />

American Home Products Corp. 1 0.22 0.2432 2 0.12 0.2247<br />

Boeing Co. 0 0.16 0.1667 3 0.14 0.1176<br />

Bristol-Myers Squibb Co. 2 0.22 0.2987 4 0.32 0.2144<br />

Chevron Corp. 3 0.21 0.2112 4 0.18 0.0644<br />

Du Pont (E.I.) <strong>de</strong> Nemours & Co. 0 0.38 0.0078 4 0.23 0.1224<br />

Disney (Walt) Co. 2 0.24 0.2901 2 0.16 0.2873<br />

General Motors Corp. 2 0.39 0.1345 4 0.26 0.1522<br />

Hewl<strong>et</strong>t-Packard Co. 0 0.15 0.1909 2 0.19 0.3007<br />

Coca-Cola Co. 2 0.26 0.2765 5 0.24 0.0494<br />

Minnesota Mining & MFG Co. 2 0.35 0.1784 4 0.26 0.1571<br />

Philip Morris Cos Inc. 1 0.25 0.1841 2 0.11 0.2142<br />

Pepsico Inc. 2 0.15 0.2795 5 0.17 0.0141<br />

Procter & Gamble Co. 1 0.23 0.2245 3 0.24 0.2447<br />

Pharmacia Corp. 2 0.23 0.2956 4 0.10 0.0128<br />

Schering-Plough Corp. 0 0.21 0.0946 4 0.23 0.1224<br />

Texaco Inc. 0 0.06 0.5222 2 0.02 0.0212<br />

Texas Instruments Inc. 1 0.47 0.0161 3 0.43 0.1862<br />

United Technologies Corp 1 0.13 0.3728 4 0.20 0.0870<br />

Walgreen Co. 1 0.03 0.2303 3 0.15 0.1373<br />

Table 10: This table gives, for the time intervals from July 1962 to December 1979 and from<br />

January 1980 to December 2000, the number of losses within the ten largest losses incured by an<br />

ass<strong>et</strong> which have occured tog<strong>et</strong>her with one of the ten largest losses of the Standard & Poor’s 500<br />

in<strong>de</strong>x during the same time interval. The probabilty of occurence of such a realis<strong>at</strong>ion is given by<br />

the p-value <strong>de</strong>rived from the binomial law (27) with param<strong>et</strong>er λ−.<br />

39


9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 339<br />

July 1962 - Dec. 1979 Jan.1980 - Dec. 2000<br />

Extremes λ− p-value Extremes λ− p-value<br />

Abbott Labs 0 0.12 0.2937 4 0.20 0.0904<br />

American Home Products Corp. 1 0.22 0.2432 1 0.12 0.3828<br />

Boeing Co. 0 0.16 0.1667 3 0.14 0.1176<br />

Bristol-Myers Squibb Co. 2 0.22 0.2987 3 0.32 0.2653<br />

Chevron Corp. 3 0.21 0.2112 3 0.18 0.1708<br />

Du Pont (E.I.) <strong>de</strong> Nemours & Co. 0 0.38 0.0078 3 0.23 0.2342<br />

Disney (Walt) Co. 2 0.24 0.2901 1 0.16 0.3300<br />

General Motors Corp. 2 0.39 0.1345 3 0.26 0.2536<br />

Hewl<strong>et</strong>t-Packard Co. 0 0.15 0.1909 1 0.19 0.2880<br />

Coca-Cola Co. 1 0.26 0.1782 4 0.24 0.1318<br />

Minnesota Mining & MFG Co. 2 0.35 0.1784 3 0.26 0.2561<br />

Philip Morris Cos Inc. 1 0.25 0.1841 2 0.11 0.2142<br />

Pepsico Inc. 2 0.15 0.2795 5 0.17 0.0141<br />

Procter & Gamble Co. 1 0.23 0.2245 3 0.24 0.2447<br />

Pharmacia Corp. 2 0.23 0.2956 4 0.10 0.0128<br />

Schering-Plough Corp. 0 0.21 0.0946 3 0.23 0.2342<br />

Texaco Inc. 0 0.06 0.5222 1 0.02 0.1922<br />

Texas Instruments Inc. 1 0.47 0.0161 3 0.43 0.1862<br />

United Technologies Corp 1 0.13 0.3728 3 0.20 0.2001<br />

Walgreen Co. 1 0.03 0.2303 3 0.15 0.1373<br />

Table 11: This table gives, for the time intervals from July 1962 to December 1979 and from<br />

January 1980 to December 2000, the number of losses within the ten largest losses incured by an<br />

ass<strong>et</strong> which have occured tog<strong>et</strong>her with one of the ten largest losses of the Standard & Poor’s 500<br />

in<strong>de</strong>x during the same time interval, provi<strong>de</strong>d th<strong>at</strong> the losses are not both the largest of each series.<br />

The probabilty of occurence of such a realis<strong>at</strong>ion is given by the p-value <strong>de</strong>rived from the binomial<br />

law (27) with param<strong>et</strong>er λ−.<br />

40


340 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

9.3 Synthèse <strong>de</strong> la <strong>de</strong>scription <strong>de</strong> la dépendance entre actifs financiers<br />

Les valeurs <strong>de</strong> dépendance <strong>de</strong> queue présentées dans la partie précé<strong>de</strong>nte entre un actif <strong>et</strong> le facteur <strong>de</strong><br />

marché (l’indice) perm<strong>et</strong>tent aisément d’en déduire la dépendance <strong>de</strong> queue entre <strong>de</strong>ux actifs, comme<br />

étant le minimum <strong>de</strong> la dépendance <strong>de</strong> queue entre chacun <strong>de</strong>s actifs <strong>et</strong> l’indice. On en déduit que si l’indice<br />

à une distribution régulièrement variable, les actifs présentent une dépendance <strong>de</strong> queue non nulle.<br />

En conséquence, l’hypothèse <strong>de</strong> copule gaussienne faite au chapitre 7 ne peut être considérée comme<br />

une approxim<strong>at</strong>ion valable, puisque nous rappelons qu’elle n’adm<strong>et</strong> pas <strong>de</strong> dépendance <strong>de</strong> queue. Cependant,<br />

comme nous l’avons montré au chapitre 3, la distribution <strong>de</strong> ren<strong>de</strong>ments <strong>de</strong>s actifs n’est peutêtre<br />

pas régulièrement variable, mais rapi<strong>de</strong>ment variable, si l’on considère les distributions exponentielles<br />

étirées. Dans ce cas, <strong>et</strong> pour autant que l’indice <strong>de</strong> marché reste le facteur principal, les actifs ne<br />

présentent pas <strong>de</strong> dépendance <strong>de</strong> queue, <strong>et</strong> la <strong>de</strong>scription <strong>de</strong> la dépendance en terme <strong>de</strong> copule gaussienne<br />

re<strong>de</strong>vient acceptable.<br />

Ceci étant, l’examen direct <strong>de</strong> la répartition <strong>de</strong>s ren<strong>de</strong>ments <strong>de</strong>s actifs en fonction <strong>de</strong>s ren<strong>de</strong>ments <strong>de</strong><br />

l’indice, au cours <strong>de</strong> la pério<strong>de</strong> 1980-2000, suggère clairement l’existence d’une dépendance <strong>de</strong> queue<br />

comme le montre la figure 9.1. De plus, c<strong>et</strong>te représent<strong>at</strong>ion confirme que la dépendance <strong>de</strong> queue pour<br />

Texaco (panneau <strong>de</strong> gauche) est beaucoup plus faible que pour United Technologies (panneau <strong>de</strong> droite)<br />

par exemple. En eff<strong>et</strong>, on observe que pour les ren<strong>de</strong>ments nég<strong>at</strong>ifs, les extrêmes sont regroupés en fuseau<br />

pour United Technologies alors qu’ils sont beaucoup plus dispersés pour Texaco. Ceci est parfaitement<br />

conforme aux résult<strong>at</strong>s énoncés au paragraphe précé<strong>de</strong>nt où les valeurs <strong>de</strong> dépendance <strong>de</strong> queue mesurées<br />

étaient respectivement <strong>de</strong> 2% <strong>et</strong> 20%.<br />

Texaco<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−4 −3 −2 −1 0<br />

S&P 500<br />

1 2 3 4<br />

United Technologies<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−4 −3 −2 −1 0<br />

S&P 500<br />

1 2 3 4<br />

FIG. 9.1 – Ren<strong>de</strong>ments <strong>de</strong> Texaco (panneau <strong>de</strong> gauche) <strong>et</strong> <strong>de</strong> United Technologies (panneau <strong>de</strong> droite)<br />

en fonction <strong>de</strong>s ren<strong>de</strong>ments du Standard & Poor’s 500 durant la pério<strong>de</strong> 1980-2000. Les distributions<br />

marginales ont été proj<strong>et</strong>ées sur <strong>de</strong>s distributions gaussiennes pour perm<strong>et</strong>tre une meilleure comparaison<br />

<strong>et</strong> m<strong>et</strong>tre en lumière l’eff<strong>et</strong> <strong>de</strong> la copule.<br />

Pour compléter c<strong>et</strong>te étu<strong>de</strong>, nous avons utilisé la métho<strong>de</strong> d’estim<strong>at</strong>ion non paramétrique <strong>de</strong> Coles, Heffernan<br />

<strong>et</strong> Tawn (1999) mise en œuvre par Poon, Rockinger <strong>et</strong> Tawn (2001) que nous avons présentée au<br />

paragraphe 9.1. C<strong>et</strong>te métho<strong>de</strong> est très délic<strong>at</strong>e <strong>et</strong> nous semble assez peu précise puisqu’elle repose sur<br />

l’estim<strong>at</strong>ion d’un exposant <strong>de</strong> queue <strong>et</strong> d’un facteur d’échelle. Nous avons déjà évoqué ces problèmes<br />

au chapitre 1, nous n’y revenons donc pas. Malgré (ou plutôt à cause <strong>de</strong>) ces imprécisions, nous n’avons<br />

jamais pu rej<strong>et</strong>er, à 95% <strong>de</strong> confiance, l’hypothèse <strong>de</strong> l’existence <strong>de</strong> dépendance <strong>de</strong> queue entre les actifs.<br />

En outre, même si les valeurs numériques obtenues sont entachées d’une gran<strong>de</strong> incertitu<strong>de</strong>, elles


9.3. Synthèse <strong>de</strong> la <strong>de</strong>scription <strong>de</strong> la dépendance entre actifs financiers 341<br />

Modèle à facteur<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

Modèle elliptique<br />

FIG. 9.2 – Coefficient <strong>de</strong> dépendance <strong>de</strong> queue estimé à l’ai<strong>de</strong> du modèle à facteur en fonction du<br />

coefficient <strong>de</strong> dépendance <strong>de</strong> queue estimé sous hypothèse <strong>de</strong> copule elliptique. L’indice <strong>de</strong> vari<strong>at</strong>ion<br />

régulière du facteur est <strong>de</strong> 3 <strong>et</strong> celui <strong>de</strong> la copule elliptique <strong>de</strong> 4. Ce couple <strong>de</strong> valeurs est celui qui donne<br />

le meilleur accord entre les résult<strong>at</strong>s <strong>de</strong>s <strong>de</strong>ux modèles.<br />

<strong>de</strong>meurent du même ordre <strong>de</strong> gran<strong>de</strong>ur que celles trouvées précé<strong>de</strong>mment à l’ai<strong>de</strong> du modèle à facteur.<br />

Nous avons également estimé la dépendance <strong>de</strong> queue sous l’hypothèse <strong>de</strong> copule elliptique régulièrement<br />

variable, dont l’expression a été dérivée par Hult <strong>et</strong> Lindskog (2001) <strong>et</strong> qui n’est fonction que <strong>de</strong><br />

l’indice <strong>de</strong> vari<strong>at</strong>ion régulière <strong>et</strong> du coefficient <strong>de</strong> corrél<strong>at</strong>ion. Ce <strong>de</strong>rnier a été estimé <strong>de</strong> manière non<br />

paramétrique par l’intermédiaire du τ du Kendall, puis obtenu grâce à la rel<strong>at</strong>ion<br />

ρ = sin<br />

π · τ<br />

2<br />

<br />

, (9.1)<br />

bien connue pour la distribution gaussienne mais aussi valable pour la classe <strong>de</strong>s distributions elliptiques<br />

comme l’ont récemment montré Lindskog, McNeil <strong>et</strong> Schmock (2001). Là encore, les valeurs<br />

numériques sont qualit<strong>at</strong>ivement en accord avec les résult<strong>at</strong>s précé<strong>de</strong>nts. Plus précisément, on peut toujours<br />

trouver un indice <strong>de</strong> vari<strong>at</strong>ion régulière ν <strong>de</strong> la copule elliptique tel que les <strong>de</strong>ux modèles donnent<br />

exactement la même valeur <strong>de</strong> dépendance <strong>de</strong> queue, ce qui revient à accepter que la copule elliptique<br />

soit différente d’un couple d’actifs à l’autre, mais ceci nous semble guère s<strong>at</strong>isfaisant. Si par contre l’on<br />

considère <strong>de</strong>s copules elliptiques <strong>de</strong> même indice <strong>de</strong> queue pour toutes les paires, <strong>de</strong>s différences importantes<br />

sont observées par rapport aux estim<strong>at</strong>ions données par le modèle à facteur, comme le montre<br />

la figure 9.2, où sont représentés les coefficients <strong>de</strong> dépendance <strong>de</strong> queue estimés à l’ai<strong>de</strong> du modèle à<br />

facteur <strong>et</strong> sous hypothèse <strong>de</strong> copule elliptique.<br />

En conclusion, nous pensons pouvoir affirmer que les actifs auxquels nous nous sommes intéressés<br />

présentent une dépendance <strong>de</strong> queue, <strong>et</strong> que celle-ci est <strong>de</strong> l’ordre <strong>de</strong> 5% à 30% selon les cas. Ceci<br />

à d’importantes conséquences pr<strong>at</strong>iques du point <strong>de</strong> vue <strong>de</strong> la <strong>gestion</strong> <strong>de</strong>s risques. En eff<strong>et</strong>, reprenant<br />

le p<strong>et</strong>it calcul présenté au point 1.2 du paragraphe 9.2, nous considérons la probabilité que <strong>de</strong>ux actifs<br />

d’un <strong>portefeuille</strong> chutent ensemble au-<strong>de</strong>là <strong>de</strong> leur VaR journalière à 99% par exemple. Négligeant<br />

la dépendance <strong>de</strong> queue, un tel événement à une probabilité extrêmement faible <strong>de</strong> se produire (temps<br />

<strong>de</strong> récurrence typique <strong>de</strong> 40 ans), alors que si l’on considère une dépendance <strong>de</strong> queue <strong>de</strong> 30% un tel<br />

événement se produit typiquement tous les 16 mois (contre huit ans pour λ = 5%).


342 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Pour ce qui est <strong>de</strong>s implic<strong>at</strong>ions théoriques, les résult<strong>at</strong>s que nous venons d’exposer ren<strong>de</strong>nt l’approxim<strong>at</strong>ion<br />

<strong>de</strong> copule gaussienne non valable, à strictement parler. Toutefois, pour <strong>de</strong>s actifs dont la dépendance<br />

<strong>de</strong> queue n’est que <strong>de</strong> l’ordre <strong>de</strong> 5%, ce type d’approxim<strong>at</strong>ion peut être considéré comme non déraisonnable,<br />

comme vient <strong>de</strong> le montrer le p<strong>et</strong>it calcul ci-<strong>de</strong>ssus <strong>et</strong> dans la mesure où bien d’autres sources<br />

d’erreurs - notamment sur la <strong>de</strong>scription <strong>de</strong>s marginales - sont à prendre en compte dans l’estim<strong>at</strong>ion<br />

globale <strong>de</strong> l’incertitu<strong>de</strong> associée à l’estim<strong>at</strong>ion <strong>de</strong> la distribution jointe dans son ensemble.<br />

Par ailleurs, dans les cas où la dépendance <strong>de</strong> queue est trop importante pour que la copule gaussienne<br />

puisse être r<strong>et</strong>enue, il convient aussi <strong>de</strong> s’interroger sur la pertinence <strong>de</strong> la modélis<strong>at</strong>ion en terme <strong>de</strong><br />

copule elliptique que nous avions initialement choisie. En eff<strong>et</strong>, nous venons <strong>de</strong> montrer que l’accord<br />

entre ce type <strong>de</strong> représent<strong>at</strong>ion <strong>et</strong> le modèle à facteur, qui a <strong>de</strong> soli<strong>de</strong>s points d’ancrage dans la <strong>théorie</strong><br />

financière, n’est pas très s<strong>at</strong>isfaisant. De plus, les résult<strong>at</strong>s du paragraphe 9.2 montrent que durant la<br />

pério<strong>de</strong> 1980-2000, la dépendance <strong>de</strong> queue est légèrement plus importante dans la queue inférieure que<br />

dans la queue supérieure - ce qui a été confirmé par l’approche non paramétrique - même si dans la<br />

majeure partie <strong>de</strong>s cas, c<strong>et</strong>te différence n’est pas <strong>st<strong>at</strong>istique</strong>ment signific<strong>at</strong>ive. Cela dit, c<strong>et</strong>te différence<br />

systém<strong>at</strong>iquement en faveur <strong>de</strong> la queue nég<strong>at</strong>ive ne peut être négligée <strong>et</strong> est dès lors en contradiction<br />

avec l’hypothèse <strong>de</strong> copules elliptiques qui sont <strong>de</strong>s copules symétriques dans leurs parties positive <strong>et</strong><br />

nég<strong>at</strong>ive <strong>et</strong> présentent donc une même dépendance <strong>de</strong> queue supérieure <strong>et</strong> inférieure.


Troisième partie<br />

Mesures <strong>de</strong>s risques extrêmes <strong>et</strong><br />

applic<strong>at</strong>ion à la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong><br />

343


Chapitre 10<br />

La mesure du risque<br />

Dans ce chapitre, nous souhaitons présenter quelques <strong>théorie</strong>s ayant permis la quantific<strong>at</strong>ion du risque<br />

associé à un actif financier ou a un <strong>portefeuille</strong>. Les sources <strong>de</strong> risque sont en fait aussi diverses que<br />

variées. Nous pouvons citer par exemple le risque <strong>de</strong> défaut lié au fait qu’une contrepartie ne puisse<br />

faire face à ses oblig<strong>at</strong>ions ou bien le risque <strong>de</strong> liquidité lié à la capacité limitée <strong>de</strong>s marchés à pouvoir<br />

absorber un afflux massif <strong>de</strong> titres à la vente ou à l’ach<strong>at</strong>, mais il nous semble que la source principale du<br />

risque est le risque <strong>de</strong> marché, c’est-à-dire le risque associé aux fluctu<strong>at</strong>ions <strong>de</strong>s actifs financiers. C’est<br />

pourquoi nous nous bornerons à décrire comment quantifier ce type <strong>de</strong> risque.<br />

Depuis le milieu du vingtième siècle, plusieurs <strong>théorie</strong>s ont vu le jour pour tenter <strong>de</strong> cerner le comportement<br />

<strong>de</strong>s individus face à l’incertain en vue d’en déduire <strong>de</strong>s règles <strong>de</strong> décisions <strong>et</strong> <strong>de</strong>s mesures <strong>de</strong> risque.<br />

On peut citer tout d’abord les travaux <strong>de</strong> von Neumann <strong>et</strong> Morgenstern (1947) <strong>et</strong> Savage (1954) sur la<br />

formalis<strong>at</strong>ion <strong>de</strong> la <strong>théorie</strong> <strong>de</strong> l’utilité espérée, visant à décrire les préférences <strong>de</strong>s agents économiques,<br />

<strong>et</strong> l’introduction <strong>de</strong> la notion d’aversion au risque. Puis, au vu <strong>de</strong>s incomp<strong>at</strong>ibilités <strong>de</strong> c<strong>et</strong>te <strong>théorie</strong> avec<br />

certains comportements observés par Allais (1953) ou Ellsberg (1961), <strong>de</strong> nouvelles approches ont vu le<br />

jour, telle la “<strong>théorie</strong> <strong>de</strong> la perspective” <strong>de</strong> Kahneman <strong>et</strong> Tversky (1979), qui perm<strong>et</strong> <strong>de</strong> rendre compte<br />

d’une part du fait que les agents s’<strong>at</strong>tachent plus aux perspectives d’évolution <strong>de</strong> leur richesse qu’à leur<br />

richesse elle-même, <strong>et</strong> d’autre part qu’ils traitent leurs gains <strong>et</strong> leurs pertes <strong>de</strong> manière disymétriques : ils<br />

sont risquophobes face à <strong>de</strong>s gains potentiels mais risquophiles vis-à-vis <strong>de</strong> pertes à venir. Une autre altern<strong>at</strong>ive<br />

plus générale est ensuite apparue (Quiggin 1982, Gilboa <strong>et</strong> Schmeidler 1989) <strong>et</strong> s’est développée<br />

autour <strong>de</strong>s modèles dits non-additifs, c’est-à-dire <strong>de</strong>s modèles où les probabilités ne jouissent plus <strong>de</strong><br />

la propriété d’additivité, <strong>et</strong> sont donc remplacées par <strong>de</strong>s capacités, ce qui perm<strong>et</strong> notamment <strong>de</strong> rendre<br />

compte du phénomène <strong>de</strong> distorsion <strong>de</strong>s probabilités souvent observé chez la plupart <strong>de</strong>s agents.<br />

Récemment, dans un cadre plus restreint que celui <strong>de</strong> la <strong>théorie</strong> <strong>de</strong> la décision, Artzner, Delbaen, Eber<br />

<strong>et</strong> He<strong>at</strong>h (1999) ont proposé une nouvelle approche <strong>de</strong> la notion <strong>de</strong> risque, reposant sur les propriétés<br />

minimales que l’on est en droit d’<strong>at</strong>tendre d’une mesure <strong>de</strong> risque. Ceci a donné naissance à la notion <strong>de</strong><br />

mesures <strong>de</strong> risque cohérentes, qui a ensuite été étendue par He<strong>at</strong>h (2000) puis Föllmer <strong>et</strong> Schied (2002a)<br />

à la notion <strong>de</strong> mesures <strong>de</strong> risque convexes. Cependant, comme nous le verrons, ce type <strong>de</strong> mesure <strong>de</strong><br />

risque ne semble pas toujours être le mieux adapté à la quantific<strong>at</strong>ion <strong>de</strong>s risques d’un <strong>portefeuille</strong>. En<br />

eff<strong>et</strong>, il nous semble qu’il convient <strong>de</strong> bien différencier <strong>de</strong>ux types <strong>de</strong> risques :<br />

– premièrement, ce que l’on peut appeler la mesure du risque en terme <strong>de</strong> capital économique, c’est-àdire<br />

la somme d’argent dont doit disposer un <strong>gestion</strong>naire <strong>de</strong> <strong>portefeuille</strong> / une institution pour pouvoir<br />

faire face à ses oblig<strong>at</strong>ions <strong>et</strong> ainsi éviter la ruine,<br />

– <strong>et</strong> <strong>de</strong>uxièmement le risque lié aux fluctu<strong>at</strong>ions <strong>st<strong>at</strong>istique</strong>s <strong>de</strong> la richesse ou du ren<strong>de</strong>ment d’un <strong>portefeuille</strong><br />

autour <strong>de</strong> l’objectif <strong>de</strong> rentabilité préalablement fixé.<br />

345


346 10. La mesure du risque<br />

C’est pour rendre compte <strong>de</strong> c<strong>et</strong>te <strong>de</strong>uxième c<strong>at</strong>égorie <strong>de</strong> risques que nous proposons une autre approche<br />

dans laquelle il est fait usage <strong>de</strong>s moments <strong>de</strong> la distribution <strong>de</strong>s ren<strong>de</strong>ments d’un actif pour quantifier le<br />

risque associé aux fluctu<strong>at</strong>ions <strong>de</strong> c<strong>et</strong> actif.<br />

10.1 La <strong>théorie</strong> <strong>de</strong> l’utilité<br />

Notre objectif dans ce paragraphe est <strong>de</strong> passer en revue les avancées récentes <strong>de</strong> la <strong>théorie</strong> <strong>de</strong> la décision,<br />

dont on sait qu’elle joue un rôle très important en économie <strong>et</strong> en finance au travers <strong>de</strong> la notion d’utilité.<br />

Notre présent<strong>at</strong>ion ne fait qu’effleurer la surface <strong>de</strong> ce vaste problème <strong>et</strong> nous renvoyons le lecteur à<br />

l’article <strong>de</strong> Cohen <strong>et</strong> Tallon (2000) notamment pour <strong>de</strong> plus amples détails.<br />

10.1.1 Théorie <strong>de</strong> l’utilité en environnement certain<br />

La <strong>théorie</strong> <strong>de</strong> l’utilité trouve ses fon<strong>de</strong>ments dans le courant <strong>de</strong> pensée sociale développé <strong>de</strong> la fin du<br />

18ème siècle au milieu du 19ème par J. Bentham <strong>et</strong> J.S. Mill, fond<strong>at</strong>eurs <strong>de</strong> la philosophie <strong>de</strong> l’utilitarisme<br />

1 <strong>et</strong> selon laquelle on doit juger une action à ses résult<strong>at</strong>s <strong>et</strong> conséquences sur le bien-être <strong>de</strong>s<br />

individus. En cela, l’utilitarisme s’oppose farouchement au rigorisme moral prôné, à la même époque,<br />

par Kant, pour qui la valeur d’une action ne peut se juger qu’à l’aune <strong>de</strong>s principes <strong>et</strong> intentions qui en<br />

sont à l’origine.<br />

Loin <strong>de</strong> ces querelles philosophiques, les économistes se sont rapi<strong>de</strong>ment emparés du principe selon lequel<br />

les individus agissent en vue <strong>de</strong> maximiser leur bien-être <strong>et</strong> en ont fait le moteur <strong>de</strong>s comportements<br />

individuels <strong>de</strong>s agents économique. On peut d’ailleurs faire remonter à Adam Smith (1776) l’introduction<br />

<strong>de</strong> la notion d’utilité en économie du fait <strong>de</strong> la distinction qu’il introduit entre les concepts <strong>de</strong> “valeur<br />

à l’échange” (le prix) <strong>et</strong> <strong>de</strong> “valeur à l’usage” (l’utilité) d’un bien <strong>et</strong> qui sont à la base <strong>de</strong> la loi <strong>de</strong> l’offre<br />

<strong>et</strong> <strong>de</strong> la <strong>de</strong>man<strong>de</strong> <strong>et</strong> <strong>de</strong> la notion d’équilibre <strong>de</strong> marchés. La formalis<strong>at</strong>ion m<strong>at</strong>hém<strong>at</strong>ique <strong>de</strong> la <strong>théorie</strong> <strong>de</strong><br />

l’utilité n’interviendra que près <strong>de</strong> <strong>de</strong>ux siècles plus tard <strong>et</strong> repose (en univers certain) sur <strong>de</strong>ux axiomes<br />

simples décrivant les capacités <strong>de</strong>s agents à déterminer leurs préférences.<br />

Considérons à partir <strong>de</strong> maintenant, l’ensemble B <strong>de</strong>s actifs financiers (ou plus généralement <strong>de</strong>s biens)<br />

accessibles aux agents économiques, <strong>et</strong> postulons <strong>de</strong>ux axiomes simples, un axiome <strong>de</strong> comparaison <strong>et</strong><br />

un axiome <strong>de</strong> continuité :<br />

AXIOME 1 (COMPARABILITÉ)<br />

Un agent économique est capable d’établir une préférence entre tous les actifs <strong>de</strong> B. Cela revient à dire<br />

qu’il existe un préordre compl<strong>et</strong> “l’actif X est préféré à l’actif Y ”, notée X Y , entre tous les actifs<br />

X, Y ∈ B.<br />

AXIOME 2 (CONTINUITÉ)<br />

La rel<strong>at</strong>ion d’ordre est continue. Cela signifie qu’étant donné trois actifs X, Y, Z ∈ B il existe toujours<br />

<strong>de</strong>ux reéls α, β ∈]0, 1[ tels que d’une part, le <strong>portefeuille</strong> composé d’une proportion α <strong>de</strong> l’actif X <strong>et</strong><br />

(1 − α) <strong>de</strong> l’actif Y est strictement préféré à l’actif Z <strong>et</strong> d’autre part, l’actif Z est strictement préféré au<br />

<strong>portefeuille</strong> composé d’une proportion β <strong>de</strong> l’actif X <strong>et</strong> (1 − β) <strong>de</strong> l’actif Y :<br />

α X + (1 − α) Y ≻ Z <strong>et</strong> Z ≻ β X + (1 − β) Y. (10.1)<br />

1 En toute rigueur les prémices <strong>de</strong> la philosophie <strong>de</strong> l’utilité remontent plutôt à la fin du 17ème siècle avec Hobbes puis avec<br />

Helvétius au début 18ème (voire, si l’on veut aller aussi loin dans le temps à Epicure).


10.1. La <strong>théorie</strong> <strong>de</strong> l’utilité 347<br />

Moyennant ces <strong>de</strong>ux axiomes <strong>et</strong> quelques hypothèses à caractère purement technique que nous om<strong>et</strong>tons,<br />

il est possible <strong>de</strong> montrer qu’il existe une fonction dite fonction d’utilité telle que :<br />

DÉFINITION 5 (FONCTION D’UTILITÉ)<br />

La rel<strong>at</strong>ion <strong>de</strong> préférence sur l’ensemble <strong>de</strong>s actifs B peut être représentée par une fonction d’utilité<br />

U : B → R, telle que :<br />

∀(X, Y ) ∈ B 2 , X Y ⇐⇒ U(X) ≥ U(Y ). (10.2)<br />

C<strong>et</strong>te définition signifie simplement que l’actif X est préféré à l’actif Y si <strong>et</strong> seulement si l’utilité (ou<br />

valeur à l’usage) <strong>de</strong> l’actif X est supérieure à l’utilité <strong>de</strong> l’actif Y . Bien évi<strong>de</strong>mment, la fonction d’utilité<br />

n’est pas unique, puisque pour toute fonction g : R → R strictement croissante, la fonction V = g ◦ U<br />

est aussi une fonction d’utilité. La fonction U ainsi définie n’a donc qu’une valeur ordinale. Si l’on<br />

souhaite pouvoir considérer qu’un accroissement <strong>de</strong> la fonction d’utilité mesure une augment<strong>at</strong>ion <strong>de</strong><br />

la s<strong>at</strong>isfaction <strong>de</strong> l’agent économique, il faut adm<strong>et</strong>tre que la fonction d’utilité a une valeur cardinale,<br />

<strong>et</strong> elle n’est alors plus définie qu’à une tranform<strong>at</strong>ion affine croissante près. Dans toute la suite nous<br />

considérerons uniquement <strong>de</strong>s fonctions d’utilité cardinales.<br />

Si l’on s’intéresse, comme le plus fréquemment, à l’utilité <strong>de</strong> la richesse W d’un individu, on déduit<br />

aisément du comportement <strong>de</strong>s agents économiques que la fonction U(W ) est croissante, ce qui traduit<br />

l’appât du gain ou ins<strong>at</strong>iabilité, <strong>et</strong> généralement concave ce qui exprime la décroissance marginale <strong>de</strong><br />

l’utilité <strong>de</strong> la richesse : cent euros ne représentent pas la même utilité pour un agent possédant en tout <strong>et</strong><br />

pour tout mille euros ou un million d’euros.<br />

10.1.2 Théorie <strong>de</strong> la décision face au risque<br />

Considérons maintenant que l’on s’intéresse au comportement <strong>de</strong>s agents économiques à l’égard d’actifs<br />

dont la valeur future n’est pas parfaitement connue <strong>et</strong> dépend, à l’instant futur T , <strong>de</strong> l’ét<strong>at</strong> <strong>de</strong> la n<strong>at</strong>ure<br />

dans lequel se trouvera l’univers en T . Nous sommes alors confrontés à un problème <strong>de</strong> décision en<br />

univers risqué. Le premier exemple <strong>de</strong> résolution d’un tel problème remonte à Daniel Bernoulli (1738)<br />

qui apparaît comme le précurseur <strong>de</strong> l’introduction <strong>de</strong> l’utilité espérée, dont il fit usage pour résoudre le<br />

célèbre paradoxe <strong>de</strong> Saint-Pétersbourg.<br />

Dans ce paradoxe, un individu se voit offrir la possibilité <strong>de</strong> jouer au jeu suivant : on lance une pièce<br />

parfaitement équilibrée autant <strong>de</strong> fois que nécessaire pour voir le coté pile apparaître. A ce momentlà,<br />

le jeu s’arrête <strong>et</strong> le joueur reçoit 2 n euros, n étant le nombre <strong>de</strong> fois que la pièce a été lancée. La<br />

question est alors <strong>de</strong> savoir combien est prêt à payer l’individu pour pouvoir participer à ce jeu. Un<br />

simple calcul d’espérance m<strong>at</strong>hém<strong>at</strong>ique montre qu’en moyenne ce jeu offre un gain infini 2 . Donc, pour<br />

être équitable, le joueur <strong>de</strong>vrait accepter <strong>de</strong> payer une mise sinon infinie, du moins colossale. Or en<br />

réalité, on observe que les joueurs n’acceptent guère <strong>de</strong> payer plus <strong>de</strong> quelques euros pour participer au<br />

jeu, d’où le paradoxe.<br />

La solution proposée par Bernoulli (1738) consiste à supposer que les joueurs ne s’intéressent pas à la<br />

valeur moyenne <strong>de</strong>s gains espérés mais plutôt à l’espérance du logarithme <strong>de</strong>s gains, <strong>et</strong> l’on obtient alors :<br />

∞<br />

2 −n ln (2 n ) = 2 ln 2. (10.3)<br />

n=1<br />

Donc, pour reprendre la terminologie d’Adam Smith, les joueurs ne s’intéresse pas à la “valeur à l’échange”<br />

- ici les gains espérés - du jeu, mais plutôt à sa “valeur à l’usage” <strong>et</strong> donc à l’espérance du logarithme<br />

2 n 1 n.<br />

La probabilité <strong>de</strong> gagner 2 euros est égale à la probabilité d’obtenir n fois <strong>de</strong> suite le coté face <strong>de</strong> la pièce, soit 2


348 10. La mesure du risque<br />

<strong>de</strong>s gains. C<strong>et</strong>te approche coïnci<strong>de</strong> exactement avec la <strong>théorie</strong> <strong>de</strong> l’utilité espérée dont von Neumann<br />

<strong>et</strong> Morgenstern (1947) poseront les bases plus <strong>de</strong> <strong>de</strong>ux siècles plus tard <strong>et</strong> que nous allons maintenant<br />

exposer.<br />

Pour cela considérons l’ensemble Ω <strong>de</strong>s ét<strong>at</strong>s <strong>de</strong> la n<strong>at</strong>ure <strong>et</strong> F une tribu sur Ω <strong>de</strong> sorte que l’espace<br />

(Ω, F) soit mesurable. A chaque actif X ∈ B est associé une loi <strong>de</strong> probabilité PX sur (Ω, F)<br />

représentant la distribution <strong>de</strong> la valeur future <strong>de</strong> l’actif X. Par abus <strong>de</strong> langage <strong>et</strong> pour alléger les not<strong>at</strong>ions,<br />

la variable alé<strong>at</strong>oire donnant la valeur future <strong>de</strong> l’actif X ∈ B sera elle même notée X (mais c<strong>et</strong>te<br />

fois, X ∈ (Ω, F, PX)). Comme précé<strong>de</strong>mment en environnement certain, nous supposons que les agents<br />

économiques sont capables d’établir un préordre total sur l’ensemble <strong>de</strong>s actifs ou <strong>de</strong>s valeurs futures<br />

<strong>de</strong>s actifs <strong>et</strong> que ces préférences sont continues. Nous adm<strong>et</strong>tons <strong>de</strong> plus que<br />

AXIOME 3 (INDÉPENDENCE)<br />

Pour tout actif X, Y, Z ∈ B <strong>et</strong> tout reél α ∈]0, 1],<br />

X Y ⇐⇒ α X + (1 − α) Z α Y + (1 − α) Z, (10.4)<br />

ce qui suppose que l’adjonction d’un même actif ne modifie pas l’ordre <strong>de</strong>s préférences. C<strong>et</strong> axiome est<br />

central dans la <strong>théorie</strong> <strong>de</strong> l’utilité espérée <strong>de</strong> von Neumann <strong>et</strong> Morgenstern (1947). C’est en eff<strong>et</strong> grâce à<br />

lui que l’on peut montrer que l’utilité U d’un actif X dont la valeur future est risquée s’exprime comme<br />

U(X) = E[u(X)], (10.5)<br />

où u(·) est une fonction continue, croissante <strong>et</strong> définie à une transform<strong>at</strong>ion affine croissante près. La<br />

fonction u(·) est donc elle même une fonction d’utilité, <strong>de</strong> sorte que l’utilité U d’un bien risqué apparait<br />

comme la moyenne <strong>de</strong> l’utilité u <strong>de</strong> ce même bien dans chacun <strong>de</strong>s ét<strong>at</strong>s <strong>de</strong> la n<strong>at</strong>ure.<br />

La fonction u perm<strong>et</strong> <strong>de</strong> définir la notion d’aversion pour le risque. Selon Rotschild <strong>et</strong> Stiglitz (1970),<br />

un actif Y est plus risqué qu’un actif X si pour toute fonction croissante <strong>et</strong> concave u(·), E[u(X)] ≥<br />

E[u(Y )]. Ceci est en fait équivalent (Levy 1998) au fait que X domine Y au sens <strong>de</strong> la dominance<br />

stochastique d’ordre <strong>de</strong>ux :<br />

∀t ∈ R,<br />

t<br />

FY (y) dy ≥<br />

−∞<br />

t<br />

−∞<br />

FX(x) dx. (10.6)<br />

Ainsi donc, un individu qui préfère l’actif X à l’actif Y présente <strong>de</strong> l’aversion pour le risque, <strong>et</strong> une<br />

fonction d’utilité u(·) concave caractérise un individu risquophobe. Le coefficient absolu d’aversion<br />

pour le risque <strong>de</strong> c<strong>et</strong> individu est alors défini par<br />

a = − u′′<br />

. (10.7)<br />

u ′<br />

La notion <strong>de</strong> dominance stochastique d’ordre <strong>de</strong>ux peut être étendue à un ordre n quelconque, <strong>et</strong> un<br />

individu présentant une aversion pour le risque au sens <strong>de</strong> la dominance stochastique d’ordre n possè<strong>de</strong><br />

une fonction d’utilité u(·), telle que pour tout x, <strong>et</strong> tout k ≤ n :<br />

(−1) k u (k) (x) ≤ 0, (10.8)<br />

(Levy 1998). De telles fonctions d’utilité caractèrisent une aversion pour le risque dite standard selon<br />

la terminologie <strong>de</strong> Kimball (1993) <strong>et</strong> pour n = 4 par exemple, un individu ayant une fonction d’utilité<br />

vérifiant (10.8) est dit ins<strong>at</strong>iable (u ′ > 0), risquophobe (u ′′ < 0), pru<strong>de</strong>nt (u (3) > 0) <strong>et</strong> tempéré (u (4) <<br />

0).


10.1. La <strong>théorie</strong> <strong>de</strong> l’utilité 349<br />

C<strong>et</strong>te formul<strong>at</strong>ion simple <strong>et</strong> parcimonieuse <strong>de</strong> la <strong>théorie</strong> <strong>de</strong> la décision face au rique a contribué à rendre<br />

l’approche <strong>de</strong> von Neumann <strong>et</strong> Morgenstern (1947) très populaire. Cependant, c<strong>et</strong>te simplicité ne va<br />

pas sans soulever quelques difficultés <strong>et</strong> incohérences, au premier rang <strong>de</strong>squelles se trouve la viol<strong>at</strong>ion<br />

du postul<strong>at</strong> d’indépendance, clé <strong>de</strong> voute <strong>de</strong> c<strong>et</strong>te <strong>théorie</strong>. En eff<strong>et</strong>, Allais (1953) a montré par <strong>de</strong>s tests<br />

simples, consistant à proposer une série d’altern<strong>at</strong>ives à <strong>de</strong>s suj<strong>et</strong>s, que la majorité <strong>de</strong> ceux-ci ém<strong>et</strong>tent <strong>de</strong>s<br />

choix en contradiction avec c<strong>et</strong> axiome d’in<strong>de</strong>pendance. En particulier, les agents semblent très sensibles<br />

aux p<strong>et</strong>ites vari<strong>at</strong>ions <strong>de</strong> probabilités au voisinage du certain : ils accor<strong>de</strong>nt beaucoup d’importance au<br />

passage d’une probabilité <strong>de</strong> 0 à 0.01 ou <strong>de</strong> 0.99 à 1, alors qu’un changement <strong>de</strong> 5 à 10 pour-cent au<br />

voisinage d’un niveau <strong>de</strong> probabilité <strong>de</strong> 0.50 les laissent bien souvent indifférents. Ainsi, les agents sont<br />

suj<strong>et</strong>s à une distorsion <strong>de</strong> leur perception <strong>de</strong>s probabilités. D’autre part, en plus <strong>de</strong> c<strong>et</strong>te contradiction<br />

empirique vient s’ajouter une limit<strong>at</strong>ion théorique : la fonction u(·) joue un double rôle. Elle quantifie en<br />

même temps l’aversion pour le risque du déci<strong>de</strong>ur <strong>et</strong> la décroissance marginale <strong>de</strong> l’utilité <strong>de</strong> la richesse,<br />

<strong>de</strong> sorte qu’il est impossible <strong>de</strong> modéliser un agent qui est à la fois risquophile <strong>et</strong> dont l’utilité marginale<br />

décroit.<br />

En fait, ces <strong>de</strong>ux contradictions peuvent être levées en affaiblissant le postul<strong>at</strong> d’indépendance, qui sera<br />

remplacé par :<br />

AXIOME 4 (CHOSE SÛRE COMONOTONE DANS LE RISQUE)<br />

Soit <strong>de</strong>ux actifs X, Y ∈ B dont les valeurs futures sont données par les variables alé<strong>at</strong>oires (supposées<br />

discrètes pour simplifier) : X = (x1, p1; · · · ; xk, pk; · · · ; xn, pn) <strong>et</strong> Y = (y1, p1; · · · ; yk, pk; · · · ; yn, pn),<br />

telles que x1 ≤ · · · ≤ xk ≤ · · · ≤ xn <strong>et</strong> y1 ≤ · · · ≤ yk ≤ · · · ≤ yn avec xk = yk. Soient alors les actifs<br />

X ′ , Y ′ ∈ B obtenus en remplaçant xk par x ′ k dans les actifs X <strong>et</strong> Y <strong>de</strong> sorte que xk−1 ≤ x ′ k ≤ xk+1 <strong>et</strong><br />

yk−1 ≤ x ′ k = y′ k ≤ yk+1. Alors<br />

X Y ⇐⇒ X ′ Y ′ . (10.9)<br />

Cela veut simplement dire que l’on ne modifie pas l’ordre <strong>de</strong> préférence <strong>de</strong> <strong>de</strong>ux actifs lorsque l’on<br />

modifie leur commune valeur future sans changer le rang <strong>de</strong> celle-ci, ce qui fait toute la différence avec<br />

l’axiome d’indépendance. Moyennant cela, les paradoxes d’Allais (1953) sont levés <strong>et</strong> l’on est amené<br />

à généraliser la <strong>théorie</strong> <strong>de</strong> l’utilité espérée par la <strong>théorie</strong> <strong>de</strong> l’utilité dépendante du rang originellement<br />

développée par Quiggin (1982). En eff<strong>et</strong>, il est alors possible <strong>de</strong> montrer que l’on peut caractériser le<br />

comportement <strong>de</strong> tout agent économique par <strong>de</strong>ux fonctions croissantes. La première, u : B → R,<br />

définie à une transform<strong>at</strong>ion affine croissante près, joue le rôle <strong>de</strong> fonction d’utilité dans le certain. La<br />

secon<strong>de</strong>, ϕ : [0, 1] → [0, 1] est unique <strong>et</strong> représente la fonction <strong>de</strong> transform<strong>at</strong>ion (ou <strong>de</strong> distorsion) <strong>de</strong>s<br />

probabilités. Ainsi, l’utilité <strong>de</strong> l’actif X est :<br />

<br />

U(X) = − u(x) dϕ(Pr{X > x}) = Eϕ◦PX [u(x)]. (10.10)<br />

C<strong>et</strong>te intégrale est en fait une intégrale <strong>de</strong> Choqu<strong>et</strong>, c’est-à-dire une intégrale par rapport à une mesure<br />

généralement non-additive. Dans le cas particulier où ϕ(x) = x, on r<strong>et</strong>rouve bien évi<strong>de</strong>mment l’expression<br />

<strong>de</strong> l’utilité espérée <strong>de</strong> von Neumann <strong>et</strong> Morgenstern (1947), qui est donc englobée par la <strong>théorie</strong> <strong>de</strong><br />

l’utilité espérée dépendante du rang.<br />

L’intérêt <strong>de</strong> c<strong>et</strong>te nouvelle formul<strong>at</strong>ion est <strong>de</strong> complètement découpler les notions <strong>de</strong> décroissance marginale<br />

<strong>de</strong> l’utilité, mesurée par la concavité <strong>de</strong> la fonction u(·), <strong>et</strong> d’aversion pour le risque, entièrement<br />

caractérisée par la fonction <strong>de</strong> transform<strong>at</strong>ion <strong>de</strong>s probabilités ϕ(x) : un agent dont la fonction <strong>de</strong> transform<strong>at</strong>ion<br />

<strong>de</strong>s probabilités est telle que ϕ(x) ≤ x sera dit pessimiste dans le risque. En eff<strong>et</strong>, reprenant<br />

l’exemple discr<strong>et</strong> <strong>de</strong> l’axiome 4, l’équ<strong>at</strong>ion (10.10) <strong>de</strong>vient :<br />

U(X) = u(x1) + ϕ(p2 + · · · + pn) · [u(x2) − u(x1)] + · · · + ϕ(pn) · [u(xn) − u(xn−1)], (10.11)


350 10. La mesure du risque<br />

ce qui montre qu’un tel agent commence par calculer l’utilité minimale que peut lui procurer l’actif X,<br />

soit u(x1), puis il ajoute les accroissements possibles <strong>de</strong> l’utilité u(xk) − u(xk−1) qu’il peut recevoir en<br />

les pondérant non pas par leur probabilités d’occurence mais par sa fonction <strong>de</strong> distorsion <strong>de</strong>s probabiltés.<br />

Ainsi, lorsque ϕ(x) ≤ x, il sous-estime la probabilité d’événements favorables <strong>et</strong> sous-pondère les<br />

accroissements d’utilité qu’il peut en r<strong>et</strong>irer.<br />

10.1.3 Théorie <strong>de</strong> la décision face à l’incertain<br />

Nous venons d’exposer les bases <strong>de</strong> la <strong>théorie</strong> <strong>de</strong> la décision face au risque, c’est-à-dire lorsque le<br />

déci<strong>de</strong>ur connait <strong>de</strong> façon objective les probabilités associées aux différents ét<strong>at</strong>s <strong>de</strong> la n<strong>at</strong>ure Ω. Cependant,<br />

dans la plupart <strong>de</strong>s situ<strong>at</strong>ions économiques <strong>et</strong> financières, celles-ci ne sont que partiellement<br />

révélées voire totalement inconnues. Il convient donc <strong>de</strong> s’intéresser à c<strong>et</strong>te situ<strong>at</strong>ion, qualifiée <strong>de</strong> <strong>théorie</strong><br />

<strong>de</strong> la décision dans l’incertain, par opposition à la <strong>théorie</strong> <strong>de</strong> la décision face au risque, où l’on suppose<br />

données les probabilités sur les ét<strong>at</strong>s <strong>de</strong> la n<strong>at</strong>ure.<br />

L’approche classique (ou bayésienne) <strong>de</strong> ce problème est celle <strong>de</strong> Savage (1954) qui consiste à réduire<br />

le problème <strong>de</strong> décision dans l’incertain à un problème <strong>de</strong> décision face au risque, à l’ai<strong>de</strong> <strong>de</strong> la notion<br />

<strong>de</strong> probabilités subjectives. Ces probabilités, dites subjectives, diffèrent <strong>de</strong>s probabilités objectives <strong>de</strong><br />

la même manière que les courses <strong>de</strong> chevaux diffèrent du jeu <strong>de</strong> roul<strong>et</strong>te au casino : à la roul<strong>et</strong>te, la<br />

table étant parfaitement équilibrée, tous les joueurs connaissent la probabilité que sorte le trois, rouge,<br />

impair <strong>et</strong> passe, alors qu’au tiercé, nul ne connaît avec exactitu<strong>de</strong> la probabilité que tel ou tel cheval a <strong>de</strong><br />

l’emporter.<br />

De plus, les probabilités objectives ont une interprét<strong>at</strong>ion très simple dans la mesure où elles sont reliées<br />

à la fréquence typique d’occurrence d’un événement. En eff<strong>et</strong>, la probabilité d’obtenir face en j<strong>et</strong>ant une<br />

pièce parfaitement équilibrée est <strong>de</strong> un <strong>de</strong>mi, tout simplement parce ce qu’en répétant un grand nombre<br />

<strong>de</strong> fois ce lancer <strong>de</strong> pièce, on observe que celle-ci tombe sur face la moitié du temps, <strong>et</strong> ce quelle que<br />

soit la personne effectuant les lancers. Donc, la probabilité objective est une propriété intrinsèque <strong>de</strong><br />

l’obj<strong>et</strong> (ici, la pièce) ou <strong>de</strong> l’événement (ici, tomber sur face) considéré. Au contraire, les probabilités<br />

subjectives mesurent un <strong>de</strong>gré <strong>de</strong> croyance en la vraisemblance d’un événement. Quelle est la probabilité<br />

qu’existe une vie extra-terrestre ? Nous ne pouvons pas faire d’expériences à ce suj<strong>et</strong>. Donc, la probabilité<br />

accordée à ce type d’événement ne peut être que fonction <strong>de</strong> l’opinion <strong>de</strong> chacun sur la question.<br />

Ainsi une probabilité subjective n’a pas une valeur unique <strong>et</strong> dépend <strong>de</strong> chaque individu. Pour autant, ces<br />

probabilités subjectives obéissent aux mêmes règles que les probabilités objectives en vertu du théorème<br />

du “ dutch book” (<strong>de</strong> Fin<strong>et</strong>ti 1937). Selon ce théorème, tout pari basé sur un ensemble <strong>de</strong> probabilités<br />

subjectives est équitable (<strong>et</strong> ne peut donc conduire à un gain certain) si <strong>et</strong> seulement si la probabilité subjective<br />

<strong>at</strong>tribuée à un événement certain vaut un, ainsi que la somme <strong>de</strong>s probabilités <strong>de</strong> <strong>de</strong>ux événements<br />

complémentaires.<br />

Moyennant c<strong>et</strong>te nouvelle interprét<strong>at</strong>ion <strong>de</strong>s probabilités, les problèmes <strong>de</strong> décision dans l’incertain<br />

peuvent être ramenés à <strong>de</strong> “simples” problèmes <strong>de</strong> décision face au risque, ce qui, outre l’axiome <strong>de</strong><br />

préordre total, repose selon Savage (1954), sur l’axiome suivant :<br />

AXIOME 5 (PRINCIPE DE LA CHOSE SÛRE)<br />

Etant donné un sous-ensemble ˜ Ω ∈ Ω <strong>de</strong> l’ensemble <strong>de</strong>s ét<strong>at</strong>s <strong>de</strong> la n<strong>at</strong>ure <strong>et</strong> <strong>de</strong>s actifs X, X ′ , Y, Y ′ ∈ B<br />

tels que ∀ω ∈ ˜ Ω, X(ω) = X ′ (ω), Y (ω) = Y ′ (ω) <strong>et</strong> ∀ω ∈ ˜ Ω, X(ω) = Y (ω), X ′ (ω) = Y ′ (ω), alors<br />

X Y ⇐⇒ X ′ Y ′ . (10.12)<br />

Ceci signifie qu’une modific<strong>at</strong>ion commune <strong>de</strong> la partie commune <strong>de</strong> <strong>de</strong>ux actifs ne modifie pas l’ordre


10.1. La <strong>théorie</strong> <strong>de</strong> l’utilité 351<br />

<strong>de</strong>s préférences. Ajouté aux axiomes <strong>de</strong> comparabilité <strong>et</strong> <strong>de</strong> continuité, c<strong>et</strong> axiome perm<strong>et</strong> d’affirmer<br />

qu’il existe une unique probabilité P sur (Ω, F) <strong>et</strong> une fonction u(·) continue <strong>et</strong> croissante (définie à une<br />

fonction affine croissante près) telle que l’utilité U <strong>de</strong> l’actif X est donnée par<br />

U(X) = EP[u(X)], (10.13)<br />

où u(·) joue comme d’habitu<strong>de</strong> le rôle <strong>de</strong> fonction d’utilité dans le certain. C<strong>et</strong>te expression est analogue<br />

à celle obtenue par la <strong>théorie</strong> <strong>de</strong> l’utilité espérée <strong>de</strong> von Neumann <strong>et</strong> Morgenstern (1947), à la différence<br />

notoire qu’ici, la mesure <strong>de</strong> probabilité P est subjective <strong>et</strong> non pas objective.<br />

L’axiome <strong>de</strong> la chose sûre est extrêmement fort car il perm<strong>et</strong> <strong>de</strong> traiter tout problème <strong>de</strong> décision dans<br />

l’incertain comme un problème <strong>de</strong> décision face au risque. Ceci n’est en fait pas très réaliste, si bien<br />

que c<strong>et</strong>te approche est rej<strong>et</strong>ée sur le plan théorique comme sur le plan pr<strong>at</strong>ique. En eff<strong>et</strong>, <strong>de</strong> même<br />

qu’Allais (1953) avait prouvé que l’axiome d’indépendance était contredit empiriquement par la majorité<br />

<strong>de</strong>s agents, Ellsberg (1961) a pu montrer que dans <strong>de</strong>s situ<strong>at</strong>ions très simple <strong>de</strong> choix dans l’incertain<br />

l’axiome <strong>de</strong> la chose sûre ne résistait pas non plus à l’expérience. En fait, la plupart <strong>de</strong>s agents présentent<br />

une aversion pour l’ambiguïté, dans le sens où, pour une même mise, ils préférent parier pour ou contre<br />

un événement <strong>de</strong> probabilité P connue plutôt que pour ou contre un événement dont ils savent seulement<br />

que sa probabilité est comprise P − ε <strong>et</strong> P + ε. On peut alors montrer que les agents s<strong>at</strong>isfaisant au<br />

modèle <strong>de</strong> Savage (1954) sont indifférents à l’ambiguité, puisqu’ils ne peuvent pas faire la différence<br />

entre ces <strong>de</strong>ux paris.<br />

Pour dépasser c<strong>et</strong>te contradiction empirique il convient d’affaiblir l’axiome <strong>de</strong> la chose sûre. Pour cela,<br />

Schmeidler (1989) a proposé l’altern<strong>at</strong>ive suivante :<br />

AXIOME 6 (CHOSE SÛRE COMONOTONE)<br />

Soit une partition {Ωk} n k=1<br />

<strong>de</strong> l’ensemble <strong>de</strong>s ét<strong>at</strong>s <strong>de</strong> la n<strong>at</strong>ure Ω <strong>et</strong> <strong>de</strong>ux actifs X, Y ∈ B dont les<br />

valeurs futures sont données par les variables alé<strong>at</strong>oires : X = (x1, Ω1; · · · ; xk, Ωk; · · · ; xn, Ωn) <strong>et</strong><br />

Y = (y1, Ω1; · · · ; yk, Ωk; · · · ; yn, Ωn), telles que x1 ≤ · · · ≤ xk ≤ · · · ≤ xn <strong>et</strong> y1 ≤ · · · ≤ yk ≤ · · · ≤<br />

dans les actifs X<br />

yn avec xk = yk. Soient alors les actifs X ′ , Y ′ ∈ B obtenus en remplaçant xk par x ′ k<br />

<strong>et</strong> Y <strong>de</strong> sorte que xk−1 ≤ x ′ k ≤ xk+1 <strong>et</strong> yk−1 ≤ x ′ k = y′ k ≤ yk+1. Alors<br />

X Y ⇐⇒ X ′ Y ′ . (10.14)<br />

C<strong>et</strong> axiome est très proche <strong>de</strong> l’axiome <strong>de</strong> la chose sûre comonotone dans le risque, si ce n’est que c<strong>et</strong>te<br />

fois, les probabilités pi <strong>de</strong>s ét<strong>at</strong>s Ωi ne sont pas connues.<br />

A l’ai<strong>de</strong> <strong>de</strong> cela, on montre qu’il existe non plus une unique probabilité P sur {Ω, F} mais une unique<br />

capacité 3 v sur {Ω, F} <strong>et</strong> une fonction u(·) croissante <strong>et</strong> continue (définie à une transform<strong>at</strong>ion affine<br />

3<br />

Une capacité v est une fonction d’ensemble <strong>de</strong> {Ω, F} dans [0, 1] telle que :<br />

– v(∅) = 0,<br />

– v(Ω) = 1,<br />

– ∀A, B ∈ F, A ⊂ B =⇒ v(A) ≤ v(B).<br />

Rappelons qu’une mesure <strong>de</strong> probabilité P (addititive) vérifierait en plus<br />

Une capacité est dite convexe si<br />

∀A, B ∈ F, P (A ∪ B) = P (A) + P (B) − P (A ∩ B).<br />

∀A, B ∈ F, v(A) + v(B) ≤ v(A ∪ B) + v(A ∩ B).<br />

Toute capacité convexe a un noyau non vi<strong>de</strong>, où le noyau <strong>de</strong> v est<br />

core(v) = {P ∈ P | ∀A ∈ F, P (A) ≥ v(A)} ,<br />

<strong>et</strong> P est l’ensemble <strong>de</strong>s mesures <strong>de</strong> probabilités additives sur {Ω, F}.


352 10. La mesure du risque<br />

croissante près) telles que l’utilité <strong>de</strong> l’actif X est<br />

<br />

U(X) =<br />

u(X) dv, (10.15)<br />

qui est une intégrale <strong>de</strong> Choqu<strong>et</strong> par rapport à la mesure non-additive (capacité) v. On peut noter la<br />

très forte ressemblance <strong>de</strong> c<strong>et</strong>te expression avec celle obtenue pour l’utilité dépendante du rang (cf<br />

équ<strong>at</strong>ion (10.10)). En fait, dans (10.10), l’expression ϕ◦P est une capacité. De plus, si dans le modèle <strong>de</strong><br />

Schmeidler (1989), il existe une probabilité objective P sur {Ω, F}, la capacité v peut s’exprimer comme<br />

v = ϕ ◦ P, où ϕ est unique <strong>et</strong> v est convexe si <strong>et</strong> seulement si ϕ l’est aussi.<br />

Dans le cadre <strong>de</strong> ce modèle, Montessano <strong>et</strong> Giovannoni (1996) définissent la notion d’aversion pour l’incertitu<strong>de</strong>,<br />

à savoir qu’un agent présente <strong>de</strong> l’aversion pour l’incertitu<strong>de</strong>, s’il existe une loi <strong>de</strong> probabilité<br />

P telle que quelque soit X ∈ B, u(X) dv ≤ EP[u(X)], ce qui implique que le noyau <strong>de</strong> la capacité<br />

v contient P <strong>et</strong> est donc non vi<strong>de</strong>. Réciproqement, on peut donc affirmer que tout agent caracterisé par<br />

une capacité convexe (donc à noyau non vi<strong>de</strong>) a <strong>de</strong> l’aversion pour l’incertitu<strong>de</strong>. Intuitivement, un agent<br />

averse à l’incertitu<strong>de</strong> affectera toujours un événement <strong>de</strong> la “probabilité” la moins favorable parmi toutes<br />

les probabilités <strong>at</strong>tribuées à c<strong>et</strong> événement par l’ensemble <strong>de</strong>s lois présentes dans le noyau <strong>de</strong> la capacité.<br />

Schmeidler (1986) fournit une interpr<strong>et</strong><strong>at</strong>ion <strong>de</strong> ce modèle en terme <strong>de</strong> croyances. En eff<strong>et</strong>, sous l’hypothèse<br />

que la capacité v est convexe, son noyau est non vi<strong>de</strong> <strong>et</strong><br />

∀X ∈ B,<br />

<br />

u(X) dv = min<br />

P∈core(v) EP[u(X)], (10.16)<br />

donc l’utilité U(X) est donnée par l’espérance minimale <strong>de</strong> u(X) calculée sur un ensemble <strong>de</strong> scénarii.<br />

Ceci a conduit Gilboa <strong>et</strong> Schmeidler (1989), Nakamura (1990), Ch<strong>at</strong>eauneuf (1991) ou encore Casa<strong>de</strong>sus-<br />

Masanell, Klibanoff <strong>et</strong> Oz<strong>de</strong>noren (2000) à développer <strong>de</strong>s modèles dits multi-prior, où les agents se<br />

donnent, a priori, un ensemble <strong>de</strong> distributions <strong>de</strong> probabilités P (ou scénarii) <strong>et</strong> définissent l’utilité<br />

comme<br />

∀X ∈ B, U(X) = min<br />

P∈P EP[u(X)]. (10.17)<br />

Il faut bien remarquer que les <strong>de</strong>ux approches ne sont pas équivalentes, car tout ensemble (fermé <strong>et</strong><br />

convexe) P n’est pas nécessairement le noyau d’une capacité v. De plus, c<strong>et</strong>te <strong>de</strong>rnière approche peut<br />

paraitre excessivement pessimiste puisqu’elle ne r<strong>et</strong>ient que la plus p<strong>et</strong>ite utilité possible, vu l’ensemble<br />

<strong>de</strong> scénarii considérés. En tout cas, elle est beaucoup plus pessimiste que l’utilité dérivée du modèle <strong>de</strong><br />

Schmeidler (1986) puisque Jaffray <strong>et</strong> Philippe (1997) ont montré que l’intégrale <strong>de</strong> Choqu<strong>et</strong> pouvait toujours<br />

s’exprimer comme la somme pondérée <strong>de</strong> <strong>de</strong>ux termes : le minimum <strong>et</strong> le maximum <strong>de</strong> l’espérance<br />

d’utilité par rapport à un ensemble <strong>de</strong> distributions <strong>de</strong> probabilité, le poids rel<strong>at</strong>if <strong>de</strong> ces <strong>de</strong>ux termes<br />

perm<strong>et</strong>tant <strong>de</strong> définir un indice <strong>de</strong> pessimisme <strong>de</strong> l’agent.<br />

Cependant, malgré les récentes avancées <strong>de</strong> la <strong>théorie</strong> <strong>de</strong> la décision que nous venons <strong>de</strong> présenter, il<br />

faut reconnaitre qu’une <strong>de</strong> ses limit<strong>at</strong>ions fondamentales <strong>de</strong>meure, à savoir comment m<strong>et</strong>tre en œuvre<br />

concrètement <strong>et</strong> pr<strong>at</strong>iquement c<strong>et</strong>te <strong>théorie</strong>. En eff<strong>et</strong>, dans la mesure où chaque agent possè<strong>de</strong> une fonction<br />

d’utilité différente, il est très difficile <strong>de</strong> déci<strong>de</strong>r <strong>de</strong> manière objective laquelle employer. Donc, il va<br />

s’avérer utile <strong>de</strong> considérer d’autres outils <strong>de</strong> décision <strong>et</strong> d’autres moyens <strong>de</strong> mesurer les risques.


10.2. Les mesures <strong>de</strong> risque cohérentes 353<br />

10.2 Les mesures <strong>de</strong> risque cohérentes<br />

10.2.1 Définition<br />

Selon Artzner <strong>et</strong> al. (1999), le risque associé aux vari<strong>at</strong>ions <strong>de</strong> la valeur d’une position est mesuré par la<br />

somme d’argent qui doit être investie dans un actif sans risque pour que dans le futur, c<strong>et</strong>te position reste<br />

acceptable, c’est-à-dire pour que les pertes éventuelles liées à la valeur future <strong>de</strong> la position ne m<strong>et</strong>tent pas<br />

en péril les proj<strong>et</strong>s du <strong>gestion</strong>naire <strong>de</strong> fond, <strong>de</strong> l’entreprise ou plus généralement la personne / l’organisme<br />

qui garantit la position. En ce sens, une mesure <strong>de</strong> risque constitue pour Artzner <strong>et</strong> al. (1999) une mesure<br />

<strong>de</strong> capital économique. Donc, la mesure <strong>de</strong> risque, notée ρ dans toute la suite, pourra être positive ou<br />

nég<strong>at</strong>ive selon que, respectivement, il faille augmenter la somme investie dans l’actif sans risque pour<br />

garantir la position risquée ou bien que l’on puisse réduire c<strong>et</strong>te somme tout en maintenant c<strong>et</strong>te garantie.<br />

Une mesure <strong>de</strong> risque sera dite cohérente au sens <strong>de</strong> Artzner <strong>et</strong> al. (1999) si elle vérifie les qu<strong>at</strong>res<br />

propriétés ou axiomes que nous allons exposer ci-<strong>de</strong>ssous. Décidons tout d’abord d’appeler G l’espace<br />

<strong>de</strong>s risques. Si l’espace <strong>de</strong>s ét<strong>at</strong>s <strong>de</strong> la n<strong>at</strong>ure Ω est supposé fini (hypothèse faite par Artzner <strong>et</strong> al. (1999)),<br />

G est isomorphe à R N <strong>et</strong> une position risquée X n’est alors rien d’autre qu’un vecteur <strong>de</strong> R N . Une mesure<br />

<strong>de</strong> risque ρ est alors une applic<strong>at</strong>ion <strong>de</strong> R N dans R. Une généralis<strong>at</strong>ion à d’autres espaces <strong>de</strong> risque G a<br />

été proposée par Delbaen (2000).<br />

Soit donc une position risquée X <strong>et</strong> une somme d’argent α investie dans l’actif sans risque en début <strong>de</strong><br />

pério<strong>de</strong>, <strong>de</strong> sorte qu’en fin <strong>de</strong> pério<strong>de</strong>, le montant investi dans l’actif sans risque est α · (1 + r), où r<br />

représente le taux d’intérêt sans risque, alors :<br />

AXIOME 7 (INVARIANCE PAR TRANSLATION)<br />

∀X ∈ G <strong>et</strong> ∀α ∈ R, ρ(X + α · (1 + r)) = ρ(X) − α. (10.18)<br />

Ceci signifie simplement qu’investir une somme α dans l’actif sans risque, diminue le risque <strong>de</strong> la même<br />

quantité α. En particulier, pour toute position risquée X, ρ(X + ρ(X) · (1 + r)) = 0.<br />

Considérons maintenant <strong>de</strong>ux positions risquées X1 <strong>et</strong> X2, représentant par exemple les positions <strong>de</strong><br />

<strong>de</strong>ux tra<strong>de</strong>rs dans une salle <strong>de</strong> marché. Il est commo<strong>de</strong> pour le superviseur <strong>de</strong> c<strong>et</strong>te salle <strong>de</strong> marché que<br />

le risque agrégé <strong>de</strong> tous les tra<strong>de</strong>rs soit inférieur ou égal à la somme <strong>de</strong>s risques <strong>de</strong> chaque tra<strong>de</strong>r, donc<br />

en particulier il est souhaitable que le risque associé à la position (X1 + X2) soit inférieur ou égal à la<br />

somme <strong>de</strong>s risques associés aux positions X1 <strong>et</strong> X2 séparément :<br />

AXIOME 8 (SOUS-ADDITIVITÉ)<br />

∀(X1, X2) ∈ G × G, ρ(X1 + X2) ≤ ρ(X1) + ρ(X2). (10.19)<br />

De plus, la sous-additivité garantit qu’un <strong>gestion</strong>naire <strong>de</strong> <strong>portefeuille</strong> a interêt à agréger ses diverses<br />

positions afin d’en diminuer le risque par diversific<strong>at</strong>ion.<br />

Le troisième axiome est un axiome d’homogénéité (ou d’extensivité pour reprendre le language <strong>de</strong>s<br />

physiciens) :<br />

AXIOME 9 (POSITIVE HOMOGÉNÉITÉ)<br />

∀X ∈ G <strong>et</strong> ∀λ ≥ 0, ρ(λ · X) = λ · ρ(X), (10.20)


354 10. La mesure du risque<br />

ce qui signifie simplement que le risque d’une position croît avec la taille <strong>de</strong> c<strong>et</strong>te position, <strong>et</strong> plus<br />

précisément, le risque est ici supposé proportionnel à la taille <strong>de</strong> la position risquée. Nous reviendrons<br />

un peu plus loin sur l’hypothèse sous-jacente que suggère un tel axiome.<br />

Enfin, sachant que dans tous les ét<strong>at</strong>s <strong>de</strong> la n<strong>at</strong>ure, le risque X conduit à une perte supérieure à l’actif Y<br />

(c’est-à-dire que toutes les composantes du vecteur X <strong>de</strong> R N sont toujours inférieures ou égales à celles<br />

du vecteur Y ), la mesure <strong>de</strong> risque ρ(X) doit être supérieure ou égale à ρ(Y ) :<br />

AXIOME 10 (MONOTONIE)<br />

∀X, Y ∈ G tel que X ≤ Y, ρ(X) ≥ ρ(Y ). (10.21)<br />

Ainsi posés, ces qu<strong>at</strong>re axiomes définissent ce que l’on appelle les mesures <strong>de</strong> risques cohérentes.<br />

10.2.2 Quelques exemples <strong>de</strong> mesures <strong>de</strong> risque cohérentes<br />

Beaucoup <strong>de</strong> mesures <strong>de</strong> risque communément utilisées aussi bien dans la recherche académique que par<br />

les professionels s’avèrent être non cohérentes au sens <strong>de</strong> Artzner <strong>et</strong> al. (1999). En eff<strong>et</strong>, il est évi<strong>de</strong>nt<br />

que la variance - dont l’utilis<strong>at</strong>ion comme mesure <strong>de</strong> risque remonte à Markovitz (1959) - ne s<strong>at</strong>isfait pas<br />

à l’axiome <strong>de</strong> monotonie. De même, il est aisé <strong>de</strong> montrer que la Value-<strong>at</strong>-Risk n’est généralement pas<br />

sous-additive. Nous rappelons que la Value-<strong>at</strong>-Risk, calculée au seuil <strong>de</strong> confiance α est définie par<br />

DÉFINITION 6 (VALUE-AT-RISK)<br />

Soit X ∈ G supposé à distribution continue. La Value-<strong>at</strong>-Risk, calculée au seuil <strong>de</strong> confiance α ∈ [0, 1]<br />

<strong>et</strong> notée VaRα est<br />

Pr[X + (1 + r) · VaRα ≥ 0] = α. (10.22)<br />

A ce suj<strong>et</strong>, la classe <strong>de</strong>s actifs dont la distribution jointe est elliptique constitue une exception notable<br />

pour laquelle Embrechts <strong>et</strong> al. (2002) ont montré que la VaR est sous-additive, <strong>et</strong> <strong>de</strong>meure donc une<br />

mesure cohérente <strong>de</strong> risque.<br />

Vue l’utilis<strong>at</strong>ion très répandue <strong>de</strong> la VaR dans le milieu professionel, il était souhaitable d’essayer <strong>de</strong><br />

construire une mesure <strong>de</strong> risque cohérente se rapprochant le plus possible <strong>de</strong> la VaR <strong>et</strong> qui <strong>de</strong> plus<br />

complète l’inform<strong>at</strong>ion fournie par celle-ci, à savoir : conditionnée au fait <strong>de</strong> subir une perte dépassant<br />

la VaR, quelle est, en moyenne, la perte observée. Ceci a conduit à la définition <strong>de</strong> l’Expected Shortfall :<br />

DÉFINITION 7 (EXPECTED SHORTFALL)<br />

Soit X ∈ G supposé à distribution continue. L’Expected Shortfall, calculée au niveau <strong>de</strong> confiance α est<br />

<br />

<br />

X <br />

ESα = −E <br />

X<br />

1 + r ≤ −V aRα . (10.23)<br />

1 + r<br />

Dans le cas où la distribution <strong>de</strong> X n’est pas supposée continue, l’expression <strong>de</strong> l’Expected Shortfall est<br />

un peu plus compliquée (voir Acerbi <strong>et</strong> Tasche (2002) ou Tasche (2002) par exemple).<br />

Lorsque l’on souhaite tenir compte <strong>de</strong>s grands risques, une autre approche, sur laquelle nous reviendrons<br />

en détail dans la section 10.3, consiste à prendre en compte l’eff<strong>et</strong> <strong>de</strong>s moments d’ordres supérieurs<br />

(à <strong>de</strong>ux). La question concernant la cohérence <strong>de</strong> ce type <strong>de</strong> mesures <strong>de</strong> risques contruites à partir <strong>de</strong>s<br />

moments est abordée par Delbaen (2000) <strong>et</strong> plus particulièrement par Fisher (2001). Ce <strong>de</strong>rnier montre<br />

que toute mesure <strong>de</strong> risque<br />

ρ(X) = −E[X] + a · σp, (10.24)


10.2. Les mesures <strong>de</strong> risque cohérentes 355<br />

où 0 ≤ a ≤ 1 <strong>et</strong><br />

σp = (E [max{(E[X] − X) p , 0}]) 1/p<br />

(10.25)<br />

est le semi-moment centré (inférieur) d’ordre p, est une mesure cohérente <strong>de</strong> risque. Plus généralement,<br />

du fait que toute somme convexe <strong>de</strong> mesures cohérentes <strong>de</strong> risque est une mesure cohérente <strong>de</strong> risque, la<br />

mesure<br />

∞<br />

ρ(X) = −E[X] + ap · σp, (10.26)<br />

avec<br />

est cohérente.<br />

∞<br />

p=1<br />

p=1<br />

ap ≤ 1 <strong>et</strong> ap ≥ 0, (10.27)<br />

Ceci perm<strong>et</strong> d’obtenir <strong>de</strong> façon simple les équivalents cohérents <strong>de</strong> certaines mesures <strong>de</strong> risque ou fonctions<br />

d’utilité. Par exemple, la mesure <strong>de</strong> risque ρ(X) = −E[X] + a · σ2 peut être considérée comme la<br />

généralis<strong>at</strong>ion cohérente <strong>de</strong> la fonction d’utilité moyenne-variance.<br />

10.2.3 Représent<strong>at</strong>ion <strong>de</strong>s mesures <strong>de</strong> risque cohérentes<br />

Les axiomes présentés au paragraphe 10.2.1 ainsi que les quelques exemples que nous venons <strong>de</strong> donner<br />

montrent qu’il existe une gran<strong>de</strong> variété <strong>de</strong> mesures cohérentes : les axiomes ne sont pas assez contraignants<br />

pour spécifier complétement une (unique) mesure <strong>de</strong> risque cohérente. Aussi est-il intéressant <strong>de</strong><br />

rechercher une représent<strong>at</strong>ion <strong>de</strong> ce type <strong>de</strong> mesures. Artzner <strong>et</strong> al. (1999) ont montré que<br />

THÉORÈME 2 (REPRÉSENTATION DES MESURES COHÉRENTES DE RISQUE)<br />

Une mesure <strong>de</strong> risque ρ est cohérente si <strong>et</strong> seulement si il existe une famille P <strong>de</strong> mesures <strong>de</strong> probabilité<br />

sur l’espace <strong>de</strong>s ét<strong>at</strong>s <strong>de</strong> la n<strong>at</strong>ure telle que :<br />

ρ(X) = sup<br />

P∈P<br />

EP<br />

<br />

− X<br />

<br />

. (10.28)<br />

1 + r<br />

Ainsi, une mesure cohérente <strong>de</strong> risque apparait comme l’espérance <strong>de</strong> perte maximale sur un ensemble<br />

<strong>de</strong> scénarii réalisables. Il est alors évi<strong>de</strong>nt que plus l’ensemble <strong>de</strong> scénarii considérés sera grand, plus<br />

ρ(X) sera grand lui aussi, toutes choses égales par ailleurs. Ainsi, plus l’ensemble <strong>de</strong> scénarii considérés<br />

est grand, plus la mesure <strong>de</strong> risque est conserv<strong>at</strong>rice.<br />

C<strong>et</strong>te expression m<strong>at</strong>hém<strong>at</strong>ique n’est pas sans rappeler certaines formules que nous avons rencontrées<br />

concernant la <strong>théorie</strong> <strong>de</strong> la décision dans l’incertain (voir les équ<strong>at</strong>ions 10.16 <strong>et</strong> 10.17). Ceci est en<br />

fait très n<strong>at</strong>urel car les axiomes choisis par Artzner <strong>et</strong> al. (1999) pour définir les mesures <strong>de</strong> risques<br />

cohérentes sont tout-à-fait similaires à ceux dont découlent le modèle d’utilité <strong>de</strong> Schmeidler (1986). La<br />

légère différence entre les expressions (10.16) <strong>et</strong> (10.28), c’est-à-dire le changement du min en sup <strong>et</strong> le<br />

passage d’une fonction d’utilité u(·) croissante à la fonction décroissante − ·<br />

1+r<br />

vient simplement du fait<br />

que le déci<strong>de</strong>ur ou le <strong>gestion</strong>naire <strong>de</strong> risques tend à maximiser son utilité alors qu’il cherche à minimiser<br />

sa prise <strong>de</strong> risque. Ceci a comme conséquence que dans le modèle multi-prior, l’utilité est une quantité<br />

super-additive <strong>et</strong> non pas sous-additive comme les mesures <strong>de</strong> risque cohérentes. De plus, la spécific<strong>at</strong>ion<br />

<strong>de</strong> la fonction − ·<br />

1+r apparaissant dans (10.28) vient <strong>de</strong> l’axiome d’invariance par transl<strong>at</strong>ion qui impose<br />

que pour un investissement α dans l’actif sans risque ρ(α (1 + r)) = −α.<br />

Aussi générale soit-elle, la représent<strong>at</strong>ion <strong>de</strong>s mesures <strong>de</strong> risque cohérentes fournie par le théorème 2<br />

n’est pas d’une utilis<strong>at</strong>ion ou d’une mise en oeuvre très simple. En eff<strong>et</strong>, s’il est facile, dans la pr<strong>at</strong>ique,


356 10. La mesure du risque<br />

d’utiliser l’Expected Shortfall comme mesure cohérente <strong>de</strong> risque ou toute autre mesure cohérente ayant<br />

une expression analytique simple, comment doit-on choisir l’ensemble <strong>de</strong>s scénarii réalisables si l’on<br />

veut en rester au <strong>de</strong>gré <strong>de</strong> généralité proposé par le théorème <strong>de</strong> représent<strong>at</strong>ion ? C<strong>et</strong>te question n’adm<strong>et</strong><br />

guère <strong>de</strong> réponse s<strong>at</strong>isfaisante, <strong>et</strong> dans l’optique d’une mise en œuvre pr<strong>at</strong>ique, le point fondamental est<br />

plutôt <strong>de</strong> savoir si la mesure <strong>de</strong> risque que l’on souhaite utiliser peut être estimée à partir <strong>de</strong>s données<br />

empiriques. De telles mesure <strong>de</strong> risques sont dites law-invariant, <strong>et</strong> nous nous restreindrons désormais à<br />

la seule étu<strong>de</strong> <strong>de</strong> ce type <strong>de</strong> mesures cohérentes. Si <strong>de</strong> plus, on ne s’intéresse qu’aux mesures comonotoniquement<br />

additives 4 , on définit alors ce qu’Acerbi (2002) qualifie <strong>de</strong> mesures spectrales, pour lesquelles<br />

Kusuoka (2001) puis Tasche (2002) ont démontré le théorème <strong>de</strong> représent<strong>at</strong>ion suivant :<br />

THÉORÈME 3 (REPRÉSENTATION DES MESURES SPECTRALES)<br />

Soit F une fonction <strong>de</strong> distribution continue <strong>et</strong> convexe <strong>et</strong> un réel p ∈ [0, 1]. La mesure <strong>de</strong> risque ρ est une<br />

mesure spectrale, c’est-à-dire cohérente, law-invariant <strong>et</strong> comonotoniquement additive, si <strong>et</strong> seulement<br />

si elle adm<strong>et</strong> la représent<strong>at</strong>ion<br />

ρ(X) = p<br />

1<br />

0<br />

VaRu(X) F (du) + (1 − p)VaR1(X). (10.29)<br />

Si <strong>de</strong> plus F adm<strong>et</strong> une <strong>de</strong>nsité φ par rapport à la mesure <strong>de</strong> Lebesgue, (<strong>et</strong> en supposant p = 1 pour<br />

simplifier) alors<br />

ρ(X) =<br />

1<br />

0<br />

VaRu(X) φ(u) du, (10.30)<br />

<strong>et</strong> ρ(X) apparait comme la somme pondérée par φ(u) <strong>de</strong>s VaRu, ce qui justifie, suivant Acerbi (2002),<br />

que l’on puisse qualifier φ <strong>de</strong> “fonction d’aversion pour le risque”, puisque φ quantifie l’importance<br />

accordée aux différents niveaux <strong>de</strong> risque quantifiés par le seuil <strong>de</strong> confiance u. Dans le cas où φ(u) =<br />

α −1 · 1 (u


10.2. Les mesures <strong>de</strong> risque cohérentes 357<br />

Le premier point assure l’absence d’encaisse oisive. Le second est un principe <strong>de</strong> diversific<strong>at</strong>ion : mieux<br />

vaut agréger les risques. Le troisième point stipule que seul le risque est un paramètre pertinent pour<br />

l’alloc<strong>at</strong>ion <strong>de</strong> capital. Enfin, le qu<strong>at</strong>rième point exprime simplement que le capital investi dans l’actif<br />

sans risque ne peut l’être ailleurs.<br />

Considérant maintenant que la mesure <strong>de</strong> risque ρ est cohérente, Denault (2001) a prouvé, par analogie<br />

avec la <strong>théorie</strong> <strong>de</strong>s jeux, l’existence, <strong>et</strong> parfois l’unicité, d’alloc<strong>at</strong>ions cohérentes. Ces résult<strong>at</strong>s étant<br />

avant tout théorique <strong>et</strong> pour l’heure sans applic<strong>at</strong>ion pr<strong>at</strong>ique directe, nous n’irons pas plus avant sur<br />

c<strong>et</strong>te voie.<br />

En vue d’une mise en oeuvre pr<strong>at</strong>ique, mais aussi sur le plan théorique, il est intéressant <strong>de</strong> noter que <strong>de</strong><br />

par les axiomes <strong>de</strong> sous-additivité <strong>et</strong> <strong>de</strong> positive homogénéité, il est évi<strong>de</strong>nt que les mesures <strong>de</strong> risque<br />

cohérentes sont convexes, ce qui assure aux problèmes d’optimis<strong>at</strong>ion <strong>de</strong> <strong>portefeuille</strong> l’existence d’une<br />

unique solution optimale. Cependant, malgré le bon comportement m<strong>at</strong>hém<strong>at</strong>ique <strong>de</strong> la fonction à minimiser,<br />

la mise en oeuvre pr<strong>at</strong>ique se révèle parfois délic<strong>at</strong>e. Dans le cas particulier <strong>de</strong> l’Expected<br />

Shortfall, Pflug (2000) <strong>et</strong> Rockafellar <strong>et</strong> Uryasev (2000) ont établi un algorithme d’optimis<strong>at</strong>ion efficace<br />

par l’introdution <strong>de</strong> variables auxiliaires qui perm<strong>et</strong>tent <strong>de</strong> rendre le problème linéaire par morceau. C<strong>et</strong><br />

algorithme a ensuite été généralisé au cas <strong>de</strong>s mesures spectrales par Acerbi <strong>et</strong> Simon<strong>et</strong>ti (2002).<br />

Enfin, il peut être utile <strong>de</strong> calculer le risque marginal associé à chaque actif au sein d’un <strong>portefeuille</strong>. Etant<br />

donné N actifs X1, · · · , XN <strong>et</strong> w1, · · · , wN le nombre (ou le poids) <strong>de</strong> chaque actif dans le <strong>portefeuille</strong>,<br />

le risque marginal <strong>de</strong> l’actif i est la contribution d’une unité <strong>de</strong> c<strong>et</strong> actif au risque du <strong>portefeuille</strong>. D’après<br />

l’axiome d’homogénéité <strong>et</strong> en conséquence du théorème d’Euler sur les fonctions homogènes, le risque<br />

ρw = ρ(w1 · X1 + · · · + wN · XN) du <strong>portefeuille</strong> peut s’écrire<br />

ρw =<br />

N<br />

i=1<br />

wi · ∂ρw<br />

, (10.31)<br />

∂wi<br />

sous l’hypothèse que la mesure <strong>de</strong> risque est différentiable par rapport aux wi. En conséquence, il apparait<br />

clairement que la contribution marginale <strong>de</strong> l’actif i au risque du <strong>portefeuille</strong> est<br />

ρi = ∂ρw<br />

. (10.32)<br />

∂wi<br />

Ceci perm<strong>et</strong> en outre, généralisant l’approche <strong>de</strong> Gouriéroux, Laurent <strong>et</strong> Scaill<strong>et</strong> (2000) concernant la<br />

Value-<strong>at</strong>-Risk <strong>et</strong> <strong>de</strong> Scaill<strong>et</strong> (2000a) pour ce qui est <strong>de</strong> l’Expected-Shortfall, d’étudier la sensibilité du<br />

risque du <strong>portefeuille</strong> par rapport à l’alloc<strong>at</strong>ion <strong>de</strong>s différents actifs.<br />

10.2.5 Critique <strong>de</strong>s mesures cohérentes <strong>de</strong> risque<br />

Le mérite <strong>de</strong> l’axiom<strong>at</strong>ique <strong>de</strong>s mesures <strong>de</strong> risque cohérentes est <strong>de</strong> proposer une approche m<strong>at</strong>hém<strong>at</strong>ique<br />

rigoureuse <strong>de</strong> la problèm<strong>at</strong>ique associée à la notion <strong>de</strong> risque. Cependant, comme toute approche axiom<strong>at</strong>ique,<br />

certaines <strong>de</strong>s hypothèses <strong>de</strong> base peuvent être soumises à discussion. Si les axiomes d’invariance<br />

par transl<strong>at</strong>ion <strong>et</strong> <strong>de</strong> monotonie ne semblent pas souffrir la critique, on peut cependant légitimement<br />

s’interroger sur la validité <strong>et</strong> les limites <strong>de</strong>s <strong>de</strong>ux autres axiomes.<br />

Commencons par discuter l’axiome d’homogénéité. Comme nous l’avons précé<strong>de</strong>mment écrit, c<strong>et</strong> axiome<br />

n’est rien d’autre qu’une propriété d’extensivité <strong>de</strong> la mesure du risque : le risque associé à une position<br />

est proportionel à la taille <strong>de</strong> c<strong>et</strong>te position. Cependant, cela suppose qu’à tout moment l’on soit capable<br />

<strong>de</strong> liqui<strong>de</strong>r c<strong>et</strong>te position, quelle qu’en soit sa taille. Sous l’hypothèse d’un marché parfaitement liqui<strong>de</strong>,<br />

c<strong>et</strong>te hypothèse est tout-à-fait raisonnable. Mais, dès que l’on souhaite considérer un marché réel, <strong>et</strong> donc


358 10. La mesure du risque<br />

à liquidité limitée, il est alors bien évi<strong>de</strong>nt que la taille <strong>de</strong> la position <strong>de</strong>vient un facteur <strong>de</strong> risque, aucun<br />

marché n’étant en mesure d’absorber, sans fluctu<strong>at</strong>ion <strong>de</strong> cours, n’importe quelle taille d’ordre. Il peut<br />

donc sembler a priori raisonnable <strong>de</strong> reformuler l’axiome d’homogénéité <strong>de</strong> la façon suivante :<br />

AXIOME 11 (POSITIVE HOMOGÉNÉITÉ EN MARCHÉ ILLIQUIDE)<br />

Il existe une constante β > 1, telle que<br />

∀X ∈ G <strong>et</strong> ∀λ ≥ 0, ρ(λ · X) = λ β · ρ(X) , (10.33)<br />

<strong>et</strong> plus la constante β est gran<strong>de</strong>, plus les positions <strong>de</strong> gran<strong>de</strong>s tailles sont pénalisées.<br />

C<strong>et</strong> axiome suppose en fait seulement que l’impact <strong>de</strong> la liquidité limitée du marché est la même pour<br />

tous les actifs. Ceci n’est peut-être pas rigoureusement vrai, mais <strong>de</strong>meure une très bonne approxim<strong>at</strong>ion<br />

pour <strong>de</strong>s compagnies <strong>de</strong> taille comparable (Lillo <strong>et</strong> al. 2002).<br />

Il faut cependant noter qu’en tant que tel, c<strong>et</strong> axiome n’est pas comp<strong>at</strong>ible avec l’axiome d’invariance<br />

par transl<strong>at</strong>ion. En eff<strong>et</strong>, considérons le risque ρ(λ(X +α·(1+r))), avec X ∈ G <strong>et</strong> α <strong>et</strong> λ <strong>de</strong>ux réels. En<br />

appliquant tout d’abord l’axiome d’invariance par transl<strong>at</strong>ion, puis l’axiome d’homogénéité en marché<br />

illiqui<strong>de</strong>, on obtient :<br />

ρ(λ(X + α · (1 + r))) = ρ(λX + λα · (1 + r)), (10.34)<br />

= ρ(λX) − λα, (10.35)<br />

= λ β · ρ(X) − λα. (10.36)<br />

Si maintenant on fait usage <strong>de</strong> ces <strong>de</strong>ux axiomes dans l’ordre inverse, il vient :<br />

ρ(λ(X + α · (1 + r))) = λ β · ρ(X + α · (1 + r)), (10.37)<br />

= λ β · ρ(X) − λ β α, (10.38)<br />

ce qui est en contradiction avec le résult<strong>at</strong> précé<strong>de</strong>nt donné par l’équ<strong>at</strong>ion (10.36)<br />

Donc, si l’on veut restaurer la comp<strong>at</strong>iblité entre l’axiome d’invariance par transl<strong>at</strong>ion <strong>et</strong> l’axiome d’homogénéité<br />

en marche illiqui<strong>de</strong>, il faut restreindre ce <strong>de</strong>rnier aux positions purement risquées, ce qui<br />

revient à adm<strong>et</strong>tre la parfaite liquidité <strong>de</strong> l’actif sans risque. Une autre altern<strong>at</strong>ive consiste à modifier<br />

l’axiome d’invariance par transl<strong>at</strong>ion <strong>de</strong> sorte que pour un investissement <strong>de</strong> taille α dans l’actif sans<br />

risque ρ(α · (1 + r)) = −α β , auquel cas, on tient aussi compte du risque d’illiquidité pour l’actif sans<br />

risque.<br />

C<strong>et</strong>te approche n’est donc pas très s<strong>at</strong>isfaisante. Une meilleure solution a tout d’abord été proposée par<br />

He<strong>at</strong>h (2000) puis par Föllmer <strong>et</strong> Schied (2002a). Leur idée consiste pour commencer à remarquer que<br />

l’axiome <strong>de</strong> sous-additivité peut être remplacé par un axiome <strong>de</strong> convexité :<br />

AXIOME 12 (CONVEXITÉ)<br />

∀(X1, X2) ∈ G × G <strong>et</strong> ∀λ ∈ [0, 1], ρ(λ X1 + (1 − λ) X2) ≤ λ ρ(X1) + (1 − λ) ρ(X2). (10.39)<br />

C<strong>et</strong>te substitution est parfaitement légitime puisque pour les fonctions homogènes, convexité <strong>et</strong> sousadditivité<br />

sont équivalentes. Notons que comme l’axiome <strong>de</strong> sous-additivité, l’axiome <strong>de</strong> convexité garantit<br />

que l’agrég<strong>at</strong>ion <strong>de</strong> positions risquées assure leur diversific<strong>at</strong>ion.<br />

Ainsi, les mesures <strong>de</strong> risque cohérentes peuvent être définies par un ensemble d’axiomes équivalents à<br />

ceux énoncés en section 10.2.1 <strong>et</strong> qui sont les axiomes d’invariance par transl<strong>at</strong>ion, d’homogénéité, <strong>de</strong><br />

convexité <strong>et</strong> <strong>de</strong> monotonie.


10.3. Les mesures <strong>de</strong> fluctu<strong>at</strong>ions 359<br />

Pour prendre en compte le risque <strong>de</strong> liquidité, He<strong>at</strong>h (2000) <strong>et</strong> Föllmer <strong>et</strong> Schied (2002a) proposent<br />

<strong>de</strong> rej<strong>et</strong>er l’axiome d’homogénéité. Moyennant cela, ils définissent un nouvel ensemble <strong>de</strong> mesures <strong>de</strong><br />

risque dites convexes, qui englobent les mesures <strong>de</strong> risque cohérentes, <strong>et</strong> pour lesquelles ils donnent un<br />

théorème <strong>de</strong> représent<strong>at</strong>ion :<br />

THÉORÈME 4 (REPRÉSENTATION DES MESURES DE RISQUE CONVEXES)<br />

Une mesure <strong>de</strong> risque ρ est convexe si <strong>et</strong> seulement si il existe une famille Q <strong>de</strong> mesures <strong>de</strong> probabilité<br />

sur l’espace <strong>de</strong>s ét<strong>at</strong>s <strong>de</strong> la n<strong>at</strong>ure <strong>et</strong> une fonctionnelle α sur Q telle que :<br />

où la fonctionnelle α est donnée par<br />

<strong>et</strong><br />

ρ(X) = sup<br />

Q∈Q<br />

α(Q) = sup<br />

X∈Aρ<br />

(EQ [−X] − α(Q)) , (10.40)<br />

EQ[−X], (10.41)<br />

Aρ = {X ∈ G | ρ(X) ≤ 0} . (10.42)<br />

Dans l’énoncé du théorème, nous avons omis le facteur d’actualis<strong>at</strong>ion, afin d’alléger l’écriture, mais il<br />

peut être réintroduit <strong>de</strong> manière évi<strong>de</strong>nte.<br />

Ici encore, comme souligné par Föllmer <strong>et</strong> Schied (2002b), le lien avec la <strong>théorie</strong> <strong>de</strong> la décision dans<br />

l’incertain est immédi<strong>at</strong>, <strong>et</strong> perm<strong>et</strong> d’ancrer ces mesures <strong>de</strong> risque convexes dans la <strong>théorie</strong> <strong>de</strong> l’utilité <strong>et</strong><br />

ainsi <strong>de</strong> leur donner un sens économique très n<strong>et</strong>. Cependant, nous avons vu que c<strong>et</strong>te <strong>théorie</strong> conduisait<br />

à prendre <strong>de</strong>s décisions extrêmement pessismistes puisqu’elle ne r<strong>et</strong>ient que l’utilité minimale que peut<br />

r<strong>et</strong>irer un agent étant donné l’ensemble <strong>de</strong>s situ<strong>at</strong>ions qu’il considère. Ce même pessimisme excessif<br />

affecte les mesures <strong>de</strong> risque convexes (<strong>et</strong> donc cohérentes) puisque là aussi, le <strong>gestion</strong>naire n’est sensible<br />

qu’à la plus gran<strong>de</strong> perte qu’il peut subir.<br />

Enfin, il convient <strong>de</strong> signaler que la mesure du risque en terme <strong>de</strong> capital économique <strong>de</strong>meure insuffisante.<br />

Certes elle garantit, avec un certain niveau <strong>de</strong> confiance déterminé, que le <strong>portefeuille</strong> ou l’entreprise<br />

évitera la ruine, ce qui est fondamental du point <strong>de</strong> vue du régul<strong>at</strong>eur, mais si l’on se place du<br />

point <strong>de</strong> vue du <strong>gestion</strong>naire <strong>de</strong> fond ou d’un éventuel investisseur, cela ne suffit pas. Il faut aussi être<br />

capable <strong>de</strong> mesurer les fluctu<strong>at</strong>ions autour <strong>de</strong> l’objectif <strong>de</strong> rentabilité fixé, c’est-à-dire <strong>de</strong> la richesse du<br />

<strong>portefeuille</strong> autour <strong>de</strong> la richesse espérée (ou richesse moyenne). En eff<strong>et</strong>, la qualité d’un <strong>portefeuille</strong> se<br />

juge aussi à la régularité <strong>de</strong> ses performances.<br />

10.3 Les mesures <strong>de</strong> fluctu<strong>at</strong>ions<br />

Comme nous venons <strong>de</strong> l’exposer, la mesure du risque en terme <strong>de</strong> capital économique, pour nécessaire<br />

qu’elle soit - elle constitue en fait la première <strong>de</strong>s exigences - ne suffit cependant pas. Il semble en<br />

eff<strong>et</strong> tout-à-fait souhaitable <strong>de</strong> pouvoir mesurer les fluctu<strong>at</strong>ions d’un actif ou d’un portfeuille autour<br />

<strong>de</strong> sa valeur moyenne ou plus généralement autour d’un objectif <strong>de</strong> rentabilité préalablement établi.<br />

Les qualités du <strong>portefeuille</strong> seront alors d’autant meilleures que les fluctu<strong>at</strong>ions seront plus p<strong>et</strong>ites. Il<br />

convient donc <strong>de</strong> rechercher les propriétés minimales que doit s<strong>at</strong>isfaire une mesure <strong>de</strong> fluctu<strong>at</strong>ion ρ.<br />

Ceci est exposé dans Malevergne <strong>et</strong> Sorn<strong>et</strong>te (2002c) que nous présenterons au chapitre 14 section 1.2,<br />

<strong>et</strong> dont nous donnons ici un résumé.<br />

En premier lieu, nous requèrons qu’une mesure <strong>de</strong> fluctu<strong>at</strong>ion soit positive :


360 10. La mesure du risque<br />

AXIOME 13 (POSITIVITÉ)<br />

Soit X ∈ G une gran<strong>de</strong>ur risquée, alors ρ(X) ≥ 0. De plus, ρ(X) = 0 si <strong>et</strong> seulement si X est non<br />

risquée (ou certain).<br />

En particulier, tout actif sans risque a une mesure <strong>de</strong> fluctu<strong>at</strong>ion égale à zéro, ce qui est bien n<strong>at</strong>urel. De<br />

plus, l’ajout d’une quantité certaine à une valeur risquée ne modifiant en rien les fluctu<strong>at</strong>ions <strong>de</strong> c<strong>et</strong>te<br />

<strong>de</strong>rnière, nous <strong>de</strong>vons avoir :<br />

AXIOME 14 (INVARIANCE PAR TRANSLATION)<br />

∀X ∈ G <strong>et</strong> ∀µ ∈ R, ρ(X + α) = ρ(X). (10.43)<br />

Enfin, nous <strong>de</strong>mandons que la mesure <strong>de</strong> fluctu<strong>at</strong>ion soit une fonction croissante, <strong>et</strong> plus spécifiquement<br />

homogéne, <strong>de</strong> la taille <strong>de</strong> la position :<br />

AXIOME 15 (POSITIVE HOMOGÉNÉITÉ)<br />

Il existe une constante β ≥ 1, telle que<br />

∀X ∈ G <strong>et</strong> ∀λ ≥ 0, ρ(λ · X) = λ β · ρ(X). (10.44)<br />

Dans le cas où β égale un, la mesure <strong>de</strong> fluctu<strong>at</strong>ions est extensive par rapport à la taille <strong>de</strong> la position<br />

mais ne prend alors pas en compte le risque <strong>de</strong> liquidité.<br />

Les mesures <strong>de</strong> fluctu<strong>at</strong>ions s<strong>at</strong>isfaisant les axiomes 14 <strong>et</strong> 15 sont connues sous le nom <strong>de</strong> semi-invariants.<br />

Ils en existent <strong>de</strong> très nombreux, parmi lesquels on peut citer par exemples les moments centrés<br />

ou les cumulants<br />

µn(X) = E [(X − E[X]) n ] , (10.45)<br />

Cn(X) = 1<br />

i n · n!<br />

d E eikX <br />

<br />

<br />

<br />

dk<br />

k=0<br />

. (10.46)<br />

L’utilis<strong>at</strong>ion <strong>de</strong>s moments centrés comme mesure du risque associé aux fluctu<strong>at</strong>ions d’un actif n’est pas<br />

nouvelle. Elle remonte au moins à Markovitz (1959) qui choisit d’utiliser la variance (moment centré<br />

d’ordre <strong>de</strong>ux) comme mesure du risque <strong>de</strong>s actifs financiers. Plus tard, Rubinstein (1973) montrera que<br />

les moments centrés d’ordre supérieur à <strong>de</strong>ux - pour autant qu’ils existent (cf. chapitres 1 <strong>et</strong> 3) - interviennent<br />

<strong>de</strong> façon n<strong>at</strong>urelle pour quantifier <strong>de</strong>s risques plus grands que ceux pris en compte par la<br />

variance, en les m<strong>et</strong>tant en rel<strong>at</strong>ion avec la <strong>théorie</strong> <strong>de</strong> l’utilité espérée <strong>de</strong> von Neumann <strong>et</strong> Morgenstern<br />

(1947). Dans le cas général, c’est-à-dire pour les cumulants ou pour toute autre mesure <strong>de</strong> fluctu<strong>at</strong>ions,<br />

il ne semble cependant pas que l’on puisse trouver <strong>de</strong> lien avec la <strong>théorie</strong> <strong>de</strong> l’utilité.<br />

L’axiome <strong>de</strong> positivité perm<strong>et</strong> <strong>de</strong> restreindre les semi-invariants acceptables. En eff<strong>et</strong>, par définition, les<br />

moments centrés d’ordre pairssont positifs, mais ce n’est pas nécessairement le cas pour ceux d’ordre<br />

impair. La situ<strong>at</strong>ion est beaucoup plus floue pour ce qui est <strong>de</strong>s cumulants, puisqu’aucun résult<strong>at</strong> général<br />

ne peut être donné concernant leur positivité. En fait tout dépend <strong>de</strong> la distribution <strong>de</strong> la variable alé<strong>at</strong>oire<br />

X.<br />

Partant <strong>de</strong>s moments centrés, il est en fait facile <strong>de</strong> construire une mesure <strong>de</strong> fluctu<strong>at</strong>ion qui s<strong>at</strong>isfait les<br />

trois axiomes, quelque soit la valeur <strong>de</strong> β. En eff<strong>et</strong>, il suffit <strong>de</strong> considérer les moments absolus centrés :<br />

<br />

¯µβ(X) = E |X − E[X]| β<br />

, (10.47)


10.4. Conclusion 361<br />

<strong>et</strong> <strong>de</strong> manière plus générale : ¯µp β/p . Ceci perm<strong>et</strong> d’ailleurs <strong>de</strong> construire <strong>de</strong> façon très simple d’autres<br />

mesures <strong>de</strong> fluctu<strong>at</strong>ions. En eff<strong>et</strong>, il est aisé <strong>de</strong> montrer que toute somme (positive mais non nécessairement<br />

convexe) <strong>de</strong> mesures <strong>de</strong> fluctu<strong>at</strong>ions <strong>de</strong> même <strong>de</strong>gré d’homogénéité β est une mesure <strong>de</strong> fluctu<strong>at</strong>ion <strong>de</strong><br />

<strong>de</strong>gré d’homogénéité β. Donc, dans l’esprit <strong>de</strong>s mesures spectrales d’Acerbi (2002), nous pouvons définir<br />

<br />

ρ(X) = dα φ(α) E [|X − E[X]| α ] β/α , (10.48)<br />

pourvu que l’intégrale existe. Là encore, la fonction φ perm<strong>et</strong> <strong>de</strong> quantifier l’aversion du <strong>gestion</strong>naire <strong>de</strong><br />

risque vis-à-vis <strong>de</strong>s gran<strong>de</strong>s fluctu<strong>at</strong>ions.<br />

10.4 Conclusion<br />

Les avancées récentes en m<strong>at</strong>ière <strong>de</strong> <strong>théorie</strong> <strong>de</strong> la décision <strong>et</strong> <strong>de</strong> mesure <strong>de</strong> risque, que nous venons<br />

d’exposer, nous perm<strong>et</strong>trons au chapitre suivant <strong>de</strong> montrer comment m<strong>et</strong>tre en œuvre une <strong>gestion</strong> <strong>de</strong><br />

<strong>portefeuille</strong> efficace vis-à-vis <strong>de</strong>s grands risques. Toutefois, il convient <strong>de</strong> gar<strong>de</strong>r à l’esprit qu’une <strong>de</strong>s<br />

limites les plus importantes <strong>de</strong>s mesures <strong>de</strong> risque que nous venons <strong>de</strong> présenter est <strong>de</strong> se restreindre à une<br />

prise en compte mono-périodique <strong>de</strong>s risques <strong>et</strong> <strong>de</strong> négliger l’approche inter-temporelle, qui est pourtant<br />

fondamentale dans la mesure où les contraintes <strong>de</strong> risque ont souvent pour objectif d’être intégrées dans<br />

un problème d’optimis<strong>at</strong>ion <strong>de</strong> <strong>portefeuille</strong> qui généralement est un problème dynamique.<br />

Malheureusement, l’étu<strong>de</strong> dynamique <strong>de</strong>s risques est beaucoup moins avancée car beaucoup plus délic<strong>at</strong>e<br />

à formaliser que l’étu<strong>de</strong> st<strong>at</strong>ique. On peut cependant présenter quelques tent<strong>at</strong>ives ayant permis d’appréhen<strong>de</strong>r<br />

ce problème. Tout d’abord citons les approches <strong>de</strong> Dacorogna, Gençay, Müller <strong>et</strong> Pict<strong>et</strong><br />

(2001) <strong>et</strong> Muzy, Sorn<strong>et</strong>te, Delour <strong>et</strong> Arnéodo (2001) notamment qui, partant <strong>de</strong> mesures <strong>de</strong> risques<br />

mono-périodiques, montrent qu’il est possible <strong>de</strong> construire <strong>de</strong>s mesures “multi-échelles” en moyennant<br />

les mesures <strong>de</strong> risque mono-périodiques calculées à différentes échelles <strong>de</strong> temps. Ceci peut paraître<br />

une métho<strong>de</strong> purement ad hoc, mais a d’une part révélé d’intéressants résult<strong>at</strong>s <strong>et</strong> d’autre part repose<br />

tout <strong>de</strong> même sur l’existence d’une casca<strong>de</strong> causale entre les différentes échelles temporelles (Arnéodo<br />

<strong>et</strong> al. 1998, Muzy <strong>et</strong> al. 2001). Plus généralement, Wang (1999) a proposé un ensemble d’axiomes que<br />

les mesures <strong>de</strong> risques dynamiques doivent s<strong>at</strong>isfaire <strong>et</strong> a complété ainsi les travaux précé<strong>de</strong>nts <strong>de</strong> Shapiro<br />

<strong>et</strong> Basak (2000) concernant la maximis<strong>at</strong>ion <strong>de</strong> l’utilité en temps continu ou <strong>de</strong> Ahn, Boudoukh,<br />

Richardson <strong>et</strong> Whitelaw (1999) sur l’optimis<strong>at</strong>ion <strong>de</strong> la VaR en temps continu. Enfin, signalons certaines<br />

mesures <strong>de</strong> risques telles les drawdowns, qui mesurent les pertes cumulées indépendamment <strong>de</strong><br />

leur durée, <strong>et</strong> qui ont suscité récemment un certain regain d’intérêt (Grossman <strong>et</strong> Zhou 1993, Cvitanic <strong>et</strong><br />

Kar<strong>at</strong>zas 1995, Chekhlov, Uryasev <strong>et</strong> Zabarankin 2000, Johansen <strong>et</strong> Sorn<strong>et</strong>te 2002).


362 10. La mesure du risque


Chapitre 11<br />

Portefeuilles optimaux <strong>et</strong> équilibre <strong>de</strong><br />

marché<br />

On doit à Markovitz (1959) la première formalis<strong>at</strong>ion m<strong>at</strong>hém<strong>at</strong>ique <strong>de</strong> la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong>. Celle-ci<br />

est basée sur la nécessité d’accepter un compromis entre l’obtention d’un ren<strong>de</strong>ment espéré le plus élevé<br />

possible <strong>et</strong> d’une quantité <strong>de</strong> risques encourus la plus faible possible, ce qui conduit tout n<strong>at</strong>urellement<br />

à s’intéresser aux <strong>portefeuille</strong>s dits optimaux, c’est-à-dire les <strong>portefeuille</strong>s tels que pour un niveau <strong>de</strong><br />

risque donné <strong>et</strong> un jeu <strong>de</strong> contraintes à s<strong>at</strong>isfaire - telle que l’absence <strong>de</strong> vente à découvert, par exemple<br />

- il n’existe pas <strong>de</strong> <strong>portefeuille</strong>s <strong>de</strong> ren<strong>de</strong>ment supérieur au ren<strong>de</strong>ment du <strong>portefeuille</strong> optimal. La courbe<br />

représentant l’ensemble <strong>de</strong>s <strong>portefeuille</strong>s optimaux dans le plan risque / ren<strong>de</strong>ment définit la frontière<br />

efficiente au-<strong>de</strong>ssus <strong>de</strong> laquelle aucun couple risque / ren<strong>de</strong>ment ne peut être <strong>at</strong>teint.<br />

Dans l’approche initiale <strong>de</strong> Markovitz (1959), le risque est mesuré par la variance (ou dévi<strong>at</strong>ion standard)<br />

du ren<strong>de</strong>ment <strong>de</strong>s actifs. Cela revient à adm<strong>et</strong>tre soit que leur distribution (multivariée) est gaussienne<br />

- puisque c’est le seul cas où la variance caractérise complètement les fluctu<strong>at</strong>ions <strong>de</strong>s actifs - soit que<br />

la fonction d’utilité <strong>de</strong>s agents est quadr<strong>at</strong>ique, auquel cas les décisions <strong>de</strong>s agents ne sont régies que<br />

par les <strong>de</strong>ux premiers moments <strong>de</strong> la distribution <strong>de</strong>s actifs. Moyennant ces hypothèses, il est possible<br />

<strong>de</strong> dériver analytiquement la composition <strong>de</strong>s <strong>portefeuille</strong>s efficients en fonction du seul vecteur <strong>de</strong>s<br />

ren<strong>de</strong>ments espérés <strong>de</strong>s actifs <strong>et</strong> <strong>de</strong> leur m<strong>at</strong>rice <strong>de</strong> covariance (Elton <strong>et</strong> Gruber 1995, par exemple).<br />

Cependant, il est désormais bien admis que la variance ne saurait suffire à quantifier convenablement les<br />

risques puisqu’elle ne rend compte que <strong>de</strong>s p<strong>et</strong>ites fluctu<strong>at</strong>ions du ren<strong>de</strong>ment <strong>de</strong>s actifs autour <strong>de</strong> leur<br />

valeur moyenne, négligeant ainsi totalement les grands risques dont l’impact est généralement le plus<br />

conséquent. Aussi, est-il important <strong>de</strong> se tourner vers d’autres mesures <strong>de</strong> risques ou d’autres critères<br />

d’optimis<strong>at</strong>ion.<br />

L’une <strong>de</strong>s premières altern<strong>at</strong>ives proposées à l’analyse moyenne-variance a été <strong>de</strong> considérer les <strong>portefeuille</strong>s<br />

dont la moyenne non pas arithmétique mais géométrique <strong>de</strong>s ren<strong>de</strong>ments est la plus gran<strong>de</strong>,<br />

car ce sont eux qui ont la probabilité la plus élevée <strong>de</strong> dépasser un niveau donné <strong>de</strong> rentabilité, quelque<br />

soit l’intervalle <strong>de</strong> temps considéré (Brieman 1960, Hakansson 1971, Roll 1973). C<strong>et</strong>te approche n’est<br />

cependant comp<strong>at</strong>ible avec la <strong>théorie</strong> <strong>de</strong> la décision que pour <strong>de</strong>s fonctions d’utilité logarithmiques. Une<br />

secon<strong>de</strong> altern<strong>at</strong>ive, dite “Saf<strong>et</strong>y First”, consiste à m<strong>et</strong>tre l’accent sur les pertes qu’encourt le <strong>portefeuille</strong>.<br />

De nombreux critères ont vu le jour, tel le critère <strong>de</strong> Roy (1952) qui consiste à minimiser la probabilité<br />

<strong>de</strong> subir une perte supérieure à une valeur prédéterminée, ou encore les critères <strong>de</strong> K<strong>at</strong>aoka ou <strong>de</strong> Telser<br />

(voir Elton <strong>et</strong> Gruber (1995)) qui sont en fait très proches <strong>de</strong> critères d’optimis<strong>at</strong>ion sous contrainte <strong>de</strong><br />

VaR. De manière générale, toute optimis<strong>at</strong>ion sous contrainte <strong>de</strong> capital économique <strong>et</strong> donc utilisant notamment<br />

les mesures <strong>de</strong> risques cohérentes s’apparente à c<strong>et</strong>te approche. Enfin, une troisième altern<strong>at</strong>ive<br />

363


364 11. Portefeuilles optimaux <strong>et</strong> équilibre <strong>de</strong> marché<br />

consiste, pour palier directement aux limit<strong>at</strong>ions <strong>de</strong> l’approche moyenne-variance (Samuelson 1958), à<br />

prendre en compte l’eff<strong>et</strong> <strong>de</strong>s moments d’ordre supérieur, tels la skewness (Arditti 1967, Krauss <strong>et</strong> Lintzenburger<br />

1976) ou plus généralement les mesures <strong>de</strong> fluctu<strong>at</strong>ions que nous avons présentées au chapitre<br />

précé<strong>de</strong>nt.<br />

Outre l’intérêt pr<strong>at</strong>ique <strong>de</strong>s métho<strong>de</strong>s d’optimis<strong>at</strong>ion <strong>de</strong> <strong>portefeuille</strong>s, celles-ci ont aussi un intérêt théorique,<br />

dans la mesure où la composition <strong>de</strong>s <strong>portefeuille</strong>s optimaux perm<strong>et</strong> <strong>de</strong> déduire <strong>de</strong>s rel<strong>at</strong>ions entre les<br />

prix <strong>de</strong>s actifs <strong>et</strong> le prix du <strong>portefeuille</strong> <strong>de</strong> marché à l’équilibre. Ceci perm<strong>et</strong> alors <strong>de</strong> généraliser le CAPM<br />

<strong>de</strong> Sharpe (1964), Lintner (1965) <strong>et</strong> Mossin (1966) dérivé dans un univers <strong>de</strong> Markovitz <strong>et</strong> donc soumis<br />

aux mêmes limites quant à sa validité.<br />

11.1 Les limites <strong>de</strong> l’approche moyenne - variance<br />

Dans l’approche <strong>de</strong> Markovitz (1959), le vecteur <strong>de</strong>s ren<strong>de</strong>ments espérés <strong>et</strong> la m<strong>at</strong>rice <strong>de</strong> corrél<strong>at</strong>ion<br />

jouent un rôle crucial. Or, si l’estim<strong>at</strong>ion <strong>de</strong>s ren<strong>de</strong>ments moyens peut être réalisée avec une assez bonne<br />

précision dans la mesure où les distributions <strong>de</strong>s actifs décroissent plus vite qu’une loi <strong>de</strong> puissance d’exposant<br />

<strong>de</strong>ux (cf chapitre 1), l’estim<strong>at</strong>ion <strong>de</strong> la m<strong>at</strong>rice <strong>de</strong> covariance pose beaucoup plus <strong>de</strong> problèmes,<br />

car son estim<strong>at</strong>ion correcte nécessite que la distribution <strong>de</strong> ren<strong>de</strong>ment décroisse plus rapi<strong>de</strong>ment qu’une<br />

loi <strong>de</strong> puissance d’exposant qu<strong>at</strong>re dans la région intermédiaire, ce qui n’est pas le cas.<br />

En eff<strong>et</strong>, lorsque l’on s’intéresse à <strong>de</strong>s <strong>portefeuille</strong>s <strong>de</strong> gran<strong>de</strong> taille, la m<strong>at</strong>rice <strong>de</strong> covariance empirique<br />

est à telle point bruitée, que ses propriétés sont très proches <strong>de</strong>s propriétés universelles <strong>de</strong> certains<br />

ensembles <strong>de</strong> m<strong>at</strong>rices alé<strong>at</strong>oires. Plus précisément, Laloux, Cizeau, Bouchaud <strong>et</strong> Potters (1999), Laloux,<br />

Cizeau, Bouchaud <strong>et</strong> Potters (2000) ou encore Plerou, Gopikrishnan, Rosenow, Amaral <strong>et</strong> Stanley<br />

(1999) ont montré que les distributions <strong>de</strong> valeurs propres <strong>et</strong> vecteurs propres <strong>de</strong> ces m<strong>at</strong>rices, ainsi<br />

que la distribution <strong>de</strong>s écarts entre valeurs propres, étaient très proches <strong>de</strong> celles <strong>de</strong>s m<strong>at</strong>rices <strong>de</strong> l’ensemble<br />

<strong>de</strong> Wishart (1928), à l’exception <strong>de</strong>s quelques plus gran<strong>de</strong>s valeurs propres qui semblent pouvoir<br />

être associées à <strong>de</strong>s facteurs comme le marché ou certains secteurs d’activité. Cependant, comme<br />

suggéré par les résult<strong>at</strong>s <strong>de</strong> Meerschaert <strong>et</strong> Scheffler (2001), l’ensemble <strong>de</strong> Whishart n’est peut-être pas<br />

le plus adapté. En eff<strong>et</strong>, l’ensemble <strong>de</strong> Whishart est l’ensemble <strong>de</strong>s m<strong>at</strong>rices <strong>de</strong> corrél<strong>at</strong>ions empiriques<br />

dérivées d’échantillons gaussiens. Or, si l’on adm<strong>et</strong> que les queues <strong>de</strong> distributions <strong>de</strong>s ren<strong>de</strong>ments sont<br />

en lois <strong>de</strong> puissance (ou régulièrement variables) d’exposant <strong>de</strong> queue inférieur à qu<strong>at</strong>re, les ensembles<br />

<strong>de</strong> m<strong>at</strong>rice <strong>de</strong> Lévy (Burda, Janik, Jurkiewicz, Nowak, Papp <strong>et</strong> Zahed 2002) semblent plus indiqués. Les<br />

résult<strong>at</strong>s <strong>de</strong> Burda, Jurkiewicz, Nowak, Papp <strong>et</strong> Zahed (2001a) <strong>et</strong> Burda, Jurkiewicz, Nowak, Papp <strong>et</strong> Zahed<br />

(2001b) montrent alors que les m<strong>at</strong>rices <strong>de</strong> covariances estimées sont encore plus bruitées que prévu<br />

par comparaison à l’ensemble <strong>de</strong> Whishart, puisque même les plus gran<strong>de</strong>s valeurs ne paraissent pas signific<strong>at</strong>ives.<br />

En conséquence, le contenu <strong>de</strong>s m<strong>at</strong>rices <strong>de</strong> covariances estimées <strong>de</strong> gran<strong>de</strong>s tailles semble<br />

peu inform<strong>at</strong>if. En fait, nous montrons en annexe <strong>de</strong> ce chapitre que les plus gran<strong>de</strong>s valeurs propres<br />

peuvent être estimées avec une bonne précision tandis que le cœur <strong>de</strong> la distribution <strong>de</strong> valeurs propres<br />

s’écarte sensiblement <strong>de</strong> la distribution <strong>de</strong> Wishart. En outre, nous justifions, à l’ai<strong>de</strong> <strong>de</strong> la <strong>théorie</strong> <strong>de</strong>s<br />

m<strong>at</strong>rices alé<strong>at</strong>oires, comment émerge <strong>de</strong> tout système <strong>de</strong> gran<strong>de</strong> taille, dont la corrél<strong>at</strong>ion moyenne entre<br />

éléments est non nulle, un facteur (ou valeur propre) dominant qui perm<strong>et</strong> à lui seul <strong>de</strong> rendre compte<br />

<strong>de</strong> la plus gran<strong>de</strong> partie <strong>de</strong>s interactions (ou corrél<strong>at</strong>ions) entre les éléments du système (Malevergne <strong>et</strong><br />

Sorn<strong>et</strong>te 2002a).<br />

Ceci a d’importantes conséquences quant à la composition <strong>et</strong> la stabilité dans le temps <strong>de</strong>s <strong>portefeuille</strong>s<br />

optimaux obtenus à l’ai<strong>de</strong> <strong>de</strong> ces m<strong>at</strong>rices <strong>de</strong> corrél<strong>at</strong>ions empiriques (Rosenow, Plerou, Gopikrishnan<br />

<strong>et</strong> Stanley 2001). En fait, l’importance du bruit dépend du contexte. D’une part, elle semble assez faible<br />

pour les <strong>portefeuille</strong>s optimisés sous contraintes linéaires plutôt que sous contraintes non linéaires (Pafka


11.2. Prise en compte <strong>de</strong>s grands risques 365<br />

<strong>et</strong> Kondor 2001). D’autre part, c<strong>et</strong>te influence dépend du rapport r = N/T , où N est le nombre d’actifs<br />

dans le <strong>portefeuille</strong> <strong>et</strong> T la taille <strong>de</strong>s séries temporelles ayant servi à estimer la m<strong>at</strong>rice <strong>de</strong> covariance.<br />

Pafka <strong>et</strong> Kondor (2002) ont montré que pour un rapport supérieur ou <strong>de</strong> l’ordre <strong>de</strong> 0.6, le bruit à une<br />

influence primordiale, alors que pour r inférieur à 0.2, son impact <strong>de</strong>vient négligeable. Ceci implique<br />

qu’il est nécessaire <strong>de</strong> disposer <strong>de</strong> séries temporelles dont la longueur est au moins cinq fois supérieure à<br />

la taille du <strong>portefeuille</strong> considéré. Ainsi, pour un <strong>portefeuille</strong> d’une centaine d’actifs gérés sur la base <strong>de</strong><br />

données journalières, cela requièrt <strong>de</strong>s échantillons <strong>de</strong> cinq cents points, soit <strong>de</strong>ux années <strong>de</strong> cot<strong>at</strong>ions, ce<br />

qui reste très raisonnable. En revanche, pour un <strong>portefeuille</strong> d’un millier d’actifs, il faut alors <strong>de</strong>s séries<br />

temporelles <strong>de</strong> cinq mille points, ce qui représente une vingtaine d’années <strong>de</strong> cot<strong>at</strong>ions, <strong>et</strong> se posent alors<br />

d’autres problèmes tels que celui <strong>de</strong> la st<strong>at</strong>ionnarité <strong>de</strong> ces données.<br />

Quand bien même ces problèmes pr<strong>at</strong>iques ne se poseraient pas, il faut gar<strong>de</strong>r à l’esprit que l’approche<br />

moyenne - variance <strong>de</strong> Markovitz (1959) ne se révèle adaptée que dans l’hypothèse où les actifs sont<br />

conjointement gaussiens ou dans la mesure où les agents forment <strong>de</strong>s préférences quadr<strong>at</strong>iques dans leur<br />

richesse, ce qui dans un cas comme dans l’autre traduit que l’on ne s’intéresse qu’à <strong>de</strong>s risques <strong>de</strong> faibles<br />

amplitu<strong>de</strong>s. Dès lors que l’on souhaite intégrer d’autre dimension du risque, c’est-à-dire <strong>de</strong>s risques<br />

associés à <strong>de</strong> gran<strong>de</strong>s pertes ou <strong>de</strong> gran<strong>de</strong>s fluctu<strong>at</strong>ions, il convient <strong>de</strong> se tourner vers d’autres mesures<br />

<strong>de</strong> risques que la variance.<br />

11.2 Prise en compte <strong>de</strong>s grands risques<br />

L’utilis<strong>at</strong>ion <strong>de</strong> nouvelles mesures <strong>de</strong> risques perm<strong>et</strong>tant <strong>de</strong> prendre en compte les grands risques est<br />

nécessaire à l’obtention <strong>de</strong> <strong>portefeuille</strong>s moins sensibles que les <strong>portefeuille</strong>s moyenne - variance aux<br />

gran<strong>de</strong>s vari<strong>at</strong>ions <strong>de</strong> cours. Pour cela, nous <strong>de</strong>vons nous intéresser à <strong>de</strong>s mesures <strong>de</strong> risques accordant<br />

plus d’importance aux événements rares <strong>et</strong> <strong>de</strong> gran<strong>de</strong>s amplitu<strong>de</strong>s. De telles mesures ont été présentées<br />

au chapitre précé<strong>de</strong>nt, <strong>et</strong> selon Tasche (2000) <strong>et</strong> Malevergne <strong>et</strong> Sorn<strong>et</strong>te (2002c) peuvent être divisées en<br />

<strong>de</strong>ux classes :<br />

– premièrement les mesures <strong>de</strong> risques associées au capital économique pour lesquelles peuvent être<br />

requises <strong>de</strong>s conditions <strong>de</strong> cohérence (Artzner <strong>et</strong> al. 1999) ou <strong>de</strong> convexité (He<strong>at</strong>h 2000, Föllmer <strong>et</strong><br />

Schied 2002a),<br />

– <strong>et</strong> <strong>de</strong>uxièmement les mesures <strong>de</strong>s fluctu<strong>at</strong>ions du ren<strong>de</strong>ment autour <strong>de</strong> sa valeur espérée (Malevergne <strong>et</strong><br />

Sorn<strong>et</strong>te 2002c), ce qui historiquement est la première approche à avoir vu le jour puisque la variance<br />

est une mesure <strong>de</strong> fluctu<strong>at</strong>ion <strong>et</strong> pas une mesure <strong>de</strong> capital économique.<br />

En fait, ces <strong>de</strong>ux classes ne suffisent pas à englober toutes les mesures <strong>de</strong> grands risques : en restant dans<br />

un cadre strictement mono - périodique, on peut au moins citer le coefficient <strong>de</strong> dépendance <strong>de</strong> queue qui<br />

perm<strong>et</strong> <strong>de</strong> quantifier les co-mouvements extrêmes entre actifs (Malevergne <strong>et</strong> Sorn<strong>et</strong>te 2002b), ou encore<br />

la “covariance <strong>de</strong> queue” utilisée par Bouchaud, Sorn<strong>et</strong>te, Walter <strong>et</strong> Aguilar (1998) pour quantifier le<br />

risque d’un <strong>portefeuille</strong> d’actifs dont les ren<strong>de</strong>ments suivent <strong>de</strong>s lois <strong>de</strong> puissances, généralisant ainsi<br />

l’approche <strong>de</strong> Fama (1965b) valable uniquement pour <strong>de</strong>s actifs distribués selon <strong>de</strong>s lois stables. Si l’on<br />

s’autorise à considérer <strong>de</strong>s mesures inter - temporelles, les “drawdowns” (Chekhlov <strong>et</strong> al. 2000), par<br />

exemple peuvent être pris en compte.<br />

11.2.1 Optimis<strong>at</strong>ion sous contrainte <strong>de</strong> capital économique<br />

L’optimis<strong>at</strong>ion d’un <strong>portefeuille</strong> par rapport à <strong>de</strong>s contraintes portant sur le capital économique conduit<br />

n<strong>at</strong>urellement à s’intéresser aux <strong>portefeuille</strong>s VaR-efficients (Consigli 2002, Huisman, Koedijk <strong>et</strong> Pownall<br />

2001, Kaplanski <strong>et</strong> Kroll 2001a) ou Expected Shortfall-efficients (Frey <strong>et</strong> McNeil 2002). En eff<strong>et</strong>,


366 11. Portefeuilles optimaux <strong>et</strong> équilibre <strong>de</strong> marché<br />

ces <strong>de</strong>ux mesures <strong>de</strong> risques sont, à l’heure actuelle, les plus employées. Comme il est légitime <strong>de</strong> le<br />

penser, l’alloc<strong>at</strong>ion optimale selon <strong>de</strong>s critères moyenne - VaR ou moyenne - ES est très différente <strong>de</strong><br />

celle obtenue selon le critère moyenne variance (Alexan<strong>de</strong>r <strong>et</strong> Baptista 2002), ce <strong>de</strong>rnier n’étant pas à<br />

même <strong>de</strong> tenir compte <strong>de</strong>s grands risques.<br />

D’un point <strong>de</strong> vue pr<strong>at</strong>ique, l’optimis<strong>at</strong>ion selon <strong>de</strong>s critères <strong>de</strong> VaR est délic<strong>at</strong>e pour <strong>de</strong>ux raisons.<br />

D’une part du fait <strong>de</strong> sa non convexité, qui impose d’avoir recours à <strong>de</strong>s algorithmes <strong>de</strong> minimis<strong>at</strong>ion<br />

non standards (algorithmes génétiques, par exemple) <strong>et</strong> d’autre part, son estim<strong>at</strong>ion dans un cadre non<br />

- paramétrique est généralement difficile car sensible à la métho<strong>de</strong> utilisée <strong>et</strong> grosse consomm<strong>at</strong>rice<br />

<strong>de</strong> temps <strong>de</strong> calcul 1 . Aussi <strong>de</strong>s métho<strong>de</strong>s <strong>de</strong> calculs approxim<strong>at</strong>ifs (Tasche <strong>et</strong> Tibil<strong>et</strong>ti 2001) basées<br />

notamment sur l’applic<strong>at</strong>ion <strong>de</strong> la <strong>théorie</strong> <strong>de</strong>s valeurs extrêmes (Longin 2000, Danielson <strong>et</strong> <strong>de</strong> Vries<br />

2000, Consigli, Frascella <strong>et</strong> Sartorelli 2001) ou <strong>de</strong>s approches paramétriques (Malevergne <strong>et</strong> Sorn<strong>et</strong>te<br />

2002d), prennent tout leur sens. L’Expected-Shortfall présente quant à elle l’avantage <strong>de</strong> s<strong>at</strong>isfaire aux<br />

contraintes <strong>de</strong> cohérences 2 <strong>de</strong> Artzner <strong>et</strong> al. (1999). Ainsi, elle conduit à <strong>de</strong>s problèmes d’optimis<strong>at</strong>ion<br />

bien conditionnés pour lesquels <strong>de</strong>s algorithmes <strong>de</strong> minimis<strong>at</strong>ion particulièrement simples <strong>et</strong> efficaces<br />

existent (Rockafellar <strong>et</strong> Uryasev 2002).<br />

11.2.2 Optimis<strong>at</strong>ion sous contrainte <strong>de</strong> fluctu<strong>at</strong>ions autour du ren<strong>de</strong>ment espéré<br />

Le capital économique n’est pas la seule quantité à minimiser <strong>et</strong> les fluctu<strong>at</strong>ions du <strong>portefeuille</strong> autour <strong>de</strong><br />

son ren<strong>de</strong>ment moyen ou <strong>de</strong> tout autre objectif <strong>de</strong> rentabilité sont aussi à prendre en compte. La variance<br />

réalise cela, mais elle se focalise uniquement sur les écarts à la moyenne <strong>de</strong> faibles amplitu<strong>de</strong>s <strong>et</strong> néglige<br />

donc complètement les grands risques. C’est pourquoi il convient d’utiliser d’autres quantités partageant<br />

certaines <strong>de</strong>s propriétés <strong>de</strong> la variance mais m<strong>et</strong>tant l’emphase sur les gran<strong>de</strong>s fluctu<strong>at</strong>ions. Rubinstein<br />

(1973) fut l’un <strong>de</strong>s premiers à s’intéresser à c<strong>et</strong>te approche, suggérant que les moments centrés d’ordre<br />

supérieur à <strong>de</strong>ux ne <strong>de</strong>vaient être négligés puisqu’ils apparaissent n<strong>at</strong>urellement dans le développement<br />

en série <strong>de</strong> la fonction d’utilité. Plus récemment, Sorn<strong>et</strong>te, An<strong>de</strong>rsen <strong>et</strong> Simon<strong>et</strong>ti (2000) <strong>et</strong> Sorn<strong>et</strong>te,<br />

Simon<strong>et</strong>ti <strong>et</strong> An<strong>de</strong>rsen (2000) ont émis l’idée que les cumulants pouvaient aussi fournir d’utiles mesures<br />

<strong>de</strong> fluctu<strong>at</strong>ions, perm<strong>et</strong>tant notamment <strong>de</strong> rendre compte du comportement <strong>de</strong> certains agents globalement<br />

risquophobes dans le sens où ils cherchent à éviter les grands risques mais sont près à accepter un<br />

certain niveau <strong>de</strong> p<strong>et</strong>its risques (An<strong>de</strong>rsen <strong>et</strong> Sorn<strong>et</strong>te 2002a, Malevergne <strong>et</strong> Sorn<strong>et</strong>te 2002c). Dans le cas<br />

où les distributions marginales <strong>de</strong>s actifs suivent <strong>de</strong>s lois exponentielles étirées (cf chapitre 3) <strong>et</strong> où la<br />

copule décrivant leur dépendance est gaussienne (cf chapitres 7 <strong>et</strong> 8), <strong>de</strong>s expressions analytiques ont pu<br />

être dérivées pour l’expression <strong>de</strong>s moments <strong>et</strong> cumulants <strong>de</strong>s <strong>portefeuille</strong>s constitués <strong>de</strong> tels actifs (voir<br />

chapitre 14).<br />

Ces quelques exemples sont <strong>de</strong>s cas particuliers <strong>de</strong>s mesures <strong>de</strong> fluctu<strong>at</strong>ions définies au chapitre précé<strong>de</strong>nt<br />

<strong>et</strong> perm<strong>et</strong>tent <strong>de</strong> dériver simplement la plupart <strong>de</strong>s propriétés générales <strong>de</strong>s <strong>portefeuille</strong>s optimaux. Ces<br />

propriétés sont en fait <strong>de</strong>s généralis<strong>at</strong>ions immédi<strong>at</strong>es, aux cas <strong>de</strong>s grands risques, <strong>de</strong>s propriétés dont<br />

jouissent les <strong>portefeuille</strong>s moyenne - variance efficients.<br />

11.2.3 Optimis<strong>at</strong>ion sous d’autres contraintes<br />

Lorsque l’on souhaite considérer les risques extrêmes systém<strong>at</strong>iques, c’est-à-dire les mouvements extrêmes<br />

que subissent les actifs conjointement avec le marché, le coefficient <strong>de</strong> dépendance <strong>de</strong> queue λ peut<br />

1 Ce point est discuté en détail dans Chabaane, Duclos, Laurent, Malevergne <strong>et</strong> Turpin (2002)<br />

2 Voir Acerbi <strong>et</strong> Tasche (2002) pour une discussion <strong>de</strong>s propriétés <strong>de</strong> cohérence <strong>de</strong> l’Expected-Shortfall selon la définition<br />

adoptée.


11.3. Equilibre <strong>de</strong> marché 367<br />

s’avérer utile. En eff<strong>et</strong>, comme nous le montrons dans Malevergne <strong>et</strong> Sorn<strong>et</strong>te (2002b), les <strong>portefeuille</strong>s<br />

constitués d’actifs <strong>de</strong> faibles λ présentent globalement beaucoup moins <strong>de</strong> dépendance dans les extrêmes<br />

que les <strong>portefeuille</strong>s d’actifs ayant individuellement <strong>de</strong> grands λ.<br />

Lorsque l’on abandonne le strict cadre mono - périodique, les choses se compliquent. L’approche st<strong>at</strong>ique<br />

<strong>de</strong> Markovitz (1959) peut certes être généralisée dans un cadre dynamique (Merton 1992), mais cela nous<br />

ramène à la seule prise en compte <strong>de</strong>s p<strong>et</strong>its risques. Quelques tent<strong>at</strong>ives ont été menées pour tenter <strong>de</strong><br />

concilier grand risques <strong>et</strong> approche inter - temporelle telle par exemple la minimis<strong>at</strong>ion <strong>de</strong>s “drawdowns”<br />

(Grossman <strong>et</strong> Zhou 1993, Cvitanic <strong>et</strong> Kar<strong>at</strong>zas 1995, Chekhlov <strong>et</strong> al. 2000), ou encore l’utilis<strong>at</strong>ion <strong>de</strong>s<br />

cumulants à différentes échelles temporelles (Muzy <strong>et</strong> al. 2001).<br />

11.3 Equilibre <strong>de</strong> marché<br />

L’alloc<strong>at</strong>ion <strong>de</strong> capital <strong>et</strong> le choix <strong>de</strong>s actifs effectués par les agents a bien évi<strong>de</strong>mment une influence sur<br />

le prix <strong>de</strong> marché <strong>de</strong> ces actifs. Sous les hypothèses que le marché est parfaitement liqui<strong>de</strong> <strong>et</strong> en l’absence<br />

<strong>de</strong> taxe <strong>de</strong> quelque sorte que ce soit, il est possible <strong>de</strong> dériver <strong>de</strong>s équ<strong>at</strong>ions reliant les ren<strong>de</strong>ments<br />

espérés <strong>de</strong> chaque actif au ren<strong>de</strong>ment du marché (à l’équilibre). Le premier modèle d’équilibre, ancré<br />

dans l’univers <strong>de</strong> Markovitz, est le CAPM dérivé par Sharpe (1964), Lintner (1965) <strong>et</strong> Mossin (1966).<br />

Très tôt, <strong>de</strong> nombreuses généralis<strong>at</strong>ions ont été obtenues pour tenir compte notamment <strong>de</strong> l’eff<strong>et</strong> <strong>de</strong>s<br />

moments d’ordre supérieur à <strong>de</strong>ux (Jurczenko <strong>et</strong> Maill<strong>et</strong> 2002, <strong>et</strong> les références citées dans c<strong>et</strong> article),<br />

<strong>et</strong> ainsi tenter <strong>de</strong> résoudre l’ “equity premium puzzle”. Les résult<strong>at</strong>s n’étant pas très concluants, d’autres<br />

voies ont été explorées pour rendre compte notamment <strong>de</strong>s implic<strong>at</strong>ions économiques <strong>de</strong> l’optimis<strong>at</strong>ion<br />

<strong>de</strong> <strong>portefeuille</strong> sous d’autres contraintes que la variance, telle la VaR par exemple (Alexan<strong>de</strong>r <strong>et</strong> Baptista<br />

2002, Kaplanski <strong>et</strong> Kroll 2001b), sans malheureusement beaucoup plus <strong>de</strong> succès.<br />

Pour notre part, nous avons montré que la rel<strong>at</strong>ion standard du CAPM reste valable pour les mesures <strong>de</strong><br />

fluctu<strong>at</strong>ions que nous avons considérées ainsi que dans le cas où les agents n’utilisent pas tous la même<br />

mesure <strong>de</strong> risque, <strong>et</strong> donc lorsque le marché est hétérogène (Malevergne <strong>et</strong> Sorn<strong>et</strong>te 2002c), reprenant <strong>et</strong><br />

généralisant certains travaux antérieurs <strong>de</strong> Lintner (1969) ou Gone<strong>de</strong>s (1976) notamment.<br />

Toutes ces approches <strong>de</strong>meurent dans le cadre <strong>de</strong> l’étu<strong>de</strong> mono-périodique <strong>de</strong> l’équilibre <strong>de</strong>s marchés.<br />

Mais, <strong>de</strong> même que le problème <strong>de</strong> choix <strong>de</strong> <strong>portefeuille</strong> a reçu certaines extensions multi-périodiques,<br />

<strong>de</strong>s généralis<strong>at</strong>ions inter-temporelles du CAPM ont vu le jour dont celles proposées par Fama (1970) ou<br />

Merton (1973) pour ne citer que les plus célèbres, que nous ne faisons que mentionner puisque nous ne<br />

nous y sommes pas du tout intéressés. Comme pour le problème <strong>de</strong> sélection <strong>de</strong> <strong>portefeuille</strong>, nous nous<br />

sommes restreints au cas mono-périodiques.<br />

11.4 Conclusion<br />

Nous avons synthétisé dans ce chapitre les résult<strong>at</strong>s antérieurs obtenus dans le domaine <strong>de</strong> la <strong>gestion</strong> <strong>de</strong><br />

<strong>portefeuille</strong> quantit<strong>at</strong>ive <strong>et</strong> les conséquences théoriques qui en découlaient concernant les équilibres <strong>de</strong><br />

marchés. Ceci nous a permis <strong>de</strong> situer les résult<strong>at</strong>s que nous avons obtenus sur ce suj<strong>et</strong> par rapport à ceux<br />

déjà établis.<br />

Ces résult<strong>at</strong> seront présentés en détail dans les chapitres suivants, en commençant par les conséquences <strong>de</strong><br />

la prise en compte <strong>de</strong>s risques grands <strong>et</strong> extrêmes, notamment au travers du coefficient <strong>de</strong> dépendance <strong>de</strong><br />

queue (chapitre 12), puis les implic<strong>at</strong>ions <strong>et</strong> difficultés <strong>de</strong> l’optimis<strong>at</strong>ion <strong>de</strong> <strong>portefeuille</strong> sous contraintes<br />

<strong>de</strong> mesures <strong>de</strong> risques (cohérentes ou non) associées au capital économique (chapitre 13) <strong>et</strong> enfin nous


368 11. Portefeuilles optimaux <strong>et</strong> équilibre <strong>de</strong> marché<br />

étudierons les <strong>portefeuille</strong>s efficients <strong>et</strong> équilibres <strong>de</strong> marchés qui en découlent sous contraintes <strong>de</strong> fluctu<strong>at</strong>ions<br />

autour d’un objectif <strong>de</strong> rentabilité sur le ren<strong>de</strong>ment espéré (chapitre 14).<br />

11.5 Annexe<br />

A l’ai<strong>de</strong> <strong>de</strong> calculs simples <strong>et</strong> <strong>de</strong> simul<strong>at</strong>ions numériques, nous démontrons l’existence générique d’un<br />

ét<strong>at</strong> macroscopique auto-organisé dans tout système <strong>de</strong> gran<strong>de</strong> taille présentant une corrél<strong>at</strong>ion moyenne<br />

non-nulle entre une fraction finie <strong>de</strong> toutes ces paires d’éléments. Nous montrons que la coexistence<br />

d’un spectre <strong>de</strong> valeurs propres, prédit par la <strong>théorie</strong> <strong>de</strong>s m<strong>at</strong>rices alé<strong>at</strong>oires, <strong>et</strong> <strong>de</strong> quelques très gran<strong>de</strong>s<br />

valeurs propres dans les m<strong>at</strong>rices <strong>de</strong> corrél<strong>at</strong>ion empiriques <strong>de</strong> gran<strong>de</strong> taille résulte d’un eff<strong>et</strong> collectif<br />

<strong>de</strong>s séries temporelles sous-jacentes plutôt que <strong>de</strong> l’impact <strong>de</strong> facteurs. Nos résult<strong>at</strong>s, en excellent accord<br />

avec <strong>de</strong> précé<strong>de</strong>ntes étu<strong>de</strong>s menées sur les m<strong>at</strong>rices <strong>de</strong> corrél<strong>at</strong>ion financières, montrent également que le<br />

cœur du spectre <strong>de</strong> valeurs propres contient une part signific<strong>at</strong>ive d’inform<strong>at</strong>ion <strong>et</strong> r<strong>at</strong>ionalise la présence<br />

<strong>de</strong> facteurs <strong>de</strong> marchés jusqu’ici introduits <strong>de</strong> manière ad hoc.


11.5. Annexe 369<br />

Collective Origin of the Coexistence of Apparent RMT Noise<br />

and Factors in Large Sample Correl<strong>at</strong>ion M<strong>at</strong>rices<br />

Y. Malevergne1, 2 1, 3<br />

and D. Sorn<strong>et</strong>te<br />

1 Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>ière Con<strong>de</strong>nsée CNRS UMR 6622<br />

Université <strong>de</strong> Nice-Sophia Antipolis, 06108 Nice Ce<strong>de</strong>x 2, France<br />

2 Institut <strong>de</strong> Science Financière <strong>et</strong> d’Assurances - Université Lyon I<br />

43, Bd du 11 Novembre 1918, 69622 Villeurbanne Ce<strong>de</strong>x, France<br />

3 Institute of Geophysics and Plan<strong>et</strong>ary Physics and Department of Earth and Space Science<br />

University of California, Los Angeles, California 90095, USA<br />

Through simple analytical calcul<strong>at</strong>ions and numerical simul<strong>at</strong>ions, we <strong>de</strong>monstr<strong>at</strong>e the generic<br />

existence of a self-organized macroscopic st<strong>at</strong>e in any large multivari<strong>at</strong>e system possessing nonvanishing<br />

average correl<strong>at</strong>ions b<strong>et</strong>ween a finite fraction of all pairs of elements. The coexistence of<br />

an eigenvalue spectrum predicted by random m<strong>at</strong>rix theory (RMT) and a few very large eigenvalues<br />

in large empirical correl<strong>at</strong>ion m<strong>at</strong>rices is shown to result from a bottom-up collective effect of the<br />

un<strong>de</strong>rlying time series r<strong>at</strong>her than a top-down impact of factors. Our results, in excellent agreement<br />

with previous results obtained on large financial correl<strong>at</strong>ion m<strong>at</strong>rices, show th<strong>at</strong> there is relevant<br />

inform<strong>at</strong>ion also in the bulk of the eigenvalue spectrum and r<strong>at</strong>ionalize the presence of mark<strong>et</strong> factors<br />

previously introduced in an ad hoc manner.<br />

Since Wigner’s seminal i<strong>de</strong>a to apply random m<strong>at</strong>rix<br />

theory (RMT) to interpr<strong>et</strong> the complex spectrum of energy<br />

levels in nuclear physics [1], RMT has ma<strong>de</strong> enormous<br />

progress [2] with many applic<strong>at</strong>ions in physical sciences<br />

and elsewhere such as in m<strong>et</strong>eorology [3] and image<br />

processing [4]. A new applic<strong>at</strong>ion was proposed a<br />

few years ago to the problem of correl<strong>at</strong>ions b<strong>et</strong>ween financial<br />

ass<strong>et</strong>s and to the portfolio optimiz<strong>at</strong>ion problem.<br />

It was shown th<strong>at</strong>, among the eigenvalues and principal<br />

components of the empirical correl<strong>at</strong>ion m<strong>at</strong>rix of the<br />

r<strong>et</strong>urns of hundreds of ass<strong>et</strong> on the New York Stock Exchange<br />

(NYSE), apart from the few highest eigenvalues,<br />

the marginal distribution of the other eigenvalues and<br />

eigenvectors closely resembles the spectral distribution<br />

of a positive symm<strong>et</strong>ric random m<strong>at</strong>rix with maximum<br />

entropy, suggesting th<strong>at</strong> the correl<strong>at</strong>ion m<strong>at</strong>rix does not<br />

contain any specific inform<strong>at</strong>ion beyond these few largest<br />

eigenvalues and eigenvectors [5]. These results apparently<br />

invalid<strong>at</strong>e the standard mean-variance portfolio optimiz<strong>at</strong>ion<br />

theory [6] consecr<strong>at</strong>ed by the financial industry<br />

[7] and seemingly support the r<strong>at</strong>ionale behind factor<br />

mo<strong>de</strong>ls such as the capital ass<strong>et</strong> pricing mo<strong>de</strong>l (CAPM)<br />

[8] and the arbitrage pricing theory (APT) [9], where the<br />

correl<strong>at</strong>ions b<strong>et</strong>ween a large number of ass<strong>et</strong>s are represented<br />

through a small number of so-called mark<strong>et</strong> factors.<br />

In<strong>de</strong>ed, if the spectrum of eigenvalues of the empirical<br />

covariance or correl<strong>at</strong>ion m<strong>at</strong>rices are predicted<br />

by RMT, it seems n<strong>at</strong>ural to conclu<strong>de</strong> th<strong>at</strong> there is no<br />

usable inform<strong>at</strong>ion in these m<strong>at</strong>rices and th<strong>at</strong> empirical<br />

covariance m<strong>at</strong>rices should not be used for portfolio optimiz<strong>at</strong>ion.<br />

In contrast, if one d<strong>et</strong>ects <strong>de</strong>vi<strong>at</strong>ions b<strong>et</strong>ween<br />

the universal – and therefore non-inform<strong>at</strong>ive – part of<br />

the spectral properties of empirically estim<strong>at</strong>ed covariance<br />

and correl<strong>at</strong>ion m<strong>at</strong>rices and those of the relevant<br />

ensemble of random m<strong>at</strong>rices [10], this may quantify the<br />

amount of real inform<strong>at</strong>ion th<strong>at</strong> can be used in portfolio<br />

optimiz<strong>at</strong>ion from the “noise” th<strong>at</strong> should be discar<strong>de</strong>d.<br />

More generally, in many different scientific fields, one<br />

needs to d<strong>et</strong>ermine the n<strong>at</strong>ure and amount of inform<strong>at</strong>ion<br />

contained in large covariance and correl<strong>at</strong>ion m<strong>at</strong>rices.<br />

This occurs as soon as one <strong>at</strong>tempts to estim<strong>at</strong>e<br />

very large covariance and correl<strong>at</strong>ion m<strong>at</strong>rices in multivari<strong>at</strong>e<br />

dynamics of systems exhibiting non-Gaussian<br />

fluctu<strong>at</strong>ions with f<strong>at</strong> tails and/or long-range time correl<strong>at</strong>ions<br />

with intermittency. In such cases, the convergence<br />

of the estim<strong>at</strong>ors of the large covariance and correl<strong>at</strong>ion<br />

m<strong>at</strong>rices is often too slow for all practical purposes. The<br />

problem becomes even more complex with time-varying<br />

variances and covariances as occurs in systems with h<strong>et</strong>eroskedasticity<br />

[11] or with regime-switching [12]. A<br />

prominent example where such difficulties arise is the<br />

d<strong>at</strong>a-assimil<strong>at</strong>ion problem in engineering and in m<strong>et</strong>eorology<br />

where forecasting is combined with observ<strong>at</strong>ions<br />

iter<strong>at</strong>ively through the Kalman filter, based on the estim<strong>at</strong>ion<br />

and forward prediction of large covariance m<strong>at</strong>rices<br />

[13].<br />

As we said in the context of financial time series, the<br />

rescuing str<strong>at</strong>egy is to invoke the existence of a few dominant<br />

factors, such as an overall mark<strong>et</strong> factor and the<br />

factors rel<strong>at</strong>ed to firm size, firm industry and book-tomark<strong>et</strong><br />

equity, thought to embody most of the relevant<br />

<strong>de</strong>pen<strong>de</strong>nce structure b<strong>et</strong>ween the studied time series<br />

[14]. In<strong>de</strong>ed, there is no doubt th<strong>at</strong> observed equity prices<br />

respond to a wi<strong>de</strong> vari<strong>et</strong>y of unanticip<strong>at</strong>ed factors, but<br />

there is much weaker evi<strong>de</strong>nce th<strong>at</strong> expected r<strong>et</strong>urns are<br />

higher for equities th<strong>at</strong> are more sensitive to these factors,<br />

as required by Markowitz’s mean-variance theory,<br />

by the CAPM and the APT [15]. This severe failure of<br />

the most fundamental finance theories could conceivably<br />

be <strong>at</strong>tributable to an inappropri<strong>at</strong>e proxy for the mark<strong>et</strong><br />

portfolio, but nobody has been able to show th<strong>at</strong> this is<br />

really the correct explan<strong>at</strong>ion. This remark constitutes


370 11. Portefeuilles optimaux <strong>et</strong> équilibre <strong>de</strong> marché<br />

the crux of the problem: the factors invoked to mo<strong>de</strong>l the<br />

cross-sectional <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s are not known<br />

in general and are either postul<strong>at</strong>ed based on economic<br />

intuition in financial studies or obtained as black box results<br />

in the recent analyses using RMT [5].<br />

Here, we show th<strong>at</strong> the existence of factors results from<br />

a collective effect of the ass<strong>et</strong>s, similar to the emergence<br />

of a macroscopic self-organiz<strong>at</strong>ion of interacting microscopic<br />

constituents. For this, we unravel the general<br />

physical origin of the large eigenvalues of large covariance<br />

and correl<strong>at</strong>ion m<strong>at</strong>rices and provi<strong>de</strong> a compl<strong>et</strong>e<br />

un<strong>de</strong>rstanding of the coexistence of fe<strong>at</strong>ures resembling<br />

properties of random m<strong>at</strong>rices and of large “anomalous”<br />

eigenvalues. Through simple analytical calcul<strong>at</strong>ions and<br />

numerical simul<strong>at</strong>ions, we <strong>de</strong>monstr<strong>at</strong>e the generic existence<br />

of a self-organized macroscopic st<strong>at</strong>e in any large<br />

system possessing non-vanishing average correl<strong>at</strong>ions b<strong>et</strong>ween<br />

a finite fraction of all pairs of elements.<br />

L<strong>et</strong> us first consi<strong>de</strong>r a large system of size N with correl<strong>at</strong>ion<br />

m<strong>at</strong>rix C in which every non-diagonal pairs of<br />

elements exhibits the same correl<strong>at</strong>ion coefficient Cij = ρ<br />

for i = j and Cii = 1. Its eigenvalues are<br />

λ1 = 1 + (N − 1)ρ and λi≥2 = 1 − ρ (1)<br />

with multiplicity N − 1 and with ρ ∈ (0, 1) in or<strong>de</strong>r for<br />

the correl<strong>at</strong>ion m<strong>at</strong>rix to remain positive <strong>de</strong>finite. Thus,<br />

in the thermodynamics limit N → ∞, even for a weak<br />

positive correl<strong>at</strong>ion ρ → 0 (with ρN ≫ 1), a very large<br />

eigenvalue appears, associ<strong>at</strong>ed with the <strong>de</strong>localized eigenvector<br />

v1 = (1/ √ N)(1, 1, · · · , 1), which domin<strong>at</strong>es compl<strong>et</strong>ely<br />

the correl<strong>at</strong>ion structure of the system. This trivial<br />

example stresses th<strong>at</strong> the key point for the emergence<br />

of a large eigenvalue is not the strength of the correl<strong>at</strong>ions,<br />

provi<strong>de</strong>d th<strong>at</strong> they do not vanish, but the large size<br />

N of the system.<br />

This result (1) still holds qualit<strong>at</strong>ively when the correl<strong>at</strong>ion<br />

coefficients are all distinct. To see this, it is convenient<br />

to use a perturb<strong>at</strong>ion approach. We thus add a<br />

small random component to each correl<strong>at</strong>ion coefficient:<br />

Cij = ρ + ɛ · aij for i = j , (2)<br />

where the coefficients aij = aji have zero mean, variance<br />

σ 2 and are in<strong>de</strong>pen<strong>de</strong>ntly distributed (There are additional<br />

constraints on the support of the distribution of<br />

the aij’s in or<strong>de</strong>r for the m<strong>at</strong>rix Cij to remain positive<br />

<strong>de</strong>finite with probability one). The d<strong>et</strong>ermin<strong>at</strong>ion of the<br />

eigenvalues and eigenfunctions of Cij is performed using<br />

the perturb<strong>at</strong>ion theory <strong>de</strong>veloped in quantum mechanics<br />

[16] up to the second or<strong>de</strong>r in ɛ. We find th<strong>at</strong> the<br />

largest eigenvalue becomes<br />

E[λ1] = (N −1)ρ+1+<br />

(N − 1)(N − 2)<br />

N 2 · ɛ2σ2 ρ +O(ɛ3 ) (3)<br />

while, <strong>at</strong> the same or<strong>de</strong>r, the corresponding eigenvector<br />

v1 remains unchanged. The <strong>de</strong>generacy of the eigenvalue<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 0.5 1 1.5 2 2.5 3<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

largest<br />

eigenvalue<br />

0<br />

0 20 40 60<br />

FIG. 1: Spectrum of eigenvalues of a random correl<strong>at</strong>ion m<strong>at</strong>rix<br />

with average correl<strong>at</strong>ion coefficient ρ = 0.14 and standard<br />

<strong>de</strong>vi<strong>at</strong>ion of the correl<strong>at</strong>ion coefficients σ = 0.345/ √ N. The<br />

size N = 406 of the m<strong>at</strong>rix is the same as in previous studies<br />

[5] for the sake of comparison. The continuous curve is<br />

the theor<strong>et</strong>ical transl<strong>at</strong>ed semi-circle distribution of eigenvalues<br />

<strong>de</strong>scribing the bulk of the distribution which passes the<br />

Kolmogorov test. The center value λ = 1 − ρ ensures the<br />

conserv<strong>at</strong>ion of the trace equal to N. There is no adjustable<br />

param<strong>et</strong>er. The ins<strong>et</strong> represents the whole spectrum with the<br />

largest eigenvalue whose size is in agreement with the prediction<br />

ρN = 56.8.<br />

λ = 1 − ρ is broken and leads to a complex s<strong>et</strong> of smaller<br />

eigenvalues <strong>de</strong>scribed below.<br />

In fact, this result (3) can be generalized to the nonperturb<strong>at</strong>ive<br />

domain of any correl<strong>at</strong>ion m<strong>at</strong>rix with in<strong>de</strong>pen<strong>de</strong>nt<br />

random coefficients Cij, provi<strong>de</strong>d th<strong>at</strong> they have<br />

the same mean value ρ and variance σ 2 . In<strong>de</strong>ed, it has<br />

been shown [17] th<strong>at</strong>, in such a case, the expect<strong>at</strong>ions of<br />

the largest and second largest eigenvalues are<br />

E[λ1] = (N − 1) · ρ + 1 + σ 2 /ρ + o(1) , (4)<br />

E[λ2] ≤ 2σ √ N + O(N 1/3 log N) . (5)<br />

Moreover, the st<strong>at</strong>istical fluctu<strong>at</strong>ions of these two largest<br />

eigenvalues are asymptotically (for large fluctu<strong>at</strong>ions t ><br />

O( √ N)) boun<strong>de</strong>d by a Gaussian distribution according<br />

to the following large <strong>de</strong>vi<strong>at</strong>ion theorem<br />

Pr{|λ1,2 − E[λ1,2]| ≥ t} ≤ e −c1,2t2<br />

2<br />

, (6)<br />

for some positive constant c1,2 [18].<br />

This result is very different from th<strong>at</strong> obtained when<br />

the mean value ρ vanishes. In such a case, the distribution<br />

of eigenvalues of the random m<strong>at</strong>rix C is given by<br />

the semi-circle law [2]. However, due to the presence of<br />

the ones on the main diagonal of the correl<strong>at</strong>ion m<strong>at</strong>rix<br />

C, the center of the circle is not <strong>at</strong> the origin but <strong>at</strong> the


11.5. Annexe 371<br />

point λ = 1. Thus, the distribution of the eigenvalues of<br />

random correl<strong>at</strong>ion m<strong>at</strong>rices with zero mean correl<strong>at</strong>ion<br />

coefficients is a semi-circle of radius 2σ √ N centered <strong>at</strong><br />

λ = 1.<br />

The result (4) is <strong>de</strong>eply rel<strong>at</strong>ed to the so-called “friendship<br />

theorem” in m<strong>at</strong>hem<strong>at</strong>ical graph theory, which<br />

st<strong>at</strong>es th<strong>at</strong>, in any finite graph such th<strong>at</strong> any two vertices<br />

have exactly one common neighbor, there is one<br />

and only one vertex adjacent to all other vertices [19].<br />

A more heuristic but equivalent st<strong>at</strong>ement is th<strong>at</strong>, in a<br />

group of people such th<strong>at</strong> any pair of persons have exactly<br />

one common friend, there is always one person (the<br />

“politician”) who is the friend of everybody. The connection<br />

is established by taking the non-diagonal entries Cij<br />

(i = j) equal to Bernouilli random variable with param<strong>et</strong>er<br />

ρ, th<strong>at</strong> is, P r[Cij = 1] = ρ and P r[Cij = 0] = 1 − ρ.<br />

Then, the m<strong>at</strong>rix Cij − I, where I is the unit m<strong>at</strong>rix,<br />

becomes nothing but the adjacency m<strong>at</strong>rix of the random<br />

graph G(N, ρ) [18]. The proof of [19] of the “friendship<br />

theorem” in<strong>de</strong>ed relies on the N-<strong>de</strong>pen<strong>de</strong>nce of the<br />

largest eigenvalue and on the √ N-<strong>de</strong>pen<strong>de</strong>nce of the second<br />

largest eigenvalue of Cij as given by (4) and (5).<br />

Figure 1 shows the distribution of eigenvalues of a<br />

random correl<strong>at</strong>ion m<strong>at</strong>rix. The ins<strong>et</strong> shows the largest<br />

eigenvalue lying <strong>at</strong> the predicting size ρN = 56.8, while<br />

the bulk of the eigenvalues are much smaller and are <strong>de</strong>scribed<br />

by a modified semi-circle law centered on λ =<br />

1 − ρ, in the limit of large N. The result on the largest<br />

eigenvalue emerging from the collective effect of the crosscorrel<strong>at</strong>ion<br />

b<strong>et</strong>ween all N(N −1)/2 pairs provi<strong>de</strong>s a novel<br />

perspective to the observ<strong>at</strong>ion [20] th<strong>at</strong> the only reasonable<br />

explan<strong>at</strong>ion for the simultaneous crash of 23 stock<br />

mark<strong>et</strong>s worldwi<strong>de</strong> in October 1987 is the impact of a<br />

world mark<strong>et</strong> factor: according to our <strong>de</strong>monstr<strong>at</strong>ion,<br />

the simultaneous occurrence of significant correl<strong>at</strong>ions<br />

b<strong>et</strong>ween the mark<strong>et</strong>s worldwi<strong>de</strong> is bound to lead to the<br />

existence of an extremely large eigenvalue, the world mark<strong>et</strong><br />

factor constructed by ... a linear combin<strong>at</strong>ion of the<br />

23 stock mark<strong>et</strong>s! Wh<strong>at</strong> our result shows is th<strong>at</strong> invoking<br />

factors to explain the cross-sectional structure of stock r<strong>et</strong>urns<br />

is cursed by the chicken-and-egg problem: factors<br />

exist because stocks are correl<strong>at</strong>ed; stocks are correl<strong>at</strong>ed<br />

because of common factors impacting them [24].<br />

Figure 2 shows the eigenvalues distribution of the sample<br />

correl<strong>at</strong>ion m<strong>at</strong>rix reconstructed by sampling N =<br />

406 time series of length T = 1309 gener<strong>at</strong>ed with a given<br />

correl<strong>at</strong>ion m<strong>at</strong>rix C with theor<strong>et</strong>ical spectrum shown in<br />

figure 1. The largest eigenvalue is again very close to<br />

the prediction ρN = 56.8 while the bulk of the distribution<br />

<strong>de</strong>parts very strongly from the semi-circle law and<br />

is not far from the Wishart prediction, as expected from<br />

the <strong>de</strong>finition of the Wishart ensemble as the ensemble of<br />

sample covariance m<strong>at</strong>rices of Gaussian distributed time<br />

series with unit variance and zero mean. A Kolmogorov<br />

test shows however th<strong>at</strong> the bulk of the spectrum (renormalized<br />

so as to take into account the presence of the<br />

frequency<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 20 40 60<br />

λ<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

λ<br />

3 3.5 4 4.5 5<br />

frequency<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

largest<br />

eigenvalue<br />

FIG. 2: Spectrum estim<strong>at</strong>ed from the sample correl<strong>at</strong>ion m<strong>at</strong>rix<br />

obtained from N = 406 time series of length T = 1309<br />

(the same length as in [5]) with the same theor<strong>et</strong>ical correl<strong>at</strong>ion<br />

m<strong>at</strong>rix as th<strong>at</strong> presented in figure 1.<br />

outlier eigenvalue) is not in the Wishart class, in contradiction<br />

with previous claims lacking formal st<strong>at</strong>istical<br />

tests [5]. This result holds for different simul<strong>at</strong>ions of the<br />

sample correl<strong>at</strong>ion m<strong>at</strong>rix and different realiz<strong>at</strong>ions of the<br />

theor<strong>et</strong>ical correl<strong>at</strong>ion m<strong>at</strong>rix with the same param<strong>et</strong>ers<br />

(ρ, σ). The st<strong>at</strong>istically significant <strong>de</strong>parture from the<br />

Wishart prediction implies th<strong>at</strong> there is actually some<br />

inform<strong>at</strong>ion in the bulk of the spectrum of eigenvalues,<br />

which can be r<strong>et</strong>rieved using Marsili’s procedure [10]. We<br />

have also checked th<strong>at</strong> these results remain robust for<br />

non-Gaussian distribution of r<strong>et</strong>urns as long as the second<br />

moments exist. In<strong>de</strong>ed, correl<strong>at</strong>ed time series with<br />

multivari<strong>at</strong>e Gaussian or Stu<strong>de</strong>nt distributions with three<br />

<strong>de</strong>grees of freedom (which provi<strong>de</strong> more acceptable proxies<br />

for financial time series [21]) give no discernible differences<br />

in the spectrum of eigenvalues. This is surprising<br />

as the estim<strong>at</strong>or of a correl<strong>at</strong>ion coefficient is asymptotically<br />

Gaussian for time series with finite fourth moment<br />

and Lévy stable otherwise [22].<br />

Empirically [5], a few other eigenvalues below the<br />

largest one have an amplitu<strong>de</strong> of the or<strong>de</strong>r of 5 − 10<br />

th<strong>at</strong> <strong>de</strong>vi<strong>at</strong>e significantly from the bulk of the distribution.<br />

Our analysis provi<strong>de</strong>s a very simple constructive<br />

mechanism for them, justifying the postul<strong>at</strong>ed mo<strong>de</strong>l of<br />

Ref.[23]. The solution consists in consi<strong>de</strong>ring, as a first<br />

approxim<strong>at</strong>ion, the block diagonal m<strong>at</strong>rix C ′ with diagonal<br />

elements ma<strong>de</strong> of the m<strong>at</strong>rices A1, · · · , Ap of sizes<br />

N1, · · · , Np with Ni = N, constructed according to<br />

(2) such th<strong>at</strong> each m<strong>at</strong>rix Ai has the average correl<strong>at</strong>ion<br />

coefficient ρi. When the coefficients of the m<strong>at</strong>rix C ′<br />

outsi<strong>de</strong> the m<strong>at</strong>rices Ai are zero, the spectrum of C ′ is<br />

given by the union of all the spectra of the Ai’s, which<br />

3


372 11. Portefeuilles optimaux <strong>et</strong> équilibre <strong>de</strong> marché<br />

frequency<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 20 40 60<br />

λ<br />

0<br />

0 0.5 1 1.5<br />

λ<br />

2 2.5 3<br />

frequency<br />

15<br />

10<br />

5<br />

largest<br />

eigenvalue<br />

FIG. 3: Spectrum of eigenvalues estim<strong>at</strong>ed from the sample<br />

correl<strong>at</strong>ion m<strong>at</strong>rix of N = 406 time series of length T = 1309.<br />

The times series have been constructed from a multivari<strong>at</strong>e<br />

Gaussian distribution with a correl<strong>at</strong>ion m<strong>at</strong>rix ma<strong>de</strong> of three<br />

block-diagonal m<strong>at</strong>rices of sizes respectively equal to 130, 140<br />

and 136 and mean correl<strong>at</strong>ion coefficients equal to 0.18 for all<br />

of them. The off-diagonal elements are all equal to 0.1. The<br />

same results hold if the off-diagonal elements are random.<br />

are each domin<strong>at</strong>ed by a large eigenvalue λ1,i ρi · Ni.<br />

The spectrum of C ′ then exhibits p large eigenvalues.<br />

Each block Ai can be interpr<strong>et</strong>ed as a sector of the<br />

economy, including all the companies belonging to a same<br />

industrial branch and the eigenvector associ<strong>at</strong>ed with<br />

each largest eigenvalue represents the main factor driving<br />

this sector of activity [25]. For similar sector sizes Ni and<br />

average correl<strong>at</strong>ion coefficients ρi, the largest eigenvalues<br />

are of the same or<strong>de</strong>r of magnitu<strong>de</strong>. In or<strong>de</strong>r to recover<br />

a very large unique eigenvalue, we reintroduce some coupling<br />

constants outsi<strong>de</strong> the block diagonal m<strong>at</strong>rices. A<br />

well-known result of perturb<strong>at</strong>ion theory in quantum mechanics<br />

st<strong>at</strong>es th<strong>at</strong> such coupling leads to a repulsion b<strong>et</strong>ween<br />

the eigenst<strong>at</strong>es, which can be observed in figure 3<br />

where C ′ has been constructed with three block m<strong>at</strong>rices<br />

A1, A2 and A3 and non-zero off-diagonal coupling <strong>de</strong>scribed<br />

in the figure caption. These values allow us to<br />

quantit<strong>at</strong>ively replic<strong>at</strong>e the empirical finding of Laloux<br />

<strong>et</strong> al. in [5], where the three first eigenvalues are approxim<strong>at</strong>ely<br />

λ1 57, λ2 10 and λ3 8. The bulk of the<br />

spectrum (which exclu<strong>de</strong>s the three largest eigenvalues)<br />

is similar to the Wishart distribution but again st<strong>at</strong>istically<br />

different from it as tested with a Kolmogorov test.<br />

As a final remark, expressions (3,4) and our numerical<br />

tests for a large vari<strong>et</strong>y of correl<strong>at</strong>ion m<strong>at</strong>rices show th<strong>at</strong><br />

the <strong>de</strong>localized eigenvector v1 = (1/ √ N)(1, 1, · · · , 1), associ<strong>at</strong>ed<br />

with the largest eigenvalue is extremely robust<br />

and remains (on average) the same for any large system.<br />

Thus, even for time-varying correl<strong>at</strong>ion m<strong>at</strong>rices<br />

(see Drozdz <strong>et</strong> al. in [5]) – as in finance with important<br />

h<strong>et</strong>eroskedastic effects – the composition of the main<br />

factor remains almost the same. This can be seen as a<br />

generalized limit theorem reflecting the bottom-up organiz<strong>at</strong>ion<br />

of broadly correl<strong>at</strong>ed time series.<br />

[1] Wigner, E.P., Ann. M<strong>at</strong>h. 53, 36 (1951).<br />

[2] Mehta, M.L., Random m<strong>at</strong>rices, 2nd ed. (Boston: Aca<strong>de</strong>mic<br />

Press, 1991).<br />

[3] Santhanam, M.S. and P. K. P<strong>at</strong>ra, Phys. Rev. E 64,<br />

016102 (2001).<br />

[4] S<strong>et</strong>punga, A.M. and P.P. Mitra, Phys. Rev E 60, 3389<br />

(1999).<br />

[5] Laloux, L. <strong>et</strong> al., Phys. Rev. L<strong>et</strong>t. 83, 1467 (1999);<br />

Plerou, V., <strong>et</strong> al., Phys. Rev. L<strong>et</strong>t. 83, 1471 (1999);<br />

Maslov, S., Physica A 301, 397 (2001); Drozdz, S. <strong>et</strong> al.,<br />

Physica A 287, 440 (2000); Physica A 294, 226 (2001);<br />

Plerou, V. <strong>et</strong> al., Phys. Rev E 6506 066126 (2002).<br />

[6] Markowitz, H., Portfolio selection (John Wiley and Sons,<br />

New York, 1959).<br />

[7] RiskM<strong>et</strong>rics Group, RiskM<strong>et</strong>rics (Technical Document,<br />

NewYork: J.P. Morgan/Reuters, 1996).<br />

[8] Sharpe, W.F., J. Finance (September), 425 (1964); Lintner,<br />

J., Rev. Econ. St<strong>at</strong>. (February), 13 (1965); Mossin,<br />

J., Econom<strong>et</strong>rica (October), 768 (1966); Black, F., J.<br />

Business (July), 444 (1972).<br />

[9] Ross, S.A., J. Economic Theory (December), 341 (1976).<br />

[10] Marsili, M., cond-m<strong>at</strong>/0003241; Giada, L. and Marsili,<br />

M., Phys. Rev. E art. no. 061101, 6306 N6 PT1:1101,U17-<br />

U23 (2001); T. Guhr and B. Kalber, cond-m<strong>at</strong>/0206577.<br />

[11] Engle, R.F. and K. Sheppard, NBER Working Paper No.<br />

W8554 (2001).<br />

[12] Schaller, H. and van Nor<strong>de</strong>n, S., Appl. Financial Econ.<br />

7, 177 (1997).<br />

[13] Brammer, K., Kalman-Bucy filters (Gerhard Siffling,<br />

Norwood, MA: Artech House, 1989).<br />

[14] Fama, E.F. and Kenn<strong>et</strong>h R., J. Finance 51, 55 (1996); J.<br />

Financial Econ. 33, 3 (1993); Fama, E.F. <strong>et</strong> al., Financial<br />

Analysts J. 49, 37 (1993).<br />

[15] Roll, R., Financial Management 23, 69 (1994).<br />

[16] Cohen-Tannoudji, C., B. Diu and F. Laloe, Quantum<br />

mechanics (New York: Wiley, 1977).<br />

[17] F¨redi Z. and J. Komlós, Combin<strong>at</strong>orica 1, 233-241 (1981).<br />

[18] Krivelevich, M. and V. H. Vu, m<strong>at</strong>h-ph/0009032 (2000).<br />

[19] Erdos, P. <strong>et</strong> al., Studia Sci. M<strong>at</strong>h. 1, 215 (1966).<br />

[20] R. Roll, Financial Analysts J. 44, 19 (1988).<br />

[21] Gopikrishnan, P. <strong>et</strong> al., Eur. Phys. Journal B 3 ¯ , 139<br />

(1998); Guillaume, D.M., <strong>et</strong> al., Finance and Stochastics<br />

1, 95 (1997); Lux, L., Appl. Financial Economics 6,<br />

463 (1996); Pagan, A., J. Emp. Fin. 3, 15 (1996).<br />

[22] Davis, R.A. and J.E. Marengo, Commun. St<strong>at</strong>ist.-<br />

Stochastic Mo<strong>de</strong>ls 6, 483 (1990); Meerschaert, M.M. and<br />

H.P. Scheffler, J. Time Series Anal. 22, 481 (2001).<br />

[23] Noh, J.D., Phys.Rev.E 61, 5981 (2000).<br />

[24] see D. Sorn<strong>et</strong>te <strong>et</strong> al., in press in Risk, condm<strong>at</strong>/0204626,<br />

for a mechanism and empirical results contrasting<br />

the endogenous character of the October 1987<br />

crash and other large endogenous mark<strong>et</strong> moves.<br />

[25] Mantegna, R.N., Eur. Phys. J. 11, 193 (1999); Marsili,<br />

M., Quant. Fin. 2, 297 (2002).<br />

4


Chapitre 12<br />

Gestion <strong>de</strong>s risques grands <strong>et</strong> extrêmes<br />

Dans la première partie <strong>de</strong> ce chapitre, nous exposons nos idées concernant la <strong>gestion</strong> <strong>de</strong>s risques<br />

extrêmes mais aussi <strong>de</strong>s risques “intermédiaires”, si l’on peut dire, que nous qualifions <strong>de</strong> grands risques<br />

dans le sens où leur impact est bien plus important que celui associé aux risques quantifiés par la variance<br />

mais reste très inférieur <strong>de</strong> part leur conséquences aux risques extrêmes. Cela nous perm<strong>et</strong> donc<br />

<strong>de</strong> discuter <strong>de</strong>s moyens d’appréhen<strong>de</strong>r toute la gamme <strong>de</strong>s risques : <strong>de</strong>s plus p<strong>et</strong>its aux plus extrêmes.<br />

La <strong>de</strong>uxième partie du chapitre est exclusivement consacrée aux risques extrêmes <strong>et</strong> nous nous interrogeons<br />

sur la façon <strong>de</strong> s’en prémunir. En fait, à cause <strong>de</strong> l’existence d’une dépendance <strong>de</strong> queue<br />

entre les actifs, il n’est pas possible <strong>de</strong> diversifier parfaitement les risques extrêmes par agrég<strong>at</strong>ion. On<br />

peut néanmoins construire <strong>de</strong>s <strong>portefeuille</strong>s dont les actifs ont chacun <strong>de</strong> très faibles coefficients <strong>de</strong><br />

dépendance <strong>de</strong> queue, ce qui assure au <strong>portefeuille</strong> une assez faible sensibilité aux grands mouvements<br />

<strong>de</strong> ses constituants. Pour autant, l’absence <strong>de</strong>s risques extrêmes est un objectif qui semble hors d’<strong>at</strong>teinte.<br />

Nous nous sommes focalisés sur <strong>de</strong>s <strong>portefeuille</strong>s “traditionnels”, c’est-à-dire où les ventes à découvert<br />

ne sont pas autorisées. Il est cependant intéressant <strong>de</strong> se <strong>de</strong>man<strong>de</strong>r si <strong>de</strong>s str<strong>at</strong>égies mixtes consistant à<br />

détenir <strong>de</strong>s positions longues sur certains actifs <strong>et</strong> courtes sur d’autres ne perm<strong>et</strong>traient pas <strong>de</strong> se prémunir<br />

contre les risques extrêmes dans la mesure où les très gran<strong>de</strong>s baisses <strong>de</strong>s uns seraient compensées par<br />

les très gran<strong>de</strong>s baisses (concomitantes) <strong>de</strong>s autres. C<strong>et</strong>te str<strong>at</strong>égie fonctionne très bien dans c<strong>et</strong>te configur<strong>at</strong>ion,<br />

mais fait apparaître une autre situ<strong>at</strong>ion critique : celle où les actifs en position longue baissent<br />

<strong>et</strong> où ceux en position courte montent. Or, <strong>de</strong>s pertes extrêmes concomitantes <strong>de</strong> hausses extrêmes sont<br />

tout à fait envisageables : que l’on se remémore la figure 7.1 page 187 <strong>et</strong> la figure 1 page 214 concernant<br />

la copule <strong>de</strong> Stu<strong>de</strong>nt <strong>et</strong> son coefficient <strong>de</strong> dépendance <strong>de</strong> queue. On y observe que les gran<strong>de</strong>s<br />

hausses concomitantes <strong>de</strong> gran<strong>de</strong>s pertes ont une probabilité d’occurrence non nulle, même si elle est<br />

systém<strong>at</strong>iquement plus faible que la probabilité d’occurrence simultanée <strong>de</strong> <strong>de</strong>ux pertes (ou hausses)<br />

extrêmes.<br />

Ainsi, contrairement à l’approche moyenne-variance où les str<strong>at</strong>égies mixtes perm<strong>et</strong>tent <strong>de</strong> complètement<br />

décorréler le <strong>portefeuille</strong> du marché, par exemple, elles ne peuvent apporter <strong>de</strong> réelle solution face au<br />

problème <strong>de</strong>s risques extrêmes, même s’il semble qu’elles présentent une amélior<strong>at</strong>ion par rapport aux<br />

str<strong>at</strong>égies exclusivement en positions longues.<br />

373


374 12. Gestion <strong>de</strong>s risques grands <strong>et</strong> extrêmes<br />

12.1 Comprendre <strong>et</strong> gérer les risques grands <strong>et</strong> extrêmes<br />

L’impact <strong>de</strong>s risques grands <strong>et</strong> extrêmes sur l’activité financière <strong>et</strong> le secteur <strong>de</strong> l’assurance est <strong>de</strong>venu<br />

si important qu’il ne peut plus être ignoré <strong>de</strong>s <strong>gestion</strong>naires <strong>de</strong> <strong>portefeuille</strong>. C’est pourquoi nous nous<br />

proposons <strong>de</strong> synthétiser ici les étapes successives conduisant à une <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong> rigoureuse<br />

visant à prendre en compte (1) le comportement sous-exponentiel <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ment, (2)<br />

les dépendances non-gaussiennes entre actifs <strong>et</strong> (3) les dépendances temporelles intermittentes amenant<br />

les gran<strong>de</strong>s pertes tout en déployant (4) le concept <strong>de</strong> risque sur ses différentes dimensions allant <strong>de</strong>s<br />

“p<strong>et</strong>its” risques jusqu’aux risques “extrêmes” afin <strong>de</strong> définir <strong>de</strong>s fonctions <strong>de</strong> décision cohérentes <strong>et</strong><br />

pr<strong>at</strong>iques perm<strong>et</strong>tant d’établir <strong>de</strong>s <strong>portefeuille</strong>s optimaux.<br />

Reprint from : J.V An<strong>de</strong>rsen, Y. Malevergne <strong>et</strong> D.Sorn<strong>et</strong>te, 2002, Comprendre <strong>et</strong> gérer les risques grands<br />

<strong>et</strong> extêmes, Risque 49, 105-110.


12.1. Comprendre <strong>et</strong> gérer les risques grands <strong>et</strong> extrêmes 375<br />

COMPRENDRE ET GÉRER<br />

LES RISQUES GRANDS ET EXTRÊMES<br />

Jorgen V. An<strong>de</strong>rsen<br />

Chargé <strong>de</strong> recherche à l’université Paris X-Nanterre (Thema)<br />

<strong>et</strong> à l’université <strong>de</strong> Nice Sophia-Antipolis<br />

Yannick Malevergne<br />

Doctorant à l’université <strong>de</strong> Nice Sophia-Antipolis<br />

<strong>et</strong> à l’université Lyon I (<strong>ISFA</strong>)<br />

Didier Sorn<strong>et</strong>te<br />

Directeur <strong>de</strong> recherche à l’université <strong>de</strong> Nice Sophia-Antipolis<br />

<strong>et</strong> professeur à l’université <strong>de</strong> Californie, Los Angeles (Ucla)<br />

L’impact <strong>de</strong>s risques grands <strong>et</strong> extrêmes sur l’activité financière <strong>et</strong> le secteur<br />

<strong>de</strong> l’assurance est <strong>de</strong>venu si important qu’il ne peut plus être ignoré <strong>de</strong>s <strong>gestion</strong>naires<br />

<strong>de</strong> <strong>portefeuille</strong>. C’est pourquoi nous nous proposons <strong>de</strong> synthétiser<br />

ici les étapes successives conduisant à une <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong> rigoureuse<br />

visant à prendre en compte (1) le comportement sous-exponentiel <strong>de</strong>s distributions<br />

<strong>de</strong> ren<strong>de</strong>ment, (2) les dépendances non-gaussiennes entre actifs <strong>et</strong> (3)<br />

les dépendances temporelles intermittentes amenant les gran<strong>de</strong>s pertes tout en<br />

déployant (4) le concept <strong>de</strong> risque sur ses différentes dimensions allant <strong>de</strong>s<br />

“p<strong>et</strong>its” risques jusqu’aux risques “extrêmes” afin <strong>de</strong> définir <strong>de</strong>s fonctions <strong>de</strong><br />

décision cohérentes <strong>et</strong> pr<strong>at</strong>iques perm<strong>et</strong>tant d’établir <strong>de</strong>s <strong>portefeuille</strong>s optimaux.<br />

La capitalis<strong>at</strong>ion totale <strong>de</strong>s marchés financiers à<br />

travers le mon<strong>de</strong> a considérablement augmenté<br />

<strong>de</strong>puis le début <strong>de</strong>s années 1980. En eff<strong>et</strong>, alors<br />

qu’elle ne représente que 3380 milliards <strong>de</strong> dollars<br />

en 1983, soit 4 fois le budg<strong>et</strong> annuel <strong>de</strong>s<br />

Ét<strong>at</strong>s-Unis d’Amérique, elle <strong>at</strong>teint, en 1999, le<br />

chiffre <strong>de</strong> 38700 milliards <strong>de</strong> dollars, soit 22 fois<br />

budg<strong>et</strong> annuel <strong>de</strong>s Ét<strong>at</strong>s-Unis, pour c<strong>et</strong>te annéelà.<br />

Ainsi, en moins <strong>de</strong> vingt ans, la capitalis<strong>at</strong>ion<br />

boursière mondiale est passée <strong>de</strong> 4 fois à 22<br />

fois le budg<strong>et</strong> <strong>de</strong>s Et<strong>at</strong>s-Unis ! Rien qu’en ce qui<br />

concerne la <strong>de</strong>rnière décennie, la capitalis<strong>at</strong>ion<br />

boursière <strong>et</strong> les volumes échangés ont triplé, alors<br />

que le volume d’actions émises a été multiplié par<br />

six. De plus, la vol<strong>at</strong>ilité a connu une croissance<br />

signific<strong>at</strong>ive <strong>de</strong>puis le début <strong>de</strong>s années 1990,<br />

surtout pour les marchés intégrant <strong>de</strong>s sociétés<br />

fortement centrées sur le secteur <strong>de</strong>s technologies<br />

<strong>de</strong> l’inform<strong>at</strong>ion (indice américain Nasdaq ou<br />

finlandais Helsinki General (Hex) par exemple).<br />

La même tendance, certes moins prononcée, est<br />

également visible sur <strong>de</strong>s marchés plus traditionnels<br />

comme par exemple le Cac40 (bourse <strong>de</strong> Paris),<br />

le Dow Jones (Bourse <strong>de</strong> New York) ou le<br />

Ftse100 (bourse <strong>de</strong> Londres).<br />

C<strong>et</strong>te intense <strong>et</strong> lucr<strong>at</strong>ive activité financière est<br />

cependant tempérée par quelques rares mais très<br />

violentes secousses. En eff<strong>et</strong>, l’écl<strong>at</strong>ement <strong>de</strong>s<br />

bulles spécul<strong>at</strong>ives <strong>de</strong> la fin <strong>de</strong>s années 1990,


376 12. Gestion <strong>de</strong>s risques grands <strong>et</strong> extrêmes<br />

ainsi que <strong>de</strong>ux années <strong>de</strong> tourmentes sur les<br />

marchés financiers, ont fait fondre la capitalis<strong>at</strong>ion<br />

boursière mondiale <strong>de</strong> plus <strong>de</strong> 30% par rapport<br />

à son niveau <strong>de</strong> 1999, pour la ramener à<br />

un montant <strong>de</strong> 25100 milliards <strong>de</strong> dollars. Un<br />

autre crash d’une telle ampleur, se déclenchant<br />

simultanément (comme en octobre 1987) dans la<br />

plupart <strong>de</strong>s bourses mondiales, amènerait encore<br />

une perte quasi-instantanée <strong>de</strong> près <strong>de</strong> 7500 milliards<br />

<strong>de</strong> dollars. Ainsi, <strong>de</strong> par les sommes astronomiques<br />

qu’ils engloutissent, les crashs financiers<br />

peuvent anéantir en quelques instants les<br />

plus gros fonds d’investissement, ruinant, par la<br />

même, <strong>de</strong>s années d’épargne <strong>et</strong> <strong>de</strong> financement<br />

<strong>de</strong> r<strong>et</strong>raite. Ce pourrait-il même qu’ils soient,<br />

comme en 1929-33 après le grand crash d’octobre<br />

1929, les précurseurs ou les déclencheurs <strong>de</strong><br />

récessions majeures ? Voire, qu’ils puissent mener<br />

à un écroulement général <strong>de</strong>s systèmes financiers<br />

<strong>et</strong> bancaires qui semblent y avoir échappé <strong>de</strong> justesse<br />

déjà quelques fois dans le passé ?<br />

Les gran<strong>de</strong>s crises <strong>et</strong> les crashs financiers sont<br />

également fascinants parce-qu’ils personnifient<br />

une classe <strong>de</strong> phénomènes appelés “phénomènes<br />

extrêmes”. Des recherches récentes en physique,<br />

psychologie, en <strong>théorie</strong> <strong>de</strong> jeux ou<br />

encore en sciences cognitives au sens large<br />

suggèrent qu’ils sont les caractéristiques incontournables<br />

<strong>de</strong> systèmes complexes autoorganisés.<br />

Marchés turbulents, crises, crashs exposent<br />

donc un investisseur à <strong>de</strong> grands risques<br />

dont la compréhension précise <strong>de</strong>vient essentielle.<br />

Compte-tenu <strong>de</strong> l’évolution <strong>de</strong>s marchés <strong>et</strong> <strong>de</strong><br />

leurs caractéristiques citées plus haut, il est plus<br />

que jamais dans l’intérêt <strong>de</strong>s <strong>gestion</strong>naires <strong>de</strong> <strong>portefeuille</strong>s<br />

<strong>et</strong> <strong>de</strong>s investisseurs en général <strong>de</strong> comprendre<br />

<strong>et</strong> <strong>de</strong> gérer les risques extrêmes.<br />

Distributions<br />

<strong>de</strong>s ren<strong>de</strong>ments<br />

à queues épaisses<br />

Le premier pas vers une quantific<strong>at</strong>ion <strong>de</strong>s grands<br />

risques est d’adm<strong>et</strong>tre que les <strong>st<strong>at</strong>istique</strong>s <strong>de</strong>s<br />

risques – que ce soient les risques <strong>de</strong> marchés associés<br />

aux fluctu<strong>at</strong>ions <strong>de</strong>s actions ou la distri-<br />

bution <strong>de</strong>s remboursements survenant à la suite<br />

<strong>de</strong> sinistres ou <strong>de</strong>s sinistres eux-mêmes – suivent<br />

<strong>de</strong>s distributions à queues épaisses. Ainsi, le paradigme<br />

gaussien, en vogue en finance jusqu’à une<br />

pério<strong>de</strong> rel<strong>at</strong>ivement récente, n’est plus <strong>de</strong> mise<br />

aujourd’hui. Sa disparition a laissé le champ libre<br />

à diverses modélis<strong>at</strong>ions possibles <strong>de</strong>s risques,<br />

par exemple la modélis<strong>at</strong>ion Parétienne, très appliquée<br />

en finance, <strong>et</strong> la modélis<strong>at</strong>ion à l’ai<strong>de</strong> <strong>de</strong>s<br />

distributions dites “exponentielles étirées” que<br />

nous avons développée ces <strong>de</strong>rnières années.<br />

Ces <strong>de</strong>ux classes <strong>de</strong> distributions sont qualifiées<br />

<strong>de</strong> sous-exponentielles, c’est-à-dire que la probabilité<br />

d’occurrence d’événements extrêmes est<br />

plus probable qu’avec une distribution exponentielle.<br />

Cela a pour conséquence immédi<strong>at</strong>e que<br />

<strong>de</strong> telles distributions n’adm<strong>et</strong>tent pas <strong>de</strong> moment<br />

exponentiel, ou pour adopter le langage <strong>de</strong> la<br />

<strong>théorie</strong> <strong>de</strong> la ruine, ces distributions ne s<strong>at</strong>isfont<br />

pas à la condition <strong>de</strong> Cramér-Lundberg.<br />

Sous l’hypothèse que les ren<strong>de</strong>ments sont distribués<br />

<strong>de</strong> manière i<strong>de</strong>ntique <strong>et</strong> indépendante ou<br />

ne possè<strong>de</strong>nt qu’une faible dépendance, ces distributions<br />

caractérisent complètement les risques.<br />

Cela a l’énorme avantage <strong>de</strong> perm<strong>et</strong>tre d’établir<br />

<strong>de</strong>s lois <strong>de</strong> comportement universelles, liées à<br />

certains théorèmes <strong>de</strong> convergence m<strong>at</strong>hém<strong>at</strong>ique<br />

tels que la loi <strong>de</strong>s grands nombres, le théorème <strong>de</strong><br />

la limite centrale, la <strong>théorie</strong> <strong>de</strong>s valeurs extrêmes<br />

<strong>et</strong> <strong>de</strong>s gran<strong>de</strong>s dévi<strong>at</strong>ions. L’immense majorité <strong>de</strong>s<br />

<strong>théorie</strong>s sur la <strong>gestion</strong> <strong>de</strong>s risques, établies aussi<br />

bien en finance qu’en assurance, est fondée sur<br />

c<strong>et</strong>te hypothèse d’indépendance.<br />

Dépendance temporelle<br />

intermittente à l’origine<br />

<strong>de</strong>s gran<strong>de</strong>s pertes<br />

Ce premier pas s’avère en fait très insuffisant<br />

pour apprécier toute la dimension <strong>de</strong>s risques<br />

réels encourus. En eff<strong>et</strong>, <strong>de</strong>s étu<strong>de</strong>s récentes<br />

indiquent que l’hypothèse d’indépendance <strong>de</strong>s<br />

ren<strong>de</strong>ments sur <strong>de</strong>s pério<strong>de</strong>s successives (par<br />

exemple journalières) tombe en défaut lors <strong>de</strong><br />

grands mouvements qui s’avèrent persistants :


12.1. Comprendre <strong>et</strong> gérer les risques grands <strong>et</strong> extrêmes 377<br />

la distribution <strong>de</strong>s drawdowns (ou somme <strong>de</strong><br />

pertes quotidiennes successives) d’un actif, que<br />

ce soit d’un indice financier, du taux <strong>de</strong> change<br />

entre <strong>de</strong>ux monnaies ou <strong>de</strong> la côte d’une action,<br />

présente un comportement anormal pour les très<br />

grands drawdowns. Autrement dit, les très grands<br />

drawdowns n’appartiennent pas à la même popul<strong>at</strong>ion<br />

que le reste <strong>de</strong> la <strong>st<strong>at</strong>istique</strong> observée <strong>et</strong> font<br />

apparaître d’importantes corrél<strong>at</strong>ions sérielles qui<br />

les rend beaucoup plus probables.<br />

Les distributions Parétiennes ou en exponentielles<br />

étirées sont insuffisantes pour quantifier<br />

ces grands risques intermittents, que nous appelons<br />

“outliers”, pour faire référence au vocable<br />

<strong>st<strong>at</strong>istique</strong> désignant <strong>de</strong>s occurrences anormales,<br />

distinctes du reste <strong>de</strong> la popul<strong>at</strong>ion. La<br />

n<strong>at</strong>ure outlier <strong>de</strong>s évènements extrêmes semble<br />

ne pas se confiner aux systèmes financiers<br />

mais a été proposée également pour la rupture<br />

c<strong>at</strong>astrophique <strong>de</strong> m<strong>at</strong>ériaux <strong>et</strong> <strong>de</strong> structures<br />

industrielles, les tremblements <strong>de</strong> terre,<br />

les c<strong>at</strong>astrophes météorologiques <strong>et</strong> enfin divers<br />

phénomènes biologiques <strong>et</strong> sociaux. Les crises<br />

extrêmes semblent donc résulter <strong>de</strong> mécanismes<br />

amplific<strong>at</strong>eurs spécifiques signalant probablement<br />

<strong>de</strong>s phénomènes coopér<strong>at</strong>ifs. Ainsi, <strong>de</strong>s étu<strong>de</strong>s<br />

comportementales, dans lesquelles l’économie<br />

dite “cognitive” tient un grand rôle, perm<strong>et</strong>tent<br />

d’associer ces corrél<strong>at</strong>ions sérielles intermittentes<br />

concomitantes <strong>de</strong>s gran<strong>de</strong>s pertes à certains comportements<br />

<strong>de</strong>s acteurs économiques, tels que <strong>de</strong>s<br />

eff<strong>et</strong>s <strong>de</strong> paniques <strong>et</strong>/ou d’imit<strong>at</strong>ions.<br />

Dans ce contexte, les mesures <strong>de</strong> risques réalisées<br />

à partir d’outils standards comme la VaR<br />

(Value-<strong>at</strong>-Risk) peuvent se révéler totalement<br />

inadéqu<strong>at</strong>es. En eff<strong>et</strong>, une perte journalière <strong>de</strong> 2 %<br />

ou 3 % sur les marchés financiers n’est pas rare,<br />

<strong>et</strong> ne constitue pas un événement extrême. Mais si<br />

une perte d’une telle ampleur vient à se reproduire<br />

plusieurs jours <strong>de</strong> suite, qui plus est en s’amplifiant,<br />

la perte cumulée peut alors <strong>at</strong>teindre 10%,<br />

20% ou même beaucoup plus, ce qui entraîne <strong>de</strong>s<br />

conséquences bien plus dram<strong>at</strong>iques que ne l’indique<br />

la VaR à l’échelle quotidienne. La prise<br />

en compte <strong>de</strong> ce type <strong>de</strong> dépendances sérielles<br />

intermittentes nécessite impér<strong>at</strong>ivement le calcul<br />

d’indic<strong>at</strong>eurs <strong>de</strong> risques à plusieurs échelles temporelles<br />

perm<strong>et</strong>tant <strong>de</strong> couvrir la distribution <strong>de</strong>s<br />

durées <strong>de</strong> drawdowns, comme le suggère le Comité<br />

<strong>de</strong> Basle quand il recomman<strong>de</strong> <strong>de</strong> calculer la<br />

VaR sur un intervalle <strong>de</strong> dix jours. La distribution<br />

<strong>de</strong>s drawdowns fournit un tel indic<strong>at</strong>eur parmi<br />

d’autres. Notons aussi que <strong>de</strong> nombreux investisseurs<br />

professionnels <strong>at</strong>tachent une gran<strong>de</strong> importance<br />

aux drawdowns pour caractériser leurs<br />

risques <strong>et</strong> la qualité d’une str<strong>at</strong>égie ou d’un <strong>portefeuille</strong>.<br />

Dépendance <strong>de</strong> queue<br />

<strong>et</strong> contagion<br />

Cependant, une <strong>gestion</strong> <strong>de</strong>s risques digne <strong>de</strong> ce<br />

nom ne peut se réduire à une étu<strong>de</strong> individuelle <strong>de</strong><br />

chaque actif. En eff<strong>et</strong>, l’épine dorsale <strong>de</strong> la <strong>gestion</strong><br />

<strong>de</strong>s risques est la diversific<strong>at</strong>ion par la constitution<br />

<strong>de</strong> <strong>portefeuille</strong>s <strong>de</strong> risques, aussi bien en assurance<br />

qu’en finance. De la même manière que<br />

le paradigme gaussien est inadéqu<strong>at</strong> pour quantifier<br />

les grands risques <strong>de</strong>s distributions marginales<br />

<strong>de</strong>s ren<strong>de</strong>ments, la covariance intervenant dans la<br />

<strong>théorie</strong> standard du <strong>portefeuille</strong> ne donne qu’une<br />

idée très limitée <strong>de</strong>s grands risques collectifs. Ces<br />

grands risques <strong>de</strong> <strong>portefeuille</strong> résultent en eff<strong>et</strong> <strong>de</strong><br />

la conjonction d’eff<strong>et</strong>s non-gaussien dans les distributions<br />

marginales à queue épaisse <strong>et</strong> dans les<br />

dépendances entre actifs.<br />

On peut donner une idée <strong>de</strong> l’importance <strong>de</strong>s eff<strong>et</strong>s<br />

<strong>de</strong> dépendance non-gaussienne en étudiant la<br />

“dépendance <strong>de</strong> queue” λ c’est-à-dire la probabilité<br />

pour que l’actif X subisse une perte plus<br />

gran<strong>de</strong> que Xq, associée au quantile q tendant vers<br />

zéro, conditionnée à la réalis<strong>at</strong>ion d’une perte <strong>de</strong><br />

l’actif Y plus gran<strong>de</strong> que Yq associée au même<br />

quantile q. Il se trouve que λ est nul pour les actifs<br />

à dépendance gaussienne ! Par contre, dans le<br />

cadre <strong>de</strong>s modèles à facteurs, nous avons montré<br />

que seules les distributions sous-exponentielles<br />

(<strong>et</strong> plus particulièrement Parétiennes) présentent<br />

une dépendance <strong>de</strong> queue asymptotique (pour q<br />

tendant vers 0). Il est possible d’accé<strong>de</strong>r au paramètre<br />

<strong>de</strong> dépendance <strong>de</strong> queue entre <strong>de</strong>ux actifs<br />

par <strong>de</strong>s métho<strong>de</strong>s qui ne font pas appel à une<br />

détermin<strong>at</strong>ion <strong>st<strong>at</strong>istique</strong> directe. Nos tests empiriques<br />

trouvent alors un bon accord entre le ca-


378 12. Gestion <strong>de</strong>s risques grands <strong>et</strong> extrêmes<br />

librage du coefficient <strong>de</strong> dépendance <strong>de</strong> queue <strong>et</strong><br />

les gran<strong>de</strong>s pertes réalisées entre les années 1962<br />

<strong>et</strong> 2000 pour <strong>de</strong>s actions principales <strong>et</strong> <strong>de</strong> grands<br />

indices <strong>de</strong> marché. Conditionné à un grand mouvement<br />

du marché, on peut ainsi déduire la probabilité<br />

que tel ou tel actif subisse une perte du<br />

même ordre.<br />

N<strong>at</strong>ure multidimensionnelle<br />

<strong>de</strong>s risques<br />

Le Graal est <strong>de</strong> conjuguer la <strong>de</strong>scription <strong>de</strong>s<br />

distributions marginales sous-exponentielles avec<br />

les dépendances inter-actifs non-gaussiennes <strong>et</strong><br />

idéalement les dépendances temporelles intermittentes<br />

amenant les gran<strong>de</strong>s pertes pour établir un<br />

<strong>portefeuille</strong> optimal. Le problème est alors que la<br />

notion d’“optimalité” n’est pas évi<strong>de</strong>nte à définir<br />

en pr<strong>at</strong>ique : si la <strong>théorie</strong> économique nous dit<br />

<strong>de</strong> maximiser la fonction d’utilité <strong>de</strong> l’investisseur,<br />

en réalité nous ne la connaissons pas avec<br />

précision. Le problème se complique par les multiples<br />

dimensions du risque introduites par la n<strong>at</strong>ure<br />

non-gaussienne <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ment<br />

<strong>et</strong> <strong>de</strong>s dépendances .<br />

Dans une série d’articles, nous avons développé<br />

une <strong>théorie</strong> du <strong>portefeuille</strong> reposant sur la caractéris<strong>at</strong>ion<br />

<strong>de</strong>s risques par les cumulants <strong>de</strong><br />

la distribution <strong>de</strong>s ren<strong>de</strong>ments du <strong>portefeuille</strong>.<br />

Les cumulants, notés cn, s’expriment comme <strong>de</strong>s<br />

combinaisons <strong>de</strong> moments, <strong>et</strong> quantifient notamment<br />

l’écart à la gaussienne. De même que les<br />

moments, les cumulants n’existent pas tous pour<br />

les distributions Parétiennes mais sont définis à<br />

tout ordre pour les distributions exponentielles<br />

étirées. En particulier, les cumulants d’ordres un<br />

<strong>et</strong> <strong>de</strong>ux sont respectivement la moyenne <strong>et</strong> la variance<br />

<strong>de</strong>s ren<strong>de</strong>ments, tandis que les cumulants<br />

d’ordre trois <strong>et</strong> qu<strong>at</strong>re (après normalis<strong>at</strong>ion par<br />

l’écart type) perm<strong>et</strong>tent <strong>de</strong> définir la skewness<br />

<strong>et</strong> la kurtosis. De façon générale, les cumulants<br />

d’ordres pairs quantifient <strong>de</strong>s risques d’autant plus<br />

grands que l’ordre du cumulant considéré est<br />

élevé, tandis que les cumulants d’ordres impairs<br />

caractérisent la dissymétrie entre les queues positives<br />

<strong>et</strong> nég<strong>at</strong>ives <strong>de</strong> la distribution <strong>de</strong>s ren<strong>de</strong>-<br />

ments. Plus l’ordre n du cumulant cn considéré<br />

est grand, plus celui-ci accor<strong>de</strong> d’importance aux<br />

événements extrêmes. L’ordre n <strong>de</strong>s cumulants allant<br />

<strong>de</strong> 1 à l’infini, varier n revient à étaler ou<br />

développer toutes les dimensions du risque : les<br />

“p<strong>et</strong>its” risques quantifiés par c2 <strong>et</strong> les “grands”<br />

risques quantifiés par c4 <strong>et</strong> les cumulants d’ordres<br />

plus élevés.<br />

Notre <strong>théorie</strong> du <strong>portefeuille</strong> utilise les distributions<br />

marginales <strong>de</strong> la famille <strong>de</strong>s exponentielles<br />

étirées <strong>et</strong> la dépendance entre actif est décrite par<br />

la copule gaussienne. Si on souhaite créer un <strong>portefeuille</strong><br />

qui évite les grands risques, on choisit le<br />

poids <strong>de</strong>s actifs <strong>de</strong> telle manière que les cumulants<br />

c4, c6, c8, <strong>et</strong>c. soient tous proches <strong>de</strong> leur<br />

minimum, tout en laissant libre la variance c2 (p<strong>et</strong>its<br />

risques). C<strong>et</strong>te approche est très différente <strong>de</strong><br />

l’approche standard <strong>de</strong> Markowitz qui se focalise<br />

sur c2 <strong>et</strong> <strong>de</strong> plus construit une frontière efficiente<br />

dans l’espace (ren<strong>de</strong>ment-variance).<br />

P<strong>et</strong>its risques, grands<br />

risques <strong>et</strong> ren<strong>de</strong>ment<br />

Pour illustrer l’impact <strong>de</strong> la décomposition<br />

<strong>de</strong>s risques en “p<strong>et</strong>its” <strong>et</strong> “grands” risques,<br />

considérons le cas simple d’un <strong>portefeuille</strong> avec<br />

seulement <strong>de</strong>ux actifs : l’action Chevron <strong>et</strong> la <strong>de</strong>vise<br />

malaise : le Ringgit. Ces <strong>de</strong>ux actifs ont <strong>de</strong>s<br />

caractéristiques très différentes <strong>et</strong> illustrent admirablement<br />

un eff<strong>et</strong> surprenant a priori. La figure 1a<br />

montre le ren<strong>de</strong>ment quotidien d’un <strong>portefeuille</strong><br />

dont la proportion w1, investie dans l’action Chevron,<br />

a été obtenue en minimisant la variance. La<br />

figure 1b donne la solution <strong>de</strong> la minimis<strong>at</strong>ion <strong>de</strong><br />

cn vis-à-vis du poids w1. Les lignes <strong>de</strong>s points<br />

horizontaux sont les valeurs maximales du ren<strong>de</strong>ment<br />

quotidien dans le cas où l’on optimise c2n,<br />

pour n>1. Les ren<strong>de</strong>ments quotidiens pour le <strong>portefeuille</strong><br />

<strong>de</strong> la figure 1b surpassent ces limites,<br />

i.e. le <strong>portefeuille</strong> <strong>de</strong> la figure 1a subit plus <strong>de</strong><br />

fluctu<strong>at</strong>ions <strong>de</strong> gran<strong>de</strong>s amplitu<strong>de</strong>s.Ces <strong>de</strong>ux figures<br />

illustrent clairement le fait que minimiser<br />

<strong>de</strong>s p<strong>et</strong>its risques peut faire augmenter les grands<br />

risques ! De plus, le gain cumul<strong>at</strong>if <strong>de</strong> la figure 1c<br />

montre que le <strong>portefeuille</strong> <strong>de</strong> la figure 1b voit son


12.1. Comprendre <strong>et</strong> gérer les risques grands <strong>et</strong> extrêmes 379<br />

gain s’accroître considérablement par rapport au<br />

<strong>portefeuille</strong> standard à la Markovitz. Autrement<br />

dit “on peut avoir le beurre <strong>et</strong> l’argent du beur-<br />

re” : diminuer les grands risques <strong>et</strong> augmenter le<br />

profit !<br />

Ren<strong>de</strong>ments quotidiens annualisés (en pourcentage) <strong>et</strong> gain cumulé pour les <strong>de</strong>ux <strong>portefeuille</strong>s<br />

correspondants au minimum <strong>de</strong> la variance (poids Chevron w1 = 0,095) <strong>et</strong> au minimum <strong>de</strong>s cumulants<br />

c2n, d’ordre 2n > 2 (poids Chevron w1 = 0,38).<br />

Ren<strong>de</strong>ment quotiedien<br />

Ren<strong>de</strong>ment quotiedien<br />

Richesse cummulée<br />

10<br />

¤<br />

20<br />

20<br />

10<br />

0<br />

¤<br />

20<br />

10<br />

¤<br />

20<br />

10<br />

0<br />

£<br />

6<br />

¦<br />

4<br />

¤<br />

2<br />

0<br />

0<br />

0<br />

0<br />

¡<br />

1000 2000 3000<br />

¤<br />

1000 2000<br />

¡<br />

3000<br />

¡<br />

1000 2000 3000<br />

Le mécanisme <strong>de</strong> c<strong>et</strong> eff<strong>et</strong> remarquable est<br />

simple : le Ringgit malais contribue le plus au<br />

cumulant d’ordres élevés (grands risques) <strong>et</strong> a <strong>de</strong><br />

plus un ren<strong>de</strong>ment très faible par rapport à celui <strong>de</strong><br />

Chevron. Par contre, sa distribution étroite dans la<br />

zone <strong>de</strong>s p<strong>et</strong>its ren<strong>de</strong>ments lui donne une faible<br />

variance. L’optimis<strong>at</strong>ion à la Markowitz m<strong>et</strong>tra<br />

donc plus <strong>de</strong> poids sur le Ringgit qui semble apporter<br />

une diversific<strong>at</strong>ion intéressante du point <strong>de</strong><br />

vue <strong>de</strong> la variance. Mais cela est une illusion dangereuse,<br />

car le risque réel du Ringgit est beaucoup<br />

plus grand que ne le fait croire sa variance. Le cumulant<br />

c4, par exemple, le quantifie clairement <strong>et</strong><br />

sa minimis<strong>at</strong>ion conduit en conséquence à réduire<br />

le poids <strong>de</strong> la <strong>de</strong>vise malaisienne dans le porte-<br />

¥<br />

w1=0.095<br />

w1=0.38<br />

¢<br />

4000 5000<br />

¦<br />

4000<br />

¢<br />

5000<br />

¢<br />

4000 5000<br />

£<br />

6000<br />

£<br />

6000<br />

w1=0.38<br />

w1=0.095<br />

£<br />

6000<br />

7000<br />

§<br />

7000<br />

7000<br />

feuille. Du coup, les grands risques sont réduits.<br />

Comme le Ringgit n’a que peu <strong>de</strong> ren<strong>de</strong>ment, on<br />

gagne alors sur les <strong>de</strong>ux tableaux car alors le ren<strong>de</strong>ment<br />

augmente n<strong>et</strong>tement.<br />

Bibliographie<br />

An<strong>de</strong>rsen, J. V. and D. Sorn<strong>et</strong>te (2001) Have your<br />

cake and e<strong>at</strong> it too : increasing r<strong>et</strong>urns while lowering<br />

large risks ! Journal of Risk Finance 2 (3),<br />

70-82.<br />

Embrechts P., C. Klüppelberg <strong>et</strong> T. Mikosch<br />

(1997), Mo<strong>de</strong>lling Extremal Events for Insurance<br />

(a)<br />

(b)<br />

(c)


380 12. Gestion <strong>de</strong>s risques grands <strong>et</strong> extrêmes<br />

and Finance (Springer, New York).<br />

Malevergne, Y. and D. Sorn<strong>et</strong>te (2001) General<br />

framework for a portfolio theory with non-<br />

Gaussian risks and non-linear correl<strong>at</strong>ions, paper<br />

presented <strong>at</strong> the 18th Intern<strong>at</strong>ional conference in<br />

Finance, June 2001, Namur, Belgium (e-print <strong>at</strong><br />

http : //arXiv.org/abs/cond−m<strong>at</strong>/0103020).<br />

Malevergne, Y. and D. Sorn<strong>et</strong>te (2002) Tail Depen<strong>de</strong>nce<br />

of Factor Mo<strong>de</strong>ls, working paper (http :<br />

//arXiv.org/abs/cond − m<strong>at</strong>/0202356).<br />

Johansen, A. <strong>et</strong> D. Sorn<strong>et</strong>te (2002), “Large<br />

Price Drawdowns Are Outliers”, Journal of<br />

Risk 4 (2), (http : //arXiv.org/abs/cond −<br />

m<strong>at</strong>/0010050).<br />

Sorn<strong>et</strong>te, D. (1999) Complexity, c<strong>at</strong>astrophe and<br />

physics, Physics World 12 (N12), 57-57.<br />

Sorn<strong>et</strong>te, D. (2002) Predictability of c<strong>at</strong>astrophic<br />

events : m<strong>at</strong>erial rupture, earthquakes, turbulence,<br />

financial crashes and human birth, Proceedings<br />

of the N<strong>at</strong>ional Aca<strong>de</strong>my of Sciences USA, vol.<br />

4, (e-print <strong>at</strong> http : //arXiv.org/abs/cond −<br />

m<strong>at</strong>/0107173).<br />

Sorn<strong>et</strong>te, D., P. Simon<strong>et</strong>ti and J. V. An<strong>de</strong>rsen<br />

(2000) φ q -field theory for Portfolio optimiz<strong>at</strong>ion :<br />

``f<strong>at</strong> tails” and non-linear correl<strong>at</strong>ions, Physics<br />

Report 335 (2), 19-92.<br />

Zaj<strong>de</strong>nweber, D., Economie <strong>de</strong>s extrêmes (Flammarion,<br />

2000).


12.2. Minimiser l’impact <strong>de</strong>s grands co-mouvements 381<br />

12.2 Minimiser l’impact <strong>de</strong>s grands co-mouvements<br />

A l’ai<strong>de</strong> <strong>de</strong>s résult<strong>at</strong>s exposés au chapitre 9 section 9.2, nous montrons comment le coefficient <strong>de</strong><br />

dépendance <strong>de</strong> queue entre un actif <strong>et</strong> un <strong>de</strong> ces facteurs explic<strong>at</strong>ifs (le marché par exemple) ou entre<br />

<strong>de</strong>ux actifs, peut facilement être calibré. Nous construisons ensuite <strong>de</strong>s <strong>portefeuille</strong>s composés d’actifs<br />

ayant <strong>de</strong> très faibles coefficients <strong>de</strong> dépendance <strong>de</strong> queue avec le marché <strong>et</strong> montrons qu’ils présentent<br />

une corrél<strong>at</strong>ion remarquablement plus faible que <strong>de</strong>s <strong>portefeuille</strong>s composés d’actifs ayant une plus forte<br />

dépendance <strong>de</strong> queue avec le marché, <strong>et</strong> ce sans dégrad<strong>at</strong>ion <strong>de</strong> la performance mesurée par le r<strong>at</strong>io <strong>de</strong><br />

Sharpe.<br />

Reprint from : Y. Malevergne <strong>et</strong> D.Sorn<strong>et</strong>te (2002), Minimizing extremes, RISK 15(11), 129-134.


382 12. Gestion <strong>de</strong>s risques grands <strong>et</strong> extrêmes<br />

M<br />

ore than 100 years ago, Vilfred Par<strong>et</strong>o discovered a st<strong>at</strong>istical rel<strong>at</strong>ionship,<br />

now known as the 80-20 rule, th<strong>at</strong> manifests itself over<br />

and over in large systems: “In any series of elements to be controlled,<br />

a selected small fraction, in terms of numbers of elements, always<br />

accounts for a large fraction in terms of effect.” The stock mark<strong>et</strong> is no exception:<br />

events occurring over a very small fraction of the total invested<br />

time may account for most of the gains and/or losses. Diversifying away<br />

such large risks requires novel approaches to portfolio management, which<br />

must take into account the non-Gaussian f<strong>at</strong> tail structure of distributions<br />

of r<strong>et</strong>urns and their <strong>de</strong>pen<strong>de</strong>nce. Recent economic shocks and crashes<br />

have shown th<strong>at</strong> standard portfolio diversific<strong>at</strong>ion works well in normal<br />

times but may break down in stressful times, precisely when diversific<strong>at</strong>ion<br />

is most important. One could say th<strong>at</strong> diversific<strong>at</strong>ion works when one<br />

does not really need it and may fail severely when it is most nee<strong>de</strong>d.<br />

Technically, the question boils down to wh<strong>et</strong>her large price movements<br />

occur mainly in an isol<strong>at</strong>ed manner or in a co-ordin<strong>at</strong>ed way. This question<br />

is vital for fund managers who take advantage of the diversific<strong>at</strong>ion<br />

to minimise their risks. Here, we introduce a new technique to quantify<br />

and empirically estim<strong>at</strong>e the propensity for ass<strong>et</strong>s to exhibit extreme comovements,<br />

through the use of the so-called coefficient of tail <strong>de</strong>pen<strong>de</strong>nce.<br />

Using a factor mo<strong>de</strong>l framework and tools from extreme value<br />

theory, we provi<strong>de</strong> novel analytical formulas for the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce<br />

b<strong>et</strong>ween arbitrary ass<strong>et</strong>s, which yields an efficient non-param<strong>et</strong>ric<br />

estim<strong>at</strong>or. We then construct portfolios of stocks with minimal tail<br />

<strong>de</strong>pen<strong>de</strong>nce with the mark<strong>et</strong> represented by the S&P 500, and show th<strong>at</strong><br />

their superior behaviour in stressed times comes tog<strong>et</strong>her with qualities<br />

in terms of Sharpe r<strong>at</strong>io and standard quality measures th<strong>at</strong> are <strong>at</strong> least as<br />

good as standard portfolios.<br />

Assessing large co-movements<br />

Standard estim<strong>at</strong>ors of the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s inclu<strong>de</strong> the correl<strong>at</strong>ion<br />

coefficient and the Spearman’s rank correl<strong>at</strong>ion. However, as stressed<br />

by Embrechts, McNeil & Straumann (1999), these kind of <strong>de</strong>pen<strong>de</strong>nce measures<br />

suffer from many <strong>de</strong>ficiencies. Moreover, their values are mostly controlled<br />

by rel<strong>at</strong>ively small moves of the ass<strong>et</strong> prices around their mean. To<br />

solve this problem, it has been proposed to use the correl<strong>at</strong>ion coefficients<br />

conditioned on large movements of the ass<strong>et</strong>s. But Boyer, Gibson & Laur<strong>et</strong>an<br />

(1997) have emphasised th<strong>at</strong> this approach suffers also from a severe<br />

system<strong>at</strong>ic bias leading to spurious str<strong>at</strong>egies: the conditional<br />

correl<strong>at</strong>ion in general evolves with time even when the true non-conditional<br />

correl<strong>at</strong>ion remains constant. In fact, Malevergne & Sorn<strong>et</strong>te (2002a)<br />

have shown th<strong>at</strong> any approach based on conditional <strong>de</strong>pen<strong>de</strong>nce measures<br />

implies a spurious change of the intrinsic value of the <strong>de</strong>pen<strong>de</strong>nce,<br />

measured for instance by copulas. Recall th<strong>at</strong> the copula of several random<br />

variables is the (unique) function (for continuous marginals) th<strong>at</strong> compl<strong>et</strong>ely<br />

embodies the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween these variables, irrespective of<br />

their marginal behaviour (see Nelsen, 1998, for a m<strong>at</strong>hem<strong>at</strong>ical <strong>de</strong>scription<br />

of the notion of copula).<br />

In view of these limit<strong>at</strong>ions of the standard st<strong>at</strong>istical tools, it is n<strong>at</strong>ural<br />

to turn to extreme value theory. In the univari<strong>at</strong>e case, extreme value theory<br />

is very useful and provi<strong>de</strong>s many tools for investig<strong>at</strong>ing the extreme<br />

Portfolio tail risk l<br />

tails of distributions of ass<strong>et</strong>s’ r<strong>et</strong>urns. These new <strong>de</strong>velopments rest on<br />

the existence of a few fundamental results on extremes, such as the Gne<strong>de</strong>nko-Pickands-Balkema-<strong>de</strong><br />

Haan theorem, which gives a general expression<br />

for the conditional distribution of exceedance over a large<br />

threshold. In this framework, the study of large and extreme co-movements<br />

requires the multivari<strong>at</strong>e extreme values theory, which, in contrast with the<br />

univari<strong>at</strong>e case, cannot be used to constrain accur<strong>at</strong>ely the distribution of<br />

large co-movements since the class of limiting extreme-value distributions<br />

is too broad.<br />

In the spirit of the mean-variance portfolio or of utility theory, which<br />

establish an investment <strong>de</strong>cision on a unique risk measure, we use the coefficient<br />

of tail <strong>de</strong>pen<strong>de</strong>nce, which, to our knowledge, was first introduced<br />

in a financial context by Embrechts, McNeil & Straumann (2002). The coefficient<br />

of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s Xi and Xj is a very n<strong>at</strong>ural and<br />

easily comprehensible measure of extreme co-movements. It is <strong>de</strong>fined as<br />

the probability th<strong>at</strong> the ass<strong>et</strong> Xi incurs a large loss (or gain) assuming th<strong>at</strong><br />

the ass<strong>et</strong> Xj also un<strong>de</strong>rgoes a large loss (or gain) <strong>at</strong> the same probability<br />

level, in the limit where this probability level explores the extreme tails of<br />

the distribution of r<strong>et</strong>urns of the two ass<strong>et</strong>s. M<strong>at</strong>hem<strong>at</strong>ically speaking, the<br />

coefficient of lower tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the two ass<strong>et</strong>s Xi and Xj , <strong>de</strong>noted<br />

by λ _<br />

ij , is <strong>de</strong>fined by:<br />

−<br />

λij u→0<br />

−1 −1<br />

{ Xi Fi u Xj Fj u }<br />

= lim Pr < ( ) < ( )<br />

where F i –1 (u) and Fj –1 (u) represent the quantiles of ass<strong>et</strong>s Xi and X j <strong>at</strong> the<br />

level u. Similarly, the coefficient of upper tail <strong>de</strong>pen<strong>de</strong>nce is:<br />

{ }<br />

+<br />

−1 −1<br />

= > ( ) > ( )<br />

Cutting edge<br />

Minimising extremes<br />

Portfolio diversific<strong>at</strong>ion often breaks down in stressed mark<strong>et</strong> environments, but the comovement<br />

of ass<strong>et</strong> prices in a tail risk regime may be mo<strong>de</strong>lled using a coefficient of tail<br />

<strong>de</strong>pen<strong>de</strong>nce. Here, Yannick Malevergne and Didier Sorn<strong>et</strong>te show how such coefficients can<br />

be estim<strong>at</strong>ed analytically using the param<strong>et</strong>ers of factor mo<strong>de</strong>ls, while avoiding the problem<br />

of un<strong>de</strong>r-sampling of extreme values<br />

(2)<br />

λ _<br />

ij (respectively λ+ ij ) is of concern to investors with long (respectively<br />

short) positions. We refer to Coles, Heffernan & Tawn (1999) and references<br />

therein for a survey of the properties of the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce.<br />

L<strong>et</strong> us stress th<strong>at</strong> the use of quantiles in the <strong>de</strong>finition of λ _<br />

ij<br />

and λ + ij makes them in<strong>de</strong>pen<strong>de</strong>nt of the marginal distribution of the ass<strong>et</strong><br />

r<strong>et</strong>urns. As a consequence, the tail <strong>de</strong>pen<strong>de</strong>nce param<strong>et</strong>ers are intrinsic<br />

<strong>de</strong>pen<strong>de</strong>nce measures. The obvious gain is an ‘orthogonal’ <strong>de</strong>composition<br />

of the risks into (1) individual risks carried by the marginal distribution<br />

of each ass<strong>et</strong> and (2) their collective risk <strong>de</strong>scribed by their<br />

<strong>de</strong>pen<strong>de</strong>nce structure or copula.<br />

Being a probability, the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce varies b<strong>et</strong>ween<br />

zero and one. A large value of λ _<br />

ij means th<strong>at</strong> large losses are more likely<br />

to occur tog<strong>et</strong>her. Then, large risks cannot be diversified away and the ass<strong>et</strong>s<br />

crash tog<strong>et</strong>her. This investor and portfolio manager nightmare is further<br />

amplified in real life situ<strong>at</strong>ions by the limited liquidity of mark<strong>et</strong>s.<br />

When λ _<br />

λij lim Pr Xi Fi u Xj Fj u<br />

u→1<br />

ij vanishes, these ass<strong>et</strong>s are said to be asymptotically in<strong>de</strong>pen<strong>de</strong>nt,<br />

but this term hi<strong>de</strong>s the subtl<strong>et</strong>y th<strong>at</strong> the ass<strong>et</strong>s can still present a non-zero<br />

<strong>de</strong>pen<strong>de</strong>nce in their tails. For instance, two ass<strong>et</strong>s with a bivari<strong>at</strong>e normal<br />

distribution with correl<strong>at</strong>ion coefficient less than one can be shown to have<br />

a vanishing coefficient of tail <strong>de</strong>pen<strong>de</strong>nce. Nevertheless, unless their correl<strong>at</strong>ion<br />

coefficient is zero, these ass<strong>et</strong>s are never in<strong>de</strong>pen<strong>de</strong>nt. Thus, asymptotic<br />

in<strong>de</strong>pen<strong>de</strong>nce must be un<strong>de</strong>rstood as the weakest <strong>de</strong>pen<strong>de</strong>nce<br />

(1)<br />

WWW.RISK.NET ● NOVEMBER 2002 RISK 129


12.2. Minimiser l’impact <strong>de</strong>s grands co-mouvements 383<br />

Cutting edge l<br />

Portfolio tail risk<br />

1. Tail <strong>de</strong>pen<strong>de</strong>nce versus correl<strong>at</strong>ion<br />

λ<br />

λ<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

–1.0 –0.8 –0.6 –0.4 –0.2 0<br />

ρ<br />

0.2 0.4 0.6 0.8 1.0<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Tail in<strong>de</strong>x ν = 3<br />

Tail in<strong>de</strong>x ν = 10<br />

0<br />

–1.0 –0.8 –0.6 –0.4 –0.2 0<br />

ρ<br />

0.2 0.4 0.6 0.8 1.0<br />

Evolution as a function of the correl<strong>at</strong>ion coefficient ρ of the coefficient<br />

of tail <strong>de</strong>pen<strong>de</strong>nce for an elliptical bivari<strong>at</strong>e Stu<strong>de</strong>nt distribution (solid<br />

line) and for the additive factor mo<strong>de</strong>l with Stu<strong>de</strong>nt factor and noise<br />

(dashed line)<br />

th<strong>at</strong> can be quantified by the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce (for other d<strong>et</strong>ails,<br />

the rea<strong>de</strong>r is referred to Ledford & Tawn, 1998).<br />

For practical implement<strong>at</strong>ions, a direct applic<strong>at</strong>ion of the <strong>de</strong>finitions (1)<br />

and (2) fails to provi<strong>de</strong> reasonable estim<strong>at</strong>ions due to the double curse of<br />

dimensionality and un<strong>de</strong>r-sampling of extreme values, so th<strong>at</strong> a fully nonparam<strong>et</strong>ric<br />

approach is not reliable. It turns out to be possible to circumvent<br />

this fundamental difficulty by consi<strong>de</strong>ring the general class of factor<br />

mo<strong>de</strong>ls, which are among the most wi<strong>de</strong>spread and vers<strong>at</strong>ile mo<strong>de</strong>ls in finance.<br />

They come in two classes: multiplic<strong>at</strong>ive and additive factor mo<strong>de</strong>ls<br />

respectively. The multiplic<strong>at</strong>ive factor mo<strong>de</strong>ls are generally used to<br />

mo<strong>de</strong>l ass<strong>et</strong> fluctu<strong>at</strong>ions due to an un<strong>de</strong>rlying stochastic vol<strong>at</strong>ility (see, for<br />

example, Hull & White, 1987, and Taylor, 1994, for a survey of the properties<br />

of these mo<strong>de</strong>ls). The additive factor mo<strong>de</strong>ls are ma<strong>de</strong> to rel<strong>at</strong>e ass<strong>et</strong><br />

fluctu<strong>at</strong>ions to mark<strong>et</strong> fluctu<strong>at</strong>ions, as in the capital ass<strong>et</strong> pricing mo<strong>de</strong>l<br />

and its generalis<strong>at</strong>ions (see, for example, Sharpe, 1964, and Rubinstein,<br />

1973), or to any s<strong>et</strong> of common factors as in Ross’ (1976) arbitrage pricing<br />

theory. The coefficient of tail <strong>de</strong>pen<strong>de</strong>nce is known in closed form for both<br />

classes of factor mo<strong>de</strong>ls, which allows, as we shall see, for an efficient empirical<br />

estim<strong>at</strong>ion.<br />

Tail <strong>de</strong>pen<strong>de</strong>nce gener<strong>at</strong>ed by factor mo<strong>de</strong>ls<br />

We first examine multiplic<strong>at</strong>ive factor mo<strong>de</strong>ls, which account for most of<br />

the stylised facts observed on financial time series. A multivari<strong>at</strong>e stochastic<br />

vol<strong>at</strong>ility mo<strong>de</strong>l with a common stochastic vol<strong>at</strong>ility factor can be<br />

written as:<br />

130 RISK NOVEMBER 2002 ● WWW.RISK.NET<br />

where σ is a positive random variable mo<strong>de</strong>lling the vol<strong>at</strong>ility, Y is a Gaussian<br />

random vector, in<strong>de</strong>pen<strong>de</strong>nt of σ, and X is the vector of ass<strong>et</strong> r<strong>et</strong>urns.<br />

In this framework, the multivari<strong>at</strong>e distribution of ass<strong>et</strong> r<strong>et</strong>urns X is an elliptical<br />

multivari<strong>at</strong>e distribution. For instance, if the inverse of the square<br />

of the vol<strong>at</strong>ility 1/σ2 is a constant times a χ2-distributed random variable<br />

with ν <strong>de</strong>grees of freedom, the distribution of ass<strong>et</strong> r<strong>et</strong>urns will be the Stu<strong>de</strong>nt<br />

distribution with ν <strong>de</strong>grees of freedom. When the vol<strong>at</strong>ility follows<br />

Arch or Garch processes, the ass<strong>et</strong> r<strong>et</strong>urns are also elliptically distributed<br />

with f<strong>at</strong>-tailed marginal distributions. Thus, any ass<strong>et</strong> Xi is asymptotically<br />

distributed according to a regularly varying distribution1 : Pr{|Xi | > x} ~ L(x)<br />

× x –ν , where L(⋅) <strong>de</strong>notes a slowly varying function, with the same exponent<br />

ν for all ass<strong>et</strong>s, due to the ellipticity of their multivari<strong>at</strong>e distribution.<br />

Hult & Lindskog (2002) have shown th<strong>at</strong> the necessary and sufficient<br />

condition for any two ass<strong>et</strong>s Xi and Xj with an elliptical multivari<strong>at</strong>e distribution<br />

to have a non-vanishing coefficient of tail <strong>de</strong>pen<strong>de</strong>nce is th<strong>at</strong> their<br />

distribution be regularly varying. Denoting by ρij the correl<strong>at</strong>ion coefficient<br />

b<strong>et</strong>ween the ass<strong>et</strong>s Xi and Xj and by ν the tail in<strong>de</strong>x of their distributions,<br />

they obtain:<br />

π / 2<br />

ν<br />

∫<br />

dt cos t<br />

± ( π/ 2−arcsin ρij<br />

) / 2<br />

ν + 1<br />

λij<br />

= = 2I<br />

1+<br />

ρ ,<br />

π / 2<br />

ij<br />

(4)<br />

ν<br />

dt cos t<br />

2 2<br />

1 ⎛ ⎞<br />

⎝<br />

⎜<br />

2⎠<br />

⎟<br />

where the function:<br />

∫<br />

0<br />

X =σY<br />

1<br />

Ix( z, w)=<br />

Bzw ( , )<br />

( )<br />

x z−1<br />

w−1<br />

dt t 1 − t<br />

0<br />

<strong>de</strong>notes the incompl<strong>et</strong>e b<strong>et</strong>a function. This expression holds for any regularly<br />

varying elliptical distribution, irrespective of the exact shape of the<br />

distribution. Only the tail in<strong>de</strong>x is important in the d<strong>et</strong>ermin<strong>at</strong>ion of the<br />

coefficient of tail <strong>de</strong>pen<strong>de</strong>nce because λ ± ij probes the extreme end of the<br />

tail of the distributions, which all have, roughly speaking, the same behaviour<br />

for regularly varying distributions. In contrast, when the marginal<br />

distributions <strong>de</strong>cay faster than any power law, such as the Gaussian distribution,<br />

the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce is zero.<br />

L<strong>et</strong> us now turn to the second class of additive factor mo<strong>de</strong>ls, whose<br />

introduction in finance goes back <strong>at</strong> least to the arbitrage pricing theory<br />

(Ross, 1976). They are now wi<strong>de</strong>ly used in many branches of finance, including<br />

to mo<strong>de</strong>l stock r<strong>et</strong>urns, interest r<strong>at</strong>es and credit risks. Here, we<br />

shall only consi<strong>de</strong>r the effect of a single factor, which may represent the<br />

mark<strong>et</strong>, for example. This factor will be <strong>de</strong>noted by Y and its cumul<strong>at</strong>ive<br />

distribution by FY . As previously, the vector X is the vector of ass<strong>et</strong> r<strong>et</strong>urns<br />

and ε will <strong>de</strong>note the vector of idiosyncr<strong>at</strong>ic noises assumed in<strong>de</strong>pen<strong>de</strong>nt2 of Y. β is the vector whose components are the regression coefficients of<br />

the Xi on the factor Y. Thus, the factor mo<strong>de</strong>l reads:<br />

(6)<br />

In contrast with multiplic<strong>at</strong>ive factor mo<strong>de</strong>ls, the multivari<strong>at</strong>e distribution<br />

of X cannot be obtained in an analytical form, in the general case. In<br />

the particular situ<strong>at</strong>ion when Y and ε are normally distributed, the multivari<strong>at</strong>e<br />

distribution of X is also normal but this case is not very interesting.<br />

In a sense, additive factor mo<strong>de</strong>ls are richer than the multiplic<strong>at</strong>ive ones,<br />

since they give birth to a larger s<strong>et</strong> of distributions of ass<strong>et</strong> r<strong>et</strong>urns.<br />

Notwithstanding these difficulties, it turns out to be possible to obtain<br />

the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce for any pair of ass<strong>et</strong>s Xi and Xj . In a first<br />

step, l<strong>et</strong> us consi<strong>de</strong>r the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce λ ± i b<strong>et</strong>ween any<br />

ass<strong>et</strong> Xi and the factor Y itself. Malevergne & Sorn<strong>et</strong>te (2002b) have shown<br />

th<strong>at</strong> λ ± X = βY+ ε<br />

i is also i<strong>de</strong>ntically zero for all rapidly varying factors, th<strong>at</strong> is, for all<br />

factors whose distribution <strong>de</strong>cays faster than any power law, such as the<br />

Gaussian, exponential or gamma laws. When the factor Y has a distribution<br />

th<strong>at</strong> is regularly varying with tail in<strong>de</strong>x ν, we have:<br />

1 See Bingham, Goldie & Teugel (1987) for d<strong>et</strong>ails on regular vari<strong>at</strong>ions<br />

2 In fact, ε and Y can be weakly <strong>de</strong>pen<strong>de</strong>nt (see Malevergne & Sorn<strong>et</strong>te, 2002b, for d<strong>et</strong>ails)<br />

∫<br />

(3)<br />

(5)


384 12. Gestion <strong>de</strong>s risques grands <strong>et</strong> extrêmes<br />

where:<br />

λ<br />

+<br />

i =<br />

l =<br />

A similar expression holds for λ – i , which is obtained by simply replacing<br />

the limit u → 1 by u → 0 in the <strong>de</strong>finition of l. λ ± i is non-zero as long<br />

as l remains finite, th<strong>at</strong> is, when the tail of the distribution of the factor is<br />

not thinner than the tail of the idiosyncr<strong>at</strong>ic noise εi . Therefore, two conditions<br />

must hold for the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce to be non-zero:<br />

the factor must be intrinsically ‘wild’ (to use the terminology of Man<strong>de</strong>lbrot,<br />

1997) so th<strong>at</strong> its distribution is regularly varying; and<br />

the factor must be sufficiently ‘wild’ in its intrinsic variability, so th<strong>at</strong> its<br />

influence is not domin<strong>at</strong>ed by the idiosyncr<strong>at</strong>ic component of the ass<strong>et</strong>.<br />

Then, the amplitu<strong>de</strong> of λ ± i is d<strong>et</strong>ermined by the tra<strong>de</strong>-off b<strong>et</strong>ween the rel<strong>at</strong>ive<br />

tail behaviours of the factor and the idiosyncr<strong>at</strong>ic noise.<br />

As an example, l<strong>et</strong> us consi<strong>de</strong>r th<strong>at</strong> the factor and the idiosyncr<strong>at</strong>ic noise<br />

follow Stu<strong>de</strong>nt distribution with νY and ν <strong>de</strong>grees of freedom and scale<br />

εi<br />

factor σY and σ respectively. Expression (7) leads to:<br />

εi<br />

λi = 0 if νY > νεi<br />

λi =<br />

1<br />

1<br />

σεi<br />

ν<br />

if νY = νε= ν<br />

i<br />

+ ( βσ i Y)<br />

−1<br />

lim<br />

u→1<br />

Y<br />

ν<br />

l { 1 β } i<br />

( )<br />

( )<br />

FXu −1<br />

F u<br />

λ = 1 if ν < ν<br />

i Y<br />

The tail <strong>de</strong>pen<strong>de</strong>nce <strong>de</strong>creases when the idiosyncr<strong>at</strong>ic vol<strong>at</strong>ility increases<br />

rel<strong>at</strong>ive to the factor vol<strong>at</strong>ility. Therefore, λi <strong>de</strong>creases in periods<br />

of high idiosyncr<strong>at</strong>ic vol<strong>at</strong>ility and increases in periods of high mark<strong>et</strong><br />

vol<strong>at</strong>ility. From the viewpoint of the tail <strong>de</strong>pen<strong>de</strong>nce, the vol<strong>at</strong>ility of an<br />

ass<strong>et</strong> is not relevant. Wh<strong>at</strong> is governing extreme co-movement is the rel<strong>at</strong>ive<br />

weights of the different components of the vol<strong>at</strong>ility of the ass<strong>et</strong>.<br />

Figure 1 compares the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce as a function of<br />

the correl<strong>at</strong>ion coefficient for the bivari<strong>at</strong>e Stu<strong>de</strong>nt distribution (expression<br />

(4)) and for the factor mo<strong>de</strong>l with the factor and the idiosyncr<strong>at</strong>ic noise<br />

following Stu<strong>de</strong>nt distributions (equ<strong>at</strong>ion (8)). Contrary to the coefficient<br />

of tail <strong>de</strong>pen<strong>de</strong>nce of the Stu<strong>de</strong>nt factor mo<strong>de</strong>l, the tail <strong>de</strong>pen<strong>de</strong>nce of the<br />

(elliptical) Stu<strong>de</strong>nt distribution does not vanish for neg<strong>at</strong>ive correl<strong>at</strong>ion coefficients.<br />

For large values of the correl<strong>at</strong>ion coefficient, the former is always<br />

larger than the l<strong>at</strong>ter.<br />

Once the coefficients of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the ass<strong>et</strong>s and the<br />

common factor are known, the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween any<br />

two ass<strong>et</strong>s Xi and Xj with a common factor Y is simply equal to the weakest<br />

tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the ass<strong>et</strong>s and their common factor:<br />

λ min λ , λ<br />

(9)<br />

= { }<br />

ij i j<br />

This result is very intuitive: since the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the two ass<strong>et</strong>s<br />

is due to their common factor, this <strong>de</strong>pen<strong>de</strong>nce cannot be stronger than<br />

the weakest <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween each of the ass<strong>et</strong>s and the factor.<br />

Practical implement<strong>at</strong>ion and consequences<br />

The two m<strong>at</strong>hem<strong>at</strong>ical results (4) and (7) have a very important practical<br />

effect for estim<strong>at</strong>ing the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce. As we have already<br />

pointed out, its direct estim<strong>at</strong>ion is essentially impossible since, by <strong>de</strong>finition,<br />

the number of observ<strong>at</strong>ions goes to zero as the probability level of<br />

the quantile goes to zero (or one). In contrast, the formulas (4) and (7–9)<br />

tell us th<strong>at</strong> one has just to estim<strong>at</strong>e a tail in<strong>de</strong>x and a correl<strong>at</strong>ion coefficient.<br />

These estim<strong>at</strong>ions can be reasonably accur<strong>at</strong>e because they make<br />

use of a significant part of the d<strong>at</strong>a beyond the few extremes targ<strong>et</strong>ed by<br />

λ. Moreover, equ<strong>at</strong>ion (7) does not explicitly assume a power law behaviour,<br />

but only a regularly varying behaviour, which is far more general. In<br />

1<br />

max ,<br />

εi<br />

(7)<br />

(8)<br />

A. Coefficients of tail <strong>de</strong>pen<strong>de</strong>nce<br />

Lower tail <strong>de</strong>pen<strong>de</strong>nce Upper tail <strong>de</strong>pen<strong>de</strong>nce<br />

Bristol-Myers Squibb 0.16 (0.03) 0.14 (0.01)<br />

Chevron 0.05 (0.01) 0.03 (0.01)<br />

Hewl<strong>et</strong>t-Packard 0.13 (0.01) 0.12 (0.01)<br />

Coca-Cola 0.12 (0.01) 0.09 (0.01)<br />

Minnesota Mining & MFG 0.07 (0.01) 0.06 (0.01)<br />

Philip Morris 0.04 (0.01) 0.04 (0.01)<br />

Procter & Gamble 0.12 (0.02) 0.09 (0.01)<br />

Pharmacia 0.06 (0.01) 0.04 (0.01)<br />

Schering-Plough 0.12 (0.01) 0.11 (0.01)<br />

Texaco 0.04 (0.01) 0.03 (0.01)<br />

Texas Instruments 0.17 (0.02) 0.12 (0.01)<br />

Walgreen 0.11 (0.01) 0.09 (0.01)<br />

This table presents the coefficients of lower and upper tail <strong>de</strong>pen<strong>de</strong>nce with the S&P<br />

500 in<strong>de</strong>x for a s<strong>et</strong> of 12 major stocks tra<strong>de</strong>d on the New York Stock Exchange from<br />

January 1991 to December 2000. The numbers in brack<strong>et</strong>s give the estim<strong>at</strong>ed standard<br />

<strong>de</strong>vi<strong>at</strong>ion of the empirical coefficients of tail <strong>de</strong>pen<strong>de</strong>nce<br />

2. Quantile r<strong>at</strong>io<br />

I = X k,N /Y k,N<br />

2.2<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0 0.05 0.10 0.15 0.20 0.25<br />

k/N<br />

^<br />

Empirical estim<strong>at</strong>e l of the quantile r<strong>at</strong>io l in (7) versus the empirical<br />

^<br />

quantile k/N. We observe a very good stability of l for quantiles<br />

ranging b<strong>et</strong>ween 0.005 and 0.05<br />

such a case, the empirical quantile r<strong>at</strong>io l in (7) turns out to be stable<br />

enough for its accur<strong>at</strong>e non-param<strong>et</strong>ric estim<strong>at</strong>ion, as shown in figure 2.<br />

As an example, table A presents the results obtained both for the upper<br />

and lower coefficients of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween several major stocks<br />

and the mark<strong>et</strong> factor represented here by the S&P 500 in<strong>de</strong>x, over the<br />

past <strong>de</strong>ca<strong>de</strong>. The estim<strong>at</strong>ion has been performed un<strong>de</strong>r the assumption<br />

th<strong>at</strong> equ<strong>at</strong>ion (6) holds, r<strong>at</strong>her than un<strong>de</strong>r the ellipticality assumption yielding<br />

equ<strong>at</strong>ion (4). In the present context of the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween stocks<br />

and an in<strong>de</strong>x (not b<strong>et</strong>ween two stocks), favouring the factor mo<strong>de</strong>l is very<br />

reasonable since, according to the financial theory, the mark<strong>et</strong>’s r<strong>et</strong>urn is<br />

well known to be the most important explan<strong>at</strong>ory factor for each individual<br />

ass<strong>et</strong> r<strong>et</strong>urn. 3 The technical aspects of the m<strong>et</strong>hod are given in the Appendix.<br />

The coefficient of tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween any two ass<strong>et</strong>s is easily<br />

<strong>de</strong>rived from (9). It is interesting to observe th<strong>at</strong> the coefficients of tail <strong>de</strong>pen<strong>de</strong>nce<br />

seem almost i<strong>de</strong>ntical in the lower and the upper tail. Non<strong>et</strong>heless,<br />

the coefficient of lower tail <strong>de</strong>pen<strong>de</strong>nce is always slightly larger than<br />

the upper one, showing th<strong>at</strong> large losses are more likely to occur tog<strong>et</strong>her<br />

than large gains.<br />

Two clusters of ass<strong>et</strong>s stand out: those with a tail <strong>de</strong>pen<strong>de</strong>nce of about<br />

3 In a situ<strong>at</strong>ion where the common factor cannot be easily i<strong>de</strong>ntified or estim<strong>at</strong>ed, the<br />

ellipticality assumption may provi<strong>de</strong> a useful altern<strong>at</strong>ive<br />

WWW.RISK.NET ● NOVEMBER 2002 RISK 131


12.2. Minimiser l’impact <strong>de</strong>s grands co-mouvements 385<br />

Cutting edge l<br />

Portfolio tail risk<br />

3. Portfolios versus mark<strong>et</strong><br />

Portfolio daily r<strong>et</strong>urn<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

0.02<br />

0.04<br />

0.06<br />

0.08<br />

Portfolio 1<br />

Linear regression of<br />

the portfolio 1 on the<br />

S&P 500 in<strong>de</strong>x<br />

Portfolio 2<br />

Linear regression of<br />

the portfolio 2 on the<br />

S&P 500 in<strong>de</strong>x<br />

0.10<br />

0.08 0.06 0.04 0.02 0 0.02 0.04 0.06<br />

S&P 500 daily r<strong>et</strong>urn<br />

Daily r<strong>et</strong>urns of two equally weighted portfolios P 1 (ma<strong>de</strong> of four stocks<br />

with small λ ≤ 0.06) and P 2 (ma<strong>de</strong> of four stocks with large λ ≥ 0.12) as a<br />

function of the daily r<strong>et</strong>urns of the S&P 500 from Jan 1991–Dec 2000<br />

10% (or more) and those with a tail <strong>de</strong>pen<strong>de</strong>nce of about 5%. Since the<br />

estim<strong>at</strong>ion of the tail <strong>de</strong>pen<strong>de</strong>nce coefficients has been performed un<strong>de</strong>r<br />

the assumption th<strong>at</strong> equ<strong>at</strong>ion (6) holds, it is interesting to compare the<br />

values with the tail <strong>de</strong>pen<strong>de</strong>nce coefficient un<strong>de</strong>r the assumption of joint<br />

ellipticality leading to (4). To g<strong>et</strong> a reliable correl<strong>at</strong>ion coefficient ρ, we<br />

calcul<strong>at</strong>e the Kendall’s tau coefficient τ, use the rel<strong>at</strong>ion r = sin(πτ/2) and<br />

<strong>de</strong>rive λ from (4), assuming ν = 3 or 4. For ν = 3 (respectively ν = 4), all<br />

λ’s are in the range 0.25–0.30 (respectively 0.20–0.25). Thus, assuming<br />

joint ellipticality, the tail-<strong>de</strong>pen<strong>de</strong>nce coefficients b<strong>et</strong>ween stocks and the<br />

in<strong>de</strong>x are much more homogeneous than found with the factor mo<strong>de</strong>l.<br />

As we show in figure 3, it is clear th<strong>at</strong> the portfolio with stocks with small<br />

tail-<strong>de</strong>pen<strong>de</strong>nce coefficients with the in<strong>de</strong>x (measured with the factor<br />

mo<strong>de</strong>l) exhibits significantly less <strong>de</strong>pen<strong>de</strong>nce than the portfolio constructed<br />

with stocks with large λ’s (measured with the factor mo<strong>de</strong>l). This<br />

132 RISK NOVEMBER 2002 ● WWW.RISK.NET<br />

should not be observed if all λ’s are the same as predicted un<strong>de</strong>r the assumption<br />

of joint ellipticality.<br />

We now explore some consequences of the existence of stocks with<br />

drastically different tail-<strong>de</strong>pen<strong>de</strong>nce coefficients with the in<strong>de</strong>x. These<br />

stocks offer the interesting possibility of <strong>de</strong>vising a pru<strong>de</strong>ntial portfolio th<strong>at</strong><br />

can be significantly less sensitive to the large mark<strong>et</strong> moves. Figure 3 compares<br />

the daily r<strong>et</strong>urns of the S&P 500 in<strong>de</strong>x with those of two portfolios<br />

P 1 and P 2 . P 1 comprises the four stocks (Chevron, Philip Morris, Pharmacia<br />

and Texaco) with the smallest λ’s while P 2 comprises the four stocks<br />

(Bristol-Meyer Squibb, Hewl<strong>et</strong>t-Packard, Schering-Plough and Texas Instruments)<br />

with the largest λ’s. For each s<strong>et</strong> of stocks, we have constructed<br />

two portfolios, one in which each stock has the same weight 1/4 and<br />

the other with ass<strong>et</strong> weights chosen to minimise the variance of the resulting<br />

portfolio. We find th<strong>at</strong> the results are almost the same b<strong>et</strong>ween the<br />

equally weighted and minimum-variance portfolios. This makes sense since<br />

the tail-<strong>de</strong>pen<strong>de</strong>nce coefficient of a bivari<strong>at</strong>e random vector does not <strong>de</strong>pend<br />

on the variances of the components, which only account for price<br />

moves of mo<strong>de</strong>r<strong>at</strong>e amplitu<strong>de</strong>s.<br />

Figure 3 shows the results for the equally weighted portfolios gener<strong>at</strong>ed<br />

from the two groups of ass<strong>et</strong>s. Observe th<strong>at</strong> only one large drop occurs<br />

simultaneously for P 1 and for the S&P 500 in<strong>de</strong>x, in contrast with P 2 ,<br />

for which several large drops are associ<strong>at</strong>ed with the largest drops of the<br />

in<strong>de</strong>x and only a few occur <strong>de</strong>synchronised. The figure clearly shows an<br />

almost circular sc<strong>at</strong>ter plot for the large moves of P 1 and the in<strong>de</strong>x compared<br />

with a r<strong>at</strong>her narrow ellipse, whose long axis is approxim<strong>at</strong>ely along<br />

the first diagonal, for the the large r<strong>et</strong>urns of P 2 and the in<strong>de</strong>x, illustr<strong>at</strong>ing<br />

th<strong>at</strong> the small tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the in<strong>de</strong>x and the four stocks in<br />

P 1 autom<strong>at</strong>ically implies th<strong>at</strong> their mutual tail <strong>de</strong>pen<strong>de</strong>nce is also very small,<br />

according to (9). As a consequence, P 1 offers a b<strong>et</strong>ter diversific<strong>at</strong>ion with<br />

respect to large drops than P 2 . This effect, already quite significant for such<br />

small portfolios, should be overwhelming for large ones. The most interesting<br />

result stressed in figure 3 is th<strong>at</strong> optimising for minimum tail <strong>de</strong>pen<strong>de</strong>nce<br />

autom<strong>at</strong>ically diversifies away the large risks.<br />

These advantages of portfolio P 1 with small tail <strong>de</strong>pen<strong>de</strong>nce compared<br />

with portfolio P 2 with large tail <strong>de</strong>pen<strong>de</strong>nce with the S&P 500<br />

in<strong>de</strong>x come <strong>at</strong> almost no cost in terms of the daily Sharpe r<strong>at</strong>io, which<br />

is equal respectively to 0.058 and 0.061 for the equally weighted and<br />

minimum variance P 1 and to 0.069 and 0.071 for the equally weighted<br />

and minimum variance P 2 .<br />

The straight lines represent the linear regression of the two portfolios’


386 12. Gestion <strong>de</strong>s risques grands <strong>et</strong> extrêmes<br />

r<strong>et</strong>urns on the in<strong>de</strong>x r<strong>et</strong>urns, which shows th<strong>at</strong> there is significantly less<br />

linear correl<strong>at</strong>ion b<strong>et</strong>ween P 1 and the in<strong>de</strong>x (correl<strong>at</strong>ion coefficient of 0.52<br />

for both the equally weighted and the minimum variance P 1 ) compared<br />

with P 2 and the in<strong>de</strong>x (correl<strong>at</strong>ion coefficient of 0.73 for the equally weighted<br />

P 2 and of 0.70 for the minimum variance P 2 ). Theor<strong>et</strong>ically, it is possible<br />

to construct two random variables with small correl<strong>at</strong>ion coefficient<br />

and large λ and vice versa. Recall th<strong>at</strong> the correl<strong>at</strong>ion coefficient and the<br />

tail-<strong>de</strong>pen<strong>de</strong>nce coefficient are two opposite end-members of <strong>de</strong>pen<strong>de</strong>nce<br />

measures. The correl<strong>at</strong>ion coefficient quantifies the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween<br />

rel<strong>at</strong>ively small moves while the tail-<strong>de</strong>pen<strong>de</strong>nce coefficient measures the<br />

<strong>de</strong>pen<strong>de</strong>nce during extreme events. The finding th<strong>at</strong> P 1 comes with both<br />

the smallest correl<strong>at</strong>ion and the smallest tail-<strong>de</strong>pen<strong>de</strong>nce coefficients suggests<br />

th<strong>at</strong> they are not in<strong>de</strong>pen<strong>de</strong>nt properties of ass<strong>et</strong>s. This intuition is<br />

in fact explained and encompassed by the factor mo<strong>de</strong>l since the larger<br />

β is, the larger the correl<strong>at</strong>ion coefficient and the larger the tail <strong>de</strong>pen<strong>de</strong>nce.<br />

Diversifying away extreme shocks may provi<strong>de</strong> a useful diversific<strong>at</strong>ion<br />

tool for less extreme <strong>de</strong>pen<strong>de</strong>nces, thus improving the potential<br />

usefulness of a str<strong>at</strong>egy of portfolio management based on tail <strong>de</strong>pen<strong>de</strong>nce<br />

proposed here.<br />

As a final remark, the almost i<strong>de</strong>ntical values of the coefficients of tail<br />

<strong>de</strong>pen<strong>de</strong>nce for neg<strong>at</strong>ive and positive tails show th<strong>at</strong> ass<strong>et</strong>s th<strong>at</strong> are the<br />

most likely to suffer from the large losses of the mark<strong>et</strong> factor are also<br />

those th<strong>at</strong> are the most likely to take advantage of its large gains. This<br />

has the following consequence: minimising the large concomitant losses<br />

b<strong>et</strong>ween the stocks and the mark<strong>et</strong> means renouncing the potential<br />

concomitant large gains. This point is well exemplified by our two portfolios<br />

(see figure 3): P 2 obviously un<strong>de</strong>rwent severe neg<strong>at</strong>ive co-movements<br />

but it also enjoyed large gains with the large positive movements<br />

of the in<strong>de</strong>x. In contrast, P 1 is almost compl<strong>et</strong>ely <strong>de</strong>coupled from the<br />

large neg<strong>at</strong>ive movements of the mark<strong>et</strong> but is also insensitive to the large<br />

positive movements of the in<strong>de</strong>x. Thus, a good dynamic str<strong>at</strong>egy seems<br />

to be: invest in P 1 during bearish or trend-less mark<strong>et</strong> phases and prefer<br />

P 2 in a bullish mark<strong>et</strong>. ■<br />

Yannick Malevergne is a PhD stu<strong>de</strong>nt <strong>at</strong> the University of Nice-Sophia<br />

Antipolis and <strong>at</strong> the <strong>ISFA</strong> Actuarial School – University of Lyon. Didier<br />

Bingham N, C Goldie and J Teugel, 1987<br />

Regular vari<strong>at</strong>ion<br />

Cambridge University Press, Cambridge<br />

Boyer B, M Gibson and M Laur<strong>et</strong>an, 1997<br />

Pitfalls in tests for changes in correl<strong>at</strong>ions<br />

Intern<strong>at</strong>ional Finance Discussion Paper 597, Board of the Governors of the Fe<strong>de</strong>ral<br />

Reserve System<br />

Coles S, J Heffernan and J Tawn, 1999<br />

Depen<strong>de</strong>nce measures for extreme value analysis<br />

Extremes 2, pages 339–365<br />

Embrechts P, A McNeil and D Straumann, 1999<br />

Correl<strong>at</strong>ion: pitfalls and altern<strong>at</strong>ives<br />

Risk May, pages 69–71<br />

Embrechts P, A McNeil and D Straumann, 2002<br />

Correl<strong>at</strong>ion and <strong>de</strong>pen<strong>de</strong>nce in risk management: properties and pitfalls<br />

In Risk Management: Value <strong>at</strong> Risk and Beyond, edited by M Dempster, pages<br />

176–223, Cambridge University Press, Cambridge<br />

Hull J and A White, 1987<br />

The option pricing on ass<strong>et</strong>s with stochastic vol<strong>at</strong>ilities<br />

Journal of Finance 42, pages 281–300<br />

Hult H and F Lindskog, 2002<br />

Multivari<strong>at</strong>e extremes, aggreg<strong>at</strong>ion and <strong>de</strong>pen<strong>de</strong>nce in elliptical distributions<br />

Forthcoming in Advances in Applied Probability 34(3)<br />

Ledford A and J Tawn, 1998<br />

Concomitant tail behaviour for extremes<br />

Advances in Applied Probability 30, pages 197–215<br />

REFERENCES<br />

Appendix: empirical estim<strong>at</strong>ion of the<br />

coefficient of tail <strong>de</strong>pen<strong>de</strong>nce<br />

We show how to estim<strong>at</strong>e the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce<br />

b<strong>et</strong>ween an ass<strong>et</strong> X and the mark<strong>et</strong> factor Y rel<strong>at</strong>ed by the rel<strong>at</strong>ion<br />

(6) where ε is an idiosyncr<strong>at</strong>ic noise uncorrel<strong>at</strong>ed with X.<br />

Given a sample of N realis<strong>at</strong>ions {X 1 , X 2 , ... , X N } and<br />

{Y 1 , Y 2 , ... , Y N } of X and Y, we first estim<strong>at</strong>e the coefficient β using<br />

the ordinary least square estim<strong>at</strong>or. L<strong>et</strong> β ^ <strong>de</strong>note its estim<strong>at</strong>e. Then,<br />

using Hill’s estim<strong>at</strong>or, we obtain the tail in<strong>de</strong>x ν^ of the factor Y:<br />

⎡ k 1<br />

ˆ = ⎢ ∑ logY −logY<br />

⎣⎢<br />

k j=<br />

1<br />

νk j, N k, N<br />

where Y 1, N ≥ Y 2, N ≥ ... ≥ Y N, N are the or<strong>de</strong>r st<strong>at</strong>istics of the N realis<strong>at</strong>ions<br />

of Y. The constant l is non-param<strong>et</strong>rically estim<strong>at</strong>ed with<br />

the formula:<br />

FXu X<br />

l = lim ≃<br />

u→1<br />

−1<br />

F u Y<br />

for k = o(N), which means th<strong>at</strong> k must remain very small with<br />

respect to N but large enough to ensure an accur<strong>at</strong>e d<strong>et</strong>ermin<strong>at</strong>ion<br />

of l. Figure 2 presents l ^ as a function of k/N.<br />

Finally, using equ<strong>at</strong>ion (7), the estim<strong>at</strong>ed λ ^ is:<br />

ˆ<br />

max , ˆ<br />

+ 1<br />

λ =<br />

νˆ<br />

{ 1<br />

βˆ<br />

} l<br />

Sorn<strong>et</strong>te is a CNRS research director <strong>at</strong> the University of Nice-Sophia<br />

Antipolis and professor of geophysics <strong>at</strong> the University of California <strong>at</strong><br />

Los Angeles. They acknowledge helpful discussions with Jean-Paul<br />

Laurent. This work was partially supported by the James S McDonnell<br />

Found<strong>at</strong>ion twenty-first century scientist award/studying complex<br />

system. e-mail: Yannick.Malevergne@unice.fr and sorn<strong>et</strong>te@unice.fr<br />

Malevergne Y and D Sorn<strong>et</strong>te, 2002a<br />

Investig<strong>at</strong>ing extreme <strong>de</strong>pen<strong>de</strong>nces: concepts and tools<br />

Working paper, available <strong>at</strong> http://papers.ssrn.com/sol3/papers.cfm?abstract_id =<br />

303465<br />

Malevergne Y and D Sorn<strong>et</strong>te, 2002b<br />

Tail <strong>de</strong>pen<strong>de</strong>nce of factor mo<strong>de</strong>ls<br />

Working paper, available <strong>at</strong> http://papers.ssrn.com/sol3/papers.cfm?abstract_id =<br />

301266<br />

Man<strong>de</strong>lbrot B, 1997<br />

Fractals and scaling in finance: discontinuity, concentr<strong>at</strong>ion<br />

Springer-Verlag, New York<br />

Nelsen R, 1998<br />

An introduction to copulas<br />

Lectures Notes in St<strong>at</strong>istics 139, Springer Verlag, New York<br />

Ross S, 1976<br />

The arbitrage theory of capital ass<strong>et</strong> pricing<br />

Journal of Economic Theory 17, pages 254–286<br />

Rubinstein M, 1973<br />

The fundamental theorem of param<strong>et</strong>er-preference security valu<strong>at</strong>ion<br />

Journal of Financial and Quantit<strong>at</strong>ive Analysis 8, pages 61–69<br />

Sharpe W, 1964<br />

Capital ass<strong>et</strong> pricing: a theory of mark<strong>et</strong> equilibrium un<strong>de</strong>r conditions of risk<br />

Journal of Finance 19, pages 425–442<br />

Taylor S, 1994<br />

Mo<strong>de</strong>ling stochastic vol<strong>at</strong>ility<br />

M<strong>at</strong>hem<strong>at</strong>ical Finance 4, pages 183–204<br />

−1<br />

Y<br />

( )<br />

( )<br />

kN ,<br />

kN ,<br />

⎤<br />

⎥<br />

⎦⎥<br />

WWW.RISK.NET ● NOVEMBER 2002 RISK 133


Chapitre 13<br />

Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong><br />

capital économique : l’exemple <strong>de</strong> la<br />

Value-<strong>at</strong>-Risk <strong>et</strong> <strong>de</strong> l’Expected-Shortfall<br />

A l’ai<strong>de</strong> d’une famille <strong>de</strong> distributions <strong>de</strong> Weibull modifiées, englobant à la fois <strong>de</strong>s distributions super<br />

<strong>et</strong> sous-exponentielles (dont l’interêt a été souligné au chapitre 3), nous paramétrons les distributions<br />

<strong>de</strong> ren<strong>de</strong>ments <strong>de</strong>s actifs financiers. L’hypothèse <strong>de</strong> copule gaussienne est utilisée pour modéliser la<br />

dépendance entre les actifs. Cela nous perm<strong>et</strong> d’obtenir les expressions analytiques <strong>de</strong>s queues <strong>de</strong> la<br />

distribution P (S) du ren<strong>de</strong>ment S d’un <strong>portefeuille</strong> composé <strong>de</strong> tels actifs. Nous montrons que les queues<br />

<strong>de</strong> la distribution P (S) <strong>de</strong>meurent asymptotiquement <strong>de</strong>s distributions <strong>de</strong> Weibull modifiées avec un<br />

facteur d’échelle χ fonction du poids <strong>de</strong>s actifs dans le <strong>portefeuille</strong> <strong>et</strong> dont l’expression différe selon<br />

le comportement super ou sous-exponentiel <strong>de</strong>s actifs. Nos traitons alors en détails le problème <strong>de</strong> la<br />

minimis<strong>at</strong>ion du risque pour <strong>de</strong> tels <strong>portefeuille</strong>s, les mesures <strong>de</strong> risque considérées étant la Value-<strong>at</strong>-<br />

Risk <strong>et</strong> l’Expected-Shortfall, que nous montrons être asymptotiquement équivalentes dans le cadre <strong>de</strong> la<br />

représentaion adoptée.<br />

387


388 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique


VaR-Efficient Portfolios for a Class of Super- and<br />

Sub-Exponentially Decaying Ass<strong>et</strong>s R<strong>et</strong>urn Distributions<br />

Y. Malevergne 1,2 and D. Sorn<strong>et</strong>te 1,3<br />

1 Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>ière Con<strong>de</strong>nsée CNRS UMR 6622<br />

Université <strong>de</strong> Nice-Sophia Antipolis, 06108 Nice Ce<strong>de</strong>x 2, France<br />

2 Institut <strong>de</strong> Science Financière <strong>et</strong> d’Assurances - Université Lyon I<br />

43, Bd du 11 Novembre 1918, 69622 Villeurbanne Ce<strong>de</strong>x<br />

3 Institute of Geophysics and Plan<strong>et</strong>ary Physics and Department of Earth and Space Science<br />

University of California, Los Angeles, California 90095, USA<br />

email: Yannick.Malevergne@unice.fr and sorn<strong>et</strong>te@unice.fr<br />

fax: (33) 4 92 07 67 54<br />

Abstract<br />

Using a family of modified Weibull distributions, encompassing both sub-exponentials and super-exponentials,<br />

to param<strong>et</strong>erize the marginal distributions of ass<strong>et</strong> r<strong>et</strong>urns and their multivari<strong>at</strong>e generaliz<strong>at</strong>ions<br />

with Gaussian copulas, we offer exact formulas for the tails of the distribution P (S) of r<strong>et</strong>urns S of a<br />

portfolio of arbitrary composition of these ass<strong>et</strong>s. We find th<strong>at</strong> the tail of P (S) is also asymptotically<br />

a modified Weibull distribution with a characteristic scale χ function of the ass<strong>et</strong> weights with different<br />

functional forms <strong>de</strong>pending on the super- or sub-exponential behavior of the marginals and on the<br />

strength of the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the ass<strong>et</strong>s. We then tre<strong>at</strong> in d<strong>et</strong>ails the problem of risk minimiz<strong>at</strong>ion<br />

using the Value-<strong>at</strong>-Risk and Expected-Shortfall which are shown to be (asymptotically) equivalent in this<br />

framework.<br />

Introduction<br />

In recent years, the Value-<strong>at</strong>-Risk has become one of the most popular risk assessment tool (Duffie and<br />

Pan 1997, Jorion 1997). The inf<strong>at</strong>u<strong>at</strong>ion for this particular risk measure probably comes from a vari<strong>et</strong>y of<br />

factors, the most prominent ones being its conceptual simplicity and relevance in addressing the ubiquitous<br />

large risks often ina<strong>de</strong>qu<strong>at</strong>ely accounted for by the standard vol<strong>at</strong>ility, and from its prominent role in the<br />

recommend<strong>at</strong>ions of the intern<strong>at</strong>ional banking authorities (Basle Commitee on Banking Supervision 1996,<br />

2001). Moreover, down-si<strong>de</strong> risk measures such as the Value-<strong>at</strong>-risk seem more in accordance with observed<br />

behavior of economic agents. For instance, according to prospect theory (Kahneman and Tversky 1979), the<br />

perception of downward mark<strong>et</strong> movements is not the same as upward movements. This may be reflected<br />

in the so-called leverage effect, first discussed by (Black 1976), who observed th<strong>at</strong> the vol<strong>at</strong>ility of a stock<br />

tends to increase when its price drops (see (Fouque <strong>et</strong> al. 2000, Campbell, Lo and McKinley 1997, Bekaert<br />

and Wu 2000, Bouchaud <strong>et</strong> al. 2001) for reviews and recent works). Thus, it should be more n<strong>at</strong>ural to<br />

consi<strong>de</strong>r down-si<strong>de</strong> risk measures like the VaR than the variance traditionally used in portfolio management<br />

(Markowitz 1959) which does not differenti<strong>at</strong>e b<strong>et</strong>ween positive and neg<strong>at</strong>ive change in future wealth.<br />

1<br />

389


390 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

However, the choice of the Value-<strong>at</strong>-Risk has recently been criticized (Szergö 1999, Danielsson <strong>et</strong> al. 2001)<br />

due to its lack of coherence in the sense of Artzner <strong>et</strong> al. (1999), among other reasons. This <strong>de</strong>ficiency<br />

leads to several theor<strong>et</strong>ical and practical problems. In<strong>de</strong>ed, other than the class of elliptical distributions,<br />

the VaR is not sub-additive (Embrechts <strong>et</strong> al. 2002a), and may lead to inefficient risk diversific<strong>at</strong>ion policies<br />

and to severe problems in the practical implement<strong>at</strong>ion of portfolio optimiz<strong>at</strong>ion algorithms (see (Chabaane<br />

<strong>et</strong> al. 2002) for a discussion). Altern<strong>at</strong>ive have been proposed in terms of Conditional-VaR or Expected-<br />

Shortfall (Artzner <strong>et</strong> al. 1999, Acerbi and Tasche 2002, for instance), which enjoy the property of subadditivity.<br />

This ensures th<strong>at</strong> they yield coherent portfolio alloc<strong>at</strong>ions which can be obtained by the simple<br />

linear optimiz<strong>at</strong>ion algorithm proposed by Rockafellar and Uryasev (2000).<br />

From a practical standpoint, the estim<strong>at</strong>ion of the VaR of a portfolio is a strenuous task, requiring large comput<strong>at</strong>ional<br />

time leading som<strong>et</strong>imes to disappointing results lacking accuracy and stability. As a consequence,<br />

many approxim<strong>at</strong>ion m<strong>et</strong>hods have been proposed (Tasche and Tilib<strong>et</strong>ti 2001, Embrechts <strong>et</strong> al. 2002b, for<br />

instance). Empirical mo<strong>de</strong>ls constitute another wi<strong>de</strong>ly used approach, since they provi<strong>de</strong> a good tra<strong>de</strong>-off<br />

b<strong>et</strong>ween speed and accuracy.<br />

From a general point of view, the param<strong>et</strong>ric d<strong>et</strong>ermin<strong>at</strong>ion of the risks and r<strong>et</strong>urns associ<strong>at</strong>ed with a given<br />

portfolio constituted of N ass<strong>et</strong>s is compl<strong>et</strong>ely embed<strong>de</strong>d in the knowledge of their multivari<strong>at</strong>e distribution<br />

of r<strong>et</strong>urns. In<strong>de</strong>ed, the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween random variables is compl<strong>et</strong>ely <strong>de</strong>scribed by their joint<br />

distribution. This remark entails the two major problems of portfolio theory: 1) the d<strong>et</strong>ermin<strong>at</strong>ion of the<br />

multivari<strong>at</strong>e distribution function of ass<strong>et</strong> r<strong>et</strong>urns; 2) the <strong>de</strong>riv<strong>at</strong>ion from it of a useful measure of portfolio<br />

risks, in the goal of analyzing and optimizing portfolios. These objective can be easily reached if one can<br />

<strong>de</strong>rive an analytical expression of the portfolio r<strong>et</strong>urns distribution from the multivari<strong>at</strong>e distribution of ass<strong>et</strong><br />

r<strong>et</strong>urns.<br />

In the standard Gaussian framework, the multivari<strong>at</strong>e distribution takes the form of an exponential of minus<br />

a quadr<strong>at</strong>ic form X ′ Ω −1 X, where X is the uni-column of ass<strong>et</strong> r<strong>et</strong>urns and Ω is their covariance m<strong>at</strong>rix.<br />

The beauty and simplicity of the Gaussian case is th<strong>at</strong> the essentially impossible task of d<strong>et</strong>ermining a<br />

large multidimensional function is collapsed onto the very much simpler one of calcul<strong>at</strong>ing the N(N +<br />

1)/2 elements of the symm<strong>et</strong>ric covariance m<strong>at</strong>rix. And, by the st<strong>at</strong>ibility of the Gaussian distribution,<br />

the risk is then uniquely and compl<strong>et</strong>ely embodied by the variance of the portfolio r<strong>et</strong>urn, which is easily<br />

d<strong>et</strong>ermined from the covariance m<strong>at</strong>rix. This is the basis of Markowitz (1959)’s portfolio theory and of the<br />

CAPM (Sharpe 1964, Lintner 1965, Mossin 1966). The same phenomenon occurs in the stable Par<strong>et</strong>ian<br />

portfolio analysis <strong>de</strong>rived by (Fama 1965) and generalized to separ<strong>at</strong>e positive and neg<strong>at</strong>ive power law tails<br />

(Bouchaud <strong>et</strong> al. 1998). The stability of the distribution of r<strong>et</strong>urns is essentiel to bypass the difficult problem<br />

of d<strong>et</strong>ermining the <strong>de</strong>cision rules (utility function) of the economic agents since all the risk measures are<br />

equivalent to a single param<strong>et</strong>er (the variance in the case of a Gaussian universe).<br />

However, it is well-known th<strong>at</strong> the empirical distributions of r<strong>et</strong>urns are neither Gaussian nor Lévy Stable<br />

(Lux 1996, Gopikrishnan <strong>et</strong> al. 1998, Gouriéroux and Jasiak 1998) and the <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween ass<strong>et</strong>s are<br />

only imperfectly accounted for by the covariance m<strong>at</strong>rix (Litterman and Winkelmann 1998). It is thus <strong>de</strong>sirable<br />

to find altern<strong>at</strong>ive param<strong>et</strong>eriz<strong>at</strong>ions of multivari<strong>at</strong>e distributions of r<strong>et</strong>urns which provi<strong>de</strong> reasonably<br />

good approxim<strong>at</strong>ions of the ass<strong>et</strong> r<strong>et</strong>urns distribution and which enjoy asymptotic stability properties in the<br />

tails so as to be relevant for the VaR.<br />

To this aim, section 1 presents a specific param<strong>et</strong>eriz<strong>at</strong>ion of the marginal distributions in terms of so-called<br />

modified Weibull distributions introduced by Sorn<strong>et</strong>te <strong>et</strong> al. (2000b), which are essentially exponential of<br />

minus a power law. This family of distributions contains both sub-exponential and super-exponentials,<br />

including the Gaussian law as a special case. It is shown th<strong>at</strong> this param<strong>et</strong>eriz<strong>at</strong>ion is relevant for mo<strong>de</strong>ling<br />

the distribution of ass<strong>et</strong> r<strong>et</strong>urns in both an unconditional and a conditional framework. The <strong>de</strong>pen<strong>de</strong>nce<br />

structure b<strong>et</strong>ween the ass<strong>et</strong> is <strong>de</strong>scribed by a Gaussian copula which allows us to <strong>de</strong>scribe several <strong>de</strong>grees of<br />

2


<strong>de</strong>pen<strong>de</strong>nce: from in<strong>de</strong>pen<strong>de</strong>nce to comonotonicity. The relevance of the Gaussian copula has been put in<br />

light by several recent studies (Sorn<strong>et</strong>te <strong>et</strong> al. 2000a, Sorn<strong>et</strong>te <strong>et</strong> al. 2000b, Malevergne and Sorn<strong>et</strong>te 2001,<br />

Malevergne and Sorn<strong>et</strong>te 2002c).<br />

In section 2, we use the multivari<strong>at</strong>e construction based on (i) the modified Weibull marginal distributions<br />

and (ii) the Gaussian copula to <strong>de</strong>rive the asymptotic analytical form of the tail of the distribution of r<strong>et</strong>urns<br />

of a portfolio composed of an arbitrary combin<strong>at</strong>ion of these ass<strong>et</strong>s. In the case where individual ass<strong>et</strong><br />

r<strong>et</strong>urns have modified-Weibull distributions, we show th<strong>at</strong> the tail of the distribution of portfolio r<strong>et</strong>urns S<br />

is asymptotically of the same form but with a characteristic scale χ function of the ass<strong>et</strong> weights taking<br />

different functional forms <strong>de</strong>pending on the super- or sub-exponential behavior of the marginals and on the<br />

strength of the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the ass<strong>et</strong>s. Thus, this particular class of modified-Weibull distributions<br />

enjoys (asymptotically) the same stability properties as the Gaussian or Lévy distributions. The <strong>de</strong>pen<strong>de</strong>nce<br />

properties are shown to be embodied in the N(N + 1)/2 elements of a non-linear covariance m<strong>at</strong>rix and the<br />

individual risk of each ass<strong>et</strong>s are quantified by the sub- or super-exponential behavior of the marginals.<br />

Section 3 then uses this non-Gaussian nonlinear <strong>de</strong>pen<strong>de</strong>nce framework to estim<strong>at</strong>e the Value-<strong>at</strong>-Risk (VaR)<br />

and the Expected-Shortfall. As in the Gaussian framework, the VaR and the Expected-Shortfall are (asymptotically)<br />

controlled only by the non-linear covariance m<strong>at</strong>rix, leading to their equivalence. More generally,<br />

any risk measure based on the (sufficiently far) tail of the distribution of the portfolio r<strong>et</strong>urns are equivalent<br />

since they can be expressed as a function of the non-linear covariance m<strong>at</strong>rix and the weights of the ass<strong>et</strong>s<br />

only.<br />

Section 4 uses this s<strong>et</strong> of results to offer an approach to portfolio optimiz<strong>at</strong>ion based on the asymptotic<br />

form of the tail of the distribution of portfolio r<strong>et</strong>urns. When possible, we give the analytical formulas of<br />

the explicit composition of the optimal portfolio or suggest the use of reliable algorithms when numerical<br />

calcul<strong>at</strong>ion is nee<strong>de</strong>d.<br />

Section 5 conclu<strong>de</strong>s.<br />

Before proceeding with the present<strong>at</strong>ion of our results, we s<strong>et</strong> the not<strong>at</strong>ions to <strong>de</strong>rive the basic problem<br />

addressed in this paper, namely to study the distribution of the sum of weighted random variables with given<br />

marginal distributions and <strong>de</strong>pen<strong>de</strong>nce. Consi<strong>de</strong>r a portfolio with ni shares of ass<strong>et</strong> i of price pi(0) <strong>at</strong> time<br />

t = 0 whose initial wealth is<br />

N<br />

W (0) = nipi(0) . (1)<br />

A time τ l<strong>at</strong>er, the wealth has become W (τ) = N<br />

i=1 nipi(τ) and the wealth vari<strong>at</strong>ion is<br />

where<br />

δτ W ≡ W (τ) − W (0) =<br />

N<br />

i=1<br />

wi =<br />

i=1<br />

nipi(0) pi(τ) − pi(0)<br />

pi(0)<br />

nipi(0)<br />

N<br />

j=1 njpj(0)<br />

= W (0)<br />

391<br />

N<br />

wixi(t, τ), (2)<br />

is the fraction in capital invested in the ith ass<strong>et</strong> <strong>at</strong> time 0 and the r<strong>et</strong>urn xi(t, τ) b<strong>et</strong>ween time t − τ and t of<br />

ass<strong>et</strong> i is <strong>de</strong>fined as:<br />

xi(t, τ) = pi(t) − pi(t − τ)<br />

.<br />

pi(t − τ)<br />

(4)<br />

Using the <strong>de</strong>finition (4), this justifies us to write the r<strong>et</strong>urn Sτ of the portfolio over a time interval τ as the<br />

3<br />

i=1<br />

(3)


392 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

weighted sum of the r<strong>et</strong>urns ri(τ) of the ass<strong>et</strong>s i = 1, ..., N over the time interval τ<br />

Sτ = δτ W<br />

W (0) =<br />

N<br />

wi xi(τ) . (5)<br />

In the sequel, we shall thus consi<strong>de</strong>r the ass<strong>et</strong> r<strong>et</strong>urns Xi as the fundamental variables and study their<br />

aggreg<strong>at</strong>ion properties, namely how the distribution of portfolio r<strong>et</strong>urn equal to their weighted sum <strong>de</strong>rives<br />

for their multivariable distribution. We shall consi<strong>de</strong>r a single time scale τ which can be chosen arbitrarily,<br />

say equal to one day. We shall thus drop the <strong>de</strong>pen<strong>de</strong>nce on τ, un<strong>de</strong>rstanding implicitly th<strong>at</strong> all our results<br />

hold for r<strong>et</strong>urns estim<strong>at</strong>ed over time step τ.<br />

1 Definitions and important concepts<br />

1.1 The modified Weibull distributions<br />

We will consi<strong>de</strong>r a class of distributions with f<strong>at</strong> tails but <strong>de</strong>caying faster than any power law. Such possible<br />

behavior for ass<strong>et</strong>s r<strong>et</strong>urns distributions have been suggested to be relevant by several empirical works<br />

(Mantegna and Stanley 1995, Gouriéroux and Jasiak 1998, Malevergne <strong>et</strong> al. 2002) and has also been asserted<br />

to provi<strong>de</strong> a convenient and flexible param<strong>et</strong>eriz<strong>at</strong>ion of many phenomena found in n<strong>at</strong>ure and in<br />

the social sciences (Lahèrre and Sorn<strong>et</strong>te 1998). In all the following, we will use the param<strong>et</strong>eriz<strong>at</strong>ion<br />

introduced by Sorn<strong>et</strong>te <strong>et</strong> al. (2000b) and <strong>de</strong>fine the modified-Weibull distributions:<br />

DEFINITION 1 (MODIFIED WEIBULL DISTRIBUTION)<br />

A random variable X will be said to follow a modified Weibull distribution with exponent c and scale<br />

param<strong>et</strong>er χ, <strong>de</strong>noted in the sequel X ∼ W(c, χ), if and only if the random variable<br />

follows a Normal distribution.<br />

i=1<br />

Y = sgn(X) √ 2<br />

c<br />

|X| 2<br />

χ<br />

These so-called modified-Weibull distributions can be seen to be general forms of the extreme tails of product<br />

of random variables (Frisch and Sorn<strong>et</strong>te 1997), and using the theorem of change of variable, we can<br />

assert th<strong>at</strong> the <strong>de</strong>nsity of such distributions is<br />

where c and χ are the two key param<strong>et</strong>ers.<br />

p(x) = 1<br />

2 √ c<br />

π χ c |x|<br />

2<br />

c<br />

2 −1 e −|x|<br />

χc<br />

, (7)<br />

These expressions are close to the Weibull distribution, with the addition of a power law prefactor to the<br />

exponential such th<strong>at</strong> the Gaussian law is r<strong>et</strong>rieved for c = 2. Following Sorn<strong>et</strong>te <strong>et</strong> al. (2000b), Sorn<strong>et</strong>te<br />

<strong>et</strong> al. (2000a) and An<strong>de</strong>rsen and Sorn<strong>et</strong>te (2001), we call (7) the modified Weibull distribution. For c < 1,<br />

the pdf is a str<strong>et</strong>ched exponential, which belongs to the class of sub-exponential. The exponent c d<strong>et</strong>ermines<br />

the shape of the distribution, f<strong>at</strong>ter than an exponential if c < 1. The param<strong>et</strong>er χ controls the scale or<br />

characteristic width of the distribution. It plays a role analogous to the standard <strong>de</strong>vi<strong>at</strong>ion of the Gaussian<br />

law.<br />

The interest of these family of distributions for financial purposes have also been recently un<strong>de</strong>rlined by<br />

Brummelhuis and Guégan (2000) and Brummelhuis <strong>et</strong> al. (2002). In<strong>de</strong>ed these authors have shown th<strong>at</strong><br />

4<br />

(6)


given a series of r<strong>et</strong>urn {rt}t following a GARCH(1,1) process, the large <strong>de</strong>vi<strong>at</strong>ions of the r<strong>et</strong>urns rt+k<br />

and of the aggreg<strong>at</strong>ed r<strong>et</strong>urns rt + · · · + rt+k conditional on the r<strong>et</strong>urn <strong>at</strong> time t are distributed according<br />

to a modified-Weibull distribution, where the exponent c is rel<strong>at</strong>ed to the number of step forward k by the<br />

formula c = 2/k .<br />

A more general param<strong>et</strong>eriz<strong>at</strong>ion taking into account a possible asymm<strong>et</strong>ry b<strong>et</strong>ween neg<strong>at</strong>ive and positive<br />

values (thus leading to possible non-zero mean) is<br />

p(x) =<br />

p(x) =<br />

1<br />

2 √ π<br />

1<br />

2 √ π<br />

c+<br />

c +<br />

2<br />

+<br />

χ<br />

c−<br />

c− 2<br />

−<br />

χ<br />

|x| c +<br />

2 −1 e −|x| +<br />

χ +c<br />

|x| c− 2 −1 e −|x| −<br />

χ−c 393<br />

if x ≥ 0 (8)<br />

if x < 0 . (9)<br />

In wh<strong>at</strong> follows, we will assume th<strong>at</strong> the marginal probability distributions of r<strong>et</strong>urns follow modified<br />

Weibull distributions. Figure 1 shows the (neg<strong>at</strong>ive) “Gaussianized” r<strong>et</strong>urns Y <strong>de</strong>fined in (6) of the Standard<br />

and Poor’s 500 in<strong>de</strong>x versus the raw r<strong>et</strong>urns X over the time interval from January 03, 1995 to December<br />

29, 2000. With such a represent<strong>at</strong>ion, the modified-Weibull distributions are qualified by a power law of<br />

exponent c/2, by <strong>de</strong>finition 1. The double logarithmic scales of figure 1 clearly shows a straight line over an<br />

exten<strong>de</strong>d range of d<strong>at</strong>a, qualifying a power law rel<strong>at</strong>ionship. An accur<strong>at</strong>e d<strong>et</strong>ermin<strong>at</strong>ion of the param<strong>et</strong>ers<br />

(χ, c) can be performed by maximum likelihood estim<strong>at</strong>ion (Sorn<strong>et</strong>te 2000, pp 160-162). However, note<br />

th<strong>at</strong>, in the tail, the six most extreme points significantly <strong>de</strong>vi<strong>at</strong>e from the modified-Weibull <strong>de</strong>scription.<br />

Such an anomalous behavior of the most extreme r<strong>et</strong>urns can be probably be associ<strong>at</strong>ed with the notion<br />

of “outliers” introduced by Johansen and Sorn<strong>et</strong>te (1998, 2002) and associ<strong>at</strong>ed with behavioral and crowd<br />

phenomena during turbulent mark<strong>et</strong> phases.<br />

The modified Weibull distributions <strong>de</strong>fined here are of interest for financial purposes and specifically for<br />

portfolio and risk management, since they offer a flexible param<strong>et</strong>ric represent<strong>at</strong>ion of ass<strong>et</strong> r<strong>et</strong>urns distribution<br />

either in a conditional or an unconditional framework, <strong>de</strong>pending on the standpoint prefered by<br />

manager. The rest of the paper uses this family of distributions.<br />

1.2 Tail equivalence for distribution functions<br />

An interesting fe<strong>at</strong>ure of the modified Weibull distributions, as we will see in the next section, is to enjoy the<br />

property of asymptotic stability. Asymptotic stability means th<strong>at</strong>, in the regime of large <strong>de</strong>vi<strong>at</strong>ions, a sum<br />

of in<strong>de</strong>pen<strong>de</strong>nt and i<strong>de</strong>ntically distributed modified Weibull variables follows the same modified Weibull<br />

distribution, up to a rescaling.<br />

DEFINITION 2 (TAIL EQUIVALENCE)<br />

L<strong>et</strong> X and Y be two random variables with distribution function F and G respectively.<br />

X and Y are said to be equivalent in the upper tail if and only if there exists λ+ ∈ (0, ∞) such th<strong>at</strong><br />

1 − F (x)<br />

lim<br />

x→+∞ 1 − G(x) = λ+. (10)<br />

Similarly, X and Y are said equivalent in the lower tail if and only if there exists λ− ∈ (0, ∞) such th<strong>at</strong><br />

<br />

F (x)<br />

lim<br />

x→−∞ G(x) = λ−. (11)<br />

5


394 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

Applying l’Hospital’s rule, this gives immedi<strong>at</strong>ely the following corollary:<br />

COROLLARY 1<br />

L<strong>et</strong> X and Y be two random variables with <strong>de</strong>nsities functions f and g respectively. X and Y are equivalent<br />

in the upper (lower) tail if and only if<br />

<br />

1.3 The Gaussian copula<br />

f(x)<br />

lim<br />

x→±∞ g(x) = λ±, λ± ∈ (0, ∞). (12)<br />

We recall only the basic properties about copulas and refer the interested rea<strong>de</strong>r to (Nelsen 1998), for instance,<br />

for more inform<strong>at</strong>ion. L<strong>et</strong> us first give the <strong>de</strong>finition of a copula of n random variables.<br />

DEFINITION 3 (COPULA)<br />

A function C : [0, 1] n −→ [0, 1] is a n-copula if it enjoys the following properties :<br />

• ∀u ∈ [0, 1], C(1, · · · , 1, u, 1 · · · , 1) = u ,<br />

• ∀ui ∈ [0, 1], C(u1, · · · , un) = 0 if <strong>at</strong> least one of the ui equals zero ,<br />

• C is groun<strong>de</strong>d and n-increasing, i.e., the C-volume of every boxes whose vertices lie in [0, 1] n is<br />

positive. <br />

The fact th<strong>at</strong> such copulas can be very useful for representing multivari<strong>at</strong>e distributions with arbitrary<br />

marginals is seen from the following result.<br />

THEOREM 1 (SKLAR’S THEOREM)<br />

Given an n-dimensional distribution function F with continuous marginal distributions F1, · · · , Fn, there<br />

exists a unique n-copula C : [0, 1] n −→ [0, 1] such th<strong>at</strong> :<br />

<br />

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)) . (13)<br />

This theorem provi<strong>de</strong>s both a param<strong>et</strong>eriz<strong>at</strong>ion of multivari<strong>at</strong>e distributions and a construction scheme for<br />

copulas. In<strong>de</strong>ed, given a multivari<strong>at</strong>e distribution F with margins F1, · · · , Fn, the function<br />

C(u1, · · · , un) = F F −1<br />

1 (u1), · · · , F −1<br />

n (un) <br />

(14)<br />

is autom<strong>at</strong>ically a n-copula. Applying this theorem to the multivari<strong>at</strong>e Gaussian distribution, we can <strong>de</strong>rive<br />

the so-called Gaussian copula.<br />

DEFINITION 4 (GAUSSIAN COPULA)<br />

L<strong>et</strong> Φ <strong>de</strong>note the standard Normal distribution and ΦV,n the n-dimensional Gaussian distribution with cor-<br />

rel<strong>at</strong>ion m<strong>at</strong>rix V. Then, the Gaussian n-copula with correl<strong>at</strong>ion m<strong>at</strong>rix V is<br />

−1<br />

CV (u1, · · · , un) = ΦV,n Φ (u1), · · · , Φ −1 (un) , (15)<br />

whose <strong>de</strong>nsity<br />

cV (u1, · · · , un) = ∂CV (u1, · · · , un)<br />

∂u1 · · · ∂un<br />

6<br />

(16)


eads<br />

cV (u1, · · · , un) =<br />

<br />

1<br />

√ exp −<br />

d<strong>et</strong> V 1<br />

2 yt (u) (V−1 <br />

− Id)y (u)<br />

with yk(u) = Φ −1 (uk). Note th<strong>at</strong> theorem 1 and equ<strong>at</strong>ion (14) ensure th<strong>at</strong> CV (u1, · · · , un) in equ<strong>at</strong>ion (15)<br />

is a copula. <br />

It can be shown th<strong>at</strong> the Gaussian copula n<strong>at</strong>urally arises when one tries to d<strong>et</strong>ermine the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween<br />

random variables using the principle of entropy maximiz<strong>at</strong>ion (Rao 1973, Sorn<strong>et</strong>te <strong>et</strong> al. 2000b, for<br />

instance). Its pertinence and limit<strong>at</strong>ions for mo<strong>de</strong>ling the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s r<strong>et</strong>urns has been tested<br />

by Malevergne and Sorn<strong>et</strong>te (2001), who show th<strong>at</strong> in most cases, this <strong>de</strong>scription of the <strong>de</strong>pen<strong>de</strong>nce can<br />

be consi<strong>de</strong>red s<strong>at</strong>isfying, specially for stocks, provi<strong>de</strong>d th<strong>at</strong> one does not consi<strong>de</strong>r too extreme realiz<strong>at</strong>ions<br />

(Malevergne and Sorn<strong>et</strong>te 2002a, Malevergne and Sorn<strong>et</strong>te 2002b, Mashal and Zeevi 2002).<br />

2 Portfolio wealth distribution for several <strong>de</strong>pen<strong>de</strong>nce structures<br />

2.1 Portfolio wealth distribution for in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s<br />

L<strong>et</strong> us first consi<strong>de</strong>r the case of a portfolio ma<strong>de</strong> of in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s. This limiting (and unrealistic) case<br />

is a m<strong>at</strong>hem<strong>at</strong>ical i<strong>de</strong>aliz<strong>at</strong>ion which provi<strong>de</strong>s a first n<strong>at</strong>ural benchmark of the class of portolio r<strong>et</strong>urn distributions<br />

to be expected. Moreover, it is generally the only case for which the calcul<strong>at</strong>ions are analytically<br />

tractable. For such in<strong>de</strong>pen<strong>de</strong>pent ass<strong>et</strong>s distributed with the modified Weibull distributions, the following<br />

results prove the asymptotic stability of this s<strong>et</strong> of distributions:<br />

THEOREM 2 (TAIL EQUIVALENCE FOR I.I.D MODIFIED WEIBULL RANDOM VARIABLES)<br />

L<strong>et</strong> X1, X2, · · · , XN be N in<strong>de</strong>pen<strong>de</strong>nt and i<strong>de</strong>ntically W(c, χ)-distributed random variables. Then, the<br />

variable<br />

SN = X1 + X2 + · · · + XN<br />

(18)<br />

is equivalent in the lower and upper tail to Z ∼ W(c, ˆχ), with<br />

<br />

395<br />

(17)<br />

ˆχ = N c−1<br />

c χ, c > 1, (19)<br />

ˆχ = χ, c ≤ 1. (20)<br />

This theorem is a direct consequence of the theorem st<strong>at</strong>ed below and is based on the result given by Frisch<br />

and Sorn<strong>et</strong>te (1997) for c > 1 and on general properties of sub-exponential distributions when c ≤ 1.<br />

THEOREM 3 (TAIL EQUIVALENCE FOR WEIGHTED SUMS OF INDEPENDENT VARIABLES)<br />

L<strong>et</strong> X1, X2, · · · , XN be N in<strong>de</strong>pen<strong>de</strong>nt and i<strong>de</strong>ntically W(c, χ)-distributed random variables. L<strong>et</strong> w1,<br />

w2, · · · , wN be N non-random real coefficients. Then, the variable<br />

SN = w1X1 + w2X2 + · · · + wNXN<br />

is equivalent in the upper and the lower tail to Z ∼ W(c, ˆχ) with<br />

ˆχ =<br />

<br />

N<br />

|wi| c<br />

<br />

c−1<br />

c−1<br />

c<br />

· χ, c > 1, (22)<br />

<br />

i=1<br />

(21)<br />

ˆχ = max<br />

i {|w1|, |w2|, · · · , |wN|}, c ≤ 1. (23)<br />

7


396 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

The proof of this theorem is given in appendix A.<br />

COROLLARY 2<br />

L<strong>et</strong> X1, X2, · · · , XN be N in<strong>de</strong>pen<strong>de</strong>nt random variables such th<strong>at</strong> Xi ∼ W(c, χi). L<strong>et</strong> w1, w2, · · · , wN<br />

be N non-random real coefficients. Then, the variable<br />

SN = w1X1 + w2X2 + · · · + wNXN<br />

is equivalent in the upper and the lower tail to Z ∼ W(c, ˆχ) with<br />

<br />

ˆχ =<br />

N<br />

i=1<br />

|wiχi| c<br />

<br />

c−1<br />

c−1<br />

c<br />

(24)<br />

, c > 1, (25)<br />

ˆχ = max<br />

i {|w1χ1|, |w2χ2|, · · · , |wNχN|}, c ≤ 1. (26)<br />

The proof of the corollary is a straightforward applic<strong>at</strong>ion of theorem 3. In<strong>de</strong>ed, l<strong>et</strong> Y1, Y2, · · · , YN be N<br />

in<strong>de</strong>pen<strong>de</strong>nt and i<strong>de</strong>ntically W(c, 1)-distributed random variables. Then,<br />

which yields<br />

(X1, X2, · · · , XN) d = (χ1Y1, χ2Y2, · · · , χNYN), (27)<br />

SN d = w1χ1 · Y1 + w2χ2 · Y2 + · · · + wNχN · YN . (28)<br />

Thus, applying theorem 3 to the i.i.d variables Yi’s with weights wiχi leads to corollary 2.<br />

2.2 Portfolio wealth distribution for comonotonic ass<strong>et</strong>s<br />

The case of comonotonic ass<strong>et</strong>s is of interest as the limiting case of the strongest possible <strong>de</strong>pen<strong>de</strong>nce<br />

b<strong>et</strong>ween random variables. By <strong>de</strong>finition,<br />

DEFINITION 5 (COMONOTONICITY)<br />

the variables X1, X2, · · · , XN are comonotonic if and only if there exits a random variable U and non<strong>de</strong>creasing<br />

functions f1, f2, · · · , fN such th<strong>at</strong><br />

<br />

(X1, X2, · · · , XN) d = (f1(U), f2(U), · · · , fN(U)). (29)<br />

In terms of copulas, the comonotonicity can be expressed by the following form of the copula<br />

C(u1, u2, · · · , uN) = min(u1, u2, · · · , uN) . (30)<br />

This expression is known as the Fréch<strong>et</strong>-Hoeffding upper bound for copulas (Nelsen 1998, for instance). It<br />

would be appealing to think th<strong>at</strong> estim<strong>at</strong>ing the Value-<strong>at</strong>-Risk un<strong>de</strong>r the comonotonicity assumption could<br />

provi<strong>de</strong> an upper bound for the Value-<strong>at</strong>-Risk. However, it turns out to be wrong, due –as we shall see in the<br />

sequel– to the lack of coherence (in the sense of Artzner <strong>et</strong> al. (1999)) of the Value-<strong>at</strong>-Risk, in the general<br />

case. Notwithstanding, an upper and lower bound can always be <strong>de</strong>rived for the Value-<strong>at</strong>-Risk (Embrechts<br />

<strong>et</strong> al. 2002b). But in the present situ<strong>at</strong>ion, where we are only interested in the class of modified Weibull<br />

distributions with a Gaussian copula, the VaR <strong>de</strong>rived un<strong>de</strong>r the comonoticity assumption will actually<br />

represent the upper bound (<strong>at</strong> least for the VaR calcul<strong>at</strong>ed <strong>at</strong> sufficiently hight confi<strong>de</strong>nce levels).<br />

8


THEOREM 4 (TAIL EQUIVALENCE FOR A SUM OF COMONOTONIC RANDOM VARIABLES)<br />

L<strong>et</strong> X1, X2, · · · , XN be N comonotonic random variables such th<strong>at</strong> Xi ∼ W(c, χi). L<strong>et</strong> w1, w2, · · · , wN<br />

be N non-random real coefficients. Then, the variable<br />

SN = w1X1 + w2X2 + · · · + wNXN<br />

is equivalent in the upper and the lower tail to Z ∼ W(c, ˆχ) with<br />

ˆχ = <br />

wiχi . (32)<br />

<br />

The proof is obvious since, un<strong>de</strong>r the assumption of comonotonicity, the portfolio wealth S is given by<br />

S = <br />

and for modified Weibull distributions, we have<br />

i<br />

i<br />

wi · Xi d =<br />

fi(·) = sgn(·) χi<br />

397<br />

(31)<br />

N<br />

wi · fi(U), (33)<br />

i=1<br />

2/ci | · |<br />

√2 , (34)<br />

in the symm<strong>et</strong>ric case while U is a Gaussian random variable. If, in addition, we assume th<strong>at</strong> all ass<strong>et</strong>s have<br />

the same exponent ci = c, it is clear th<strong>at</strong> S ∼ W(c, ˆχ) with<br />

ˆχ = <br />

wiχi. (35)<br />

i<br />

It is important to note th<strong>at</strong> this rel<strong>at</strong>ion is exact and not asymptotic as in the case of in<strong>de</strong>pen<strong>de</strong>nt variables.<br />

When the exponents ci’s are different from an ass<strong>et</strong> to another, a similar result holds, since we can still write<br />

the inverse cumul<strong>at</strong>ive function of S as<br />

F −1<br />

S (p) =<br />

N<br />

i=1<br />

wiF −1<br />

(p), p ∈ (0, 1), (36)<br />

Xi<br />

which is the property of additive comonotonicity of the Value-<strong>at</strong>-Risk1 . L<strong>et</strong> us then sort the Xi’s such th<strong>at</strong><br />

c1 = c2 = · · · = cp < cp+1 ≤ · · · ≤ cN. We immedi<strong>at</strong>ely obtain th<strong>at</strong> S is equivalent in the tail to<br />

Z ∼ W(c1, ˆχ), where<br />

p<br />

ˆχ = wiχi. (37)<br />

i=1<br />

In such a case, only the ass<strong>et</strong>s with the f<strong>at</strong>est tails contributes to the behavior of the sum in the large <strong>de</strong>vi<strong>at</strong>ion<br />

regime.<br />

1 This rel<strong>at</strong>ion shows th<strong>at</strong>, in general, the VaR calcul<strong>at</strong>ed for comonotonic ass<strong>et</strong>s does not provi<strong>de</strong> an upper bound of the VaR,<br />

wh<strong>at</strong>ever the <strong>de</strong>pen<strong>de</strong>nce structure the portfolio may be. In<strong>de</strong>ed, in such a case, we have VaR(X1 + X2) = VaR(X1) + VaR(X2)<br />

while, by lack of coherence, we may have VaR(X1 + X2) ≥ VaR(X1) + VaR(X2) for some <strong>de</strong>pen<strong>de</strong>nce structure b<strong>et</strong>ween X1<br />

and X2.<br />

9


398 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

2.3 Portfolio wealth un<strong>de</strong>r the Gaussian copula hypothesis<br />

2.3.1 Deriv<strong>at</strong>ion of the multivari<strong>at</strong>e distribution with a Gaussian copula and modified Weibull margins<br />

An advantage of the class of modified Weibull distributions (7) is th<strong>at</strong> the transform<strong>at</strong>ion into a Gaussian,<br />

and thus the calcul<strong>at</strong>ion of the vector y introduced in <strong>de</strong>finition 1, is particularly simple. It takes the form<br />

yk = sgn(xk) √ <br />

|xk|<br />

2<br />

χk<br />

c k 2<br />

, (38)<br />

where yk is normally distributed . These variables Yi then allow us to obtain the covariance m<strong>at</strong>rix V of the<br />

Gaussian copula :<br />

<br />

|xi|<br />

Vij = 2 · E sgn(xixj)<br />

χi<br />

c i<br />

2 |xj|<br />

χj<br />

cj <br />

2<br />

, (39)<br />

which always exists and can be efficiently estim<strong>at</strong>ed. The multivari<strong>at</strong>e <strong>de</strong>nsity P (x) is thus given by:<br />

P (x1, · · · , xN) = cV (x1, x2, · · · , xN)<br />

=<br />

1<br />

2 N π N/2√ V<br />

N<br />

pi(xi) (40)<br />

i=1<br />

N ci|xi| c/2−1<br />

⎡<br />

exp ⎣− <br />

i=1<br />

χ c/2<br />

i<br />

i,j<br />

V −1<br />

ij<br />

Obviously, similar transforms hold, mut<strong>at</strong>is mutandis, for the asymm<strong>et</strong>ric case (8,9).<br />

⎤<br />

c/2 c/2 |xi| |xj|<br />

⎦ . (41)<br />

2.3.2 Asymptotic distribution of a sum of modified Weibull variables with the same exponent c > 1<br />

We now consi<strong>de</strong>r a portfolio ma<strong>de</strong> of <strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s with pdf given by equ<strong>at</strong>ion (41) or its asymm<strong>et</strong>ric<br />

generaliz<strong>at</strong>ion. For such distributions of ass<strong>et</strong> r<strong>et</strong>urns, we obtain the following result<br />

THEOREM 5 (TAIL EQUIVALENCE FOR A SUM OF DEPENDENT RANDOM VARIABLES)<br />

L<strong>et</strong> X1, X2, · · · , XN be N random variables with a <strong>de</strong>pen<strong>de</strong>nce structure <strong>de</strong>scribed by the Gaussian copula<br />

with correl<strong>at</strong>ion m<strong>at</strong>rix V and such th<strong>at</strong> each Xi ∼ W(c, χi). L<strong>et</strong> w1, w2, · · · , wN be N (positive) nonrandom<br />

real coefficients. Then, the variable<br />

SN = w1X1 + w2X2 + · · · + wNXN<br />

is equivalent in the upper and the lower tail to Z ∼ W(c, ˆχ) with<br />

ˆχ =<br />

<br />

where the σi’s are the unique (positive) solution of<br />

<br />

<br />

i<br />

i<br />

wiχiσi<br />

c−1<br />

c<br />

χi<br />

χj<br />

(42)<br />

, (43)<br />

V −1<br />

ik σi c/2 = wkχk σ 1−c/2<br />

k , ∀k . (44)<br />

10


In<strong>de</strong>pen<strong>de</strong>nt Ass<strong>et</strong>s<br />

Comonotonic Ass<strong>et</strong>s<br />

N c<br />

i=1 |wiχi| c−1<br />

ˆχ λ−<br />

c−1<br />

c<br />

, c > 1<br />

<br />

N−1<br />

c 2<br />

2(c−1)<br />

max{|w1χ1|, · · · , |wNχN|}, c ≤ 1 Card {|wiχi| = maxj{ |wjχj|}}<br />

N<br />

i=1 wiχi<br />

Gaussian copula ( <br />

c−1<br />

i wiχiσi) c , c > 1 see appendix B<br />

Table 1: Summary of the various scale factors obtained for different distribution of ass<strong>et</strong> r<strong>et</strong>urns.<br />

The proof of this theorem follows the same lines as the proof of theorem 3. We thus only provi<strong>de</strong> a heuristic<br />

<strong>de</strong>riv<strong>at</strong>ion of this result in appendix B. Equ<strong>at</strong>ion (44) is equivalent to<br />

<br />

Vik wkχk σk 1−c/2 = σi c/2 , ∀i . (45)<br />

k<br />

which seems more <strong>at</strong>tractive since it does not require the inversion of the correl<strong>at</strong>ion m<strong>at</strong>rix. In the special<br />

case where V is the i<strong>de</strong>ntity m<strong>at</strong>rix, the variables Xi’s are in<strong>de</strong>pen<strong>de</strong>nt so th<strong>at</strong> equ<strong>at</strong>ion (43) must yield the<br />

same result as equ<strong>at</strong>ion (22). This results from the expression of σk = (wkχk) 1<br />

c−1 valid in the in<strong>de</strong>pen<strong>de</strong>nt<br />

case. Moreover, in the limit where all entries of V equal one, we r<strong>et</strong>rieve the case of comonotonic ass<strong>et</strong>s.<br />

Obviously, V−1 does not exist for comonotonic ass<strong>et</strong>s and the <strong>de</strong>riv<strong>at</strong>ion given in appendix B does not hold,<br />

but equ<strong>at</strong>ion (45) remains well-<strong>de</strong>fined and still has a unique solution σk = ( wkχk) 1<br />

c−1 which yields the<br />

scale factor given in theorem 4.<br />

2.4 Summary<br />

In the previous sections, we have shown th<strong>at</strong> the wealth distribution FS(x) of a portfolio ma<strong>de</strong> of ass<strong>et</strong>s with<br />

modified Weibull distributions with the same exponent c remains equivalent in the tail to a modified Weibull<br />

distribution W(c, ˆχ). Specifically,<br />

FS(x) ∼ λ− FZ(x) , (46)<br />

when x → −∞, and where Z ∼ W(c, ˆχ). Expression (46) <strong>de</strong>fines the proportionality factor or weight λ−<br />

of the neg<strong>at</strong>ive tail of the portfolio wealth distribution FS(x). Table 1 summarizes the value of the scale<br />

param<strong>et</strong>er ˆχ for the different types of <strong>de</strong>pen<strong>de</strong>nce we have studied. In addition, we give the value of the<br />

coefficient λ−, which may also <strong>de</strong>pend on the weights of the ass<strong>et</strong>s in the portfolio in the case of <strong>de</strong>pen<strong>de</strong>nt<br />

ass<strong>et</strong>s.<br />

11<br />

1<br />

399


400 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

3 Value-<strong>at</strong>-Risk<br />

3.1 Calcul<strong>at</strong>ion of the VaR<br />

We consi<strong>de</strong>r a portfolio ma<strong>de</strong> of N ass<strong>et</strong>s with all the same exponent c and scale param<strong>et</strong>ers χi, i ∈<br />

{1, 2, · · · , N}. The weight of the i th ass<strong>et</strong> in the portfolio is <strong>de</strong>noted by wi. By <strong>de</strong>finition, the Value<strong>at</strong>-Risk<br />

<strong>at</strong> the loss probability α, <strong>de</strong>noted by VaRα, is given , for a continuous distribution of profit and loss,<br />

by<br />

Pr{W (τ) − W (0) < −VaRα} = α, (47)<br />

which can be rewritten as<br />

<br />

Pr S < − VaRα<br />

<br />

= α. (48)<br />

W (0)<br />

In this expression, we have assumed th<strong>at</strong> all the wealth is invested in risky ass<strong>et</strong>s and th<strong>at</strong> the risk-free<br />

interest r<strong>at</strong>e equals zero, but it is easy to reintroduce it, if necessary. It just leads to discount VaRα by the<br />

discount factor 1/(1 + µ0), where µ0 <strong>de</strong>notes the risk-free interest r<strong>at</strong>e.<br />

Now, using the fact th<strong>at</strong> FS(x) ∼ λ− FZ(x), when x → −∞, and where Z ∼ W(c, ˆχ), we have<br />

<br />

1<br />

Pr S < − VaRα<br />

<br />

√2<br />

c/2<br />

VaRα<br />

1 − Φ<br />

, (49)<br />

W (0)<br />

W (0) ˆχ<br />

λ−<br />

as VaRα goes to infinity, which allows us to obtain a closed expression for the asymptotic Value-<strong>at</strong>-Risk<br />

with a loss probability α:<br />

VaRα W (0) ˆχ<br />

21/c <br />

Φ −1<br />

<br />

1 − α<br />

2/c , (50)<br />

λ−<br />

ξ(α) 2/c W (0) · ˆχ, (51)<br />

where the function Φ(·) <strong>de</strong>notes the cumul<strong>at</strong>ive Normal distribution function and<br />

ξ(α) ≡ 1<br />

2 Φ−1<br />

<br />

1 − α<br />

<br />

. (52)<br />

λ−<br />

In the case where a fraction w0 of the total wealth is invested in the risk-free ass<strong>et</strong> with interest r<strong>at</strong>e µ0, the<br />

previous equ<strong>at</strong>ion simply becomes<br />

VaRα ξ(α) 2/c (1 − w0) · W (0) · ˆχ − w0W (0)µ0. (53)<br />

Due to the convexity of the scale param<strong>et</strong>er ˆχ, the VaR is itself convex and therefore sub-additive. Thus, for<br />

this s<strong>et</strong> of distributions, the VaR becomes coherent when the consi<strong>de</strong>red quantiles are sufficiently small.<br />

The Expected-Shortfall ESα, which gives the average loss beyond the VaR <strong>at</strong> probability level α, is also<br />

very easily computable:<br />

α<br />

ESα = 1<br />

VaRu du (54)<br />

α 0<br />

= ζ(α)(1 − w0) · W (0) · ˆχ − w0W (0)µ0, (55)<br />

where ζ(α) = 1<br />

α<br />

α 0 ξ(u)2/c du . Thus, the Value-<strong>at</strong>-Risk, the Expected-Shortfall and in fact any downsi<strong>de</strong><br />

risk measure involving only the far tail of the distribution of r<strong>et</strong>urns are entirely controlled by the scale<br />

param<strong>et</strong>er ˆχ. We see th<strong>at</strong> our s<strong>et</strong> of multivari<strong>at</strong>e modified Weibull distributions enjoy, in the tail, exactly the<br />

same properties as the Gaussian distributions, for which, all the risk measures are controlled by the standard<br />

<strong>de</strong>vi<strong>at</strong>ion.<br />

12


3.2 Typical recurrence time of large losses<br />

L<strong>et</strong> us transl<strong>at</strong>e these formulas in intuitive form. For this, we <strong>de</strong>fine a Value-<strong>at</strong>-Risk VaR ∗ which is such th<strong>at</strong><br />

its typical frequency is 1/T0. T0 is by <strong>de</strong>finition the typical recurrence time of a loss larger than VaR ∗ . In<br />

our present example, we take T0 equals 1 year for example, i.e., VaR ∗ is the typical annual shock or crash.<br />

Expression (49) then allows us to predict the recurrence time T of a loss of amplitu<strong>de</strong> VaR equal to β times<br />

this reference value VaR ∗ :<br />

401<br />

<br />

T<br />

ln (β<br />

T0<br />

c ∗ c VaR<br />

− 1)<br />

+ O(ln β) . (56)<br />

W (0) ˆχ<br />

Figure 2 shows ln T versus β. Observe th<strong>at</strong> T increases all the more slowly with β, the smaller is the<br />

T0<br />

exponent c. This quantifies our expect<strong>at</strong>ion th<strong>at</strong> large losses occur more frequently for the “wil<strong>de</strong>r” subexponential<br />

distributions than for super-exponential ones.<br />

4 Optimal portfolios<br />

In this section, we present our results on the problem of the efficient portfolio alloc<strong>at</strong>ion for ass<strong>et</strong> distributed<br />

according to modified Weibull distributions with the different <strong>de</strong>pen<strong>de</strong>nce structures studied in the previous<br />

sections. We focus on the case when all ass<strong>et</strong> modified Weibull distributions have the same exponent c, as<br />

it provi<strong>de</strong>s the richest and more varied situ<strong>at</strong>ion. When this is not the case and the ass<strong>et</strong>s have different<br />

exponents ci, i = 1, ..., N, the asymptotic tail of the portfolio r<strong>et</strong>urn distribution is domin<strong>at</strong>ed by the ass<strong>et</strong><br />

with the heaviest tail. The largest risks of the portfolio are thus controlled by the single most risky ass<strong>et</strong><br />

characterized by the smallest exponent c. Such extreme risk cannot be diversified away. In such a case, for<br />

a risk-averse investor, the best str<strong>at</strong>egy focused on minimizing the extreme risks consists in holding only the<br />

ass<strong>et</strong> with the thinnest tail, i.e., with the largest exponent c.<br />

4.1 Portfolios with minimum risk<br />

L<strong>et</strong> us consi<strong>de</strong>r first the problem of finding the composition of the portfolio with minimum risks, where<br />

the risks are measured by the Value-<strong>at</strong>-Risk. We consi<strong>de</strong>r th<strong>at</strong> short sales are not allowed, th<strong>at</strong> the risk free<br />

interest r<strong>at</strong>e equals zero and th<strong>at</strong> all the wealth is invested in stocks. This last condition is in<strong>de</strong>ed the only<br />

interesting one since allowing to invest in a risk-free ass<strong>et</strong> would autom<strong>at</strong>ically give the trivial solution in<br />

which the minimum risk portfolio is compl<strong>et</strong>ely invested in the risk-free ass<strong>et</strong>.<br />

The problem to solve reads:<br />

VaR ∗ α = min VaRα = ξ(α) 2/c W (0) · min ˆχ (57)<br />

N<br />

i=1 wi = 1 (58)<br />

wi ≥ 0 ∀i. (59)<br />

In some cases (see table 1), the prefactor ξ(α) <strong>de</strong>fined in (52) also <strong>de</strong>pends on the weight wi’s through λ−<br />

<strong>de</strong>fined in (46). But, its contribution remains subdominant for the large losses. This allows to restrict the<br />

minimiz<strong>at</strong>ion to ˆχ instead of ξ(α) 2/c · ˆχ.<br />

13


402 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

4.1.1 Case of in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s<br />

“Super-exponential” portfolio (c > 1)<br />

Consi<strong>de</strong>r ass<strong>et</strong>s distributed according to modified Weibull distributions with the same exponent c > 1.<br />

The Value-<strong>at</strong>-Risk is given by<br />

VaRα = ξ(α) 2/c W (0) ·<br />

N<br />

i=1<br />

|wiχi| c<br />

<br />

c−1<br />

c−1<br />

2<br />

Introducing the Lagrange multiplier λ, the first or<strong>de</strong>r condition yields<br />

∂ ˆχ<br />

∂wi<br />

and the composition of the minimal risk portfolio is<br />

=<br />

λ<br />

ξ(α) W (0)<br />

wi ∗ = χ−c<br />

i <br />

j χ−c<br />

j<br />

which s<strong>at</strong>istifies the positivity of the Hessian m<strong>at</strong>rix Hjk = ∂2 ˆχ<br />

∂wj∂wk {w∗ i }<br />

The minimal risk portfolio is such th<strong>at</strong><br />

VaR ∗ α = ξ(α)2/c W (0)<br />

i χ−c<br />

1<br />

c<br />

j<br />

, (60)<br />

∀i, (61)<br />

<br />

<br />

, µ ∗ <br />

=<br />

i χ−c<br />

i µi<br />

<br />

j χ−c<br />

j<br />

where µi is the r<strong>et</strong>urn of ass<strong>et</strong> i and µ ∗ is the r<strong>et</strong>urn of the minimum risk portfolio.<br />

(second or<strong>de</strong>r condition).<br />

(62)<br />

, (63)<br />

sub-exponential portfolio (c ≤ 1)<br />

Consi<strong>de</strong>r ass<strong>et</strong>s distributed according to modified Weibull distributions with the same exponent c < 1.<br />

The Value-<strong>at</strong>-Risk is now given by<br />

VaRα = ξ(α) c/2 W (0) · max{|w1χ1|, · · · , |wNχN|}. (64)<br />

Since the weights wi are positive, the modulus appearing in the argument of the max() function can be<br />

removed. It is easy to see th<strong>at</strong> the minimum of VaRα is obtained when all the wiχi’s are equal, provi<strong>de</strong>d<br />

th<strong>at</strong> the constraint wi = 1 can be s<strong>at</strong>isfied. In<strong>de</strong>ed, l<strong>et</strong> us start with the situ<strong>at</strong>ion where<br />

w1χ1 = w2χ2 = · · · = wNχN . (65)<br />

L<strong>et</strong> us <strong>de</strong>crease the weight w1. Then, w1χ1 <strong>de</strong>creases with respect to the initial maximum situ<strong>at</strong>ion (65) but,<br />

in or<strong>de</strong>r to s<strong>at</strong>isfy the constraint <br />

i wi = 1, <strong>at</strong> least one of the other weights wj, j ≥ 2 has to increase, so<br />

th<strong>at</strong> wjχj increases, leading to a maximum for the s<strong>et</strong> of the wiχi’s gre<strong>at</strong>er than in the initial situ<strong>at</strong>ion where<br />

(65) holds. Therefore,<br />

and the constraint <br />

i wi = 1 yields<br />

w ∗ i = A<br />

A =<br />

χi<br />

, ∀i, (66)<br />

1<br />

<br />

i χ−1<br />

i<br />

14<br />

, (67)


and finally<br />

w ∗ i = χ−1<br />

i<br />

<br />

j χ−1<br />

j<br />

, VaR ∗ α = ξ(α)c/2 W (0)<br />

, µ ∗ <br />

=<br />

i χ−1<br />

i<br />

i χ−1<br />

i µi<br />

<br />

j χ−1<br />

j<br />

403<br />

. (68)<br />

The composition of the optimal portfolio is continuous in c <strong>at</strong> the value c = 1. This is the consequence<br />

of the continuity as a function of c <strong>at</strong> c = 1 of the scale factor ˆχ for a sum of in<strong>de</strong>pen<strong>de</strong>nt variables. In<br />

this regime c ≤ 1, the Value-<strong>at</strong>-Risk increases as c <strong>de</strong>creases only through its <strong>de</strong>pen<strong>de</strong>nce on the prefactor<br />

ξ(α) 2/c since the scale factor ˆχ remains constant.<br />

4.1.2 Case of comonotonic ass<strong>et</strong>s<br />

For comonotonic ass<strong>et</strong>s, the Value-<strong>at</strong>-Risk is<br />

VaRα = ξ(α) c/2 W (0) · <br />

which leads to a very simple linear optimiz<strong>at</strong>ion problem. In<strong>de</strong>ed, <strong>de</strong>noting χ1 = min{χ1, χ2, · · · , χN},<br />

we have <br />

wi = χ1, (70)<br />

i<br />

wiχi ≥ χ1<br />

i<br />

i<br />

wiχi<br />

which proves th<strong>at</strong> the composition of the optimal portfolio is w ∗ 1 = 1, w∗ i<br />

= 0 i ≥ 2 leading to<br />

(69)<br />

VaR ∗ α = ξ(α) c/2 W (0)χ1, µ ∗ = µ1. (71)<br />

This result is not surprising since all ass<strong>et</strong>s move tog<strong>et</strong>her. Thus, the portfolio with minimum Value-<strong>at</strong>-Risk<br />

is obtained when only the less risky ass<strong>et</strong>, i.e., with the smallest scale factor χi, is held. In the case where<br />

there is a <strong>de</strong>generacy in the smallest χ of or<strong>de</strong>r p (χ1 = χ2 = ... = χp = min{χ1, χ2, · · · , χN}), the<br />

optimal choice lead to invest all the wealth in the ass<strong>et</strong> with the larger expected r<strong>et</strong>urn µj, j ∈ {1, · · · , p}.<br />

However, in an efficient mark<strong>et</strong> with r<strong>at</strong>ional agents, such an opportunity should not exist since the same<br />

risk embodied by χ1 = χ2 = ... = χp should be remuner<strong>at</strong>ed by the same r<strong>et</strong>urn µ1 = µ2 = ... = µp.<br />

4.1.3 Case of ass<strong>et</strong>s with a Gaussian copula<br />

In this situ<strong>at</strong>ion, we cannot solve the problem analytically. We can only assert th<strong>at</strong> the miminiz<strong>at</strong>ion problem<br />

has a unique solution, since the function VaRα({wi}) is convex. In or<strong>de</strong>r to obtain the composition of the<br />

optimal portfolio, we need to perform the following numerical analysis.<br />

It is first nee<strong>de</strong>d to solve the s<strong>et</strong> of equ<strong>at</strong>ions −1<br />

i Vij σc/2<br />

1−c/2<br />

i = wjχjσj or the equivalent s<strong>et</strong> of equ<strong>at</strong>ions<br />

given<br />

<br />

by (45), which can be performed by Newton’s algorithm. Then one have the minimize the quantity<br />

wiχiσi({wi}). To this aim, one can use the gradient algorithm, which requires the calcul<strong>at</strong>ion of the<br />

<strong>de</strong>riv<strong>at</strong>ives of the σi’s with respect to the wk’s. These quantities are easily obtained by solving the linear s<strong>et</strong><br />

of equ<strong>at</strong>ions<br />

c <br />

· V<br />

2 −1<br />

c<br />

2<br />

ij σ −1<br />

i σ c<br />

2 −1<br />

<br />

∂σi c<br />

<br />

1 ∂σj<br />

j + − 1 wjχj = χj · δjk. (72)<br />

∂wk 2 σj ∂wk<br />

i<br />

Then, the analytical solution for in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s or comonotonic ass<strong>et</strong>s can be used to initialize the<br />

minimiz<strong>at</strong>ion algorithm with respect to the weights of the ass<strong>et</strong>s in the portfolio.<br />

15


404 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

4.2 VaR-efficient portfolios<br />

We are now interested in portfolios with minimum Value-<strong>at</strong>-risk, but with a given expected r<strong>et</strong>urn µ =<br />

<br />

i wiµi. We will first consi<strong>de</strong>r the case where, as previously, all the wealth is invested in risky ass<strong>et</strong>s and<br />

we then will discuss the consequences of the introduction of a risk-free ass<strong>et</strong> in the portfolio.<br />

4.2.1 Portfolios without risky ass<strong>et</strong><br />

When the investors have to select risky ass<strong>et</strong>s only, they have to solve the following minimiz<strong>at</strong>ion problem:<br />

VaR ∗ α = min VaRα = ξ(α) W (0) · min ˆχ (73)<br />

N<br />

i=1 wiµi = µ (74)<br />

N<br />

i=1 wi = 1 (75)<br />

wi ≥ 0 ∀i. (76)<br />

In contrast with the research of the minimum risk portfolios where analytical results have been <strong>de</strong>rived, we<br />

need here to use numerical m<strong>et</strong>hods in every situ<strong>at</strong>ion. In the case of super-exponential portfolios, with or<br />

without <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s, the gradient m<strong>et</strong>hod provi<strong>de</strong>s a fast and easy to implement algorithm,<br />

while for sub-exponential portfolios or portfolios ma<strong>de</strong> of comonotonic ass<strong>et</strong>s, one has to use the simplex<br />

m<strong>et</strong>hod since the minimiz<strong>at</strong>ion problem is then linear.<br />

Thus, although not as convenient to handle as analytical results, these optimiz<strong>at</strong>ion problems remain easy to<br />

manage and fast to compute even for large portfolios.<br />

4.2.2 Portfolios with risky ass<strong>et</strong><br />

When a risk-free ass<strong>et</strong> is introduced in the portfolio, the expression of the Value-<strong>at</strong>-Risk is given by equ<strong>at</strong>ion<br />

(53), the minimiz<strong>at</strong>ion problem becomes<br />

VaR ∗ α = min ξ(α) 2/c (1 − w0) · W (0) · ˆχ − w0W (0)µ0<br />

(77)<br />

N<br />

i=1 wiµi = µ (78)<br />

N<br />

i=1 wi = 1 (79)<br />

wi ≥ 0 ∀i. (80)<br />

When the risk-free interest r<strong>at</strong>e µ0 is non zero, we have to use the same numerical m<strong>et</strong>hods as above to<br />

solve the problem. However, if we assume th<strong>at</strong> µ0 = 0, the problem becomes amenable analytically. Its<br />

Lagrangian reads<br />

L = ξ(α) 2/c ⎛<br />

(1 − w0) · W (0) · ˆχ − λ1 ⎝ <br />

⎞ <br />

N<br />

<br />

wiµi − µ ⎠ − λ2 wi − 1 , (81)<br />

= ξ(α) 2/c<br />

⎛<br />

⎝ <br />

j=0<br />

which allows us to show th<strong>at</strong> the weights of the optimal portfolio are<br />

w ∗ i = (1 − w0) ·<br />

wi<br />

ˆwi<br />

N<br />

j=1 ˆwj<br />

i=0<br />

⎞<br />

⎛<br />

⎠ · W (0) · ˆχ − λ1 ⎝ <br />

⎞<br />

wiµi − µ ⎠ , (82)<br />

i=0<br />

i=0<br />

and VaR ∗ α = ξ(α)2/c (1 − w0) · W (0)<br />

2<br />

16<br />

· µ, (83)


where the ˆwi’s are solution of the s<strong>et</strong> of equ<strong>at</strong>ions<br />

ˆχ +<br />

N<br />

i=1<br />

ˆwi<br />

<br />

∂ ˆχ<br />

∂ ˆwi<br />

405<br />

= µi . (84)<br />

Expression (83) shows th<strong>at</strong> the efficient frontier is simply a straight line and th<strong>at</strong> any efficient portfolio is<br />

the sum of two portfolios: a “riskless portfolio” in which a fraction w0 of the initial wealth is invested and<br />

a portfolio with the remaining (1 − w0) of the initial wealth invested in risky ass<strong>et</strong>s. This provi<strong>de</strong>s another<br />

example of the two funds separ<strong>at</strong>ion theorem. A CAPM then holds, since equ<strong>at</strong>ion (84) tog<strong>et</strong>her with the<br />

mark<strong>et</strong> equilibrium assumption yields the proportionality b<strong>et</strong>ween any stock r<strong>et</strong>urn and the mark<strong>et</strong> r<strong>et</strong>urn.<br />

However, these three properties are rigorously established only for a zero risk-free interest r<strong>at</strong>e and may not<br />

remain necessarily true as soon as the risk-free interest r<strong>at</strong>e becomes non zero.<br />

Finally, for practical purpose, the s<strong>et</strong> of weights w∗ i ’s obtained un<strong>de</strong>r the assumption of zero risk-free interest<br />

r<strong>at</strong>e µ0, can be used to initialize the optimiz<strong>at</strong>ion algorithms when µ0 does not vanish.<br />

5 Conclusion<br />

The aim of this work has been to show th<strong>at</strong> the key properties of Gaussian ass<strong>et</strong> distributions of stability<br />

un<strong>de</strong>r convolution, of the equivalence b<strong>et</strong>ween all down-si<strong>de</strong> riks measures, of coherence and of simple<br />

use also hold for a general family of distributions embodying both sub-exponential and super-exponential<br />

behaviors, when restricted to their tail. We then used these results to compute the Value-<strong>at</strong>-Risk (VaR) and<br />

to obtain efficient porfolios in the risk-r<strong>et</strong>urn sense, where the risk is characterized by the Value-<strong>at</strong>-Risk.<br />

Specifically, we have studied a family of modified Weibull distributions to param<strong>et</strong>erize the marginal distributions<br />

of ass<strong>et</strong> r<strong>et</strong>urns, exten<strong>de</strong>d to their multivari<strong>at</strong>e distribution with Gaussian copulas. The relevance to<br />

finance of the family of modified Weibull distributions has been proved in both a context of conditional and<br />

unconditional portfolio management. We have <strong>de</strong>rived exact formulas for the tails of the distribution P (S)<br />

of r<strong>et</strong>urns S of a portfolio of arbitrary composition of these ass<strong>et</strong>s. We find th<strong>at</strong> the tail of P (S) is also<br />

asymptotically a modified Weibull distribution with a characteristic scale χ function of the ass<strong>et</strong> weights<br />

with different functional forms <strong>de</strong>pending on the super- or sub-exponential behavior of the marginals and<br />

on the strength of the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the ass<strong>et</strong>s. The <strong>de</strong>riv<strong>at</strong>ion of the portfolio distribution has shown<br />

the asymptotic stability of this family of distribution with the important economic consequence th<strong>at</strong> any<br />

down-si<strong>de</strong> risk measure based upon the tail of the ass<strong>et</strong> r<strong>et</strong>urns distribution are equivalent, in so far as they<br />

all <strong>de</strong>pends on the scale factor χ and keep the same functional form wh<strong>at</strong>ever the number of ass<strong>et</strong>s in the<br />

portfolio may be. Our analytical study of the properties of the VaR has shown the VaR to be coherent. This<br />

justifies the use of the VaR as a coherent risk measure for the class of modified Weibull distributions and<br />

ensures th<strong>at</strong> portfolio optimiz<strong>at</strong>ion problems are always well-conditioned even when not fully analytically<br />

solvable. The Value-<strong>at</strong>-Risk and the Expected-Shortfall have also been shown to be (asymptotically) equivalent<br />

in this framework. In fine, using the large class of modified Weibull distributions, we have provi<strong>de</strong>d<br />

a simple and fast m<strong>et</strong>hod for calcul<strong>at</strong>ing large down-si<strong>de</strong> risks, exemplified by the Value-<strong>at</strong>-Risk, for ass<strong>et</strong>s<br />

with distributions of r<strong>et</strong>urns which fit quite reasonably the empirical distributions.<br />

17


406 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

A Proof of theorem 3 : Tail equivalence for weighted sums of modified<br />

Weibull variables<br />

A.1 Super-exponential case: c > 1<br />

L<strong>et</strong> X1, X2, · · · , XN be N i.i.d random variables with <strong>de</strong>nsity p(·). L<strong>et</strong> us <strong>de</strong>note by f(·) and g(·) two<br />

positive functions such th<strong>at</strong> p(·) = g(·) · e −f(·) . L<strong>et</strong> w1, w2, · · · , wN be N real non-random coefficients,<br />

and S = N<br />

i=1 wixi.<br />

L<strong>et</strong> X = {x ∈ R N , N<br />

i=1 wixi = S}. The <strong>de</strong>nsity of the variable S is given by<br />

<br />

PS(S) =<br />

We will assume the following conditions on the function f<br />

X<br />

dx e −N<br />

i=1 [f(xi)−ln g(xi)] , (85)<br />

1. f(·) is three times continuously differentiable and four times differentiable,<br />

2. f (2) (x) > 0, for |x| large enough,<br />

3. limx→±∞ f (3) (x)<br />

(f (2) (x)) 2 = 0,<br />

4. f (3) is asymptotically monotonous,<br />

5. there is a constant β > 1 such th<strong>at</strong> f (3) (β·x)<br />

f (3) (x)<br />

remains boun<strong>de</strong>d as x goes to infinity,<br />

6. g(·) is ultim<strong>at</strong>ely a monotonous function, regularly varying <strong>at</strong> infinity with indice ν.<br />

L<strong>et</strong> us start with the <strong>de</strong>monstr<strong>at</strong>ion of several propositions.<br />

PROPOSITION 1<br />

un<strong>de</strong>r hypothesis 3, we have<br />

<br />

Proof<br />

lim<br />

x→±∞ |x| · f ′′ (x) = 0. (86)<br />

d 1<br />

Hypothesis 3 can be rewritten as lim<br />

x→±∞ dx f (2) = 0, so th<strong>at</strong><br />

(x)<br />

<br />

<br />

∀ɛ > 0, ∃Aɛ/x > Aɛ =⇒ <br />

d 1<br />

dx<br />

f (2) <br />

<br />

<br />

(x) ≤ ɛ. (87)<br />

Now, since f ′′ is differentiable, 1/f ′′ is also differentiable, and by the mean value theorem, we have<br />

for some ξ ∈ (x, y).<br />

<br />

<br />

<br />

1<br />

f<br />

′′ 1<br />

−<br />

(x) f ′′ <br />

<br />

<br />

(y) = |x − y| · <br />

d 1<br />

dξ<br />

f ′′ <br />

<br />

<br />

(ξ) <br />

18<br />

(88)


Choosing x > y > Aɛ, and applying equ<strong>at</strong>ion (87) tog<strong>et</strong>her with (88) yields<br />

<br />

<br />

<br />

1<br />

f<br />

′′ 1<br />

−<br />

(x) f ′′ <br />

<br />

<br />

(y) ≤ ɛ · |x − y|. (89)<br />

Now, dividing by x and l<strong>et</strong>ting x go to infinity gives<br />

<br />

<br />

lim <br />

1<br />

x→∞ x<br />

· f ′′ <br />

<br />

<br />

(x) ≤ ɛ, (90)<br />

which conclu<strong>de</strong>s the proof. <br />

PROPOSITION 2<br />

Un<strong>de</strong>r assumption 3, we have<br />

<br />

Proof<br />

407<br />

lim<br />

x→±∞ f ′ (x) = +∞. (91)<br />

According to assumption 3 and proposition 1, lim<br />

x→±∞ x · f ′′ (x) = ∞, which means<br />

This thus gives<br />

∀α > 0, ∃Aα/x > Aɛ =⇒ x · f ′′ (x) ≥ α. (92)<br />

∀x ≥ aα, x · f ′′ (x) ≥ α ⇐⇒ f ′′ (x) ≥ α<br />

x<br />

=⇒<br />

x<br />

Aα<br />

f ′′ (t) dt ≥ α ·<br />

x<br />

Aα<br />

dt<br />

t<br />

(93)<br />

(94)<br />

=⇒ f ′ (x) ≥ α · ln x − α · ln Aα + f ′ (Aα). (95)<br />

The right-hand-si<strong>de</strong> of this last equ<strong>at</strong>ion goes to infinity as x goes to infinity, which conclu<strong>de</strong>s the proof. <br />

PROPOSITION 3<br />

Un<strong>de</strong>r assumptions 3 and 6, the function g(·) s<strong>at</strong>isfies<br />

uniformly in h, for any positive constant C. <br />

Proof For g non-<strong>de</strong>creasing, we have<br />

∀|h| ≤ C<br />

f ′′ (x) ,<br />

∀|h| ≤ C<br />

f ′′ g(x + h)<br />

, lim = 1, (96)<br />

(x) x→±∞ g(x)<br />

g<br />

<br />

x<br />

<br />

1 − C<br />

x·f ′′ <br />

(x) g(x + h)<br />

≤<br />

g(x)<br />

g(x) ≤<br />

<br />

g x<br />

1 + C<br />

x·f ′′ (x)<br />

g(x)<br />

<br />

. (97)<br />

If g is non-increasing, the same inequalities hold with the left and right terms exchanged. Therefore, the<br />

final conclusion is easily shown to be in<strong>de</strong>pen<strong>de</strong>nt of the monotocity property of g. From assumption 3 and<br />

proposition 1, we have<br />

∀α > 0, ∃Aα/x > Aɛ =⇒ x · f ′′ (x) ≥ α. (98)<br />

Thus, for all x larger than Aα and all |h| ≤ C/f ′′ (x)<br />

g x 1 − C<br />

<br />

α g(x + h)<br />

≤<br />

g(x) g(x) ≤ g x 1 + C<br />

<br />

α<br />

g(x)<br />

19<br />

(99)


408 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

Now, l<strong>et</strong>ting x go to infinity,<br />

for all α as large as we want, which conclu<strong>de</strong>s the proof. <br />

<br />

1 − C<br />

ν g(x + h)<br />

≤ lim<br />

α x→∞ g(x) ≤<br />

<br />

1 + C<br />

ν , (100)<br />

α<br />

PROPOSITION 4<br />

Un<strong>de</strong>r assumptions 1, 3 and 4 we have, for any positive constant C:<br />

<br />

Proof<br />

L<strong>et</strong> us first remark th<strong>at</strong><br />

∀|h| ≤ C<br />

f ′′ , lim<br />

(x) x→±∞<br />

<br />

sup <br />

ξ∈[x,x+h] f (3) (ξ) <br />

f ′′ (x) 2<br />

<br />

sup <br />

ξ∈[x,x+h] f (3) (ξ) <br />

f ′′ (x) 2 = 0. (101)<br />

= sup <br />

<br />

ξ∈[x,x+h] f (3) (ξ) f<br />

<br />

f (3) (x) <br />

·<br />

(3) (x) <br />

f ′′ . (102)<br />

(x) 2<br />

The rightmost factor in the right-hand-si<strong>de</strong> of the equ<strong>at</strong>ion above goes to zero as x goes to infinity by assumption<br />

3. Therefore, we just have to show th<strong>at</strong> the leftmost factor in the right-hand-si<strong>de</strong> remains boun<strong>de</strong>d<br />

as x goes to infinity to prove Proposition 4.<br />

Applying assumption 4 according to which f (3) is asymptotically monotonous, we have<br />

<br />

sup f ξ∈[x,x+h]<br />

(3) (ξ) <br />

<br />

f (3) (x) <br />

≤<br />

<br />

<br />

f (3)<br />

<br />

x + C<br />

f ′′ =<br />

<br />

<br />

(x)<br />

<br />

f (3) (x) <br />

<br />

<br />

f<br />

(103)<br />

(3)<br />

<br />

x 1 + C<br />

x·f ′′ <br />

<br />

(x)<br />

<br />

f (3) (x) ≤<br />

<br />

,<br />

<br />

f (3)<br />

(104)<br />

x 1 + C<br />

<br />

<br />

α f (3) (x) <br />

, (105)<br />

for every x larger than some positive constant Aα by assumption 3 and proposition 1. Now, for α large<br />

enough, 1 + C<br />

α is less than β (assumption 5) which shows th<strong>at</strong> supξ∈[x,x+h]|f (3) (ξ)|<br />

|f (3) (x)|<br />

remains boun<strong>de</strong>d for large<br />

x, which conclu<strong>de</strong> the proof. <br />

We can now show th<strong>at</strong> un<strong>de</strong>r the assumptions st<strong>at</strong>ed above, the leading or<strong>de</strong>r expansion of PS(S) for large<br />

S and finite N > 1 is obtained by a generaliz<strong>at</strong>ion of Laplace’s m<strong>et</strong>hod which here amounts to remark th<strong>at</strong><br />

the s<strong>et</strong> of x∗ i ’s th<strong>at</strong> maximize the integrand in (85) are solution of<br />

f ′ i(x ∗ i ) = σ(S)wi , (106)<br />

where σ(S) is nothing but a Lagrange multiplier introduced to minimize the expression N<br />

i=1 fi(xi) un<strong>de</strong>r<br />

the constraint N<br />

i=1 wixi = S. This constraint shows th<strong>at</strong> <strong>at</strong> least one xi, for instance x1, goes to infinity<br />

as S → ∞. Since f ′ (x1) is an increasing function by assumption 2 which goes to infinity as x1 → +∞<br />

(proposition 2), expression (106) shows th<strong>at</strong> σ(S) goes to infinity with S, as long as the weight of the ass<strong>et</strong><br />

1 is not zero. Putting the divergence of σ(S) with S in expression (106) for i = 2, ..., N ensures th<strong>at</strong> each<br />

x∗ i increases when S increases and goes to infinity when S goes to infinity.<br />

20


Expanding fi(xi) around x ∗ i yields<br />

where the s<strong>et</strong> of hi = xi − x∗ i obey the condition<br />

409<br />

f(xi) = f(x ∗ i ) + f ′ (x ∗ x∗ i +hi<br />

i ) · hi +<br />

x∗ t<br />

dt<br />

i<br />

x∗ du f<br />

i<br />

′′ (u) (107)<br />

N<br />

wihi = 0 . (108)<br />

i=1<br />

Summing (106) in the presence of rel<strong>at</strong>ion (108), we obtain<br />

N<br />

N<br />

f(xi) = f(x ∗ N<br />

i ) +<br />

i=1<br />

i=1<br />

i=1<br />

i=1<br />

i=1<br />

x ∗ i +hi<br />

Thus exp(− f(xi)) can be rewritten as follows :<br />

<br />

N<br />

<br />

N<br />

exp − f(xi) = exp f(x ∗ N<br />

i ) +<br />

x ∗ i<br />

i=1<br />

t<br />

dt<br />

x∗ du f<br />

i<br />

′′ (u) . (109)<br />

x ∗ i +hi<br />

x ∗ i<br />

t<br />

dt<br />

x∗ du f<br />

i<br />

′′ <br />

(u) . (110)<br />

L<strong>et</strong> us now <strong>de</strong>fine the compact s<strong>et</strong> AC = {h ∈ RN , N i=1 f ′′ (x∗ i )2 · h2 i ≤ C2 } for any given positive<br />

constant C and the s<strong>et</strong> H = {h ∈ RN , N i=1 wihi = 0}. We can thus write<br />

PS(S) =<br />

=<br />

<br />

<br />

H<br />

dh e −N<br />

i=1 [f(xi)−ln g(xi)] , (111)<br />

AC∩H<br />

dh e −N<br />

i=1 [f(xi)−ln<br />

<br />

g(xi)]<br />

+<br />

AC∩H<br />

dh e −N<br />

i=1 [f(xi)−ln g(xi)]<br />

, (112)<br />

We are now going to analyze in turn these two terms in the right-hand-si<strong>de</strong> of (112).<br />

First term of the right-hand-si<strong>de</strong> of (112).<br />

L<strong>et</strong> us start with the first term. We are going to show th<strong>at</strong><br />

lim<br />

S→∞<br />

<br />

i=1x<br />

AC∩H dh e−N<br />

∗ i +hi x∗ dtt<br />

x<br />

i<br />

∗ du f<br />

i<br />

′′ (u)−ln g(xi)<br />

(2π) N−1 i<br />

2 g(x∗ i ) N w<br />

i=1<br />

2 f<br />

iN<br />

j=1 ′′<br />

j (x∗ j )<br />

f ′′<br />

i (x∗ i )<br />

= 1, for some positive C. (113)<br />

In or<strong>de</strong>r to prove this assertion, we will first consi<strong>de</strong>r the leftmost factor of the right-hand-si<strong>de</strong> of (112):<br />

g(xi) e −f(xi) = g(x ∗ i + hi) e −x ∗<br />

= g(x ∗ 1<br />

−<br />

i + hi) e<br />

Since for all ξ ∈ R, e −|ξ| ≤ e −ξ ≤ e |ξ| , we have<br />

e −x ∗ x∗ i<br />

i +h i<br />

dtt<br />

x∗ du [f<br />

i<br />

′′ (u)−f ′′ (x∗ i )]<br />

≤ e −x ∗ x∗ i<br />

i +h i<br />

x ∗ i<br />

i +h i<br />

dtt<br />

x∗ du f<br />

i<br />

′′ (u)<br />

, (114)<br />

2f ′′ (x∗ i )h2 i e −x ∗ i +hi x∗ i<br />

dtt<br />

x ∗ i<br />

21<br />

du [f ′′ (u)−f ′′ (x∗ i )] ≤ ex ∗ i +hi x∗ i<br />

dtt<br />

x∗ du [f<br />

i<br />

′′ (u)−f ′′ (x∗ i )] . (115)<br />

dtt<br />

x∗ du [f<br />

i<br />

′′ (u)−f ′′ (x∗ i )]<br />

,<br />

(116)


410 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

and<br />

e −x ∗ x∗ i<br />

i +h i<br />

dtt<br />

x ∗ i<br />

du |f ′′ (u)−f ′′ (x ∗ i )| ≤ e −x ∗<br />

x ∗ i<br />

i +h i<br />

since wh<strong>at</strong>ever the sign of hi, the quantity x ∗ i +hi<br />

x ∗ i<br />

dtt<br />

x ∗ i<br />

du [f ′′ (u)−f ′′ (x∗ i )] ≤ ex ∗ i +hi x∗ i<br />

dt t<br />

x∗ du |f<br />

i<br />

′′ (u) − f ′′ (x∗ i<br />

dtt<br />

x∗ du |f<br />

i<br />

′′ (u)−f ′′ (x∗ i )| ,<br />

(117)<br />

)| remains always positive.<br />

But, |u − x∗ i | ≤ |hi| ≤ C<br />

f ′′ (x∗ i ), which leads, by the mean value theorem and assumption 1, to<br />

which yields<br />

Thus<br />

|f ′′ (u) − f ′′ (x ∗ i )| ≤ sup<br />

ξ∈(x∗ i ,x∗ i +hi)<br />

|f (3) (ξ)| · |u − x ∗ i |, (118)<br />

0 ≤ <br />

1<br />

− 2i<br />

e sup |f (3) (ξ)|<br />

i<br />

≤ sup<br />

ξ∈(x∗ i ,x∗ i +hi)<br />

|f (3) (ξ)| C<br />

f ′′ (x∗ i ),<br />

≤ sup |f<br />

ξ∈Gi<br />

(3) (ξ)| C<br />

f ′′ (x∗ i ), where Gi =<br />

x ∗<br />

i +hi<br />

x ∗ i<br />

t<br />

dt<br />

x∗ du |f<br />

i<br />

′′ (u) − f ′′ (x ∗ i )| ≤ 1 <br />

2<br />

i<br />

C<br />

f ′′ (x∗ i ) h2 i<br />

≤ e −x ∗ i +hi x∗ i<br />

dtt<br />

x ∗ i<br />

(119)<br />

<br />

x ∗ i − C<br />

f ′′ (x∗ i ), x∗i + C<br />

f ′′ (x∗ i )<br />

<br />

, (120)<br />

sup<br />

ξ∈Gi<br />

|f (3) (ξ)|<br />

du [f ′′ (u)−f ′′ (x∗ i )] 1<br />

2i<br />

≤ e<br />

sup |f (3) (ξ)|<br />

C<br />

f ′′ (x ∗ i )h2 i . (121)<br />

C<br />

f ′′ (x ∗ i ) h2 i , (122)<br />

where sup ξ∈Gi |f (3) (ξ)|, have been <strong>de</strong>noted by sup |f (3) (ξ)| in the previous expression, in or<strong>de</strong>r not to<br />

cumber the not<strong>at</strong>ions.<br />

By proposition 4, we know th<strong>at</strong> for all h ∈ AC and all ɛi > 0<br />

<br />

<br />

sup<br />

|f<br />

<br />

<br />

(3) (ξ)<br />

f ′′ (x∗ i )<br />

<br />

<br />

<br />

<br />

≤ ɛi, for x ∗ i large enough, (123)<br />

so th<strong>at</strong><br />

∀ɛ ′ C·ɛ′<br />

i −<br />

> 0 and ∀h ∈ AC, e 2 h2 i ≤ e −x ∗ x∗ i<br />

for |x| large enough.<br />

i +h i<br />

Moreover, from proposition 3, we have for all ɛi > 0 and x∗ i large enough:<br />

so, for all ɛ ′′ > 0<br />

dtt<br />

x∗ du [f<br />

i<br />

′′ (u)−f ′′ (x∗ i )] ≤ e C·ɛ′<br />

i 2 h2 i , (124)<br />

∀h ∈ AC, (1 − ɛi) ν ≤ g(x∗i + hi)<br />

g(x∗ i ) ≤ (1 + ɛi) ν , (125)<br />

∀h ∈ AC, (1 − ɛ ′′ ) Nν ≤ <br />

Then for all ɛ > 0 and |x| large enough, this yields :<br />

i<br />

g(x ∗ i<br />

+ hi)<br />

g(x∗ i ) ≤ (1 + ɛ′′ ) Nν . (126)<br />

(1 − ɛ) Nν 1<br />

−<br />

e 2i (f ′′ (x∗ i )+C·ɛ)·h2 i ≤ g(xi)<br />

g(x∗ i )e−f(xi) Nν −<br />

≤ (1 + ɛ) e 1<br />

2i (f ′′ (x∗ i )−C·ɛ)·h2 i , (127)<br />

i<br />

22


for all h ∈ AC. Thus, integr<strong>at</strong>ing over all the h ∈ AC ∩ H and by continuity of the mapping<br />

<br />

G(Y) = dh g(h, Y) (128)<br />

AC∩H<br />

1<br />

− where g(h, Y) = e 2Yi·h 2 i , we can conclu<strong>de</strong> th<strong>at</strong>,<br />

Now, we remark th<strong>at</strong><br />

<br />

with<br />

H<br />

<br />

AC∩H<br />

<br />

g(x∗ i ) <br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i =<br />

and <br />

dh e<br />

AC∩H<br />

<br />

H<br />

<br />

g(xi) e −f(xi)<br />

AC∩H<br />

AC∩H<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i =<br />

dh e− 1<br />

2f ′′ (x ∗ i )h2 i<br />

411<br />

S→∞<br />

−−−→ 1. (129)<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 <br />

i +<br />

AC∩H<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i , (130)<br />

1<br />

− 2f ′′ (x∗ i )h2 i ∼ O<br />

(2π) N−1<br />

2<br />

<br />

N w<br />

i=1<br />

2 iN<br />

j=1 f ′′<br />

j (x∗ j )<br />

f ′′<br />

i (x∗ i )<br />

, (131)<br />

α<br />

−<br />

e f ′′ (x∗ <br />

) , α > 0, (132)<br />

where x ∗ = max{x ∗ i } (note th<strong>at</strong> 1/f ′′ (x) → ∞ with x by Proposition 1). In<strong>de</strong>ed, we clearly have<br />

<br />

AC∩H<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i ≤<br />

=<br />

<br />

AC<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i , (133)<br />

(2π) N/2<br />

f ′′ (x ∗ i )<br />

<br />

BC<br />

du <br />

i<br />

1 u<br />

− 2<br />

e 2 i<br />

f ′′ (x∗ i )<br />

<br />

2π f ′′ (x∗ i )<br />

, (134)<br />

where we have performed the change of variable ui = f ′′ (x∗ i ) · hi and <strong>de</strong>noted by BC the s<strong>et</strong> {h ∈<br />

RN , u2 i ≤ C2 }. Now, l<strong>et</strong> x∗ max = max{x∗ i } and x∗min = min{x∗i }. Expression (134) then gives<br />

<br />

AC∩H<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i ≤<br />

SN−1<br />

<br />

(2π) N/2<br />

f ′′ (x∗ min )N/2<br />

du<br />

BC<br />

e−<br />

1<br />

2 f ′′ (x∗ max )u 2 i<br />

(2π f ′′ (x∗ min<br />

f<br />

= SN−1<br />

′′ (x∗ max) N/2<br />

f ′′ (x∗ <br />

N<br />

Γ<br />

min<br />

)N 2 ,<br />

C2 2 f ′′ (x∗ max)<br />

N<br />

2 −1<br />

f ′′ (x ∗ max) N/2<br />

f ′′ (x ∗ min )N<br />

C 2<br />

2 f ′′ (x ∗ max)<br />

))N/2 , (135)<br />

<br />

, (136)<br />

· e −<br />

C 2<br />

2 f ′′ (x∗ max ) , (137)<br />

which <strong>de</strong>cays exponentially fast for large S (or large x ∗ max) as long as f ′′ goes to zero <strong>at</strong> infinity, i.e, for any<br />

function f which goes to infinity not faster than x 2 . So, finally<br />

<br />

AC∩H<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i =<br />

which conclu<strong>de</strong>s the proof of equ<strong>at</strong>ion (113).<br />

(2π) N−1<br />

2<br />

<br />

N w<br />

i=1<br />

2 iN<br />

j=1 f ′′<br />

j (x∗ j )<br />

f ′′<br />

i (x∗ i )<br />

23<br />

<br />

+ O e −<br />

α<br />

f ′′ (x∗ max )<br />

<br />

, (138)


412 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

Second term of the right-hand-si<strong>de</strong> of (112).<br />

We now have to show th<strong>at</strong> <br />

dh e<br />

AC∩H<br />

−f(x ∗ i +hi)−g(x∗ i +hi)<br />

(139)<br />

can be neglected. This is obvious since, by assumption 2 and 6, the function f(x) − ln g(x) remains convex<br />

for x large enough, which ensures th<strong>at</strong> f(x) − ln g(x) ≥ C1|x| for some positive constant C1 and x large<br />

enough. Thus, choosing the constant C in AC large enough, we have<br />

<br />

dh e −N<br />

i=1 f(xi)−ln<br />

<br />

g(xi)<br />

≤ dh e −C1N<br />

i=1 |x∗ i +hi|<br />

∼ O<br />

AC∩H<br />

AC∩H<br />

Thus, for S large enough, the <strong>de</strong>nsity PS(S) is asymptotically equal to<br />

PS(S) = <br />

i<br />

g(x ∗ i )<br />

In the case of the modified Weibull variables, we have<br />

f(x) =<br />

(2π) N−1<br />

2<br />

<br />

N w<br />

i=1<br />

2 iN<br />

j=1 f ′′<br />

j (x∗ j )<br />

f ′′<br />

i (x∗ i )<br />

|x|<br />

χ<br />

<br />

α′<br />

−<br />

e f ′′ (x∗ <br />

) . (140)<br />

. (141)<br />

c<br />

, (142)<br />

and<br />

c<br />

g(x) =<br />

2 √ c<br />

· |x| 2<br />

πχc/2 −1 , (143)<br />

which s<strong>at</strong>isfy our assumptions if and only if c > 1. In such a case, we obtain<br />

x ∗ i = w<br />

1<br />

c−1<br />

i<br />

c<br />

c−1<br />

wi<br />

which, after some simple algebraic manipul<strong>at</strong>ions, yield<br />

N−1<br />

c<br />

2 c<br />

P (S) ∼<br />

2(c − 1) 2 √ π<br />

with<br />

as announced in theorem 3.<br />

A.2 Sub-exponential case: c ≤ 1<br />

<br />

ˆχ = w<br />

c<br />

c−1<br />

i<br />

· S, (144)<br />

1 c<br />

|S| 2<br />

ˆχ c/2 −1 e −|S|<br />

ˆχc<br />

c−1<br />

c<br />

(145)<br />

· χ. (146)<br />

L<strong>et</strong> X1, X2, · · · , XN be N i.i.d sub-exponential modified Weibull random variables W(c, χ), with distribution<br />

function F . L<strong>et</strong> us <strong>de</strong>note by GS the distribution function of the variable<br />

where w1, w2, · · · , wN are real non-random coefficients.<br />

SN = w1X1 + w2X2 + · · · + wNXN, (147)<br />

L<strong>et</strong> w ∗ = max{|w1|, |w2|, · · · , |wN|}. Then, theorem 5.5 (b) of Goldie and Klüppelberg (1998) st<strong>at</strong>es th<strong>at</strong><br />

GS(x/w<br />

lim<br />

x→∞<br />

∗ )<br />

F (x) = Card {i ∈ {1, 2, , N} : |wi| = w ∗ }. (148)<br />

By <strong>de</strong>finition 2, this allows us to conclu<strong>de</strong> th<strong>at</strong> SN is equivalent in the upper tail to Z ∼ W(c, w ∗ χ).<br />

A similar calcul<strong>at</strong>ion yields an analogous result for the lower tail.<br />

24


B Asymptotic distribution of the sum of Weibull variables with a Gaussian<br />

copula.<br />

We assume th<strong>at</strong> the marginal distributions are given by the modified Weibull distributions:<br />

Pi(xi) = 1<br />

2 √ π<br />

c<br />

χ c/2<br />

i<br />

|xi| c/2−1 e −|x i |<br />

χ ic<br />

413<br />

(149)<br />

and th<strong>at</strong> the χi’s are all equal to one, in or<strong>de</strong>r not to cumber the not<strong>at</strong>ion. As in the proof of corollary 2, it<br />

will be sufficient to replace wi by wiχi to reintroduce the scale factors.<br />

Un<strong>de</strong>r the Gaussian copula assumption, we obtain the following form for the multivari<strong>at</strong>e distribution :<br />

c<br />

P (x1, · · · , xN) =<br />

N<br />

2Nπ N/2√ N<br />

x<br />

d<strong>et</strong> V<br />

c/2−1<br />

⎡<br />

i exp ⎣− <br />

V −1<br />

ij xc/2<br />

i xc/2<br />

⎤<br />

⎦<br />

j . (150)<br />

L<strong>et</strong><br />

i=1<br />

f(x1, · · · , xN) = <br />

i,j<br />

i,j<br />

V −1<br />

ij xi c/2 xj c/2 . (151)<br />

We have to minimize f un<strong>de</strong>r the constraint wixi = S. As for the in<strong>de</strong>pen<strong>de</strong>nt case, we introduce a<br />

Lagrange multiplier λ which leads to<br />

c <br />

j<br />

V −1<br />

jk x∗ j c/2 x ∗ k c/2−1 = λwk . (152)<br />

The left-hand-si<strong>de</strong> of this equ<strong>at</strong>ion is a homogeneous function of <strong>de</strong>gree c − 1 in the x∗ i ’s, thus necessarily<br />

where the σi’s are solution of <br />

j<br />

x ∗ i =<br />

1<br />

λ c−1<br />

· σi, (153)<br />

c<br />

V −1<br />

jk σj c/2 σk c/2−1 = wk . (154)<br />

The s<strong>et</strong> of equ<strong>at</strong>ions (154) has a unique solution due to the convexity of the minimiz<strong>at</strong>ion problem. This<br />

s<strong>et</strong> of equ<strong>at</strong>ions can be easily solved by a numerical m<strong>et</strong>hod like Newton’s algorithm. It is convenient to<br />

simplify the problem and avoid the inversion of the m<strong>at</strong>rix V , by rewritting (154) as<br />

Using the constraint wix ∗ i<br />

so th<strong>at</strong><br />

<br />

k<br />

= S, we obtain<br />

Vjk wk σk 1−c/2 = σ c/2<br />

j . (155)<br />

1<br />

λ c−1<br />

c<br />

x ∗ i =<br />

=<br />

S<br />

, (156)<br />

wiσi<br />

σi<br />

· S. (157)<br />

wiσi<br />

25


414 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

Thus<br />

f(x1, · · · , xN) = f(x ∗ 1, · · · , x ∗ N) + ∂f<br />

=<br />

Sc ( 1<br />

+<br />

wiσi) c−1 2<br />

i<br />

ij<br />

∂xi<br />

hi + 1 <br />

2<br />

ij<br />

∂2f hihj + · · · (158)<br />

∂xi∂xj<br />

∂2f hihj + · · · , (159)<br />

∂xi∂xj<br />

where, as in the previous section, hi = xi − x ∗ i and the <strong>de</strong>riv<strong>at</strong>ives of f are expressed <strong>at</strong> x∗ 1 , ..., x∗ N .<br />

It is easy to check th<strong>at</strong> the nth-or<strong>de</strong>r <strong>de</strong>riv<strong>at</strong>ive of f with respect to the xi’s evalu<strong>at</strong>ed <strong>at</strong> {x∗ i } is proportional<br />

to Sc−n . In the sequel, we will use the following not<strong>at</strong>ion :<br />

∂n <br />

f <br />

<br />

∂xi1 · · · ∂xin<br />

We can write :<br />

f(x1, · · · , xN) =<br />

up to the fourth or<strong>de</strong>r. This leads to<br />

P (S) ∝ e −<br />

Sc ( Sc−2<br />

+<br />

wiσi) c−1 2<br />

( w<br />

S c<br />

iσi ) c−1<br />

<br />

{x ∗ i }<br />

<br />

ij<br />

= M (n)<br />

i1···in Sc−n . (160)<br />

M (2)<br />

ij hihj + Sc−3<br />

6<br />

<br />

ijk<br />

Sc−2ij<br />

(2)<br />

− M<br />

dh1 · · · dhNe 2<br />

ij hihj<br />

<br />

δ wihi<br />

×<br />

⎡<br />

⎣1 + Sc−3<br />

6<br />

Using the rel<strong>at</strong>ion δ ( wihi) = dk<br />

2π e−ikj wjhj , we obtain :<br />

P (S) ∝ e −<br />

or in vectorial not<strong>at</strong>ion :<br />

( w<br />

S c<br />

iσi ) c−1<br />

P (S) ∝ e −<br />

( w<br />

dk<br />

2π<br />

<br />

S c<br />

iσi ) c−1<br />

×<br />

<br />

M (3)<br />

ijk<br />

M (3)<br />

ijk hihjhk + · · · (161)<br />

ijk hihjhk + · · ·<br />

×<br />

⎤<br />

Sc−2ij<br />

(2)<br />

− M<br />

dh1 · · · dhNe 2<br />

ij hihj−ikj wjhj ×<br />

×<br />

<br />

dk<br />

2π<br />

⎡<br />

⎡<br />

⎣1 + Sc−3<br />

6<br />

⎣1 + Sc−3<br />

6<br />

L<strong>et</strong> us perform the following standard change of variables :<br />

<br />

M (3)<br />

ijk<br />

ijk hihjhk + · · ·<br />

Sc−2<br />

−<br />

dh e 2 htM (2) h−ikwth ×<br />

⎤<br />

<br />

M (3)<br />

(M (2)−1 exists since f is assumed convex and thus M (2) positive) :<br />

S c−2<br />

ijk<br />

ijk hihjhk + · · ·<br />

⎦ . (162)<br />

⎤<br />

⎦ , (163)<br />

⎦ . (164)<br />

h = h ′ − ik<br />

S c−2 M(2)−1 w . (165)<br />

2 ht M (2) h + ikw t h = Sc−2<br />

2 h′t M (2) h ′ + k2<br />

2S c−2 wt M (2)−1 w . (166)<br />

26


This yields<br />

<br />

×<br />

h+<br />

Sc−2<br />

− 2 dh e ik<br />

Sc−2 M(2)−1 w wt<br />

M (2)h+<br />

ik<br />

Sc−2 M(2)−1<br />

S c ( wiσi ) c−1<br />

P (S) ∝ e −<br />

⎡<br />

⎣1 + Sc−3 <br />

M<br />

6<br />

(3)<br />

<br />

dk k2<br />

e− 2S<br />

2π c−2 wtM (2)−1w ×<br />

ijk<br />

ijk hihjhk + · · ·<br />

⎤<br />

415<br />

⎦ . (167)<br />

Denoting by 〈·〉h the average with respect to the Gaussian distribution of h and by 〈·〉k the average with<br />

respect to the Gaussian distribution of k, we have :<br />

<br />

×<br />

⎡<br />

⎣1 + Sc−3<br />

6<br />

<br />

ijk<br />

P (S) ∝<br />

M (3)<br />

ijk 〈〈hihjhk〉h〉k + Sc−4<br />

24<br />

d<strong>et</strong> M (2)−1<br />

w t M (2)−1 w (2πS2−c ) N−1<br />

2 e −<br />

S c ( wiσi ) c−1 ×<br />

<br />

M (4)<br />

ijkl 〈〈hihjhkhl〉h〉k<br />

⎤<br />

+ · · · ⎦ . (168)<br />

We now invoke Wick’s theorem 2 , which st<strong>at</strong>es th<strong>at</strong> each term 〈〈hi · · · hp〉h〉k can be expressed as a product<br />

of pairwise correl<strong>at</strong>ion coefficients. Evalu<strong>at</strong>ing the average with respect to the symm<strong>et</strong>ric distribution of k,<br />

it is obvious th<strong>at</strong> odd-or<strong>de</strong>r terms will vanish and th<strong>at</strong> the count of powers of S involved in each even-or<strong>de</strong>r<br />

term shows th<strong>at</strong> all are sub-dominant. So, up to the leading or<strong>de</strong>r :<br />

<br />

P (S) ∝<br />

The m<strong>at</strong>rix M (2) can be calcul<strong>at</strong>ed, which yields<br />

M (2)<br />

kl<br />

and shows th<strong>at</strong> <br />

=<br />

=<br />

ijkl<br />

d<strong>et</strong> M (2)−1<br />

w t M (2)−1 w (2πS2−c ) N−1<br />

2 e −<br />

S c ( wiσi ) c−1 . (169)<br />

1<br />

( wiσi) c−2<br />

<br />

c<br />

<br />

wk<br />

c − 1 δkl +<br />

2 σk<br />

c2 c<br />

−1 2 V<br />

2 kl σ −1<br />

k σ c<br />

2 −1<br />

<br />

l , (170)<br />

1<br />

( wiσi) c−2 ˜ Mkl, (171)<br />

d<strong>et</strong> M (2)−1<br />

w t M (2)−1 w =<br />

c<br />

(N−1)( 2<br />

wiσi<br />

−1)<br />

The inverse m<strong>at</strong>rix ˜ M −1 s<strong>at</strong>isfies <br />

l ˜ Mkl · ( ˜ M −1 )lj = δkj which can be rewritten:<br />

or equivalently<br />

<br />

c<br />

<br />

wk<br />

c − 1 (<br />

2 σk<br />

˜ M −1 )kj + c2<br />

2<br />

<br />

c<br />

<br />

c − 1 wk (<br />

2 ˜ M −1 )kj + c2<br />

2<br />

<br />

V −1<br />

kl · ( ˜ M −1 )ljσ c<br />

k<br />

l<br />

<br />

V −1<br />

kl · ( ˜ M −1 )ljσ c<br />

2<br />

k<br />

l<br />

<br />

d<strong>et</strong> ˜M −1<br />

wt ˜M −1 . (172)<br />

w<br />

2 −1<br />

σ c<br />

2 −1<br />

l = δkj (173)<br />

σ c<br />

2 −1<br />

l = δkj · σk (174)<br />

2 See for instance (Brézin <strong>et</strong> al. 1976) for a general introduction, (Sorn<strong>et</strong>te 1998) for an early applic<strong>at</strong>ion to the portfolio problem<br />

and (Sorn<strong>et</strong>te <strong>et</strong> al. 2000b) for a system<strong>at</strong>ic utiliz<strong>at</strong>ion with the help of diagrams.<br />

27


416 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

which gives<br />

<br />

c<br />

c − 1<br />

2<br />

<br />

j,k<br />

wk ( ˜ M −1 )kj wj + c2<br />

2<br />

<br />

V −1<br />

kl · ( ˜ M −1 )ljσ c c<br />

2<br />

k σl j,k,l<br />

2 −1<br />

wj = <br />

δkj · σkwj . (175)<br />

Summing the rightmost factor of the left-hand-si<strong>de</strong> over k, and accounting for equ<strong>at</strong>ion (154) leads to<br />

so th<strong>at</strong><br />

Moreover<br />

<br />

c<br />

c − 1<br />

2<br />

c N<br />

<br />

2 N π N/2√ d<strong>et</strong> V<br />

j,k<br />

wk ( ˜ M −1 )kj wj + c2<br />

2<br />

N<br />

w t ˜M −1 w =<br />

<br />

j,l<br />

1<br />

c(c − 1)<br />

c N<br />

x<br />

i=1<br />

∗ i c/2−1 =<br />

2Nπ N/2√d<strong>et</strong> V<br />

Thus, putting tog<strong>et</strong>her equ<strong>at</strong>ions (169), (172), (177) and (178) yields<br />

<br />

P (S) c(c − 1) d<strong>et</strong> ˜ M −1<br />

1<br />

·<br />

d<strong>et</strong> V<br />

2 √ π<br />

with<br />

ˆχ =<br />

c N−1 σ c/2−1<br />

i<br />

2 (N−1)/2<br />

wiχiσi<br />

28<br />

j,k<br />

wl ( ˜ M −1 )ljwj = <br />

j<br />

σjwj . (176)<br />

<br />

wjσj . (177)<br />

j<br />

c<br />

2 σ −1<br />

i<br />

( c<br />

wiσi)<br />

N( 2<br />

−1) SN( c<br />

2 −1) . (178)<br />

c<br />

ˆχ c/2 |S|c/2−1e −|S|<br />

ˆχc<br />

, (179)<br />

c−1<br />

c<br />

. (180)


References<br />

Acerbi, A. and D. Tasche, 2002, On the coherence of expected-shortfall, Journal of Banking and Finance<br />

26, 1487-1503.<br />

An<strong>de</strong>rsen, J.V., and D. Sorn<strong>et</strong>te, 2001, Have your cake and e<strong>at</strong> it too: increasing r<strong>et</strong>urns while lowering large<br />

risks! Journal of risk finance 2, 70-82.<br />

Artzner, P., F. Delbaen, J.M. Eber and D. He<strong>at</strong>h, 1999, Coherent measures of risk, M<strong>at</strong>hem<strong>at</strong>ical Finance 9,<br />

203-228.<br />

Basle Commitee on Banking Supervision, 1996, Amen<strong>de</strong>ment to the capital accord to incorpor<strong>at</strong>e mark<strong>et</strong><br />

risks.<br />

Basle Commitee on Banking Supervision, 2001, The new Basel capital accord.<br />

Bekaert, G. and G.J. Wu, 2000, Asymm<strong>et</strong>ric vol<strong>at</strong>ility and risk in equity mark<strong>et</strong>s, Review of Financial<br />

Studies 13, 1-42.<br />

Black, F., 1976, in Proceedings of the 1976 American St<strong>at</strong>istical Associ<strong>at</strong>ion, Business and Economical<br />

St<strong>at</strong>istics Section (American St<strong>at</strong>istical Associ<strong>at</strong>ion, Alexandria, VA), p. 177.<br />

Bouchaud, J.P., M<strong>at</strong>acz, A. and Potters, M., 2001, Leverage effect in financial mark<strong>et</strong>s: The r<strong>et</strong>ar<strong>de</strong>d vol<strong>at</strong>ility<br />

mo<strong>de</strong>l, Physical Review E 61, 228701.<br />

Bouchaud, J.-P., D. Sorn<strong>et</strong>te, C. Walter and J.-P. Aguilar, 1998, Taming large events: Optimal portfolio<br />

theory for strongly fluctu<strong>at</strong>ing ass<strong>et</strong>s, Intern<strong>at</strong>ional Journal of Theor<strong>et</strong>ical and Applied Finance 1,<br />

25-41.<br />

Brézin, E., J.C. Le Guillou <strong>et</strong> J. Zinn-Justin, 1976, Field theor<strong>et</strong>ical approach to critical phenomena, in<br />

C. Domb and M. Green, vol.6, The renormaliz<strong>at</strong>ion group and its applic<strong>at</strong>ions (Aca<strong>de</strong>mic Press,<br />

London), pp. 125-247.<br />

Brummelhuis, R.G.M. and D. Guégan, 2000, Extreme values of conditional distributions of GARCH(1,1)<br />

processes, Working Paper, University of Reims<br />

Brummelhuis, R.G.M., D. Guégan and S. LaDouc<strong>et</strong>te, in prepar<strong>at</strong>ion.<br />

Campbell, J.Y., A. W. Lo, and A. C. McKinley, 1997, The Econom<strong>et</strong>rics of Financial Mark<strong>et</strong>s (Princ<strong>et</strong>on<br />

University Press, Princ<strong>et</strong>on, NJ),<br />

Chabaane, A., E. Duclos, J.P. Laurent, Y. Malevergne and F. Turpin, 2002, Looking for efficient portfolios:<br />

An empirical investig<strong>at</strong>ion, Working Paper.<br />

Danielsson, J., P. Embrechts, C. Goodhart, C. Ke<strong>at</strong>ing, F. Muennich, O. Renault and H.-S. Shin, 2001, An<br />

aca<strong>de</strong>mic response to Basel II, Working Paper, FMG and ESRC, London.<br />

Duffie, D. and J. Pan, 1997, An Overview of Value <strong>at</strong> Risk, Journal of Deriv<strong>at</strong>ives 4, 7-49.<br />

Embrechts, P., C. Kluppelberg and T. Mikosh, 1997, Mo<strong>de</strong>lling extremal events (Springel-Verlag, Applic<strong>at</strong>ions<br />

of M<strong>at</strong>hem<strong>at</strong>ics 33).<br />

Embrechts, P., A. McNeil and D. Straumann, 2002a, Correl<strong>at</strong>ion and Depen<strong>de</strong>nce in risk management:<br />

properties and pitfalls, In: Risk Management: Value <strong>at</strong> Risk and Beyond, ed. M.A.H. Dempster,<br />

Cambridge University Press, Cambridge, pp. 176-223.<br />

29<br />

417


418 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

Embrecht, P., A. Höing and A. Juri, 2002b, Using copulae to bound the Value-<strong>at</strong>-Risk for functions of<br />

<strong>de</strong>pen<strong>de</strong>nt risks, Working Paper, Risklab.<br />

Fama, E.F., 1965, Portfolio analysis in a stable Par<strong>et</strong>ian mark<strong>et</strong>, Management Science 11, 404-419.<br />

Fouque, J.-P., G. Papanicolaou, and R. Sircar, 2000, Deriv<strong>at</strong>ives in Financial Mark<strong>et</strong>s with Stochastic<br />

Vol<strong>at</strong>ility (Cambridge University Press, Cambridge, UK).<br />

Frisch, U. and D.Sorn<strong>et</strong>te, 1997, Extreme Devi<strong>at</strong>ions and Applic<strong>at</strong>ions, Journal <strong>de</strong>. Physique I France 7,<br />

1155-1171.<br />

Goldie, C. M. and C. Klüppelberg, 1998, Subexponential distributions, in A Practical Gui<strong>de</strong> to Heavy Tails:<br />

St<strong>at</strong>istical Techniques and Applic<strong>at</strong>ions, ed. R. L. Adler, R. Feldman, M. S. Taqqu, pp. 435-459 (<br />

Birkhuser, Boston)<br />

Gopikrishnan, P., M. Meyer, L.A. Nunes Amaral and H.E. Stanley, 1998, Inverse cubic law for the distribution<br />

of stock price vari<strong>at</strong>ions, European Physical Journal B 3, 139-140.<br />

Gouriéroux, C. and J. Jasiak, 1998, Trunc<strong>at</strong>ed maximum likelyhood, goodness of fit tests and tail analysis,<br />

Working paper.<br />

Johansen, A. and D. Sorn<strong>et</strong>te, 1998, Stock mark<strong>et</strong> crashes are outliers, European Physical Journal B 1,<br />

141-144.<br />

Johansen, A. and D. Sorn<strong>et</strong>te, 1998, Large mark<strong>et</strong> price drawdowns are outliers, Journal of Risk 4, 69-110.<br />

Jorion, P., 1997, Value-<strong>at</strong>-Risk: The New Benchmark for Controlling Deriv<strong>at</strong>ives Risk (Irwin Publishing,<br />

Chicago, IL).<br />

Kahneman, D. and A. Tversky, 1979, Prospect theort: An analysis of <strong>de</strong>cision un<strong>de</strong>r risk, Econom<strong>et</strong>rica 47,<br />

263-291.<br />

Laherrère, J. and D. Sorn<strong>et</strong>te, 1998, Str<strong>et</strong>ched exponential distributions in n<strong>at</strong>ure and economy : ”f<strong>at</strong> tails”<br />

with characteristic scales, European Physical Journal B 2, 525-539.<br />

Lintner, J., 1965, The valu<strong>at</strong>ion of risk ass<strong>et</strong>s and the selection of risky investments in stock portfolios and<br />

the capital bug<strong>et</strong>s, Review of Economics and St<strong>at</strong>itics 41, 13–37.<br />

Litterman, R. and K. Winkelmann, 1998, Estim<strong>at</strong>ing covariance m<strong>at</strong>rices (Risk Management Series, Goldman<br />

Sachs).<br />

Lux, T., 1996, The stable Par<strong>et</strong>ian hypothesis and the frequency of large r<strong>et</strong>urns: an examin<strong>at</strong>ion of major<br />

German stocks, Applied Financial Economics 6, 463-475.<br />

Malevergne, Y., V. Pisarenko and D. Sorn<strong>et</strong>te, 2002, Empirical distributions of log-r<strong>et</strong>urns: Exponential or<br />

power-like?, Working paper.<br />

Malevergne, Y. and D. Sorn<strong>et</strong>te, 2001, Testing the Gaussian copulas hypothesis for mo<strong>de</strong>ling financial ass<strong>et</strong>s<br />

<strong>de</strong>pen<strong>de</strong>nce, Working paper, cond-m<strong>at</strong>/0111310.<br />

Malevergne, Y. and D. Sorn<strong>et</strong>te, 2002a, Minimising extremes, Risk 15(11), 129-133.<br />

Malevergne, Y. and D. Sorn<strong>et</strong>te, 2002b, How to account for extreme co-movements b<strong>et</strong>ween individual<br />

stocks and the mark<strong>et</strong>, Working paper.<br />

30


Malevergne, Y. and D. Sorn<strong>et</strong>te, 2002c, Multi-Moments M<strong>et</strong>hod for Portfolio Management: Generalized<br />

Capital Ass<strong>et</strong> Pricing Mo<strong>de</strong>l in Homogeneous and H<strong>et</strong>erogeneous mark<strong>et</strong>s, working paper http :<br />

//papers.ssrn.com/paper.taf?abstract id = 319544<br />

Mantegna, R.N. and H.E. Stanley, 1995, Scaling bahavior of an economic in<strong>de</strong>x, N<strong>at</strong>ure 376, 46-55.<br />

Markovitz, H., 1959, Portfolio selection : Efficient diversific<strong>at</strong>ion of investments (John Wiley and Sons, New<br />

York).<br />

Mashal, R. and A. Zeevi, 2002, Beyond Correl<strong>at</strong>ion: Extreme Co-movements B<strong>et</strong>ween Financial Ass<strong>et</strong>s,<br />

Working paper, Columbia University, preprint <strong>at</strong> www.columbia.edu\ ∼rm586<br />

Mossin, J., 1966, Equilibrium in capital ass<strong>et</strong> mark<strong>et</strong>, Econom<strong>et</strong>rica 35, 768–783.<br />

Nelsen, R.B., 1998, An Introduction to Copulas. Lectures Notes in st<strong>at</strong>istic, 139 (Springer Verlag, New<br />

York).<br />

Rao, C.R., 1973, Linear st<strong>at</strong>istical inference and its applic<strong>at</strong>ions, 2d ed. (New York Willey).<br />

Rockafeller, R.T and S. Uryasev, 2000, Optimiz<strong>at</strong>ion of the conditional value-<strong>at</strong>-risk, journal of Risk 2,<br />

21-41.<br />

Sharpe, W., 1964, Capital ass<strong>et</strong>s prices: a theory of mark<strong>et</strong> equilibrium un<strong>de</strong>r conditions of risk, Journal of<br />

Finance 19, 425–442.<br />

Sorn<strong>et</strong>te, D., 1998, Large <strong>de</strong>vi<strong>at</strong>ions and portfolio optimiz<strong>at</strong>ion, Physica A 256, 251-283.<br />

Sorn<strong>et</strong>te, D., 2000, Critical Phenomena in N<strong>at</strong>ural Sciences, Chaos, Fractals, Self-organiz<strong>at</strong>ion and Disor<strong>de</strong>r:<br />

Concepts and Tools (Springer Series in Synerg<strong>et</strong>ics).<br />

Sorn<strong>et</strong>te, D., J. V. An<strong>de</strong>rsen and P. Simon<strong>et</strong>ti, 2000a, Portfolio Theory for “F<strong>at</strong> Tails”, Intern<strong>at</strong>ional Journal<br />

of Theor<strong>et</strong>ical and Applied Finance 3, 523-535.<br />

Sorn<strong>et</strong>te, D., P. Simon<strong>et</strong>ti, J.V. An<strong>de</strong>rsen, 2000b, φ q -field theory for portfolio optimiz<strong>at</strong>ion : ”f<strong>at</strong>-tails” and<br />

non-linear correl<strong>at</strong>ions, Physics Reports 335, 19-92.<br />

Szergö, G., 1999, A critique to Basel regul<strong>at</strong>ion, or how to enhance (im)moral hazards, Proceedings of the<br />

Intern<strong>at</strong>ional Conference on Risk Management and Regul<strong>at</strong>ion in Banking, Bank of Israel, Kluwer.<br />

Tasche, D. and L. Tilib<strong>et</strong>ti, 2001, Approxim<strong>at</strong>ions for the Value-<strong>at</strong>-Risk approach to risk-r<strong>et</strong>urn, Working<br />

Paper.<br />

31<br />

419


420 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

Gaussian R<strong>et</strong>urns<br />

10 1<br />

10 0<br />

10 −1<br />

10 −4<br />

10 −3<br />

Standard & Poor’s 500<br />

Raw R<strong>et</strong>urns<br />

c/2 = 0.73<br />

Figure 1: Graph of the Gaussianized Standard & Poor’s 500 in<strong>de</strong>x r<strong>et</strong>urns versus its raw r<strong>et</strong>urns, during the<br />

time interval from January 03, 1995 to December 29, 2000 for the neg<strong>at</strong>ive tail of the distribution.<br />

32<br />

10 −2<br />

10 −1


ln(T/T 0 )<br />

<br />

T<br />

Figure 2: Logarithm ln of the r<strong>at</strong>io of the recurrence time T to a reference time T0 for the recurrence<br />

T0<br />

of a given loss V aR as a function of β <strong>de</strong>fined by β = VaR<br />

VaR∗ . VaR∗ (resp. VaR) is the Value-<strong>at</strong>-Risk over a<br />

time interval T0 (resp. T ).<br />

α<br />

33<br />

c>1<br />

c=1<br />

c


422 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique


Chapitre 14<br />

Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong><br />

équilibre <strong>de</strong> marché<br />

Nous présentons un nouvel ensemble <strong>de</strong> mesures <strong>de</strong> risque qualifiées <strong>de</strong> consistantes, en termes <strong>de</strong>s<br />

semi-invariants <strong>de</strong> la distribution <strong>de</strong> ren<strong>de</strong>ment d’un <strong>portefeuille</strong>, tels que les moments centrés ou les<br />

cumulants, <strong>et</strong> qui accor<strong>de</strong>nt plus <strong>de</strong> poids aux événements rares. Nous dérivons les frontières efficientes<br />

basées sur c<strong>et</strong> ensemble <strong>de</strong> mesures <strong>de</strong> risques <strong>et</strong> présentons une version généralisée du CAPM dans le<br />

cas où le marché est composé d’agents formant <strong>de</strong>s anticip<strong>at</strong>ions homogènes ou hétérogènes.<br />

Utilisant alors une famille <strong>de</strong> distributions <strong>de</strong> Weibull modifiées, qui englobe aussi bien <strong>de</strong>s lois superexponentielles<br />

que sous-exponentielles, pour paramétrer les distributions marginales du ren<strong>de</strong>ment <strong>de</strong>s<br />

actifs <strong>et</strong> une copule gaussienne pour représenter la dépendance entre les actifs, nous dérivons les expressions<br />

analytiques <strong>de</strong>s moments <strong>et</strong> cumulants <strong>de</strong> la distribution <strong>de</strong> ren<strong>de</strong>ment du <strong>portefeuille</strong> pour<br />

une composition arbitraire <strong>de</strong> ses actifs. Faisant usage <strong>de</strong> fonctions hypergéométriques, nous sommes en<br />

particulier capables d’étendre certains résult<strong>at</strong>s antérieurs au cas où l’exposant <strong>de</strong> Weibull est différent<br />

d’un actif à l’autre.<br />

A l’ai<strong>de</strong> <strong>de</strong> c<strong>et</strong>te représent<strong>at</strong>ion paramétrique, nous traitons en détail le problème <strong>de</strong> la minimis<strong>at</strong>ion<br />

du risque mesuré par les cumulants pour un <strong>portefeuille</strong> <strong>de</strong> <strong>de</strong>ux actifs <strong>et</strong> comparons nos prédictions<br />

théoriques aux estim<strong>at</strong>ions empiriques directes. Ces formules nous perm<strong>et</strong>tent en outre <strong>de</strong> déterminer<br />

analytiquement dans quelles conditions il est possible <strong>de</strong> construire un <strong>portefeuille</strong> présentant à la fois<br />

un ren<strong>de</strong>ment plus élevé <strong>et</strong> moins <strong>de</strong> grands risques.<br />

423


424 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché


Multi-Moments M<strong>et</strong>hod for Portfolio Management:<br />

Generalized Capital Ass<strong>et</strong> Pricing Mo<strong>de</strong>l<br />

in Homogeneous and H<strong>et</strong>erogeneous mark<strong>et</strong>s ∗<br />

Y. Malevergne 1,2 and D. Sorn<strong>et</strong>te 1,3<br />

1 Labor<strong>at</strong>oire <strong>de</strong> Physique <strong>de</strong> la M<strong>at</strong>ière Con<strong>de</strong>nsée<br />

CNRS UMR6622 and Université <strong>de</strong> Nice-Sophia Antipolis<br />

Parc Valrose, 06108 Nice Ce<strong>de</strong>x 2, France<br />

2 Institut <strong>de</strong> Science Financière <strong>et</strong> d’Assurances - Université Lyon I<br />

43, Bd du 11 Novembre 1918, 69622 Villeurbanne Ce<strong>de</strong>x<br />

3 Institute of Geophysics and Plan<strong>et</strong>ary Physics and Department of Earth and Space Science<br />

University of California, Los Angeles, California 90095<br />

e-mails: Yannick.Malevergne@unice.fr and sorn<strong>et</strong>te@unice.fr<br />

Abstract<br />

We use a new s<strong>et</strong> of consistent measures of risks, in terms of the semi-invariants of pdf’s, such th<strong>at</strong> the<br />

centered moments and the cumulants of the portfolio distribution of r<strong>et</strong>urns th<strong>at</strong> put more emphasis on<br />

the tail the distributions. We <strong>de</strong>rive generalized efficient frontiers, based on these novel measures of<br />

risks and present the generalized CAPM, both in the cases of homogeneous and h<strong>et</strong>erogeneous mark<strong>et</strong>s.<br />

Then, using a family of modified Weibull distributions, encompassing both sub-exponentials and superexponentials,<br />

to param<strong>et</strong>erize the marginal distributions of ass<strong>et</strong> r<strong>et</strong>urns and their n<strong>at</strong>ural multivari<strong>at</strong>e<br />

generaliz<strong>at</strong>ions, we offer exact formulas for the moments and cumulants of the distribution of r<strong>et</strong>urns of<br />

a portfolio ma<strong>de</strong> of an arbitrary composition of these ass<strong>et</strong>s. Using combin<strong>at</strong>orial and hypergeom<strong>et</strong>ric<br />

functions, we are in particular able to extend previous results to the case where the exponents of the<br />

Weibull distributions are different from ass<strong>et</strong> to ass<strong>et</strong> and in the presence of <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s.<br />

In this param<strong>et</strong>eriz<strong>at</strong>ion, we tre<strong>at</strong> in d<strong>et</strong>ails the problem of risk minimiz<strong>at</strong>ion using the cumulants as<br />

measures of risks for a portfolio ma<strong>de</strong> of two ass<strong>et</strong>s and compare the theor<strong>et</strong>ical predictions with direct<br />

empirical d<strong>at</strong>a. Our exten<strong>de</strong>d formulas enable us to d<strong>et</strong>ermine analytically the conditions un<strong>de</strong>r which<br />

it is possible to “have your cake and e<strong>at</strong> it too”, i.e., to construct a portfolio with both larger r<strong>et</strong>urn and<br />

smaller “large risks”.<br />

1 Introduction<br />

The Capital Ass<strong>et</strong> Pricing Mo<strong>de</strong>l (CAPM) is still the most wi<strong>de</strong>ly used approach to rel<strong>at</strong>ive ass<strong>et</strong> evalu<strong>at</strong>ion,<br />

although its empirical roots are been found weaker and weaker in recent years. This ass<strong>et</strong> valu<strong>at</strong>ion mo<strong>de</strong>l<br />

<strong>de</strong>scribing the rel<strong>at</strong>ionship b<strong>et</strong>ween expected risk and expected r<strong>et</strong>urn for mark<strong>et</strong>able ass<strong>et</strong>s is strongly<br />

∗ We acknowledge helpful discussions and exchanges with J.V. An<strong>de</strong>rsen, J.P. Laurent and V. Pisarenko. We are gr<strong>at</strong>eful to<br />

participants of the workshop on “Multi-moment Capital Ass<strong>et</strong> Pricing Mo<strong>de</strong>ls and Rel<strong>at</strong>ed Topics”, ESCP-EAP European School<br />

of Management, Paris, April,19, 2002, and in particular to Philippe Spieser, for their comments. This work was partially supported<br />

by the James S. Mc Donnell Found<strong>at</strong>ion 21st century scientist award/studying complex system.<br />

1<br />

425


426 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

entangled with the Mean-Variance Portfolio Mo<strong>de</strong>l. In<strong>de</strong>ed both of them fundamentally rely on the <strong>de</strong>scription<br />

of the probability distribution function (pdf) of ass<strong>et</strong> r<strong>et</strong>urns in terms of Gaussian functions. The<br />

Mean-Variance <strong>de</strong>scription is thus <strong>at</strong> the basis of Markovitz’s portfolio theory (Markovitz 1959) and of the<br />

CAPM (see for instance (Merton 1990)).<br />

Otherwise, the d<strong>et</strong>ermin<strong>at</strong>ion of the risks and r<strong>et</strong>urns associ<strong>at</strong>ed with a given portfolio constituted of N<br />

ass<strong>et</strong>s is compl<strong>et</strong>ely embed<strong>de</strong>d in the knowledge of their multivari<strong>at</strong>e distribution of r<strong>et</strong>urns. In<strong>de</strong>ed, the<br />

<strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween random variables is compl<strong>et</strong>ely <strong>de</strong>scribed by their joint distribution. This remark<br />

entails the two major problems of portfolio theory: 1) d<strong>et</strong>ermine the multivari<strong>at</strong>e distribution function of<br />

ass<strong>et</strong> r<strong>et</strong>urns; 2) <strong>de</strong>rive from it useful measures of portfolio risks and use them to analyze and optimize<br />

portfolios.<br />

The variance (or vol<strong>at</strong>ility) of portfolio r<strong>et</strong>urns provi<strong>de</strong>s the simplest way to quantify its fluctu<strong>at</strong>ions and<br />

is <strong>at</strong> the fund<strong>at</strong>ion of the (Markovitz 1959)’s portfolio selection theory. Non<strong>et</strong>heless, the variance of a<br />

portfolio offers only a limited quantific<strong>at</strong>ion of incurred risks (in terms of fluctu<strong>at</strong>ions), as the empirical<br />

distributions of r<strong>et</strong>urns have “f<strong>at</strong> tails” (Lux 1996, Gopikrishnan <strong>et</strong> al. 1998, among many others) and the<br />

<strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween ass<strong>et</strong>s are only imperfectly accounted for by the covariance m<strong>at</strong>rix (Litterman and<br />

Winkelmann 1998). It is thus essential to extend portfolio theory and the CAPM to tackle these empirical<br />

facts.<br />

The Value-<strong>at</strong>-Risk (Jorion 1997) and many other measures of risks (Artzner <strong>et</strong> al. 1997, Sorn<strong>et</strong>te 1998,<br />

Artzner <strong>et</strong> al. 1999, Bouchaud <strong>et</strong> al. 1998, Sorn<strong>et</strong>te <strong>et</strong> al. 2000b) have then been <strong>de</strong>veloped to account for the<br />

larger moves allowed by non-Gaussian distributions and non-linear correl<strong>at</strong>ions but they mainly allow for the<br />

assessment of down-si<strong>de</strong> risks. Here, we consi<strong>de</strong>r both-si<strong>de</strong> risk and <strong>de</strong>fine general measures of fluctu<strong>at</strong>ions.<br />

It is the first goal of this article. In<strong>de</strong>ed, consi<strong>de</strong>ring the minimum s<strong>et</strong> of properties a fluctu<strong>at</strong>ion measure<br />

must fulfil, we characterize these measures. In particular, we show th<strong>at</strong> any absolute central moments and<br />

some cumulants s<strong>at</strong>isfy these requirement as well as do any combin<strong>at</strong>ion of these quantities. Moreover,<br />

the weights involved in these combin<strong>at</strong>ions can be interpr<strong>et</strong>ed in terms of the portfolio manager’s aversion<br />

against large fluctu<strong>at</strong>ions.<br />

Once the <strong>de</strong>finition of the fluctu<strong>at</strong>ion measures have been s<strong>et</strong>, it is possible to classify the ass<strong>et</strong>s and portfolios<br />

using for instance a risk adjustment m<strong>et</strong>hod (Sharpe 1994, Dowd 2000) and to <strong>de</strong>velop a portfolio<br />

selection and optimiz<strong>at</strong>ion approach. It is the second goal of this article.<br />

Then a new mo<strong>de</strong>l of mark<strong>et</strong> equilibrium can be <strong>de</strong>rived, which generalizes the usual Capital Ass<strong>et</strong> Pricing<br />

Mo<strong>de</strong>l (CAPM). This is the third goal of our paper. This improvement is necessary since, although the use<br />

of the CAPM is still wi<strong>de</strong>ly spread, its empirical justific<strong>at</strong>ion has been found less and less convincing in the<br />

past years (Lim 1989, Harvey and Siddique 2000).<br />

The last goal of this article is to present an efficient param<strong>et</strong>ric m<strong>et</strong>hod allowing for the estim<strong>at</strong>ion of the<br />

centered moments and cumulants, based upon a maximum entropy principle. This param<strong>et</strong>eriz<strong>at</strong>ion of<br />

the problem is necessary in or<strong>de</strong>r to obtain accur<strong>at</strong>e estim<strong>at</strong>es of the high or<strong>de</strong>r moment-based quantities<br />

involved the portfolio optimiz<strong>at</strong>ion problem with our generalized measures of fluctu<strong>at</strong>ions.<br />

The paper is organized as follows.<br />

Section 2 presents a new s<strong>et</strong> of consistent measures of risks, in terms of the semi-invariants of pdf’s, such as<br />

the centered moments and the cumulants of the portfolio distribution of r<strong>et</strong>urns, for example.<br />

Section 3 <strong>de</strong>rives the generalized efficient frontiers, based on these novel measures of risks. Both cases with<br />

and without risk-free ass<strong>et</strong> are analyzed.<br />

Section 4 offers a generaliz<strong>at</strong>ion of the Sharpe r<strong>at</strong>io and thus provi<strong>de</strong>s new tools to classify ass<strong>et</strong>s with<br />

respect to their risk adjusted performance. In particular, we show th<strong>at</strong> this classific<strong>at</strong>ion may <strong>de</strong>pend on the<br />

2


choosen risk measure.<br />

Section 5 presents the generalized CAPM based on these new measures of risks, both in the cases of homogeneous<br />

and h<strong>et</strong>erogeneous agents.<br />

Section 6 introduces a novel general param<strong>et</strong>eriz<strong>at</strong>ion of the multivari<strong>at</strong>e distribution of r<strong>et</strong>urns based on two<br />

steps: (i) the projection of the empirical marginal distributions onto Gaussian laws via nonlinear mappings;<br />

(ii) the use of an entropy maximiz<strong>at</strong>ion to construct the corresponding most parsimonious represent<strong>at</strong>ion of<br />

the multivari<strong>at</strong>e distribution.<br />

Section 7 offers a specific param<strong>et</strong>eriz<strong>at</strong>ion of marginal distributions in terms of so-called modified Weibull<br />

distributions, which are essentially exponential of minus a power law. Notwithstanding their possible f<strong>at</strong>-tail<br />

n<strong>at</strong>ure, all their moments and cumulants are finite and can be calcul<strong>at</strong>ed. We present empirical calibr<strong>at</strong>ion<br />

of the two key param<strong>et</strong>ers of the modified Weibull distribution, namely the exponent c and the characteristic<br />

scale χ.<br />

Section 8 provi<strong>de</strong>s the analytical expressions of the cumulants of the distribution of portfolio r<strong>et</strong>urns for the<br />

param<strong>et</strong>eriz<strong>at</strong>ion of marginal distributions in terms of so-called modified Weibull distributions, introduced<br />

in section 6. Empirical tests comparing the direct numerical evalu<strong>at</strong>ion of the cumulants of financial time<br />

series to the values predicted from our analytical formulas find a good consistency.<br />

Section 9 uses these two s<strong>et</strong>s of results to illustr<strong>at</strong>e how portfolio optimiz<strong>at</strong>ion works in this context. The<br />

main novel result is an analytical un<strong>de</strong>rstanding of the conditions un<strong>de</strong>r which it is possible to simultaneously<br />

increase the portfolio r<strong>et</strong>urn and <strong>de</strong>creases its large risks quantified by large-or<strong>de</strong>r cumulants. It thus appears<br />

th<strong>at</strong> the multidimensional n<strong>at</strong>ure of risks allows one to break the stalem<strong>at</strong>e of no b<strong>et</strong>ter r<strong>et</strong>urn without more<br />

risks, for some special kind of r<strong>at</strong>ional agents.<br />

Section 10 conclu<strong>de</strong>s.<br />

Before proceeding with the present<strong>at</strong>ion of our results, we s<strong>et</strong> the not<strong>at</strong>ions to <strong>de</strong>rive the basic problem<br />

addressed in this paper, namely to study the distribution of the sum of weighted random variables with<br />

arbitrary marginal distributions and <strong>de</strong>pen<strong>de</strong>nce. Consi<strong>de</strong>r a portfolio with ni shares of ass<strong>et</strong> i of price pi(0)<br />

<strong>at</strong> time t = 0 whose initial wealth is<br />

N<br />

W (0) = nipi(0) . (1)<br />

A time τ l<strong>at</strong>er, the wealth has become W (τ) = N<br />

i=1 nipi(τ) and the wealth vari<strong>at</strong>ion is<br />

where<br />

δτ W ≡ W (τ) − W (0) =<br />

N<br />

i=1<br />

wi =<br />

i=1<br />

nipi(0) pi(τ) − pi(0)<br />

pi(0)<br />

nipi(0)<br />

N<br />

j=1 njpj(0)<br />

= W (0)<br />

427<br />

N<br />

wiri(t, τ), (2)<br />

is the fraction in capital invested in the ith ass<strong>et</strong> <strong>at</strong> time 0 and the r<strong>et</strong>urn ri(t, τ) b<strong>et</strong>ween time t − τ and t of<br />

ass<strong>et</strong> i is <strong>de</strong>fined as:<br />

ri(t, τ) = pi(t) − pi(t − τ)<br />

.<br />

pi(t − τ)<br />

(4)<br />

Using the <strong>de</strong>finition (4), this justifies us to write the r<strong>et</strong>urn Sτ of the portfolio over a time interval τ as the<br />

weighted sum of the r<strong>et</strong>urns ri(τ) of the ass<strong>et</strong>s i = 1, ..., N over the time interval τ<br />

Sτ = δτ W<br />

W (0) =<br />

3<br />

i=1<br />

(3)<br />

N<br />

wi ri(τ) . (5)<br />

i=1


428 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

In the sequel, we shall thus consi<strong>de</strong>r ass<strong>et</strong> r<strong>et</strong>urns as the fundamental variables (<strong>de</strong>noted xi or Xi in the<br />

sequel) and study their aggreg<strong>at</strong>ion properties, namely how the distribution of portfolio r<strong>et</strong>urn equal to their<br />

weighted sum <strong>de</strong>rives for their multivariable distribution. We shall consi<strong>de</strong>r a single time scale τ which<br />

can be chosen arbitrarily, say equal to one day. We shall thus drop the <strong>de</strong>pen<strong>de</strong>nce on τ, un<strong>de</strong>rstanding<br />

implicitely th<strong>at</strong> all our results hold for r<strong>et</strong>urns estim<strong>at</strong>ed over the time step τ.<br />

2 Measuring large risks of a portfolio<br />

The question on how to assess risk is recurrent in finance (and in many other fields) and has not y<strong>et</strong> received<br />

a general solution. Since the middle of the twenti<strong>et</strong>h century, several p<strong>at</strong>hs have been explored. The pioneering<br />

work by (Von Neuman and Morgenstern 1947) has given birth to the m<strong>at</strong>hem<strong>at</strong>ical <strong>de</strong>finition of the<br />

expected utility function which provi<strong>de</strong>s interesting insights on the behavior of a r<strong>at</strong>ional economic agent<br />

and formalized the concept of risk aversion. Based upon the properties of the utility function, (Rothschild<br />

and Stiglitz 1970) and (Rothschild and Stiglitz 1971) have <strong>at</strong>tempted to <strong>de</strong>fine the notion of increasing risks.<br />

But, as revealed by (Allais 1953, Allais 1990), empiric investig<strong>at</strong>ions has proven th<strong>at</strong> the postul<strong>at</strong>es chosen<br />

by (Von Neuman and Morgenstern 1947) are actually often viol<strong>at</strong>ed. Many generaliz<strong>at</strong>ions have been<br />

proposed for curing the so-called Allais’ Paradox, but up to now, no generally accepted procedure has been<br />

found in this way.<br />

Recently, a theory due to (Artzner <strong>et</strong> al. 1997, Artzner <strong>et</strong> al. 1999) and its generaliz<strong>at</strong>ion by (Föllmer and<br />

Schied 2002a, Föllmer and Schied 2002b), have appeared. Based on a series of postul<strong>at</strong>es th<strong>at</strong> are quite<br />

n<strong>at</strong>ural, this theory allows one to build coherent (convex) measures of risks. In fact, this theory seems welladapted<br />

to the assessment of the nee<strong>de</strong>d economic capital, th<strong>at</strong> is, of the fraction of capital a company must<br />

keep as risk-free ass<strong>et</strong>s in or<strong>de</strong>r to face its commitments and thus avoid ruin. However, for the purpose of<br />

quantifying the fluctu<strong>at</strong>ions of the ass<strong>et</strong> r<strong>et</strong>urns and of <strong>de</strong>veloping a theory of portfolios, this approach does<br />

not seem to be oper<strong>at</strong>ional. Here, we shall r<strong>at</strong>her revisit (Markovitz 1959)’s approach to investig<strong>at</strong>e how<br />

its extension to higher-or<strong>de</strong>r moments or cumulants, and any combin<strong>at</strong>ion of these quantities, can be used<br />

oper<strong>at</strong>ionally to account for large risks.<br />

2.1 Why do higher moments allow to assess larger risks?<br />

In principle, the compl<strong>et</strong>e <strong>de</strong>scription of the fluctu<strong>at</strong>ions of an ass<strong>et</strong> <strong>at</strong> a given time scale is given by the<br />

knowledge of the probability distribution function (pdf) of its r<strong>et</strong>urns. The pdf encompasses all the risk<br />

dimensions associ<strong>at</strong>ed with this ass<strong>et</strong>. Unfortun<strong>at</strong>ely, it is impossible to classify or or<strong>de</strong>r the risks <strong>de</strong>scribed<br />

by the entire pdf, except in special cases where the concept of stochastic dominance applies. Therefore, the<br />

whole pdf can not provi<strong>de</strong> an a<strong>de</strong>qu<strong>at</strong>e measure of risk, embodied by a single variable. In or<strong>de</strong>r to perform<br />

a selection among a bask<strong>et</strong> of ass<strong>et</strong>s and construct optimal portfolios, one needs measures given as real<br />

numbers, not functions, which can be or<strong>de</strong>red according to the n<strong>at</strong>ural or<strong>de</strong>ring of real numbers on the line.<br />

In this vein, (Markovitz 1959) has proposed to summarize the risk of an ass<strong>et</strong> by the variance of its pdf of<br />

r<strong>et</strong>urns (or equivalently by the corresponding standard <strong>de</strong>vi<strong>at</strong>ion). It is clear th<strong>at</strong> this <strong>de</strong>scription of risks is<br />

fully s<strong>at</strong>isfying only for ass<strong>et</strong>s with Gaussian pdf’s. In any other case, the variance generally provi<strong>de</strong>s a very<br />

poor estim<strong>at</strong>e of the real risk. In<strong>de</strong>ed, it is a well-established empirical fact th<strong>at</strong> the pdf’s of ass<strong>et</strong> r<strong>et</strong>urns<br />

has f<strong>at</strong> tails (Lux 1996, Pagan 1996, Gopikrishnan <strong>et</strong> al. 1998), so th<strong>at</strong> the Gaussian approxim<strong>at</strong>ion un<strong>de</strong>restim<strong>at</strong>es<br />

significantly the large prices movements frequently observed on stock mark<strong>et</strong>s. Consequently, the<br />

variance can not be taken as a suitable measure of risks, since it only accounts for the smallest contributions<br />

to the fluctu<strong>at</strong>ions of the ass<strong>et</strong>s r<strong>et</strong>urns.<br />

4


The variance of the r<strong>et</strong>urn X of an ass<strong>et</strong> involves its second moment E[X2 <br />

] and, more precisely, is equal<br />

to its second centered moment (or moment about the mean) E (X − E[X]) 2<br />

. Thus, the weight of a given<br />

fluctu<strong>at</strong>ion X entering in the <strong>de</strong>finition of the variance of the r<strong>et</strong>urns is proportional to its square. Due to the<br />

<strong>de</strong>cay of the pdf of X for large X boun<strong>de</strong>d from above by ∼ 1/|X| 1+α with α > 2, the largest fluctu<strong>at</strong>ions<br />

do not contribute significantly to this expect<strong>at</strong>ion. To increase their contributions, and in this way to account<br />

for the largest fluctu<strong>at</strong>ions, it is n<strong>at</strong>ural to invoke higher or<strong>de</strong>r moments of or<strong>de</strong>r n > 2. The large n is, the<br />

larger is the contribution of the rare and large r<strong>et</strong>urns in the tail of the pdf. This phenomenon is <strong>de</strong>monstr<strong>at</strong>ed<br />

in figure 1, where we can observe the evolution of the quantity x n · P (x) for n = 1, 2 and 4, where P (x), in<br />

this example, is the standard exponential distribution e −x . The expect<strong>at</strong>ion E[X n ] is then simply represented<br />

geom<strong>et</strong>rically as equal to the area below the curve x n ·P (x). These curves provi<strong>de</strong> an intuitive illustr<strong>at</strong>ion of<br />

the fact th<strong>at</strong> the main contributions to the moment E[X n ] of or<strong>de</strong>r n come from values of X in the vicinity<br />

of the maximum of x n · P (x) which increases fast with the or<strong>de</strong>r n of the moment we consi<strong>de</strong>r, all the more<br />

so, the f<strong>at</strong>ter is the tail of the pdf of the r<strong>et</strong>urns X. For the exponential distribution chosen to construct figure<br />

1, the value of x corresponding to the maximum of x n · P (x) is exactly equal to n. Thus, increasing the<br />

or<strong>de</strong>r of the moment allows one to sample larger fluctu<strong>at</strong>ions of the ass<strong>et</strong> prices.<br />

2.2 Quantifying the fluctu<strong>at</strong>ions of an ass<strong>et</strong><br />

L<strong>et</strong> us now examine wh<strong>at</strong> should be the properties th<strong>at</strong> coherent measures of risks adapted to the portfolio<br />

problem must s<strong>at</strong>isfy in or<strong>de</strong>r to best quantify the ass<strong>et</strong> price fluctu<strong>at</strong>ions. L<strong>et</strong> us consi<strong>de</strong>r an ass<strong>et</strong> <strong>de</strong>noted<br />

X, and l<strong>et</strong> G be the s<strong>et</strong> of all the risky ass<strong>et</strong>s available on the mark<strong>et</strong>. Its profit and loss distribution is the<br />

distribution of δX = X(τ) − X(0), while the r<strong>et</strong>urn distribution is given by the distribution of X(τ)−X(0)<br />

X(0) .<br />

The risk measures will be <strong>de</strong>fined for the profit and loss distributions and then shown to be equivalent to<br />

another <strong>de</strong>finition applied to the r<strong>et</strong>urn distribution.<br />

Our first requirement is th<strong>at</strong> the risk measure ρ(·), which is a functional on G, should always remain positive<br />

AXIOM 1 ∀X ∈ G, ρ(δX) ≥ 0 ,<br />

where the equality holds if and only if X is certain. L<strong>et</strong> us now add to this ass<strong>et</strong> a given amount a invested<br />

in the risk free-ass<strong>et</strong> whose r<strong>et</strong>urn is µ0 (with therefore no randomness in its price trajectory) and <strong>de</strong>fine the<br />

new ass<strong>et</strong> Y = X +a. Since a is non-random, the fluctu<strong>at</strong>ions of X and Y are the same. Thus, it is <strong>de</strong>sirable<br />

th<strong>at</strong> ρ enjoys the property of transl<strong>at</strong>ional invariance, wh<strong>at</strong>ever the ass<strong>et</strong> X and the non-random coefficient<br />

a may be:<br />

AXIOM 2 ∀X ∈ G, ∀a ∈ R, ρ(δX + µ · a) = ρ(δX).<br />

We also require th<strong>at</strong> our risk measure increases with the quantity of ass<strong>et</strong>s held in the portfolio. A priori,<br />

one should expect th<strong>at</strong> the risk of a position is proportional to its size. In<strong>de</strong>ed, the fluctu<strong>at</strong>ions associ<strong>at</strong>ed<br />

with the variable 2 · X are n<strong>at</strong>urally twice larger as the fluctu<strong>at</strong>ions of X. This is true as long as we can<br />

consi<strong>de</strong>r th<strong>at</strong> a large position can be liquid<strong>at</strong>ed as easily as a smaller one. This is obviously not true, due<br />

to the limited liquidity of real mark<strong>et</strong>s. Thus, a large position in a given ass<strong>et</strong> is more risky than the sum<br />

of the risks associ<strong>at</strong>ed with the many smaller positions which add up to the large position. To account for<br />

this point, we assume th<strong>at</strong> ρ <strong>de</strong>pends on the size of the position in the same manner for all ass<strong>et</strong>s. This<br />

assumption is slightly restrictive but not unrealistic for companies with comparable properties in terms of<br />

mark<strong>et</strong> capitaliz<strong>at</strong>ion or sector of activity. This requirement reads<br />

AXIOM 3 ∀X ∈ G, ∀λ ∈ R+, ρ(λ · δX) = f(λ) · ρ(δX),<br />

5<br />

429


430 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

where the function f : R+ −→ R+ is increasing and convex to account for liquidity risk. In fact, it is<br />

straightforward to show 1 th<strong>at</strong> the only functions st<strong>at</strong>istying this axiom are the fonctions fα(λ) = λ α with<br />

α ≥ 1, so th<strong>at</strong> axiom 3 can be reformul<strong>at</strong>ed in terms of positive homogeneity of <strong>de</strong>gree α:<br />

AXIOM 4<br />

∀X ∈ G, ∀λ ∈ R+, ρ(λ · δX) = λ α · ρ(δX). (6)<br />

Note th<strong>at</strong> the case of liquid mark<strong>et</strong>s is recovered by α = 1 for which the risk is directly proportionnal to the<br />

size of the position.<br />

These axioms, which <strong>de</strong>fine our risk measures for profit and loss can easily be exten<strong>de</strong>d to the r<strong>et</strong>urns of<br />

the ass<strong>et</strong>s. In<strong>de</strong>ed, the r<strong>et</strong>urn is nothing but the profit and loss divi<strong>de</strong>d by the initial value X(0) of the ass<strong>et</strong>.<br />

One can thus easily check th<strong>at</strong> the risk <strong>de</strong>fined on the profit and loss distribution is X(0) α times the risk<br />

<strong>de</strong>fined on the r<strong>et</strong>urn distribution. In the sequel, we will only consi<strong>de</strong>r this l<strong>at</strong>er <strong>de</strong>finition, and, to simplify<br />

the not<strong>at</strong>ions since we will only consi<strong>de</strong>r the r<strong>et</strong>urns and not the profit and loss, the not<strong>at</strong>ion X will be used<br />

to <strong>de</strong>note the ass<strong>et</strong> and its r<strong>et</strong>urn as well.<br />

We can remark th<strong>at</strong> the risk measures ρ enjoying the two properties <strong>de</strong>fined by the axioms 2 and 4 are known<br />

as the semi-invariants of the distribution of the profit and loss / r<strong>et</strong>urns of X (see (Stuart and Ord 1994, p<br />

86-87)). Among the large familly of semi-invariants, we can cite the well-known centered moments and<br />

cumulants of X.<br />

2.3 Examples<br />

The s<strong>et</strong> of risk measures obeying axioms 1-4 is huge since it inclu<strong>de</strong>s all the homogeneous functionals of<br />

(X − E[X]), for instance. The centered moments (or moments about the mean) and the cumulants are two<br />

well-known classes of semi-invariants. Then, a given value of α can be seen as nothing but a specific choice<br />

of the or<strong>de</strong>r n of the centered moments or of the cumulants. In this case, our risk measure <strong>de</strong>fined via these<br />

semi-invariants fulfills the two following conditions:<br />

ρ(X + µ) = ρ(X), (7)<br />

ρ(λ · X) = λ n · ρ(X). (8)<br />

In or<strong>de</strong>r to s<strong>at</strong>isfy the positivity condition (axiom 1), we need to restrict the s<strong>et</strong> of values taken by n. By<br />

construction, the centered moments of even or<strong>de</strong>r are always positive while the odd or<strong>de</strong>r centered moments<br />

can be neg<strong>at</strong>ive. Thus, only the even or<strong>de</strong>r centered moments are acceptable risk measures. The situ<strong>at</strong>ion<br />

is not so clear for the cumulants, since the even or<strong>de</strong>r cumulants, as well as the odd or<strong>de</strong>r ones, can be<br />

neg<strong>at</strong>ive. In full generality, only the centered moments provi<strong>de</strong> reasonable risk measures s<strong>at</strong>ifying our<br />

axioms. However, for a large class of distributions, even or<strong>de</strong>r cumulants remain positive, especially for<br />

f<strong>at</strong> tail distributions (eventhough there are simple but somewh<strong>at</strong> artificial counter-examples). Therefore,<br />

cumulants of even or<strong>de</strong>r can be useful risk measures when restricted to these distributions.<br />

In<strong>de</strong>ed, the cumulants enjoy a property which can be consi<strong>de</strong>red as a n<strong>at</strong>ural requirement for a risk measure.<br />

It can be <strong>de</strong>sirable th<strong>at</strong> the risk associ<strong>at</strong>ed with a portfolio ma<strong>de</strong> of in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s is exactly the sum<br />

of the risk associ<strong>at</strong>ed with each individual ass<strong>et</strong>. Thus, given N in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s {X1, · · · , XN}, and the<br />

portfolio SN = X1 + · · · + XN, we wish to have<br />

ρn(SN) = ρn(X1) + · + ρn(XN) . (9)<br />

1 using the trick ρ(λ1λ2 · δX) = f(λ1) · ρ(λ2 · δX) = f(λ1) · f(λ2) · ρ(δX) = f(λ1 · λ2) · ρ(δX) leading to f(λ1 · λ2) =<br />

f(λ1) · f(λ2). The unique increasing convex solution of this functional equ<strong>at</strong>ion is fα(λ) = λ α with α ≥ 1.<br />

6


This property is verified for all cumulants while is not true for centered moments. In addition, as seen from<br />

their <strong>de</strong>finition in terms of the characteristic function (63), cumulants of or<strong>de</strong>r larger than 2 quantify <strong>de</strong>vi<strong>at</strong>ion<br />

from the Gaussian law, and thus large risks beyond the variance (equal to the second-or<strong>de</strong>r cumulant).<br />

Thus, centered moments of even or<strong>de</strong>rs possess all the minimal properties required for a suitable portfolio<br />

risk measure. Cumulants fulfill these requirement only for well behaved distributions, but have an additional<br />

advantage compared to the centered moments, th<strong>at</strong> is, they fulfill the condition (9). For these reasons, we<br />

shall consi<strong>de</strong>r below both the centered moments and the cumulants.<br />

In fact, we can be more general. In<strong>de</strong>ed, as we have written, the centered moments or the cumulants of or<strong>de</strong>r<br />

n are homogeneous functions of or<strong>de</strong>r n, and due to the positivity requirement, we have to restrict ourselves<br />

to even or<strong>de</strong>r centered moments and cumulants. Thus, only homogeneous functions of or<strong>de</strong>r 2n can be<br />

consi<strong>de</strong>red. Actually, this restrictive constraint can be relaxed by recalling th<strong>at</strong>, given any homogeneous<br />

function f(·) of or<strong>de</strong>r p, the function f(·) q is also homogeneous of or<strong>de</strong>r p · q. This allows us to <strong>de</strong>couple<br />

the or<strong>de</strong>r of the moments to consi<strong>de</strong>r, which quantifies the impact of the large fluctu<strong>at</strong>ions, from the influence<br />

of the size of the positions held, measured by the <strong>de</strong>gres of homogeneity of ρ. Thus, consi<strong>de</strong>ring any even<br />

or<strong>de</strong>r centered moments, we can build a risk measure ρ(X) = E (X − E[X]) 2n α/2n which account for<br />

the fluctu<strong>at</strong>ions measured by the centered moment of or<strong>de</strong>r 2n but with a <strong>de</strong>gree of homogeneity equal to α.<br />

A further generaliz<strong>at</strong>ion is possible to odd-or<strong>de</strong>r moments. In<strong>de</strong>ed, the absolute centered moments s<strong>at</strong>isfy<br />

our three axioms for any odd or even or<strong>de</strong>r. We can go one step further and use non-integer or<strong>de</strong>r absolute<br />

centered moments, and <strong>de</strong>fine the more general risk measure<br />

where γ <strong>de</strong>notes any positve real number.<br />

431<br />

ρ(X) = E [|X − E[X]| γ ] α/γ , (10)<br />

These s<strong>et</strong> of risk measures are very interesting since, due to the Minkowsky inegality, they are convex for<br />

any α and γ larger than 1 :<br />

ρ(u · X + (1 − u) · Y ) ≤ u · ρ(X) + (1 − u) · ρ(Y ), (11)<br />

which ensures th<strong>at</strong> aggreg<strong>at</strong>ing two risky ass<strong>et</strong>s lead to diversify their risk. In fact, in the special case γ = 1,<br />

these measures enjoy the stronger sub-additivity property.<br />

Finally, we should stress th<strong>at</strong> any discr<strong>et</strong>e or continuous (positive) sum of these risk measures, with the same<br />

<strong>de</strong>gree of homogeneity is again a risk measure. This allows us to <strong>de</strong>fine “spectral measures of fluctu<strong>at</strong>ions”<br />

in the same spirit as in (Acerbi 2002):<br />

<br />

ρ(X) = dγ φ(γ) E [(X − E[X]) γ ] α/γ , (12)<br />

where φ is a positive real valued function <strong>de</strong>fined on any subinterval of [1, ∞) such th<strong>at</strong> the integral in<br />

(12) remains finite. It is interesting to restrict oneself to the functions φ whose integral sums up to one:<br />

dγ φ(γ) = 1, which is always possible, up to a renormaliz<strong>at</strong>ion. In<strong>de</strong>ed, in such a case, φ(γ) represents<br />

the rel<strong>at</strong>ive weight <strong>at</strong>tributed to the fluctu<strong>at</strong>ions measured by a given moment or<strong>de</strong>r. Thus, the function φ<br />

can be consi<strong>de</strong>red as a measure of the risk aversion of the risk manager with respect to the large fluctu<strong>at</strong>ions.<br />

L<strong>et</strong> us stress th<strong>at</strong> the variance, originally used in (Markovitz 1959)’s portfolio theory, is nothing but the<br />

second centered moment, also equal to the second or<strong>de</strong>r cumulant (the three first cumulants and centered<br />

moments are equal). Therefore, a portfolio theory based on the centered moments or on the cumulants<br />

autom<strong>at</strong>ically contain (Markovitz 1959)’s theory as a special case, and thus offers a n<strong>at</strong>ural generaliz<strong>at</strong>ion<br />

emcompassing large risks of this masterpiece of the financial science. It also embodies several other generaliz<strong>at</strong>ions<br />

where homogeneous measures of risks are consi<strong>de</strong>red, a for instance in (Hwang and S<strong>at</strong>chell 1999).<br />

7


432 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

3 The generalized efficient frontier and some of its properties<br />

We now address the problem of the portfolio selection and optimiz<strong>at</strong>ion, based on the risk measures introduced<br />

in the previous section. As we have already seen, there is a large choice of relevant risk measures<br />

from which the portfolio manager is free to choose as a function of his own aversion to small versus large<br />

risks. A strong risk aversion to large risks will lead him to choose a risk measure which puts the emphasis<br />

on the large fluctu<strong>at</strong>ions. The simplest examples of such risk measures are provi<strong>de</strong>d by the high-or<strong>de</strong>r centered<br />

moments or cumulants. Obviously, the utility function of the fund manager plays a central role in his<br />

choice of the risk measure. The rel<strong>at</strong>ion b<strong>et</strong>ween the central moments and the utility function has already<br />

been un<strong>de</strong>rlined by several authors such as (Rubinstein 1973) or (Jurczenko and Maill<strong>et</strong> 2002), who have<br />

shown th<strong>at</strong> an economic agent with a quartic utility function is n<strong>at</strong>urally sensitive to the first four moments<br />

of his expected wealth distribution. But, as stressed before, we do not wish to consi<strong>de</strong>r the expected utility<br />

formalism since our goal, in this paper, is not to study the un<strong>de</strong>rlying behavior leading to the choice of any<br />

risk measure.<br />

The choice of the risk measure also <strong>de</strong>pends upon the time horizon of investment. In<strong>de</strong>ed, as the time<br />

scale increases, the distribution of ass<strong>et</strong> r<strong>et</strong>urns progressively converges to the Gaussian pdf, so th<strong>at</strong> only<br />

the variance remains relevant for very long term investment horizons. However, for shorter time horizons,<br />

say, for portfolio rebalanced <strong>at</strong> a weekly, daily or intra-day time scales, choosing a risk measure putting the<br />

emphasis on the large fluctu<strong>at</strong>ions, such as the centered moments µ6 or µ8 or the cumulants C6 or C8 (or of<br />

larger or<strong>de</strong>rs), may be necessary to account for the “wild” price fluctu<strong>at</strong>ions usually observed for such short<br />

time scales.<br />

Our present approach uses a single time scale over which the r<strong>et</strong>urns are estim<strong>at</strong>ed, and is thus restricted<br />

to portfolio selection with a fixed investment horizon. Extensions to a portofolio analysis and optimiz<strong>at</strong>ion<br />

in terms of high-or<strong>de</strong>r moments and cumulants performed simultaneously over different time scales can be<br />

found in (Muzy <strong>et</strong> al. 2001).<br />

3.1 Efficient frontier without risk-free ass<strong>et</strong><br />

L<strong>et</strong> us consi<strong>de</strong>r N risky ass<strong>et</strong>s, <strong>de</strong>noted by X1, · · · , XN. Our goal is to find the best possible alloc<strong>at</strong>ion, given<br />

a s<strong>et</strong> of constraints.The portfolio optimiz<strong>at</strong>ion generalizing the approach of (Sorn<strong>et</strong>te <strong>et</strong> al. 2000a, An<strong>de</strong>rsen<br />

and Sorn<strong>et</strong>te 2001) corresponds to accounting for large fluctu<strong>at</strong>ions of the ass<strong>et</strong>s through the risk measures<br />

introduced above in the presence of a constraint on the r<strong>et</strong>urn as well as the “no-short sells” constraint:<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

inf wi∈[0,1] ρα({wi})<br />

<br />

i≥1 wi = 1<br />

<br />

i≥1 wiµ(i) = µ ,<br />

wi ≥ 0, ∀i > 0,<br />

where wi is the weight of Xi and µ(i) its expected r<strong>et</strong>urn. In all the sequel, the subscript α in ρα will refer<br />

to the <strong>de</strong>gree of homogeneity of the risk measure.<br />

This problem cannot be solved analytically (except in the Markovitz’s case where the risk measure is given<br />

by the variance). We need to perform numerical calcul<strong>at</strong>ions to obtain the shape of the efficient frontier.<br />

Non<strong>et</strong>heless, when the ρα’s <strong>de</strong>notes the centered moments or any convex risk measure, we can assert th<strong>at</strong><br />

this optimiz<strong>at</strong>ion problem is a convex optimiz<strong>at</strong>ion problem and th<strong>at</strong> it admits one and only one solution<br />

which can be easily d<strong>et</strong>ermined by standard numerical relax<strong>at</strong>ion or gradient m<strong>et</strong>hods.<br />

As an example, we have represented In figure 2, the mean-ρα efficient frontier for a portfolio ma<strong>de</strong> of seventeen<br />

ass<strong>et</strong>s (see appendix A for d<strong>et</strong>ails) in the plane (µ, ρ 1/α<br />

α ), where ρα represents the centered moments<br />

8<br />

(13)


µn=α of or<strong>de</strong>r n = 2, 4, 6 and 8. The efficient frontier is concave, as expected from the n<strong>at</strong>ure of the optimiz<strong>at</strong>ion<br />

problem (13). For a given value of the expected r<strong>et</strong>urn µ, we observe th<strong>at</strong> the amount of risk<br />

measured by µ 1/n<br />

n increases with n, so th<strong>at</strong> there is an additional price to pay for earning more: not only<br />

the µ2-risk increases, as usual according to Markowitz’s theory, but the large risks increases faster, the more<br />

so, the larger n is. This means th<strong>at</strong>, in this example, the large risks increases more rapidly than the small<br />

risks, as the required r<strong>et</strong>urn increases. This is an important empirical result th<strong>at</strong> has obvious implic<strong>at</strong>ions for<br />

portfolio selection and risk assessment. For instance, l<strong>et</strong> us consi<strong>de</strong>r an efficient portfolio whose expected<br />

(daily) r<strong>et</strong>urn equals 0.12%, which gives an annualized r<strong>et</strong>urn equal to 30%. We can see in table 1 th<strong>at</strong> the<br />

typical fluctu<strong>at</strong>ions around the expected r<strong>et</strong>urn are about twice larger when measured by µ6 compared with<br />

µ2 and th<strong>at</strong> they are 1.5 larger when measured with µ8 compared with µ4.<br />

3.2 Efficient frontier with a risk-free ass<strong>et</strong><br />

L<strong>et</strong> us now assume the existence of a risk-free ass<strong>et</strong> X0. The optimiz<strong>at</strong>ion problem with the same s<strong>et</strong> of<br />

constraints as previoulsy can be written as:<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

inf wi∈[0,1] ρα({wi})<br />

<br />

i≥0 wi = 1<br />

<br />

i≥0 wiµ(i) = µ ,<br />

wi ≥ 0, ∀i > 0,<br />

This optimiz<strong>at</strong>ion problem can be solved exactly. In<strong>de</strong>ed, due to existence of a risk-free ass<strong>et</strong>, the normaliz<strong>at</strong>ion<br />

condition wi = 1 is not-constraining since one can always adjust, by lending or borrowing money,<br />

the fraction w0 to a value s<strong>at</strong>isfying the normaliz<strong>at</strong>ion condition. Thus, as shown in appendix B, the efficient<br />

frontier is a straight line in the plane (µ, ρα 1/α ), with positive slope and whose intercept is given by the<br />

value of the risk-free interest r<strong>at</strong>e:<br />

µ = µ0 + ξ · ρα 1/α , (15)<br />

where ξ is a coefficient given explicitely below. This result is very n<strong>at</strong>ural when ρα <strong>de</strong>notes the variance,<br />

since it is then nothing but (Markovitz 1959)’s result. But in addition, it shows th<strong>at</strong> the mean-variance result<br />

can be generalized to every mean-ρα optimal portfolios.<br />

We present in figure 3 the results given by numerical simul<strong>at</strong>ions. The s<strong>et</strong> of ass<strong>et</strong>s is the same as before and<br />

the risk-free interest r<strong>at</strong>e has been s<strong>et</strong> to 5% a year. The optimiz<strong>at</strong>ion procedure has been performed using<br />

a gen<strong>et</strong>ic algorithm on the risk measure given by the centered moments µ2, µ4, µ6 and µ8. As expected,<br />

we observe three increasing straight lines, whose slopes monotonically <strong>de</strong>cay with the or<strong>de</strong>r of the centered<br />

moment un<strong>de</strong>r consi<strong>de</strong>r<strong>at</strong>ion. Below, we will discuss this property in gre<strong>at</strong>er d<strong>et</strong>ail.<br />

3.3 Two funds separ<strong>at</strong>ion theorem<br />

The two funds separ<strong>at</strong>ion theorem is a well-known result associ<strong>at</strong>ed with the mean-variance efficient portfolios.<br />

It results from the concavity of the Markovitz’s efficient frontier for portfolios ma<strong>de</strong> of risky ass<strong>et</strong>s<br />

only. It st<strong>at</strong>es th<strong>at</strong>, if the investors can choose b<strong>et</strong>ween a s<strong>et</strong> of risky ass<strong>et</strong>s and a risk-free ass<strong>et</strong>, they invest<br />

a fraction w0 of their wealth in the risk-free ass<strong>et</strong> and the fraction 1 − w0 in a portfolio composed only with<br />

risky ass<strong>et</strong>s. This risky portofolio is the same for all the investors and the fraction w0 of wealth invested<br />

in the risk-free ass<strong>et</strong> <strong>de</strong>pends on the risk aversion of the investor or on the amount of economic capital an<br />

institution must keep asi<strong>de</strong> due to the legal requirements insuring its solvency <strong>at</strong> a given confi<strong>de</strong>nce level.<br />

We shall see th<strong>at</strong> this result can be generalized to any mean-ρα efficient portfolio.<br />

9<br />

433<br />

(14)


434 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

In<strong>de</strong>ed, it can be shown (see appendix B) th<strong>at</strong> the weights of the optimal portfolios th<strong>at</strong> are solutions of (14)<br />

are given by:<br />

w ∗ 0 = w0, (16)<br />

w ∗ i = (1 − w0) · ˜wi, i ≥ 1, (17)<br />

where the ˜wi’s are constants such th<strong>at</strong> ˜wi = 1 and whose expressions are given appendix B. Thus,<br />

<strong>de</strong>noting by Π the portfolio only ma<strong>de</strong> of risky ass<strong>et</strong>s whose weights are the ˜wi’s, the optimal portfolios are<br />

the linear combin<strong>at</strong>ion of the risk-free ass<strong>et</strong>, with weight w0, and of the portfolio Π, with weigth 1 − w0.<br />

This result generalizes the mean-variance two fund theorem to any mean-ρα efficient portfolio.<br />

To check numerically this prediction, figure 4 represents the five largest weights of ass<strong>et</strong>s in the portfolios<br />

previously investig<strong>at</strong>ed as a function of the weight of the risk-free ass<strong>et</strong>, for the four risk measures given<br />

by the centered moments µ2, µ4, µ6 and µ8. One can observe <strong>de</strong>caying straight lines th<strong>at</strong> intercept the<br />

horizontal axis <strong>at</strong> w0 = 1, as predicted by equ<strong>at</strong>ions (16-17).<br />

In figure 2, the straight lines representing the efficient portfolios with a risk-free ass<strong>et</strong> are also represented.<br />

They are tangent to the efficient frontiers without risk-free ass<strong>et</strong>. This is n<strong>at</strong>ural since the efficient portfolios<br />

with the risk-free ass<strong>et</strong> are the weighted sum of the risk-free ass<strong>et</strong> and the optimal portfolio Π only ma<strong>de</strong><br />

of risky ass<strong>et</strong>s. Since Π also belongs to the efficient frontier without risk-free ass<strong>et</strong>, the optimum is reached<br />

when the straight line <strong>de</strong>scribing the efficient frontier with a risk-free ass<strong>et</strong> and the (concave) curve of the<br />

efficient frontier without risk-free ass<strong>et</strong> are tangent.<br />

3.4 Influence of the risk-free interest r<strong>at</strong>e<br />

Figure 3 has shown th<strong>at</strong> the slope of the efficient frontier (with a risk-free ass<strong>et</strong>) <strong>de</strong>creases when the or<strong>de</strong>r<br />

n of the centered moment used to measure risks increases. This is an important qualit<strong>at</strong>ive properties of the<br />

risk measures offered by the centered moments, as this means th<strong>at</strong> higher and higher large risks are sampled<br />

un<strong>de</strong>r increasing imposed r<strong>et</strong>urn.<br />

Is it possible th<strong>at</strong> the largest risks captured by the high-or<strong>de</strong>r centered moments could increase <strong>at</strong> a slower<br />

r<strong>at</strong>e than the small risks embodied in the small-or<strong>de</strong>r centered cumulants? For instance, is it possible for<br />

the slope of the mean-µ6 efficient frontier to be larger than the slope of the mean-µ4 frontier? This is an<br />

important question as it conditions the rel<strong>at</strong>ive costs in terms of the panel of risks un<strong>de</strong>r increasing specified<br />

r<strong>et</strong>urns. To address this question, consi<strong>de</strong>r figure 2. Changing the value of the risk-free interest r<strong>at</strong>e amounts<br />

to move the intercept of the straight lines along the ordin<strong>at</strong>e axis so as to keep them tangent to the efficient<br />

frontiers without risk-free ass<strong>et</strong>. Therefore, it is easy to see th<strong>at</strong>, in the situ<strong>at</strong>ion <strong>de</strong>picted in figure 2, the<br />

slope of the four straight lines will always <strong>de</strong>cay with the or<strong>de</strong>r of the centered moment.<br />

In or<strong>de</strong>r to observe an inversion in the or<strong>de</strong>r of the slopes, it is necessary and sufficient th<strong>at</strong> the efficient<br />

frontiers without risk-free ass<strong>et</strong> cross each other. This assertion is proved by visual inspection of figure<br />

5. Can we observe such crossing of efficient frontiers? In the most general case of risk measure, nothing<br />

forbids this occurence. Non<strong>et</strong>heless, we think th<strong>at</strong> this kind of behavior is not realistic in a financial context<br />

since, as said above, it would mean th<strong>at</strong> the large risks could increase <strong>at</strong> a slower r<strong>at</strong>e than the small risks,<br />

implying an irr<strong>at</strong>ional behavior of the economic agents.<br />

4 Classific<strong>at</strong>ion of the ass<strong>et</strong>s and of portfolios<br />

L<strong>et</strong> us consi<strong>de</strong>r two ass<strong>et</strong>s or portfolios X1 and X2 with different expected r<strong>et</strong>urns µ(1), µ(2) and different<br />

levels of risk measured by ρα(X1) and ρα(X2). An important question is then to be able to compare<br />

10


these two ass<strong>et</strong>s or portfolios. The most general way to perform such a comparison is to refer to <strong>de</strong>cision<br />

theory and to calcul<strong>at</strong>e the utility of each of them. But, as already said, the utility function of an agent is<br />

generally not known, so th<strong>at</strong> other approaches have to be <strong>de</strong>veloped. The simplest solution is to consi<strong>de</strong>r<br />

th<strong>at</strong> the couple (expected r<strong>et</strong>urn, risk measure) fully characterizes the behavior of the economic agent and<br />

thus provi<strong>de</strong>s a sufficiently good approxim<strong>at</strong>ion for her utility function.<br />

In the (Markovitz 1959)’s world for instance, the preferences of the agents are summarized by the two first<br />

moments of the distribution of ass<strong>et</strong>s r<strong>et</strong>urns. Thus, as shown by (Sharpe 1966, Sharpe 1994) a simple way<br />

to synth<strong>et</strong>ize these two param<strong>et</strong>ers, in or<strong>de</strong>r to g<strong>et</strong> a measure of the performance of the ass<strong>et</strong>s or portfolios,<br />

is to build the r<strong>at</strong>io of the expected r<strong>et</strong>urn µ (minus the risk free interest r<strong>at</strong>e) over the standard <strong>de</strong>vi<strong>at</strong>ion σ:<br />

S =<br />

435<br />

µ − µ0<br />

, (18)<br />

σ<br />

which is the so-called Sharpe r<strong>at</strong>io and simply represents the amount of expected r<strong>et</strong>urn per unit of risk,<br />

measured by the standard <strong>de</strong>vi<strong>at</strong>ion. It is an increasing function of the expected r<strong>et</strong>urn and a <strong>de</strong>creasing<br />

function of the level of risk, which is n<strong>at</strong>ural for risk-averse or pru<strong>de</strong>ntial agent.<br />

4.1 The risk-adjustment approach<br />

This approach can be generalized to any type of risk measures (see (Dowd 2000), for instance) and thus<br />

allows for the comparison of ass<strong>et</strong>s whose risks are not well accounted for by the variance (or the standard<br />

<strong>de</strong>vi<strong>at</strong>ion). In<strong>de</strong>ed, instead of consi<strong>de</strong>ring the variance, which only accounts for the small risks, one can build<br />

the r<strong>at</strong>io of the expected r<strong>et</strong>urn over any risk measure. In fact, looking <strong>at</strong> the equ<strong>at</strong>ion (113) in appendix B,<br />

the expression<br />

µ − µ0<br />

, (19)<br />

ρα(X) 1/α<br />

n<strong>at</strong>urally arises and is constant for every efficient portfolios. In this expression, α <strong>de</strong>notes the coefficient<br />

of homogeneity of the risk measure. It is nothing but a simple generalis<strong>at</strong>ion of the usual Sharpe r<strong>at</strong>io.<br />

In<strong>de</strong>ed, when ρα is given by the variance σ 2 , the expression above recovers the Sharpe r<strong>at</strong>io. Thus, once<br />

the portfolio manager has chosen his measure of fluctu<strong>at</strong>ions ρα, he can build a consistent risk-adjusted<br />

performance measure, as shown by (19).<br />

As just said, these generalized Sharpe r<strong>at</strong>ios are constant for every efficient portfolios. In fact, they are not<br />

only constant but also maximum for every efficient portfolios, so th<strong>at</strong> looking for the portfolio with maximum<br />

generalized Sharpe r<strong>at</strong>io yields the same optimal portfolios as those found with the whole optimiz<strong>at</strong>ion<br />

program solved in the previous section.<br />

As an illutr<strong>at</strong>ion, table 2 gives the risk-adjusted performance of the s<strong>et</strong> of seventeen ass<strong>et</strong>s already studied,<br />

for several risk measures. We have consi<strong>de</strong>red the three first even or<strong>de</strong>r centered moments (columns 2 to 4)<br />

and the three first even or<strong>de</strong>r cumulants (columns 2, 5 and 6) as fluctu<strong>at</strong>ion measures. Obviously the second<br />

or<strong>de</strong>r centered moment and the second or<strong>de</strong>r cumulant are the same, and give again the usual Sharpe r<strong>at</strong>io<br />

(18). The ass<strong>et</strong>s have been sorted with respect to their Sharpe R<strong>at</strong>io.<br />

The first point to note is th<strong>at</strong> the rank of an ass<strong>et</strong> in terms of risk-adjusted perfomance strongly <strong>de</strong>pends on<br />

the risk measure un<strong>de</strong>r consi<strong>de</strong>r<strong>at</strong>ion. The case of MCI Worldcom is very striking in this respect. In<strong>de</strong>ed,<br />

according to the usual Sharpe r<strong>at</strong>io, it appears in the 12 th position with a value larger than 0.04 while<br />

according to the other measures it is the last ass<strong>et</strong> of our selection with a value lower than 0.02.<br />

The second interesting point is th<strong>at</strong>, for a given ass<strong>et</strong>, the generalize Sharpe r<strong>at</strong>io is always a <strong>de</strong>creasing<br />

function of the or<strong>de</strong>r of the consi<strong>de</strong>red centered moment. This is not particular to our s<strong>et</strong> of ass<strong>et</strong>s since we<br />

11


436 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

can prove th<strong>at</strong><br />

so th<strong>at</strong><br />

∀p > q,<br />

(E [|X| p ]) 1/p ≥ (E [|X| q ]) 1/q , (20)<br />

µ − µ0<br />

(E [|X| p ≤<br />

1/p<br />

])<br />

µ − µ0<br />

(E [|X| q . (21)<br />

1/q<br />

])<br />

On the contrary, when the cumulants are used as risk measures, the generalized Sharpe r<strong>at</strong>ios are not monotonically<br />

<strong>de</strong>creasing, as exhibited by Procter & Gamble for instance. This can be surprising in view of our<br />

previous remark th<strong>at</strong> the larger is the or<strong>de</strong>r of the moments involved in a risk measure, the larger are the fluctu<strong>at</strong>ions<br />

it is accounting for. Extrapol<strong>at</strong>ing this property to cumulants, it would mean th<strong>at</strong> Procter & Gamble<br />

presents less large risks according to C6 than according to C4, while according to the centered moments, the<br />

reverse evolution is observed.<br />

Thus, the question of the coherence of the cumulants as measures of fluctu<strong>at</strong>ions may arise. And if we accept<br />

th<strong>at</strong> such measures are coherent, wh<strong>at</strong> are the implic<strong>at</strong>ions on the preferences of the agents employing such<br />

measures ? To answer this question, it is inform<strong>at</strong>ive to express the cumulants as a function of the moments.<br />

For instance, l<strong>et</strong> us consi<strong>de</strong>r the fourth or<strong>de</strong>r cumulant<br />

C4 = µ4 − 3 · µ2 2 , (22)<br />

= µ4 − 3 · C2 2 . (23)<br />

An agent assessing the fluctu<strong>at</strong>ions of an ass<strong>et</strong> with respect to C4 presents aversion for the fluctu<strong>at</strong>ions<br />

quantified by the fourth central moment µ4 – since C4 increases with µ4 – but is <strong>at</strong>tracted by the fluctu<strong>at</strong>ions<br />

measured by the variance - since C4 <strong>de</strong>creases with µ2. This behavior is not irr<strong>at</strong>ional since it remains<br />

globally risk-averse. In<strong>de</strong>ed, it <strong>de</strong>picts an agent which tries to avoid the larger risks but is ready to accept<br />

the smallest ones.<br />

This kind of behavior is characteristic of any agent using the cumulants as risk measures. It thus allows us to<br />

un<strong>de</strong>rstand why Procter & Gamble is more <strong>at</strong>tractive for an agent sentitive to C6 than for an agent sentitive<br />

to C4. From the expression of C6, we remark th<strong>at</strong> the agent sensitive to this cumulant is risk-averse with<br />

respect to the fluctu<strong>at</strong>ions mesured by µ6 and µ2 but is risk-seeker with respect to the fluctu<strong>at</strong>ions mesured<br />

by µ4 and µ3. Then, is this particular case, the l<strong>at</strong>er ones compens<strong>at</strong>e the former ones.<br />

It also allows us to un<strong>de</strong>rstand from a behavioral stand-point why it is possible to “have your cake and e<strong>at</strong><br />

it too” in the sense of (An<strong>de</strong>rsen and Sorn<strong>et</strong>te 2001), th<strong>at</strong> is, why, when the cumulants are choosen as risk<br />

measures, it may be possible to increase the expected r<strong>et</strong>urn of a portfolio while lowering its large risks, or in<br />

other words, why its generalized Sharpe r<strong>at</strong>io may increase when one consi<strong>de</strong>r larger cumulants to measure<br />

its risks. We will discuus this point again in section 9.<br />

4.2 Marginal risk of an ass<strong>et</strong> within a portofolio<br />

Another important question th<strong>at</strong> arises is the contribution of a given ass<strong>et</strong> to the risk of the whole portfolio.<br />

In<strong>de</strong>ed, it is crucial to know wh<strong>et</strong>her the risk is homogeneously shared by all the ass<strong>et</strong>s of the portfolio or if<br />

it is only held by a few of them. The quality of the diversific<strong>at</strong>ion is then <strong>at</strong> stake. Moreover, this also allows<br />

for the sensitivity analysis of the risk of the portfolio with respect to small changes in its composition 2 ,<br />

which is of practical interest since it can prevent us from recalcul<strong>at</strong>ing the whole risk of the portfolio after a<br />

small re-adjustment of its composition.<br />

2 see (Gouriéroux <strong>et</strong> al. 2000, Scaill<strong>et</strong> 2000) for a sensitivity analysis of the Value-<strong>at</strong>-Risk and the expected shortfall.<br />

12


Due to the homogeneity property of the fluctu<strong>at</strong>ion measures and to Euler’s theorem for homogeneous<br />

functions, we can write th<strong>at</strong><br />

ρ({w1, · · · , wN}) = 1<br />

N<br />

wi ·<br />

α<br />

∂ρ<br />

, (24)<br />

∂wi<br />

provi<strong>de</strong>d the risk measure ρ is differentiable which will be assumed in all the sequel. In this expression, the<br />

coefficient α again <strong>de</strong>notes the <strong>de</strong>gree of homogeneity of the risk measure ρ<br />

This rel<strong>at</strong>ion simply shows th<strong>at</strong> the amount of risk brought by one unit of the ass<strong>et</strong> i in the portfolio is given<br />

by the first <strong>de</strong>riv<strong>at</strong>ive of the risk of the portfolio with respect to the weight wi ot this ass<strong>et</strong>. Thus, α −1 · ∂ρ<br />

∂wi<br />

represents the marginal amount of risk of ass<strong>et</strong> i in the portfolio. It is then easy to check th<strong>at</strong>, in a portfolio<br />

with minimum risk, irrespective of the expected r<strong>et</strong>urn, the weight of each ass<strong>et</strong> is such th<strong>at</strong> the marginal<br />

risks of the ass<strong>et</strong>s in the portfolio are equal.<br />

5 A new equilibrum mo<strong>de</strong>l for ass<strong>et</strong> prices<br />

Using the portfolio selection m<strong>et</strong>hod explained in the two previous sections, we now present an equilibrium<br />

mo<strong>de</strong>l generalizing the original Capital Ass<strong>et</strong> Pricing Mo<strong>de</strong>l <strong>de</strong>veloped by (Sharpe 1964, Lintner 1965,<br />

Mossin 1966). Many generaliz<strong>at</strong>ions have already been proposed to account for the f<strong>at</strong>-tailness of the ass<strong>et</strong>s<br />

r<strong>et</strong>urn distributions, which led to the multi-moments CAPM. For instance (Rubinstein 1973) and (Krauss<br />

and Lintzenberger 1976) or (Lim 1989) and (Harvey and Siddique 2000) have un<strong>de</strong>rlined and tested the role<br />

of the asymm<strong>et</strong>ry in the risk premium by accounting for the skewness of the distribution of r<strong>et</strong>urns. More<br />

recently, (Fang and Lai 1997) and (Hwang and S<strong>at</strong>chell 1999) have introduced a four-moments CAPM to<br />

take into account the l<strong>et</strong>pokurtic behavior of the ass<strong>et</strong>s r<strong>et</strong>urn distributions. Many other extentions have<br />

been presented such as the VaR-CAPM (see (Alexan<strong>de</strong>r and Baptista 2002)) or the Distributional-CAPM<br />

by (Polimenis 2002). All these generaliz<strong>at</strong>ion become more and more complic<strong>at</strong>ed and not do not provi<strong>de</strong><br />

necessarily more accur<strong>at</strong>e prediction of the expected r<strong>et</strong>urns.<br />

Here, we will assume th<strong>at</strong> the relevant risk measure is given by any measure of fluctu<strong>at</strong>ions previously<br />

presented th<strong>at</strong> obey the axioms I-IV of section 2. We will also relax the usual assumption of an homogeneous<br />

mark<strong>et</strong> to give to the economic agents the choice of their own risk measure: some of them may choose a<br />

risk measure which put the emphasis on the small fluctu<strong>at</strong>ions while others may prefer those which account<br />

for the large ones. We will show th<strong>at</strong>, in such an h<strong>et</strong>erogeneous mark<strong>et</strong>, an equilibrium can still be reached<br />

and th<strong>at</strong> the excess r<strong>et</strong>urns of individual stocks remain proportional to the mark<strong>et</strong> excess r<strong>et</strong>urn.<br />

For this, we need the following assumptions about the mark<strong>et</strong>:<br />

• H1: We consi<strong>de</strong>r a one-period mark<strong>et</strong>, such th<strong>at</strong> all the positions held <strong>at</strong> the begining of a period are<br />

cleared <strong>at</strong> the end of the same period.<br />

• H2: The mark<strong>et</strong> is perfect, i.e., there are no transaction cost or taxes, the mark<strong>et</strong> is efficient and the<br />

investors can lend and borrow <strong>at</strong> the same risk-free r<strong>at</strong>e µ0.<br />

We will now add another assumption th<strong>at</strong> specifies the behavior of the agents acting on the mark<strong>et</strong>, which<br />

will lead us to make the distinction b<strong>et</strong>ween homogeneous and h<strong>et</strong>erogeneous mark<strong>et</strong>s.<br />

13<br />

i1<br />

437


438 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

5.1 Equilibrium in a homogeneous mark<strong>et</strong><br />

The mark<strong>et</strong> is said to be homogeneous if all the agents acting on this mark<strong>et</strong> aim <strong>at</strong> fulfilling the same<br />

objective. This means th<strong>at</strong>:<br />

• H3-1: all the agents want to maximize the expected r<strong>et</strong>urn of their portfolio <strong>at</strong> the end of the period<br />

un<strong>de</strong>r a given constraint of measured risk, using the same measure of risks ρα for all of them.<br />

In the special case where ρα <strong>de</strong>notes the variance, all the agents follow a Markovitz’s optimiz<strong>at</strong>ion procedure,<br />

which leads to the CAPM equilibrium, as proved by (Sharpe 1964). When ρα represents the centered<br />

moments, we will be led to the mark<strong>et</strong> equilibrium <strong>de</strong>scribed by (Rubinstein 1973). Thus, this approach<br />

allows for a generaliz<strong>at</strong>ion of the most popular ass<strong>et</strong> pricing in equilibirum mark<strong>et</strong> mo<strong>de</strong>ls.<br />

When all the agents have the same risk function ρα, wh<strong>at</strong>ever α may be, we can assert th<strong>at</strong> they have all a<br />

fraction of their capital invested in the same portfolio Π, whose composition is given in appendix B, and the<br />

remaining in the risk-free ass<strong>et</strong>. The amount of capital invested in the risky fund only <strong>de</strong>pends on their risk<br />

aversion or on the legal margin requirement they have to fulfil.<br />

L<strong>et</strong> us now assume th<strong>at</strong> the mark<strong>et</strong> is <strong>at</strong> equilibrium, i.e., supply equals <strong>de</strong>mand. In such a case, since the<br />

optimal portfolios can be any linear combin<strong>at</strong>ions of the risk-free ass<strong>et</strong> and of the risky portfolio Π, it is<br />

straightforward to show (see appendix C) th<strong>at</strong> the mark<strong>et</strong> portfolio, ma<strong>de</strong> of all tra<strong>de</strong>d ass<strong>et</strong>s in proportion<br />

of their mark<strong>et</strong> capitaliz<strong>at</strong>ion, is nothing but the risky portfolio Π. Thus, as shown in appendix D, we can<br />

st<strong>at</strong>e th<strong>at</strong>, wh<strong>at</strong>ever the risk measure ρα chosen by the agents to perform their optimiz<strong>at</strong>ion, the excess r<strong>et</strong>urn<br />

of any ass<strong>et</strong> over the risk-free interest r<strong>at</strong>e is proportional to the excess r<strong>et</strong>urn of the mark<strong>et</strong> portfolio Π over<br />

the risk-free interest r<strong>at</strong>e:<br />

µ(i) − µ0 = β i α · (µΠ − µ0), (25)<br />

where<br />

β i α = ·<br />

<br />

∂ ln<br />

1<br />

ρα α<br />

∂wi<br />

<br />

<br />

<br />

<br />

<br />

w ∗ 1 ,···,w ∗ N<br />

, (26)<br />

where w ∗ 1 , · · · , w∗ N are <strong>de</strong>fined in appendix D. When ρα <strong>de</strong>notes the variance, we recover the usual β i given<br />

by the mean-variance approach:<br />

β i = Cov(Xi, Π)<br />

. (27)<br />

Var(Π)<br />

Thus, the rel<strong>at</strong>ions (25) and (26) generalize the usual CAPM formula, showing th<strong>at</strong> the specific choice of<br />

the risk measure is not very important, as long as it follows the axioms I-IV characterizing the fluctu<strong>at</strong>ions<br />

of the distribution of ass<strong>et</strong> r<strong>et</strong>urns.<br />

5.2 Equilibrium in a h<strong>et</strong>erogeneous mark<strong>et</strong><br />

Does this result hold in the more realistic situ<strong>at</strong>ion of an h<strong>et</strong>erogeneous mark<strong>et</strong>? A mark<strong>et</strong> will be said to be<br />

h<strong>et</strong>erogeneous if the agents seek to fulfill different objectives. We thus consi<strong>de</strong>r the following assumption:<br />

• H3-2: There exists N agents. Each agent n is characterized by her choice of a risk measure ρα(n) so<br />

th<strong>at</strong> she invests only in the mean-ρα(n) efficient portfolios.<br />

According to this hypothesis, an agent n invests a fraction of her wealth in the risk-free ass<strong>et</strong> and the<br />

remaining in Πn, the mean-ρα(n) efficient portfolio, only ma<strong>de</strong> of risky ass<strong>et</strong>s. The fraction of wealth<br />

14


invested in the risky fund <strong>de</strong>pends on the risk aversion of each agents, which may vary from an agent to<br />

another one.<br />

The composition of the mark<strong>et</strong> portfolio for such a h<strong>et</strong>erogenous mark<strong>et</strong> is <strong>de</strong>rived in appendix C. We find<br />

th<strong>at</strong> the mark<strong>et</strong> portfolio Π is nothing but the weighted sum of the mean-ρα(n) optimal portfolio Πn:<br />

Π =<br />

439<br />

N<br />

γnΠn, (28)<br />

where γn is the fraction of the total wealth invested in the fund Πn by the n th agent.<br />

n=1<br />

Appendix D <strong>de</strong>monstr<strong>at</strong>es th<strong>at</strong>, for every ass<strong>et</strong> i and for any mean-ρα(n) efficient portfolio Πn, for all n, the<br />

following equ<strong>at</strong>ion holds<br />

µ(i) − µ0 = β i n · (µΠn − µ0) . (29)<br />

Multiplying these equ<strong>at</strong>ions by γn/β i n, we g<strong>et</strong><br />

γn<br />

βi n<br />

for all n, and summing over the different agents, we obtain<br />

<br />

<br />

γn<br />

<br />

· (µ(i) − µ0) =<br />

so th<strong>at</strong><br />

with<br />

n<br />

β i n<br />

· (µ(i) − µ0) = γn · (µΠn − µ0), (30)<br />

n<br />

γn · µΠn<br />

<br />

− µ0, (31)<br />

µ(i) − µ0 = β i · (µΠ − µ0), (32)<br />

β i =<br />

<br />

n<br />

γn<br />

βi n<br />

−1<br />

. (33)<br />

This allows us to conclu<strong>de</strong> th<strong>at</strong>, even in a h<strong>et</strong>erogeneous mark<strong>et</strong>, the expected excess r<strong>et</strong>urn of each individual<br />

stock is directly proportionnal to the expected excess r<strong>et</strong>urn of the mark<strong>et</strong> portfolio, showing th<strong>at</strong><br />

the homogeneity of the mark<strong>et</strong> is not a key property necessary for observing a linear rel<strong>at</strong>ionship b<strong>et</strong>ween<br />

individual excess ass<strong>et</strong> r<strong>et</strong>urns and the mark<strong>et</strong> excess r<strong>et</strong>urn.<br />

6 Estim<strong>at</strong>ion of the joint probability distribution of r<strong>et</strong>urns of several ass<strong>et</strong>s<br />

A priori, one of the main practical advantage of (Markovitz 1959)’s m<strong>et</strong>hod and its generaliz<strong>at</strong>ion presented<br />

above is th<strong>at</strong> one does not need the multivari<strong>at</strong>e probability distribution function of the ass<strong>et</strong>s r<strong>et</strong>urns, as the<br />

analysis solely relies on the coherent measures ρ(X) <strong>de</strong>fined in section 2, such as the centered moments<br />

or the cumulants of all or<strong>de</strong>rs th<strong>at</strong> can in principle be estim<strong>at</strong>ed empirically. Unfortun<strong>at</strong>ely, this apparent<br />

advantage maybe an illusion. In<strong>de</strong>ed, as un<strong>de</strong>rlined by (Stuart and Ord 1994) for instance, the error of<br />

the empirically estim<strong>at</strong>ed moment of or<strong>de</strong>r n is proportional to the moment of or<strong>de</strong>r 2n, so th<strong>at</strong> the error<br />

becomes quickly of the same or<strong>de</strong>r as the estim<strong>at</strong>ed moment itself. Thus, above n = 6 (or may be n = 8) it is<br />

not reasonable to estim<strong>at</strong>e the moments and/or cumulants directly. Thus, the knowledge of the multivari<strong>at</strong>e<br />

distribution of ass<strong>et</strong>s r<strong>et</strong>urns remains necessary. In addition, there is a current of thoughts th<strong>at</strong> provi<strong>de</strong>s<br />

evi<strong>de</strong>nce th<strong>at</strong> marginal distributions of r<strong>et</strong>urns may be regularly varying with in<strong>de</strong>x µ in the range 3-4<br />

(Lux 1996, Pagan 1996, Gopikrishnan <strong>et</strong> al. 1998), suggesting the non-existence of asymptotically <strong>de</strong>fined<br />

moments and cumulants of or<strong>de</strong>r equal to or larger than µ.<br />

15


440 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

In the standard Gaussian framework, the multivari<strong>at</strong>e distribution takes the form of an exponential of minus<br />

a quadr<strong>at</strong>ic form X ′ Ω −1 X, where X is the unicolumn of ass<strong>et</strong> r<strong>et</strong>urns and Ω is their covariance m<strong>at</strong>rix. The<br />

beauty and simplicity of the Gaussian case is th<strong>at</strong> the essentially impossible task of d<strong>et</strong>ermining a large multidimensional<br />

function is reduced into the very much simpler one of calcul<strong>at</strong>ing the N(N + 1)/2 elements<br />

of the symm<strong>et</strong>ric covariance m<strong>at</strong>rix. Risk is then uniquely and compl<strong>et</strong>ely embodied by the variance of the<br />

portfolio r<strong>et</strong>urn, which is easily d<strong>et</strong>ermined from the covariance m<strong>at</strong>rix. This is the basis of Markovitz’s<br />

portfolio theory (Markovitz 1959) and of the CAPM (see for instance (Merton 1990)).<br />

However, as is well-known, the variance (vol<strong>at</strong>ility) of portfolio r<strong>et</strong>urns provi<strong>de</strong>s <strong>at</strong> best a limited quantific<strong>at</strong>ion<br />

of incurred risks, as the empirical distributions of r<strong>et</strong>urns have “f<strong>at</strong> tails” (Lux 1996, Gopikrishnan <strong>et</strong><br />

al. 1998) and the <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween ass<strong>et</strong>s are only imperfectly accounted for by the covariance m<strong>at</strong>rix<br />

(Litterman and Winkelmann 1998).<br />

In this section, we present a novel approach based on (Sorn<strong>et</strong>te <strong>et</strong> al. 2000b) to <strong>at</strong>tack this problem in terms<br />

of the param<strong>et</strong>eriz<strong>at</strong>ion of the multivari<strong>at</strong>e distribution of r<strong>et</strong>urns involving two steps: (i) the projection of<br />

the empirical marginal distributions onto Gaussian laws via nonlinear mappings; (ii) the use of an entropy<br />

maximiz<strong>at</strong>ion to construct the corresponding most parsimonious represent<strong>at</strong>ion of the multivari<strong>at</strong>e distribution.<br />

6.1 A brief exposition and justific<strong>at</strong>ion of the m<strong>et</strong>hod<br />

We will use the m<strong>et</strong>hod of d<strong>et</strong>ermin<strong>at</strong>ion of multivari<strong>at</strong>e distributions introduced by (Karlen 1998) and<br />

(Sorn<strong>et</strong>te <strong>et</strong> al. 2000b). This m<strong>et</strong>hod consists in two steps: (i) transform each r<strong>et</strong>urn x into a Gaussian<br />

variable y by a nonlinear monotonous increasing mapping; (ii) use the principle of entropy maximiz<strong>at</strong>ion to<br />

construct the corresponding multivari<strong>at</strong>e distribution of the transformed variables y.<br />

The first concern to address before going any further is wh<strong>et</strong>her the nonlinear transform<strong>at</strong>ion, which is in<br />

principle different for each ass<strong>et</strong> r<strong>et</strong>urn, conserves the structure of the <strong>de</strong>pen<strong>de</strong>nce. In wh<strong>at</strong> sense is the<br />

<strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the transformed variables y the same as the <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the ass<strong>et</strong> r<strong>et</strong>urns x? It<br />

turns out th<strong>at</strong> the notion of “copulas” provi<strong>de</strong>s a general and rigorous answer which justifies the procedure<br />

of (Sorn<strong>et</strong>te <strong>et</strong> al. 2000b).<br />

For compl<strong>et</strong>eness and use l<strong>at</strong>er on, we briefly recall the <strong>de</strong>finition of a copula (for further d<strong>et</strong>ails about<br />

the concept of copula see (Nelsen 1998)). A function C : [0, 1] n −→ [0, 1] is a n-copula if it enjoys the<br />

following properties :<br />

• ∀u ∈ [0, 1], C(1, · · · , 1, u, 1 · · · , 1) = u ,<br />

• ∀ui ∈ [0, 1], C(u1, · · · , un) = 0 if <strong>at</strong> least one of the ui equals zero ,<br />

• C is groun<strong>de</strong>d and n-increasing, i.e., the C-volume of every boxes whose vertices lie in [0, 1] n is<br />

positive.<br />

Skar’s Theorem then st<strong>at</strong>es th<strong>at</strong>, given an n-dimensional distribution function F with continuous marginal<br />

distributions F1, · · · , Fn, there exists a unique n-copula C : [0, 1] n −→ [0, 1] such th<strong>at</strong> :<br />

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)) . (34)<br />

This elegant result shows th<strong>at</strong> the study of the <strong>de</strong>pen<strong>de</strong>nce of random variables can be performed in<strong>de</strong>pen<strong>de</strong>ntly<br />

of the behavior of the marginal distributions. Moreover, the following result shows th<strong>at</strong> copulas<br />

are intrinsic measures of <strong>de</strong>pen<strong>de</strong>nce. Consi<strong>de</strong>r n continuous random variables X1, · · · , Xn with copula<br />

16


C. Then, if g1(X1), · · · , gn(Xn) are strictly increasing on the ranges of X1, · · · , Xn, the random variables<br />

Y1 = g1(X1), · · · , Yn = gn(Xn) have exactly the same copula C (Lindskog 2000). The copula is thus<br />

invariant un<strong>de</strong>r strictly increasing tranform<strong>at</strong>ion of the variables. This provi<strong>de</strong>s a powerful way of studying<br />

scale-invariant measures of associ<strong>at</strong>ions. It is also a n<strong>at</strong>ural starting point for construction of multivari<strong>at</strong>e<br />

distributions and provi<strong>de</strong>s the theor<strong>et</strong>ical justific<strong>at</strong>ion of the m<strong>et</strong>hod of d<strong>et</strong>ermin<strong>at</strong>ion of mutivari<strong>at</strong>e distributions<br />

th<strong>at</strong> we will use in the sequel.<br />

6.2 Transform<strong>at</strong>ion of an arbitrary random variable into a Gaussian variable<br />

L<strong>et</strong> us consi<strong>de</strong>r the r<strong>et</strong>urn X, taken as a random variable characterized by the probability <strong>de</strong>nsity p(x). The<br />

transform<strong>at</strong>ion y(x) which obtains a standard normal variable y from x is d<strong>et</strong>ermined by the conserv<strong>at</strong>ion<br />

of probability:<br />

Integr<strong>at</strong>ing this equ<strong>at</strong>ion from −∞ and x, we obtain:<br />

441<br />

p(x)dx = 1 y2<br />

− √ e 2 dy . (35)<br />

2π<br />

F (x) = 1<br />

2<br />

where F (x) is the cumul<strong>at</strong>ive distribution of X:<br />

F (x) =<br />

This leads to the following transform<strong>at</strong>ion y(x):<br />

<br />

1 + erf<br />

<br />

y√2<br />

, (36)<br />

x<br />

dx<br />

−∞<br />

′ p(x ′ ) . (37)<br />

y = √ 2 erf −1 (2F (x) − 1) , (38)<br />

which is obvously an increasing function of X as required for the applic<strong>at</strong>ion of the invariance property of<br />

the copula st<strong>at</strong>ed in the previous section. An illustr<strong>at</strong>ion of the nonlinear transform<strong>at</strong>ion (38) is shown in<br />

figure 6. Note th<strong>at</strong> it does not require any special hypothesis on the probability <strong>de</strong>nsity X, apart from being<br />

non-<strong>de</strong>gener<strong>at</strong>e.<br />

In the case where the pdf of X has only one maximum, we may use a simpler expression equivalent to (38).<br />

Such a pdf can be written un<strong>de</strong>r the so-called Von Mises param<strong>et</strong>riz<strong>at</strong>ion (Embrechts <strong>et</strong> al. 1997) :<br />

p(x) = C f ′ (x) 1<br />

− e 2<br />

|f(x)| f(x) , (39)<br />

where C is a constant of normaliz<strong>at</strong>ion. For f(x)/x 2 → 0 when |x| → +∞, the pdf has a “f<strong>at</strong> tail,” i.e., it<br />

<strong>de</strong>cays slower than a Gaussian <strong>at</strong> large |x|.<br />

L<strong>et</strong> us now <strong>de</strong>fine the change of variable<br />

Using the rel<strong>at</strong>ionship p(y) = p(x) dx<br />

dy , we g<strong>et</strong>:<br />

y = sgn(x) |f(x)| . (40)<br />

p(y) = 1 y2<br />

− √ e 2 . (41)<br />

2π<br />

It is important to stress the presence of the sign function sgn(x) in equ<strong>at</strong>ion (40), which is essential in or<strong>de</strong>r<br />

to correctly quantify <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween random variables. This transform<strong>at</strong>ion (40) is equivalent to (38)<br />

but of a simpler implement<strong>at</strong>ion and will be used in the sequel.<br />

17


442 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

6.3 D<strong>et</strong>ermin<strong>at</strong>ion of the joint distribution : maximum entropy and Gaussian copula<br />

L<strong>et</strong> us now consi<strong>de</strong>r N random variables Xi with marginal distributions pi(xi). Using the transform<strong>at</strong>ion<br />

(38), we <strong>de</strong>fine N standard normal variables Yi. If these variables were in<strong>de</strong>pen<strong>de</strong>nt, their joint distribution<br />

would simply be the product of the marginal distributions. In many situ<strong>at</strong>ions, the variables are not<br />

in<strong>de</strong>pen<strong>de</strong>nt and it is necessary to study their <strong>de</strong>pen<strong>de</strong>nce.<br />

The simplest approach is to construct their covariance m<strong>at</strong>rix. Applied to the variables Yi, we are certain th<strong>at</strong><br />

the covariance m<strong>at</strong>rix exists and is well-<strong>de</strong>fined since their marginal distributions are Gaussian. In contrast,<br />

this is not ensured for the variables Xi. In<strong>de</strong>ed, in many situ<strong>at</strong>ions in n<strong>at</strong>ure, in economy, finance and in<br />

social sciences, pdf’s are found to have power law tails ∼ A<br />

x1+µ for large |x|. If µ ≤ 2, the variance and the<br />

covariances can not be <strong>de</strong>fined. If 2 < µ ≤ 4, the variance and the covariances exit in principle but their<br />

sample estim<strong>at</strong>ors converge poorly.<br />

We thus <strong>de</strong>fine the covariance m<strong>at</strong>rix:<br />

V = E[yy t ] , (42)<br />

where y is the vector of variables Yi and the oper<strong>at</strong>or E[·] represents the m<strong>at</strong>hem<strong>at</strong>ical expect<strong>at</strong>ion. A<br />

classical result of inform<strong>at</strong>ion theory (Rao 1973) tells us th<strong>at</strong>, given the covariance m<strong>at</strong>rix V , the best joint<br />

distribution (in the sense of entropy maximiz<strong>at</strong>ion) of the N variables Yi is the multivari<strong>at</strong>e Gaussian:<br />

1<br />

P (y) =<br />

(2π) N/2d<strong>et</strong>(V ) exp<br />

<br />

− 1<br />

2 ytV −1 <br />

y . (43)<br />

In<strong>de</strong>ed, this distribution implies the minimum additional inform<strong>at</strong>ion or assumption, given the covariance<br />

m<strong>at</strong>rix.<br />

Using the joint distribution of the variables Yi, we obtain the joint distribution of the variables Xi:<br />

<br />

∂yi <br />

P (x) = P (y) <br />

∂xj<br />

, (44)<br />

<br />

<br />

where ∂yi<br />

<br />

<br />

is the Jacobian of the transform<strong>at</strong>ion. Since<br />

we g<strong>et</strong><br />

∂xj<br />

This finally yields<br />

P (x) =<br />

∂yi<br />

∂xj<br />

= √ 2πpj(xj)e 1<br />

2 y2 i δij , (45)<br />

<br />

∂yi <br />

N<br />

<br />

∂xj<br />

= (2π)N/2<br />

i=1<br />

pi(xi)e 1<br />

2 y2 i . (46)<br />

<br />

1<br />

exp −<br />

d<strong>et</strong>(V ) 1<br />

2 yt (x) (V −1 <br />

N<br />

− I)y (x) pi(xi) . (47)<br />

i=1<br />

As expected, if the variables are in<strong>de</strong>pen<strong>de</strong>nt, V = I, and P (x) becomes the product of the marginal<br />

distributions of the variables Xi.<br />

L<strong>et</strong> F (x) <strong>de</strong>note the cumul<strong>at</strong>ive distribution function of the vector x and Fi(xi), i = 1, ..., N the N corresponding<br />

marginal distributions. The copula C is then such th<strong>at</strong><br />

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)) . (48)<br />

18


Differenti<strong>at</strong>ing with respect to x1, · · · , xN leads to<br />

where<br />

is the <strong>de</strong>nsity of the copula C.<br />

P (x1, · · · , xn) = ∂F (x1, · · · , xn)<br />

∂x1 · · · ∂xn<br />

= c(F1(x1), · · · , Fn(xn))<br />

c(u1, · · · , uN) = ∂C(u1, · · · , uN)<br />

∂u1 · · · ∂uN<br />

443<br />

N<br />

pi(xi) , (49)<br />

Comparing (50) with (47), the <strong>de</strong>nsity of the copula is given in the present case by<br />

1<br />

c(u1, · · · , uN) = exp<br />

d<strong>et</strong>(V )<br />

<br />

, (51)<br />

i=1<br />

<br />

− 1<br />

2 yt (u) (V −1 − I)y (u)<br />

which is the “Gaussian copula” with covariance m<strong>at</strong>rix V. This result clarifies and justifies the m<strong>et</strong>hod<br />

of (Sorn<strong>et</strong>te <strong>et</strong> al. 2000b) by showing th<strong>at</strong> it essentially amounts to assume arbitrary marginal distributions<br />

with Gaussian copulas. Note th<strong>at</strong> the Gaussian copula results directly from the transform<strong>at</strong>ion to Gaussian<br />

marginals tog<strong>et</strong>her with the choice of maximizing the Shannon entropy un<strong>de</strong>r the constraint of a fixed covariance<br />

m<strong>at</strong>rix. Un<strong>de</strong>r differents constraint, we would have found another maximum entropy copula. This<br />

is not unexpected in analogy with the standard result th<strong>at</strong> the Gaussian law is maximizing the Shannon entropy<br />

<strong>at</strong> fixed given variance. If we were to extend this formul<strong>at</strong>ion by consi<strong>de</strong>ring more general expressions<br />

of the entropy, such th<strong>at</strong> Tsallis entropy (Tsallis 1998), we would have found other copulas.<br />

6.4 Empirical test of the Gaussian copula assumption<br />

We now present some tests of the hypothesis of Gaussian copulas b<strong>et</strong>ween r<strong>et</strong>urns of financial ass<strong>et</strong>s. This<br />

present<strong>at</strong>ion is only for illustr<strong>at</strong>ion purposes, since testing the gaussian copula hypothesis is a <strong>de</strong>lic<strong>at</strong>e task<br />

which has been addressed elsewhere (see (Malevergne and Sorn<strong>et</strong>te 2001)). Here, as an example, we propose<br />

two simple standard m<strong>et</strong>hods.<br />

The first one consists in using the property th<strong>at</strong> Gaussian variables are stable in distribution un<strong>de</strong>r addition.<br />

Thus, a (quantile-quantile or Q − Q) plot of the cumul<strong>at</strong>ive distribution of the sum y1 + · · · + yp versus<br />

the cumul<strong>at</strong>ive Normal distribution with the same estim<strong>at</strong>ed variance should give a straight line in or<strong>de</strong>r to<br />

qualify a multivari<strong>at</strong>e Gaussian distribution (for the transformed y variables). Such tests on empirical d<strong>at</strong>a<br />

are presented in figures 7-9.<br />

The second test amounts to estim<strong>at</strong>ing the covariance m<strong>at</strong>rix V of the sample we consi<strong>de</strong>r. This step is<br />

simple since, for fast <strong>de</strong>caying pdf’s, robust estim<strong>at</strong>ors of the covariance m<strong>at</strong>rix are available. We can then<br />

estim<strong>at</strong>e the distribution of the variable z 2 = y t V −1 y. It is well known th<strong>at</strong> z 2 follows a χ 2 distribution<br />

if y is a Gaussian random vector. Again, the empirical cumul<strong>at</strong>ive distribution of z 2 versus the χ 2 cumul<strong>at</strong>ive<br />

distribution should give a straight line in or<strong>de</strong>r to qualify a multivari<strong>at</strong>e Gaussian distribution (for the<br />

transformed y variables). Such tests on empirical d<strong>at</strong>a are presented in figures 10-12.<br />

First, one can observe th<strong>at</strong> the Gaussian copula hypothesis appears b<strong>et</strong>ter for stocks than for currencies.<br />

As discussed in (Malevergne and Sorn<strong>et</strong>te 2001), this result is quite general. A plausible explan<strong>at</strong>ion lies<br />

in the stronger <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the currencies compared with th<strong>at</strong> b<strong>et</strong>ween stocks, which is due to<br />

the mon<strong>et</strong>ary policies limiting the fluctu<strong>at</strong>ions b<strong>et</strong>ween the currencies of a group of countries, such as was<br />

the case in the European Mon<strong>et</strong>ary System before the unique Euro currency. Note also th<strong>at</strong> the test of<br />

aggreg<strong>at</strong>ion seems system<strong>at</strong>ically more in favor of the Gaussian copula hypothesis than is the χ 2 test, maybe<br />

due to its smaller sensitivity. Non<strong>et</strong>heless, the very good performance of the Gaussian hypothesis un<strong>de</strong>r the<br />

19<br />

(50)


444 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

aggreg<strong>at</strong>ion test bears good news for a porfolio theory based on it, since by <strong>de</strong>finition a portfolio corresponds<br />

to ass<strong>et</strong> aggreg<strong>at</strong>ion. Even if sums of the transformed r<strong>et</strong>urns are not equivalent to sums of r<strong>et</strong>urns (as we<br />

shall see in the sequel), such sums qualify the collective behavior whose properties are controlled by the<br />

copula.<br />

Notwithstanding some <strong>de</strong>vi<strong>at</strong>ions from linearity in figures 7-12, it appears th<strong>at</strong>, for our purpose of <strong>de</strong>veloping<br />

a generalized portfolio theory, the Gaussian copula hypothesis is a good approxim<strong>at</strong>ion. A more system<strong>at</strong>ic<br />

test of this goodness of fit requires the quantific<strong>at</strong>ion of a confi<strong>de</strong>nce level, for instance using the Kolmogorov<br />

test, th<strong>at</strong> would allow us to accept or reject the Gaussian copula hypothesis. Such a test has been performed<br />

in (Malevergne and Sorn<strong>et</strong>te 2001), where it is shown th<strong>at</strong> this test is sensitive enough only in the bulk of the<br />

distribution, and th<strong>at</strong> an An<strong>de</strong>rson-Darling test is preferable for the tails of the distributions. Non<strong>et</strong>heless,<br />

the quantit<strong>at</strong>ive conclusions of these tests are i<strong>de</strong>ntical to the qualit<strong>at</strong>ive results presented here. Some other<br />

tests would be useful, such as the multivari<strong>at</strong>e Gaussianity test presented by (Richardson and Smith 1993).<br />

7 Choice of an exponential family to param<strong>et</strong>erize the marginal distributions<br />

7.1 The modified Weibull distributions<br />

We now apply these constructions to a class of distributions with f<strong>at</strong> tails, th<strong>at</strong> have been found to provi<strong>de</strong><br />

a convenient and flexible param<strong>et</strong>eriz<strong>at</strong>ion of many phenomena found in n<strong>at</strong>ure and in the social sciences<br />

(Laherrère and Sorn<strong>et</strong>te 1998). These so-called str<strong>et</strong>ched exponential distributions can be seen to be general<br />

forms of the extreme tails of product of random variables (Frisch and Sorn<strong>et</strong>te 1997).<br />

Following (Sorn<strong>et</strong>te <strong>et</strong> al. 2000b), we postul<strong>at</strong>e the following marginal probability distributions of r<strong>et</strong>urns:<br />

p(x) = 1<br />

2 √ c<br />

π χ c |x|<br />

2<br />

c<br />

2 −1 e −|x|<br />

χc<br />

, (52)<br />

where c and χ are the two key param<strong>et</strong>ers. A more general param<strong>et</strong>eriz<strong>at</strong>ion taking into account a possible<br />

asymm<strong>et</strong>ry b<strong>et</strong>ween neg<strong>at</strong>ive and positive r<strong>et</strong>urns (thus leading to possible non-zero average r<strong>et</strong>urn) is<br />

p(x) = Q √<br />

π<br />

χ<br />

p(x) =<br />

1 − Q<br />

√ π<br />

c+<br />

c +<br />

2<br />

+<br />

|x| c +<br />

2 −1 e −|x| +<br />

χ +c<br />

c−<br />

c− 2<br />

−<br />

χ<br />

|x| c− 2 −1 e −|x| −<br />

χ−c if x ≥ 0 (53)<br />

if x < 0 , (54)<br />

where Q (respectively 1 − Q) is the fraction of positive (respectively neg<strong>at</strong>ive) r<strong>et</strong>urns. In the sequel, we<br />

will only consi<strong>de</strong>r the case Q = 1<br />

2 , which is the only analytically tractable case. Thus the pdf’s asymm<strong>et</strong>ry<br />

will be only accounted for by the exponents c+, c− and the scale factors χ+, χ−.<br />

We can note th<strong>at</strong> these expressions are close to the Weibull distribution, with the addition of a power law<br />

prefactor to the exponential such th<strong>at</strong> the Gaussian law is r<strong>et</strong>rieved for c = 2. Following (Sorn<strong>et</strong>te <strong>et</strong><br />

al. 2000b, Sorn<strong>et</strong>te <strong>et</strong> al. 2000a, An<strong>de</strong>rsen and Sorn<strong>et</strong>te 2001), we call (52) the modified Weibull distribution.<br />

For c < 1, the pdf is a str<strong>et</strong>ched exponential, also called sub-exponential. The exponent c d<strong>et</strong>ermines the<br />

shape of the distribution, which is f<strong>at</strong>ter than an exponential if c < 1. The param<strong>et</strong>er χ controls the scale or<br />

characteristic width of the distribution. It plays a role analogous to the standard <strong>de</strong>vi<strong>at</strong>ion of the Gaussian<br />

law. See chapter 6 of (?) for a recent review on maximum likelihood and other estim<strong>at</strong>ors of such generalized<br />

Weibull distributions.<br />

20


7.2 Transform<strong>at</strong>ion of the modified Weibull pdf into a Gaussian Law<br />

One advantage of the class of distributions (52) is th<strong>at</strong> the transform<strong>at</strong>ion into a Gaussian is particularly<br />

simple. In<strong>de</strong>ed, the expression (52) is of the form (39) with<br />

c |x|<br />

f(x) = 2 . (55)<br />

χ<br />

Applying the change of variable (40) which reads<br />

leads autom<strong>at</strong>ically to a Gaussian distribution.<br />

yi = sgn(xi) √ <br />

|xi|<br />

2<br />

χi<br />

c i<br />

2<br />

These variables Yi then allow us to obtain the covariance m<strong>at</strong>rix V :<br />

Vij = 2<br />

T<br />

2 N π N/2√ V exp<br />

T<br />

<br />

|xi|<br />

sgn(xixj)<br />

n=1<br />

i,j<br />

V −1<br />

ij<br />

χi<br />

χi<br />

c i<br />

2 |xj|<br />

χj<br />

445<br />

, (56)<br />

χj<br />

c j<br />

2<br />

and thus the multivari<strong>at</strong>e distributions P (y) and P (x) :<br />

P (x1, · · · , xN) =<br />

1<br />

⎡<br />

⎣− <br />

⎤<br />

c/2 c/2 |xi| |xj|<br />

⎦<br />

, (57)<br />

<br />

N<br />

ci|xi| c/2−1<br />

i=1<br />

χ c/2<br />

i<br />

e −|x i |<br />

χc <br />

.<br />

(58)<br />

Similar transforms hold, mut<strong>at</strong>is mutandis, for the asymm<strong>et</strong>ric case. In<strong>de</strong>ed, for asymm<strong>et</strong>ric ass<strong>et</strong>s of interest<br />

for financial risk managers, the equ<strong>at</strong>ions (53) and (54) yields the following change of variable:<br />

yi = √ 2<br />

<br />

xi<br />

c+ i<br />

2<br />

χ + i<br />

yi = − √ <br />

|xi|<br />

2<br />

χ − i<br />

c− i 2<br />

and xi ≥ 0, (59)<br />

and xi < 0 . (60)<br />

This allows us to <strong>de</strong>fine the correl<strong>at</strong>ion m<strong>at</strong>rix V and to obtain the multivari<strong>at</strong>e distribution P (x), generalizing<br />

equ<strong>at</strong>ion (58) for asymm<strong>et</strong>ric ass<strong>et</strong>s. Since this expression is r<strong>at</strong>her cumbersome and nothing but a<br />

straightforward generaliz<strong>at</strong>ion of (58), we do not write it here.<br />

7.3 Empirical tests and estim<strong>at</strong>ed param<strong>et</strong>ers<br />

In or<strong>de</strong>r to test the validity of our assumption, we have studied a large bask<strong>et</strong> of financial ass<strong>et</strong>s including<br />

currencies and stocks. As an example, we present in figures 13 to 17 typical log-log plot of the transformed<br />

r<strong>et</strong>urn variable Y versus the r<strong>et</strong>urn variable X for a certain number of ass<strong>et</strong>s. If our assumption was right,<br />

we should observe a single straight line whose slope is given by c/2. In contrast, we observe in general<br />

two approxim<strong>at</strong>ely linear regimes separ<strong>at</strong>ed by a cross-over. This means th<strong>at</strong> the marginal distribution of<br />

r<strong>et</strong>urns can be approxim<strong>at</strong>ed by two modified Weibull distributions, one for small r<strong>et</strong>urns which is close to a<br />

Gaussian law and one for large r<strong>et</strong>urns with a f<strong>at</strong> tail. Each regime is <strong>de</strong>picted by its corresponding straight<br />

line in the graphs. The exponents c and the scale factors χ for the different ass<strong>et</strong>s we have studied are given<br />

in tables 3 for currencies and 4 for stocks. The coefficients within brack<strong>et</strong>s are the coefficients estim<strong>at</strong>ed for<br />

small r<strong>et</strong>urns while the non-brack<strong>et</strong>ed coefficients correspond to the second f<strong>at</strong> tail regime.<br />

21


446 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

The first point to note is the difference b<strong>et</strong>ween currencies and stocks. For small as well as for large r<strong>et</strong>urns,<br />

the exponents c− and c+ for currencies (excepted Poland and Thailand) are all close to each other. Additional<br />

tests are required to establish wh<strong>et</strong>her their rel<strong>at</strong>ively small differences are st<strong>at</strong>istically significant. Similarly,<br />

the scale factors are also comparable. In contrast, many stocks exhibit a large asymm<strong>et</strong>ric behavior for large<br />

r<strong>et</strong>urns with c+ −c− 0.5 in about one-half of the investig<strong>at</strong>ed stocks. This means th<strong>at</strong> the tails of the large<br />

neg<strong>at</strong>ive r<strong>et</strong>urns (“crashes”) are often much f<strong>at</strong>ter than those of the large positive r<strong>et</strong>urns (“rallies”).<br />

The second important point is th<strong>at</strong>, for small r<strong>et</strong>urns, many stocks have an exponent 〈c+〉 ≈ 〈c−〉 2 and<br />

thus have a behavior not far from a pure Gaussian in the bulk of the distribution, while the average exponent<br />

for currencies is about 1.5 in the same “small r<strong>et</strong>urn” regime. Therefore, even for small r<strong>et</strong>urns, currencies<br />

exhibit a strong <strong>de</strong>parture from Gaussian behavior.<br />

In conclusion, this empirical study shows th<strong>at</strong> the modified Weibull param<strong>et</strong>eriz<strong>at</strong>ion, although not exact on<br />

the entire range of vari<strong>at</strong>ion of the r<strong>et</strong>urns X, remains consistent within each of the two regimes of small<br />

versus large r<strong>et</strong>urns, with a sharp transition b<strong>et</strong>ween them. It seems especially relevant in the tails of the<br />

r<strong>et</strong>urn distributions, on which we shall focus our <strong>at</strong>tention next.<br />

8 Cumulant expansion of the portfolio r<strong>et</strong>urn distribution<br />

8.1 link b<strong>et</strong>ween moments and cumulants<br />

Before <strong>de</strong>riving the main result of this section, we recall a standard rel<strong>at</strong>ion b<strong>et</strong>ween moments and cumulants<br />

th<strong>at</strong> we need below.<br />

The moments Mn of the distribution P are <strong>de</strong>fined by<br />

ˆP (k) =<br />

+∞<br />

n=0<br />

(ik) n<br />

where ˆ P is the characteristic function, i.e., the Fourier transform of P :<br />

Similarly, the cumulants Cn are given by<br />

Differenti<strong>at</strong>ing n times the equ<strong>at</strong>ion<br />

ln<br />

ˆP (k) =<br />

ˆP (k) = exp<br />

+∞<br />

n=0<br />

(ik) n<br />

+∞<br />

−∞<br />

n! Mn<br />

+∞<br />

n! Mn , (61)<br />

dS P (S)e ikS . (62)<br />

n=1<br />

<br />

=<br />

(ik) n<br />

n! Cn<br />

+∞<br />

n=1<br />

<br />

(ik) n<br />

. (63)<br />

n! Cn , (64)<br />

we obtain the following recurrence rel<strong>at</strong>ions b<strong>et</strong>ween the moments and the cumulants :<br />

Mn =<br />

n−1 <br />

<br />

n − 1<br />

MpCn−p ,<br />

p<br />

(65)<br />

p=0<br />

n−1 <br />

<br />

n − 1<br />

Cn = Mn −<br />

CpMn−p . (66)<br />

n − p<br />

p=1<br />

22


In the sequel, we will first evalu<strong>at</strong>e the moments, which turns out to be easier, and then using eq (66) we<br />

will be able to calcul<strong>at</strong>e the cumulants.<br />

8.2 Symm<strong>et</strong>ric ass<strong>et</strong>s<br />

We start with the expression of the distribution of the weighted sum of N ass<strong>et</strong>s :<br />

<br />

PS(s) =<br />

R N<br />

447<br />

N<br />

dx P (x)δ( wixi − s) , (67)<br />

where δ(·) is the Dirac distribution. Using the change of variable (40), allowing us to go from the ass<strong>et</strong><br />

r<strong>et</strong>urns Xi’s to the transformed r<strong>et</strong>urns Yi’s, we g<strong>et</strong><br />

1<br />

PS(s) =<br />

(2π) N/2 <br />

d<strong>et</strong>(V )<br />

R N<br />

i=1<br />

1<br />

−<br />

dy e 2 ytV −1y δ(<br />

Taking its Fourier transform ˆ PS(k) = dsPS(s)eiks , we obtain<br />

ˆPS(k)<br />

1<br />

=<br />

(2π) N/2 <br />

d<strong>et</strong>(V )<br />

where ˆ PS is the characteristic function of PS.<br />

R N<br />

N<br />

wisgn(yi)f −1 (y 2 i ) − s) . (68)<br />

i=1<br />

1<br />

−<br />

dy e 2 ytV −1y+ikN i=1 wisgn(yi)f −1 (y2 i ) , (69)<br />

In the particular case of interest here where the marginal distributions of the variables Xi’s are the modified<br />

Weibull pdf,<br />

f −1 (yi) = χi| yi<br />

√2 | qi (70)<br />

with<br />

the equ<strong>at</strong>ion (69) becomes<br />

ˆPS(k)<br />

1<br />

=<br />

(2π) N/2 <br />

d<strong>et</strong>(V )<br />

R N<br />

qi = 2/ci , (71)<br />

1<br />

−<br />

dy e 2 ytV −1y+ikN i=1 wisgn(yi)χi| y √2 i | qi . (72)<br />

The task in front of us is to evalu<strong>at</strong>e this expression through the d<strong>et</strong>ermin<strong>at</strong>ion of the moments and/or<br />

cumulants.<br />

8.2.1 Case of in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s<br />

In this case, the cumulants can be obtained explicitely (Sorn<strong>et</strong>te <strong>et</strong> al. 2000b). In<strong>de</strong>ed, the expression (72)<br />

can be expressed as a product of integrals of the form<br />

We obtain<br />

+∞<br />

0<br />

C2n =<br />

u2<br />

− 2 du e +ikwiχiu i<br />

√2q<br />

. (73)<br />

N<br />

c(n, qi)(χiwi) 2n , (74)<br />

i=1<br />

23


448 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

and<br />

⎧<br />

⎨n−2<br />

<br />

c(n, qi) = (2n)! (−1)<br />

⎩<br />

n Γ qi(n − p) + 1<br />

<br />

2<br />

(2n − 2p)!π1/2 p=0<br />

Γ qi + 1<br />

2<br />

2!π 1/2<br />

<br />

p<br />

− (−1)n<br />

n<br />

Γ qi + 1<br />

2<br />

2!π<br />

<br />

1/2<br />

⎫<br />

n⎬ .<br />

⎭<br />

(75)<br />

Note th<strong>at</strong> the coefficient c(n, qi) is the cumulant of or<strong>de</strong>r n of the marginal distribution (52) with c = 2/qi<br />

and χ = 1. The equ<strong>at</strong>ion (74) expresses simply the fact th<strong>at</strong> the cumulants of the sum of in<strong>de</strong>pen<strong>de</strong>nt variables<br />

is the sum of the cumulants of each variable. The odd-or<strong>de</strong>r cumulants are zero due to the symm<strong>et</strong>ry<br />

of the distributions.<br />

8.2.2 Case of <strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s<br />

Here, we restrict our exposition to the case of two random variables. The case with N arbitrary can be<br />

tre<strong>at</strong>ed in a similar way but involves r<strong>at</strong>her complex formulas. The equ<strong>at</strong>ion (72) reads<br />

ˆPS(k)<br />

1<br />

=<br />

2π 1 − ρ2 <br />

<br />

dy1dy2 exp − 1<br />

2 ytV −1 <br />

q1<br />

y1 <br />

y + ik χ1w1sgn(y1) <br />

√<br />

<br />

2<br />

+<br />

q2<br />

y2 <br />

+χ2w2sgn(y2) <br />

√<br />

<br />

2<br />

<br />

<br />

, (76)<br />

and we can show (see appendix E) th<strong>at</strong> the moments read<br />

n<br />

<br />

n<br />

Mn =<br />

p<br />

with<br />

γq1q2<br />

γq1q2 (2n, 2p) = χ2p<br />

1 χ2(n−p) 2<br />

(2n, 2p + 1) = 2χ2p+1<br />

1<br />

p=0<br />

Γ q1p + 1<br />

2<br />

χ 2(n−p)−1<br />

2<br />

, −q2(n − p) + q2 + 1<br />

2<br />

where 2F1 is an hypergeom<strong>et</strong>ric function.<br />

<br />

w p<br />

1wn−pγq1q2 2 (n, p) , (77)<br />

<br />

Γ q2(n − p) + 1<br />

<br />

2<br />

2F1 −q1p, −q2(n − p);<br />

π<br />

1<br />

<br />

; ρ2 , (78)<br />

2<br />

<br />

Γ q2(n − p) + 1 − q2<br />

<br />

2 ρ 2F1 −q1p −<br />

π<br />

q1 − 1<br />

,<br />

2<br />

; 3<br />

<br />

; ρ2 , (79)<br />

2<br />

Γ q1p + 1 + q1<br />

2<br />

These two rel<strong>at</strong>ions allow us to calcul<strong>at</strong>e the moments and cumulants for any possible values of q1 = 2/c1<br />

and q2 = 2/c2. If one of the qi’s is an integer, a simplific<strong>at</strong>ion occurs and the coefficients γ(n, p) reduce to<br />

polynomials. In the simpler case where all the qi’s are odd integer the expression of moments becomes :<br />

with<br />

Mn =<br />

n<br />

p=0<br />

<br />

n<br />

(w1χ1)<br />

p<br />

p (w2χ2) n−p<br />

min{q1p,q2(n−p)} <br />

a (2n)<br />

2p = (2p)!<br />

a (2n)<br />

2p+1<br />

s=0<br />

<br />

2(n − p)<br />

(2(n − p) − 1)!! =<br />

2n<br />

ρ s s! a (q1p)<br />

s a (q2(n−p))<br />

s , (80)<br />

(2n)!<br />

2n−p , (81)<br />

(n − p)!<br />

= 0 , (82)<br />

a (2n+1)<br />

2p = 0 , (83)<br />

a (2n+1)<br />

<br />

2(n − p)<br />

(2n + 1)!<br />

2p+1 = (2p + 1)!<br />

(2(n − p) − 1)!! =<br />

2n + 1<br />

2n−p . (84)<br />

(n − p)!<br />

24


8.3 Non-symm<strong>et</strong>ric ass<strong>et</strong>s<br />

In the case of asymm<strong>et</strong>ric ass<strong>et</strong>s, we have to consi<strong>de</strong>r the formula (53-54), and using the same not<strong>at</strong>ion as in<br />

the previous section, the moments are again given by (77) with the coefficient γ(n, p) now equal to :<br />

<br />

Γ<br />

4π<br />

− <br />

q1 p<br />

+2Γ + 1 Γ<br />

2<br />

<br />

Γ<br />

4π<br />

− <br />

q1 p<br />

−2Γ + 1 Γ<br />

2<br />

<br />

Γ<br />

4π<br />

+ <br />

q 1 p<br />

−2Γ + 1 Γ<br />

2<br />

<br />

Γ<br />

4π<br />

+ <br />

q 1 p<br />

+2Γ + 1 Γ<br />

2<br />

γ(n, p) = (−1)n (χ − 1 )p (χ − 2 )n−p<br />

+ (−1)p (χ − 1 )p (χ + 2 )n−p<br />

+ (−1)n−p (χ + 1 )p (χ − 2 )n−p<br />

+ (χ+ 1 )p (χ + 2 )n−p<br />

− − <br />

q1 p + 1 q2 (n − p) + 1<br />

Γ<br />

2F1<br />

2<br />

2<br />

− <br />

q2 (n − p)<br />

+ 1 ρ 2F1 −<br />

2<br />

q− 1 p − 1<br />

2<br />

− + <br />

q1 p + 1 q 2 (n − p) + 1<br />

Γ<br />

2F1<br />

2<br />

2<br />

+ <br />

q 2 (n − p)<br />

+ 1 ρ 2F1 −<br />

2<br />

q− 1 p − 1<br />

2<br />

+ − <br />

q 1 p + 1 q2 (n − p) + 1<br />

Γ<br />

2F1<br />

2<br />

2<br />

− <br />

q2 (n − p)<br />

+ 1 ρ 2F1 −<br />

2<br />

q+ 1 p − 1<br />

2<br />

+ + <br />

q 1 p + 1 q 2 (n − p) + 1<br />

Γ<br />

2F1<br />

2<br />

2<br />

+ <br />

q 2 (n − p)<br />

+ 1 ρ 2F1 −<br />

2<br />

q+ 1<br />

<br />

− q− 1 p<br />

2 , −q− 2<br />

, − q− 2<br />

<br />

− q− 1 p<br />

2 , −q+ 2<br />

, − q+ 2<br />

<br />

− q+ 1 p<br />

2 , −q− 2<br />

, − q− 2<br />

<br />

− q+ 1 p<br />

2 , −q+ 2<br />

p − 1<br />

, −<br />

2<br />

q+ 2<br />

(n − p)<br />

2<br />

449<br />

; 1<br />

<br />

; ρ2 +<br />

2<br />

(n − p) − 1<br />

;<br />

2<br />

3<br />

<br />

; ρ2 +<br />

2<br />

(n − p)<br />

;<br />

2<br />

1<br />

<br />

; ρ2 +<br />

2<br />

(n − p) − 1<br />

;<br />

2<br />

3<br />

<br />

; ρ2 +<br />

2<br />

(n − p)<br />

;<br />

2<br />

1<br />

<br />

; ρ2 +<br />

2<br />

(n − p) − 1<br />

;<br />

2<br />

3<br />

<br />

; ρ2 +<br />

2<br />

(n − p)<br />

;<br />

2<br />

1<br />

<br />

; ρ2 +<br />

2<br />

(n − p) − 1<br />

;<br />

2<br />

3<br />

<br />

; ρ2 .<br />

2<br />

(85)<br />

This formula is obtained in the same way as for the formulas given in the symm<strong>et</strong>ric case. We r<strong>et</strong>rieve the<br />

formula (78) as it should if the coefficients with in<strong>de</strong>x ’+’ are equal to the coefficients with in<strong>de</strong>x ’-’.<br />

8.4 Empirical tests<br />

Extensive tests have been performed for currencies un<strong>de</strong>r the assumption th<strong>at</strong> the distributions of ass<strong>et</strong><br />

r<strong>et</strong>urns are symm<strong>et</strong>ric (Sorn<strong>et</strong>te <strong>et</strong> al. 2000b).<br />

As an exemple, l<strong>et</strong> us consi<strong>de</strong>r the Swiss franc and the Japanese Yen against the US dollar. The calibr<strong>at</strong>ion<br />

of the modified Weibull distribution to the tail of the empirical histogram of daily r<strong>et</strong>urns give (qCHF =<br />

1.75, cCHF = 1.14, χCHF = 2.13) and (qJP Y = 2.50, cJP Y = 0.8, χJP Y = 1.25) and their correl<strong>at</strong>ion<br />

coefficient is ρ = 0.43.<br />

Figure 18 plots the excess kurtosis of the sum wCHF xCHF + wJP Y xJP Y as a function of wCHF , with<br />

the constraint wCHF + wJP Y = 1. The thick solid line is d<strong>et</strong>ermined empirically, by direct calcul<strong>at</strong>ion of<br />

the kurtosis from the d<strong>at</strong>a. The thin solid line is the theor<strong>et</strong>ical prediction using our theor<strong>et</strong>ical formulas<br />

with the empirically d<strong>et</strong>ermined exponents c and characteristic scales χ given above. While there is a nonnegligible<br />

difference, the empirical and theor<strong>et</strong>ical excess kurtosis have essentially the same behavior with<br />

their minimum reached almost <strong>at</strong> the same value of wCHF .<br />

Three origins of the discrepancy b<strong>et</strong>ween theory and empirical d<strong>at</strong>a can be invoked. First, as already pointed<br />

out in the preceding section, the modified Weibull distribution with constant exponent and scale param<strong>et</strong>ers<br />

<strong>de</strong>scribes accur<strong>at</strong>ely only the tail of the empirical distributions while, for small r<strong>et</strong>urns, the empirical<br />

distributions are close to a Gaussian law. While putting a strong emphasis on large fluctu<strong>at</strong>ions, cumulants<br />

of or<strong>de</strong>r 4 are still significantly sensitive to the bulk of the distributions. Moreover, the excess kurtosis is<br />

25


450 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

normalized by the square second-or<strong>de</strong>r cumulant, which is almost exclusively sensitive to the bulk of the<br />

distribution. Cumulants of higher or<strong>de</strong>r should thus be b<strong>et</strong>ter <strong>de</strong>scribed by the modified Weibull distribution.<br />

However, a careful comparison b<strong>et</strong>ween theory and d<strong>at</strong>a would then be hin<strong>de</strong>red by the difficulty in estim<strong>at</strong>ing<br />

reliable empirical cumulants of high or<strong>de</strong>r. This estim<strong>at</strong>ion problem is often invoked as a criticism<br />

against using high-or<strong>de</strong>r moments or cumulants. Our approach suggests th<strong>at</strong> this problem can be in large<br />

part circumvented by focusing on the estim<strong>at</strong>ion of a reasonable param<strong>et</strong>ric expression for the probability<br />

<strong>de</strong>nsity or distribution function of the ass<strong>et</strong>s r<strong>et</strong>urns. The second possible origin of the discrepancy b<strong>et</strong>ween<br />

theory and d<strong>at</strong>a is the existence of a weak asymm<strong>et</strong>ry of the empirical distributions, particularly of the Swiss<br />

franc, which has not been taken into account. The figure also suggests th<strong>at</strong> an error in the d<strong>et</strong>ermin<strong>at</strong>ion of<br />

the exponents c can also contribute to the discrepancy.<br />

In or<strong>de</strong>r to investig<strong>at</strong>e the sensitivity with respect to the choice of the param<strong>et</strong>ers q and ρ, we have also<br />

constructed the dashed line corresponding to the theor<strong>et</strong>ical curve with ρ = 0 (instead of ρ = 0.43) and<br />

the dotted line corresponding to the theor<strong>et</strong>ical curve with qCHF = 2 r<strong>at</strong>her than 1.75. Finally, the dasheddotted<br />

line corresponds to the theor<strong>et</strong>ical curve with qCHF = 1.5. We observe th<strong>at</strong> the dashed line remains<br />

r<strong>at</strong>her close to the thin solid line while the dotted line <strong>de</strong>parts significantly when wCHF increases. Therefore,<br />

the most sensitive param<strong>et</strong>er is q, which is n<strong>at</strong>ural because it controls directly the extend of the f<strong>at</strong> tail of the<br />

distributions.<br />

In or<strong>de</strong>r to account for the effect of asymm<strong>et</strong>ry, we have plotted the fourth cumulant of a portfolio composed<br />

of Swiss Francs and British Pounds. On figure 19, the solid line represents the empirical cumulant while<br />

the dashed line shows the theor<strong>et</strong>ical cumulant. The agreement b<strong>et</strong>ween the two curves is b<strong>et</strong>ter than un<strong>de</strong>r<br />

the symm<strong>et</strong>ric asumption. Note once again th<strong>at</strong> an accur<strong>at</strong>e d<strong>et</strong>ermin<strong>at</strong>ion of the param<strong>et</strong>ers is the key point<br />

to obtain a good agreement b<strong>et</strong>ween empirical d<strong>at</strong>a and theor<strong>et</strong>ical prediction. As we can see in figure 19,<br />

the param<strong>at</strong>ers of the Swiss Franc seem well adjusted since the theor<strong>et</strong>ical and empirical cumulants are both<br />

very close when wCHF 1, i.e., when the Swiss Franc is almost the sole ass<strong>et</strong> in the portfolio, while when<br />

wCHF 0, the theor<strong>et</strong>ical cumulant is far from the empirical one, i.e., the param<strong>et</strong>ers of the Bristish Pound<br />

are not sufficiently well-adjusted.<br />

9 Can you have your cake and e<strong>at</strong> it too ?<br />

Now th<strong>at</strong> we have shown how to accur<strong>at</strong>ely estim<strong>at</strong>e the multivari<strong>at</strong>e distribution fonction of the ass<strong>et</strong>s<br />

r<strong>et</strong>urn, l<strong>et</strong> us come back to the portfolio selection problem. In figure 2, we can see th<strong>at</strong> the expected r<strong>et</strong>urn<br />

of the portfolios with minimum risk according to Cn <strong>de</strong>creases when n increases. But, this is not the general<br />

situ<strong>at</strong>ion.<br />

Figure 20 and 21 show the generalized efficient frontiers using C2 (Markovitz case), C4 or C6 as relevant<br />

measures of risks, for two portfolios composed of two stocks : IBM and Hewl<strong>et</strong>t-Packard in the first case<br />

and IBM and Coca-Cola in the second case.<br />

Obviously, given a certain amount of risk, the mean r<strong>et</strong>urn of the portfolio changes when the cumulant<br />

consi<strong>de</strong>red changes. It is interesting to note th<strong>at</strong>, in figure 20, the minimis<strong>at</strong>ion of large risks, i.e., with<br />

respect to C6, increases the average r<strong>et</strong>urn while, in figure 21, the minimis<strong>at</strong>ion of large risks lead to <strong>de</strong>crease<br />

the average r<strong>et</strong>urn.<br />

This allows us to make precise and quantit<strong>at</strong>ive the previously reported empirical observ<strong>at</strong>ion th<strong>at</strong> it is<br />

possible to “have your cake and e<strong>at</strong> it too” (An<strong>de</strong>rsen and Sorn<strong>et</strong>te 2001). We can in<strong>de</strong>ed give a general<br />

criterion to d<strong>et</strong>ermine un<strong>de</strong>r which values of the param<strong>et</strong>ers (exponents c and characteristic scales χ of<br />

the distributions of the ass<strong>et</strong> r<strong>et</strong>urns) the average r<strong>et</strong>urn of the portfolio may increase while the large risks<br />

<strong>de</strong>crease <strong>at</strong> the same time, thus allowing one to gain on both account (of course, the small risks quantified<br />

26


y the variance will then increase). For two in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s, assuming th<strong>at</strong> the cumulants of or<strong>de</strong>r n and<br />

n + k of the portfolio admit a minimum in the interval ]0, 1[, we can show th<strong>at</strong><br />

if and only if<br />

(µ(1) − µ(2)) ·<br />

µ ∗ n < µ ∗ n+k<br />

Cn(1) 1<br />

n−1<br />

−<br />

Cn(2)<br />

451<br />

(86)<br />

1 <br />

Cn+k(1) n+k−1<br />

> 0 , (87)<br />

Cn+k(2)<br />

where µ ∗ n <strong>de</strong>notes the r<strong>et</strong>urn of the portfolio evalu<strong>at</strong>ed with respect to the minimum of the cumulant of or<strong>de</strong>r<br />

n and Cn(i) is the cumulant of or<strong>de</strong>r n for the ass<strong>et</strong> i.<br />

The proof of this result and its generalis<strong>at</strong>ion to N > 2 are given in appendix F. In fact, we have observed<br />

th<strong>at</strong> when the exponent c of the ass<strong>et</strong>s remains sufficiently different, this result still holds in presence of<br />

<strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s. This last empirical observ<strong>at</strong>ion in the presence of <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween ass<strong>et</strong>s<br />

has not been proved m<strong>at</strong>hem<strong>at</strong>ically. It seems reasonable for ass<strong>et</strong>s with mo<strong>de</strong>r<strong>at</strong>e <strong>de</strong>pen<strong>de</strong>nce while it may<br />

fail when the <strong>de</strong>pen<strong>de</strong>nce becomes too strong as occurs for comonotonic ass<strong>et</strong>s.<br />

For the ass<strong>et</strong>s consi<strong>de</strong>red above, we have found µIBM = 0.13, µHW P = 0.07, µKO = 0.05 and<br />

C2(IBM)<br />

C2(HW P )<br />

C2(IBM)<br />

C2(KO)<br />

= 1.76 ><br />

= 0.96 <<br />

1<br />

C4(IBM) 3<br />

C4(HW P )<br />

1<br />

C4(IBM) 3<br />

C4(KO)<br />

<br />

C6(IBM)<br />

= 1.03 ><br />

C6(HW P )<br />

<br />

C6(IBM)<br />

= 1.01 <<br />

C6(KO)<br />

1<br />

5<br />

1<br />

5<br />

= 0.89 (88)<br />

= 1.06 , (89)<br />

which shows th<strong>at</strong>, for the portfolio IBM / Hewl<strong>et</strong>t-Packard, the efficient r<strong>et</strong>urn is an increasing function of<br />

the or<strong>de</strong>r of the cumulants while, for the portfolio IBM / Coca-Cola, the inverse phenomenon occurs. This<br />

is exactly wh<strong>at</strong> is shown on figures 20 and 21.<br />

The un<strong>de</strong>rlying intuitive mechanism is the following: if a portfolio contains an ass<strong>et</strong> with a r<strong>at</strong>her f<strong>at</strong> tail<br />

(many “large” risks) but narrow waist (few “small” risks) with very little r<strong>et</strong>urn to gain from it, minimizing<br />

the variance C2 of the r<strong>et</strong>urn portfolio will overweight this ass<strong>et</strong> which is wrongly perceived as having little<br />

risk due to its small variance (small waist). In contrast, controlling for the larger risks quantified by C4 or<br />

C6 leads to <strong>de</strong>crease the weight of this ass<strong>et</strong> in the portfolio, and correspondingly to increase the weight<br />

of the more profitable ass<strong>et</strong>s. We thus see th<strong>at</strong> the effect of “both <strong>de</strong>creasing large risks and increasing<br />

profit” appears when the ass<strong>et</strong>(s) with the f<strong>at</strong>ter tails, and therefore the narrower central part, has(ve) the<br />

smaller overall r<strong>et</strong>urn(s). A mean-variance approach will weight them more than <strong>de</strong>emed appropri<strong>at</strong>e from<br />

a pru<strong>de</strong>ntial consi<strong>de</strong>r<strong>at</strong>ion of large risks and consi<strong>de</strong>r<strong>at</strong>ion of profits.<br />

From a behavioral point of view, this phenomenon is very interesting and can probably be linked with the<br />

fact th<strong>at</strong> the main risk measure consi<strong>de</strong>red by the agents is the vol<strong>at</strong>ility (or the variance), so th<strong>at</strong> the other<br />

dimensions of the risk, measured by higher moments, are often neglected. This may som<strong>et</strong>imes offer the<br />

opportunity of increasing the expected r<strong>et</strong>urn while lowering large risks.<br />

10 Conclusion<br />

We have introduced three axioms th<strong>at</strong> <strong>de</strong>fine a consistent s<strong>et</strong> of risk measures, in the spirit of (Artzner <strong>et</strong><br />

al. 1997, Artzner <strong>et</strong> al. 1999). Contrarily to the risk measures of (Artzner <strong>et</strong> al. 1997, Artzner <strong>et</strong> al. 1999),<br />

our consistent risk measures may account for both-si<strong>de</strong> risks and not only for down-si<strong>de</strong> risks. Thus, they<br />

supplement the notion of coherent measures of risk and are well adapted to the problem of portfolio risk<br />

27


452 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

assessment and optimiz<strong>at</strong>ion. We have shown th<strong>at</strong> these risk measures, which contain centered moments<br />

(and cumulants with some restriction) as particular examples, generalize them significantly. We have presented<br />

a generaliz<strong>at</strong>ion of previous generaliz<strong>at</strong>ions of the efficient frontiers and of the CAPM based on these<br />

risk measures in the cases of homogeneous and h<strong>et</strong>erogeneous agents. We have then proposed a simple but<br />

powerful specific von Mises represent<strong>at</strong>ion of multivari<strong>at</strong>e distribution of r<strong>et</strong>urns th<strong>at</strong> allowed us to obtain<br />

new analytical results on and empirical tests of a general framework for a portfolio theory of non-Gaussian<br />

risks with non-linear correl<strong>at</strong>ions. Quantit<strong>at</strong>ive tests have been presented on a bask<strong>et</strong> of seventeen stocks<br />

among the largest capitaliz<strong>at</strong>ion on the NYSE.<br />

This work opens several novel interesting avenues for research. One consists in extending the Gaussian copula<br />

assumption, for instance by using the maximum-entropy principle with non-extensive Tsallis entropies,<br />

known to be the correct m<strong>at</strong>hem<strong>at</strong>ical inform<strong>at</strong>ion-theor<strong>et</strong>ical represent<strong>at</strong>ion of power laws. A second line<br />

of research would be to extend the present framework to encompass simultaneously different time scales τ<br />

in the spirit of (Muzy <strong>et</strong> al. 2001) in the case of a casca<strong>de</strong> mo<strong>de</strong>l of vol<strong>at</strong>ilities.<br />

28


A Description of the d<strong>at</strong>a s<strong>et</strong><br />

We have consi<strong>de</strong>red a s<strong>et</strong> of seventeen ass<strong>et</strong>s tra<strong>de</strong>d on the New York Stock Exchange: Applied M<strong>at</strong>erial,<br />

Coca-Cola, EMC, Exxon-Mobil, General Electric, General Motors, Hewl<strong>et</strong>t Packard, IBM, Intel, MCI<br />

WorldCom, Medtronic, Merck, Pfizer, Procter & Gambel, SBC Communic<strong>at</strong>ion, Texas Instrument, Wall<br />

Mart. These ass<strong>et</strong>s have been choosen since they are among the largest capitaliz<strong>at</strong>ions of the NYSE <strong>at</strong> the<br />

time of writing.<br />

The d<strong>at</strong>as<strong>et</strong> comes from the Center for Research in Security Prices (CRSP) d<strong>at</strong>abase and covers the time<br />

interval from the end of January 1995 to the end of December 2000, which represents exactly 1500 trading<br />

days. The main st<strong>at</strong>istical fe<strong>at</strong>ures of the compagnies composing the d<strong>at</strong>as<strong>et</strong> are presented in the table 5.<br />

Note the high kurtosis of each distribution of r<strong>et</strong>urns as well as the large values of the observed minimum and<br />

maximum r<strong>et</strong>urns compared with the standard <strong>de</strong>vi<strong>at</strong>ions, th<strong>at</strong> clearly un<strong>de</strong>rlines the non-Gaussian behavior<br />

of these ass<strong>et</strong>s.<br />

29<br />

453


454 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

B Generalized efficient frontier and two funds separ<strong>at</strong>ion theorem<br />

L<strong>et</strong> us consi<strong>de</strong>r a s<strong>et</strong> of N risky ass<strong>et</strong>s X1, · · · , XN and a risk-free ass<strong>et</strong> X0. The problem is to find the<br />

optimal alloc<strong>at</strong>ion of these ass<strong>et</strong>s in the following sense:<br />

⎧<br />

⎨<br />

⎩<br />

inf wi∈[0,1] ρα({wi})<br />

<br />

i≥0 wi = 1<br />

<br />

i≥0 wiµ(i) = µ ,<br />

In other words, we search for the portfolio P with minimum risk as measured by any risk measure ρα<br />

obeying axioms I-IV of section 2 for a given amount of expected r<strong>et</strong>urn µ and normalized weights wi.<br />

Short-sells are forbid<strong>de</strong>n except for the risk-free ass<strong>et</strong> which can be lent and borrowed <strong>at</strong> the same interest<br />

r<strong>at</strong>e µ0. Thus, the weights wi’s are assumed positive for all i ≥ 1.<br />

B.1 Case of in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s when the risk is measured by the cumulants<br />

To start with a simple example, l<strong>et</strong> us assume th<strong>at</strong> the risky ass<strong>et</strong>s are in<strong>de</strong>pen<strong>de</strong>nt and th<strong>at</strong> we choose to<br />

measure the risk with the cumulants of their distributions of r<strong>et</strong>urns. The case when the ass<strong>et</strong>s are <strong>de</strong>pen<strong>de</strong>nt<br />

and/or when the risk is measured by any ρα will be consi<strong>de</strong>red l<strong>at</strong>er. Since the ass<strong>et</strong>s are assumed<br />

in<strong>de</strong>pen<strong>de</strong>nt, the cumulant of or<strong>de</strong>r n of the pdf of r<strong>et</strong>urns of the portfolio is simply given by<br />

Cn =<br />

(90)<br />

N<br />

wi n Cn(i), (91)<br />

i=1<br />

where Cn(i) <strong>de</strong>notes the marginal nth or<strong>de</strong>r cumulant of the pdf of r<strong>et</strong>urns of the ass<strong>et</strong> i. In or<strong>de</strong>r to solve<br />

this problem, l<strong>et</strong> us introduce the Lagrangian<br />

<br />

N<br />

<br />

N<br />

<br />

L = Cn − λ1 wi µ(i) − µ − λ2 wi − 1 , (92)<br />

i=0<br />

where λ1 and λ2 are two Lagrange multipliers. Differenti<strong>at</strong>ing with respect to w0 yields<br />

i=0<br />

λ2 = µ0 λ1, (93)<br />

which by substitution in equ<strong>at</strong>ion (92) gives<br />

<br />

N<br />

<br />

L = Cn − λ1 wi (µ(i) − µ0) − (µ − µ0) . (94)<br />

i=1<br />

L<strong>et</strong> us now differenti<strong>at</strong>e L with respect to wi, i ≥ 1, we obtain<br />

so th<strong>at</strong><br />

n w ∗ i n−1 Cn(i) − λ1(µ(i) − µ0) = 0, (95)<br />

w ∗ 1<br />

i = λ1<br />

n−1<br />

Applying the normaliz<strong>at</strong>ion constraint yields<br />

1<br />

w0 + λ1<br />

n−1<br />

N<br />

i=1<br />

1<br />

µ(i) − µ0<br />

n−1<br />

. (96)<br />

n Cn(i)<br />

1<br />

µ(i) − µ0<br />

n−1<br />

n Cn(i)<br />

30<br />

= 1, (97)


thus<br />

and finally<br />

1<br />

λ1<br />

n−1 =<br />

w ∗ i = (1 − w0)<br />

N<br />

i=1<br />

N<br />

i=1<br />

1 − w0<br />

µ(i)−µ0<br />

n Cn(i)<br />

1<br />

µ(i)−µ0 n−1<br />

Cn(i)<br />

µ(i)−µ0<br />

Cn(i)<br />

L<strong>et</strong> us now <strong>de</strong>fine the portfolio Π exclusively ma<strong>de</strong> of risky ass<strong>et</strong>s with weights<br />

˜wi =<br />

N<br />

i=1<br />

1<br />

µ(i)−µ0 n−1<br />

Cn(i)<br />

µ(i)−µ0<br />

Cn(i)<br />

455<br />

1<br />

n−1<br />

, (98)<br />

1<br />

n−1<br />

. (99)<br />

1<br />

n−1<br />

, i ≥ 1. (100)<br />

The optimal portfolio P can be split in two funds : the risk-free ass<strong>et</strong> whose weight is w0 and a risky fund<br />

Π with weight (1 − w0). The expected r<strong>et</strong>urn of the portfolio P is thus<br />

where µΠ <strong>de</strong>notes the expected r<strong>et</strong>urn of portofolio Π:<br />

µΠ =<br />

µ = w0 µ0 + (1 − w0)µΠ, (101)<br />

N<br />

i=1 µ(i)<br />

N<br />

i=1<br />

1<br />

µ(i)−µ0 n−1<br />

Cn(i)<br />

µ(i)−µ0<br />

Cn(i)<br />

1<br />

n−1<br />

The risk associ<strong>at</strong>ed with P and measured by the cumulant Cn of or<strong>de</strong>r n is<br />

Cn = (1 − w0) n<br />

N i=1 Cn(i)<br />

N<br />

i=1<br />

n<br />

µ(i)−µ0 n−1<br />

Cn(i)<br />

µ(i)−µ0<br />

Cn(i)<br />

1<br />

n−1<br />

. (102)<br />

n . (103)<br />

Putting tog<strong>et</strong>her the three last equ<strong>at</strong>ions allows us to obtain the equ<strong>at</strong>ion of the efficient frontier:<br />

µ = µ0 +<br />

which is a straight line in the plane (Cn 1/n , µ).<br />

B.2 General case<br />

(µ(i) − µ0) n<br />

n−1<br />

Cn(i) 1<br />

n−1<br />

n−1<br />

n<br />

1<br />

· Cn n , (104)<br />

L<strong>et</strong> us now consi<strong>de</strong>r the more realistic case when the risky ass<strong>et</strong>s are <strong>de</strong>pen<strong>de</strong>nt and/or when the risk is<br />

measured by any risk measure ρα obeying the axioms I-IV presented in section 2, where α <strong>de</strong>notes the<br />

<strong>de</strong>gres of homogeneity of ρα. Equ<strong>at</strong>ion (94) always holds (with Cn replaced by ρα), and the differenti<strong>at</strong>ion<br />

with respect to wi, i ≥ 1 yields the s<strong>et</strong> of equ<strong>at</strong>ions:<br />

∂ρα<br />

∂wi<br />

(w ∗ 1, · · · , w ∗ N) = λ1 (µ(i) − µ0), i ∈ {1, · · · , N}. (105)<br />

31


456 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

Since ρα(w1, · · · , wN) is a homogeneous function of or<strong>de</strong>r α, its first-or<strong>de</strong>r <strong>de</strong>riv<strong>at</strong>ive with respect to wi is<br />

also a homogeneous function of or<strong>de</strong>r α − 1. Using this homogeneity property allows us to write<br />

∂ρα<br />

∂wi<br />

−1 ∂ρα<br />

λ1 (w<br />

∂wi<br />

∗ 1, · · · , w ∗ N) = (µ(i) − µ0), i ∈ {1, · · · , N}, (106)<br />

1<br />

−<br />

λ1<br />

α−1 w ∗ 1<br />

−<br />

1, · · · , λ1<br />

α−1 w ∗ <br />

N = (µ(i) − µ0), i ∈ {1, · · · , N} . (107)<br />

Denoting by { ˆw1, · · · , ˆwN} the solution of<br />

this shows th<strong>at</strong> the optimal weights are<br />

∂ρα<br />

( ˆw1, · · · , ˆwN) = (µ(i) − µ0), i ∈ {1, · · · , N}, (108)<br />

∂wi<br />

w ∗ i = λ1<br />

1<br />

α−1 ˆwi. (109)<br />

Now, performing the same calcul<strong>at</strong>ion as in the case of in<strong>de</strong>pen<strong>de</strong>nt risky ass<strong>et</strong>s, the efficient portfolio P<br />

can be realized by investing a weight w0 of the initial wealth in the risk-free ass<strong>et</strong> and the weight (1 − w0)<br />

in the risky fund Π, whose weights are given by<br />

˜wi =<br />

Therefore, the expected r<strong>et</strong>urn of every efficient portfolio is<br />

ˆwi<br />

N i=1 ˆwi<br />

. (110)<br />

µ = w0 · µ0 + (1 − w0) · µΠ, (111)<br />

where µΠ <strong>de</strong>notes the expected r<strong>et</strong>urn of the mark<strong>et</strong> portfolio Π, while the risk, measured by ρα is<br />

so th<strong>at</strong><br />

ρα = (1 − w0) α ρα(Π) , (112)<br />

µ = µ0 + µΠ − µ0<br />

ρα(Π) 1/α ρα 1/α . (113)<br />

This expression is the n<strong>at</strong>ural generaliz<strong>at</strong>ion of the rel<strong>at</strong>ion obtained by (Markovitz 1959) for mean-variance<br />

efficient portfolios.<br />

32


C Composition of the mark<strong>et</strong> portfolio<br />

In this appendix, we <strong>de</strong>rive the rel<strong>at</strong>ionship b<strong>et</strong>ween the composition of the mark<strong>et</strong> portfolio and the composition<br />

of the optimal portfolio Π obtained by the minimiz<strong>at</strong>ion of the risks measured by ρα(n).<br />

C.1 Homogeneous case<br />

We first consi<strong>de</strong>r a homogeneous mark<strong>et</strong>, peopled with agents choosing their optimal portfolio with respect<br />

to the same risk measure ρα. A given agent p invests a fraction w0(p) of his wealth W (p) in the risk-free<br />

ass<strong>et</strong> and a fraction 1 − w0(p) in the optimal portfolio Π. Therefore, the total <strong>de</strong>mand Di of ass<strong>et</strong> i is the<br />

sum of the <strong>de</strong>mand Di(p) over all agents p in ass<strong>et</strong> i:<br />

Di = <br />

Di(p) , (114)<br />

p<br />

457<br />

= <br />

W (p) · (1 − w0(p)) · ˜wi , (115)<br />

p<br />

= ˜wi · <br />

W (p) · (1 − w0(p)) , (116)<br />

p<br />

where the ˜wi’s are given by (110). The aggreg<strong>at</strong>ed <strong>de</strong>mand D over all ass<strong>et</strong>s is<br />

D = <br />

Di, (117)<br />

i<br />

= <br />

˜wi · <br />

W (p) · (1 − w0(p)), (118)<br />

i<br />

p<br />

= <br />

W (p) · (1 − w0(p)). (119)<br />

p<br />

By <strong>de</strong>finition, the weight of ass<strong>et</strong> i, <strong>de</strong>noted by wm i , in the mark<strong>et</strong> portfolio equals the r<strong>at</strong>io of its capitaliz<strong>at</strong>ion<br />

(the supply Si of ass<strong>et</strong> i) over the total capitaliz<strong>at</strong>ion of the mark<strong>et</strong> S = Si. At the equilibrium,<br />

<strong>de</strong>mand equals supply, so th<strong>at</strong><br />

w m i = Si Di<br />

=<br />

S D = ˜wi. (121)<br />

Thus, <strong>at</strong> the equilibrium, the optimal portfolio Π is the mark<strong>et</strong> portfolio.<br />

C.2 H<strong>et</strong>erogeneous case<br />

(120)<br />

We now consi<strong>de</strong>r a h<strong>et</strong>erogenous mark<strong>et</strong>, <strong>de</strong>fined such th<strong>at</strong> the agents choose their optimal portfolio with<br />

respect to different risk measures. Some of them choose the usual mean-variance optimal portfolios, others<br />

prefer any mean-ρα efficient portfolio, and so on. L<strong>et</strong> us <strong>de</strong>note by Πn the mean-ρα(n) optimal portfolio<br />

ma<strong>de</strong> only of risky ass<strong>et</strong>s. L<strong>et</strong> φn be the fraction of agents who choose the mean-ρα(n) efficient portfolios.<br />

By normaliz<strong>at</strong>ion, <br />

n φn = 1. The <strong>de</strong>mand Di(n) of ass<strong>et</strong> i from the agents optimizing with respect to<br />

ρα(n) is<br />

Di(n) = <br />

W (p) · (1 − w0(p)) · ˜wi(n), (122)<br />

p∈Sn<br />

= ˜wi(n) <br />

W (p) · (1 − w0(p)), (123)<br />

p∈Sn<br />

33


458 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

where Sn <strong>de</strong>notes the s<strong>et</strong> of agents, among all the agents, who follow the optimiz<strong>at</strong>ion stragtegy with respect<br />

to ρα(n). Thus, the total <strong>de</strong>mand of ass<strong>et</strong> i is<br />

Di = <br />

N φn · Di(n), (124)<br />

n<br />

= N <br />

φn · ˜wi(n) <br />

W (p) · (1 − w0(p)), (125)<br />

n<br />

where N is the total number of agents. This finally yields the total <strong>de</strong>mand D for all ass<strong>et</strong>s and for all agents<br />

D = <br />

Di, (126)<br />

i<br />

p∈Sn<br />

= N <br />

φn · ˜wi(n) <br />

W (p) · (1 − w0(p)), (127)<br />

i<br />

= N <br />

n<br />

n<br />

φn<br />

p∈Sn<br />

<br />

W (p) · (1 − w0(p)), (128)<br />

p∈Sn<br />

since <br />

i ˜wi(n) = 1, for every n. Thus, s<strong>et</strong>ting<br />

<br />

γn = φn p∈Sn <br />

n φn<br />

<br />

p∈Sn<br />

W (p) · (1 − w0(p))<br />

, (129)<br />

W (p) · (1 − w0(p))<br />

the mark<strong>et</strong> portfolio is the weighted sum of the mean-ρα(n) optimal portfolios Πn:<br />

w m i = Si<br />

S<br />

= Di<br />

D<br />

<br />

= γn · ˜wi(n) . (130)<br />

34<br />

n


D Generalized capital ass<strong>et</strong> princing mo<strong>de</strong>l<br />

Our proof of the generalized capital ass<strong>et</strong> princing mo<strong>de</strong>l is similar to the usual <strong>de</strong>montr<strong>at</strong>ion of the CAPM.<br />

L<strong>et</strong> us consi<strong>de</strong>r an efficient portfolio P. It necessarily s<strong>at</strong>isfies equ<strong>at</strong>ion (105) in appendix B :<br />

459<br />

∂ρα<br />

(w<br />

∂wi<br />

∗ 1, · · · , w ∗ N) = λ1 (µ(i) − µ0), i ∈ {1, · · · , N}. (131)<br />

L<strong>et</strong> us now choose any portfolio R ma<strong>de</strong> only of risky ass<strong>et</strong>s and l<strong>et</strong> us <strong>de</strong>note by wi(R) its weights. We<br />

can thus write<br />

N<br />

i=1<br />

wi(R) · ∂ρα<br />

(w<br />

∂wi<br />

∗ 1, · · · , w ∗ N) = λ1<br />

N<br />

wi(R) · (µ(i) − µ0), (132)<br />

i=1<br />

= λ1 (µR − µ0). (133)<br />

We can apply this last rel<strong>at</strong>ion to the mark<strong>et</strong> portfolio Π, because it is only composed of risky ass<strong>et</strong>s (as<br />

proved in appendix B). This leads to wi(R) = w ∗ i and µR = µΠ, so th<strong>at</strong><br />

N<br />

i=1<br />

which, by the homogeneity of the risk measures ρα, yields<br />

Substituting equ<strong>at</strong>ion (131) into (135) allows us to obtain<br />

where<br />

w ∗ i · ∂ρα<br />

(w<br />

∂wi<br />

∗ 1, · · · , w ∗ N) = λ1 (µΠ − µ0), (134)<br />

α · ρα(w ∗ 1, · · · , w ∗ N) = λ1 (µΠ − µ0) . (135)<br />

µj − µ0 = β j α · (µΠ − µ0), (136)<br />

β j α =<br />

<br />

∂<br />

1<br />

ln ρα α<br />

∂wj<br />

<br />

, (137)<br />

calcul<strong>at</strong>ed <strong>at</strong> the point {w∗ 1 , · · · , w∗ N }. Expression (135) with (137) provi<strong>de</strong>s our CAPM, generalized with<br />

respect to the risk measures ρα.<br />

In the case where ρα <strong>de</strong>notes the variance, the second-or<strong>de</strong>r centered moment is equal to the second-or<strong>de</strong>r<br />

cumulant and reads<br />

Since<br />

we find<br />

C2 = w ∗ 1 · Var[X1] + 2w ∗ 1w ∗ 2 · Cov(X1, X2) + w ∗ 2 · Var[X2], (138)<br />

= Var[Π] . (139)<br />

1 ∂C2<br />

·<br />

2 ∂w1<br />

= w ∗ 1 · Var[X1] + w ∗ 2 · Cov(X1, X2) , (140)<br />

= Cov(X1, Π), (141)<br />

β = Cov(X1, XΠ)<br />

Var[XΠ]<br />

which is the standard result of the CAPM <strong>de</strong>rived from the mean-variance theory.<br />

35<br />

, (142)


460 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

E Calcul<strong>at</strong>ion of the moments of the distribution of portfolio r<strong>et</strong>urns<br />

L<strong>et</strong> us start with equ<strong>at</strong>ion (72) in the 2-ass<strong>et</strong> case :<br />

ˆPS(k)<br />

1<br />

=<br />

2π 1 − ρ2 <br />

<br />

dy1dy2 exp − 1<br />

2 ytV −1 <br />

<br />

y1 <br />

y + ik χ1w1sgn(y1) <br />

√<br />

<br />

2<br />

<br />

<br />

y2 <br />

+χ2w2sgn(y2) <br />

√<br />

<br />

2<br />

<br />

Expanding the exponential and using the <strong>de</strong>finition (67) of moments, we g<strong>et</strong><br />

Posing<br />

1<br />

Mn =<br />

2π 1 − ρ2 <br />

dy1 dy2<br />

γq1q2 (n, p) = χ1 p χ2 n−p<br />

this leads to<br />

2π 1 − ρ 2<br />

<br />

n<br />

p=0<br />

<br />

n<br />

χ<br />

p<br />

p<br />

dy1dy2 sgn(y1) p<br />

<br />

y1 <br />

<br />

√<br />

<br />

2<br />

<br />

Mn =<br />

1χn−p 2 wp 1wn−p 2<br />

×sgn(y2) n−p<br />

q1p<br />

<br />

y2 <br />

<br />

√<br />

<br />

2<br />

<br />

sgn(y1) p<br />

<br />

y1 <br />

<br />

√<br />

<br />

2<br />

<br />

q2(n−p)<br />

sgn(y2) n−p<br />

<br />

y2 <br />

<br />

√<br />

<br />

2<br />

<br />

L<strong>et</strong> us <strong>de</strong>fined the auxiliary variables α and β such th<strong>at</strong><br />

α = (V −1 )11 = (V −1 )22 = 1<br />

1−ρ 2 ,<br />

β = −(V −1 )12 = −(V −1 )21 = ρ<br />

1−ρ 2 .<br />

n<br />

p=0<br />

q1<br />

+<br />

q2 <br />

q1p<br />

×<br />

. (143)<br />

1<br />

−<br />

e 2 ytV −1y . (144)<br />

q2(n−p)<br />

1<br />

−<br />

e 2 ytV −1y , (145)<br />

<br />

n<br />

w<br />

p<br />

p<br />

1wn−pγq1q2 2 (n, p) . (146)<br />

(147)<br />

Performing a simple change of variable in (145), we can transform the integr<strong>at</strong>ion such th<strong>at</strong> it is <strong>de</strong>fined<br />

solely within the first quadrant (y1 ≥ 0, y2 ≥ 0), namely<br />

γq1q2 (n, p) = χ1 p n−p 1 + (−1)n<br />

χ2<br />

2π 1 − ρ2 +∞ +∞<br />

dy1 dy2<br />

0<br />

0<br />

q1p q2(n−p) y1 y2<br />

α<br />

− √2 √2 e 2 (y2 1 +y2 2 ) ×<br />

<br />

× e βy1y2<br />

<br />

p −βy1y2<br />

+ (−1) e<br />

. (148)<br />

This equ<strong>at</strong>ion imposes th<strong>at</strong> the coefficients γ vanish if n is odd. This leads to the vanishing of the moments<br />

of odd or<strong>de</strong>rs, as expected for a symm<strong>et</strong>ric distribution. Then, we expand e βy1y2 + (−1) p e −βy1y2 in series.<br />

Permuting the sum sign and the integral allows us to <strong>de</strong>couple the integr<strong>at</strong>ions over the two variables y1 and<br />

y2:<br />

γq1q2 (n, p) = χ1 p n−p 1 + (−1)n<br />

χ2<br />

2π 1 − ρ2 +∞<br />

[1 + (−1)<br />

s=0<br />

p+s ] βs<br />

s!<br />

36<br />

+∞<br />

dy1<br />

0<br />

+∞<br />

× dy2<br />

0<br />

y q1p+s<br />

1<br />

2 q1p 2<br />

y q2(n−p)+s<br />

2<br />

2 q2 (n−p)<br />

2<br />

α<br />

−<br />

e 2 y2 1<br />

<br />

α<br />

−<br />

e 2 y2 1<br />

<br />

×<br />

. (149)


This brings us back to the problem of calcul<strong>at</strong>ing the same type of integrals as in the uncorrel<strong>at</strong>ed case.<br />

Using the expressions of α and β, and taking into account the parity of n and p, we obtain:<br />

γq1q2 (2n, 2p) = χ1 2p χ2 2n−2p (1 − ρ2 1<br />

q1p+q2(n−p)+ ) 2<br />

π<br />

<br />

×Γ q2(n − p) + s + 1<br />

<br />

2<br />

γq1q2 (2n, 2p + 1) = χ1 2p+1 χ2 2n−2p−1 (1 − ρ2 ) q1p+q2(n−p)+ q1−q2 +1<br />

2<br />

<br />

×Γ<br />

q1p + s + 1 + q1<br />

2<br />

<br />

Γ<br />

+∞<br />

s=0<br />

(2ρ) 2s<br />

(2s)! Γ<br />

<br />

q1p + s + 1<br />

<br />

×<br />

2<br />

461<br />

, (150)<br />

+∞<br />

(2ρ)<br />

π<br />

s=0<br />

2s+1<br />

(2s + 1)! ×<br />

q2(n − p) + s + 1 − q2<br />

<br />

. (151)<br />

2<br />

Using the <strong>de</strong>finition of the hypergeom<strong>et</strong>ric functions 2F1 (Abramovitz and Stegun 1972), and the rel<strong>at</strong>ion<br />

(9.131) of (Gradshteyn and Ryzhik 1965), we finally obtain<br />

γq1q2 (2n, 2p) = χ1 2p χ2 2n−2p Γ q1p + 1<br />

<br />

2 Γ q2(n − p) + 1<br />

<br />

2<br />

2F1 −q1p, −q2(n − p);<br />

π<br />

1<br />

<br />

; ρ2(152)<br />

,<br />

2<br />

γq1q2 (2n, 2p + 1) = χ1 2p+1 χ2 2n−2p−1 2Γ q1p + 1 + q1<br />

<br />

2 Γ q2(n − p) + 1 − q2<br />

<br />

2 ρ ×<br />

<br />

π<br />

× 2F1 −q1p − q1 − 1<br />

, −q2(n − p) +<br />

2<br />

q2 + 1<br />

;<br />

2<br />

3<br />

<br />

; ρ2 . (153)<br />

2<br />

In the asymm<strong>et</strong>ric case, a similar calcul<strong>at</strong>ion follows, with the sole difference th<strong>at</strong> the results involves four<br />

terms in the integral (148) instead of two.<br />

37


462 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

F Conditions un<strong>de</strong>r which it is possible to increase the r<strong>et</strong>urn and <strong>de</strong>crease<br />

large risks simultaneously<br />

We consi<strong>de</strong>r N in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s {1 · · · N}, whose r<strong>et</strong>urns are <strong>de</strong>noted by µ(1) · · · µ(N). We aggreg<strong>at</strong>e<br />

these ass<strong>et</strong>s in a portfolio. L<strong>et</strong> w1 · · · wN be their weights. We consi<strong>de</strong>r th<strong>at</strong> short positions are forbid<strong>de</strong>n<br />

and th<strong>at</strong> <br />

i wi = 1. The r<strong>et</strong>urn µ of the portfolio is<br />

µ =<br />

The risk of the portfolio is quantified by the cumulants of the distribution of µ.<br />

N<br />

wiµ(i). (154)<br />

i=1<br />

L<strong>et</strong> us <strong>de</strong>note µ ∗ n the r<strong>et</strong>urn of the portfolio evalu<strong>at</strong>ed for the ass<strong>et</strong> weights which minimize the cumulant of<br />

or<strong>de</strong>r n.<br />

F.1 Case of two ass<strong>et</strong>s<br />

L<strong>et</strong> Cn be the cumulant of or<strong>de</strong>r n for the portfolio. The ass<strong>et</strong>s being in<strong>de</strong>pen<strong>de</strong>nt, we have<br />

Cn = Cn(1)w1 n + Cn(2)w2 n , (155)<br />

= Cn(1)w1 n + Cn(2)(1 − w1) n . (156)<br />

In the following, we will drop the subscript 1 in w1, and only write w. L<strong>et</strong> us evalu<strong>at</strong>e the value w = w ∗ <strong>at</strong><br />

the minimum of Cn, n > 2 :<br />

dCn<br />

dw = 0 ⇐⇒ Cn(1)w n−1 − Cn(2)(1 − w) n−1 = 0, (157)<br />

⇐⇒ Cn(1)<br />

Cn(2) =<br />

1 − w ∗<br />

w ∗<br />

n−1<br />

, (158)<br />

and assuming th<strong>at</strong> Cn(1)/Cn(2) > 0, which is s<strong>at</strong>isfied according to our positivity axiom 1, we obtain<br />

w ∗ =<br />

This leads to the following expression for µ ∗ n :<br />

µ ∗ n =<br />

Cn(2) 1<br />

n−1<br />

Cn(1) 1<br />

n−1 + Cn(2) 1<br />

n−1<br />

µ(1) · Cn(2) 1<br />

n−1 + µ(2) · Cn(1) 1<br />

n−1<br />

Cn(1) 1<br />

n−1 + Cn(2) 1<br />

n−1<br />

Thus, after simple algebraic manipul<strong>at</strong>ions, we find<br />

<br />

⇐⇒ (µ(1) − µ(2)) Cn(1) 1<br />

n−1 Cn+k(2)<br />

µ ∗ n < µ ∗ n+k<br />

1<br />

n+k−1 − Cn(2) 1<br />

. (159)<br />

. (160)<br />

n−1 Cn+k(1)<br />

which conclu<strong>de</strong>s the proof of the result announced in the main body of the text.<br />

38<br />

1<br />

n+k−1<br />

<br />

> 0, (161)


F.2 General case<br />

We now consi<strong>de</strong>r a portfolio with N in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s. Assuming th<strong>at</strong> the cumulants Cn(i) have the same<br />

sign for all i (according to axiom 1), we are going to show th<strong>at</strong> the minimum of Cn is obtained for a portfolio<br />

whose weights are given by<br />

and we have<br />

µ ∗ n =<br />

wi =<br />

<br />

N<br />

i=1<br />

In<strong>de</strong>ed, the cumulant of the portfolio is given by<br />

subject to the constraint<br />

Cn =<br />

1<br />

N<br />

j=i Cn(j) n−1<br />

1<br />

N<br />

j=1 Cn(j) n−1<br />

µ(i) N<br />

j=i<br />

1<br />

N<br />

j=1 Cn(j) n−1<br />

N<br />

i=1<br />

Cn(i) w n i<br />

463<br />

, (162)<br />

1<br />

Cn(j) n−1<br />

Introducing a Lagrange multiplier λ, the first or<strong>de</strong>r conditions yields<br />

so th<strong>at</strong><br />

Cn(i) w n−1<br />

i<br />

. (163)<br />

(164)<br />

N<br />

wi = 1. (165)<br />

i=1<br />

− λ = 0, ∀i ∈ {1, · · · , N}, (166)<br />

w n−1<br />

i<br />

λ<br />

= . (167)<br />

Cn(i)<br />

Since all the Cn(i) are positive, we can find a λ such th<strong>at</strong> all the wi are real and positive, which yields the<br />

announced result (162). From here, there is no simple condition th<strong>at</strong> ensures µ ∗ n < µ ∗ n+k . The simplest way<br />

is to calcul<strong>at</strong>e dir<strong>et</strong>ly these quantities using the formula (163).<br />

to compare µ ∗ n and µ ∗ n+k<br />

39


464 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

References<br />

Acerbi, C., 2002, Spectrale measures of risk : a coherent represent<strong>at</strong>ion of subjective risk aversion, Journal<br />

of Banking and Finance.<br />

Alexan<strong>de</strong>r, G.J. and A.M. Baptista, 2002, Economic implic<strong>at</strong>ions of using a mean-VaR mo<strong>de</strong>l for portfolio<br />

selection: A comparison with mean-variance analysis, Journal of Economic Dynamics and Control<br />

26, 1159-1193.<br />

Abramovitz, E. and I.A. Stegun, 1972, Handbook of M<strong>at</strong>hem<strong>at</strong>ical functions (Dover Public<strong>at</strong>ions, New<br />

York).<br />

Allais, M., 1953, Le comportement <strong>de</strong> l’homme r<strong>at</strong>ionel <strong>de</strong>vant le risque, critique <strong>de</strong>s postul<strong>at</strong> <strong>de</strong> l’école<br />

américaine, Econom<strong>et</strong>rica 21, 503-546.<br />

Allais, M., 1990, Allais Paradox, in The new palgrave, Utility and probability, Macmillan, 3-9.<br />

An<strong>de</strong>rsen, J.V., and D. Sorn<strong>et</strong>te, 2001, Have your cake and e<strong>at</strong> it too: increasing r<strong>et</strong>urns while lowering large<br />

risks! Journal of Risk Finance 2, 70-82.<br />

Artzner, P., F. Delbaen, J.M. Eber and D. He<strong>at</strong>h, 1997, Thinking coherently, Risk 10, 68-71.<br />

Artzner, P., F. Delbaen, J.M. Eber and D. He<strong>at</strong>h, 1999, Coherent measures of risk, M<strong>at</strong>h. Finance 9, 203-228.<br />

Bouchaud, J.-P., D. Sorn<strong>et</strong>te, C. Walter and J.-P. Aguilar, 1998, Taming large events: Optimal portfolio<br />

theory for strongly fluctu<strong>at</strong>ing ass<strong>et</strong>s, Intern<strong>at</strong>ional Journal of Theor<strong>et</strong>ical and Applied Finance 1,<br />

25-41.<br />

Dowd, K., 2000, Adjusting for risk: an improved Sharpe r<strong>at</strong>io, Intern<strong>at</strong>ional Review of Economics and<br />

Finance 9, 209-222.<br />

Embrechts, P., C. Kluppelberg and T. Mikosh, 1997, Mo<strong>de</strong>lling extremal events (Springel-Verlag, Applic<strong>at</strong>ions<br />

of M<strong>at</strong>hem<strong>at</strong>ics 33).<br />

Embrecht, P., A. McNeil and D. Straumann, 1998, Correl<strong>at</strong>ion and Depen<strong>de</strong>nce in risk management: properties<br />

and pitfalls, Proceedings of the Risk Management workshop <strong>at</strong> the Newton Institute Cambridge,<br />

Cambridge University Press.<br />

Fang, H. and T. Lai, 1997, Co-kurtosis and capital ass<strong>et</strong> pricing, Financial Review 32, 293-307.<br />

Föllmer, H. and A. Schied, 2002, Convex measures of risk and trading constraints, Finance and Stochastics<br />

6, forthcoming.<br />

Föllmer, H. and A. Schied, 2002, Robust preferences and convex measures of risk, Working paper.<br />

Frisch, U. and D. Sorn<strong>et</strong>te, 1997, Extreme Devi<strong>at</strong>ions and Applic<strong>at</strong>ions, J. Phys. I France 7, 1155-1171.<br />

Gopikrishnan, P., M. Meyer, L.A. Nunes Amaral and H.E. Stanley,1998, Inverse cubic law for the distribution<br />

of stock price vari<strong>at</strong>ions, European Physical Journal B 3, 139-140.<br />

Gouriéroux, C., J.P. Laurent and O. Scaill<strong>et</strong>, 2000, Sensitivity analysis of Values <strong>at</strong> Risk, Journal of Empirical<br />

Finance 7,225-245.<br />

Gradshteyn, I.S. and I. M. Ryzhik, 1965, Table of integrals Series and Products, Aca<strong>de</strong>mic Press.<br />

40


Harvey, C.R. and A. Siddique, 2000, Conditional skewness in ass<strong>et</strong> pricing tests, Journal of Finance 55,<br />

1263-1295.<br />

Hill, B.M., 1975, A Simple General Approach to Inference about the Tail of a Distribution, Annals of<br />

st<strong>at</strong>istics, 3(5), 1163-1174.<br />

Hwang, S. and S. S<strong>at</strong>chell, 1999, Mo<strong>de</strong>lling emerging mark<strong>et</strong> risk premia using higher moments, Intern<strong>at</strong>ional<br />

Journal of Finance and Economics 4, 271-296.<br />

Jorion, P., 1997, Value-<strong>at</strong>-Risk: The New Benchmark for Controlling Deriv<strong>at</strong>ives Risk (Irwin Publishing,<br />

Chicago, IL).<br />

Jurcenko, E. and B. Maill<strong>et</strong>, 2002, The four-moment capital ass<strong>et</strong> pricing mo<strong>de</strong>l: some basic results, Working<br />

Paper.<br />

Karlen, D., 1998, Using projection and correl<strong>at</strong>ion to approxim<strong>at</strong>e probability distributions, Computer in<br />

Physics 12, 380-384.<br />

Krauss, A. and R. Litzenberger, 1976, Skewness preference and the valu<strong>at</strong>ion of risk ass<strong>et</strong>s, Journal of<br />

Finance 31, 1085-1099.<br />

Laherrère, J. and D. Sorn<strong>et</strong>te, 1998, Str<strong>et</strong>ched exponential distributions in n<strong>at</strong>ure and economy : ”f<strong>at</strong> tails”<br />

with characteristic scales, European Physical Journal B 2, 525-539.<br />

Lim, K.G., 1989, A new test for the three-moment capital ass<strong>et</strong> pricing mo<strong>de</strong>l, Journal of Financial and<br />

Quantit<strong>at</strong>ive Analysis 24, 205-216.<br />

Lindskog, F., 2000, Mo<strong>de</strong>lling Depen<strong>de</strong>nce with Copulas,<br />

http : //www.risklab.ch/P apers.html#MT Lindskog<br />

Lintner, J. 1975, The valu<strong>at</strong>ion of risk ass<strong>et</strong>s and the selection of risky investments in stock portfolios and<br />

capital budg<strong>et</strong>s. Review of Economics and St<strong>at</strong>istics 13, 13-37.<br />

Litterman, R. and K. Winkelmann, 1998, Estim<strong>at</strong>ing covariance m<strong>at</strong>rices (Risk Management Series, Goldman<br />

Sachs).<br />

Lux, T., 1996, The stable Par<strong>et</strong>ian hypothesis and the frequency of large r<strong>et</strong>urns: an examin<strong>at</strong>ion of major<br />

German stocks, Applied Financial Economics 6, 463-475.<br />

Malevergne, Y. and D. Sorn<strong>et</strong>te, 2001, Testing the Gaussian copula hypothesis for financial ass<strong>et</strong>s <strong>de</strong>pen<strong>de</strong>nces.<br />

http : //papers.ssrn.com/sol3/papers.cfm?abstract id = 291140<br />

Markovitz, H., 1959, Portfolio selection : Efficient diversific<strong>at</strong>ion of investments (John Wiley and Sons,<br />

New York).<br />

Merton, R.C., 1990, Continuous-time finance, (Blackwell, Cambridge).<br />

Mossin, J., 1966, Equilibrium in a capital mark<strong>et</strong>, Econom<strong>et</strong>rica 34, 768-783.<br />

Muzy, J.-F., D. Sorn<strong>et</strong>te, J. Delour and A. Arneodo, 2001, Multifractal r<strong>et</strong>urns and Hierarchical Portfolio<br />

Theory, Quantit<strong>at</strong>ive Finance 1 (1), 131-148.<br />

Nelsen, R.B. 1998, An Introduction to Copulas. Lectures Notes in st<strong>at</strong>istic, 139, Springer Verlag, New York.<br />

Pagan, A., 1996, The Econom<strong>et</strong>rics of Financial Mark<strong>et</strong>s, Journal of Empirical Finance, 3, 15 - 102.<br />

41<br />

465


466 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

Pickhands, J., 1975, St<strong>at</strong>istical Inference Using Extreme Or<strong>de</strong>r St<strong>at</strong>itstics, Annals of St<strong>at</strong>istics, 3(1), 119-<br />

131.<br />

Polimenis, V., 2002, The distributional CAPM: Connecting risk premia to r<strong>et</strong>urn distributions. Working<br />

Parper<br />

Rao, C.R., 1973, Linear st<strong>at</strong>istical inference and its applic<strong>at</strong>ions, 2d ed. (New York Willey).<br />

Richardson M. and T. Smith, 1993, A test for multivari<strong>at</strong>e normality in stocks, Journal of Business 66,<br />

295-321.<br />

Rothschild, M; and J.E. Stiglitz, 1970, Increasing risk I: A <strong>de</strong>finition, Journal of Economic Theory 2, 225-<br />

243.<br />

Rothschild, M; and J.E. Stiglitz, 1971, Increasing risk II: Its economic consequences, Journal of Economic<br />

Theory 3, 66-84.<br />

Rubinstein, M., 1973, The fundamental theorem of param<strong>et</strong>er-preference security valu<strong>at</strong>ion. Journal of Financial<br />

and Quantit<strong>at</strong>ive Analysis 8, 61-69.<br />

Scaill<strong>et</strong>, O., 2000, Nonparam<strong>et</strong>ric estim<strong>at</strong>ion and sensitivity analysis of expected shortfall, Working paper.<br />

Sharpe, N.F., 1964, Capital ass<strong>et</strong> prices: A theory of mark<strong>et</strong> equilibrium un<strong>de</strong>r conditions of risk, Journal of<br />

Finance, 425-442.<br />

Sharpe, W.F., 1966, Mutual fund performance, Journal of Business 39, 119-138.<br />

Sharpe, W.F., 1994, The Sharpe r<strong>at</strong>io, Journal of Portfolio Management, 49-58.<br />

Sorn<strong>et</strong>te, D., 1998, Large <strong>de</strong>vi<strong>at</strong>ions and portfolio optimiz<strong>at</strong>ion, Physica A 256, 251-283.<br />

orn<strong>et</strong>te, D., 2000, Critical Phenomena in N<strong>at</strong>ural Sciences, Chaos, Fractals, Self-organiz<strong>at</strong>ion and Disor<strong>de</strong>r:<br />

Concepts and Tools, (Springer Series in Synerg<strong>et</strong>ics).<br />

Sorn<strong>et</strong>te, D., J. V. An<strong>de</strong>rsen and P. Simon<strong>et</strong>ti, 2000a, Portfolio Theory for “F<strong>at</strong> Tails”, Intern<strong>at</strong>ional Journal<br />

of Theor<strong>et</strong>ical and Applied Finance 3 (3), 523-535.<br />

Sorn<strong>et</strong>te, D., P. Simon<strong>et</strong>ti, J.V. An<strong>de</strong>rsen, 2000b, φ q -field theory for portfolio optimiz<strong>at</strong>ion : ”f<strong>at</strong>-tails” and<br />

non-linear correl<strong>at</strong>ions, Physics Reports 335 (2), 19-92.<br />

Stuart, A. and J.K. Ord, , Kendall’s advanced theory of st<strong>at</strong>istics, 1994, 6th edition, Edward Arnold London,<br />

Halsted Press, New York.<br />

Tsallis, C., 1998, Possible generaliz<strong>at</strong>ion of Boltzmann-Gibbs st<strong>at</strong>istics, J. St<strong>at</strong>. Phys. 52, 479-487; for<br />

upd<strong>at</strong>ed bibliography on this subject, see http : //tsallis.c<strong>at</strong>.cbpf.br/biblio.htm.<br />

Von Neuman, J. and O. Morgenstern, 1944, Theory of games and economic behavior, Princ<strong>et</strong>own University<br />

Press.<br />

42


µ µ2 1/2 µ4 1/4 µ6 1/6 µ8 1/8<br />

0.10% 0.92% 1.36% 1.79% 2.15%<br />

0.12% 0.96% 1.43% 1.89% 2.28%<br />

0.14% 1.05% 1.56% 2.06% 2.47%<br />

0.16% 1.22% 1.83% 2.42% 2.91%<br />

0.18% 1.47% 2.21% 2.92% 3.55%<br />

0.20% 1.77% 2.65% 3.51% 4.22%<br />

Table 1: This table presents the risk measured by µ 1/n<br />

n<br />

(daily) r<strong>et</strong>urn µ.<br />

µ<br />

µ 1/2<br />

2<br />

µ<br />

µ 1/4<br />

4<br />

467<br />

for n=2,4,6,8, for a given value of the expectedd<br />

µ<br />

µ 1/6<br />

6<br />

µ<br />

C 1/4<br />

4<br />

µ<br />

C 1/6<br />

6<br />

Wall Mart 0.0821 0.0555 0.0424 0.0710 0.0557<br />

EMC 0.0801 0.0552 0.0430 0.0730 0.0612<br />

Intel 0.0737 0.0512 0.0397 0.0694 0.0532<br />

Hewl<strong>et</strong>t Packard 0.0724 0.0472 0.0354 0.0575 0.0439<br />

IBM 0.0705 0.0465 0.0346 0.0574 0.0421<br />

Merck 0.0628 0.0415 0.0292 0.0513 0.0331<br />

Procter & Gamble 0.0590 0.0399 0.0314 0.0510 0.0521<br />

General Motors 0.0586 0.0362 0.0247 0.0418 0.0269<br />

SBC Communic<strong>at</strong>ion 0.0584 0.0386 0.0270 0.0477 0.0302<br />

General Electric 0.0569 0.0334 0.0233 0.0373 0.0258<br />

Applied M<strong>at</strong>erial 0.0525 0.0357 0.0269 0.0462 0.0338<br />

MCI WorldCom 0.0441 0.0173 0.0096 0.0176 0.0098<br />

Medtronic 0.0432 0.0278 0.0202 0.0333 0.0237<br />

Coca-Cola 0.0430 0.0278 0.0207 0.0335 0.0252<br />

Exxon-Mobil 0.0410 0.0256 0.0178 0.0299 0.0197<br />

Texas Instrument 0.0324 0.0224 0.0171 0.0301 0.0218<br />

Pfizer 0.0298 0.0184 0.0131 0.0213 0.0148<br />

Table 2: This table presents the values of the generalized Sharpe r<strong>at</strong>ios for the s<strong>et</strong> of seventeen ass<strong>et</strong>s listed<br />

in the first column. The ass<strong>et</strong>s are ranked with respect to their Sharpe r<strong>at</strong>io, given in the second column. The<br />

third and fourth columns give the generalized Sharpe r<strong>at</strong>io calcul<strong>at</strong>ed with respect to the fourth and sixth<br />

centered moments µ4 and µ6 while the fifth and sixth columns give the generalized Sharpe r<strong>at</strong>io calcul<strong>at</strong>ed<br />

with respect to the fourth and sixth cumulants C4 and C6.<br />

43


468 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

Positive Tail Neg<strong>at</strong>ive Tail<br />

< χ+ > < c+ > χ+ c+ < χ− > < c− > χ− c−<br />

CHF 2.45 1.61 2.33 1.26 2.34 1.53 1.72 0.93<br />

DEM 2.09 1.65 1.74 1.03 2.01 1.58 1.45 0.91<br />

JPY 2.10 1.28 1.30 0.76 1.89 1.47 0.99 0.76<br />

MAL 1.00 1.22 1.25 0.41 1.01 1.25 0.44 0.48<br />

POL 1.55 1.02 1.30 0.73 1.60 2.13 1.25 0.62<br />

THA 0.78 0.75 0.75 0.54 0.82 0.73 0.30 0.38<br />

UKP 1.89 1.52 1.38 0.92 2.00 1.41 1.82 1.09<br />

Table 3: Table of the exponents c and the scale param<strong>et</strong>ers χ for different currencies. The subscript ”+”<br />

or ”-” <strong>de</strong>notes the positive or neg<strong>at</strong>ive part of the distribution of r<strong>et</strong>urns and the terms b<strong>et</strong>ween brack<strong>et</strong>s<br />

refer to param<strong>et</strong>ers estim<strong>at</strong>ed in the bulk of the distribution while naked param<strong>et</strong>ers refer to the tails of the<br />

distribution.<br />

Positive Tail Neg<strong>at</strong>ive Tail<br />

< χ+ > < c+ > χ+ c+ < χ− > < c− > χ− c−<br />

Applied M<strong>at</strong>erial 12.47 1.82 8.75 0.99 11.94 1.66 8.11 0.98<br />

Coca-Cola 5.38 1.88 4.46 1.04 5.06 1.74 2.98 0.78<br />

EMC 13.53 1.63 13.18 1.55 11.44 1.61 3.05 0.57<br />

General Electric 5.21 1.89 1.81 1.28 4.80 1.81 4.31 1.16<br />

General Motors 5.78 1.71 0.63 0.48 5.32 1.89 2.80 0.79<br />

Hewl<strong>et</strong>t Packart 7.51 1.93 4.20 0.84 7.26 1.76 1.66 0.52<br />

IBM 5.46 1.71 3.85 0.87 5.07 1.90 0.18 0.33<br />

Intel 8.93 2.31 2.79 0.64 9.14 1.60 3.56 0.62<br />

MCI WorldCom 9.80 1.74 11.01 1.56 9.09 1.56 2.86 0.58<br />

Medtronic 6.82 1.95 6.09 1.11 6.49 1.54 2.55 0.67<br />

Merck 5.36 1.91 4.56 1.16 5.00 1.73 1.32 0.59<br />

Pfizer 6.41 2.01 5.84 1.27 6.04 1.70 0.26 0.35<br />

Procter & Gambel 4.86 1.83 3.53 0.96 4.55 1.74 2.96 0.82<br />

SBC Communic<strong>at</strong>ion 5.21 1.97 1.26 0.59 4.89 1.59 1.56 0.60<br />

Texas Instrument 9.06 1.78 4.07 0.72 8.24 1.84 2.18 0.54<br />

Wall Mart 7.41 1.83 5.81 1.01 6.80 1.64 3.75 0.78<br />

Table 4: Table of the exponents c and the scale param<strong>et</strong>ers χ for different stocks. The subscript ”+” or ”-”<br />

<strong>de</strong>notes the positive or neg<strong>at</strong>ive part of the distribution and the terms b<strong>et</strong>ween brack<strong>et</strong>s refer to param<strong>et</strong>ers<br />

estim<strong>at</strong>ed in the bulk of the distribution while naked param<strong>et</strong>ers refer to the tails of the distribution.<br />

44


Mean (10 −3 ) Variance (10 −3 ) Skewness Kurtosis min max<br />

Applied M<strong>at</strong>erial 2.11 1.62 0.41 4.68 -14% 21%<br />

Coca-Cola 0.81 0.36 0.13 5.71 -11% 10%<br />

EMC 2.76 1.13 0.23 4.79 -18% 15%<br />

Exxon-Mobil 0.92 0.25 0.30 5.26 -7% 11%<br />

General Electric 1.38 0.30 0.08 4.46 -7% 8%<br />

General Motors 0.64 0.39 0.12 4.35 -11% 8%<br />

Hewl<strong>et</strong>t Packard 1.17 0.81 0.16 6.58 -14% 21%<br />

IBM 1.32 0.54 0.08 8.43 -16% 13%<br />

Intel 1.71 0.85 -0.31 6.88 -22% 14%<br />

MCI WorldCom 0.87 0.85 -0.18 6.88 -20% 13%<br />

Medtronic 1.70 0.55 0.23 5.52 -12% 12%<br />

Merck 1.32 0.35 0.18 5.29 -9% 10%<br />

Pfizer 1.57 0.46 0.01 4.28 -10% 10%<br />

Procter&Gambel 0.90 0.41 -2.57 42.75 -31% 10%<br />

SBC Communic<strong>at</strong>ion 0.86 0.39 0.06 5.86 -13% 9%<br />

Texas Instrument 2.20 1.23 0.50 5.26 -12% 24%<br />

Wall Mart 1.35 0.52 0.16 4.79 -10% 9%<br />

Table 5: This table presents the main st<strong>at</strong>istical fe<strong>at</strong>ures of the daily r<strong>et</strong>urns of the s<strong>et</strong> of seventeen ass<strong>et</strong>s<br />

studied here over the time interval from the end of January 1995 to the end of December 2000.<br />

45<br />

469


470 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

x n P(x)<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

x P(x)<br />

x 2 P(x)<br />

x 4 P(x)<br />

0<br />

0 1 2 3 4 5<br />

x<br />

6 7 8 9 10<br />

Figure 1: This figure represents the function x n · e −x for n = 1, 2 and 4. It shows the typycal size of the<br />

fluctu<strong>at</strong>ions involved in the moment of or<strong>de</strong>r n.<br />

46


μ (daily r<strong>et</strong>urn)<br />

x 10−3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Mean−μ 2 Efficient Frontier<br />

Mean−μ 4 Efficient Frontier<br />

Mean−μ 6 Efficient Frontier<br />

Mean−μ 8 Efficient Frontier<br />

0<br />

0 0.01 0.02 0.03<br />

1/n<br />

μ<br />

n<br />

0.04 0.05 0.06<br />

Figure 2: This figure represents the generalized efficient frontier for a portfolio ma<strong>de</strong> of seventeen risky<br />

ass<strong>et</strong>s. The optimiz<strong>at</strong>ion problem is solved numerically, using a gen<strong>et</strong>ic algorithm, with risk measures given<br />

respectively by the centered moments µ2, µ4, µ6 and µ8. The straight lines are the efficient frontiers when<br />

we add to these ass<strong>et</strong>s a risk-free ass<strong>et</strong> whose interest r<strong>at</strong>e is s<strong>et</strong> to 5% a year.<br />

47<br />

471


472 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

μ (daily r<strong>et</strong>urn)<br />

x 10−3<br />

1.5<br />

1<br />

0.5<br />

Mean−μ 2 Efficient Frontier<br />

Mean−μ 4 Efficient Frontier<br />

Mean−μ 6 Efficient Frontier<br />

Mean−μ 8 Efficient Frontier<br />

0<br />

0 0.005 0.01 0.015 0.02 0.025<br />

1/n<br />

μ<br />

n<br />

Figure 3: This figure represents the generalized efficient frontier for a portfolio ma<strong>de</strong> of seventeen risky<br />

ass<strong>et</strong>s and a risk-free ass<strong>et</strong> whose interest r<strong>at</strong>e is s<strong>et</strong> to 5% a year. The optimiz<strong>at</strong>ion problem is solved<br />

numerically, using a gen<strong>et</strong>ic algorithm, with risk measures given by the centered moments µ2, µ4, µ6 and<br />

µ8.<br />

48


w i<br />

w i<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Mean−μ 2<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

w<br />

0<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Mean−μ 6<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

w<br />

0<br />

w i<br />

w i<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Mean−μ 4<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

w<br />

0<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Mean−μ 8<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

w<br />

0<br />

Figure 4: Depen<strong>de</strong>nce of the five largest weights of risky ass<strong>et</strong>s in the efficient portfolios found in figure 3<br />

as a function of the weight w0 invested in the risk-free ass<strong>et</strong>, for the four risk measures given by the centered<br />

moments µ2, µ4, µ6 and µ8. The same symbols always represent the same ass<strong>et</strong>.<br />

49<br />

473


474 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

μ<br />

Cn 1/n<br />

Figure 5: The dark and grey thick curves represent two efficient frontiers for a portfolio without risk-free<br />

interest r<strong>at</strong>e obtained with two measures of risks. The dark and grey thin straight lines represent the efficient<br />

frontiers in the presence of a risk-free ass<strong>et</strong>, whose value is given by the intercept of the straight lines with<br />

the ordin<strong>at</strong>e axis. This illustr<strong>at</strong>es the existence of an inversion of the <strong>de</strong>pen<strong>de</strong>nce of the slope of the efficient<br />

frontier with risk-free ass<strong>et</strong> as a function of the or<strong>de</strong>r n of the measures of risks, which can occur only when<br />

the efficient frontiers without risk-free ass<strong>et</strong> cross each other.<br />

50


Figure 6: Schem<strong>at</strong>ic represent<strong>at</strong>ion of the nonlinear mapping Y = u(X) th<strong>at</strong> allows one to transform a variable<br />

X with an arbitrary distribution into a variable Y with a Gaussian distribution. The probability <strong>de</strong>nsities<br />

for X and Y are plotted outsi<strong>de</strong> their respective axes. Consistent with the conserv<strong>at</strong>ion of probability, the<br />

sha<strong>de</strong>d regions have equal area. This conserv<strong>at</strong>ion of probability d<strong>et</strong>ermines the nonlinear mapping.<br />

51<br />

475


476 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

Empirical Cumul<strong>at</strong>ive Distribution<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

CHF−UKP<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Cumul<strong>at</strong>ive Normal Ditribution<br />

Figure 7: Quantile of the normalized sum of the Gaussianized r<strong>et</strong>urns of the Swiss Franc and The British<br />

Pound versus the quantile of the Normal distribution, for the time interval from Jan. 1971 to Oct. 1998.<br />

Different weights in the sum give similar results.<br />

52


Empirical Cumul<strong>at</strong>ive Distribution<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

KO−PG<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Cumul<strong>at</strong>ive Normale Ditribution<br />

Figure 8: Quantile of the normalized sum of the Gaussianized r<strong>et</strong>urns of Coca-Cola and Procter&Gamble<br />

versus the quantile of the Normal distribution, for the time interval from Jan. 1970 to Dec. 2000. Different<br />

weights in the sum give similar results.<br />

53<br />

477


478 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

Empirical Cumul<strong>at</strong>ive Distribution<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

MRK−GE<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Cumul<strong>at</strong>ive Normal Ditribution<br />

Figure 9: Quantile of the normalized sum of the Gaussianized r<strong>et</strong>urns of Merk and General Electric versus<br />

the quantile of the Normal distribution, for the time interval from Jan. 1970 to Dec. 2000. Different weights<br />

in the sum give similar results.<br />

54


Z 2<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

CHF−UKP<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

χ<br />

0.6 0.7 0.8 0.9 1<br />

2<br />

Figure 10: Cumul<strong>at</strong>ive distribution of z 2 = y t V −1 y versus the cumul<strong>at</strong>ive distribution of chi-square (<strong>de</strong>noted<br />

χ 2 ) with two <strong>de</strong>grees of freedom for the couple Swiss Franc / British Pound, for the time interval from<br />

Jan. 1971 to Oct. 1998. This χ 2 should not be confused with the characteristic scale used in the <strong>de</strong>finition<br />

of the modified Weibull distributions.<br />

55<br />

479


480 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

Z 2<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

KO−PG<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

χ<br />

0.6 0.7 0.8 0.9 1<br />

2<br />

Figure 11: Cumul<strong>at</strong>ive distribution of z 2 = y t V −1 y versus the cumul<strong>at</strong>ive distribution of the chi-square<br />

χ 2 with two <strong>de</strong>grees of freedom for the couple Coca-Cola / Procter&Gamble, for the time interval from Jan.<br />

1970 to Dec. 2000. This χ 2 should not be confused with the characteristic scale used in the <strong>de</strong>finition of the<br />

modified Weibull distributions.<br />

56


Z 2<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

MRK−GE<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

χ<br />

0.6 0.7 0.8 0.9 1<br />

2<br />

Figure 12: Cumul<strong>at</strong>ive distribution of z 2 = y t V −1 y versus the cumul<strong>at</strong>ive distribution of the chi-square<br />

χ 2 with two <strong>de</strong>grees of freedom for the couple Merk / General Electric, for the time interval from Jan. 1970<br />

to Dec. 2000. This χ 2 should not be confused with the characteristic scale used in the <strong>de</strong>finition of the<br />

modified Weibull distributions.<br />

57<br />

481


482 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

10 0<br />

10 0<br />

10 −1<br />

10 −1<br />

10 −1<br />

10 0<br />

10 0<br />

MAL +<br />

MAL −<br />

Figure 13: Graph of Gaussianized Malaysian Ringgit r<strong>et</strong>urns versus Malaysian Ringgit r<strong>et</strong>urns, for the time<br />

interval from Jan. 1971 to Oct. 1998. The upper graph gives the positive tail and the lower one the neg<strong>at</strong>ive<br />

tail. The two straight lines represent the curves y = √ 〈c±〉<br />

x 2 〈χ±〉 and y = √ c± x 2 χ±<br />

58<br />

10 1<br />

10 1<br />

10 2<br />

10 2


10 0<br />

10 −1<br />

10 0<br />

10 −1<br />

10 −1<br />

10 −1<br />

10 0<br />

10 0<br />

UKP +<br />

UKP −<br />

Figure 14: Graph of Gaussianized British Pound r<strong>et</strong>urns versus British Pound r<strong>et</strong>urns, for the time interval<br />

from Jan. 1971 to Oct. 1998. The upper graph gives the positive tail and the lower one the neg<strong>at</strong>ive tail. The<br />

two straight lines represent the curves y = √ 〈c±〉<br />

x 2 〈χ±〉 and y = √ c± x 2 χ±<br />

59<br />

10 1<br />

10 1<br />

10 2<br />

10 2<br />

483


484 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

10 0<br />

10 −1<br />

10 0<br />

10 −1<br />

10 −1<br />

10 −1<br />

10 0<br />

10 0<br />

GE +<br />

GE −<br />

Figure 15: Graph of Gaussianized General Electric r<strong>et</strong>urns versus General Electric r<strong>et</strong>urns, for the time<br />

interval from Jan. 1970 to Dec. 2000. The upper graph gives the positive tail and the lower one the neg<strong>at</strong>ive<br />

tail. The two straight lines represent the curves y = √ 〈c±〉<br />

x 2 〈χ±〉 and y = √ c± x 2 χ±<br />

60<br />

10 1<br />

10 1<br />

10 2<br />

10 2


10 0<br />

10 −1<br />

10 0<br />

10 −1<br />

10 −1<br />

10 −1<br />

10 0<br />

10 0<br />

IBM +<br />

IBM −<br />

Figure 16: Graph of Gaussianized IBM r<strong>et</strong>urns versus IBM r<strong>et</strong>urns, for the time interval from Jan. 1970 to<br />

Dec. 2000. The upper graph gives the positive tail and the lower one the neg<strong>at</strong>ive tail. The two straight lines<br />

represent the curves y = √ 〈c±〉<br />

x 2 〈χ±〉 and y = √ c± x 2 χ±<br />

61<br />

10 1<br />

10 1<br />

10 2<br />

10 2<br />

485


486 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

10 0<br />

10 −1<br />

10 0<br />

10 −1<br />

10 −1<br />

10 −1<br />

10 0<br />

10 0<br />

WMT +<br />

WMT −<br />

Figure 17: Graph of Gaussianized Wall Mart r<strong>et</strong>urns versus Wall Mart r<strong>et</strong>urns, for the time interval from<br />

Sep. 1972 to Dec. 2000. The upper graph gives the positive tail and the lower one the neg<strong>at</strong>ive tail. The two<br />

straight lines represent the curves y = √ 〈c±〉<br />

x 2 〈χ±〉 and y = √ c± x 2 χ±<br />

62<br />

10 1<br />

10 1<br />

10 2<br />

10 2


κ<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Excess Kurtosis for CHF / JPY<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

w<br />

CHF<br />

0.6 0.7 0.8 0.9 1<br />

Figure 18: Excess kurtosis of the distribution of the price vari<strong>at</strong>ion wCHF xCHF + wJP Y xJP Y of the<br />

portfolio ma<strong>de</strong> of a fraction wCHF of Swiss franc and a fraction wJP Y = 1 − wCHF of the Japanese Yen<br />

against the US dollar, as a function of wCHF . Thick solid line : empirical curve, thin solid line : theor<strong>et</strong>ical<br />

curve, dashed line : theor<strong>et</strong>ical curve with ρ = 0 (instead of ρ = 0.43), dotted line: theor<strong>et</strong>ical curve with<br />

qCHF = 2 r<strong>at</strong>her than 1.75 and dashed-dotted line: theor<strong>et</strong>ical curve with qCHF = 1.5. The excess kurtosis<br />

has been evalu<strong>at</strong>ed for the time interval from Jan. 1971 to Oct. 1998.<br />

63<br />

487


488 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

C 4<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

Fourth Cumulant for CHF / UKP<br />

15<br />

0 0.1 0.2 0.3 0.4 0.5<br />

w<br />

CHF<br />

0.6 0.7 0.8 0.9 1<br />

Figure 19: Fourth cumulant for a portfolio ma<strong>de</strong> of a fraction wCHF of Swiss Franc and 1−wCHF of British<br />

Pound. The thick solid line represents the empirical cumulant while the dotted line represents the theor<strong>et</strong>ical<br />

cumulant un<strong>de</strong>r the symm<strong>et</strong>ric assumption. The dashed line shows the theor<strong>et</strong>ical cumulant when the slight<br />

asymm<strong>et</strong>ry of the ass<strong>et</strong>s has been taken into account. This cumulant has been evalu<strong>at</strong>ed for the time interval<br />

from Jan. 1971 to Oct. 1998.<br />

64


R<strong>et</strong>urn μ<br />

0.12<br />

0.11<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

Efficient Frontier forIBM−HWP<br />

1 1.2 1.4 1.6<br />

min<br />

C /C , n={1,2,3}<br />

2n 2n<br />

1.8 2 2.2<br />

Figure 20: Efficient frontier for a portfolio composed of two stocks: IBM and Hewl<strong>et</strong>t-Packard. The dashed<br />

line represents the efficient frontier with respect to the second cumulant, i.e., the standard Markovitz efficient<br />

frontier, the dash-dotted line represents the efficient frontier with respect to the fourth cumulant and the solid<br />

line is the efficient frontier with respect to the sixth cumulant. The d<strong>at</strong>a s<strong>et</strong> used covers the time interval<br />

from Jan. 1977 to Dec 2000.<br />

65<br />

489


490 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

R<strong>et</strong>urn μ<br />

0.13<br />

0.12<br />

0.11<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

Efficient Frontier forIBM−KO<br />

0.05<br />

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5<br />

min<br />

C /C , n={1,2,3}<br />

2n 2n<br />

Figure 21: Efficient frontier for a portfolio composed of two stocks: IBM and Coca-Cola. The dashed line<br />

represents the efficient frontier with respect to the second cumulant, i.e., the standard Markovitz efficient<br />

frontier, the dash-dotted line represents the efficient frontier with respect to the fourth cumulant and the solid<br />

line the efficient frontier with repect to the sixth cumulant. The d<strong>at</strong>a s<strong>et</strong> used covers the time interval from<br />

Jan. 1970 to Dec 2000.<br />

66


Conclusions <strong>et</strong> Perspectives<br />

L’obj<strong>et</strong> <strong>de</strong> notre étu<strong>de</strong> était <strong>de</strong> contribuer à une meilleure compréhension <strong>de</strong>s risques extrêmes sur les<br />

marchés financiers afin <strong>de</strong> perm<strong>et</strong>tre d’esquisser les contours <strong>de</strong> nouvelles métho<strong>de</strong>s <strong>de</strong> contrôle <strong>de</strong> ce<br />

type <strong>de</strong> risques <strong>et</strong> d’en présenter certaines conséquences pour ce qui est <strong>de</strong> la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong>s.<br />

Pour cela, nous avons suivi une approche dont le but était <strong>de</strong> chercher à isoler les différentes sources <strong>de</strong><br />

risques selon que leur origine provienne <strong>de</strong>s fluctu<strong>at</strong>ions individuelles <strong>de</strong>s actifs ou bien <strong>de</strong> leur comportement<br />

collectif. C<strong>et</strong>te distinction nous parait particulièrement importante pour la <strong>gestion</strong> <strong>de</strong>s risques<br />

dans la mesure où il nous semble nécessaire pour mener à bien c<strong>et</strong>te tâche (i) d’être capable d’estimer les<br />

grands risques associés à chaque actif - ce qui ne repose que sur l’étu<strong>de</strong> <strong>de</strong> leur “variabilité” intrinsèque<br />

- <strong>et</strong> (ii) <strong>de</strong> savoir si l’on peut espérer diversifier ces grands risques <strong>et</strong> donc d’en réduire l’impact par la<br />

form<strong>at</strong>ion <strong>de</strong> <strong>portefeuille</strong>s - ce qui fait appel à leurs caractéristiques collectives.<br />

C’est pourquoi nous avons tout d’abord procédé à une étu<strong>de</strong> à la fois empirique <strong>et</strong> théorique <strong>de</strong>s vari<strong>at</strong>ions<br />

<strong>de</strong> cours <strong>de</strong>s actifs financiers, afin d’en déterminer les propriétés <strong>st<strong>at</strong>istique</strong>s <strong>et</strong> d’essayer <strong>de</strong> m<strong>et</strong>tre à<br />

jour certains mécanismes micro-structurels <strong>et</strong> comportementaux perm<strong>et</strong>tant <strong>de</strong> justifier les observ<strong>at</strong>ions<br />

empiriques. L’étu<strong>de</strong> s’est focalisée sur trois points :<br />

– les aspects st<strong>at</strong>iques (monovariés), avec l’étu<strong>de</strong> <strong>de</strong>s distributions marginales <strong>de</strong> ren<strong>de</strong>ments,<br />

– mais aussi les aspects dynamiques <strong>de</strong> par l’étu<strong>de</strong> <strong>de</strong> la modélis<strong>at</strong>ion <strong>de</strong> la dépendance temporelle à<br />

l’ai<strong>de</strong> <strong>de</strong> processus <strong>de</strong> marches alé<strong>at</strong>oires multifractales,<br />

– ainsi que la prise en compte <strong>de</strong> l’interaction entre les actifs au travers <strong>de</strong> l’étu<strong>de</strong> <strong>de</strong> la représent<strong>at</strong>ion<br />

<strong>de</strong> la structure <strong>de</strong> dépendance en terme <strong>de</strong> copule <strong>et</strong> surtout l’estim<strong>at</strong>ion <strong>de</strong>s dépendances extrêmes à<br />

l’ai<strong>de</strong> du coefficient <strong>de</strong> dépendance <strong>de</strong> queue.<br />

Ceci nous a conduit, pour ce qui est du premier point, à nous pencher sur l’hypothèse d’après laquelle<br />

les ren<strong>de</strong>ments sont distribués selon <strong>de</strong>s lois <strong>de</strong> puissances (ou plus généralement <strong>de</strong>s lois régulièrement<br />

variables). Conformément à certains travaux récents, nous avons confirmé qu’il ne pouvait cependant être<br />

exclu que <strong>de</strong>s distributions exponentielles étirées sont à même <strong>de</strong> représenter les distributions <strong>de</strong> ren<strong>de</strong>ments<br />

aussi bien (sinon mieux) que les distributions régulièrement variables généralement utilisées. La<br />

prise en compte <strong>de</strong> c<strong>et</strong>te nouvelle représent<strong>at</strong>ion paramétrique <strong>de</strong>s distributions <strong>de</strong> ren<strong>de</strong>ments est importante<br />

<strong>et</strong> nous semble <strong>de</strong>voir être employée conjointement avec la <strong>de</strong>scription en terme <strong>de</strong> distributions<br />

régulièrement variables (ce que nous avons fait dans la suite <strong>de</strong> notre étu<strong>de</strong>) afin <strong>de</strong> ne pas négliger le<br />

risque <strong>de</strong> modèle inhérent à toute <strong>de</strong>scription paramétrique <strong>de</strong>s données.<br />

Concernant l’étu<strong>de</strong> dynamique <strong>de</strong> l’évolution <strong>de</strong>s cours, nous avons préféré nous tourner vers l’utilis<strong>at</strong>ion<br />

<strong>de</strong> processus <strong>de</strong> marche alé<strong>at</strong>oire multifractale, plutôt que vers les traditionnels processus <strong>de</strong> la famille<br />

ARCH, car ils semblent les seuls à pouvoir rendre compte <strong>de</strong> la manière suivant laquelle la vol<strong>at</strong>ilité<br />

r<strong>et</strong>ourne à la moyenne (relaxe) après un grand choc. En eff<strong>et</strong>, nous avons montré que le processus <strong>de</strong><br />

marche alé<strong>at</strong>oire multifractale prédisait une relax<strong>at</strong>ion hyperbolique dont l’exposant diffère selon que<br />

le choc est endogène ou exogène, ce qui a pu être effectivement observé sur les données. En outre, un<br />

tel comportement ne peut pas être expliqué par les processus <strong>de</strong> type ARCH. Donc, le processus <strong>de</strong><br />

marche alé<strong>at</strong>oire multifractale semble bien adapté à la <strong>de</strong>scription <strong>de</strong> la dynamique <strong>de</strong>s cours <strong>de</strong>s actifs<br />

491


492 Conclusion<br />

financiers, <strong>et</strong> perm<strong>et</strong> une meilleure compréhension <strong>de</strong> l’incorpor<strong>at</strong>ion du flux d’inform<strong>at</strong>ion dans le prix<br />

<strong>de</strong>s actifs, ce qui présente un grand intérêt pour la prédiction <strong>de</strong> la vol<strong>at</strong>ilité, par exemple, mais aussi pour<br />

la <strong>gestion</strong> <strong>de</strong> scenarii perm<strong>et</strong>tant <strong>de</strong> mieux appréhen<strong>de</strong>r l’impact <strong>de</strong> telle ou telle nouvelle sur l’évolution<br />

du prix futur d’un actif <strong>et</strong> notamment la durée <strong>de</strong>s pério<strong>de</strong>s <strong>de</strong> fortes turbulences ou <strong>de</strong> calme anormal<br />

<strong>de</strong>s marchés. Notons toutefois qu’il conviendra d’améliorer c<strong>et</strong>te <strong>de</strong>scription par la prise en compte <strong>de</strong><br />

l’asymétrie entre fluctu<strong>at</strong>ions à la hausse <strong>et</strong> à la baisse (eff<strong>et</strong> <strong>de</strong> levier) qui a été totalement négligée<br />

jusqu’ici.<br />

Pour synthétiser ces <strong>de</strong>ux premiers points, <strong>et</strong> essayer <strong>de</strong> percer certains <strong>de</strong>s mécanismes microscopiques<br />

perm<strong>et</strong>tant <strong>de</strong> les justifier, nous nous sommes intéressés aux modèles d’agents en interaction. Ceci avait<br />

pour but d’intégrer les comportements non totalement r<strong>at</strong>ionnels <strong>de</strong>s acteurs économiques afin <strong>de</strong> comprendre<br />

comment - en dépit <strong>de</strong> c<strong>et</strong>te r<strong>at</strong>ionnalité limitée - peut émerger une structure <strong>de</strong> marché la plupart<br />

du temps efficiente, mais aussi pourquoi <strong>et</strong> comment les marchés s’écartent parfois violemment<br />

<strong>de</strong> c<strong>et</strong>te structure efficiente. Dans c<strong>et</strong>te étu<strong>de</strong>, nous avons mis en exergue l’importance <strong>de</strong>s comportements<br />

mimétiques <strong>et</strong> antagonistes entre agents afin <strong>de</strong> préciser leur rôle dans l’émergence <strong>et</strong> l’explosion<br />

<strong>de</strong>s bulles spécul<strong>at</strong>ives. Là encore, c<strong>et</strong>te approche offre une possibilité <strong>de</strong> simuler certaines phases <strong>de</strong><br />

marchés <strong>et</strong> fournit un moyen <strong>de</strong> mieux anticiper les risques à venir.<br />

Une <strong>de</strong>s limites actuelles <strong>de</strong>s modèles d’agents en interaction est <strong>de</strong> se concentrer uniquement sur la<br />

modélis<strong>at</strong>ion <strong>de</strong> marchés où un seul actif (plus éventuellement un actif sans risque) peut être échangé.<br />

Nous avons, nous aussi, choisi <strong>de</strong> suivre c<strong>et</strong>te voie pour <strong>de</strong>s raisons <strong>de</strong> simplicité. En eff<strong>et</strong>, à partir<br />

du moment où l’on considère un marché doté <strong>de</strong> plusieurs actifs, il convient <strong>de</strong> donner aux agents les<br />

moyens <strong>de</strong> choisir entre les divers actifs <strong>et</strong> donc d’introduire une fonction d’utilité - a priori différente<br />

- pour chaque agent, ce qui pose quelques difficultés, au premier rang <strong>de</strong>squelles, comme souligné au<br />

chapitre 10, le choix <strong>de</strong> c<strong>et</strong>te fonction. Il nous semble clair qu’une <strong>de</strong>s évolutions futures <strong>de</strong>s modèles<br />

d’agents en interaction <strong>de</strong>vra apporter <strong>de</strong>s réponses à ce problème qui à notre avis constitue l’une <strong>de</strong>s<br />

toutes prochaines évolutions à apporter à ce type <strong>de</strong> modélis<strong>at</strong>ion.<br />

Le troisième point que nous avons abordé concernait la <strong>de</strong>scription <strong>de</strong> la dépendance entre les actifs. Nous<br />

avons pour cela commencé par essayer <strong>de</strong> déterminer <strong>de</strong> manière globale la structure <strong>de</strong> dépendance<br />

en tentant d’estimer la copule <strong>de</strong>s ren<strong>de</strong>ments <strong>de</strong>s actifs financiers. Nous avons pu conclure que pour<br />

<strong>de</strong>s ren<strong>de</strong>ments modérés, une copule gaussienne semblait tout à fait à même <strong>de</strong> rendre compte <strong>de</strong> leur<br />

dépendance, mais risquait <strong>de</strong> sous-estimer les dépendances extrêmes. Pour confirmer c<strong>et</strong>te hypothèse,<br />

nous avons voulu estimer le coefficient <strong>de</strong> dépendance <strong>de</strong> queue, qui mesure la propension <strong>de</strong> <strong>de</strong>ux<br />

actifs financiers à subir ensemble <strong>de</strong> grands mouvements. La difficulté à estimer <strong>de</strong> manière directe c<strong>et</strong>te<br />

quantité nous a d’abord conduit à la calculer théoriquement en nous appuyant sur une <strong>de</strong>scription <strong>de</strong>s<br />

fluctu<strong>at</strong>ions <strong>de</strong>s prix <strong>de</strong>s actifs à l’ai<strong>de</strong> d’un modèle à facteur. Puis, <strong>de</strong> la calibr<strong>at</strong>ion <strong>de</strong>s paramètres <strong>de</strong> ce<br />

modèle, nous avons pu déduire la valeur du coefficient <strong>de</strong> dépendance <strong>de</strong> queue pour chaque pair d’actifs.<br />

Ceci a alors confirmé l’inadéqu<strong>at</strong>ion <strong>de</strong> la copule gaussienne à décrire la dépendance entre les gran<strong>de</strong>s<br />

vari<strong>at</strong>ions <strong>de</strong>s cours.<br />

C<strong>et</strong>te étu<strong>de</strong> <strong>de</strong>vra être poursuivie, car nous n’avons pas pu trouver <strong>de</strong> copule réellement s<strong>at</strong>isfaisante<br />

quant à la <strong>de</strong>scription complète <strong>de</strong> la dépendance entre actifs. Si nous sommes désormais convaincus qu’il<br />

existe une dépendance <strong>de</strong> queue entre les actifs, il reste néanmoins à essayer <strong>de</strong> déterminer quelle copule<br />

est la mieux adaptée pour rendre compte <strong>de</strong> la structure <strong>de</strong> dépendance extrême entre les actifs. Ceci<br />

est important car, comme nous l’avons déjà signalé, les paramètres intervenant dans la représent<strong>at</strong>ion<br />

paramétrique <strong>de</strong> la copule perm<strong>et</strong>tent <strong>de</strong> résumer toute la dépendance <strong>de</strong> la même manière que le coefficient<br />

<strong>de</strong> corrél<strong>at</strong>ion capture complètement la dépendance pour une distribution multivariée gaussienne.<br />

Ces paramètres constituent, à notre avis, les “bonnes variables” qu’il convient <strong>de</strong> rechercher afin <strong>de</strong> nous<br />

perm<strong>et</strong>tre <strong>de</strong> modéliser à l’échelle macroscopique le comportement <strong>de</strong>s actifs <strong>et</strong> notamment la rel<strong>at</strong>ion<br />

entre risque <strong>et</strong> ren<strong>de</strong>ment. Que l’on pense au lien existant entre le coefficient <strong>de</strong> corrél<strong>at</strong>ion <strong>et</strong> la variance


Conclusion 493<br />

en univers gaussien d’une part <strong>et</strong> coefficient b<strong>et</strong>a mesurant le risque systém<strong>at</strong>ique associé à chaque actif<br />

selon le CAPM d’autre part.<br />

En outre, notre étu<strong>de</strong> <strong>de</strong> la structure <strong>de</strong> dépendance entre actifs n’a été que <strong>de</strong>scriptive <strong>et</strong> n’en a pas<br />

sondé les causes microscopiques. Cela rejoint en fait ce que nous avons écrit plus haut concernant la<br />

nécessité <strong>de</strong> développer <strong>de</strong>s modèles d’agents considérant <strong>de</strong>s marchés où peuvent être échangés plusieurs<br />

actifs. Ce sera alors un moyen <strong>de</strong> mieux comprendre les raisons <strong>de</strong> l’existence <strong>de</strong> divers facteurs<br />

<strong>et</strong> leur influence sur c<strong>et</strong>te dépendance entre actifs : les facteurs économiques, tels que l’appartenance<br />

à un même secteur d’activité par exemple, sont-ils <strong>de</strong>s éléments primordiaux <strong>de</strong> c<strong>et</strong>te dépendance, ou<br />

bien les agents jouent-ils un rôle prépondérant ? Existe-t-il <strong>de</strong>s phases où la structure <strong>de</strong> dépendance est<br />

dominée par les fondamentaux économiques <strong>et</strong> d’autre part l’activité spécul<strong>at</strong>ive, comme on l’observe<br />

pour le développement <strong>de</strong>s fluctu<strong>at</strong>ions dans le cas marginal ? Toutes ces questions restent ouvertes <strong>et</strong> en<br />

<strong>at</strong>tente <strong>de</strong> réponses.<br />

Après avoir considéré les <strong>de</strong>ux fac<strong>et</strong>tes <strong>de</strong>s grands risques que sont d’une part l’aspect individuel ou marginal<br />

<strong>et</strong> d’autre part l’aspect collectif, nous avons regroupé nos résult<strong>at</strong>s afin d’en déduire les conséquences<br />

pr<strong>at</strong>iques sur la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong>s en vue <strong>de</strong> la prévention <strong>de</strong> ces grands risques. Ceci nous a tout<br />

d’abord amené à discuter <strong>de</strong> la manière dont il convient <strong>de</strong> les mesurer. Nous avons pour cela utilisé <strong>de</strong>ux<br />

approches : l’une basée sur la mesure du capital économique <strong>et</strong> l’autre prenant en compte la propension<br />

du <strong>portefeuille</strong> à ne pas trop s’écarter <strong>de</strong>s objectifs <strong>de</strong> rentabilité que l’on en espère. Ces <strong>de</strong>ux voies ont<br />

été explorées <strong>et</strong> nous avons discuté <strong>de</strong> leur mise en œuvre pr<strong>at</strong>ique ainsi que <strong>de</strong> leurs conséquences sur<br />

les prix d’équilibre <strong>de</strong>s actifs. Nous nous sommes bornés à considérer <strong>de</strong>s mesures <strong>de</strong> risques <strong>et</strong> à abor<strong>de</strong>r<br />

le problème <strong>de</strong> l’optimis<strong>at</strong>ion <strong>de</strong> <strong>portefeuille</strong> dans un cadre mono-périodique (ou st<strong>at</strong>ique), alors qu’il<br />

apparaît très clairement que ces <strong>de</strong>ux problèmes doivent se poser en termes dynamiques. De nombreuses<br />

recherches sont actuellement menées pour définir <strong>de</strong> manière axiom<strong>at</strong>ique la notion <strong>de</strong> risque dans un<br />

cadre dynamique ainsi que pour en étudier les conséquences sur la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong>s. Nos futures<br />

recherches sur ce suj<strong>et</strong> <strong>de</strong>vront s’inscrire dans ce courant.<br />

Enfin, nous focalisant sur l’impact <strong>de</strong>s risques extrêmes, il est notamment apparu que l’existence d’une<br />

dépendance <strong>de</strong> queue entre les actifs en limitait les possibilités <strong>de</strong> diversific<strong>at</strong>ion. Nous avons alors montrer<br />

comment on parvenait à en minimiser les eff<strong>et</strong>s en ne sélectionnant que les actifs présentant les<br />

plus faibles dépendances <strong>de</strong> queues. Cependant, si les risques extrêmes ne sont pas totalement diversifiables,<br />

nous <strong>de</strong>vrions être en droit <strong>de</strong> nous <strong>at</strong>tendre à ce que le marché les rémunére. Nous n’avons pas<br />

étudié c<strong>et</strong>te question qui nous semble cruciale mais envisageons <strong>de</strong> traiter ce problème lors <strong>de</strong> recherches<br />

ultérieures.<br />

Nous voyons donc que les travaux que nous venons <strong>de</strong> présenter, loin d’être achevés <strong>et</strong> d’apporter <strong>de</strong>s<br />

réponses définitives, posent <strong>de</strong> nombreuses questions <strong>et</strong> ouvrent donc <strong>de</strong> multiples perspectives <strong>de</strong> recherches<br />

futures.


494 Conclusion


Annexe A<br />

Evalu<strong>at</strong>ion <strong>de</strong> la conduite du proj<strong>et</strong> <strong>de</strong><br />

thèse<br />

Ce nouveau chapitre s’inscrit dans le cadre <strong>de</strong> la poursuite d’un proj<strong>et</strong> pilote développé par le ministère<br />

<strong>de</strong> l’éduc<strong>at</strong>ion n<strong>at</strong>ionale, <strong>de</strong> la recherche <strong>et</strong> <strong>de</strong> la technologie (MENRT) afin d’ai<strong>de</strong>r les jeunes docteurs<br />

à s’insérer plus facilement dans la vie active, que ce soit dans le milieu <strong>de</strong> la recherche académique ou<br />

bien au sein d’entreprises privées. L’obj<strong>et</strong> <strong>de</strong> ce chapitre est <strong>de</strong> mener une réflexion sur la conduite <strong>de</strong> la<br />

thèse, non seulement en termes <strong>de</strong> r<strong>et</strong>ombées scientifiques mais également d’un point <strong>de</strong> vue comptable,<br />

avec l’évalu<strong>at</strong>ion du coût du proj<strong>et</strong>, <strong>et</strong> <strong>de</strong> faire le bilan <strong>de</strong>s expériences <strong>et</strong> compétences acquises au cours<br />

<strong>de</strong> ces années.<br />

A.1 Bref résumé du suj<strong>et</strong><br />

L’obj<strong>et</strong> <strong>de</strong> c<strong>et</strong>te thèse était l’étu<strong>de</strong> <strong>de</strong>s risques extrêmes sur les marchés financiers. Pour nous <strong>at</strong>taquer à ce<br />

problème, nous avons tout abord cherché à modéliser les mécanismes perm<strong>et</strong>tant d’expliquer l’apparition<br />

<strong>de</strong> mouvements extrêmes sur ce type <strong>de</strong> marchés afin d’en avoir une meilleure compréhension <strong>et</strong> notamment<br />

d’en isoler certaines causes. A partir <strong>de</strong> là, nous avons, dans un premier temps, pu développer <strong>de</strong><br />

nouvelles mesures <strong>de</strong> risques perm<strong>et</strong>tant <strong>de</strong> mieux rendre compte <strong>de</strong>s gran<strong>de</strong>s fluctu<strong>at</strong>ions observées sur<br />

les cours <strong>de</strong>s actifs financiers. Cela nous a ensuite permis d’élaborer <strong>de</strong> nouvelles <strong>théorie</strong>s <strong>de</strong> <strong>portefeuille</strong>s<br />

visant à se prémunir au mieux contre les risques extrêmes. Enfin, nous en avons déduit d’intéressants<br />

résult<strong>at</strong>s concernant le prix <strong>de</strong>s actifs sur les marchés financiers à l’équilibre.<br />

Notre étu<strong>de</strong> s’est basée sur l’hypothèse que les marchés financiers peuvent être considérés comme <strong>de</strong>s<br />

systèmes complexes auto-organisés : <strong>de</strong> l’interaction entre agents économiques – aux objectifs divers <strong>et</strong><br />

souvent opposés – résultent les propriétés macroscopiques <strong>de</strong>s marchés. Ceci nous a notamment conduit<br />

à abandonner les hypothèses traditionnelles fondées sur l’existence d’agents économiques représent<strong>at</strong>ifs<br />

<strong>et</strong> r<strong>at</strong>ionnels, dont découle le concept <strong>de</strong> marché efficient <strong>et</strong> qui conduit à décrire la dynamique <strong>de</strong>s<br />

cours par un mouvement brownien, dont on sait pertinemment aujourd’hui, qu’il est inadapté à une telle<br />

modélis<strong>at</strong>ion.<br />

495


496 A. Evalu<strong>at</strong>ion <strong>de</strong> la conduite du proj<strong>et</strong> <strong>de</strong> thèse<br />

A.2 Eléments <strong>de</strong> contexte<br />

A.2.1 Choix du suj<strong>et</strong><br />

Après avoir préparé le diplôme d’étu<strong>de</strong>s approfondies en physique théorique <strong>de</strong> l’Ecole Normale Supérieure<br />

<strong>de</strong> Lyon durant l’année scolaire 1999-2000, j’ai décidé <strong>de</strong> m’inscrire en thèse. A l’issue d’un tel DEA, il<br />

est n<strong>at</strong>urel <strong>de</strong> choisir un suj<strong>et</strong> <strong>de</strong> thèse portant sur la physique <strong>st<strong>at</strong>istique</strong> ou la physique <strong>de</strong>s particules.<br />

Cependant, il était bien clair pour moi que <strong>de</strong> tels suj<strong>et</strong>s ne conduisent que rarement à un poste dans la<br />

recherche publique – leur nombre étant extrêmement faible – <strong>et</strong> ne suscitent presque jamais l’intérêt <strong>de</strong>s<br />

acteurs privés, qui jugent ces thèmes <strong>de</strong> recherche trop fondamentaux <strong>et</strong> sans applic<strong>at</strong>ions concrètes. Ceci<br />

risquait donc <strong>de</strong> poser quelques problèmes en vue <strong>de</strong> ma future insertion dans la vie professionnelle <strong>et</strong><br />

laissait présager dès le départ d’une nécessaire réorient<strong>at</strong>ion à l’issue d’une telle thèse. Aussi, je préférais<br />

d’emblée me détourner <strong>de</strong> la voie habituelle.<br />

En fait, le domaine <strong>de</strong> la finance m’<strong>at</strong>tirait <strong>de</strong>puis longtemps, à tel point que j’avais un instant envisagé<br />

<strong>de</strong> suivre un DEA <strong>de</strong> finance plutôt qu’un DEA <strong>de</strong> physique théorique. Mais, sachant que l’étu<strong>de</strong> <strong>de</strong>s<br />

marchés financiers au moyen <strong>de</strong>s outils <strong>de</strong> la physique <strong>st<strong>at</strong>istique</strong> se développait activement en physique,<br />

au sein d’une branche appelée “ éconophysique ”, je m’étais alors résolu à apprendre les bases<br />

<strong>de</strong> la physique théorique dans le but <strong>de</strong> réinvestir ces connaissances dans l’étu<strong>de</strong> <strong>et</strong> la modélis<strong>at</strong>ion <strong>de</strong>s<br />

mécanismes à l’œuvre sur les marchés financiers. C’est donc tout n<strong>at</strong>urellement que m’est venu l’idée <strong>de</strong><br />

préparer une thèse portant sur la problém<strong>at</strong>ique <strong>de</strong>s marchés financiers.<br />

Durant les mois qui ont précédé le début <strong>de</strong> ma thèse j’ai rencontré <strong>et</strong> discuté avec <strong>de</strong> nombreuses<br />

personnes, tant <strong>de</strong>s enseignants <strong>et</strong>/ou chercheurs en physique <strong>et</strong> finance que <strong>de</strong>s professionnels, afin<br />

d’obtenir leur avis <strong>et</strong> conseil sur le choix <strong>de</strong> thèse que je souhaitais réaliser <strong>et</strong> sur la meilleure façon d’y<br />

parvenir. J’avoue qu’à ce moment-là les avis que j’ai reçus étaient partagés <strong>et</strong> que <strong>de</strong> nombreuses mises<br />

en gar<strong>de</strong> sur les difficultés auxquelles je risquais d’être confronté m’ont été faites. Cependant, cela n’a<br />

nullement entamé mon enthousiasme, <strong>et</strong> je dirais même qu’au contraire, cela m’a poussé à relever ce qui<br />

m’apparaissait alors comme un véritable défi.<br />

A.2.2 Choix <strong>de</strong> l’encadrement <strong>et</strong> du labor<strong>at</strong>oire d’accueil<br />

Le thème central <strong>de</strong> ma thèse étant choisi, il me fallait encore trouver un directeur <strong>de</strong> thèse pouvant<br />

m’encadrer sur un tel suj<strong>et</strong> ainsi qu’un labor<strong>at</strong>oire d’accueil. Le choix du directeur <strong>de</strong> thèse fut en fait<br />

assez rapi<strong>de</strong>, car si <strong>de</strong> plus en plus <strong>de</strong> chercheurs s’intéressent à ce domaine encore émergeant qu’est<br />

l’éconophysique, très peu sont à même <strong>de</strong> diriger une thèse sur ce suj<strong>et</strong>. C’est donc fort logiquement que<br />

je pris contact avec Didier Sorn<strong>et</strong>te, directeur <strong>de</strong> recherche au CNRS, affecté au Labor<strong>at</strong>oire <strong>de</strong> Physique<br />

<strong>de</strong> la M<strong>at</strong>ière Con<strong>de</strong>nsée (Université <strong>de</strong> Nice – Sophia Antipolis) où il dirige l’équipe <strong>de</strong> “ physique<br />

pluridisciplinaire ” dont le but est l’étu<strong>de</strong> <strong>de</strong>s phénomènes critiques auto-organisés dans <strong>de</strong>s domaines<br />

aussi divers que la rupture <strong>de</strong> m<strong>at</strong>ériaux, la prédiction <strong>de</strong>s tremblements <strong>de</strong> terre ou l’étu<strong>de</strong> <strong>de</strong>s marchés<br />

financiers. Très vite nous décidâmes <strong>de</strong> nous rencontrer, ce qui me permis <strong>de</strong> découvrir plus en détails<br />

les thèmes <strong>de</strong> recherche abordés au sein <strong>de</strong> c<strong>et</strong>te équipe <strong>et</strong> <strong>de</strong> prévoir le cadre <strong>de</strong> ma thèse. Il fut aussi<br />

décidé que j’effectuerais mon stage <strong>de</strong> DEA au sein <strong>de</strong> l’équipe, ce qui me perm<strong>et</strong>trait d’une part <strong>de</strong> me<br />

familiariser avec les thèmes <strong>et</strong> métho<strong>de</strong>s que j’aurais à employer au cours <strong>de</strong> ma thèse, <strong>et</strong> d’autre part <strong>de</strong><br />

vérifier que le travail qui m’<strong>at</strong>tendait en thèse correspondait bien à mes aspir<strong>at</strong>ions.<br />

Il apparut aussi assez rapi<strong>de</strong>ment qu’il serait très intéressant <strong>de</strong> s’adjoindre les services d’un professeur<br />

<strong>de</strong> finance afin d’avoir <strong>de</strong> réels échanges avec ce milieu, <strong>de</strong> mieux cerner leurs problèmes <strong>et</strong> ainsi ne pas<br />

s’égarer dans <strong>de</strong>s recherches stériles car coupées <strong>de</strong>s réalités du mon<strong>de</strong> financier. De plus, c<strong>et</strong>te colla-


A.2. Eléments <strong>de</strong> contexte 497<br />

bor<strong>at</strong>ion perm<strong>et</strong>tait <strong>de</strong> garantir le caractère pluridisciplinaire <strong>de</strong> la thèse dans laquelle je m’engageais.<br />

C’est pourquoi je suis allé rencontrer Jean-Paul Laurent, professeur à l’Institut <strong>de</strong> Science Financière<br />

<strong>et</strong> d’Assurances (Université Lyon I), afin <strong>de</strong> lui exposer mon proj<strong>et</strong> <strong>et</strong> <strong>de</strong> lui <strong>de</strong>man<strong>de</strong>r <strong>de</strong> bien vouloir<br />

co-diriger ma thèse, ce qu’il accepta tout <strong>de</strong> suite.<br />

A.2.3 Financement du proj<strong>et</strong><br />

Ce proj<strong>et</strong> étant essentiellement théorique, <strong>et</strong> les r<strong>et</strong>ombées pr<strong>at</strong>iques a priori difficilement évaluables, il<br />

semblait délic<strong>at</strong> d’obtenir un financement autre que public. En fait, en tant qu’élève <strong>de</strong> l’Ecole Normale<br />

Supérieure <strong>de</strong> Lyon, je pouvais postuler pour l’obtention d’une bourse spécifique, dite alloc<strong>at</strong>ion couplée,<br />

consistant en une alloc<strong>at</strong>ion <strong>de</strong> recherche du MENRT <strong>et</strong> d’un monitor<strong>at</strong> (à l’université <strong>de</strong> Nice). Le<br />

suj<strong>et</strong> <strong>de</strong> thèse peu orthodoxe que je présentais pouvait me <strong>de</strong>sservir quant à l’obtention <strong>de</strong> c<strong>et</strong>te bourse,<br />

mais finalement, celui-ci fut jugé innovant <strong>et</strong> en plein accord avec la politique ministérielle visant à<br />

promouvoir la pluridisciplinarité dans les thèmes <strong>de</strong> recherche, ce qui me permit d’obtenir l’<strong>at</strong>tribution <strong>de</strong><br />

c<strong>et</strong>te alloc<strong>at</strong>ion couplée. Une telle bourse représente un montant annuel d’environ 24000 euros, charges<br />

p<strong>at</strong>ronales comprises.<br />

A ce montant, s’ajoute un pourcentage du coût salarial <strong>de</strong> mes directeur <strong>et</strong> co-directeur <strong>de</strong> thèse. Ce coût<br />

est difficilement évaluable mais on peut estimer que chacun <strong>de</strong> mes encadrants a consacré entre dix <strong>et</strong><br />

vingt pour-cent <strong>de</strong> son temps à l’encadrement <strong>de</strong> ma thèse ce qui, globalement doit représenter prés <strong>de</strong><br />

15000 euros par an. On peut donc estimer le coût total en ressources humaines à approxim<strong>at</strong>ivement<br />

39000 euros par an.<br />

Du point <strong>de</strong> vue investissement m<strong>at</strong>ériel, le coût se révèle beaucoup plus mo<strong>de</strong>ste. Mon travail <strong>de</strong><br />

thèse étant essentiellement théorique, il n’a nécessité que l’ach<strong>at</strong> d’un ordin<strong>at</strong>eur, quelques logiciels<br />

<strong>et</strong> quelques livres. On peut donc chiffrer c<strong>et</strong>te dépense à 3000 euros.<br />

J’ai aussi eu à effectuer <strong>de</strong> nombreux déplacements soit pour assister à <strong>de</strong>s conférences soit pour rencontrer<br />

mon co-directeur à Lyon ou Paris. Sur toute la durée <strong>de</strong> ma thèse, les sommes engagées se chiffrent<br />

à 4000 euros. J’ai également participé à <strong>de</strong>ux écoles organisées par le département <strong>de</strong> la form<strong>at</strong>ion continue<br />

du CNRS <strong>et</strong> pris en charge par lui. Le coût engagé par le CNRS à ces <strong>de</strong>ux occasions avoisine les<br />

2500 euros.<br />

Enfin, il faut ajouter à cela la fraction qui m’est imputable <strong>de</strong>s frais <strong>de</strong> fonctionnement du labor<strong>at</strong>oire qui<br />

m’a accueilli pendant ces <strong>de</strong>ux ans <strong>et</strong> <strong>de</strong>mi. Ces frais sont difficilement évaluables avec précision, mais<br />

il semble raisonnable <strong>de</strong> les estimer à 5000 euros.<br />

En résumé, les frais engagés sont les suivants :<br />

Ressources humaines (30 mois) 97500 euro<br />

Frais <strong>de</strong> m<strong>at</strong>ériels 3000 euro<br />

Frais <strong>de</strong> déplacement 4000 euro<br />

Form<strong>at</strong>ion continue 2500 euro<br />

Frais <strong>de</strong> fonctionnement 5000 euro<br />

Total 112000 euro<br />

Le total <strong>de</strong>s frais engagés <strong>at</strong>teint donc 112000 euros sur trente mois, soit un coût annuel <strong>de</strong> 44800 euros.<br />

Les frais <strong>de</strong> ressources humaines sont bien évi<strong>de</strong>mment prépondérants, puisqu’ils représentent plus <strong>de</strong><br />

85% du coût total du proj<strong>et</strong>, ce qui est en ligne avec ce qui est généralement observé pour tout suj<strong>et</strong> <strong>de</strong><br />

recherche théorique.


498 A. Evalu<strong>at</strong>ion <strong>de</strong> la conduite du proj<strong>et</strong> <strong>de</strong> thèse<br />

A.3 Evolution du proj<strong>et</strong><br />

A.3.1 Elabor<strong>at</strong>ion du proj<strong>et</strong><br />

Le proj<strong>et</strong> initial visait, tout d’abord, à développer une métho<strong>de</strong> <strong>de</strong> mesure <strong>de</strong>s grands risques financiers en<br />

univers non gaussien <strong>et</strong> à les modéliser à l’ai<strong>de</strong> <strong>de</strong>s outils employés en physique <strong>st<strong>at</strong>istique</strong> <strong>et</strong> <strong>théorie</strong> <strong>de</strong>s<br />

champs, qui semblaient particulièrement bien adaptés à c<strong>et</strong>te problém<strong>at</strong>ique. Nous souhaitions ensuite<br />

pouvoir appliquer ces métho<strong>de</strong>s au problème <strong>de</strong> la <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong>s. Donc, dès le départ le proj<strong>et</strong><br />

était conçu <strong>de</strong> manière pluridisciplinaire avec une part <strong>de</strong> physique théorique – ou du moins faisant appel<br />

aux outils <strong>de</strong> la physique théorique – <strong>et</strong> une part <strong>de</strong> <strong>gestion</strong> financière.<br />

Volontairement, le cadre du proj<strong>et</strong> a été défini <strong>de</strong> manière assez générale afin <strong>de</strong> lui laisser le plus <strong>de</strong><br />

souplesse possible pour pouvoir évoluer au fur <strong>et</strong> à mesure <strong>de</strong> l’avancée <strong>de</strong>s recherches. En eff<strong>et</strong>, si<br />

le cadre global <strong>de</strong>s recherches à conduire apparaissait dès le départ assez clairement, il était difficile<br />

d’évaluer très précisément les résult<strong>at</strong>s auxquels nous <strong>de</strong>vions nous <strong>at</strong>tendre. En outre, <strong>de</strong> part la codirection<br />

<strong>de</strong> c<strong>et</strong>te thèse <strong>et</strong> son caractère pluridisciplinaire, il fallait que les termes du proj<strong>et</strong> conviennent<br />

à chacune <strong>de</strong>s parties. Ce point aurait pu être suj<strong>et</strong> à quelques difficultés, mais tout s’est en fait très<br />

bien déroulé <strong>et</strong> il n’y a eu aucun problème. Je dois dire que ceci tient en gran<strong>de</strong> partie au caractère <strong>de</strong><br />

mes encadrants qui ont toujours fait preuve d’une gran<strong>de</strong> ouverture d’esprit <strong>et</strong> m’ont laissé beaucoup <strong>de</strong><br />

liberté quant aux choix <strong>de</strong>s directions <strong>de</strong> recherche à suivre.<br />

A.3.2 Conduite du proj<strong>et</strong><br />

Tout au long <strong>de</strong> ma thèse, j’ai bénéficié d’un encadrement toujours très présent <strong>et</strong> en même temps d’une<br />

gran<strong>de</strong> liberté. C<strong>et</strong> ét<strong>at</strong> <strong>de</strong> fait est lié au choix <strong>de</strong> mes encadrants <strong>et</strong> je savais dès le départ à quoi m’<strong>at</strong>tendre.<br />

En eff<strong>et</strong>, <strong>de</strong> par ses activités, mon directeur <strong>de</strong> thèse n’était en France que six mois par an. Ceci<br />

m’a très rapi<strong>de</strong>ment poussé à <strong>de</strong>voir faire preuve d’autonomie. De plus, j’avais choisi un co-directeur occupant<br />

un poste à l’Université Lyon I, ce qui m’a imposé une certaine mobilité <strong>et</strong> conduit à effectuer <strong>de</strong><br />

nombreux allers-r<strong>et</strong>ours à Lyon ou Paris. Ceci m’a, en contrepartie, permis <strong>de</strong> rencontrer <strong>de</strong>s personnes<br />

extérieures à mon labor<strong>at</strong>oire <strong>de</strong> r<strong>at</strong>tachement, ce qui a conduit à développer <strong>de</strong>s collabor<strong>at</strong>ions très utiles<br />

<strong>et</strong> enrichissantes.<br />

Ceci étant, malgré la distance qui nous séparait parfois, j’ai toujours eu quelqu’un ”à l’autre bout du fil”,<br />

si ce n’est en face <strong>de</strong> moi pour répondre à mes questions <strong>et</strong> me gui<strong>de</strong>r lors <strong>de</strong> mes hésit<strong>at</strong>ions. Ceci a été<br />

extrêmement important tout au long <strong>de</strong> ma thèse <strong>et</strong> plus particulièrement au cours <strong>de</strong>s premiers mois où<br />

je n’ai fait que suivre les directives <strong>de</strong> mes encadrants. Puis, passés les six premiers mois, je me suis mis<br />

à choisir moi-même les directions <strong>de</strong> recherche que je souhaitais suivre, à en évaluer la faisabilité <strong>et</strong> à<br />

les concrétiser. Bien sûr, tout cela se faisait en plein accord avec mes encadrants <strong>et</strong> après discussion <strong>et</strong><br />

concert<strong>at</strong>ion avec eux.<br />

Ponctuellement, j’ai participé à <strong>de</strong>s proj<strong>et</strong>s a priori un peu éloignés du thème central <strong>de</strong> ma thèse. Mais<br />

au final, cela a toujours été stimulant <strong>et</strong> génér<strong>at</strong>eur d’idées nouvelles qui se sont parfaitement intégrées<br />

au corps déjà établi <strong>de</strong> mes recherches, y apportant un complément ou un éclairage différent.<br />

En résumé, s’il s’est toujours maintenu à l’intérieur du cadre originellement établi, le déroulement <strong>de</strong> ma<br />

thèse était loin d’être planifié dès le départ <strong>et</strong> s’est plutôt produit sous l’eff<strong>et</strong> <strong>de</strong>s découvertes <strong>et</strong> avancées<br />

successives.<br />

De plus, l’avancement <strong>de</strong> la thèse s’est effectué <strong>de</strong> manière rapi<strong>de</strong> puisqu’il n’a pas été nécessaire d’aller<br />

au bout <strong>de</strong>s trois ans que dure normalement une thèse. En fait, un an <strong>et</strong> <strong>de</strong>mi après le début du proj<strong>et</strong>, j’ai


A.4. Compétences acquises <strong>et</strong> enseignements personnels 499<br />

émis l’idée <strong>de</strong> soutenir avant terme ce qui est apparu raisonnable à mes encadrants, qui en ont accepté le<br />

principe. J’estimais alors avoir encore besoin <strong>de</strong> six mois pour terminer les proj<strong>et</strong>s en cours <strong>et</strong> quelques<br />

mois pour rédiger le manuscrit <strong>de</strong> thèse. Sur ce point, la rédaction régulière d’articles au fur <strong>et</strong> à mesure<br />

<strong>de</strong> l’avancée <strong>de</strong>s travaux m’a gran<strong>de</strong>ment facilité la tâche. Au final les délais que je m’étais fixés ont<br />

effectivement été tenus <strong>et</strong> j’ai soutenu au bout d’un peu plus <strong>de</strong> <strong>de</strong>ux années <strong>de</strong> thèse.<br />

A.3.3 R<strong>et</strong>ombées scientifiques<br />

Les r<strong>et</strong>ombées scientifiques ont été nombreuses <strong>et</strong> importantes. Les résult<strong>at</strong>s obtenus nous ont notamment<br />

permis d’isoler <strong>et</strong> <strong>de</strong> mieux comprendre certaines <strong>de</strong>s origines <strong>de</strong>s phénomènes extrêmes observés sur les<br />

marchés financiers. Il nous a alors été possible d’établir, sur <strong>de</strong>s bases théoriques soli<strong>de</strong>s, <strong>de</strong> nouvelles<br />

mesures <strong>de</strong>s risques extrêmes, qui ont en r<strong>et</strong>our autorisé le développement concr<strong>et</strong> <strong>de</strong> <strong>théorie</strong>s <strong>de</strong> <strong>portefeuille</strong><br />

prenant en compte ce type <strong>de</strong> risques, ce qui était l’objectif ultime <strong>de</strong> notre proj<strong>et</strong>. Globalement,<br />

tous les objectifs premiers ont été <strong>at</strong>teints <strong>et</strong> dans certains cas largement dépassés.<br />

En outre, les r<strong>et</strong>ombées scientifiques du proj<strong>et</strong> ont été rapi<strong>de</strong>s <strong>et</strong> régulières. En eff<strong>et</strong>, très tôt les premiers<br />

résult<strong>at</strong>s sont apparus. Dès les qu<strong>at</strong>re premiers mois, un article a été soumis. Puis, à partir <strong>de</strong> là, environ<br />

un papier tous les <strong>de</strong>ux ou trois mois était rédigé, si bien qu’après un peu plus <strong>de</strong> <strong>de</strong>ux années <strong>de</strong> thèse,<br />

six articles sont parus à la fois dans <strong>de</strong>s journaux <strong>de</strong> physique <strong>et</strong> <strong>de</strong>s revues <strong>de</strong> finance, <strong>et</strong> environ autant<br />

sont soumis ou à paraître.<br />

La régularité <strong>de</strong> public<strong>at</strong>ion tient avant tout à la diversific<strong>at</strong>ion <strong>de</strong> mes thèmes <strong>de</strong> recherches. C’était le<br />

principal intérêt d’avoir défini un cadre d’étu<strong>de</strong> rel<strong>at</strong>ivement large. Il est intéressant <strong>de</strong> remarquer que<br />

sur les plus <strong>de</strong> dix papiers aujourd’hui produits, seul un quart était <strong>at</strong>tendu, dans le sens où ils portent<br />

<strong>de</strong> manière très directe sur <strong>de</strong>s thèmes <strong>de</strong> recherche parfaitement i<strong>de</strong>ntifiés dès le début <strong>de</strong> la thèse. Les<br />

autres sont les fruits <strong>de</strong> la progression <strong>et</strong> <strong>de</strong>s idées nouvelles qui sont apparues au fur <strong>et</strong> à mesure <strong>de</strong><br />

l’avancement <strong>de</strong>s travaux.<br />

Il est bien évi<strong>de</strong>nt qu’une telle quantité <strong>de</strong> travail n’a pu être réalisée seul, <strong>et</strong> le nombre <strong>de</strong>s public<strong>at</strong>ions<br />

tient aussi aux collabor<strong>at</strong>ions – avec <strong>de</strong>s partenaires publics mais aussi privés – qui se sont tissées tout<br />

au long <strong>de</strong> ma thèse <strong>et</strong> qui se sont toutes révélées très fructueuses.<br />

A.4 Compétences acquises <strong>et</strong> enseignements personnels<br />

La thèse constitue pour moi une expérience riche d’enseignement. Sur le plan scientifique, elle m’a tout<br />

d’abord permis d’appliquer les connaissances que j’avais acquises en physique théorique lors <strong>de</strong> ma<br />

form<strong>at</strong>ion initiale (physique <strong>st<strong>at</strong>istique</strong>, systèmes complexes <strong>et</strong> phénomènes critiques notamment). Ceci<br />

a été pour moi le moyen <strong>de</strong> définitivement m’approprier ce savoir. J’ai aussi dû ponctuellement m<strong>et</strong>tre à<br />

jour <strong>et</strong> compléter ces connaissances lorsque mes recherches me conduisaient à abor<strong>de</strong>r <strong>de</strong>s thèmes que je<br />

n’avais pas eu à considérer lors <strong>de</strong> mes étu<strong>de</strong>s antérieures. Ceci fait qu’aujourd’hui je pense pouvoir dire<br />

que je possè<strong>de</strong> un niveau <strong>de</strong> connaissances élevées sur les métho<strong>de</strong>s employées en physique pour l’étu<strong>de</strong><br />

<strong>de</strong>s phénomènes critiques.<br />

Par ailleurs, <strong>et</strong> c’est là où j’ai dû fournir l’effort le plus important, il m’a fallu acquérir la somme <strong>de</strong><br />

connaissances en <strong>théorie</strong> financière qui me faisait défaut (<strong>théorie</strong> <strong>de</strong> la décision <strong>et</strong> analyse du risque,<br />

<strong>théorie</strong>s <strong>de</strong> <strong>portefeuille</strong> <strong>et</strong> modèles d’équilibre <strong>de</strong> marchés, pour ne citer que quelques exemples), ainsi<br />

qu’en <strong>st<strong>at</strong>istique</strong> <strong>et</strong> <strong>théorie</strong> <strong>de</strong>s probabilités. C<strong>et</strong> investissement a été long (<strong>et</strong> je ne le considère pas comme<br />

totalement achevé), mais j’estime avoir acquis un bon niveau <strong>de</strong> compétences dans ces domaines. Pour<br />

cela, j’ai – entre autre – participé à <strong>de</strong>s écoles organisées par le CNRS. Celles-ci se sont révélées très


500 A. Evalu<strong>at</strong>ion <strong>de</strong> la conduite du proj<strong>et</strong> <strong>de</strong> thèse<br />

form<strong>at</strong>rices <strong>et</strong> m’ont permis tout d’abord <strong>de</strong> combler mes lacunes puis d’acquérir <strong>de</strong>s connaissances <strong>de</strong><br />

haut niveau au contact <strong>de</strong>s personnes les plus expertes dans ces domaines. En outre, les connaissances<br />

que j’ai acquises en m<strong>at</strong>hém<strong>at</strong>ique m’ont permis <strong>de</strong> réaliser la synthèse <strong>et</strong> d’approfondir les savoirs que<br />

j’avais accumulés en physique au cours <strong>de</strong> mes étu<strong>de</strong>s antérieures.<br />

Sur le plan purement technique, j’ai développé notamment <strong>de</strong> bonnes compétences inform<strong>at</strong>iques. J’ai<br />

appris la programm<strong>at</strong>ion en langage C, afin <strong>de</strong> pouvoir réaliser <strong>de</strong>s simul<strong>at</strong>ions numériques évoluées. J’ai<br />

également appris à utiliser <strong>de</strong>s logiciels tels que M<strong>at</strong>Lab pour le traitement <strong>de</strong> données <strong>et</strong> Maple pour<br />

l’ai<strong>de</strong> au calcul formel.<br />

En outre, j’ai dû apprendre à gérer mon temps <strong>de</strong> travail ainsi que le travail en groupe. Ceci me semble<br />

être la clé du succès <strong>de</strong> tout proj<strong>et</strong> (comme la thèse par exemple, mais cela va bien au-<strong>de</strong>là). En eff<strong>et</strong>,<br />

j’ai continuellement travaillé sur plusieurs suj<strong>et</strong>s en même temps, généralement avec la même personne<br />

mais plusieurs fois au sein <strong>de</strong> collabor<strong>at</strong>ion regroupant <strong>de</strong>s personnes géographiquement dispersées sur<br />

l’ensemble du globe. Ceci conduit à s’astreindre à une certaine rigueur dans l’organis<strong>at</strong>ion afin <strong>de</strong> ne pas<br />

se laisser débor<strong>de</strong>r <strong>et</strong> <strong>de</strong> maintenir une progression régulière <strong>de</strong>s différents proj<strong>et</strong>s. En fait, un travail en<br />

collabor<strong>at</strong>ion n’avançant qu’au rythme du plus lent <strong>de</strong> ces membres, le r<strong>et</strong>ard peut parfois s’accumuler <strong>de</strong><br />

manière importante. C’est pourquoi il m’a aussi fallu apprendre à limiter mes ambitions <strong>et</strong> ainsi refuser<br />

<strong>de</strong> participer à certains proj<strong>et</strong>s afin <strong>de</strong> ne pas trop me disperser. Par ailleurs, mes travaux se trouvant à<br />

l’interface <strong>de</strong> <strong>de</strong>ux mon<strong>de</strong>s – celui <strong>de</strong> la physique <strong>et</strong> celui <strong>de</strong> la finance – j’ai eu sans cesse à interagir<br />

avec <strong>de</strong>s interlocuteurs parlant <strong>de</strong>s langages différents <strong>et</strong> ayant <strong>de</strong>s sensibilités bien distinctes. Il a donc<br />

été nécessaire que je m’adapte à cela <strong>et</strong> notamment que j’apprenne à communiquer avec <strong>de</strong>s personnes<br />

ayant à la base <strong>de</strong>s form<strong>at</strong>ions <strong>et</strong> cultures très différentes <strong>de</strong> la mienne, ce qui s’est fait p<strong>et</strong>it à p<strong>et</strong>it mais<br />

sans gran<strong>de</strong>s difficultés.<br />

Enfin, bénéficiant d’un monitor<strong>at</strong> à l’Université <strong>de</strong> Nice, j’ai eu à assurer une charge d’enseignement <strong>de</strong><br />

64 heures par an. C<strong>et</strong>te charge s’est trouvée repartie entre différents niveaux, allant du premier cycle à la<br />

prépar<strong>at</strong>ion à l’agrég<strong>at</strong>ion, <strong>et</strong> s’est déroulée <strong>de</strong>vant <strong>de</strong>s publics divers : étudiants en physique, géologie,<br />

ou encore ponctuellement économie. Ces quelques heures d’enseignement ont été réellement profitables.<br />

Elles ont bien sûr été l’occasion <strong>de</strong> m<strong>et</strong>tre en pr<strong>at</strong>ique les conseils que j’avais reçus lors <strong>de</strong> ma form<strong>at</strong>ion<br />

à l’enseignement au cours <strong>de</strong> mon année <strong>de</strong> prépar<strong>at</strong>ion à l’agrég<strong>at</strong>ion, mais elles ont en fait surtout été<br />

le moyen d’apprendre à transm<strong>et</strong>tre <strong>de</strong>s connaissances. En eff<strong>et</strong>, l’effort <strong>de</strong> communic<strong>at</strong>ion en direction<br />

d’un public étudiant est bien plus important <strong>et</strong> totalement différent <strong>de</strong> celui auquel doit s’habituer le<br />

chercheur qui expose ses travaux lors d’une conférence <strong>de</strong>vant un public <strong>de</strong> spécialistes. En outre, les<br />

questions – parfois naïves – <strong>de</strong>s étudiants imposent une remise en cause, ou du moins une réorganis<strong>at</strong>ion,<br />

permanente <strong>de</strong> ses propres connaissances. Enfin, cela m’a là encore conduit à travailler en coordin<strong>at</strong>ion,<br />

si ce n’est en collabor<strong>at</strong>ion, avec mes collègues enseignants au sein d’équipes pédagogiques, forgeant un<br />

peu plus mon expérience du travail en groupe.<br />

A.5 Conclusion<br />

J’estime que ma thèse s’est extrêmement bien déroulée <strong>et</strong> j’en gar<strong>de</strong>rai le souvenir d’une expérience très<br />

positive. J’<strong>at</strong>tribue cela essentiellement à la très bonne entente qui a toujours régné entre mes encadrants<br />

<strong>et</strong> moi-même. Je ne conçois pas avoir pu <strong>at</strong>teindre les mêmes objectifs si <strong>de</strong>s conditions <strong>de</strong> travail aussi<br />

agréables n’avaient pas été réunies. Cela souligne l’importance <strong>de</strong>s rel<strong>at</strong>ions humaines dans la bonne<br />

marche <strong>de</strong> tout proj<strong>et</strong>. Ceci me parait d’autant plus vrai que les groupes <strong>de</strong> travail sont p<strong>et</strong>its <strong>et</strong> qu’en<br />

conséquence les membres sont plus dépendants les uns <strong>de</strong>s autres.<br />

C<strong>et</strong>te expérience très motivante m’a conforté dans l’intention <strong>de</strong> poursuivre ma carrière dans le secteur


A.5. Conclusion 501<br />

<strong>de</strong> la recherche – académique ou privée. En outre, l’enseignement – ou la form<strong>at</strong>ion au sens large –<br />

me semble désormais indissociable <strong>de</strong> c<strong>et</strong>te activité. Je pense que mes capacités d’enseignant se sont<br />

nourries <strong>de</strong> mon expérience <strong>de</strong> chercheur <strong>et</strong> que réciproquement, les échanges lors <strong>de</strong> conférences ou<br />

séminaires ont fourni généralement m<strong>at</strong>ière à <strong>de</strong> nouvelles recherches. Je dois à ces années <strong>de</strong> thèse<br />

d’avoir découvert la formidable complémentarité entre d’une part une activité quelque peu solitaire qu’est<br />

la recherche <strong>et</strong> d’autre part une activité tournée vers l’extérieur qu’est l’enseignement ou la communic<strong>at</strong>ion.<br />

Le tableau que j’ai dressé <strong>de</strong> mes années <strong>de</strong> thèse peut paraître idyllique, il n’en est pas moins sincère.<br />

J’ai sûrement bénéficié d’une part <strong>de</strong> chance – inhérente à toute entreprise – mais cela ne saurait tout<br />

expliquer. Je pense que l’organis<strong>at</strong>ion méthodique <strong>de</strong> mon proj<strong>et</strong>, ce qui commence bien avant le début<br />

officiel <strong>de</strong> la thèse <strong>et</strong> passe par le choix avisé du suj<strong>et</strong> <strong>et</strong> <strong>de</strong>s encadrants, est la clé <strong>de</strong> la réussite <strong>de</strong> c<strong>et</strong>te<br />

entreprise. Pour ma part, je m’étais astreint à c<strong>et</strong>te démarche plus <strong>de</strong> six mois avant le début <strong>de</strong> ma thèse,<br />

ce qui, me semble-t-il, a porté ses fruits bien au-<strong>de</strong>là <strong>de</strong> mes espérances initiales.


502 A. Evalu<strong>at</strong>ion <strong>de</strong> la conduite du proj<strong>et</strong> <strong>de</strong> thèse


Bibliographie<br />

ACERBI, C. (2002) : “Spectral measures of risk : A coherent represent<strong>at</strong>ion of subjective risk aversion”,<br />

Journal of Banking & Finance 26, 1505–1518.<br />

ACERBI, C. ET D. TASCHE (2002) : “On the coherence of expected shorfall”, Journal of Banking &<br />

Finance 26, 1487–1503.<br />

ACERBI, C. ET P. SIMONETTI (2002) : “Portfolio optimiz<strong>at</strong>ion with spectral measures of risk”, Document<br />

<strong>de</strong> Travail.<br />

ADAMS, M. C. ET A. SZARFARZ (1992) : “Specul<strong>at</strong>ive bubbles and financial mark<strong>et</strong>s”, Oxford Economic<br />

Papers 44, 626–640.<br />

AHN, D., J. BOUDOUKH, M. RICHARDSON ET R. WHITELAW (1999) : “Optimal risk management<br />

using options”, Journal of Finance 54, 359–376.<br />

ALEXANDER, G. J. ET A. M. BAPTISTA (2002) : “Economic Implic<strong>at</strong>ions of Using a Mean-VaR Mo<strong>de</strong>l<br />

for Portfolio Selection : A Comparison with Mean-Variance Analysis”, Journal of Economic<br />

Dynamics & Control 26, 1159–1193.<br />

ALLAIS, M. (1953) : “Le comportement <strong>de</strong> l’homme r<strong>at</strong>ionnel <strong>de</strong>vant le risque : critique <strong>de</strong>s postul<strong>at</strong>s<br />

<strong>de</strong> l’école amricaine”, Econom<strong>et</strong>rica 21, 503–546.<br />

ANDERSEN, J. V. ET D. SORNETTE (2002a) : “Have your cake and e<strong>at</strong> it too : Increasing r<strong>et</strong>urns while<br />

lowering large risks !”, Journal of Risk Finance 2, 70–82.<br />

ANDERSEN, J. V. ET D. SORNETTE (2002b) : “the $-game”, Document <strong>de</strong> Travail 0205423, Cond-m<strong>at</strong>.<br />

ANDERSSON, M., B. EKLUND ET J. LYHAGEN (1999) : “A simple linear time series mo<strong>de</strong>l with misleading<br />

nonlinear properties”, Economics L<strong>et</strong>ters 65, 281–285.<br />

ARDITTI, F. (1967) : “Risk and the required r<strong>et</strong>urn on equity”, Journal of Finance 22, 19–36.<br />

ARNÉODO, A., J. F. MUZY ET D. SORNETTE (1998) : “Causale casca<strong>de</strong> in the stock mark<strong>et</strong> from the<br />

infrared to the ultraviol<strong>et</strong>”, European Physical journal B 2, 277–282.<br />

ARTHUR, W. B. (1987) : “Inductive Reasoning and Boun<strong>de</strong>d R<strong>at</strong>ionality : Self-reinforcing mechanisms<br />

in economics”, Center for Economic Policy Research 111, 1–20.<br />

ARTHUR, W. B. (1994) : “Inductive Reasoning and Boun<strong>de</strong>d R<strong>at</strong>ionality”, American Economic Review<br />

84, 406–411.<br />

ARTHUR, W. B., J. H. HOLLAND, B. LEBARON, R. PALMER ET P. TAYLOR (1997) : “Ass<strong>et</strong> pricing un<strong>de</strong>r<br />

endogeneous expect<strong>at</strong>ions in an artificial stock mark<strong>et</strong>”, in Arthur, W. B., D. Lane <strong>et</strong> S. Durlauf<br />

(eds.), The Economy as an Evolving Complex System II, Addison-Wesley, Redwood City.<br />

ARTZNER, P., F. DELBAEN, J.-M. EBER ET D. HEATH (1999) : “Coherent measures of risk”, M<strong>at</strong>hem<strong>at</strong>ical<br />

Finance 9, 203–288.<br />

AVNIR, D., O. BIHAM, D. LIDAR ET O. MALCAI (1998) : “Is the geom<strong>et</strong>ry of n<strong>at</strong>ure fractal ?”, Science<br />

279, 39–40.<br />

503


504 Bibliographie<br />

BACHELIER, L. (1900) : “Théorie <strong>de</strong> la spécul<strong>at</strong>ion”, Annales Scientifiques <strong>de</strong> l’Ecole Normale<br />

Supérieure 17, 21–86.<br />

BACRY, E., J. DELOUR ET J. F. MUZY (2001) : “Multifractal random walk”, Physical Review E<br />

64(26103).<br />

BACRY, E. ET J. F. MUZY (2002) : “Log-infinitely divisible multifractal processes”, Document <strong>de</strong> Travail<br />

0207094, Cond-m<strong>at</strong>.<br />

BASLE COMMITTEE ON BANKING SUPERVISION (1996) : “Amen<strong>de</strong>ment to the Capital Accord to Incorpor<strong>at</strong>e<br />

Mark<strong>et</strong> Risks”.<br />

BASLE COMMITTEE ON BANKING SUPERVISION (2001) : “The New Basel Capital Accord”.<br />

BAVIERA, R., L. BIFERALE, R. N. MANTEGNA ET A. VULPIANI (1998) : “Transient multiaffine behaviors<br />

in ARCH and GARCH processes”, Intern<strong>at</strong>ional Workshop on Econophysics and St<strong>at</strong>istical<br />

Finance, Italy.<br />

BECK, U. (2001) : La société du risque, Aubier.<br />

BERNOULLI, D. (1738) : “Specimen theoriae novae <strong>de</strong> mensura sortis”, Commentarii Aca<strong>de</strong>miae Scientiarum<br />

Imperialis P<strong>et</strong>ropolitanae .<br />

BINGHAM, N. H., C. M. GOLDIE ET J. L. TEUGEL (1987) : Regular Vari<strong>at</strong>ion, Cambridge University<br />

Press.<br />

BLACK, F. (1976) : “Studies of stock price vol<strong>at</strong>ility changes”, Proceeding of the Business and Economic<br />

St<strong>at</strong>istics Section pp. 177–181.<br />

BLACK, F. ET M. SCHOLES (1973) : “The pricing of options and corpor<strong>at</strong>e liabilities”, Journal of Political<br />

Economy 81, 637–653.<br />

BLANCHARD, O. J. (1979) : “Specul<strong>at</strong>ive bubble, crashes and r<strong>at</strong>ional expect<strong>at</strong>ions”, Economics L<strong>et</strong>ters<br />

3, 387–396.<br />

BLANCHARD, O. J. ET M. W. WATSON (1982) : “Bubbles, r<strong>at</strong>ional expect<strong>at</strong>ions and specul<strong>at</strong>ive mark<strong>et</strong>s”,<br />

in W<strong>at</strong>chel, P. (ed.), Crisis in Economic and Financial Structure : Bubles, Bursts and Shocks,<br />

Lexington Books, Lexington.<br />

BLUM, P., A. DIAS ET P. EMBRECHTS (2002) : “The ART of <strong>de</strong>pen<strong>de</strong>nce mo<strong>de</strong>lling : the l<strong>at</strong>est advances<br />

in correl<strong>at</strong>ion analysis”, in Lane, M. (ed.), Altern<strong>at</strong>ive Risk Str<strong>at</strong>egies, Risk Books, London,<br />

pp. 339–356.<br />

BOLLERSLEV, T. (1986) : “Generalized autoregressive conditional h<strong>et</strong>eroskdasticity”, Journal of Econom<strong>et</strong>rics<br />

31, 307–327.<br />

BOLLERSLEV, T., R. F. ENGLE ET D. B. NELSON (1994) : “ARCH mo<strong>de</strong>ls”, in Engle, R. F. <strong>et</strong> D. Mc-<br />

Fad<strong>de</strong>n (eds.), Handbook of Econom<strong>et</strong>rics, Vol. IV, Elsevier, pp. 2959–3038.<br />

BOLLERSLEV, T., R. Y. CHOU ET K. F. KRONER (1992) : “ARCH mo<strong>de</strong>ling in finance : A review of<br />

the theory and empirical evi<strong>de</strong>nce”, Journal of Econom<strong>et</strong>rics 52, 5–59.<br />

BOUCHAUD, J. P., A. MATACZ ET M. POTTERS (2001) : “The leverage effect in financial mark<strong>et</strong>s :<br />

r<strong>et</strong>ar<strong>de</strong>d vol<strong>at</strong>ility and mark<strong>et</strong> panic”, Physical Review L<strong>et</strong>ters 87(228701).<br />

BOUCHAUD, J. P., D. SORNETTE, C. WALTER ET J. P. AGUILAR (1998) : “Taming large events :<br />

Optimal portfolio theory for strongly fluctu<strong>at</strong>ing ass<strong>et</strong>s”, Intern<strong>at</strong>ional Journal of Theor<strong>et</strong>ical and<br />

Applied Finance 1, 25–41.<br />

BOUCHAUD, J. P., M. POTTERS ET M. MEYER (2000) : “Apparent multifractality in financial time<br />

series”, European Physical Journal B 13, 595–599.<br />

BOUCHAUD, J. P. ET M. POTTERS (2000) : Theory of Financial Risks : From St<strong>at</strong>istical Physics to Risk<br />

Management, Cambridge University Press.


Bibliographie 505<br />

BOUCHAUD, J. P. ET R. CONT (1998) : “A Langevin approach to stock mark<strong>et</strong> fluctu<strong>at</strong>ions and crashes”,<br />

European Physical Journal B 6, 543–550.<br />

BOUYÉ, E., V. DURRLEMAN, A. NIKEGHBALI, G. RIBOULET ET T. RONCALLI (2000) : “Copulas<br />

for finance : A reading gui<strong>de</strong> and some applic<strong>at</strong>ions”, Document <strong>de</strong> Travail, Groupe <strong>de</strong> Recherche<br />

Opér<strong>at</strong>ionelle, Crédit Lyonnais.<br />

BRIEMAN, L. (1960) : “Investment policies for expanding businesses optimal in a long run sense”, Naval<br />

Research Logistics Qu<strong>at</strong>erly 7, 647–651.<br />

BROCK, W. A. (1993) : “P<strong>at</strong>hways to randomness in the economy : Emergent nonlinearity and chaos in<br />

economics and finance”, Estudios Economicos 8.<br />

BROCK, W. A. ET B. LEBARON (1996) : “A dynamic structural mo<strong>de</strong>l for stock r<strong>et</strong>urn vol<strong>at</strong>ility and<br />

trading volume”, Review of Economics and St<strong>at</strong>istics 78, 94–110.<br />

BROCK, W. A. ET C. H. HOMMES (1997) : “R<strong>at</strong>ional route to randomness”, Econom<strong>et</strong>rica 65, 1059–<br />

1095.<br />

BROWN, P., D. WALSH ET A. YUEN (1997) : “The interaction b<strong>et</strong>ween or<strong>de</strong>r imbalance and stock<br />

price”, Pacific-Basin Finance Journal 5, 539–557.<br />

BROZE, L., C. GOURIÉROUX ET A. SZAFARZ (1990) : Reduced Forms of R<strong>at</strong>ional Expect<strong>at</strong>ions Mo<strong>de</strong>ls,<br />

Harwood Aca<strong>de</strong>mic Press.<br />

BURDA, Z., J. JURKIEWICZ, M. NOWAK, G. PAPP ET I. ZAHED (2001a) : “Free Lévy m<strong>at</strong>rices and<br />

financial correl<strong>at</strong>ions”, Document <strong>de</strong> Travail 0103109, Cond-m<strong>at</strong>.<br />

BURDA, Z., J. JURKIEWICZ, M. NOWAK, G. PAPP ET I. ZAHED (2001b) : “Lévy m<strong>at</strong>rices and financial<br />

covariances”, Document <strong>de</strong> Travail 0103108, Cond-m<strong>at</strong>.<br />

BURDA, Z., R. JANIK, J. JURKIEWICZ, M. NOWAK, G. PAPP ET I. ZAHED (2002) : “Free random<br />

Lévy m<strong>at</strong>rices”, Physical Review. E 65(011106).<br />

CAMPBELL, J., A. W. LO ET C. MACKINLAY (1997) : The Econom<strong>et</strong>rics of Financial Mark<strong>et</strong>s, Princ<strong>et</strong>own<br />

University press.<br />

CASADESUS-MASANELL, R., P. KLIBANOFF ET E. OZDENOREN (2000) : “Maxmin expected utility<br />

through st<strong>at</strong>ewise combin<strong>at</strong>ions”, Economics L<strong>et</strong>ters 66, 49–54.<br />

CAVES, C. M., C. A. FLUCHS ET R. SCHACK (2002) : “Quantum probabilities as Bayesian probabilities”,<br />

Physical Review A 65(022305).<br />

CHABAANE, A., E. DUCLOS, J. P. LAURENT, Y. MALEVERGNE ET F. TURPIN (2002) : “Looking for<br />

efficient portofolios : An empirical investig<strong>at</strong>ion”, Document <strong>de</strong> Travail.<br />

CHALLET, D., A. CHESSA, M. MARSILI ET Y. C. ZHANG (2001) : “From minority games to real<br />

financial mak<strong>et</strong>s”, Quantit<strong>at</strong>ive Finance 1, 168–176.<br />

CHALLET, D. ET Y. C. ZHANG (1997) : “Emergence of Cooper<strong>at</strong>ion and Organiz<strong>at</strong>ion in an Evolutionary<br />

Game”, Physica A 246, 407–418.<br />

CHAN, K. ET W.-M. FONG (2000) : “Tra<strong>de</strong> size, or<strong>de</strong>r imbalance, and the vol<strong>at</strong>ility-volume rel<strong>at</strong>ion”,<br />

Journal of Financial Economics 57, 247–273.<br />

CHATEAUNEUF, A. (1991) : “On the use of capacities in mo<strong>de</strong>ling uncertainty aversion and risk aversion”,<br />

Journal of M<strong>at</strong>hem<strong>at</strong>ical Economics 20, 343–369.<br />

CHEKHLOV, A., S. URYASEV ET M. ZABARANKIN (2000) : “Portfolio Optimiz<strong>at</strong>ion with Drawdown<br />

Constraints”, Document <strong>de</strong> Travail, ISE Dept., Univ. of Florida.<br />

CHERUBINI, U. ET E. LUCIANO (2000) : “Multivari<strong>at</strong>e option pricing with copula”, Document <strong>de</strong> Travail,<br />

SSRN.


506 Bibliographie<br />

CHORDIA, T., R. ROLL ET A. SUBRAHMANYAM (2002) : “Or<strong>de</strong>r imbalance, liquidity, and mark<strong>et</strong><br />

r<strong>et</strong>urns”, Journal of Financial Economics 65, 111–130.<br />

CHRISTIE, A. A. (1982) : “The stochastic behavior of common stock variances : Value, leverage and<br />

interest r<strong>at</strong>e effects”, Journal of Financial Economics 10, 407–432.<br />

COHEN, M. ET J. M. TALLON (2000) : “Décision dans le risque <strong>et</strong> l’incertain : l’apport <strong>de</strong>s modèles non<br />

additifs”, Revue d’Economie Politique 110, 631–681.<br />

COLES, S., J. HEFFERNAN ET J. TAWN (1999) : “Depen<strong>de</strong>nce measures for extreme value analysis”,<br />

Extremes 2, 339–365.<br />

COLLETAZ, G. ET J. P. GOURLAOUEN (1989) : “Les bulles r<strong>at</strong>ionnelles : une synthèse <strong>de</strong> la littér<strong>at</strong>ure”,<br />

in Bourguin<strong>at</strong>, H. <strong>et</strong> P. Artus (eds.), Théorie Economique <strong>et</strong> Crises <strong>de</strong>s Marchés Financiers, Economica,<br />

pp. 67–101.<br />

CONSIGLI, G. (2002) : “Tail estim<strong>at</strong>ion and mean-VaR portfolio selection in mark<strong>et</strong>s subject to financial<br />

instability”, Journal of Banking & Finance 26, 1355–1382.<br />

CONSIGLI, G., G. FRASCELLA ET G. SARTORELLI (2001) : “Un<strong>de</strong>rstanding financial mark<strong>et</strong> with<br />

extreme value theory from Value-<strong>at</strong>-Risk to crises correl<strong>at</strong>ion analysis”, Document <strong>de</strong> Travail, Uni-<br />

Credit Banca Mobiliare.<br />

CONT, R. (2001) : “Empirical properties of ass<strong>et</strong> r<strong>et</strong>urns : stylized facts and st<strong>at</strong>istical issues”, Quantit<strong>at</strong>ive<br />

Finance 1, 223–236.<br />

CONT, R., M. POTTERS ET J. P. BOUCHAUD (1997) : “Scaling in stock mark<strong>et</strong> d<strong>at</strong>a : Stable laws and<br />

beyond”, in Dubrulle, Graner <strong>et</strong> Sorn<strong>et</strong>te (eds.), Scale Invariance and Beyond, Springer, Berlin,<br />

pp. 75–85.<br />

CONT, R. ET J. P. BOUCHAUD (2000) : “Herd behavior and aggreg<strong>at</strong>e fluctu<strong>at</strong>ions in financial mark<strong>et</strong>s”,<br />

Macroeconomic Dynamics 4, 170–196.<br />

CORCOS, A., J. P. ECKMANN, A. MALASPINAS, Y. MALEVERGNE ET D. SORNETTE (2002) : “Imit<strong>at</strong>ion<br />

and contrarian behavior : Hyperbolic bubbles, crashes and chaos”, Quantit<strong>at</strong>ive Finance<br />

2, 264–281.<br />

COSSETTE, H., P. GAILLARDETZ, E. MARCEAU ET J. RIOUX (2002) : “On two <strong>de</strong>pen<strong>de</strong>nt individual<br />

risk mo<strong>de</strong>ls”, Insurance : M<strong>at</strong>hem<strong>at</strong>ics and Economics 30, 153–166.<br />

COUTANT, S., V. DURRLEMAN, G. RAPUCH ET T. RONCALLI (2001) : “Copulas, multivari<strong>at</strong>e riskneutral<br />

distributions and implied <strong>de</strong>pen<strong>de</strong>nce functions”, Document <strong>de</strong> Travail, Groupe <strong>de</strong> Recherche<br />

Opér<strong>at</strong>ionelle, Crédit Lyonnais.<br />

CVITANIC, J. ET I. KARATZAS (1995) : “On portfolio optimiz<strong>at</strong>ion un<strong>de</strong>r ‘drawdown’ constraints”, IMA<br />

Lecture Notes in M<strong>at</strong>hem<strong>at</strong>ics & Applic<strong>at</strong>ions 65, 77–88.<br />

DACOROGNA, M. M., R. GENÇAY, U. A. MÜLLER ET O. V. PICTET (2001) : “Effective r<strong>et</strong>urn, risk<br />

aversion and drawdowns”, Physica A 289, 229–248.<br />

DACOROGNA, M. M., U. A. MÜLLER, O. V. PICTET ET C. G. DE VRIES (1992) : “The distribution of<br />

extremal foreign exchange r<strong>at</strong>e r<strong>et</strong>urns in large d<strong>at</strong>a s<strong>et</strong>s”, Document <strong>de</strong> Travail 19921022, Olsen<br />

and Associ<strong>at</strong>es Internal Documents UAM.<br />

DANIELSON, J. ET C. G. DE VRIES (2000) : “Value-<strong>at</strong>-Risk and extreme r<strong>et</strong>urns”, in Embrechts, P.<br />

(ed.), Extremes and Integr<strong>at</strong>ed Risk Management, RISK Books in associ<strong>at</strong>ion with USB Warburg,<br />

pp. 85–106.<br />

DANIELSSON, J., P. EMBRECHTS, C. GOODHART, C. KEATING, F. MUENNICH, O. RENAULT ET H.-<br />

S. SHIN (2001) : “An aca<strong>de</strong>mic response to Basel II”, Document <strong>de</strong> Travail 130, FMG and ESRC,<br />

London.


Bibliographie 507<br />

DE FINETTI, B. (1937) : “La prévision : ses lois logiques, ses sources subjectives”, Annales <strong>de</strong> l’Institut<br />

Henri Poincaré 7, 1–68.<br />

DE VRIES, C. G. (1994) : “Stylized facts of nominal exchange r<strong>at</strong>e r<strong>et</strong>urns”, in van <strong>de</strong>r Ploeg, F. (ed.),<br />

The Handbook of Intern<strong>at</strong>ional Macroeconomics, Blackwell, Oxford, pp. 348–389.<br />

DELBAEN, F. (2000) : “Coeherent risk measures on general probability spaces”, Document <strong>de</strong> Travail,<br />

Risklab.<br />

DENAULT, M. (2001) : “Coherent alloc<strong>at</strong>ion of risk capital”, Journal of Risk 3, 1–34.<br />

DURRLEMAN, V., A. NIKEGHBALI ET T. RONCALLI (2000) : “Copulas approxim<strong>at</strong>ion and new families”,<br />

Document <strong>de</strong> Travail, Groupe <strong>de</strong> Recherche Opér<strong>at</strong>ionelle, Crédit Lyonnais.<br />

EINSTEIN, A. (1905) : “Über die von <strong>de</strong>r molekularkin<strong>et</strong>ishen Theorie <strong>de</strong>r Wärme gefor<strong>de</strong>rte Bewegung<br />

von in ruhen<strong>de</strong>n Flüssigkeiten suspendierten Teilchen”, Annalen <strong>de</strong> Physik 17, 549–560.<br />

ELLSBERG, D. (1961) : “Risk, ambiguity, and the Savage axioms”, Quarterly Journal of Economics<br />

75, 643–669.<br />

ELTON, E. ET M. GRUBER (1995) : Mo<strong>de</strong>rn Portfolio Theory and Investment Analisys, John Willey &<br />

Sons.<br />

EMBRECHTS, P., A. HOEING ET A. JURI (2001) : “Using Copulae to bound the Value-<strong>at</strong>-Risk for<br />

functions of <strong>de</strong>pen<strong>de</strong>nt risk”, Document <strong>de</strong> Travail, Risklab.<br />

EMBRECHTS, P., A. MCNEIL ET D. STRAUMANN (2002) : “Correl<strong>at</strong>ion and <strong>de</strong>pen<strong>de</strong>nce in risk management<br />

: properties and pitfalls”, in Dempster, M. A. H. (ed.), Risk Management : Value <strong>at</strong> Risk<br />

and Beyond, Cambridge University Press, Cambridge, pp. 176–223.<br />

EMBRECHTS, P., C. P. KLÜPPELBERG ET T. MIKOSH (1997) : Mo<strong>de</strong>lling Extremal Events, Springer-<br />

Verlag, Berlin.<br />

ENGLE, R. F. (1982) : “Autoregressive conditional h<strong>et</strong>eroskedasticity with estim<strong>at</strong>e of the variance of<br />

UK infl<strong>at</strong>ion”, Econom<strong>et</strong>rica 50, 987–1008.<br />

ENGLE, R. F. ET A. J. PATTON (2001) : “Wh<strong>at</strong> good is a vol<strong>at</strong>ility mo<strong>de</strong>l ?”, Quantit<strong>at</strong>ive Finance<br />

1, 237–245.<br />

ERDÖS, P. ET A. RENYI (1960) : “On the evolution of random graphs”, Public<strong>at</strong>ions of the M<strong>at</strong>hem<strong>at</strong>ical<br />

Institute of the Hungarian Aca<strong>de</strong>my of Sciences 5, 17–61.<br />

FAMA, E. F. (1963) : “Man<strong>de</strong>lbrot and the stable par<strong>et</strong>ian hypothesis”, Journal of Business 36, 420–449.<br />

FAMA, E. F. (1965a) : “The behavior of stock mark<strong>et</strong> prices”, Journal of Business 38, 29–105.<br />

FAMA, E. F. (1965b) : “Portofolio analysis in a stable par<strong>et</strong>ian mark<strong>et</strong>”, Management Science 11, 404–<br />

419.<br />

FAMA, E. F. (1970) : “Multi-period consumption-investment <strong>de</strong>cision”, American Economic Review<br />

60, 163–174.<br />

FAMA, E. F. (1971) : “Efficient capital mark<strong>et</strong>s : A review of theory and empirical work”, Journal of<br />

Finance 25, 383–417.<br />

FANG, H. B., K. T. FANG ET S. KOTZ (2002) : “The m<strong>et</strong>a-elliptical distributions with given marginals”,<br />

Journal of Multivari<strong>at</strong>e Analysis 82, 1–16.<br />

FARMER, J. D. (1998) : “Mark<strong>et</strong> force, ecology and evolution”, Document <strong>de</strong> Travail, Santa Fe Institute.<br />

FISHER, A., L. CALVET ET B. MANDELBROT (1998) : “Multifractal analysis of USD/DM exchange<br />

r<strong>at</strong>es”, Document <strong>de</strong> Travail, Yale University.<br />

FISHER, T. (2001) : “Coherent risk mesures <strong>de</strong>pending on higher moments”, Document <strong>de</strong> Travail,<br />

University of Hei<strong>de</strong>lberg.


508 Bibliographie<br />

FÖLLMER, H. ET A. SCHIED (2002a) : “Convex measures of risk and trading constraints”, Finance &<br />

Stochastics 6, 429–447.<br />

FÖLLMER, H. ET A. SCHIED (2002b) : “Robust preference and convex measures of risk”, Advances in<br />

Finance & Stochastics .<br />

FREES, W. E. ET E. A. VALDEZ (1998) : “Un<strong>de</strong>rstanding rel<strong>at</strong>ionship using copulas”, North American<br />

Actuarial Journal 2, 1–25.<br />

FREY, R., A. MCNEIL ET M. NYFELER (2001) : “Credit Risk and Copulas”, Document <strong>de</strong> Travail,<br />

Risklab.<br />

FREY, R. ET A. J. MCNEIL (2002) : “VaR and expected shortfall in portfolios of <strong>de</strong>pen<strong>de</strong>nt credit risks :<br />

Conceptual and practical insights”, Journal of Banking & Finance 26, 1317–1334.<br />

FREY, R. ET A. MCNEIL (2001) : “Mo<strong>de</strong>lling <strong>de</strong>pen<strong>de</strong>nt <strong>de</strong>faults”, Document <strong>de</strong> Travail, Risklab.<br />

FRISCH, U. (1995) : Turbulence : The legacy of A.N. Kolmogorov, Cambridge university Press.<br />

FRISCH, U. ET D. SORNETTE (1997) : “Extreme <strong>de</strong>vi<strong>at</strong>ions and applic<strong>at</strong>ions”, Journal <strong>de</strong> Physique I<br />

France 7, 1155–1171.<br />

GIARDINA, I. ET J. P. BOUCHAUD (2002) : “Bubbles, crashes and intermittency in agent based mark<strong>et</strong><br />

mo<strong>de</strong>ls”, Document <strong>de</strong> Travail 0206222, Cond-m<strong>at</strong>.<br />

GILBOA, I. ET D. SCHMEIDLER (1989) : “Maxmin expected utility with non-unique prior”, Journal of<br />

M<strong>at</strong>hem<strong>at</strong>ical Economics 18, 141–153.<br />

GLOSTEN, L. R., R. JAGANNANTHAN ET D. E. RUNKLE (1993) : “On the rel<strong>at</strong>ion b<strong>et</strong>ween the expected<br />

value and the vol<strong>at</strong>ilty of the nominal excess r<strong>et</strong>urns on stocks”, Journal of Finance 48, 779–801.<br />

GOLDBERG, J. ET R. VON NITZSCH (2001) : Behavioral Finance, John Wiley.<br />

GOLDIE, C. M. (1991) : “Implicit renewal theory and tails of solution of random equ<strong>at</strong>ions”, Annals of<br />

Applied Probability 1, 126–172.<br />

GOLDIE, C. M. ET C. P. KLÜPPELBERG (1998) : “Subexponential distributions”, in Adler, R., R. Feldman<br />

<strong>et</strong> M. Taqqu (eds.), A Practical Gui<strong>de</strong> to Heavy Tails : St<strong>at</strong>istical Techniques for Analysing<br />

Heavy Tailed Distributions, Birkhäuser, Boston, pp. 435–459.<br />

GONEDES, N. (1976) : “Capital mark<strong>et</strong> equilibrium for a class of h<strong>et</strong>erogeneous expect<strong>at</strong>ions in a twoparam<strong>et</strong>er<br />

world”, Journal of Finance 31, 1–15.<br />

GOPIKRISHNAN, P., M. MEYER, L. A. N. AMARAL ET H. E. STANLEY (1998) : “Inverse Cubic Law<br />

for the Distribution of Stock Price Vari<strong>at</strong>ions”, European Physical Journal B 3, 139 –140.<br />

GOPIKRISHNAN, P., V. PLEROU, X. GABIAX ET H. E. STANLEY (2000) : “St<strong>at</strong>istical properties of<br />

share volume tra<strong>de</strong>d in financial mark<strong>et</strong>s”, physical Review E 62, 3023–3026.<br />

GOURIÉROUX, C. (1997) : ARCH Mo<strong>de</strong>ls and Financial Applic<strong>at</strong>ions, Springer, Berlin.<br />

GOURIÉROUX, C., J. LAURENT ET O. SCAILLET (2000) : “Sensitivity analysis of values <strong>at</strong> risk”, Journal<br />

of Empirical Finance 7, 225–245.<br />

GOURIÉROUX, C. ET J. JASIAK (1998) : “Trunc<strong>at</strong>ed maximum likelihood, goodness of fit tests and tail<br />

analysis”, Document <strong>de</strong> Travail, CREST.<br />

GOURIÉROUX, C. ET J. JASIAK (2001) : Financial Econom<strong>et</strong>rics, Princ<strong>et</strong>own university Press.<br />

GRANDMONT, J. M. (1998) : “Expect<strong>at</strong>ion form<strong>at</strong>ion and stability of large socioeconomic systems”,<br />

Econom<strong>et</strong>rica 66, 741–782.<br />

GRANGER, C. W. J. ET R. JOYEUX (1980) : “An introduction to long-range time series mo<strong>de</strong>ls and<br />

fractional differencing”, Journal of Time Series Analysis 1, 15–30.


Bibliographie 509<br />

GRANGER, C. W. ET T. TERÄSVIRTA (1999) :“Asimple nonlinear mo<strong>de</strong>l with misleading linear properties”,EconomicsL<strong>et</strong>ters62,161–165.<br />

GROSSMAN, S. J. ET Z. ZHOU (1993) :“Optimal investment str<strong>at</strong>egies for controlling drawdowns”,<br />

M<strong>at</strong>hem<strong>at</strong>icalFinance3,241–276.<br />

GUILLAUME, D. M., M. M. DACOROGNA, R. R. DAVÉ, U. A. MÜLLER, R. B. OLSEN ET O. V.<br />

PICTET (1997) :“From the bird eye to the microscope :asurvey of new stylized facts of the intradayforeignexchange<br />

mark<strong>et</strong>s”,Finance&Stochastics1,95–130.<br />

HAKANSSON,N.(1971):“Capitalgrothandthemean-varianceapproachtoportfolioselection”,Journal<br />

ofFinancialandQuantit<strong>at</strong>iveAnalysis6,517–557.<br />

HAUSMAN, J., A. W. LO ET C. MACKINLAY (1992) :“An or<strong>de</strong>red probit analysis of transaction stock<br />

prices”, JournalofFinancialEconomics31,319–379.<br />

HEATH, D. (2000) :“Back to the future”, Plenary lecture <strong>at</strong> the First World Congress of the Bachelier<br />

Soci<strong>et</strong>y,Paris.<br />

HILL, B. M. (1975):“Asimplegeneralapproachtoinferenceaboutth<strong>et</strong>ailofadistribution”,Annalsof<br />

St<strong>at</strong>istics3,1163–1174.<br />

HOSKING, J. R. M. (1981):“Fractional differencing”,Biom<strong>et</strong>rika65,165–176.<br />

HUISMAN, R., K. G. KOEDIJK ET R. A. J. POWNALL (2001) :“Ass<strong>et</strong> alloc<strong>at</strong>ion in aValue-<strong>at</strong>-Risk<br />

framework”,Document<strong>de</strong>Travail,ErasmusUniversity.<br />

HULT, H. ET F. LINDSKOG (2001) :“Multivari<strong>at</strong>e extremes, aggreg<strong>at</strong>ion and <strong>de</strong>pen<strong>de</strong>nce in elliptical<br />

distributions”, Document<strong>de</strong>Travail,Risklab.<br />

IDE, K. ET D. SORNETTE (2002) :“Oscill<strong>at</strong>ory finite-time singularities in finance, popul<strong>at</strong>ion and rupture”,PhysicaA307,63–106.<br />

JAFFRAY, J. ET F. PHILIPPE (1997) :“On the exitence of the subjective upper lower probabilities”,<br />

M<strong>at</strong>hem<strong>at</strong>icsofOper<strong>at</strong>ionsResearch22,165–185.<br />

JOE, H. (1997):Multivari<strong>at</strong>emo<strong>de</strong>lsand<strong>de</strong>pen<strong>de</strong>nceconcepts,Chapman&Hall,London.<br />

JOHANSEN, A., D. SORNETTE ET O. LEDOIT (1999) :“Predidicting financial crashes using discr<strong>et</strong>e<br />

scaleinvariance”,JournalofRisk1,5–32.<br />

JOHANSEN, A., O. LEDOIT ETD. SORNETTE(2000):“Crashesascriticalpoints”,Intern<strong>at</strong>ionalJournal<br />

oftheor<strong>et</strong>icalandAppliedFinance3,219–255.<br />

JOHANSEN, A. ET D. SORNETTE (1998):“Stockmark<strong>et</strong>crashesareoutliers”,EuropeanPhysicaljournalB1,141–144.<br />

JOHANSEN, A. ET D. SORNETTE (2002):“Largemark<strong>et</strong>pricedrawdownsareoutliers”,JournalofRisk<br />

4,69–110.<br />

JOHNSON, N. F., D. LAMPER, P. JEFFERIES, M. L. HART ET S. HOWISON (2001) :“Applic<strong>at</strong>ion<br />

of multi-agent games to the prediction of financial time series”, Document <strong>de</strong> Travail 0105303,<br />

Cond-m<strong>at</strong>.<br />

JONDEAU, E. ET M. ROCKINGER (2000) :“Conditional vol<strong>at</strong>ility,skewness and kurtosis :exitence and<br />

persistence”,Document<strong>de</strong>Travail,HEC.<br />

JONDEAU, E. ET M. ROCKINGER (2001):“Testingfordifferencesinth<strong>et</strong>ailsofstock-mark<strong>et</strong>r<strong>et</strong>urns”,<br />

Document<strong>de</strong>Travail,HEC.<br />

JURCZENKO, E. ET B. MAILLET (2002) :“Multi-moment kernel ass<strong>et</strong> pricing mo<strong>de</strong>l (KAPM) :Some<br />

basicresults”,in Jurczenko,E. <strong>et</strong>B.Maill<strong>et</strong>(eds.), Multi-Moment Capital Pricing Mo<strong>de</strong>ls, Springer.<br />

JURI, A. ET M. V. WÜTHRICH (2002) : “Copula convergence theorem for tail events”, Insurance :<br />

M<strong>at</strong>hem<strong>at</strong>ics and Economics 30, 405–420.


510 Bibliographie<br />

KAHNEMAN, D. ET A. TVERSKY (1979) : “Prospect theory : An analysis of <strong>de</strong>cision un<strong>de</strong>r risk”, Econom<strong>et</strong>rica<br />

47, 263–291.<br />

KAPLANSKI, G. ET Y. KROLL (2001a) : “Efficient VaR Portfolios”, Document <strong>de</strong> Travail, Hebrew<br />

University of Jerusalem.<br />

KAPLANSKI, G. ET Y. KROLL (2001b) : “Value-<strong>at</strong>-Risk equilirium Pricing Mo<strong>de</strong>l”, Document <strong>de</strong> Travail,<br />

Hebrew University of Jerusalem.<br />

KARLEN, D. (1998) : “Using projection and correl<strong>at</strong>ion to approxim<strong>at</strong>e probability distributions”, Computer<br />

in Physics 12, 380–384.<br />

KEARNS, P. ET A. R. PAGAN (1997) : “Estim<strong>at</strong>ing the <strong>de</strong>nsity tail in<strong>de</strong>x for financial time series”,<br />

Review of Economics and St<strong>at</strong>istics 79, 171–175.<br />

KEMPF, A. ET O. KORN (1999) : “Mark<strong>et</strong> <strong>de</strong>pth and or<strong>de</strong>r size”, Journal of Financial Mark<strong>et</strong>s 2, 29–48.<br />

KESTEN, H. (1973) : “Random difference equ<strong>at</strong>ion and renewal theory for products of random m<strong>at</strong>rices”,<br />

Acta M<strong>at</strong>hem<strong>at</strong>ica 131(207-253).<br />

KIMBALL, M. (1993) : “Standard risk aversion”, Econom<strong>et</strong>rica 61, 573–589.<br />

KIRMAN, A. (1983) : “Communic<strong>at</strong>ion in mark<strong>et</strong>s : a suggested approach”, Economics L<strong>et</strong>ters 12, 101–<br />

108.<br />

KIRMAN, A. (1991) : “Epi<strong>de</strong>mincs of opinion and specul<strong>at</strong>ive bubbles in financial mark<strong>et</strong>s”, in Taylor,<br />

M. P. (ed.), Money and Financial Mark<strong>et</strong>s, Blackwell, Cambridge, chapter 17.<br />

KLUGMAN, S. ET R. PARSA (1999) : “Fitting bivari<strong>at</strong>e loss distributions with copulas”, Insurance :<br />

M<strong>at</strong>hem<strong>at</strong>ics and Economics 24, 139–148.<br />

KRAUSS, A. ET R. LINTZENBURGER (1976) : “Skewness preference and the valu<strong>at</strong>ion of risky ass<strong>et</strong>s”,<br />

Journal of Finance 21, 1085–1094.<br />

KRZYSZTOFOWICZ, R. ET K. S. KELLY (1996) : “A m<strong>et</strong>a-Gaussian distribution with specified marginals”,<br />

Document <strong>de</strong> Travail, University of Virginia.<br />

KUSUOKA, S. (2001) : “On law invariant coherent risk measures”, Advances in M<strong>at</strong>hem<strong>at</strong>ical Economics,<br />

Springer, Tokyo, pp. 83–95.<br />

LAHERRÈRE, J. ET D. SORNETTE (1999) : “Streched exponential distributions in n<strong>at</strong>ure and economy :<br />

F<strong>at</strong> tails with characteristic scales”, European Physical Journal B 2, 525–539.<br />

LALOUX, L., P. CIZEAU, J. BOUCHAUD ET M. POTTERS (1999) : “Noise dressing of financial correl<strong>at</strong>ion<br />

m<strong>at</strong>rices”, Physical Review L<strong>et</strong>ters 83, 1467–1470.<br />

LALOUX, L., P. CIZEAU, J. BOUCHAUD ET M. POTTERS (2000) : “Random m<strong>at</strong>rix theory and financial<br />

correl<strong>at</strong>ions”, Intern<strong>at</strong>ional Journal of Theor<strong>et</strong>ical and Applied Finance 3, 391–397.<br />

LEBARON, B. (2001) : “Stochastic vol<strong>at</strong>ility as a simple gener<strong>at</strong>or of apparent financial power laws and<br />

long memory”, Quantit<strong>at</strong>ive Finance 1, 621–631.<br />

LEBARON, B., W. ARTHUR ET R. PALMER (1999) : “Time series properties of an artificial stock mark<strong>et</strong>”,<br />

Journal of Economic Dynamics and Control 23, 1487–1516.<br />

LEVY, H. (1998) : Stoch<strong>at</strong>ic Dominance : Investment <strong>de</strong>cision Making un<strong>de</strong>r Uncertainty, Kluwer Aca<strong>de</strong>mic<br />

Press.<br />

LÉVY, M., H. LÉVY ET S. SOLOMON (1995) : “Microscopic simul<strong>at</strong>ion of the stick mark<strong>et</strong> : the effect<br />

of miscroscopic diversity”, Journal <strong>de</strong> Physique I France 5, 1087–1107.<br />

LI, D., P. MIKUSINSKI ET M. TAYLOR (1998) : “Strong approxim<strong>at</strong>ion of copulas”, Journal of M<strong>at</strong>hem<strong>at</strong>ical<br />

Analysis and Applic<strong>at</strong>ions 225, 608–623.<br />

LILLO, F., J. D. FARMER ET R. N. MANTEGNA (2002) : “Single curve collapse of the price impact for<br />

the New York Stock Exchange”, Document <strong>de</strong> Travail 0207428, Cond-m<strong>at</strong>.


Bibliographie 511<br />

LILLO, F. ET R. N. MANTEGNA (2002) : “Omori law after a financial mark<strong>et</strong> crash”, Physical Review<br />

L<strong>et</strong>ters .<br />

LINDSKOG, F. (2000) : “Mo<strong>de</strong>lling Depen<strong>de</strong>nce with Copulas”, Document <strong>de</strong> Travail, RiskLab.<br />

LINDSKOG, F., A. MCNEIL ET U. SCHMOCK (2001) : “Kendall’s tau for elliptical distributions”, Document<br />

<strong>de</strong> Travail, Risklab.<br />

LINTNER, J. (1965) : “The valu<strong>at</strong>ion of risk ass<strong>et</strong>s and the selection of risky investments in stock portfolios<br />

and capital budg<strong>et</strong>s”, Review of Economics and St<strong>at</strong>istics 13, 13–37.<br />

LINTNER, J. (1969) : “The aggreg<strong>at</strong>ion of investors divers judgements and preferences in purely comp<strong>et</strong>itive<br />

security mark<strong>et</strong>s”, Journal of Financial and Quantit<strong>at</strong>ive Analysis 4, 347–400.<br />

LIU, Y., P. CIZEAU, M. MEYER, C. K. PENG ET H. E. STANLEY (1997) : “Correl<strong>at</strong>ions in economic<br />

time series”, Physica A 245, 437–440.<br />

LONGIN, F. M. (1996) : “The asymptotic distribution of extreme stock mark<strong>et</strong> r<strong>et</strong>urns”, Journal of<br />

Business 96, 383–408.<br />

LONGIN, F. M. (2000) : “From VaR to stress testing : the extreme value approach”, Journal of Banking<br />

& Finance 24, 1097–1130.<br />

LUX, T. (1995) : “Herd behaviour, bubbles and crashes”, Economic Journal 105, 881–896.<br />

LUX, T. (1996) : “The stable Par<strong>et</strong>ian hypothesis and the frequency of large r<strong>et</strong>urns : an examin<strong>at</strong>ion of<br />

major German stocks”, Applied Financial Economics 6, 463–475.<br />

LUX, T. (1997) : “The limiting extremal behavior of specul<strong>at</strong>ive r<strong>et</strong>urns : an annalysis of intradaily d<strong>at</strong>a<br />

from Frankfurt Stock exchange”, Document <strong>de</strong> Travail, University of Bonn.<br />

LUX, T. (1998) : “The socio-economic dynamics of specul<strong>at</strong>ive mark<strong>et</strong>s : interacting agents, chaos, and<br />

the f<strong>at</strong> tails of r<strong>et</strong>urn distributions”, Journal of Economic Behavior and Organiz<strong>at</strong>ion 33, 143–165.<br />

LUX, T. ET D. SORNETTE (2002) : “On r<strong>at</strong>ional bubbles and f<strong>at</strong> tails”, Journal of Money, Credit and<br />

Banking 34, 589–610.<br />

LUX, T. ET M. MARCHESI (1999) : “Scaling and criticality in a stochastic multi-agent mo<strong>de</strong>l of a<br />

financial mark<strong>et</strong>”, N<strong>at</strong>ure 397, 498–500.<br />

MALEVERGNE, Y. ET D. SORNETTE (2001a) : “Multi-dimensional r<strong>at</strong>ional bubbles and f<strong>at</strong> tails”, Quantit<strong>at</strong>ive<br />

Finance 1, 533–541.<br />

MALEVERGNE, Y. ET D. SORNETTE (2001b) : “Testing the Gaussian copula hypothesis for mo<strong>de</strong>lling<br />

financial ass<strong>et</strong>s <strong>de</strong>pen<strong>de</strong>nce”, Submitted to Quantit<strong>at</strong>ive Finance .<br />

MALEVERGNE, Y. ET D. SORNETTE (2002a) : “Collective origin of the coexistence of apparent RMT<br />

noise and factors in large sample correl<strong>at</strong>ion m<strong>at</strong>rices”, Submitted to Physical Review L<strong>et</strong>ters .<br />

MALEVERGNE, Y. ET D. SORNETTE (2002b) : “Minimizing Extremes”, Risk 15, 129–132.<br />

MALEVERGNE, Y. ET D. SORNETTE (2002c) : “Multi-moment m<strong>et</strong>hods for portfolio management :<br />

Generalized capital ass<strong>et</strong> pricing mo<strong>de</strong>l in homogeneous and h<strong>et</strong>erogeneous mark<strong>et</strong>s”, in Maill<strong>et</strong>,<br />

B. <strong>et</strong> Jurzenko (eds.), Proceeding of the workshop on Multi-Moment Capital Pricing Mo<strong>de</strong>ls and<br />

Rel<strong>at</strong>ed Topics, Springer.<br />

MALEVERGNE, Y. ET D. SORNETTE (2002d) : “VaR efficient portofolios for super and sub exponentially<br />

<strong>de</strong>caying ass<strong>et</strong>s’ r<strong>et</strong>urns distributions”, Document <strong>de</strong> Travail, University of Nice-Sophia Antipolis.<br />

MALEVERGNE, Y., V. PISARENKO ET D. SORNETTE (2002) : “Distribution of r<strong>et</strong>urns : Exponential<br />

versus power-like ?”, Document <strong>de</strong> Travail, University of Nice-Sophia Antipolis.<br />

MANDELBROT, B. (1963) : “The vari<strong>at</strong>ion of certain specul<strong>at</strong>ive prices”, Journal of Business 36, 392–<br />

417.


512 Bibliographie<br />

MANDELBROT, B. (1971) : “When can prices be arbitraged efficiently ? A limit to the validity of random<br />

walk and martigale mo<strong>de</strong>ls”, Review of Economics and St<strong>at</strong>istics 53, 225–261.<br />

MANTEGNA, R. N. ET H. E. STANLEY (1994) : “Stochastic process with ultraslow convergence to a<br />

Gaussian : The trunc<strong>at</strong>ed Lvy flight”, Physical Review L<strong>et</strong>ters 73, 2946–2949.<br />

MANTEGNA, R. N. ET H. E. STANLEY (1995) : “Scaling behavior of an economic in<strong>de</strong>x”, N<strong>at</strong>ure<br />

376, 46–55.<br />

MANTEGNA, R. N. ET H. E. STANLEY (1999) : An Introduction to Econophysics : Correl<strong>at</strong>ions and<br />

Complexity in Finance, Cambridge University Press.<br />

MARKOVITZ, H. (1959) : Portfolio Selection : Efficient Diversific<strong>at</strong>ion of Investments, John Wiley and<br />

Sons, New York.<br />

MAURER, S. M. (2001) : “Portfolios of quantum algorithms”, Physical Review L<strong>et</strong>ters 97(257901).<br />

MEERSCHAERT, M. ET H. SCHEFFLER (2001) : “Sample cross-correl<strong>at</strong>ions for moving averages with<br />

regularly varying tails”, Journal of Time Series Analysis 22, 481–492.<br />

MERTON, R. C. (1973) : “An intertemporal capital ass<strong>et</strong> pricing mo<strong>de</strong>l”, Econom<strong>et</strong>rica 41, 867–888.<br />

MERTON, R. C. (1992) : Continuous Time Finance, Blackwell, Cambridge, Massaschus<strong>et</strong>ts.<br />

MONTESSANO, A. ET F. GIOVANNONI (1996) : “Uncertainty aversion and aversion to increasing uncertainty”,<br />

Theory and Decision 41, 133–148.<br />

MOSSIN, J. (1966) : “Equilibrium in a capital mark<strong>et</strong>”, Econom<strong>et</strong>rica 34, 768–783.<br />

MUZY, J. F., D. SORNETTE, J. DELOUR ET A. ARNÉODO (2001) : “Multifractal r<strong>et</strong>urns and hierarchical<br />

portfolio theory”, Quantit<strong>at</strong>ive Finance 1, 131–148.<br />

MUZY, J. F., J. DELOUR ET E. BACRY (2000) : “Mo<strong>de</strong>lling fluctu<strong>at</strong>ions of financial times series : From<br />

casca<strong>de</strong> process to stochastic vol<strong>at</strong>ility mo<strong>de</strong>l”, European Physical Journal B 17, 537–548.<br />

MUZY, J. F. ET E. BACRY (2002) : “Multifractal st<strong>at</strong>ionary random measure and multifractal random<br />

walks with log-infinitely divisible scaling laws”, Document <strong>de</strong> Travail 0206202, Cond-m<strong>at</strong>.<br />

NAKAMURA, Y. (1990) : “Subjective expected utility with non-additive probabilities on finite st<strong>at</strong>e spaces”,<br />

Journal of Economic Theory 51, 346–366.<br />

NELSEN, R. (1998) : An Introduction to Copulas, Lectures Notes in st<strong>at</strong>istic 139, Springer Verlag, New<br />

York.<br />

NELSON, D. B. (1991) : “Conditional h<strong>et</strong>eroskedasticity in ass<strong>et</strong> pricing : a new approach”, Econom<strong>et</strong>rica<br />

59, 347–370.<br />

ORLÉAN, A. (1989) : “Comportements minétiques <strong>et</strong> diversité <strong>de</strong>s opinions sur les marchés financiers”,<br />

in Bourguin<strong>at</strong>, H. <strong>et</strong> P. Artus (eds.), Théorie Economique <strong>et</strong> Crises <strong>de</strong>s Marchés Financiers, Economica,<br />

pp. 45–65.<br />

ORLÉAN, A. (1992) : “Contagion <strong>de</strong>s opinions <strong>et</strong> fonctionnements <strong>de</strong>s marchés financiers”, Revue Economique<br />

43, 685–697.<br />

PAFKA, S. ET I. KONDOR (2001) : “Noisy covariance m<strong>at</strong>rices and portfolio optimiz<strong>at</strong>ion”, Document<br />

<strong>de</strong> Travail 0111503, Cond-m<strong>at</strong>.<br />

PAFKA, S. ET I. KONDOR (2002) : “Noisy covariance m<strong>at</strong>rices and portfolio optimiz<strong>at</strong>ion II”, Document<br />

<strong>de</strong> Travail 0205119, Cond-m<strong>at</strong>.<br />

PAGAN, A. R. (1996) : “The econom<strong>et</strong>rics of financial mark<strong>et</strong>s”, Journal of Empirical Finance 3, 15 –<br />

102.<br />

PALMER, R., W. B. ARTHUR, J. H. HOLLAND, B. LEBARON ET P. TAYLOR (1994) : “Artificial economic<br />

life - A simple mo<strong>de</strong>l of a stock mark<strong>et</strong>”, Physica D 75, 264–274.


Bibliographie 513<br />

PATTON, A. (2001) : “Estim<strong>at</strong>ion of Copula Mo<strong>de</strong>ls for Time Series of Possibly Different Lengths”,<br />

Document <strong>de</strong> Travail 01-17, University of California, San Diego.<br />

PFLUG, G. (2000) : “Some remarks on the value-<strong>at</strong>-risk and the conditional value-<strong>at</strong>-risk”, in Uryasev, S.<br />

(ed.), Probabilistic Constrained Optimiz<strong>at</strong>ion : M<strong>et</strong>hodology and Applic<strong>at</strong>ions, Kluwer Aca<strong>de</strong>mic<br />

Publisher.<br />

PICKANDS, J. (1975) : “St<strong>at</strong>istical inference using extreme or<strong>de</strong>r st<strong>at</strong>istics”, Annals of St<strong>at</strong>istics 3, 119–<br />

131.<br />

PLEROU, V., P. GOPIKRISHNAN, B. ROSENOW, L. N. AMARAL ET H. STANLEY (1999) : “Universal<br />

and nonuniversal properties of cross correl<strong>at</strong>ions in financial time series”, Physical Review L<strong>et</strong>ters<br />

83(1471).<br />

PLEROU, V., P. GOPIKRISHNAN, X. GABAIX ET H. E. STANLEY (2001) : “Quantifying stock price<br />

response to <strong>de</strong>man<strong>de</strong> fluctu<strong>at</strong>ions”, Document <strong>de</strong> Travail 0106657, cond-m<strong>at</strong>.<br />

POCHART, B. ET J. P. BOUCHAUD (2002) : “The skewed multifractal random walk with applic<strong>at</strong>ions to<br />

option smiles”, Quantit<strong>at</strong>ive Finance 2, 303–314.<br />

POON, S., M. ROCKINGER ET J. TAWN (2001) : “New extreme-value <strong>de</strong>pen<strong>de</strong>nce measures and finance<br />

applic<strong>at</strong>ions”, Document <strong>de</strong> Travail, HEC.<br />

QUIGGIN, J. (1982) : “A theory of anticiped utility”, Journal of Economic Behavior and Organiz<strong>at</strong>ion<br />

3, 323–343.<br />

RICHARDSON, M. ET T. SMITH (1993) : “A test for multivari<strong>at</strong>e normality in stocks”, Journal of Business<br />

66, 295–321.<br />

ROCKAFELLAR, R. ET S. URYASEV (2000) : “Optimiz<strong>at</strong>ion of conditional value-<strong>at</strong>-risk”, Journal of<br />

Risk 2, 21–41.<br />

ROCKAFELLAR, R. T. ET S. URYASEV (2002) : “Conditional value-<strong>at</strong>-risk for general loss distributions”,<br />

Journal of Banking & Finance 26, 1443–1471.<br />

ROCKINGER, M. ET E. JONDEAU (2001) : “Conditional <strong>de</strong>pen<strong>de</strong>ncy of financial series : An applic<strong>at</strong>ion<br />

of copulas”, Document <strong>de</strong> Travail, HEC.<br />

ROCKINGER, M. ET E. JONDEAU (2002) : “Entropy Densities with an applic<strong>at</strong>ion to autoregressive<br />

conditional skewness and kurtosis”, Journal of Econom<strong>et</strong>rics 106, 119–142.<br />

ROEHNER, B. M. (2001) : Hid<strong>de</strong>n Collective Factors in Specul<strong>at</strong>ive Trading, Springr Verlag, New York.<br />

ROEHNER, B. M. (2002) : P<strong>at</strong>terns of Specul<strong>at</strong>ion : A Study in Observ<strong>at</strong>ional Econophysics, Cambridge<br />

University Press.<br />

ROEHNER, B. M. ET D. SORNETTE (1998) : “The sharp peak-fl<strong>at</strong> trough p<strong>at</strong>tern and critical specul<strong>at</strong>ion”,<br />

European Physical Journal B 4, 387–399.<br />

ROLL, R. (1973) : “Evi<strong>de</strong>nce on the ‘Groth-Optimum’ mo<strong>de</strong>l”, Journal of Finance 28, 551–556.<br />

ROOTZÈN, H., M. R. LEADBETTER ET L. DE HAAN (1998) : “On the distribution of tail array sums for<br />

strongly mixing st<strong>at</strong>ionnary sequences”, Annals of Applied Probability 8, 868–885.<br />

ROSENOW, B., V. PLEROU, P. GOPIKRISHNAN ET H. STANLEY (2001) : “Portfolio optimiz<strong>at</strong>ion and<br />

the random magn<strong>et</strong> problem”, Document <strong>de</strong> Travail 0111537, Cond-m<strong>at</strong>.<br />

ROTSCHILD, M. ET J. E. STIGLITZ (1970) : “Increasing Risk I : A <strong>de</strong>finition”, Journal of Economic<br />

Theory 2, 225–243.<br />

ROY, A. D. (1952) : “Saf<strong>et</strong>y-First and the holding of ass<strong>et</strong>s”, Econom<strong>et</strong>rics 20, 431–449.<br />

RUBINSTEIN, M. (1973) : “The fundamental theorem of param<strong>et</strong>er-preference security valu<strong>at</strong>ion”, Journal<br />

of Financial and Quantit<strong>at</strong>ive Analysis 8, 61–69.


514 Bibliographie<br />

SAMUELSON, P. A. (1941) : “The stability of equilibirum”, Econom<strong>et</strong>rica 9, 97–120.<br />

SAMUELSON, P. A. (1958) : “The fundamental approxim<strong>at</strong>ion theorem ofportfolio analysis in terms of<br />

means variances and higher moments”, Review of Economic Studies 25, 65–86.<br />

SAMUELSON, P. A. (1965) : “Proof th<strong>at</strong> properly anticip<strong>at</strong>ed prices fluctu<strong>at</strong>es randomly”, Industrial<br />

management Review 6, 41–50.<br />

SAMUELSON, P. A. (1973) : “M<strong>at</strong>hem<strong>at</strong>ics of specul<strong>at</strong>ive price”, SIAM Review 15, 1–42.<br />

SAVAGE, L. (1954) : The fund<strong>at</strong>ions of st<strong>at</strong>istics, John Wiley, New York.<br />

SCAILLET, O. (2000a) : “Nonparam<strong>et</strong>ric estim<strong>at</strong>ion and sensitivity analysis of expected shortfall”, Document<br />

<strong>de</strong> Travail, HEC Genève.<br />

SCAILLET, O. (2000b) : “Nonparam<strong>et</strong>ric estim<strong>at</strong>ion of copulas for time series”, Document <strong>de</strong> Travail,<br />

Université C<strong>at</strong>holique <strong>de</strong> Louvain.<br />

SCHMEIDLER, D. (1986) : “Integral represent<strong>at</strong>ion without additivity”, Proceedings of the American<br />

M<strong>at</strong>hem<strong>at</strong>ical Soci<strong>et</strong>y 97, 255–261.<br />

SCHMEIDLER, D. (1989) : “Subjective probability and expected utility without additivity”, Econom<strong>et</strong>rica<br />

57, 571–587.<br />

SHAPIRO, A. ET S. BASAK (2000) : “Value-<strong>at</strong>-Risk based risk management : Optimal policies and ass<strong>et</strong><br />

prices”, Review of Financial Studies 14, 371–405.<br />

SHARPE, W. (1964) : “Capital ass<strong>et</strong> prices : A theory of mark<strong>et</strong> equilibrium un<strong>de</strong>r conditions of risk”,<br />

Journal of Finance 19, 425–442.<br />

SHEFFRIN, H. (2000) : Beyond Greed and Fear : Un<strong>de</strong>rstanding Behavioral Finance and the Psychology<br />

of Investing, Havard Business School Press.<br />

SHILLER, R. J. (2000) : Irr<strong>at</strong>ional Exuberance, Princ<strong>et</strong>own university Press.<br />

SHLEIFFER, A. (2000) : Inefficient Mark<strong>et</strong> : an Introduction to Behavioral Finance, Oxford University<br />

Press.<br />

SKLAR, A. (1959) : “Fonction <strong>de</strong> répartition à n dimensions <strong>et</strong> leurs marges”, Publ. Inst. St<strong>at</strong>ist. Univ.<br />

Paris 8, 229–231.<br />

SMITH, A. (1776) : An Inquiry into the N<strong>at</strong>ure and Causes of the Wealth of N<strong>at</strong>ions, R. H. Campbell and<br />

A. S Skinner (eds.), Oxford, UK : Clarenton Press, 1976.<br />

SMITH, V. L. (1994) : “Economics in the labor<strong>at</strong>ory”, Journal of Economic Persectives 8, 113–131.<br />

SMITH, V. L. (1998) : “The two faces of Adam Smith”, Southern Economic Journal 95, 1–19.<br />

SORNETTE, D. (2000) : Critical Phenomena in N<strong>at</strong>ural Sciences, Springer.<br />

SORNETTE, D., J. V. ANDERSEN ET P. SIMONETTI (2000) : “Portfolio theory for “F<strong>at</strong> Tails””, Intern<strong>at</strong>ional<br />

journal of Theor<strong>et</strong>ical and Applied Finance 3, 523–535.<br />

SORNETTE, D., P. SIMONETTI ET J. ANDERSEN (2000) : “φ q -field theory for portfolio optimiz<strong>at</strong>ion :<br />

”f<strong>at</strong>-tails” and non-linear correl<strong>at</strong>ions”, Physics Reports 335, 19–92.<br />

SORNETTE, D. ET J. V. ANDERSEN (2002) : “A nonlinear super-exponential r<strong>at</strong>ional mo<strong>de</strong>l of specul<strong>at</strong>ive<br />

financial bubbles”, Intern<strong>at</strong>ional Journal of Mo<strong>de</strong>rn Physics 13, 171–188.<br />

SORNETTE, D. ET Y. MALEVERGNE (2001) : “From r<strong>at</strong>ional bubbles to crashes”, Physica A 299, 10–59.<br />

SORNETTE, D., Y. MALEVERGNE ET J. F. MUZY (2002) : “Vol<strong>at</strong>ility fingerprints of large shocks :<br />

Endogeneous versus exogeneous”, forthcoming Risk .<br />

STAUFFER, D. ET D. SORNETTE (1999) : “Self-organized percol<strong>at</strong>ion mo<strong>de</strong>l for stock mark<strong>et</strong> fluctu<strong>at</strong>ions”,<br />

Physica A 271, 496–506.


Bibliographie 515<br />

SUSMEL, R. (1996) : “Switching vol<strong>at</strong>ility in intern<strong>at</strong>ional equity mark<strong>et</strong>”. Dept. of Finance, University<br />

of Houston.<br />

SZERGÖ, G. (1999) : “A critique to Basel regul<strong>at</strong>ion, or how to enhance (im)moral hazards”, Proceedings<br />

of the Intern<strong>at</strong>ional Conference on Risk Management and Regul<strong>at</strong>ion in Banking, Bank of Israel,<br />

Kluwer.<br />

TASCHE, D. (2000) : “Risk contribrutions and performance measurement”, Document <strong>de</strong> Travail, TU<br />

München.<br />

TASCHE, D. (2002) : “Expected shortfall and beyond”, Journal of Banking & Finance 26, 1519–1533.<br />

TASCHE, D. ET L. TIBILETTI (2001) : “Approxim<strong>at</strong>ions for the value-<strong>at</strong>-risk approach to risk-r<strong>et</strong>urn<br />

analysis”, Document <strong>de</strong> Travail 269733, SSRN.<br />

THALLER, R. H. (ed.) (1993) : Advances in Behavioral Finance, Russel Sage Found<strong>at</strong>ion, New York.<br />

VALDEZ, E. A. (2001) : “Bivari<strong>at</strong>e analysis of survivorship and persistency”, Insurance : M<strong>at</strong>hem<strong>at</strong>ics<br />

and Economics 29, 357–373.<br />

VENEZIANO, D., G. E. MOGLEN ET R. L. BRAS (1995) : “Multifractal analysis : pitfalls of standard<br />

procedures and altern<strong>at</strong>ives”, Physical Review E 52, 1387–1398.<br />

VON NEUMANN, J. ET O. MORGENSTERN (1947) : Theory of games and economic behavior, Princ<strong>et</strong>own<br />

University Press.<br />

WANG, T. (1999) : “A class of dynamic risk measures”, Document <strong>de</strong> Travail, University of British<br />

Columbia.<br />

WESTERHOFF, F. H. (2001) : “Specul<strong>at</strong>ive mark<strong>et</strong>s and the effectiveness of price limits”, Document <strong>de</strong><br />

Travail, Universität Osnabrück.<br />

WESTERHOFF, F. H. (2002) : “H<strong>et</strong>erogeneous tra<strong>de</strong>rs and the Tobin tax”, Document <strong>de</strong> Travail, Universität<br />

Osnabrück.<br />

WISHART, J. (1928) : “The generalized product moment distribution in samples from a multinormal<br />

popul<strong>at</strong>ion”, Biom<strong>et</strong>rika 20, 32.<br />

ZAKOIAN, J. M. (1994) : “Threshold h<strong>et</strong>eroskedastic mo<strong>de</strong>ls”, Journal of Economic Dynamics and<br />

Control 18, 931–986.<br />

ZHANG, Y. C. (1999) : “Toward a theory of marginally efficient mark<strong>et</strong>s”, Physica A 269, 30–44.


Risques extrêmes en finance : St<strong>at</strong>istique, <strong>théorie</strong> <strong>et</strong> <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong><br />

Résumé : C<strong>et</strong>te thèse propose une étu<strong>de</strong> <strong>de</strong>s risques extrêmes sur les marchés financiers, considérés<br />

comme un exemple typique <strong>de</strong> système complexe auto-organisé. Nous commençons par décrire <strong>et</strong> modéliser<br />

les propriétés <strong>st<strong>at</strong>istique</strong>s individuelles <strong>de</strong>s actifs financiers afin d’en déduire une estim<strong>at</strong>ion précise<br />

<strong>de</strong>s grands risques <strong>et</strong> d’en comprendre les mécanismes sous-jacents en rel<strong>at</strong>ion avec la micro-structure<br />

<strong>de</strong>s marchés <strong>et</strong> le comportement <strong>de</strong>s agents économiques. A l’ai<strong>de</strong> <strong>de</strong>s copules <strong>et</strong> modèles à facteurs,<br />

nous analysons ensuite les propriétés <strong>de</strong> dépendance extrêmes <strong>de</strong>s actifs financiers afin <strong>de</strong> mieux cerner<br />

les possibilités <strong>et</strong> les limites <strong>de</strong> la diversific<strong>at</strong>ion <strong>de</strong>s grands risques. Enfin, nous étudions les mesures<br />

<strong>de</strong> risques les plus à mêmes <strong>de</strong> quantifier <strong>de</strong>s risques extrêmes <strong>et</strong> appliquons l’ensemble <strong>de</strong> ces résult<strong>at</strong>s<br />

à l’obtention <strong>de</strong> <strong>portefeuille</strong>s les moins sensibles à ce type <strong>de</strong> risques. Parallèlement, nous exposons<br />

certaines conséquences <strong>de</strong> ce type d’alloc<strong>at</strong>ion sur les équilibres <strong>de</strong> marché.<br />

Mots-clés : système complexe auto-organisé, risques extrêmes, marchés financiers, <strong>gestion</strong> <strong>de</strong> <strong>portefeuille</strong>,<br />

éconophysique, bulles spécul<strong>at</strong>ives, distributions à queues épaisses, copules.<br />

Extreme risks in finance : St<strong>at</strong>istics, theory and portfolio management<br />

Summary : This thesis proposes a study of extreme risks observed on financial mark<strong>et</strong>s, consi<strong>de</strong>red as<br />

a typical example of self-organized complex systems. We start by <strong>de</strong>scribing and mo<strong>de</strong>ling individual<br />

st<strong>at</strong>istical properties of financial ass<strong>et</strong>s in or<strong>de</strong>r to obtain the most accur<strong>at</strong>e estim<strong>at</strong>ion of large risks<br />

and to provi<strong>de</strong> a b<strong>et</strong>ter un<strong>de</strong>rstanding of the un<strong>de</strong>rlying mechanisms in rel<strong>at</strong>ion with the mark<strong>et</strong>s microstructure<br />

and the economic agents’ behaviors. Using copulas as well as factor mo<strong>de</strong>ls, we then analyze<br />

the <strong>de</strong>pen<strong>de</strong>nce properties b<strong>et</strong>ween ass<strong>et</strong>s, and more specifically their extreme counterparts, in or<strong>de</strong>r to<br />

un<strong>de</strong>rstand the opportunities for diversific<strong>at</strong>ion of large risks, but also their limits. Finally, we study the<br />

risk measures th<strong>at</strong> are the most appropri<strong>at</strong>e for the assessment of extreme risks and apply all these results<br />

to <strong>de</strong>fine the portofolios th<strong>at</strong> are the least sensitive to extreme risks. In parallel, we <strong>de</strong>velop consequences<br />

of such ass<strong>et</strong>s alloc<strong>at</strong>ions with respect to mark<strong>et</strong> equilibria.<br />

Key-words : self-organized complex systems, extreme risks, financial mark<strong>et</strong>s, portfolio management,<br />

econophysics, specul<strong>at</strong>ive bubbles, heavy tail distributions, copulas.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!