25.06.2013 Views

LECTURE NOTES: Physiology of the Tear Film and Adnexa

LECTURE NOTES: Physiology of the Tear Film and Adnexa

LECTURE NOTES: Physiology of the Tear Film and Adnexa

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>LECTURE</strong> <strong>NOTES</strong>:<br />

<strong>Physiology</strong> <strong>of</strong> <strong>the</strong> <strong>Tear</strong> <strong>Film</strong><br />

<strong>and</strong> <strong>Adnexa</strong><br />

2012 William Magrane Basic Science Course<br />

in Veterinary & Comparative Ophthalmology<br />

Elizabeth A. Giuliano Giuliano, , DVM, MS<br />

Diplomate, ACVO<br />

University <strong>of</strong> Missouri<br />

“Lacrimal Functional Unit (L.F.U.)”<br />

A complex functional unit which modulates <strong>the</strong><br />

homeostasis <strong>of</strong> <strong>the</strong> ocular surface<br />

Lacrimal Lacrimal gl<strong>and</strong><br />

gl<strong>and</strong><br />

<strong>Tear</strong> film<br />

Ocular surface epi<strong>the</strong>lium<br />

Cornea, conjunctiva, meibomian gl<strong>and</strong>s<br />

Eyelids<br />

Interconnecting sensory <strong>and</strong> motor nerves<br />

1


“Lacrimal Functional Unit (L.F.U.)”<br />

Stern, Gao Gao, , Siemasko et al Experimental Eye Research, 2004<br />

Control <strong>of</strong> <strong>Tear</strong> Secretion – New Concepts<br />

Traditional<br />

Normal tears: <strong>the</strong> result <strong>of</strong> intrinsic lacrimal gl<strong>and</strong> activity;<br />

neural participation in reflex tears only<br />

New concept: tears under constant neural regulation<br />

On On-going going homeostatic regulation <strong>of</strong> <strong>the</strong> ocular surface<br />

Suggests a relatively constant level <strong>of</strong> neural signals that<br />

precisely meter tear production; may mediate lipid & mucin<br />

secretion also<br />

Control mechanism mechanism includes includes afferent nerves nerves from from <strong>the</strong> <strong>the</strong> cornea cornea <strong>and</strong><br />

<strong>and</strong><br />

o<strong>the</strong>r ocular surface tissues central central nervous system relay nuclei<br />

efferent nerves comprise <strong>the</strong> autonomic innervation to<br />

secretory tissues whose products contribute to <strong>the</strong> tear film<br />

2


Lacrimal Gl<strong>and</strong> Innervation:<br />

Afferent Pathway <strong>of</strong> Trigeminal Ganglion Ganglion-Mediated Mediated Reflex<br />

Irritation <strong>of</strong> cornea/conjunctiva stimulates afferent nerves:<br />

Impulses are carried along lacrimal nerve nerve <strong>the</strong><br />

<strong>the</strong><br />

ophthalmic division <strong>of</strong> <strong>the</strong> trigeminal nerve sensory<br />

nuclei in trigeminal ganglion (TG)<br />

Lacrimal nerve is <strong>the</strong> smallest branch <strong>of</strong> <strong>the</strong> ophthalmic nerve. It<br />

courses laterally within <strong>the</strong> orbital cavity above <strong>and</strong> along <strong>the</strong><br />

upper border <strong>of</strong> <strong>the</strong> lateral rectus muscle<br />

TG is connected to lacrimal nucleus <strong>of</strong> facial nerve in pons<br />

by internuncial neurons<br />

Impulses are directed, by way <strong>of</strong> <strong>the</strong> trigeminal ganglion,<br />

to <strong>the</strong> lacrimal nucleus<br />

Lacrimal Gl<strong>and</strong> Innervation:<br />

Afferent Pathway <strong>of</strong> Trigeminal Ganglion Ganglion-<br />

Mediated Reflex<br />

Cornea<br />

conjunctiva j i Lacrimal nerve<br />

stimulus<br />

Lacrimal gl<strong>and</strong><br />

Slide courtesy <strong>of</strong> Dr. Ota<br />

Ophthalmic nerve<br />

Maxillary nerve<br />

M<strong>and</strong>ibular nerve<br />

Trigeminal<br />

ganglion<br />

Pons<br />

Lacrimal nucleus<br />

<strong>of</strong> <strong>the</strong> facial nerve<br />

in <strong>the</strong> pons<br />

3


Lacrimal Gl<strong>and</strong><br />

Additional Sensory Innervation<br />

The afferent innervation <strong>of</strong> <strong>the</strong> lacrimal gl<strong>and</strong> is also<br />

provided by <strong>the</strong> ipsilateral superior vagal ganglion<br />

(SVG) <strong>and</strong> superior glossopharyngeal ganglion<br />

(SGG)<br />

There may be SVG <strong>and</strong> SGG-mediated reflexes in<br />

addition to <strong>the</strong> TG-mediated reflex<br />

S.B Cheng et al. Three novel neural pathways to <strong>the</strong><br />

lacrimal gl<strong>and</strong>s <strong>of</strong> <strong>the</strong> cat. Brain Research 873 (2000)<br />

In humans, <strong>the</strong>re is a connection between<br />

hypothalamus <strong>and</strong> lacrimal nucleus ( (emotional emotional<br />

tears), <strong>and</strong> between olfactory system <strong>and</strong> lacrimal<br />

nucleus (“ (“wasabe wasabe tears”)<br />

Lacrimal Gl<strong>and</strong> – Innervation<br />

Recommend Gia Klauss’s chapter on “non-hypotensive<br />

“non hypotensive autonomic agents in<br />

veterinary ophthalmology” VCNA, Ocular <strong>the</strong>rapeutics, 2004<br />

Autonomic innervation - sympa<strong>the</strong>tic sympa<strong>the</strong>tic:<br />

Th The sympa<strong>the</strong>tic th ti postganglionic t li i fibers fib arise i from f <strong>the</strong> th cranial i l<br />

cervical sympa<strong>the</strong>tic ganglion which is <strong>the</strong> uppermost ganglion <strong>of</strong><br />

<strong>the</strong> sympa<strong>the</strong>tic trunk <strong>and</strong> travel in <strong>the</strong> plexus <strong>of</strong> nerves around <strong>the</strong><br />

internal carotid artery<br />

They join <strong>the</strong> maxillary nerve, <strong>the</strong> zygomatic nerve, <strong>the</strong><br />

zygomaticotemporal nerve <strong>and</strong> finally <strong>the</strong> lacrimal nerve (a branch<br />

<strong>of</strong> <strong>of</strong> <strong>of</strong> <strong>the</strong> <strong>the</strong> ophthalmic ophthalmic nerve) ner e)<br />

Distributed to interstitium surrounding acini <strong>and</strong> to vascular smooth<br />

muscle fibers <strong>of</strong> gl<strong>and</strong>s<br />

Sympa<strong>the</strong>tic nerves contain norepinephrine <strong>and</strong> neuropeptide Y (NPY)<br />

Sympa<strong>the</strong>tic stimulation increases tear secretion by affecting vascular<br />

supply to lacrimal gl<strong>and</strong> as well as activating a G protein pathway<br />

4


Slide courtesy <strong>of</strong> Dr. Ota<br />

Lacrimal gl<strong>and</strong><br />

vascular smooth<br />

muscle<br />

Acinar cells,<br />

ductules <strong>and</strong><br />

tubules<br />

↑ protein secretion<br />

↑ blood flow<br />

Sympa<strong>the</strong>tic innervation<br />

Lacrimal nerve<br />

Zygomatic<br />

nerve<br />

Plexus <strong>of</strong> nerves<br />

around <strong>the</strong> internal<br />

carotid artery<br />

Cranial cervical<br />

sympa<strong>the</strong>tic ganglion<br />

Ophthalmic nerve<br />

Maxillary nerve<br />

In some species, <strong>the</strong> sympa<strong>the</strong>tic nervous system may influence tear secretion,<br />

not only by modulating blood flow to <strong>the</strong> gl<strong>and</strong> <strong>and</strong> its distribution within it,<br />

but also by direct effects on <strong>the</strong> secretory acini.<br />

Lacrimal Gl<strong>and</strong> – Innervation<br />

Autonomic innervation - parasympa<strong>the</strong>tic<br />

Parasympa<strong>the</strong>tic secromotor nerve supply to lacrimal gl<strong>and</strong> is<br />

derived from <strong>the</strong> lacrimal nucleus <strong>of</strong> <strong>the</strong> facial nerve<br />

The pre pre-ganglionic ganglionic fibers reach <strong>the</strong> pterygopalatine<br />

(sphenopalatine<br />

sphenopalatine) ) ganglion via <strong>the</strong> great petrosal nerve <strong>and</strong> vidian<br />

nerves as <strong>the</strong>y pass through <strong>the</strong> pterygoid canal<br />

The efferent postganglionic parasympa<strong>the</strong>tic impulses are <strong>the</strong>n<br />

transmitted via sphenopalatine nerve in <strong>the</strong> zygomatic nerve (a<br />

branch <strong>of</strong> <strong>the</strong> maxillary division <strong>of</strong> <strong>the</strong> trigeminal nerve). They <strong>the</strong>n<br />

pass into zygomatic temporal nerve which reaches <strong>the</strong> lacrimal<br />

gl<strong>and</strong><br />

The zygomatic temporal nerve also gives <strong>of</strong>f a recurrent branch to <strong>the</strong><br />

lacrimal nerve, from which <strong>the</strong> efferent fibers terminate in <strong>the</strong> lacrimal gl<strong>and</strong><br />

T1<br />

5


Lacrimal Gl<strong>and</strong> – Innervation<br />

Autonomic innervation – parasympa<strong>the</strong>tic<br />

Postganglionic parasympa<strong>the</strong>tic fibers innervate:<br />

Acinar cells, duct cells, <strong>and</strong> blood vessels<br />

Exerts principal neural control <strong>of</strong> electrolyte, water <strong>and</strong><br />

protein secretion<br />

Stimulatory effect mediated mediated via via acetylcholine acetylcholine <strong>and</strong><br />

<strong>and</strong><br />

vasoactive intestinal peptide (VIP)<br />

Increase Increase in tear secretion through a G protein pathway<br />

<strong>and</strong> perhaps a calcium/ calcium/calmodulin calmodulin pathway<br />

Lacrimal Gl<strong>and</strong> – Innervation<br />

Autonomic innervation – parasympa<strong>the</strong>tic<br />

Lacrimal gl<strong>and</strong> secretion inhibited by Leu-Enkephaline<br />

Leu Enkephaline<br />

(L-Enk (L (L Enk Enk) Enk)<br />

A neuropeptide that interacts with inhibitory G proteins<br />

Interferes with activation adenylate cyclase by G stimulatory<br />

proteins<br />

Postganglionic parasympa<strong>the</strong>tic fibers also innervate <strong>the</strong><br />

nasal gl<strong>and</strong>s gl<strong>and</strong>s via via <strong>the</strong> caudal nasal nasal nerve nerve (from (from <strong>the</strong><br />

<strong>the</strong><br />

maxillary nerve <strong>of</strong> <strong>the</strong> trigeminal nerve)<br />

6


Parasympa<strong>the</strong>tic innervation<br />

Lacrimal gl<strong>and</strong><br />

acinar cells, tubules<br />

ductules <strong>and</strong><br />

vascular wall<br />

Lacrimal nerve<br />

Zygomatico<br />

temporal<br />

nerve<br />

Zygomatic<br />

nerve<br />

Ophthalmic nerve<br />

Maxillary nerve<br />

M<strong>and</strong>ibular nerve<br />

Electrolyte <strong>and</strong><br />

water secretion Pterygoid canal<br />

Slide courtesy <strong>of</strong> Dr. Ota<br />

Sphenopalatine<br />

nerve<br />

Pterygopalatine<br />

(Sphenopalatine)<br />

ganglion<br />

Post-ganglionic parasympa<strong>the</strong>tic fibers<br />

Vidian n.<br />

Trigeminal<br />

ganglion<br />

Pons<br />

Greater petrosal n.<br />

Lacrimal nucleus<br />

CN VII<br />

Pre-ganglionic parasympa<strong>the</strong>tic fibers<br />

Parasympa<strong>the</strong>tic innervation<br />

More than one parasympa<strong>the</strong>tic ganglion is<br />

involved in <strong>the</strong> neural regulation <strong>of</strong> lacrimal gl<strong>and</strong><br />

secretion.<br />

Ciliary ganglion (CG)<br />

Otic ganglion (OG)<br />

J. Anat. 199 (1996), Brain Res 873 (2000)<br />

Some anatomical studies suggest that small<br />

neurons mediate <strong>the</strong> vasodilation <strong>of</strong> <strong>the</strong> lacrimal<br />

gl<strong>and</strong>, while <strong>the</strong> large neurons mediate <strong>the</strong><br />

lacrimal secretion<br />

Brain Res 873(2000), Brain Res 522 (1990)<br />

7


Additional References<br />

Lacrimal Gl<strong>and</strong> Innervation<br />

Ding C, Walcott B, Keyser KT. Sympa<strong>the</strong>tic neural control <strong>of</strong> <strong>the</strong><br />

mouse lacrimal gl<strong>and</strong>. Invest Ophthalmol vis Sci. 2003; 44: 1513-<br />

1520<br />

Cheng S, Kuchiiwa S, Kuchiiwa T et al. Three novel pathways to <strong>the</strong><br />

lacrimal gl<strong>and</strong>s <strong>of</strong> <strong>the</strong> cat: an investigation with cholera toxin B<br />

subunit as a retrograde tracer. Brain Res. 2003; 873:160-164<br />

Powell CC, Martin CL. Distribution <strong>of</strong> cholinergic <strong>and</strong> adrenergic<br />

nerve fibers in <strong>the</strong> lacrimal gl<strong>and</strong>s <strong>of</strong> dogs. Am JVet Res 1989; 50:<br />

2084-2088<br />

Text Books<br />

Milder B. The lacrimal system<br />

Snell RS, Lemp MA. Clinical Anatomy <strong>of</strong> <strong>the</strong> eye<br />

Kaufman PL, Alm A. Adler’s <strong>Physiology</strong> <strong>of</strong> <strong>the</strong> eye<br />

Krachmer JH, Mannis MJ, Holl<strong>and</strong> EJ. Cornea<br />

“Veterinary Neurology” by Oliver, Hoerlein, <strong>and</strong> Mayhew<br />

8


“Lacrimal Functional Unit (L.F.U.)”<br />

Normal tears essential:<br />

1. To prevent surface infection<br />

2. Provide a pure p optical p surface for light g refraction<br />

3. Maintenance <strong>of</strong> surface “homeostatic”<br />

environment<br />

Concept <strong>of</strong> L.F.U. – first introduced by Stern<br />

et al Cornea, 1998<br />

D Describe ib th <strong>the</strong> relationship l ti hi between b t ocular l surface f<br />

<strong>and</strong> <strong>the</strong> lacrimal gl<strong>and</strong>s in normal tear secretion<br />

<strong>and</strong> during inflammation<br />

Composed <strong>of</strong> tear film, ocular surface epi<strong>the</strong>lium,<br />

eyelids, interconnecting sensory <strong>and</strong> motor nerves<br />

9


Lipid<br />

<strong>Tear</strong> <strong>Film</strong> – Anatomy & <strong>Physiology</strong><br />

<strong>the</strong> “traditional” teaching<br />

Most superficial layer<br />

Stabilize & prevent evaporation <strong>of</strong><br />

aqueous layer<br />

Produced by <strong>the</strong> meibomian gl<strong>and</strong>s<br />

Aqueous<br />

Intermediate layer<br />

Provides corneal nutrition;<br />

removes waste products<br />

Produced by orbital gl<strong>and</strong> AND<br />

gl<strong>and</strong> <strong>of</strong> <strong>the</strong> 3 rd eyelid<br />

MMucus MMucus c s<br />

Interface <strong>of</strong> tear film with<br />

hydrophobic cornea<br />

Secretory IgA<br />

Produced by conjunctival goblet<br />

cells<br />

<strong>Tear</strong> <strong>Film</strong> – Functional Anatomy<br />

Traditionally, tear film has been described as having 3<br />

layers with a total thickness <strong>of</strong> 7 -10 10 µm ( (Adlers Adlers, , 10 th<br />

edition – note, , typo yp in this edition, ,µ µm not mm mm) )<br />

In <strong>the</strong> last 15 15-20 20 years, evidence has called this earlier<br />

estimate into question (newer techniques,<br />

ma<strong>the</strong>matical models)<br />

Prydal et al, IOVS, 1992 estimated tear film thickness <strong>of</strong><br />

35 35-40 40 µm, composed mainly <strong>of</strong> a gel containing mucins<br />

Danjo Danjoet j et al, , Jpn p J Ophthal Ophthal, p , 1994 - 11 µm µ<br />

Ewen King-Smith King Smith et al, IOVS, 2000 disputes Prydal’s <strong>and</strong><br />

Danjo’s earlier work <strong>and</strong> states a value <strong>of</strong> 3 µm for <strong>the</strong><br />

thickness <strong>of</strong> human precorneal tear film<br />

Ano<strong>the</strong>r review: 6-20 6 20 µm, J Cataract Refract Surg 2007<br />

10


<strong>Tear</strong> <strong>Film</strong> – Functional Anatomy<br />

Adler’s <strong>Physiology</strong> <strong>of</strong> <strong>the</strong> Eye, 11 th ed (2011)<br />

thickness <strong>of</strong> <strong>the</strong> precorneal tear film in humans: 3.4<br />

+/ +/-2.6 2.6 µm µ <strong>and</strong> composed p <strong>of</strong> 4 layers y ( (gy ( (glycocalyx gy glycocalyx y<br />

on<br />

corneal & conjunctival epi<strong>the</strong>lia, mucous, aqueous,<br />

<strong>and</strong> lipid layers)<br />

Whatever <strong>the</strong> true thickness <strong>of</strong> tear film, <strong>the</strong> structural<br />

rigidity g y <strong>of</strong> 3 discernible layers y has changed g with time<br />

<strong>Tear</strong> layers are considered to be more <strong>of</strong> a<br />

continuum with <strong>the</strong> lipid layer most anterior to <strong>the</strong><br />

aqueous <strong>and</strong> mucin components<br />

Hoang Hoang-Xuan Xuan et al, Inflammatory Diseases <strong>of</strong> <strong>the</strong> Conjunctiva, 2001<br />

11


<strong>Tear</strong> <strong>Film</strong> Content <strong>and</strong> Thickness<br />

Why <strong>the</strong> discrepancy?<br />

Analytical methods<br />

<strong>Tear</strong>s – attractive for sampling (accessibility, rich in content,<br />

largely acellular) acellular<br />

Volume l <strong>of</strong> f minimally i i ll stimulated i l d tears (i.e. (i environmental i l<br />

stimulation) ~7 µL, collection <strong>of</strong> > 2 µL as any time point results<br />

in reflex tearing alters both volume <strong>and</strong> composition <strong>of</strong> tears<br />

Qualitative <strong>and</strong> quantitative techniques<br />

1 <strong>and</strong> 22-dimentional<br />

dimentional polyacrylamide gel electrophoresis (PAGE)<br />

Isoelectric focusing (IEF)<br />

Crossed Crossed immunoelectrophoresis<br />

ELISA<br />

Size-exclusion Size exclusion high high-pressure pressure liquid chromatography (HPLC)<br />

Reversed phase <strong>and</strong> ion ion-exchange exchange HPLC<br />

Matrix-assisted Matrix assisted laser absorption/ionization (MALDI) mass spectrometry<br />

Surface Surface-enhanced enhanced laser desorption-time desorption time <strong>of</strong> flight (SELDI-TOF)<br />

(SELDI TOF) ProteinChip<br />

technology<br />

<strong>Tear</strong> <strong>Film</strong> Discrepancies in Vet. Med.?<br />

We are NOT immune to same issues/problems<br />

Non Non-invasive invasive meibometry can be used in conscious dogs <strong>and</strong><br />

has been described as a means to quantify meibomian gl<strong>and</strong><br />

secretions i i in this hi species, i however h results l have h been b variable i bl<br />

Ofri R, Orgad K, Kass PH, Dikstein S. 2007. Canine<br />

meibometry meibometry: : establishing baseline values for meibomian<br />

gl<strong>and</strong> secretions in dogs. Veterinary Journal Journal, , 174, 536 536-40. 40.<br />

Benz P, Tichy A, Nell B. 2008. Review <strong>of</strong> <strong>the</strong> measuring<br />

precision <strong>of</strong> <strong>the</strong> new Meibometer MB550 through repeated<br />

measurements in in dogs dogs. Veterinary Ophthalmology<br />

Ophthalmology, , 11 11, 368<br />

74.<br />

12


<strong>Tear</strong> <strong>Film</strong> – Functions<br />

1) Protect cornea from desiccation <strong>and</strong> lubricate eyelids<br />

2) Maintain refractive power <strong>of</strong> cornea by smoothing its<br />

surface for refraction <strong>of</strong> incoming rays<br />

3) Protect against infections via specific <strong>and</strong> nonspecific<br />

antibacterial substances<br />

4) Supply oxygen/nutrients to cornea <strong>and</strong> transport<br />

metabolic by by-products products from corneal surface<br />

5)<br />

5) Avoid corneal dehydration dehydration due due to hyperosmolarity<br />

6) Remove foreign materials from <strong>the</strong> cornea <strong>and</strong><br />

conjunctiva<br />

7) Provide Provide WBCs/o<strong>the</strong>r immune cells with access to<br />

cornea <strong>and</strong> conjunctiva<br />

Meibomian gl<strong>and</strong>s<br />

<strong>Tear</strong> <strong>Film</strong> – Lipid Layer<br />

Holocrine Holocrine, , modified sebaceous gl<strong>and</strong>s arranged linearly within<br />

<strong>the</strong> dense connective tissues (i.e., tarsal plate) <strong>of</strong> <strong>the</strong> eyelid<br />

margin<br />

g<br />

Secretions consist <strong>of</strong> wax monoesters, sterol esters,<br />

hydrocarbons, triglycerides, diglycerides, free sterols (i.e.,<br />

cholesterol) free fatty acids, <strong>and</strong> polar lipids (including<br />

phospholipids) (Levin et al., 2011)<br />

Molecular weight <strong>of</strong> meibomian lipids (i.e., meibum meibum) ) is higher,<br />

<strong>and</strong> <strong>the</strong> polarity p y is lower, , than that <strong>of</strong> sebum, , thus meibomian<br />

lipids are fluid at lid temperature<br />

A recent model proposed that a combination <strong>of</strong> PTF proteins <strong>and</strong> lipids<br />

could interact <strong>and</strong> behave similarly to lung surfactant to provide a non-<br />

collapsible viscoelastic gel that would allow for proteins to remain in<br />

<strong>the</strong>ir lowest free energy states while in contact with lipids ( (Rantamaki Rantamaki et<br />

al., 2011, Butovich Butovich, , 2011)<br />

13


<strong>Tear</strong> <strong>Film</strong> – Meibomian Gl<strong>and</strong>s<br />

Highly developed in <strong>the</strong> dog, with 20 to 40 gl<strong>and</strong>s per<br />

eyelid typically being present<br />

Gl<strong>and</strong>s - located within <strong>the</strong> tarsal plate, in which <strong>the</strong>y form<br />

li linear aggregates <strong>of</strong> f secretory acini i i that h are usually ll visible i ibl<br />

through <strong>the</strong> semitransparent palpebral conjunctiva<br />

These acini open into central ductules arranged at right angles to<br />

<strong>the</strong> eyelid margin, <strong>and</strong> <strong>the</strong>y deliver lipid to <strong>the</strong> surface <strong>of</strong> <strong>the</strong><br />

eyelid through small openings just external (i.e., anterior) to <strong>the</strong><br />

mucocutaneous junction<br />

“Gray line”- line” an important surgical l<strong>and</strong>mark in a variety <strong>of</strong><br />

blepharoplastic procedures<br />

<strong>Tear</strong> <strong>Film</strong> – Lipid Layer<br />

Thickness varies throughout <strong>the</strong> day (maximum upon<br />

awakening) <strong>and</strong> composition may differ between<br />

individuals, age (children higher than adults)<br />

Compression <strong>of</strong> <strong>of</strong> <strong>the</strong> <strong>the</strong> eyelids eyelids during during normal normal blinking<br />

blinking<br />

contribute to release <strong>of</strong> meibomian secretions, but precise<br />

neural <strong>and</strong> hormonal mechanisms regulating secretion <strong>of</strong><br />

meibomian lipid are not well understood<br />

Secretion influenced by several factors:<br />

Mechanical Mechanical (blinking (blinking reflex)<br />

Nervous (as shown after trigeminal nerve sectioning)<br />

Hormonal (stimulatory action <strong>of</strong> <strong>and</strong>rogens, estrogens inhibitory)<br />

Physical (feedback regulation according to surface tension – S.T.<br />

decreases when lipid spreads over surface)<br />

14


<strong>Tear</strong> <strong>Film</strong> – Aqueous Layer<br />

Secreted by lacrimal gl<strong>and</strong>s <strong>of</strong> <strong>the</strong> orbit <strong>and</strong> nictitating<br />

membrane<br />

Aqueous Aqueous tear tear component component provides provides most most <strong>of</strong> <strong>of</strong> <strong>the</strong> <strong>the</strong> avascular<br />

avascular<br />

cornea’s metabolic needs by supplying glucose,<br />

electrolytes, oxygen, <strong>and</strong> water to superficial cornea<br />

Lubricates <strong>the</strong> cornea, conjunctiva, <strong>and</strong> nictitating membrane<br />

Removes metabolites such as carbon dioxide <strong>and</strong> lactic acid<br />

Flushes Flushes away away particulate particulate debris debris <strong>and</strong> <strong>and</strong> bacteria bacteria from from <strong>the</strong> <strong>the</strong> ocular<br />

surface<br />

<strong>Tear</strong> <strong>Film</strong> – Aqueous Layer<br />

The aqueous portion <strong>of</strong> <strong>the</strong> PTF is 98.2% water<br />

<strong>and</strong> 1.8% solids (i.e., mostly proteins)<br />

Consists <strong>of</strong> water, electrolytes, glucose, urea, surface-<br />

active polymers, glycoproteins, <strong>and</strong> tear proteins<br />

Examples <strong>of</strong> primary tear proteins include globulins (i.e.,<br />

secretory IgA IgA, , IgG,<br />

IgM), albumin, lysozyme lysozyme, , lact<strong>of</strong>errin,<br />

lipocalin lipocalin, , epidermal growth factor, transforming growth<br />

factors, lacritin, <strong>and</strong> interleukens<br />

Antibodies, , immunoglobulins,<br />

immunoglobulins g , lysozyme lysozyme, y y , lact<strong>of</strong>errin lact<strong>of</strong>errin, ,<br />

transferrin transferrin, , ceruloplasmin, <strong>and</strong> glycoproteins all contribute to<br />

<strong>the</strong> antibacterial properties <strong>of</strong> tears<br />

Certain topical medications (e.g. EDTA) may reduce <strong>the</strong><br />

gelatinase activity present in tears <strong>of</strong> normal dogs (Couture et<br />

al., 2006)<br />

15


<strong>Tear</strong> <strong>Film</strong> – Aqueous Layer<br />

PTF contains proteinase inhibitors as well as<br />

proteinases - important in both ocular immunity <strong>and</strong><br />

in <strong>the</strong> prevention <strong>of</strong> excessive degradation <strong>of</strong> normal<br />

healthy ocular tissues (de Souza et al., 2006)<br />

Total proteolytic activity in tears has been found to be<br />

significantly increased after corneal wounding<br />

Ulcerative keratitis in animals has been associated with initially<br />

high levels <strong>of</strong> tear film proteolytic activity which decrease as<br />

ulcers heal <strong>and</strong> proteinase proteinase levels in in melting melting ulcers ulcers remain<br />

remain<br />

elevated leading to rapid progression <strong>of</strong> <strong>the</strong> ulcers (Ollivier ( Ollivier et<br />

al., 2007)<br />

<strong>Tear</strong> <strong>Film</strong> – Aqueous Layer<br />

The lacrimal gl<strong>and</strong>s <strong>of</strong> <strong>the</strong> orbit <strong>and</strong> <strong>the</strong> nictitating<br />

membrane are tubuloacinar <strong>and</strong> histologically similar<br />

Ductules from <strong>the</strong>se gl<strong>and</strong>s deliver aqueous tear secretions into <strong>the</strong><br />

conjunctival conjunctival<br />

conjunctival fornices<br />

fornices<br />

In dogs 33-5<br />

5 ductules from <strong>the</strong> orbital lacrimal gl<strong>and</strong> open into <strong>the</strong><br />

dorsolateral conjunctival fornix, whereas <strong>the</strong> nictitans gl<strong>and</strong><br />

delivers aqueous tears onto <strong>the</strong> corneal surface through multiple<br />

ducts opening between lymphoid follicles on <strong>the</strong> posterocentral<br />

third eyelid<br />

In In humans humans, pH varies 7.14 7.14-7.82, 7 14 7 77.82, 82 osmotic osmotic pressure pressure <strong>of</strong> <strong>of</strong> 305<br />

305<br />

mOsm mOsm/kg, /kg, refractive index <strong>of</strong> 1.357<br />

16


<strong>Tear</strong> <strong>Film</strong> – Aqueous Layer<br />

The relative contributions by each <strong>of</strong> <strong>the</strong> main lacrimal gl<strong>and</strong>s to<br />

reflex tear secretion have been investigated in <strong>the</strong> dog by surgical<br />

removal <strong>of</strong> ei<strong>the</strong>r one or both gl<strong>and</strong>s <strong>and</strong> measurement <strong>of</strong> <strong>the</strong> resulting<br />

tear production (Helper, 1970, Helper, 1976, Saito et al., 2001, Helper et al., 1974)<br />

<strong>Tear</strong> volume produced by each gl<strong>and</strong> varied considerably among animals<br />

The orbital lacrimal gl<strong>and</strong> was <strong>the</strong> main source <strong>of</strong> aqueous tears in some dogs,<br />

whereas <strong>the</strong> nictitating membrane gl<strong>and</strong> was <strong>the</strong> main source in o<strong>the</strong>rs<br />

When ei<strong>the</strong>r gl<strong>and</strong> was removed singly, a compensatory increase in tear<br />

production appeared to occur in <strong>the</strong> remaining gl<strong>and</strong><br />

Removal <strong>of</strong> both gl<strong>and</strong>s resulted in near near-total total absence <strong>of</strong> secretions<br />

Suggests that accessory conjunctival gl<strong>and</strong>s may not be present in <strong>the</strong> dog, or that<br />

<strong>the</strong>y play an inconsequential role in aqueous secretions<br />

The role <strong>of</strong> each gl<strong>and</strong> (i.e., orbital or nictitans gl<strong>and</strong>s) in <strong>the</strong><br />

production <strong>of</strong> basal basal secretions versus reflex tear secretions has not<br />

been determined<br />

Destruction <strong>of</strong> lacrimal gl<strong>and</strong> results in an estimated decrease <strong>of</strong> 23 23-46% 46% <strong>and</strong><br />

nictitans gl<strong>and</strong> results in 12 12-26% 26% decrease<br />

<strong>Tear</strong> <strong>Film</strong> – Aqueous Layer<br />

Chemical mediators <strong>of</strong> lacrimal gl<strong>and</strong> secretion are cholinergic<br />

agonists, released from parasympa<strong>the</strong>tic nerves, <strong>and</strong> norepinephrine,<br />

released from sympa<strong>the</strong>tic nerves, located in both <strong>the</strong> cornea <strong>and</strong><br />

conjunctiva ( (Dartt Dartt, , 2004, Dartt, 2009, Tiffany, 2008)<br />

These neurotransmitters activate signal transduction pathways affecting <strong>the</strong><br />

myoepi<strong>the</strong>lial<br />

myoepi<strong>the</strong>lial, , acinar acinar, , <strong>and</strong> duct cells, <strong>and</strong> blood vessels <strong>of</strong> <strong>the</strong> lacrimal gl<strong>and</strong><br />

leading to secretion<br />

O<strong>the</strong>r stimuli <strong>of</strong> lacrimal gl<strong>and</strong> secretion include various proteins (i.e. EGF<br />

growth factor, neuropeptide Y, substance P, calcitonin gene-related gene related peptide) <strong>and</strong><br />

hormones (Dartt ( Dartt, , 2004, Davidson <strong>and</strong> Kuonen, 2004, Lemp Lemp, , 2008)<br />

Androgen deficiency results in lacrimal tissue degeneration, decreased total<br />

volume <strong>of</strong> tears, <strong>and</strong> decreased tear protein content (Sullivan et al., 2000,<br />

Baudouin Baudouin, , 2001)<br />

Estrogen effects on <strong>the</strong> lacrimal gl<strong>and</strong> remain controversial<br />

Some studies have linked estrogen deficiency to <strong>the</strong> development <strong>of</strong> KCS, while o<strong>the</strong>rs have<br />

shown no change in lacrimal gl<strong>and</strong> or tear film (Sullivan et al., 1998)<br />

17


Harderian Gl<strong>and</strong><br />

Specialized lacrimal gl<strong>and</strong> found in amphibians,<br />

reptiles, birds, <strong>and</strong> mammals<br />

5 types recognized: serous, mucous, seromucoid seromucoid, ,<br />

mixed mixed, <strong>and</strong> <strong>and</strong> lipid lipid gl<strong>and</strong>s<br />

gl<strong>and</strong>s<br />

Typically, located on nasal side <strong>of</strong> orbit <strong>and</strong> its single<br />

duct empties on to bulbar surface <strong>of</strong> nictitans<br />

Contiguous with gl<strong>and</strong> <strong>of</strong> 3 rd eyelid except:<br />

Rabbits – below <strong>and</strong> medial to lacrimal gl<strong>and</strong><br />

Pigs i – separate f from 3 d lid l d<br />

rd rd eyelid gl<strong>and</strong><br />

Rodents (rat, hamster, gerbil) – posterior to globe <strong>and</strong><br />

produces porphyrin imparts a reddish brown color to<br />

tears <strong>and</strong> will fluoresce under ultraviolet light<br />

<strong>Tear</strong> <strong>Film</strong> – Mucus Layer<br />

Deepest tear film layer<br />

Adheres firmly to underlying epi<strong>the</strong>lial cells<br />

Thickness ranges ranges from from 0.8 0 8 µmovercorneato14µm<br />

µm over cornea to 1.4 µm<br />

over conjunctiva<br />

Facilitates adherence <strong>of</strong> aqueous layer to surface <strong>of</strong><br />

conjunctival <strong>and</strong> corneal epi<strong>the</strong>lial cells<br />

18


<strong>Tear</strong> <strong>Film</strong> – Mucus Layer<br />

Mucin – composed <strong>of</strong> a heterogeneous group <strong>of</strong><br />

hydrated O-linked O linked oligosaccharides linked to protein<br />

Proteins syn<strong>the</strong>sized in endoplasmic reticulum <strong>of</strong><br />

goblet cells<br />

Saccharide branches added in Golgi apparatus<br />

Glycoproteins are condensed <strong>and</strong> stored in<br />

membrane-bound<br />

membrane bound secretory granules at apical side<br />

<strong>of</strong> goblet cells<br />

Various compounds (secretagogues<br />

( secretagogues, , serotonin,<br />

epinephrine, phenylephrine, dopamine) stimulate<br />

goblet bl t cells ll t to release l mucin mucin, i , as well ll as antigen, ti<br />

immune complexes, mechanical action, o<strong>the</strong>r<br />

factors<br />

Adler’s physiology <strong>of</strong> <strong>the</strong> eye (2011) – regulation <strong>of</strong><br />

goblet cell <strong>and</strong> mucin production<br />

<strong>Tear</strong> <strong>Film</strong> – Role in Ocular Immunity<br />

Rich in lysozyme lysozyme, , betalysin,<br />

lact<strong>of</strong>errin, <strong>and</strong> antibody<br />

(low levels <strong>of</strong> lysozyme in cattle tears - Gionfriddo et. al.<br />

AJVR, 2000) 2000<br />

IgA & IgG IgG secreted by by lacrimal lacrimal gl<strong>and</strong>s gl<strong>and</strong>s (rich (rich in<br />

in<br />

plasma cells <strong>and</strong> lymphocytes)<br />

Serum proteins<br />

Derived from vascular compartment by filtration<br />

Represent 1% <strong>of</strong> total tear proteins in <strong>the</strong> absence <strong>of</strong><br />

infection<br />

infection<br />

Albumin, haptoglobin,<br />

IgG,<br />

IgA,<br />

IgM,<br />

IgE,<br />

α2-<br />

macroglobulins, complement complement-derived derived proteins, transferrin,<br />

α1-antitrypsin, antitrypsin, <strong>and</strong> β2-microglobulin<br />

microglobulin<br />

Davidson HJ <strong>and</strong> Kuonen VJ. The tear film <strong>and</strong> ocular mucins. Vet<br />

Opthal 2004; 7 (2) 71 71-77 77<br />

19


Clinical Significance<br />

Keratoconjunctivitis Sicca<br />

“Abnormality Abnormality in in ei<strong>the</strong>r ei<strong>the</strong>r <strong>the</strong> <strong>the</strong> quantity quantity or<br />

or<br />

quality <strong>of</strong> any primary tear component may<br />

compromise tear function.” (C Moore,<br />

1999)<br />

“Dry eye is a disorder <strong>of</strong> <strong>the</strong> tear film due to<br />

tear deficiency or excessive tear<br />

evaporation.” (National Eye Institute, NIH).<br />

Immunopathogenesis <strong>of</strong> KCS in <strong>the</strong> dog<br />

Fur<strong>the</strong>r<br />

Reading<br />

David L. Williams, VCNA, 2008<br />

Diagnosis <strong>and</strong> treatment <strong>of</strong> cKCS – familiar<br />

Mechanism by b which hich inflammatory inflammator changes changes lead<br />

lead<br />

to reduced tear production?<br />

1. Lymphocyte<br />

Lymphocyte-associated associated cytotoxicity<br />

2. Apoptosis <strong>of</strong> gl<strong>and</strong>ular epi<strong>the</strong>lial cells<br />

3. Cytokine y release from inflammatory y cells<br />

4. Inflammatory cells/associated cytokines or<br />

autoantibodies may influence neurotransmitter<br />

function in lacrimal gl<strong>and</strong> inhibits neurologic<br />

stimulation <strong>of</strong> tear secretion<br />

20


Immunopathogenesis <strong>of</strong> KCS in <strong>the</strong> dog<br />

Fur<strong>the</strong>r<br />

Reading<br />

David L. Williams, VCNA, 2008<br />

One or more <strong>of</strong> <strong>the</strong> aforementioned proposed<br />

mechanisms may may be be involved involved in in pathogenesis pathogenesis <strong>of</strong><br />

<strong>of</strong><br />

disease<br />

Important murine models – significant body <strong>of</strong><br />

literature on <strong>the</strong> immunologic aspects <strong>of</strong> dry eye &<br />

Sj SjÖgrens grens Syndrome<br />

MRL/ MRL/lpr lpr mouse – defect in <strong>the</strong> Fas receptor<br />

NOD mouse – CD4+ T cell infiltrate in subm<strong>and</strong>ibular,<br />

lacrimal, <strong>and</strong> pancreas gl<strong>and</strong>s<br />

Conjunctiva - overview<br />

Vascularized mucous membrane – covers <strong>the</strong> anterior<br />

surface <strong>of</strong> eyeball, posterior surface <strong>of</strong> eyelids, <strong>and</strong> ant.<br />

& post. surface <strong>of</strong> 3 rd p eyelid. y<br />

Secretes mucus – required for tear film stability &<br />

corneal transparency<br />

Mucosal defense – immunocompetent cells<br />

Initiate <strong>and</strong> mediate inflammatory reactions<br />

Syn<strong>the</strong>size Syn<strong>the</strong>size immunoglobulin<br />

immunoglobulin<br />

Morphologic characteristics ( (microvilli microvilli) ) <strong>and</strong> biochemical<br />

properties (enzyme activity) allow phagocytosis <strong>of</strong> foreign<br />

particles such as viruses<br />

21


Conjunctiva -anatomy anatomy<br />

Palpebral conjunctiva<br />

Mucocutaneous junction: transition<br />

zone behind <strong>the</strong> meibomian gl<strong>and</strong> gl<strong>and</strong><br />

openings i where h stratified t tifi d<br />

keratinized squamous epi <strong>of</strong> lid margin stratified<br />

non nonkeratinized keratinized squamous epi <strong>of</strong> conjunctiva<br />

Tarsal conjunctiva<br />

Orbital conjunctiva – from tarsal plate into fornix<br />

Conjunctival Cul Cul-de de-sac, sac, or Fornix<br />

Bulbar conjunctiva<br />

Scleral division: extends from fornix to limbus<br />

Conj, sclera, <strong>and</strong> tenon’s capsule are firmly attached ~ 3mm from <strong>the</strong><br />

limbus <strong>and</strong> conj is more difficult to mobilize in this area<br />

Limbal division: ~ 3mm wide ring at junction <strong>of</strong> conj <strong>and</strong><br />

corneal epi<strong>the</strong>lia<br />

Conjunctiva - histology<br />

1) Epi<strong>the</strong>lium<br />

Between 2 <strong>and</strong> 88-10<br />

10 layers thick,<br />

depending on location<br />

Single layer <strong>of</strong> basal cells<br />

Variable # # <strong>of</strong> <strong>of</strong> layers layers <strong>of</strong><br />

<strong>of</strong><br />

intermediate cells<br />

Superficial cells <strong>of</strong><br />

variable shape<br />

Flattening <strong>of</strong> superficial cells believed to be an adaptation<br />

to mechanical pressure<br />

Melanocytes<br />

Melanocytes, , located among basal cells<br />

Immunocompetent cells (esp. Langerhans Langerhans cells)<br />

cells)<br />

2) Basement Membrane Zone (BMZ)<br />

Separates <strong>the</strong> epi<strong>the</strong>lium from <strong>the</strong><br />

conjunctival stroma or chorion<br />

3) Chorion<br />

22


Conjunctiva - histology<br />

Chorion (conjunctival conjunctival stroma stroma)<br />

1) Scleral division: extends from fornix to limbus<br />

Conj, sclera, <strong>and</strong> tenon’s capsule are firmly attached ~<br />

3mm from <strong>the</strong> limbus <strong>and</strong> conj is more difficult to<br />

mobilize in in this this area<br />

area<br />

2) Limbal division: ~ 3mm wide ring at junction <strong>of</strong><br />

conjunctival <strong>and</strong> corneal epi<strong>the</strong>lia<br />

3) Rich collagen framework<br />

4) Abundant vessels <strong>and</strong> immunocompetent cells<br />

Accounts for rapid <strong>and</strong><br />

sometimes “violent” violent<br />

inflammatory reactions<br />

Conjunctival Gl<strong>and</strong>s<br />

1) Serous:<br />

1) Krause’s gl<strong>and</strong>s<br />

Deep in <strong>the</strong> conj tissue <strong>of</strong> fornix (~ 40 in superior & 66-8<br />

8 in inferior<br />

fornix in humans)<br />

Histologically<br />

Histologically, g y y, similar to lacrimal gl<strong>and</strong>s g<br />

2) Wolfring’s gl<strong>and</strong>s<br />

2-5 5 in upper lid (along <strong>the</strong> upper edge <strong>of</strong> tarsus) <strong>and</strong> fewer present<br />

along lower edge <strong>of</strong> inferior tarsus<br />

1) Mucous:<br />

1) Henle’s gl<strong>and</strong>s or crypts<br />

Epi<strong>the</strong>lial invaginations within chorion <strong>and</strong> composed <strong>of</strong> goblet cells<br />

Sit Situated t d along l upper edge d <strong>of</strong> f superior i tarsus t<br />

2) Manz’s gl<strong>and</strong>s<br />

At limbus limbus: : reported in pigs, cattle, & dogs; absent in humans<br />

O<strong>the</strong>r: Goblet cells in <strong>the</strong> conjunctival epi<strong>the</strong>lium<br />

23


Goblet Cells<br />

Mucus production per eye per day: 22-3<br />

3 mL (humans)<br />

= one thous<strong>and</strong>th <strong>of</strong> total tear production<br />

Mucins Mucins:<br />

High molecular weight glycoproteins (2000 (2000-4000 4000 kDa kDa) ) with<br />

b it f0 5 210 6 subunits <strong>of</strong> 0.5 0.5-2x10 2x10 D hi hf l h th i<br />

6 Da, which form a gel when <strong>the</strong>ir<br />

concentration reaches 0.5-1% 0.5 1%<br />

Peroxidases<br />

Contribute to <strong>the</strong> anti anti-infectious infectious defense <strong>of</strong> <strong>the</strong> ocular<br />

surface by <strong>the</strong> tear film<br />

Some goblet cells syn<strong>the</strong>size<br />

hyaluronic y acid<br />

Helps stabilize <strong>the</strong> tear film<br />

24


Mucus – Functions:<br />

Anchor <strong>the</strong> aqueous layer <strong>of</strong> <strong>the</strong> tear film<br />

<strong>Tear</strong> film is organized into increasingly dense filaments as<br />

one approaches <strong>the</strong> cell layers<br />

Trap desquamated epi<strong>the</strong>lial cells <strong>and</strong> acellular<br />

surface debris debris (microorganisms)<br />

(microorganisms)<br />

Transported to medial canthus during blinking evacuated<br />

Immunological barrier:<br />

Immobilize more than 30% <strong>of</strong> <strong>the</strong> secretory IgA contained<br />

in tear film<br />

Glycocalyx Glycocalyx:<br />

Glycoproteins <strong>and</strong> glycolipids that cover <strong>the</strong><br />

microvilli <strong>and</strong> microplicae <strong>of</strong> corneal <strong>and</strong> conjunctival<br />

epi<strong>the</strong>lium<br />

Extends ~ 300 nm from microvilli <strong>and</strong> microplicae<br />

p<br />

Angular <strong>and</strong> branching <strong>and</strong> <strong>of</strong>ten extends laterally<br />

between microvilli<br />

Filaments branch branch distally distally <strong>and</strong> are associated with cell<br />

membrane<br />

Mucus layer <strong>of</strong> <strong>of</strong> tear film attaches to <strong>the</strong> carbohydrate-<br />

rich glycocalyx<br />

Protects epi<strong>the</strong>lium by causing shear forces <strong>of</strong> blinking to<br />

break up mucus layer fur<strong>the</strong>r away from cell surface<br />

Mucus attachment to glycocalyx allows aqueous layer to<br />

spread evenly over corneal epi<strong>the</strong>lium<br />

25


1) Screening <strong>and</strong><br />

sensing – cilia <strong>and</strong><br />

vibrissae ib i<br />

2) Mechanical wiping<br />

action<br />

3) Secretions <strong>and</strong><br />

spreading <strong>of</strong><br />

<strong>of</strong><br />

gl<strong>and</strong>ular tissue<br />

Eyelid Functions<br />

4) Screening <strong>of</strong> light to<br />

allow sleep<br />

Eyelid Functions<br />

Comparative approach: where are <strong>the</strong> exceptions?<br />

Fish lack eyelids (constantly ba<strong>the</strong>d<br />

in aqueous environment)<br />

L<strong>and</strong> creatures need a way y to<br />

“bring <strong>the</strong> ocean with <strong>the</strong>m”<br />

Amphibians: 1 st creatures to have true eyelids <strong>and</strong> nictitans<br />

Tadpoles have no eyelids frogs have eyelids,<br />

lacrimal gl<strong>and</strong>s <strong>and</strong> a NL system<br />

Specialized eyelids<br />

Crocodilians – bony bony bony tarsus tarsus <strong>of</strong> upper lid<br />

lid<br />

Chameleons – tight tight-fitting fitting around globe <strong>and</strong> move with globe<br />

Snakes, geckos, skinks – spectacle which has a vascular<br />

network<br />

26


Eyelids - composition<br />

Skin, collagen, muscle, gl<strong>and</strong>ular tissue, palpebral conjunctiva<br />

Skin<br />

Cilia & assoc. sebaceous gl<strong>and</strong>s<br />

Tactile hairs<br />

• These 3 components<br />

intermingle inseparably<br />

• Components are succeeded<br />

by “tarsus” or “tarsal plate”<br />

toward free margin – poorly<br />

defined<br />

Eyelids -<br />

composition<br />

1. Levator palpebrae<br />

superioris<br />

2. Orbital septum & 2’ = tarsal<br />

plate<br />

3. Orbicularis oculi<br />

4. Puncta lacrimalie<br />

5. Cilium w/ associated<br />

sebaceous gl<strong>and</strong>s<br />

6. Tarsal or meibomian gl<strong>and</strong>s<br />

Veterinary Anatomy, 1987,<br />

Dyce Sack & Wensing<br />

Eyelid<br />

Muscul<strong>of</strong>ibrous<br />

layer<br />

Orbicularis oculi<br />

Orbital septum:<br />

Arises from orbit margin<br />

Aponeurosis levator muscle:<br />

Originate from orbit<br />

Smooth tarsal muscle:<br />

Originate from orbit<br />

Palpebral Conjunctiva<br />

27


Eyelid Skin<br />

Epidermis<br />

Strata corneum<br />

& granular, spinous <strong>and</strong> basal layers<br />

Dermis<br />

Dermis<br />

Dense, irregular C.T.<br />

Most species, dermis devoid <strong>of</strong> fat<br />

exception in some dogs: Shar Pei<br />

Hair follicles extend deep into dermis<br />

Palpebral Palpebral Palpebral margin margin<br />

margin<br />

Skin changes keratinized, stratified squamous EPI non-<br />

keratinized, stratified squamous EPI<br />

Eyelashes / CILIA located on eyelid leading edge<br />

Normal turnover time: 33-5<br />

5 months; regrow in 2 months<br />

Cilia<br />

Species Location on Eyelids<br />

People Upper <strong>and</strong> lower<br />

Dogs Upper<br />

Pigs Upper<br />

Horses Upper <strong>and</strong> few on lower<br />

Ruminants Upper <strong>and</strong> lower<br />

Cats None per se<br />

(normal hair can appear as cilia)<br />

Birds Some species (i.e. budgerigar)<br />

have filoplumes: rudimentary<br />

fea<strong>the</strong>rs without barbs<br />

28


Prominent orbito-palpebral sulcus (skin fold) <strong>of</strong> <strong>the</strong> superior<br />

eyelid (arrows) delineating <strong>the</strong> orbital portion (above <strong>the</strong> skin fold)<br />

<strong>and</strong> tarsal portion (below <strong>the</strong> skin fold) <strong>of</strong> <strong>the</strong> eyelid<br />

Eyelid Musculature<br />

Textbook <strong>of</strong> Sm An Surg, 1993, Slatter<br />

29


Eyelid Musculature – Orbicularis Orbicularis oculi<br />

Major eyelid muscle<br />

Arranged in concentric rings around <strong>the</strong> palpebral<br />

opening<br />

Fibers originate <strong>and</strong> terminate on <strong>the</strong> medial palpebral<br />

ligament<br />

Innervation: CN VII (Facial)<br />

Function: eyelid closure<br />

Specialized devisions: devisions<br />

Horner’s muscle:<br />

b branch h that h runs under d l lacirmal l i l sac <strong>and</strong> di inserts on medial di l orbital bi l<br />

wall<br />

Negative pressure within lacrimal sac so as to pull tears into sac<br />

Muscles <strong>of</strong> Riolan: Riolan<br />

Travel along eyelid margin, surrounding <strong>the</strong> eyelash bulbs<br />

May rotate eyelashes toward eye & propel gl<strong>and</strong>ular contents during<br />

blink<br />

30


Musculature – Levator palpebrae<br />

superioris & Müller’s üller’s muscle<br />

Levator palpebrae superioris<br />

Originates deep within orbit, dorsal to optic canal between<br />

origins <strong>of</strong> dorsal rectus <strong>and</strong> dorsal oblique<br />

Functions to elevate upper eyelid<br />

Innervated by CN III ( (oculomotor oculomotor)<br />

Müller’s üller’s muscle<br />

Portion <strong>of</strong> <strong>the</strong> levator palpebrae<br />

superioris that extends deeper into dermis<br />

Composed <strong>of</strong> <strong>of</strong> smooth smooth muscle muscle fibers<br />

fibers<br />

Innervated by sympa<strong>the</strong>tic nervous system (carried by<br />

infratrochlear n, a branch <strong>of</strong> nasociliary n., branch <strong>of</strong> ophthalmic<br />

devision <strong>of</strong> CN V)<br />

Functions to widen/elevate palpebral fissure<br />

Well described in cat, poorly described in horse, even less<br />

described in o<strong>the</strong>r species<br />

Musculature – Levator anguli oculi medialis<br />

<strong>and</strong> Frontalis<br />

Both eyelid elevators<br />

Both muscles muscles innervated by CN VII – palpebral palpebral branch<br />

branch<br />

LAOM - also known as <strong>the</strong> corrugator supercilia<br />

Small muscle that arises caudodorsal<br />

to <strong>the</strong> medial commissure<br />

Contraction raises <strong>the</strong> medial<br />

portion <strong>of</strong> upper eyelid<br />

In <strong>the</strong> horse, gives rise to<br />

a prominent lid notch<br />

31


Musculature –<br />

Retractor anguli oculi lateralis<br />

Located parallel <strong>and</strong> superficial to lateral palpebral<br />

ligament<br />

ligament<br />

Innervated by zygomatic branch <strong>of</strong> CN VII<br />

Functions to draw <strong>the</strong> lateral canthus posteriorly<br />

<strong>and</strong> laterally when eyelids close<br />

Musculature –<br />

Pars palpebralis <strong>of</strong> <strong>the</strong> m. sphincter colli<br />

pr<strong>of</strong>undus (or <strong>the</strong> Malaris muscle)<br />

Consists <strong>of</strong> several delicate straps <strong>of</strong> muscle which<br />

originate i i t near <strong>the</strong> th ventral t l midline idli <strong>and</strong> d course dorsally d ll to t<br />

insert on <strong>the</strong> lower eyelid<br />

Ventral portion lies deep to <strong>the</strong> platysma<br />

Dorsal portion is subcutaneous <strong>and</strong> close to eyelid skin<br />

Innervated by buccal branches <strong>of</strong> <strong>of</strong> CN VII<br />

Functions to depress <strong>the</strong> lower eyelid<br />

32


Eyelid Musculature<br />

MUSCLE INNERVATION FUNCTION<br />

Orbicularis Oculi<br />

(Horner’s <strong>and</strong> Riolan)<br />

CN VII<br />

(palpebral branch)<br />

Eyelid closure<br />

Aids lacrimal pump mechanism<br />

Levator palpebrae superioris CN III Maintain open pal. fissure<br />

Chief elevator <strong>of</strong> upper eyelid<br />

Müller’s muscle Sympa<strong>the</strong>tic N.S. Maintain open pal. fissure<br />

Elevates upper eyelid<br />

Frontalis (upper eyelid) CN VII<br />

(palpebral branch)<br />

Levator anguli oculi medialis<br />

CN VII<br />

( (corrugator supercilia) ili )<br />

(auriculopalpebral) eyelid<br />

Retractor anguli oculi lateralis CN VII<br />

(zygomatic branch <strong>of</strong><br />

auriculopalpebral)<br />

Malaris (lower eyelid) CN VII<br />

(dorsal buccal branch)<br />

Eyelid Gl<strong>and</strong>s<br />

Gl<strong>and</strong>s <strong>of</strong> Zeis <strong>and</strong> Moll<br />

Located in anterior lamella <strong>of</strong> eyelid<br />

Associated with eyelash cilia<br />

Secrete <strong>the</strong>ir contents around lash follicle shaft<br />

Zeis:<br />

Modified sebaceous gl<strong>and</strong>s<br />

Surround base <strong>of</strong> hair follicles<br />

Moll:<br />

Eccrine, or modified sweat gl<strong>and</strong>s<br />

Located just deep to <strong>the</strong> hair follicles<br />

Meibomian gl<strong>and</strong>s<br />

Maintain open pal. fissure<br />

Elevates upper eyelid<br />

Raises medial portion <strong>of</strong> superior<br />

eyelid<br />

Contraction during eyelid closure<br />

pulls lateral canthus posteriorly &<br />

laterally<br />

Maintain open pal. fissure<br />

Depresses lower lid<br />

Holocrine, sebaceous gl<strong>and</strong>s not associated with lash cilia<br />

Produce <strong>the</strong> lipid layer <strong>of</strong> <strong>the</strong> tear film<br />

Secretion may be partially under neural or homonal control<br />

Meibum contains waxy esters, sterols, triacylglycerols, cholesterols, polar lipids, free<br />

fatty acids<br />

Lower melting temp than seibum, thus liquid on ocular surface<br />

33


Eyelid Vasculature<br />

Well described in dog <strong>and</strong> horse<br />

In all species, variation exists between different animals<br />

– not all reports p identical, , but all similar<br />

References:<br />

Anatomy <strong>of</strong> <strong>the</strong> Equine Eye <strong>and</strong> Orbit: Histologic Structure <strong>and</strong><br />

Blood Supply <strong>of</strong> <strong>the</strong> Eyelids. BG Anderson, M Wyman. J Equine<br />

Med Surg 3, 4-9, 4 9, 1979<br />

Miller’s Anatomy <strong>of</strong> <strong>the</strong> Dog. Ed. HE Evans, GC Christensen.<br />

Saunders 1979<br />

Fundamentals <strong>of</strong> Veterinary Ophthalmology, 3 rd edition. DH<br />

Slatter Slatter. . Saunders 2001<br />

Eyelid Movement<br />

Most domestic species: superior lid is most mobile<br />

Innervation to levator palpebrae superioris m follows Hering’s<br />

law:<br />

Synergistic muscles receive simultaneous <strong>and</strong> equal<br />

innervation<br />

Motor neurons for levator m. arise from a single unpaired<br />

central caudal nucleus <strong>of</strong> <strong>the</strong> oculomotor complex, <strong>and</strong> a<br />

single motor neuron may innervate <strong>the</strong> levator m. bilaterally<br />

Hence, , any y supranuclear p input p into motor neuron influences<br />

BOTH levator muscles<br />

Clinical significance: When <strong>the</strong> levator on one side is weak,<br />

<strong>the</strong> lid on opposite side may be retracted in an unconscious<br />

attempt to elevate <strong>the</strong> ptotic lid<br />

34


Eyelid Movement<br />

Birds, many reptiles: inferior lid raises to meet superior<br />

Humans have ability to move eyebrows:<br />

Elevation: frontalis muscle<br />

Depression: orbicularis muscle in forced lid closure<br />

Drawn toge<strong>the</strong>r: corrugator supercili<br />

Is it time for lunch<br />

yet? I’m so hungry<br />

I could pass out…<br />

WHERE DO YOU PLACE YOUR EQUINE LAVAGE TUBES??<br />

Inferomedial Placement <strong>of</strong> a Single Single-Entry Entry<br />

Subpalpebral Lavage<br />

Lavage Tube for for Treatment Treatment <strong>of</strong><br />

<strong>of</strong><br />

Equine Eye Disease<br />

Veterinary Veterinary Ophthalmology<br />

Ophthalmology<br />

Volume 3 (2 (2-3), 3), pp 153 153-156, 156, September 2000<br />

Giuliano EA, Maggs D, Moore CP, et al<br />

35


Eyelid Movement - Blinking<br />

Types <strong>of</strong> eyelid closure:<br />

1. Spontaneous blinking<br />

Most common (15 / min humans)<br />

Lateral medial<br />

(part <strong>of</strong> lacrimal pump mechanism)<br />

# blinks / min % bilateral blinks<br />

Dog: 3-5 b/min 85%<br />

Cat: 1-5 b/min 70%<br />

Horse: 5-25 b/min 30%<br />

Pig: 10 b/min 90%<br />

Eyelid Movement - Blinking<br />

Types <strong>of</strong> eyelid closure:<br />

1. Spontaneous blinking<br />

2. Reflex blinking<br />

Elicited by sensory stimuli ( (cutaneous cutaneous touch, auditory<br />

signals, bright visual stimuli, ocular irritation)<br />

3. Controlled winking – learned response in humans<br />

4. Blepharospasm<br />

Forcible contraction <strong>of</strong> <strong>the</strong> orbicularis <strong>and</strong> muscles <strong>of</strong> <strong>the</strong><br />

brow IOP is raised<br />

Causes: idiopathic, ocular disease, neurodegenerative<br />

disorders (i.e. Parkinson dz dz)<br />

36


Topographical distribution:<br />

Originates in in <strong>the</strong> <strong>the</strong> anterior<br />

anterior<br />

ventromedial orbit<br />

Triangular in shape; covered<br />

with conjunctiva<br />

“T “T-shaped” shaped” hyaline cartilage<br />

Gl<strong>and</strong> <strong>of</strong> <strong>the</strong> third eyelid<br />

Function: Function:<br />

Function:<br />

Protects <strong>the</strong> globe<br />

Secretion <strong>and</strong> distribution <strong>of</strong><br />

tears<br />

Aid in removal <strong>of</strong> particulate<br />

matter from <strong>the</strong> eye<br />

Third Eyelid<br />

Nictitating Membrane, Palpebral Tertia Tertia, , Semilunar Fold <strong>of</strong> <strong>the</strong><br />

Conjunctiva, Plica Semilunaris Conjunctivae<br />

Movement - Passive<br />

Orbital Orbital tone<br />

Orbital fat<br />

Hydration status<br />

Exception - CATS<br />

Believed to have some<br />

smooth muscle <strong>and</strong><br />

sympa<strong>the</strong>tic sympa<strong>the</strong>tic innervation innervation to<br />

to<br />

<strong>the</strong>ir 3 rd eyelid movement<br />

Nictitans (3 rd Eyelid) – Anatomy &<br />

<strong>Physiology</strong><br />

Gl<strong>and</strong> <strong>of</strong> <strong>the</strong> 3 rd Eyelid<br />

E Encompasses b base <strong>of</strong> f cartilage til<br />

Seromucous secretions in dog (serous in horses) exit<br />

through ducts open in <strong>the</strong> posterior aspect <strong>of</strong> <strong>the</strong> TE<br />

between lymphoid follicles<br />

Important Important contributor to basal tear production<br />

production<br />

37


Mucosa-Associated Lymphoid Tissue (MALT)<br />

A distinct network <strong>of</strong> diffuse aggregates <strong>of</strong><br />

lymphoid lymphoid tissue tissue located located in in various various mucosal mucosal surfaces<br />

surfaces<br />

Gut (GALT)<br />

Bronchus (BALT)<br />

Conjunctiva (CALT)<br />

Nasal mucosa (NALT)<br />

Steven P, Gebert A. Conjunctiva-associated Conjunctiva associated lymphoid<br />

tissue – current knowledge, animal models <strong>and</strong><br />

experimental prospects Ophthalmol Res 2009; 42: 22-8<br />

Morphological evidence <strong>of</strong> M cells in<br />

healthy canine conjunctiva-associated<br />

lymphoid tissue<br />

EA Giuliano, CP Moore, TE Phillips<br />

Graefe’s Arch Clin Exp Ophthalmol (2002) 240:220-226<br />

Characterization <strong>of</strong> membranous (M) cells in<br />

normal feline conjunctiva conjunctiva-associated associated lymphoid<br />

tissue (CALT)<br />

EA Giuliano, K Finn<br />

Veterinary Ophthalmology (2011) 14, Supplement 1, 60–66<br />

38


Roitt, I., et al; Immunology, 5 th ed, 1998<br />

MICROFOLD (M) CELLS<br />

Morphologic characteristics:<br />

A less elaborate apical cell surface with small<br />

microvilli microvilli <strong>and</strong> <strong>and</strong> micr<strong>of</strong>olds<br />

micr<strong>of</strong>olds<br />

An invaginated basolateral membrane forming a<br />

cytoplasmic pocket containing lymphocytes,<br />

macrophages, & dendritic cells<br />

A diminished distance between <strong>the</strong> apical <strong>and</strong><br />

pocket membrane to enable more efficient<br />

transcytosis<br />

Located in <strong>the</strong> Follicle Associated Epi<strong>the</strong>lium<br />

(FAE) overlying organized immune cells<br />

39


SIGNIFICANCE <strong>of</strong> M-CELLS M CELLS<br />

Gut Gut-Associated Associated Lymphoid Tissue (GALT)<br />

Exploited by infectious agents<br />

Preferential binding <strong>and</strong> translocation <strong>of</strong><br />

antigens across <strong>the</strong> mucosal barrier with<br />

subsequent delivery to underlying antigen<br />

presenting cells<br />

Shigella Shigella, , Salmonella, Yersinia Yersinia, ,<br />

Campylobacter, Vibrio Vibrio, , E. coli, polio, HIV<br />

(Neutra Neutra et al., 1996; Sansonetti & Phalipon Phalipon, , 1999)<br />

Thank you!<br />

Enjoy Eye Camp, 2012<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!