22.06.2013 Views

Thermo Scientific Molecular Biology Solutions 2012 - 2013 - Biocenter

Thermo Scientific Molecular Biology Solutions 2012 - 2013 - Biocenter

Thermo Scientific Molecular Biology Solutions 2012 - 2013 - Biocenter

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Thermo</strong> <strong>Scientific</strong> <strong>Molecular</strong> <strong>Biology</strong> <strong>Solutions</strong><br />

<strong>2012</strong> - <strong>2013</strong>


supporting<br />

great science<br />

through innovation<br />

in molecular biology<br />

ABgene<br />

PCR | qPCR<br />

Dharmacon<br />

RNAi | Synthetic RNA<br />

Fermentas<br />

Enzymes | <strong>Molecular</strong> biology tools<br />

Finnzymes<br />

PCR | qPCR<br />

Open Biosystems<br />

RNAi | Gene Expression<br />

For years these names represented leading technology,<br />

reliable results and superior service. Our innovations<br />

produced novel restriction enzymes, the highest fidelity<br />

polymerases and most specific siRNAs. Today, the<br />

people behind our expanding <strong>Thermo</strong> <strong>Scientific</strong> research<br />

portfolio remain committed to supporting your research<br />

and making it even easier for you to do great science.<br />

Our Passion – Your Results


II<br />

<strong>Solutions</strong> for <strong>Molecular</strong> <strong>Biology</strong><br />

<br />

products meet or exceed the industry’s top quality control requirements and provide performance, reliability and<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

GeneJET Purification<br />

Kits:<br />

– Plasmid DNA<br />

– Genomic DNA<br />

– Total RNA<br />

<br />

An advanced line of 176 restriction enzymes designed for rapid 5-15 minute DNA digestion in the universal FastDigest buffer<br />

<br />

Efficient isolation and purification of DNA and RNA from various sources<br />

<br />

All-purpose universal DNA ladders for accurate DNA sizing and in-gel quantification<br />

<br />

Highly purified dNTPs, NTPs and modified nucleotides for direct use in enzymatic reactions<br />

<br />

Fail-safe cloning of PCR products produced with any DNA polymerase<br />

www.thermoscientific.com/onebio<br />

<br />

<br />

FastDigest<br />

Restriction Enzymes<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

GeneJET PCR<br />

Purification Kit<br />

<br />

Extraction Kit<br />

<br />

<br />

<br />

FastAP Alkaline<br />

Phosphatase<br />

<br />

Repair Kit<br />

<br />

<br />

<br />

<br />

<br />

CloneJET PCR<br />

Cloning Kit<br />

<br />

<br />

<br />

<br />

and Expression


In Vitro <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Find out more about <strong>Thermo</strong> <strong>Scientific</strong> products at<br />

www.thermoscientific.com/onebio<br />

1-233<br />

235-275<br />

277-299<br />

301-323<br />

325-339<br />

341-351<br />

353-383<br />

385-395<br />

397-403<br />

405-417<br />

419-427<br />

428-473<br />

474-495<br />

www.thermoscientific.com/onebio III


IV<br />

<br />

<strong>Solutions</strong> for <strong>Molecular</strong> <strong>Biology</strong> III<br />

IV<br />

VIII<br />

IX<br />

<br />

<br />

<br />

A new standard in DNA digestion2<br />

<br />

<br />

<br />

5<br />

7<br />

8<br />

8<br />

9<br />

<br />

72<br />

72<br />

72<br />

72<br />

72<br />

<br />

77<br />

77<br />

77<br />

<br />

78<br />

82<br />

158<br />

158<br />

158<br />

158<br />

158<br />

158<br />

158<br />

159<br />

159<br />

<br />

<br />

Recommended Reaction Conditions 161<br />

165<br />

Double Digestion in Universal Tango 166<br />

Digestion of Agarose-Embedded DNA168<br />

Cleavage Efficiency Close to the Termini of PCR Fragments 169<br />

<br />

<br />

171<br />

171<br />

171<br />

172<br />

<br />

<br />

175<br />

176<br />

www.thermoscientific.com/onebio<br />

179<br />

<br />

<br />

<br />

Compatible DNA Ends<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

217<br />

<br />

<br />

<br />

<br />

<br />

<br />

221<br />

<br />

222<br />

<br />

222<br />

<br />

<br />

<br />

226<br />

228<br />

<br />

228<br />

229<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

– <br />

<br />

<br />

251<br />

252<br />

Bsm


255<br />

E.coli 256<br />

T.maritima 257<br />

258<br />

259<br />

<br />

261<br />

262<br />

<br />

<br />

265<br />

266<br />

267<br />

268<br />

268<br />

269<br />

<br />

<br />

271<br />

272<br />

<br />

<br />

<br />

<br />

275<br />

<br />

<br />

278<br />

279<br />

279<br />

281<br />

<br />

282<br />

285<br />

286<br />

287<br />

288<br />

289<br />

<br />

291<br />

dam – dcm – 291<br />

291<br />

291<br />

292<br />

292<br />

292<br />

292<br />

<br />

<br />

<br />

295<br />

295<br />

295<br />

<br />

295<br />

296<br />

E.coli 296<br />

296<br />

297<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

mouse tails with Proteinase K <br />

<br />

eukaryotic cells with Proteinase K <br />

<br />

<br />

<br />

diluted solutions with Glycogen <br />

in vitro transcription <br />

<br />

<br />

<br />

in vitro<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

in vitro transcription <br />

<br />

In vitro transcription <br />

<br />

specific activity <br />

<br />

<br />

<br />

www.thermoscientific.com/onebio V


VI<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

in vitro transcription <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

GeneRuler <br />

GeneRuler <br />

GeneRuler <br />

GeneRuler <br />

GeneRuler <br />

GeneRuler <br />

GeneRuler <br />

GeneRuler <br />

GeneRuler <br />

GeneRuler <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

FastRuler <br />

FastRuler <br />

FastRuler <br />

FastRuler <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

www.thermoscientific.com/onebio<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

different electrophoresis conditions <br />

<br />

<br />

<br />

<br />

<br />

RiboRuler <br />

RiboRuler <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

molecular biology grade


molecular biology grade<br />

<br />

<br />

<br />

<br />

<br />

molecular biology grade<br />

<br />

<br />

<br />

<br />

6 <br />

4 <br />

5 <br />

<br />

<br />

<br />

<br />

Transcription Promoter Primers<br />

18 <br />

<br />

<br />

<br />

Water <br />

<br />

<br />

<br />

<br />

<br />

<br />

2 <br />

,<br />

molecular biology grade <br />

<br />

,<br />

molecular biology grade <br />

<br />

<br />

Glycogen, molecular biology grade <br />

Glycogen, RNA grade<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

TopVision Agarose<br />

TopVision <br />

<br />

<br />

<br />

E.coli <br />

<br />

<br />

<br />

X174 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Codons and Assigned Amino Acids <br />

<br />

Amino Acids <br />

<br />

Physical Constants of the Nucleoside Triphosphates<br />

and Related Compounds <br />

<br />

Common Conversions of Nucleic Acids <br />

<br />

<br />

<br />

<br />

General Physical Constants <br />

Temperature Dependence of the pH for<br />

<br />

Decay Factors for Calculating the Amount of Radioactivity <br />

<br />

Periodic Table of the Elements<br />

Commonly Used Abbreviations <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

www.thermoscientific.com/onebio VII


VIII<br />

<br />

<br />

<br />

<br />

international distributors can be found at:<br />

<br />

For orders, quotations or any other information, please contact your local<br />

<br />

<br />

<br />

<br />

<br />

<br />

All products in this catalog have been developed and are sold exclusively<br />

for research purposes and in vitro <br />

tested for use in diagnostics or drug development, nor are they suitable<br />

<br />

<br />

<br />

<br />

<br />

<br />

supplied with a Certificate of Analysis that includes the expiry date of the<br />

<br />

However, if a product fails to meet the performance standards stated<br />

<br />

<br />

<br />

Please note that except for the aforementioned quality warranty, <strong>Thermo</strong><br />

<br />

or implied, as to the merchantability or fitness of any product for any<br />

particular use, or non-infringement of third party patent by use of any<br />

<br />

<br />

<br />

<br />

To the full extent permitted by applicable law, in no event shall <strong>Thermo</strong><br />

be liable for any direct, indirect, incidental, special, punitive<br />

<br />

<br />

from , the purchaser acknowledges and agrees that<br />

the sole remedy of any claim by it or for it is free replacement of product<br />

<br />

shall hold harmless against any claim resulting<br />

<br />

www.thermoscientific.com/onebio<br />

<br />

The information presented herein is accurate and reliable to the best of our<br />

<br />

be construed as recommending any practice or any product in violation of<br />

<br />

<br />

specific purpose and to adopt such safety precautions as may be necessary<br />

<br />

<br />

<br />

<br />

mixes, reagents and DNA solutions retain their activity for at least three<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

customers in an on-site freezer program, either in a laboratory or common<br />

<br />

<br />

<br />

In addition to the product information presented in this product guide,<br />

you can find the most up-to-date product information in the Certificate of<br />

Analysis that is provided with each product and at<br />

<br />

If you need further help, please do not hesitate to contact your local<br />

<br />

<br />

<br />

<br />

scientists will be happy to share the benefit of our experience and<br />

<br />

suggestions are always welcome because they help us to better meet


experience enable us to produce the highest quality products for pharmaceutical, molecular<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Development of bacterial expression systems<br />

In vitro <br />

Purification of native and recombinant proteins<br />

Plasmid DNA preparation (pharmaceutical grade meeting FDA and EU guidelines,<br />

<br />

RNA production and purification<br />

Process development<br />

DNA and RNA ladders<br />

Processing of nucleic acids by enzymes<br />

<br />

DNA and RNA ladders and markers,<br />

dNTPs, NTPs and modified nucleotides,<br />

DNA and RNA polymerases,<br />

<br />

Restriction enzymes,<br />

Products for:<br />

– molecular cloning,<br />

– nucleic acid purification,<br />

– protein purification and analysis,<br />

– molecular labeling and detection,<br />

– in vitro <br />

<br />

<br />

<br />

<br />

<br />

<br />

and widely use our unique highest sensitivity tests that are able to assess for trace nuclease<br />

<br />

<br />

<br />

Products are supplied with a certificate of analysis detailing the conditions and results of quality<br />

<br />

<br />

We welcome your requests by email: <br />

www.thermoscientific.com/onebio IX


The PyMOL <strong>Molecular</strong> Graphics System, Version 1.5.0.4 Schrödinger, LLC.<br />

X www.thermoscientific.com/onebio


<strong>Thermo</strong> <strong>Scientific</strong> FastDigest &<br />

Conventional Restriction Enzymes<br />

FastDigest Restriction Enzymes..................................................................................... 2<br />

FastDigest and Conventional Restriction Enzymes..................................................... 4<br />

Quality Control ................................................................................................................. 4<br />

Labeled Oligonucleotide (LO) Test .................................................................................. 4<br />

Navigation Guide .............................................................................................................. 5<br />

Description of Icons ......................................................................................................... 7<br />

Activity and Quality Control Assays ............................................................................... 8<br />

Storage and Shipping ...................................................................................................... 8<br />

Product List ...................................................................................................................... 9<br />

Product Description ....................................................................................................... 13<br />

Protocols and Recommendations ................................................................................. 72<br />

1.1. Fast DNA digestion ................................................................................................ 72<br />

1.2. Reaction set-up for digestion of multiple DNA samples ........................................... 72<br />

1.3. Double and multiple digestion of DNA .................................................................... 72<br />

1.4. Scaling up DNA digestion reaction ......................................................................... 72<br />

Reaction Conditions ....................................................................................................... 73<br />

Conventional Restriction Enzymes ............................................................................... 77<br />

Activity and Quality Control Assays ............................................................................. 77<br />

Storage and Shipping .................................................................................................... 77<br />

Product List and Cross-reference to FastDigest Restriction Enzymes ..................... 78<br />

Product Description ....................................................................................................... 82<br />

Nicking Enzymes ....................................................................................................... 155<br />

Homing Enzyme ......................................................................................................... 157<br />

Protocols and Recommendations ............................................................................... 158<br />

1.5. DNA digestion .................................................................................................... 158<br />

1.6. Digestion of PCR products .................................................................................. 158<br />

1.7. Setting up double digestion ................................................................................. 158<br />

1.8. Stability during prolonged incubation ................................................................... 158<br />

1.9. Dilution of restriction enzymes ............................................................................. 158<br />

1.10. Partial digestion of DNA..................................................................................... 158<br />

1.11. Digestion of agarose-embedded DNA ................................................................. 159<br />

1.12. Inactivation of restriction enzymes ..................................................................... 159<br />

Reaction Conditions ..................................................................................................... 160<br />

Reaction Buffers ........................................................................................................ 160<br />

Recommended Reaction Conditions ........................................................................... 161<br />

Activity of Mesophilic and <strong>Thermo</strong>philic Enzymes at 37°C ........................................... 165<br />

Double Digestion in the Universal Tango Buffer ........................................................... 166<br />

Digestion of Agarose-Embedded DNA ........................................................................ 168<br />

Cleavage Efficiency Close to the Termini of PCR Fragments ......................................... 169<br />

Cleavage of Restriction Targets Located in Close Vicinity<br />

within pUC19 Multiple Cloning Site ............................................................................. 170<br />

Common Properties ........................................................................................................ 171<br />

Classification of Restriction Enzymes ....................................................................... 171<br />

Site Preferences by Restriction Enzymes .................................................................. 171<br />

Star Activity .................................................................................................................. 172<br />

Digestion of Methylated DNA ...................................................................................... 173<br />

Effect of Dam Methylation on DNA Cleavage ................................................................174<br />

Effect of Dcm Methylation on DNA Cleavage ............................................................... 175<br />

Effect of CpG Methylation on DNA Cleavage ............................................................... 176<br />

Effect of EcoKI and EcoBI Methylation on DNA Cleavage ............................................. 179<br />

Newly Generated Cleavage Sites ................................................................................ 180<br />

Recognition Sites Resulting from Ligation of Blunt DNA Ends ....................................... 180<br />

Recognition Sites Resulting from Ligation of Protruding Compatible DNA Ends ............. 190<br />

Recognition Sites Resulting from Fill-in of 5’-overhang and Self-ligation.......................200<br />

Recognition Sites Resulting from Removal of 3’-overhang and Self-ligation ..................204<br />

Selection Guides ..............................................................................................................205<br />

Alphabetic List of Commercially Available Restriction Enzymes ............................205<br />

Alphabetic List of Recognition Sequences ................................................................ 217<br />

Enzyme Recognizing 2 bp Long Targets ....................................................................220<br />

Alphabetic List of Enzymes Recognizing 4 bp Long Targets ....................................220<br />

Alphabetic List of Enzymes Recognizing 5 bp Long Targets ....................................220<br />

Alphabetic List of Enzymes Recognizing 6 bp Long Targets .................................... 221<br />

Alphabetic List of Enzymes Recognizing 7 bp Long Targets ....................................222<br />

Alphabetic List of Enzymes Recognizing 8 bp Long Targets ....................................222<br />

Commercial Restriction Enzymes Generating 5’-protruding Ends ..........................223<br />

Commercial Restriction Enzymes Generating 3’-protruding Ends ..........................226<br />

Commercial Restriction Enzymes Generating Blunt Ends ........................................228<br />

Commercial Restriction Enzymes Cleaving DNA on the Both Sides<br />

of their Recognition Sequence ....................................................................................228<br />

Troubleshooting Guide ...................................................................................................229<br />

Useful webtools:<br />

www.thermoscientific.com/ReSearch<br />

www.thermoscientific.com/DoubleDigest<br />

www.thermoscientific.com/REviewer<br />

Find out more<br />

about FastDigest<br />

Restriction Enzymes:<br />

www.thermoscientific.com/fd<br />

www.thermoscientific.com/onebio 1


2<br />

<strong>Thermo</strong> <strong>Scientific</strong> FastDigest Restriction Enzymes<br />

A new standard in DNA digestion<br />

<strong>Thermo</strong> <strong>Scientific</strong> FastDigest enzymes<br />

are an advanced line of restriction<br />

enzymes designed for rapid DNA<br />

digestion. During our 30 years of<br />

restriction enzyme research, we<br />

compiled one of the largest collections<br />

of restriction enzyme producing<br />

bacterial strains in the industry.<br />

Our large selection of enzyme<br />

isoschizomers and state-of-the-art<br />

production site facilitated the creation<br />

of the unique system of 176 FastDigest<br />

restriction enzymes. All FastDigest<br />

enzymes are 100% active in the<br />

universal FastDigest and FastDigest<br />

Green reaction buffers and are<br />

able to digest DNA in 5-15 minutes.<br />

This enables any combination of<br />

FastDigest restriction enzymes to work<br />

simultaneously in one tube eliminating<br />

the need for sequential digestions and<br />

buffer compatibility charts. As an added<br />

convenience, the FastDigest Green<br />

buffer allows for direct loading of the<br />

reaction mixture on gels.<br />

FastDigest enzymes are qualified for<br />

complete digestion of plasmid DNA,<br />

genomic DNA, viral DNA and PCR<br />

products.<br />

www.thermoscientific.com/onebio<br />

Features<br />

100% activity of all FastDigest enzymes in<br />

the universal buffer<br />

100% buffer compatibility with downstream<br />

applications<br />

Complete digestion in 5-15 minutes<br />

Direct loading on gel<br />

No star activity<br />

176 FastDigest enzymes available<br />

30 Years of Restriction Enzyme Research<br />

and Experience<br />

<br />

<br />

discovered<br />

<br />

cloned<br />

<br />

<br />

direct gel loading<br />

Old Standard<br />

Conventional restriction<br />

enzymes<br />

New Standard<br />

FastDigest restriction<br />

enzymes<br />

Buffer system Up to 20 buffers One universal buffer<br />

Buffer change between enzymatic steps Frequently necessary Not necessary<br />

Double/multiple restriction digestion Limited to buffer<br />

Unlimited – all 176 enzymes<br />

incompatibility<br />

are 100% active in the<br />

universal buffer<br />

Reaction time for plasmid DNA,<br />

genomic DNA, PCR product<br />

1 hour – overnight 5-15 min<br />

Direct loading of reaction mixture on gels No Yes<br />

Compatibility with downstream applications Partial 100%<br />

Star activity Dependent on enzyme<br />

properties and reaction<br />

conditions<br />

Activity definition 1 unit of enzyme hydrolyzes<br />

1μg of lambda DNA in 60<br />

minutes in an optimal buffer<br />

for an enzyme<br />

Find out<br />

more at:<br />

www.thermo<br />

scientific.com/fd<br />

No star activity due to short<br />

incubation time<br />

1μl of FastDigest enzyme<br />

cleaves 1μg of substrate<br />

DNA in 5 or 15 minutes in<br />

FastDigest buffer


No star activity<br />

FastDigest enzymes are designed to eliminate<br />

“star” activity:<br />

<br />

the need for prolonged digestions<br />

<br />

concentration, 100% compatible with all 176<br />

FastDigest enzymes<br />

<br />

concentrations<br />

Conventional restriction enzymes may display<br />

“star” or “relaxed” activity due to prolonged<br />

incubation times, high enzyme and/or glycerol<br />

concentration, high pH values or low ionic<br />

strength. By addressing all these issues,<br />

FastDigest enzymes enable single, double and<br />

even triple digestion in 5 minutes without any<br />

signs of “star” activity.<br />

100% activity of all FastDigest enzymes<br />

in the universal buffer:<br />

<br />

buffer for any combination of enzymes<br />

<br />

changes<br />

M 1 2 3 4 M<br />

Five minute triple digestion in the<br />

FastDigest Green Reaction Buffer<br />

1. plasmid – DNA undigested control<br />

2. plasmid – DNA digested with FastDigest EcoRI<br />

3. plasmid – DNA double digested with FastDigest<br />

EcoRI and FastDigest KpnI<br />

4. plasmid – DNA triple digested with FastDigest<br />

EcoRI, FastDigest KpnI and FastDigest SmaI<br />

M. marker – <strong>Thermo</strong> <strong>Scientific</strong> GeneRuler Express<br />

Ladder #SM1553<br />

Visit:<br />

www.thermo<br />

scientific.com/<br />

REviewer<br />

100% buffer compatibility with<br />

downstream applications<br />

<br />

FastDigest and FastDigest Green Buffer<br />

<br />

be added directly to the restriction digestion<br />

reaction mixture<br />

<br />

steps<br />

DNA/RNA modifying<br />

enzyme<br />

DNA Polymerase I, E.coli 100%<br />

Klenow Fragment 100%<br />

Klenow Fragment, exo 100%<br />

T4 DNA Polymerase 100%<br />

T7 DNA Polymerase 100%<br />

T4 DNA Ligase* 75-100%<br />

FastAP <strong>Thermo</strong>sensitive<br />

Alkaline Phosphatase<br />

Activity in<br />

FastDigest Green<br />

Buffer/FastDigest<br />

Buffer<br />

100%<br />

T4 Polynucleotide Kinase 100%<br />

* 0.5 mM ATP is required for T4 DNA Ligase activity<br />

Useful web<br />

tool REsearch:<br />

Find restriction<br />

enzymes either by name<br />

or recognition<br />

sequence<br />

Useful web<br />

tool REviewer:<br />

DNA sequence analysis,<br />

plasmid map creation<br />

and biochemical<br />

calculations<br />

Direct loading on gels<br />

The 10X FastDigest Green Buffer includes<br />

a density reagent and two tracking dyes for<br />

direct loading of digestion reaction products<br />

on gels. The blue dye migrates with 3-5 kb<br />

DNA fragments in a 1% agarose gel and has<br />

an excitation peak of 424 nm. The yellow dye<br />

migrates faster than 10 bp DNA fragments in<br />

a 1% agarose gel and has an excitation peak<br />

of 615 nm.<br />

Visit:<br />

www.thermo<br />

scientific.com/<br />

REsearch<br />

1 2<br />

FastDigest Green Buffer<br />

Reaction mixture containing<br />

FastDigest Green Buffer:<br />

1. Loaded into gel well,<br />

before electrophoresis<br />

2. Resolved in the gel, after<br />

electrophoresis<br />

3-5 kb<br />

10 bp<br />

www.thermoscientific.com/onebio 3


4<br />

FastDigest and Conventional Restriction Enzymes<br />

Restriction enzymes recognize specific<br />

nucleotide sequences and cleave DNA<br />

molecules at a position either within or outside<br />

their recognition site. These enzymes are<br />

important tools for numerous applications,<br />

including studies of DNA primary structure and<br />

recombinant DNA technology. The best studied<br />

and the most widely used are type II restriction<br />

endonucleases. More than 3800 type II<br />

restriction enzymes, exhibiting almost 290<br />

Quality Control<br />

<strong>Thermo</strong> <strong>Scientific</strong> Restriction enzymes are<br />

produced in clean room class D facilities under<br />

the ISO 9001:2008 quality management<br />

system and are subjected to extensive<br />

quality control.<br />

<strong>Thermo</strong> <strong>Scientific</strong> restriction enzymes<br />

pass all industry standard quality control<br />

assays, as well as the unique Labeled<br />

<br />

most sensitive test for the detection of<br />

trace activities of endodeoxyribonucleases,<br />

exodeoxyribonucleases and phosphatases<br />

see <br />

A warranty is assigned and an expiry date<br />

is listed both on the product label and in the<br />

Certificate of Analysis supplied with each<br />

product. Product lots are monitored to meet<br />

the quality specifications up to the expiry date.<br />

Labeled Oligonucleotide (LO)<br />

Test<br />

The Labeled Oligonucleotide Test was designed<br />

for detection of trace contaminating activities<br />

in enzyme, nucleotide and reagent solutions.<br />

This unique test allows us to detect trace<br />

activities of endo-, exodeoxyribonucleases<br />

and phosphatases in enzyme preparations.<br />

Therefore we are able to bring to the market<br />

only highest quality and performance products.<br />

Single-stranded and double-stranded<br />

5’-[ 32 P]-labeled synthetic oligonucleotides<br />

containing no recognition sites for restriction<br />

enzymes are used as substrates for the LO<br />

test. The labeled oligonucleotides are incubated<br />

with excess of restriction enzyme, separated<br />

on a polyacrylamide gel under denaturing<br />

conditions and analyzed by phospho-imaging.<br />

www.thermoscientific.com/onebio<br />

different specificities, have been isolated.<br />

Since 1977, we have discovered approximately<br />

30% of all known restriction enzymes. We are a<br />

leading global enzyme manufacturer, supplying<br />

both conventional restriction enzymes and<br />

innovative restriction enzyme line for rapid DNA<br />

digestion in one universal buffer – FastDigest<br />

restriction enzymes. We offer 176 FastDigest<br />

and 190 conventional restriction enzymes.<br />

The presence of contaminating endo- and<br />

exodeoxyribonucleases results in the degradation<br />

of the labeled substrates, while decreased<br />

specific radioactivity indicates the presence<br />

of contaminant phosphatases. The restriction<br />

enzyme passes this quality control test if there is<br />

neither degradation of labeled oligonucleotides<br />

nor a decrease in specific radioactivity.<br />

Labeled Oligonucleotide (LO) Test.<br />

ss – single-stranded radiolabeled oligonucleotide<br />

ds – double-stranded radiolabeled oligonucleotide<br />

Pure enzyme – <strong>Thermo</strong> <strong>Scientific</strong> NotI<br />

Contaminated enzyme – competitor’s NotI<br />

Labeled Oligonucleotide Test<br />

Radiolabeled ss and ds oligonucleotides<br />

mixed with an excess of enzyme<br />

Control<br />

Incubated at 37°C for 4 hours<br />

Denatured and separated by PAGE<br />

Band pattern imaged and analyzed<br />

Patterns Typical for:<br />

Pure<br />

enzyme<br />

Contaminated<br />

enzyme<br />

ss ds ss ds ss ds<br />

Degradation due<br />

to contamination<br />

with non-specific<br />

nucleases


Navigation Guide<br />

Table 1.1. <strong>Thermo</strong> <strong>Scientific</strong> FastDigest and conventional restriction enzymes.<br />

To find or select a restriction enzyme Page<br />

By name<br />

By recognition sequence<br />

By number of recognition sites<br />

in DNA<br />

By type of generated DNA ends<br />

By cleavage efficiency close to<br />

DNA termini<br />

By sensitivity to DNA methylation<br />

By newly generated recognition<br />

sites<br />

Table 1.2. <strong>Thermo</strong> <strong>Scientific</strong> FastDigest restriction enzymes 2<br />

Table 1.4. <strong>Thermo</strong> <strong>Scientific</strong> conventional restriction enzymes 78<br />

Table 1.25. Commercially available restriction enzymes 205<br />

On-line. REsearch at www.thermoscientific.com/research<br />

Table 1.26. Recognition sequences of restriction enzymes 217<br />

Table 1.27. Enzyme recognizing 2 bp long targets 220<br />

Table 1.28. Enzymes recognizing 4 bp long targets 220<br />

Table 1.29. Enzymes recognizing 5 bp long targets 220<br />

Table 1.30. Enzymes recognizing 6 bp long targets 221<br />

Table 1.31. Enzymes recognizing 7 bp long targets 222<br />

Table 1.32. Enzymes recognizing 8 bp long targets 222<br />

On-line. REsearch at www.thermoscientific.com/research<br />

Table 12.15. Number of recognition sites in DNA molecules 457<br />

Appendix. Phage and plasmid DNA 432<br />

On-line. REviewer at www.thermoscientific.com/reviewer<br />

Table 1.33. Commercial restriction enzymes generating 5’-protruding ends 223<br />

Table 1.34. Commercial restriction enzymes generating 3’-protruding ends 226<br />

Table 1.35. Commercial restriction enzymes generating blunt ends 228<br />

Table 1.36. Commercial restriction enzymes cleaving DNA on the both sides of their recognition sequence 228<br />

On-line. REsearch at www.thermoscientific.com/research<br />

Table 1.3. Reaction conditions for <strong>Thermo</strong> <strong>Scientific</strong> FastDigest restriction enzymes 73<br />

Table 1.10. Cleavage efficiency close to the termini of PCR fragments 169<br />

Table 1.11. Cleavage of restriction targets located in close vicinity within pUC19 multiple cloning site 170<br />

Table 1.12. <strong>Thermo</strong> <strong>Scientific</strong> isoschizomers and neoschizomers with differing sensitivities to target methylation 173<br />

Table 1.13, Table 1.14. Effect of Dam methylation 174<br />

Table 1.15, Table 1.16. Effect of Dcm methylation 175<br />

Table 1.17, Table 1.18. Effect of CpG methylation 176<br />

Table 1.19, Table 1.20. Effect of EcoBI and EcoKI methylation 179<br />

Table 1.21. Newly generated recognition sites resulting from ligation of blunt DNA ends 180<br />

Table 1.22. Newly generated recognition sites resulting from ligation of protruding compatible DNA ends 190<br />

Table 1.23. Newly generated recognition sites resulting from fill-in of 5’-overhang and self-ligation 200<br />

Table 1.24. Newly generated recognition sites resulting from removal of 3’-overhang and self-ligation 204<br />

www.thermoscientific.com/onebio 5


6<br />

To perform fast digestion of DNA in universal FastDigest buffer<br />

Fast DNA digestion reaction set-up Protocols and recommendations for fast DNA digestion 72<br />

Digestion of different DNA substrates<br />

Digestion close to DNA termini<br />

Inactivation of enzyme after digestion<br />

www.thermoscientific.com/onebio<br />

Table 1.3. Reaction conditions for <strong>Thermo</strong> <strong>Scientific</strong> FastDigest restriction enzymes 73<br />

Incubation time without star activity<br />

Compatibility of FastDigest enzyme buffer with downstream<br />

applications<br />

2.1. Activity of DNA/RNA modifying enzymes in <strong>Thermo</strong> <strong>Scientific</strong> buffers 274<br />

Troubleshooting Table 1.37. Troubleshooting guide for DNA digestion 230<br />

To perform DNA digestion with conventional restriction enzymes<br />

DNA digestion reaction set-up Protocols and recommendations for DNA digestion with conventional restriction enzymes 158<br />

Double/multiple digestion of DNA<br />

Reaction conditions for individual enzymes<br />

Digestion close to DNA termini<br />

On-line. DoubleDigest at www.thermoscientific.com/doubledigest<br />

Table 1.8. Double digestion in the universal Tango buffer 166<br />

Table 1.6. Reaction conditions for restriction enzymes 161<br />

Table 1.6. Reaction conditions for restriction enzymes 161<br />

Table 1.5. Reaction buffers for restriction enzymes 160<br />

Table 1.10. Cleavage efficiency close to the termini of PCR fragments 169<br />

Table 1.11. Cleavage of restriction targets located in close vicinity within pUC19 multiple cloning site 170<br />

Digestion of agarose-embeded DNA 1.11 Table 1.9. Digestion of agarose-embedded DNA 159<br />

Inactivation of enzyme after digestion<br />

1.12. Inactivation of restriction enzymes 159<br />

Table 1.6. Reaction conditions for restriction enzymes 161<br />

How to identify and avoid star activity Description of star activity of restriction enzymes 172<br />

Compatibility of conventional restriction enzyme buffers<br />

with downstream applications<br />

2.1. Activity of DNA/RNA modifying enzymes in <strong>Thermo</strong> <strong>Scientific</strong> buffers 274<br />

Partial digestion of DNA 1.10. Partial digestion of DNA 158<br />

How to dilute restriction enzymes 1.9. Dilution of restriction enzymes 158<br />

Stability during prolonged incubation Table 1.6. Reaction conditions for restriction enzymes 161<br />

Enzyme activity at non-optimal temperature Table 1.7. Activity of mesophilic and thermophilic enzymes at 37°C 165<br />

Troubleshooting guide Table 1.37. Troubleshooting guide for DNA digestion 230


Description of Icons<br />

15’<br />

20’<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;<br />

FastDigest Enzyme. Enzyme is available in FastDigest format see <br />

Buffers. Letters in the buffer icon indicate the recommended buffer for a specific restriction<br />

enzyme. FastDigest and FastDigest <br />

<br />

conventional restriction enzymes. The “Unique” icon indicates conventional restriction enzymes that<br />

require a special buffer, which is supplied with the enzyme see <br />

Additives. Indicates additives required to obtain the stated enzyme activity. <strong>Solutions</strong> of<br />

<br />

<br />

Incubation Temperature. <br />

Star Activity. see <br />

Sensitivity to Methylation. DNA cleavage by the restriction enzyme is blocked or impaired by<br />

Dam, Dcm or CpG methylation within the target sequences see <br />

Sensitivity to Overlapping Dam, Dcm or CpG Methylation. The target site may be methylated<br />

<br />

cleavage see <br />

Thermal Inactivation. see <br />

Thermal Inactivation. <br />

can be thermally inactivated.<br />

High Concentration. .<br />

Genome Qualified. see <br />

Recombinant Enzyme. Indicates enzymes purified from recombinant E.coli.<br />

LO Certified. Enzyme was tested by the see <br />

NEW for <strong>2012</strong>.<br />

www.thermoscientific.com/onebio 7


8<br />

Activity and Quality<br />

Control Assays<br />

Activity Assay<br />

1 μl of FastDigest enzyme is formulated to<br />

cleave 1 μg of substrate DNA in 5 or 15 min at<br />

recommended temperature in 1X FastDigest or<br />

1X FastDigest Green buffers. 1 μl of FastDigest<br />

restriction endonuclease corresponds to 1<br />

FastDigest <br />

In general, enzymes are assayed with phage<br />

DNA at 37°C. However, some exceptions apply:<br />

<br />

activity at temperatures other than 37°C are<br />

assayed under their optimal temperature.<br />

enzymes that do not have<br />

recognition sites on DNA are assayed with<br />

other specific DNA substrates, as indicated in<br />

the Certificates of Analysis.<br />

enzymes with only a few<br />

recognition sites on the DNA are assayed<br />

using DNA cut with another restriction<br />

enzyme.<br />

enzymes sensitive to Dam or Dcm<br />

methylation are assayed using DNA purified<br />

from dam – , dcm – strain of E.coli.<br />

Quality Control<br />

Labeled Oligonucleotide (LO) Test<br />

1μl of FastDigest enzyme is incubated<br />

with 5’-[ 32P]-labeled single-stranded and<br />

double-stranded synthetic oligonucleotides<br />

in 1X FastDigest buffer for 1 hour at the<br />

recommended temperature. The restriction<br />

enzyme passes this quality control test if there<br />

is no degradation of labeled oligonucleotides<br />

and no decrease in their specific radioactivity.<br />

Blue/White (B/W) Cloning Assay<br />

The B/W assay was replaced by LO test after<br />

validating experiments showed LO test ability to<br />

detect nuclease and phosphatase activities with<br />

sensitivity that equals to that of B/W test.<br />

www.thermoscientific.com/onebio<br />

Ligation and Recleavage (L/R) Assay<br />

The ligation and recleavage assay was replaced<br />

with LO test after validating experiments<br />

revealed LO test ability to trace nuclease and<br />

phosphatase activities with sensitivity that is<br />

higher than L/R test by a factor of 100.<br />

Prolonged Incubation /<br />

Star Activity Assay<br />

The star activity assay is designed to test<br />

alterations in the DNA digestion pattern after<br />

prolonged incubation with FastDigest enzymes.<br />

1 μl of FastDigest enzyme is incubated with<br />

1 μg of substrate DNA at the recommended<br />

temperature for up to 16 hours. After<br />

electrophoretic separation of the DNA<br />

fragments, the characteristic banding patterns<br />

are examined for alterations. The maximal<br />

incubation time that does not cause any star<br />

activity is indicated for each FastDigest enzyme<br />

in the product description and the Certificate of<br />

Analysis supplied with each enzyme.<br />

Storage and Shipping<br />

All FastDigest restriction enzymes should be<br />

stored at -20°C.<br />

During shipment on dry ice, enzymes may<br />

freeze. This does not affect their quality – all<br />

<strong>Thermo</strong> <strong>Scientific</strong> restriction enzymes are 100%<br />

active after at least three freeze-thaw cycles.<br />

For 24-48 hour delivery, enzymes may be<br />

shipped on blue ice since their quality is not<br />

affected by short exposure to 4°C.


Product List<br />

Table 1.2. FastDigest restriction enzymes.<br />

FastDigest<br />

restriction enzyme<br />

Prototype Specificity 5’3’ Cat. # Page<br />

FastDigest AatII AatII GACGTC FD0994 13<br />

FastDigest AccI AccI GTMKAC FD1484 13<br />

FastDigest Acc65I GGTACC FD0904 13<br />

FastDigest AciI AciI FD1794 14<br />

FastDigest AclI AclI AACGTT FD0944 14<br />

FastDigest AcuI Eco57I FD0344 14<br />

FastDigest AfeI Eco47III AGCGCT FD0324 15<br />

FastDigest AflII AflII CTTAAG FD0834 15<br />

FastDigest AgeI AgeI ACCGGT FD1464 15<br />

FastDigest AjuI AjuI 7 FD1954 16<br />

FastDigest AleI OliI CACNNNNGTG FD1634 16<br />

FastDigest AluI AluI AGCT FD0014 16<br />

FastDigest Alw21I HgiAI GWGCWC FD0024 17<br />

FastDigest Alw26I BsmAI FD0034 17<br />

FastDigest AlwNI AlwNI CAGNNNCTG FD1394 17<br />

FastDigest ApaI ApaI GGGCCC FD1414 18<br />

FastDigest ApaLI ApaLI GTGCAC FD0044 18<br />

FastDigest AscI AscI GGCGCGCC FD1894 18<br />

FastDigest AseI VspI ATTAAT FD0914 19<br />

FastDigest AsiSI SgfI GCGATCGC FD2094 19<br />

FastDigest AvaI AvaI CYCGRG FD0384 19<br />

FastDigest AvaII AvaII GGWCC FD0314 20<br />

FastDigest AvrII AvrII CCTAGG FD1564 20<br />

FastDigest BamHI BamHI GGATCC FD0054/5 20<br />

FastDigest BanI HgiCI GGYRCC FD1004 21<br />

FastDigest BbsI BbvII FD1014 21<br />

FastDigest BbvI BbvI FD2074 21<br />

FastDigest BclI BclI TGATCA FD0724 22<br />

FastDigest BfaI MaeI CTAG FD1764 22<br />

FastDigest BglI BglI GCCNNNNNGGC FD0074 22<br />

FastDigest BglII BglII AGATCT FD0083/4 23<br />

FastDigest BlpI EspI GCTNAGC FD0094 23<br />

FastDigest Bme1580I BseSI GKGCMC FD1444 23<br />

FastDigest BmtI GCTAGC FD2044 24<br />

FastDigest BplI BplI 5 FD1314 24<br />

FastDigest BpmI BpmI FD0464 24<br />

FastDigest Bpu10I Bpu10I FD1184 25<br />

FastDigest BsaAI BsaAI YACGTR FD1974 25<br />

FastDigest BsaBI BsaBI GATNNNNATC FD1414 25<br />

FastDigest BsaHI AcyI GRCGYC FD0474 26<br />

FastDigest BsaJI SecI CCNNGG FD1084 26<br />

FastDigest BseGI FD0874 26<br />

FastDigest BseNI BsrI FD0884 27<br />

FastDigest BseXI BbvI FD1454 27<br />

FastDigest Bsh1236I FnuDII CGCG FD0924 27<br />

<br />

www.thermoscientific.com/onebio 9


10<br />

Table 1.2. <strong>Thermo</strong> <strong>Scientific</strong> FastDigest restriction enzymes.<br />

FastDigest<br />

restriction enzyme<br />

Prototype Specificity 5’3’ Cat. # Page<br />

FastDigest BsiEI McrI CGRYCG FD0894 28<br />

FastDigest BsiWI SplI CGTACG FD0854 28<br />

FastDigest BslI BsiYI CCNNNNNNNGG FD1204 28<br />

FastDigest BsmBI Esp3I FD0454 29<br />

FastDigest BsmFI FinI FD1814 29<br />

FastDigest Bsp119I AsuII TTCGAA FD0124 29<br />

FastDigest Bsp120I GGGCCC FD0134 30<br />

FastDigest Bsp1286I SduI GDGCHC FD0654 30<br />

FastDigest Bsp1407I Bsp1407I TGTACA FD0933/4 30<br />

FastDigest BspCNI BseMII FD1404 31<br />

FastDigest BspHI BspHI TCATGA FD1284 31<br />

FastDigest BspMI BspMI FD1744 31<br />

FastDigest BsrBI BsrBI FD1274 32<br />

FastDigest BsrDI BsrDI FD1264 32<br />

FastDigest BsrFI Cfr10I RCCGGY FD0184 32<br />

FastDigest BssHII BsePI GCGCGC FD2134 33<br />

FastDigest BstXI BstXI CCANNNNNNTGG FD1024 33<br />

FastDigest BstZ17I SnaI GTATAC FD0704 33<br />

FastDigest Bsu36I SauI CCTNAGG FD0374 34<br />

FastDigest ClaI ClaI ATCGAT FD0143/4 34<br />

FastDigest Csp6I GTAC FD0214 34<br />

FastDigest DdeI DdeI CTNAG FD1884 34<br />

FastDigest DpnI DpnI Gm6ATC FD1703/4 35<br />

FastDigest DraI AhaIII TTTAAA FD0224 35<br />

FastDigest DraIII DraIII CACNNNGTG FD1234 36<br />

FastDigest DrdI DrdI GACNNNNNNGTC FD1724 36<br />

FastDigest EagI XmaIII CGGCCG FD0334 36<br />

FastDigest Eam1105I Eam1105I GACNNNNNGTC FD0244 37<br />

FastDigest EarI Ksp632I FD0234 37<br />

FastDigest Ecl136II GAGCTC FD0254 37<br />

FastDigest Eco31I Eco31I FD0293/4 38<br />

FastDigest Eco91I BstEII GGTNACC FD0394 38<br />

FastDigest EcoNI EcoNI CCTNNNNNAGG FD1304 38<br />

FastDigest EcoO109I DraII RGGNCCY FD0264 39<br />

FastDigest EcoRI EcoRI GAATTC FD0274/5 39<br />

FastDigest EcoRV EcoRV GATATC FD0303/4 39<br />

FastDigest EheI GGCGCC FD0443/4 40<br />

FastDigest Fnu4HI Fnu4HI GCNGC FD1644 40<br />

FastDigest FokI FokI FD2144 40<br />

FastDigest FspI MstI TGCGCA FD1224 41<br />

FastDigest FspAI FspAI RTGCGCAY FD1664 41<br />

FastDigest HaeII HaeII RGCGTY FD2184 41<br />

FastDigest HaeIII HaeIII GGCC FD0154 42<br />

FastDigest HgaI HgaI FD1904 42<br />

FastDigest HhaI HhaI GCGC FD1854 42<br />

FastDigest HincII HindII GTYRAC FD0494 43<br />

FastDigest HindIII HindIII AAGCTT FD0504/5 43<br />

FastDigest HinfI HinfI GANTC FD0804 43<br />

FastDigest HinP1I GCGC FD0484 44<br />

FastDigest HpaI HpaI GTTAAC FD1034 44<br />

www.thermoscientific.com/onebio


Table 1.2. <strong>Thermo</strong> <strong>Scientific</strong> FastDigest restriction enzymes.<br />

FastDigest<br />

restriction enzyme<br />

Prototype Specificity 5’3’ Cat. # Page<br />

FastDigest HpaII HpaII CCGG FD0514 44<br />

FastDigest Hpy8I MjaIV GTNNAC FD1574 45<br />

FastDigest HpyF10VI MwoI GCNNNNNNNGC FD1734 45<br />

FastDigest KpnI KpnI GGTACC FD0524 45<br />

FastDigest Kpn2I BspMII TCCGGA FD0534 46<br />

FastDigest MauBI MauBI CGCGCGCG FD2084 46<br />

FastDigest MboI MboI GATC FD0814 46<br />

FastDigest MboII MboII FD0824 47<br />

FastDigest MfeI MfeI CAATTG FD0753/4 47<br />

FastDigest MluI MluI ACGCGT FD0564 47<br />

FastDigest MlyI FD1374 48<br />

FastDigest MnlI MnlI FD1074 48<br />

FastDigest MreI Sse232I CGCCGGCG FD2024 48<br />

FastDigest MscI BalI TGGCCA FD1214 49<br />

FastDigest MseI MseI TTAA FD2174 49<br />

FastDigest MslI MslI CAYNNNNRTG FD2004 49<br />

FastDigest MspI HpaII CCGG FD0544 50<br />

FastDigest MssI PmeI GTTTAAAC FD1344 50<br />

FastDigest MvaI CCWGG FD0554 50<br />

FastDigest Mva1269I BsmI FD0964 51<br />

FastDigest NaeI NaeI GCCGGC FD1524 51<br />

FastDigest NciI CauII CCSGG FD0064 51<br />

FastDigest NcoI NcoI CCATGG FD0573/4/5 52<br />

FastDigest NdeI NdeI CATATG FD0583/4/5 52<br />

FastDigest NheI NheI GCTAGC FD0973/4 52<br />

FastDigest NlaIII NlaIII CATG FD1834 53<br />

FastDigest NlaIV NlaIV GGNNCC FD1154 53<br />

FastDigest NmuCI Tsp45I GTSAC FD1514 53<br />

FastDigest NotI NotI GCGGCCGC FD0593/4/6 54<br />

FastDigest NruI NruI TCGCGA FD2154 54<br />

FastDigest NsiI AvaIII ATGCAT FD0734 54<br />

FastDigest NspI NspI RCATGY FD1474 55<br />

FastDigest PacI PacI TTAATTAA FD2204 55<br />

FastDigest PdmI XmnI GAANNNNTTC FD1534 55<br />

FastDigest PflMI PflMI CCANNNNNTGG FD0714 56<br />

FastDigest PfoI PfoI TCCNGGA FD1754 56<br />

FastDigest PmlI PmaCI CACGTG FD0364 56<br />

FastDigest PpuMI PpuMI RGGWCCY FD0764 57<br />

FastDigest PshAI PshAI GACNNNNGTC FD1434 57<br />

FastDigest PsiI PsiI TTATAA FD2064 57<br />

FastDigest PspFI BseYI FD2224 58<br />

FastDigest PstI PstI CTGCAG FD0614/5 58<br />

FastDigest PsuI XhoII RGATCY FD1554 58<br />

FastDigest PsyI Tth111I GACNNNGTC FD1334 59<br />

FastDigest PvuI PvuI CGATCG FD0624 59<br />

FastDigest PvuII PvuII CAGCTG FD0634 59<br />

FastDigest RsaI RsaI GTAC FD1124 60<br />

FastDigest RsrII RsrII CGGWCCG FD0744 60<br />

<br />

www.thermoscientific.com/onebio 11


12<br />

Table 1.2. <strong>Thermo</strong> <strong>Scientific</strong> FastDigest restriction enzymes.<br />

FastDigest<br />

restriction enzyme<br />

Prototype Specificity 5’3’ Cat. # Page<br />

FastDigest SacI SacI GAGCTC FD1133/4 60<br />

FastDigest SalI SalI GTCGAC FD0644 61<br />

FastDigest SanDI SanDI GGGWCCC FD2164 61<br />

FastDigest SapI SapI FD1934 61<br />

FastDigest Sau3AI MboI GATC FD0784 62<br />

FastDigest Sau96I AsuI GGNCC FD0194 62<br />

FastDigest SbfI Sse8387I CCTGCAGG FD1194 62<br />

FastDigest ScaI ScaI AGTACT FD0434 63<br />

FastDigest ScrFI ScrFI CCNGG FD1424 63<br />

FastDigest SexAI SexAI ACCWGGT FD2114 63<br />

FastDigest SfaNI SfaNI FD2124 64<br />

FastDigest SfcI SfeI CTRYAG FD1164 64<br />

FastDigest SfiI SfiI GGCCNNNNNGGCC FD1824 64<br />

FastDigest SmaI SmaI CCCGGG FD0663/4 65<br />

FastDigest SnaBI SnaBI TACGTA FD0404 65<br />

FastDigest SpeI SpeI ACTAGT FD1253/4 65<br />

FastDigest SphI SphI GCATGC FD0604 66<br />

FastDigest SspI SspI AATATT FD0774 66<br />

FastDigest StuI StuI AGGCCT FD0424 66<br />

FastDigest StyI StyI CCWWGG FD0414 67<br />

FastDigest SwaI SwaI ATTTAAAT FD1244 67<br />

FastDigest TaaI Tsp4CI ACNGT FD1364 67<br />

FastDigest TaiI ACGT FD1144 68<br />

FastDigest TaqI TaqI TCGA FD0674 68<br />

FastDigest TatI TatI WGTACW FD1294 68<br />

FastDigest TauI TauI GCSGC FD1654 69<br />

FastDigest TfiI TfiI GAWTC FD1784 69<br />

FastDigest Tru1I MseI TTAA FD0984 69<br />

FastDigest Tsp509I TspEI AATT FD1354 70<br />

FastDigest TspRI TspRI FD2104 70<br />

FastDigest XapI ApoI RAATTY FD1383/4 70<br />

FastDigest XbaI XbaI TCTAGA FD0684/5 71<br />

FastDigest XhoI XhoI CTCGAG FD0694/5 71<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;<br />

www.thermoscientific.com/onebio


Product Description<br />

FastDigest AatII<br />

5’...G A C G TC...3’<br />

3’...C T G C A G...5’<br />

#FD0994 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

pUC19DNA/SmaI, 1.0% agarose<br />

1 cleavage site<br />

Formulation<br />

<br />

DNA/SmaI fragments in 15 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest AatII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 20 min 15 min 15 min 5 bp 80°C, 5 min 16 hours<br />

FastDigest AccI <br />

5’...G TM K A C...3’<br />

3’...C A K M T G...5’<br />

#FD1484 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

9 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – blocked <br />

Digestion time with 1 μl of FastDigest AccI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 60 min 5 min 2 bp 65°C, 5 min 16 hours<br />

FastDigest Acc65I<br />

5’...GG T A C C...3’<br />

3’...C C A T G G...5’<br />

#FD0904 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA/BamHI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

Note<br />

Acc65I cleavage is impaired by<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Digestion time with 1 μl of FastDigest Acc65I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 13


14<br />

FastDigest AciI <br />

5’...CC G C...3’<br />

3’...G G C G...5’<br />

#FD1794 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest AciI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 5 min 4 hours<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 2.0% agarose<br />

516 cleavage sites<br />

FastDigest AclI <br />

5’...A AC G T T...3’<br />

3’...T T G C A A...5’<br />

#FD0944 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

DNA, 0.7% agarose<br />

7 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not<br />

determined.<br />

Digestion time with 1 μl of FastDigest AclI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 5 min 16 hours<br />

FastDigest AcuI <br />

5’...C T G A A G (N) 16...3’<br />

3’...G A C T T C (N) 14 ...5’<br />

#FD0344 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

<br />

DNA, 1.0% agarose<br />

40 cleavage sites<br />

Formulation<br />

<br />

DNA in 15 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

SAM 0.01 mM.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

Mg 2+ for its activity, but is stimulated by<br />

S-adenosylmethionine. Still, complete<br />

cleavage of some substrates with<br />

FastDigest <br />

achieve.<br />

<br />

at least two copies of its recognition<br />

sequence are required.<br />

<br />

associated with the cleaved DNA. This<br />

may cause DNA band shifting during<br />

electrophoresis. To avoid atypical DNA<br />

band patterns heat the digested DNA in<br />

the presence of 6X DNA Loading Dye &<br />

<br />

electrophoresis.<br />

Digestion time with 1 μl of FastDigest AcuI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 30 min 15 min 15 min 2 bp 65°C, 5 min 16 hours


FastDigest AfeI <br />

5’...A G CG C T...3’<br />

3’...T C G C G A...5’<br />

#FD0324 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA/Eco81I fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest AfeI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 bp 65°C, 5 min 16 hours<br />

FastDigest AflII <br />

5’...CT T A A G...3’<br />

3’...G A A T T C...5’<br />

#FD0834 150 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

3 cleavage sites<br />

Formulation<br />

<br />

DNA/BamHI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI, EcoKI – no effect.<br />

Digestion time with 1 μl of FastDigest AflII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 bp No 16 hours<br />

FastDigest AgeI <br />

5’...AC C G G T...3’<br />

3’...T G G C C A...5’<br />

#FD1464 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

13 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not<br />

determined.<br />

Digestion time with 1 μl of FastDigest AgeI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 80°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 15


16<br />

FastDigest AjuI<br />

5’...7(N) G A A(N) 7 T T G G (N) 11...3’<br />

3’... 12(N) C T T(N) 7 A A C C (N) 6 ...5’<br />

#FD1954 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

www.thermoscientific.com/onebio<br />

X174DNA, 1.0% agarose<br />

1 cleavage site<br />

Formulation<br />

X174<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

SAM 0.01 mM.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

AjuI requires<br />

S-adenosylmethionine for activity. Still,<br />

complete cleavage of some substrates with<br />

FastDigest AjuI is difficult to achieve.<br />

AjuI produces double-strand cuts<br />

on both sides of the interrupted recognition<br />

site. In certain sequence contexts, the<br />

cleavage position may be shifted by one<br />

base pair. However, the cleavage position<br />

indicated above will predominate.<br />

Digestion time with 1 μl of FastDigest AjuI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 10 min 5 min ND 65°C, 5 min 16 hours<br />

FastDigest AleI <br />

5’...C A C N NN N G T G...3’<br />

3’...G T G N N N N C A C...5’<br />

#FD1634 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

X174DNA, 1.0% agarose<br />

1 cleavage site<br />

Formulation<br />

X174<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoKI, EcoBI: may overlap – blocked <br />

Digestion time with 1 μl of FastDigest AleI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 10 min 5 min 3 bp 65°C, 5 min 6 hours<br />

FastDigest AluI<br />

5’...A GC T...3’<br />

3’...T C G A...5’<br />

#FD0014 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

143 cleavage sites<br />

Formulation<br />

<br />

DNA in 15 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Digestion time with 1 μl of FastDigest AluI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 15 min 15 min 15 min 4 bp 65°C, 5 min 16 hours


FastDigest Alw21I<br />

5’...G W G C WC...3’<br />

3’...C W C G W G...5’<br />

#FD0024 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

28 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest Alw21I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 80°C, 20 min 16 hours<br />

FastDigest Alw26I<br />

5’...G T C T C(N) 1...3’<br />

3’...C A G A G(N) 5 ...5’<br />

#FD0034 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

37 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

Digestion time with 1 μl of FastDigest Alw26I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 65°C, 5 min 16 hours<br />

FastDigest AlwNI <br />

5’...C A G N N NC T G...3’<br />

3’...G T C N N N G A C...5’<br />

#FD1394 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

41 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, CpG, EcoKI – no effect.<br />

Dcm: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

FastDigest <br />

dcm methylation. To avoid dcm methylation, use a<br />

dam – , dcm – strain such as GM2163.<br />

Digestion time with 1 μl of FastDigest AlwNI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 bp 65°C, 10 min 16 hours<br />

www.thermoscientific.com/onebio 17


18<br />

FastDigest ApaI<br />

5’...G G G C CC...3’<br />

3’...C C C G G G...5’<br />

#FD1414 300 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest ApaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 20 min 10 min 2 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 0.7% agarose<br />

1 cleavage site<br />

FastDigest ApaLI <br />

5’...GT G C A C...3’<br />

3’...C A C G T G...5’<br />

#FD0044 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

4 cleavage sites<br />

Formulation<br />

<br />

DNA/CpoI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA/SmaI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

Note<br />

ApaI cleavage is impaired by<br />

overlapping dcm methylation. To avoid<br />

dcm methylation, use a dam – , dcm – strain<br />

such as GM2163.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – blocked <br />

Digestion time with 1 μl of FastDigest ApaLI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 60 min 10 min 5 min 4 bp 80°C, 5 min 16 hours<br />

FastDigest AscI <br />

5’...G GC G C G C C...3’<br />

3’...C C G C G C G G...5’<br />

#FD1894 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA/CpoI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Digestion time with 1 μl of FastDigest AscI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 20 min 16 hours<br />

20’<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked


FastDigest AseI <br />

5’...A TT A A T...3’<br />

3’...T A A T T A...5’<br />

#FD0914 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA , 1.0% agarose<br />

17 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest AseI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 30 min 2 bp 65°C, 5 min 16 hours<br />

FastDigest AsiSI <br />

5’...G C G A TC G C...3’<br />

3’...C G C T A G C G...5’<br />

#FD2094 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

1 cleavage site<br />

Formulation<br />

<br />

<br />

5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest AsiSI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

no cleavage sites 5 min 60 min 5 min 5 bp 80°C, 5 min 6 hours<br />

FastDigest AvaI <br />

5’...CY C G R G...3’<br />

3’...G R G C Y C...5’<br />

#FD0384 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

8 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps –<br />

cleavage impaired <br />

Digestion time with 1 μl of FastDigest AvaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 19


20<br />

FastDigest AvaII <br />

5’...GG W C C ...3’<br />

3’...C C W G G...5’<br />

#FD0314 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest AvaII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 80°C, 20 min 16 hours<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 1.0% agarose<br />

FastDigest AvrII <br />

5’...CC T A G G...3’<br />

3’...G G A T C C...5’<br />

#FD1564 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

35 cleavage sites<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA/SmaI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – blocked <br />

Note<br />

<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest AvrII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 10 min 5 min 10 min 2 bp No 16 hours<br />

FastDigest BamHI<br />

5’...GG A T C C...3’<br />

3’...C C T A G G...5’<br />

#FD0054 800 μl<br />

Supplied with:<br />

10X FastDigest buffer 2x1 ml<br />

10X FastDigest Green Buffer 2x1 ml<br />

#FD0055 2500 μl<br />

Supplied with:<br />

10X FastDigest buffer 5x1 ml<br />

10X FastDigest Green Buffer 5x1 ml<br />

<br />

DNA, 0.7% agarose<br />

5 cleavage sites<br />

Formulation<br />

<br />

DNA/Bsp120I fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest BamHI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 5 min 1 hour


FastDigest BanI <br />

5’...GG Y R C C...3’<br />

3’...C C R Y G G...5’<br />

#FD1004 300 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

– <br />

25 cleavage sites<br />

Formulation<br />

<br />

DNA dcm – in 5 min at 37°C in 1X FastDigest<br />

Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

EcoKI: may overlap – effect not determined.<br />

Note<br />

<br />

by overlapping dcm methylation. To avoid<br />

dcm methylation, use a dam – , dcm – strain<br />

such as GM2163.<br />

Digestion time with 1 μl of FastDigest BanI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 60 min 5 min 15 min 2 bp 65°C, 10 min 16 hours<br />

FastDigest BbsI <br />

5’...G A A G A C(N) 2...3’<br />

3’...C T T C T G(N) 6 ...5’<br />

#FD1014 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA. 0.7% agarose<br />

24 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest BbsI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 65°C, 10 min 16 hours<br />

FastDigest BbvI <br />

5’...G C A G C (N) 8 ...3’<br />

3’...C G T C G (N) 12 ...5’<br />

#FD2074 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

pBR322DNA, 0.7% agarose<br />

21 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest BbvI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 2 bp 65°C, 5 min 0.5 hour<br />

www.thermoscientific.com/onebio 21


22<br />

FastDigest BclI<br />

5’...TG A T C A...3’<br />

3’...A C T A G T...5’<br />

#FD0724 300 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest BclI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 15 min 5 min 3 bp 80°C, 20 min 16 hours<br />

www.thermoscientific.com/onebio<br />

<br />

dam – <br />

FastDigest BfaI <br />

5’...CT A G...3’<br />

3’...G A T C...5’<br />

#FD1764 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

8 cleavage sites<br />

13 cleavage sites<br />

Formulation<br />

<br />

DNA dam – in 5 min at 37°C in 1X FastDigest<br />

Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam: completely overlaps – blocked <br />

Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Note<br />

BclI is blocked by dam<br />

methylation. To avoid dam methylation, use<br />

a dam – , dcm – strain such as GM2163.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest BfaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 15 min 5 min 20 min 3 bp 80°C, 5 min 16 hours<br />

FastDigest BglI<br />

5’...G C C N N N NN G G C...3’<br />

3’...C G G N N N N N C C G...5’<br />

#FD0074 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

29 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

Digestion time with 1 μl of FastDigest BglI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 5 min 2 hours


FastDigest BglII<br />

5’...AG A T C T...3’<br />

3’...T C T A G A...5’<br />

#FD0083 100 μl<br />

#FD0084 200 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

6 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – cleavage impaired <br />

Digestion time with 1 μl of FastDigest BglII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 20 min 30 min 20 min 3 bp No 16 hours<br />

FastDigest BlpI <br />

5’...G CT N A G C...3’<br />

3’...C G A N T C G...5’<br />

#FD0094 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

6 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest BlpI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 5 min 16 hours<br />

FastDigest Bme1580I <br />

5’...G K G C MC...3’<br />

3’...C M C G K G...5’<br />

#FD1444 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

10 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – cleavage impaired <br />

Digestion time with 1 μl of FastDigest Bme1580I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 30 min 3 bp 80°C, 15 min 16 hours<br />

www.thermoscientific.com/onebio 23


24<br />

FastDigest BmtI <br />

5’...G C T A GC...3’<br />

3’...C G A T C G...5’<br />

#FD2044 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest BmtI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 15 min 5 min 3 bp 80°C, 5 min 1 hour<br />

FastDigest BplI<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 0.7% agarose<br />

5’...8(N) G A G(N) 5 C T C(N) 13...3’<br />

3’... 13(N) C T C(N) 5 G A G(N) 8 ...5’<br />

#FD1314 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

<br />

DNA/XhoI, 0.7% agarose<br />

1 cleavage site<br />

1 cleavage site<br />

Formulation<br />

<br />

DNA/HindIII fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA/XhoI fragments in 15 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

SAM 0.05 mM.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

2 +<br />

for its activity, but is stimulated by<br />

S-adenosylmethionine. Still, complete<br />

cleavage of some substrates with<br />

FastDigest BplI is difficult to achieve.<br />

Digestion time with 1 μl of FastDigest BplI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 20 min 30 min 30 min ND 65°C, 5 min 16 hours<br />

FastDigest BpmI <br />

5’...C T G G A G (N) 16...3’<br />

3’...G A C C T C (N) 14 ...5’<br />

#FD0464 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

25 cleavage sites<br />

Formulation<br />

<br />

DNA in 15 min at 30°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 30°C.<br />

Methylation Effects<br />

Dam, CpG, EcoKI, EcoBI – no effect.<br />

Dcm: may overlap – blocked <br />

Note<br />

<br />

Mg 2+ for its activity, but is stimulated by<br />

S-adenosylmethionine.<br />

<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Digestion time with 1 μl of FastDigest BpmI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 30 min 15 min 15 min 2 bp 65°C, 5 min 16 hours


FastDigest Bpu10I<br />

5’...C CT N A G C...3’<br />

3’...G G A N T C G...5’<br />

#FD1184 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

M13mp18 DNA, 0.7% agarose<br />

4 cleavage sites<br />

Formulation<br />

<br />

M13mp18 DNA in 15 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

<br />

two copies of its recognition sequence are<br />

required.<br />

Digestion time with 1 μl of FastDigest Bpu10I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 15 min 30 min 15 min 3 bp 80°C, 5 min 1 hour<br />

FastDigest BsaAI <br />

5’...Y A CG T R...3’<br />

3’...R T G C A Y...5’<br />

#FD1974 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

14 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest BsaAI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 65°C, 5 min 6 hours<br />

FastDigest BsaBI <br />

5’...G A T N NN N A T C...3’<br />

3’...C T A N N N N T A G...5’<br />

#FD1714 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

dam – <br />

21 cleavage sites<br />

Formulation<br />

<br />

DNA dam – in 5 min at 65°C in 1X FastDigest<br />

Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 65°C.<br />

Methylation Effects<br />

Dam: may overlap – blocked <br />

Dcm, EcoKI, CpG – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

overlapping dam methylation. To avoid dam<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Digestion time with 1 μl of FastDigest BsaBI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp No 1 hour<br />

www.thermoscientific.com/onebio 25


26<br />

FastDigest BsaHI <br />

5’...G RC G Y C...3’<br />

3’...C Y G C R G...5’<br />

#FD0474 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest BsaHI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio<br />

<br />

– <br />

FastDigest BsaJI <br />

5’...CC N N G G...3’<br />

3’...G G N N C C...5’<br />

#FD1084 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

40 cleavage sites<br />

105 cleavage sites<br />

Formulation<br />

<br />

DNA dcm – in 5 min at 37°C in 1X FastDigest<br />

Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, EcoKI – no effect.<br />

Dcm: may overlap – cleavage impaired <br />

CpG: completely overlaps – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

impaired by overlapping dcm methylation.<br />

To avoid dcm methylation, use a dam – , dcm –<br />

strain such as GM2163.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest BsaJI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 80°C, 5 min 16 hours<br />

FastDigest BseGI<br />

5’...G G A T G N N...3’<br />

3’...C C T A C N N ...5’<br />

#FD0874 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

150 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest BseGI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 5 min 16 hours


FastDigest BseNI<br />

5’...A C T G G N...3’<br />

3’...T G A C C N ...5’<br />

#FD0884 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

110 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 65°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 65°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest BseNI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 5 min 16 hours<br />

FastDigest BseXI<br />

5’...G C A G C(N) 8 ...3’<br />

3’...C G T C G(N) 12 ...5’<br />

#FD1454 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

pBR322 DNA, 1.4% agarose<br />

21 cleavage sites<br />

Formulation<br />

<br />

DNA in 15 min at 65°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 65°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest BseXI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 15 min 15 min 15 min 3 bp 80°C, 15 min 16 hours<br />

FastDigest Bsh1236I<br />

5’...C GC G...3’<br />

3’...G C G C...5’<br />

#FD0924 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

157 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest Bsh1236I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 80°C, 10 min 16 hours<br />

www.thermoscientific.com/onebio 27


28<br />

FastDigest BsiEI <br />

5’...C G R YC G...3’<br />

3’...G C Y R G C...5’<br />

#FD0894 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest BsiEI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 15 min 15 min 15 min 3 bp 80°C, 15 min 1 hour<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 1.0% agarose<br />

FastDigest BsiWI <br />

5’...CG T A C G...3’<br />

3’...G C A T G C...5’<br />

#FD0854 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

22 cleavage sites<br />

1 cleavage site<br />

Formulation<br />

<br />

DNA in 15 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA/Psp1406I fragments in 15 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam: may overlap – cleavage impaired <br />

Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Note<br />

<br />

impaired by overlapping dam methylation.<br />

To avoid dam methylation, use a dam – , dcm –<br />

strain such as GM2163.<br />

Methylation Effects<br />

CpG: completely overlaps – blocked <br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest BsiWI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 15 min 15 min 15 min 3 bp 65°C, 5 min 16 hours<br />

FastDigest BslI <br />

5’...C C N N N N NN N G G...3’<br />

3’...G G N N N N N N N C C...5’<br />

#FD1204 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

– <br />

176 cleavage sites<br />

Formulation<br />

<br />

DNA dcm – in 5 min at 37°C in 1X FastDigest<br />

Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

Note<br />

<br />

by overlapping dcm methylation. To avoid<br />

dcm methylation, use a dam – , dcm – strain<br />

such as GM2163.<br />

Digestion time with 1 μl of FastDigest BslI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp No 16 hours


FastDigest BsmBI <br />

5’...C G T C T C(N) 1...3’<br />

3’...G C A G A G(N) 5 ...5’<br />

#FD0454 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

14 clavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

Freshly made DTT solution should be added<br />

to the reaction buffer.<br />

Digestion time with 1 μl of FastDigest BsmBI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 65°C, 10 min 6 hours<br />

FastDigest BsmFI <br />

5’...G G G A C(N) 10...3’<br />

3’...C C C T G(N) 14 ...5’<br />

#FD1814 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

<br />

DNA, 1.0% agarose<br />

38 cleavage sites<br />

Formulation<br />

<br />

DNA in 15 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

SAM 0.05 mM.<br />

Methylation Effects<br />

Dam, Dcm, EcoBI, EcoKI – no effect.<br />

CpG: may overlap – blocked <br />

Note<br />

<br />

Mg 2+ for its activity, but is stimulated by<br />

S-adenosylmethionine. Still, complete<br />

cleavage of some substrates is difficult to<br />

achieve.<br />

<br />

least two copies of its recognition sequence<br />

are required.<br />

Digestion time with 1 μl of FastDigest BsmFI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 15 min 15 min 15 min 3 bp 65°C, 5 min 16 hours<br />

FastDigest Bsp119I<br />

5’...T TC G A A...3’<br />

3’...A A G C T T...5’<br />

#FD0124 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

7 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest Bsp119I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 80°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 29


30<br />

FastDigest Bsp120I<br />

5’...GG G C C C...3’<br />

3’...C C C G G G...5’<br />

#FD0134 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest Bsp120I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 15 min 5 min 3 bp 80°C, 10 min 16 hours<br />

5’...G D G C HC...3’<br />

3’...C H C G D G...5’<br />

#FD0654 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 0.7% agarose<br />

1 cleavage site<br />

FastDigest Bsp1286I <br />

<br />

DNA, 1.0% agarose<br />

38 cleavage sites<br />

Formulation<br />

<br />

DNA/CpoI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – blocked <br />

Note<br />

Bsp120I is blocked by<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest Bsp1286I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 15 min 1 hour<br />

FastDigest Bsp1407I<br />

5’...TG T A C A...3’<br />

3’...A C A T G T...5’<br />

#FD0933 50 μl<br />

#FD0934 100 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

5 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest Bsp1407I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 80°C, 10 min 16 hours


FastDigest BspCNI <br />

5’...C T C A G(N) 10...3’<br />

3’...G A G T C(N) 8 ...5’<br />

#FD1404 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

<br />

DNA, 1.0% agarose<br />

79 cleavage sites<br />

Formulation<br />

<br />

DNA in 15 min at 55°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 55°C.<br />

SAM 0.01 mM.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI, EcoKI – no effect.<br />

Note<br />

<br />

S-adenosylmethionine for activity. Sinefungin<br />

can replace SAM in the restriction reaction.<br />

In this case DNA is not methylated and more<br />

<br />

fragments can be recut by this enzyme.<br />

Digestion time with 1 μl of FastDigest BspCNI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 30 min 15 min 15 min 2 bp 80°C, 5 min 16 hours<br />

FastDigest BspHI <br />

5’...TC A T G A...3’<br />

3’...A G T A C T...5’<br />

#FD1284 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

X174 DNA, 1.0% agarose<br />

3 cleavage sites<br />

Formulation<br />

X174<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dcm, CpG, EcoKI – no effect.<br />

Dam, EcoBI: may overlap – cleavage impaired<br />

<br />

Note<br />

<br />

by overlapping dam methylation. To avoid<br />

dam methylation, use a dam – , dcm – strain<br />

such as GM2163.<br />

Digestion time with 1 μl of FastDigest BspHI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 10 min 5 min 10 min 3 bp 80°C, 5 min 0.5 hour<br />

FastDigest BspMI <br />

5’...A C C T G C(N) 4...3’<br />

3’...T G G A C G(N) 8 ...5’<br />

#FD1744 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

<br />

DNA, 0.7% agarose<br />

Note<br />

BspMI<br />

<br />

efficient cleavage.<br />

<br />

the FastDigest <br />

41 cleavage sites<br />

Formulation<br />

<br />

DNA in 15 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Oligonucleotide 0.5 μM.<br />

sequence in the reaction mixture<br />

significantly improves cleavage of plasmid<br />

DNAs, especially of those with a single<br />

FastDigest site. Still, complete<br />

cleavage of some substrates is difficult to<br />

achieve.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoBI, EcoKI: may overlap – effect not determined.<br />

<br />

associated with the cleaved DNA. This<br />

may cause DNA band shifting during<br />

electrophoresis. To avoid atypical DNA<br />

band patterns heat the digested DNA in<br />

the presence of 6X DNA Loading Dye &<br />

<br />

electrophoresis.<br />

Digestion time with 1 μl of FastDigest BspMI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 15 min 60 min 20 min 5 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 31


32<br />

FastDigest BsrBI <br />

5’...C C GC T C...3’<br />

3’...G G C G A G...5’<br />

#FD1274 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest BsrBI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 5 min 16 hours<br />

5’...G C A A T G N N...3’<br />

3’...C G T T A C N N ...5’<br />

#FD1264 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 1.4% agarose<br />

FastDigest BsrDI <br />

<br />

DNA, 0.7% agarose<br />

17 cleavage sites<br />

44 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 15 min at 55°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 55°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: completely overlaps –<br />

cleavage impaired <br />

EcoBI: may overlap – effect not determined.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest BsrDI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 15 min 15 min 15 min 3 bp 80°C, 5 min 16 hours<br />

FastDigest BsrFI <br />

5’...RC C G G Y...3’<br />

3’...Y G G C C R...5’<br />

#FD0184 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

61 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

at least two copies of its recognition<br />

sequence are required.<br />

Digestion time with 1 μl of FastDigest BsrFI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 10 min 5 min 2 bp No 2 hours


FastDigest BssHII <br />

5’...GC G C G C...3’<br />

3’...C G C G C G...5’<br />

#FD2134 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

6 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest BssHII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 80°C, 5 min 16 hours<br />

FastDigest BstXI<br />

5’...C C A N N N N NN T G G...3’<br />

3’...G G T N N N N N N A C C...5’<br />

#FD1024 100 μl<br />

SUPPLIED WITH:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

13 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, CpG, EcoKI, EcoBI – no effect.<br />

Dcm: may overlap – cleavage impaired <br />

Note<br />

BstXI cleavage is impaired by<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Digestion time with 1 μl of FastDigest BstXI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 bp 80°C, 5 min 0.5 hours<br />

FastDigest BstZ17I <br />

5’...G T AT A C...3’<br />

3’...C A T A T G...5’<br />

#FD0704 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

3 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

Digestion time with 1 μl of FastDigest BstZ17I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 3 bp No 6 hours<br />

www.thermoscientific.com/onebio 33


34<br />

FastDigest Bsu36I <br />

5’...C CT N A G G...3’<br />

3’...G G A N T C C...5’<br />

#FD0374 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest Bsu36I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 10 min 16 hours<br />

5’...A TC G A T...3’<br />

3’...T A G C T A...5’<br />

#FD0143 50 μl<br />

#FD0144 100 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 0.7% agarose<br />

FastDigest ClaI <br />

<br />

DNA, 0.7% agarose<br />

2 cleavage sites<br />

15 cleavage sites<br />

Formulation<br />

<br />

DNA/HindIII fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Methylation Effects<br />

Dam: may overlap – blocked <br />

CpG: completely overlaps – blocked <br />

Dcm, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

overlapping dam methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Digestion time with 1 μl of FastDigest ClaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 15 min 16 hours<br />

FastDigest Csp6I<br />

5’...GT A C...3’<br />

3’...C A T G...5’<br />

#FD0214 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

113 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest Csp6I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 10 min 16 hours


FastDigest DdeI <br />

5’...CT N A G...3’<br />

3’...G A N T C...5’<br />

#FD1884 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

104 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest DdeI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 3 bp 65°C, 5 min 16 hours<br />

FastDigest DpnI<br />

5’...G m6A T C...3’<br />

3’...C T m6A G...5’<br />

#FD1703 50 μl<br />

#FD1704 100 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

pBR322 DNA, 1.4% agarose<br />

22 cleavage sites<br />

Formulation<br />

<br />

<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Note<br />

DpnI requires the presence of<br />

N6-methyladenine within the recognition<br />

sequence to cleave DNA.<br />

dam + strain will be a<br />

substrate for FastDigest DpnI.<br />

Methylation Effects<br />

Dam: does not cut dam – DNA <br />

Dcm, EcoKI, CpG – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

DpnI will only cleave fully-adenomethylated<br />

dam sites.<br />

DpnI, FastDigest Sau3AI<br />

MboI all recognize<br />

the same sequence but have different<br />

<br />

Digestion time with 1 μl of FastDigest DpnI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

not determined 5 min not applicable 10 min 1 bp 80°C, 5 min 16 hours<br />

FastDigest DraI<br />

5’...T T TA A A...3’<br />

3’...A A A T T T...5’<br />

#FD0224 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

13 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – blocked <br />

Digestion time with 1 μl of FastDigest DraI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 35


36<br />

FastDigest DraIII <br />

5’...C A C N N NG T G...3’<br />

3’...G T G N N N C A C...5’<br />

#FD1234 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest DraIII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 5 min 1 hour<br />

FastDigest EagI <br />

5’...CG G C C G...3’<br />

3’...G C C G G C...5’<br />

#FD0334 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest EagI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 20 min 20 min 5 min 3 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 0.7% agarose<br />

FastDigest DrdI <br />

5’...G A C N N N NN N G T C...3’<br />

3’...C T G N N N N N N C A G...5’<br />

#FD1724 25 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

<br />

DNA, 0.7% agarose<br />

10 cleavage sites<br />

3 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA/Eco81I fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Methylation Effects<br />

Dam, Dcm, EcoBI, EcoKI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

Digestion time with 1 μl of FastDigest DrdI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 80°C, 10 min 1 hour<br />

2 cleavage sites<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked


FastDigest Eam1105I<br />

5’...G A C N N NN N G T C...3’<br />

3’...C T G N N N N N C A G...5’<br />

#FD0244 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

FastDigest EarI <br />

5’...C T C T T C(N) 1...3’<br />

3’...G A G A A G(N) 4 ...5’<br />

#FD0234 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest EarI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 80°C, 5 min 6 hours<br />

FastDigest Ecl136II<br />

5’...G A GC T C...3’<br />

3’...C T C G A G...5’<br />

#FD0254 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

X174 DNA, 1.0% agarose<br />

<br />

DNA, 0.7% agarose<br />

9 cleavage sites<br />

Digestion time with 1 μl of FastDigest Eam1105I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 5 min 1 hour<br />

2 cleavage sites<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

X174<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA/HindIII fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

DNA are difficult to cleave<br />

with FastDigest <br />

as with its prototype Ksp632I.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest Ecl136II bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 65°C, 5 min 6 hours<br />

www.thermoscientific.com/onebio 37


38<br />

FastDigest Eco31I<br />

5’...G G T C T C(N) 1...3’<br />

3’...C C A G A G(N) 5 ...5’<br />

#FD0293 50 μl<br />

#FD0294 100 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest Eco31I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 5 min 16 hours<br />

FastDigest Eco91I<br />

5’...GG T N A C C...3’<br />

3’...C C A N T G G...5’<br />

#FD0394 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

dcm – <br />

<br />

DNA, 0.7% agarose<br />

2 cleavage sites<br />

13 cleavage sites<br />

Formulation<br />

<br />

DNA dcm – /HindIII fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, EcoKI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

Eco31I cleavage is impaired by<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest Eco91I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 10 min 2 hours<br />

FastDigest EcoNI <br />

5’...C C T N NN N N A G G...3’<br />

3’...G G A N N N N N T C C...5’<br />

#FD1304 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

9 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest EcoNI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 20 min 2 bp 65°C, 5 min 16 hours


FastDigest EcoO109I<br />

5’...R GG N C C Y...3’<br />

3’...Y C C N G G R...5’<br />

#FD0264 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

3 clevage sites<br />

Formulation<br />

<br />

DNA/CpoI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, CpG, EcoKI – no effect.<br />

Dcm: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

EcoO109I is blocked by<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such as<br />

GM2163.<br />

Digestion time with 1 μl of FastDigest EcoO109I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 10 min 15 min 5 min 2 bp 65°C, 5 min 16 hours<br />

FastDigest EcoRI<br />

5’...GA A T T C...3’<br />

3’...C T T A A G...5’<br />

#FD0274 800 μl<br />

Supplied with:<br />

10X FastDigest buffer 2x1 ml<br />

10X FastDigest Green Buffer 2x1 ml<br />

#FD0275 2500 μl<br />

Supplied with:<br />

10X FastDigest buffer 5x1 ml<br />

10X FastDigest Green Buffer 5x1 ml<br />

<br />

DNA, 0.7% agarose<br />

5 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

Digestion time with 1 μl of FastDigest EcoRI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 20 min 5 min 2 bp 80°C, 5 min 0.5 hour<br />

FastDigest EcoRV <br />

5’...G A TA T C...3’<br />

3’...C T A T A G...5’<br />

#FD0303 200 μl<br />

#FD0304 400 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

21 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest EcoRV bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp No 16 hours<br />

www.thermoscientific.com/onebio 39


40<br />

FastDigest EheI<br />

5’...G G CG C C...3’<br />

3’...C C G C G G...5’<br />

#FD0443 20 μl<br />

#FD0444 50 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest EheI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 5 min 6 hours<br />

5’...G CN G C...3’<br />

3’...C G N C G...5’<br />

#FD1644 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 0.7% agarose<br />

FastDigest Fnu4HI <br />

<br />

DNA, 1.4% agarose<br />

1 cleavage site<br />

380 cleavage sites<br />

Formulation<br />

<br />

DNA/PstI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – blocked <br />

Note<br />

Fnu4HI<br />

<br />

efficient cleavage.<br />

Digestion time with 1 μl of FastDigest Fnu4HI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 10 min 5 min 3 bp 65°C, 5 min 16 hours<br />

FastDigest FokI<br />

5’...G G A T G(N) 9...3’<br />

3’...C C T A C(N) 13 ...5’<br />

#FD2144 100 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

150 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

FokI<br />

recognition site are required for an efficient<br />

cleavage.<br />

FokI may remain associated<br />

with the cleaved DNA. This may cause DNA<br />

band shifting during electrophoresis. To<br />

avoid atypical DNA band patterns heat the<br />

digested DNA in the presence of 6X DNA<br />

<br />

SDS prior to electrophoresis.<br />

Digestion time with 1 μl of FastDigest FokI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 65°C, 5 min 1 hour


FastDigest FspI <br />

5’...T G CG C A...3’<br />

3’...A C G C G T...5’<br />

#FD1224 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

15 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest Fsp bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 15 min 16 hours<br />

FastDigest FspAI<br />

5’...R T G CG C A Y...3’<br />

3’...Y A C G C G T R...5’<br />

#FD1664 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.5% agarose<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA/Psp1406I fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest FspAI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 bp 65°C, 5 min 16 hours<br />

FastDigest HaeII <br />

5’...R G C G CY...3’<br />

3’...Y C G C G R...5’<br />

#FD2184 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

48 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoBI: may overtlap – not determined.<br />

Digestion time with 1 μl of FastDigest HaeII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 10 min 1 hour<br />

www.thermoscientific.com/onebio 41


42<br />

FastDigest HaeIII <br />

5’...G GC C...3’<br />

3’...C C G G...5’<br />

#FD0154 400 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest HaeIII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp No 16 hours<br />

5’...G A C G C(N) 5...3’<br />

3’...C T G C G(N) 10 ...5’<br />

#FD1904 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 1.4% agarose<br />

FastDigest HgaI <br />

pBR322 DNA, 1.4% agarose<br />

149 cleavage sites<br />

11 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 15 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI: never overlaps – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

<br />

least two copies of its recognition sequence<br />

are required.<br />

<br />

associated with the cleaved DNA. This<br />

may cause DNA band shifting during<br />

electrophoresis. To avoid atypical DNA<br />

band patterns heat the digested DNA in<br />

the presence of 6X DNA Loading Dye &<br />

<br />

electrophoresis.<br />

Digestion time with 1 μl of FastDigest HgaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 15 min 30 min 15 min 2 bp 80°C, 5 min 1 hour<br />

FastDigest HhaI<br />

5’...G C GC...3’<br />

3’...C G C G...5’<br />

#FD1854 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

215 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest HhaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp No 16 hours


FastDigest HincII<br />

5’...G T YR A C...3’<br />

3’...C A R Y T G...5’<br />

#FD0494 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

35 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoKI, EcoBI: may overlap – blocked <br />

Digestion time with 1 μl of FastDigest HincII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 1 bp 65°C, 5 min 16 hours<br />

FastDigest HindIII<br />

5’...AA G C T T...3’<br />

3’...T T C G A A...5’<br />

#FD0504 800 μl<br />

Supplied with:<br />

10X FastDigest buffer 2x1 ml<br />

10X FastDigest Green Buffer 2x1 ml<br />

#FD0505 2500 μl<br />

Supplied with:<br />

10X FastDigest buffer 5x1 ml<br />

10X FastDigest Green Buffer 5x1 ml<br />

<br />

DNA, 0.7% agarose<br />

7 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – cleavage impaired <br />

Digestion time with 1 μl of FastDigest HindIII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 20 min 10 min 3 bp 80°C, 10 min 16 hours<br />

FastDigest HinfI<br />

5’...GA N T C...3’<br />

3’...C T N A G...5’<br />

#FD0804 400 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

148 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoBI: may overlap – blocked <br />

Digestion time with 1 μl of FastDigest HinfI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 20 min 16 hours<br />

20’<br />

www.thermoscientific.com/onebio 43


44<br />

FastDigest HinP1I <br />

5’...GC G C...3’<br />

3’...C G C G...5’<br />

#FD0484 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest HinP1I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 10 min 5 min 5 min 2 bp 80°C, 10 min 16 hours<br />

5’...G T TA A C...3’<br />

3’...C A A T T G...5’<br />

#FD1034 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 1.4% agarose<br />

FastDigest HpaI <br />

<br />

DNA, 0.7% agarose<br />

215 cleavage sites<br />

14 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Methylation Effects<br />

Dam, Dcm, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoKI: may overlap – blocked <br />

Digestion time with 1 μl of FastDigest HpaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 20 min 0.5 hour<br />

FastDigest HpaII<br />

5’...CC G G...3’<br />

3’...G G C C...5’<br />

#FD0514 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

328 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Digestion time with 1 μl of FastDigest HpaII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 5 min 16 hours<br />

20’<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked


FastDigest Hpy8I<br />

5’...G T NN A C...3’<br />

3’...C A N N T G...5’<br />

#FD1574 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

125 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoKI, EcoBI – effect not determined.<br />

Digestion time with 1 μl of FastDigest Hpy8I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 2 bp 80°C, 5 min 16 hours<br />

FastDigest HpyF10VI<br />

5’...G C N N N N NN N G C...3’<br />

3’...C G N N N N N N N C G...5’<br />

#FD1734 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

346 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

Digestion time with 1 μl of FastDigest HpyF10VI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 5 min 16 hours<br />

FastDigest KpnI<br />

5’...G G T A CC...3’<br />

3’...C C A T G G...5’<br />

#FD0524 300 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA/BamHI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest KpnI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 80°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 45


46<br />

FastDigest Kpn2I<br />

5’...TC C G G A...3’<br />

3’...A G G C C T...5’<br />

#FD0534 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest Kpn2I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 5 min 16 hours<br />

FastDigest MauBI<br />

5’...C GC G C G C G...3’<br />

3’...G C G C G C G C...5’<br />

#FD2084 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 0.7% agarose<br />

<br />

24 cleavage sites<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

<br />

recognition sites in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest MauBI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

no cleavage sites 5 min 10 min 5 min 5 bp 65°C, 5 min 16 hours<br />

FastDigest MboI<br />

5’...G A T C ...3’<br />

3’... C T A G ...5’<br />

#FD0814 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

dam – <br />

116 cleavage sites<br />

Formulation<br />

<br />

DNA dam – in 5 min at 37°C in 1X FastDigest<br />

Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam: completely overlaps – blocked <br />

EcoBI: may overlap – blocked <br />

Dcm, CpG, EcoKI – no effect.<br />

Note<br />

MboI is blocked by overlapping<br />

dam methylation. To avoid dam methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

MboI, FastDigest Sau3AI<br />

DpnI all recognize<br />

the same sequence but have different<br />

<br />

Digestion time with 1 μl of FastDigest MboI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 1 bp 65°C, 15 min 16 hours


FastDigest MboII<br />

5’...G A A G A(N) 8...3’<br />

3’...C T T C T(N) 7 ...5’<br />

#FD0824 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

dam – <br />

130 cleavage sites<br />

Formulation<br />

<br />

DNA dam – in 5 min at 37°C in 1X FastDigest<br />

Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam: may overlap – blocked <br />

Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

MboII is blocked by overlapping<br />

dam methylation. To avoid dam methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

MboII produces DNA fragments<br />

that have a single-base 3’-extension which<br />

are more difficult to ligate than blunt-ended<br />

fragments.<br />

MboII may remain associated<br />

with the cleaved DNA. This may cause DNA<br />

band shifting during electrophoresis. To<br />

avoid atypical DNA band patterns heat the<br />

digested DNA in the presence of 6X DNA<br />

<br />

SDS prior to electrophoresis.<br />

Digestion time with 1 μl of FastDigest MboII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 5 min 16 hours<br />

FastDigest MfeI <br />

5’...CA A T T G...3’<br />

3’...G T T A A C...5’<br />

#FD0753 20 μl<br />

#FD0754 50 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

8 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest MfeI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp No 16 hours<br />

FastDigest MluI<br />

5’...AC G C G T...3’<br />

3’...T G C G C A...5’<br />

#FD0564 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

7 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest MluI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 15 min 3 bp 80°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 47


48<br />

FastDigest MlyI <br />

5’...G A G T C(N) 5...3’<br />

3’...C T C A G(N) 5 ...5’<br />

#FD1374 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest Mly bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 30 min 5 min 2 bp 80°C, 5 min 1 hour<br />

FastDigest MnlI<br />

5’...C C T C(N) 7...3’<br />

3’...G G A G(N) 6 ...5’<br />

#FD1074 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 1.4% agarose<br />

<br />

DNA, 1.4% agarose<br />

61 cleavage sites<br />

262 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Note<br />

MnlI produces DNA fragments<br />

that have a single-base 3’-extension which<br />

are more difficult to ligate than blunt-ended<br />

fragments.<br />

Digestion time with 1 μl of FastDigest MnlI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 5 min 16 hours<br />

FastDigest MreI<br />

5’...C GC C G G C G...3’<br />

3’...G C G G C C G C...5’<br />

#FD2024 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

1 cleavage site<br />

Formulation<br />

<br />

<br />

5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest MreI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

no cleavage sites 5 min 5 min 5 min 3 bp 80°C, 5 min 16 hours


FastDigest MscI <br />

5’...T G GC C A...3’<br />

3’...A C C G G T...5’<br />

#FD1214 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

dcm – <br />

18 cleavage sites<br />

Formulation<br />

<br />

DNA dcm – in 5 min at 37°C in 1X FastDigest<br />

Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, CpG, EcoKI, EcoBI – no effect.<br />

Dcm: may overlap – blocked <br />

Note<br />

FastDigest <br />

dcm methylation. To avoid dcm methylation, use a<br />

dam – , dcm – strain such as GM2163.<br />

Digestion time with 1 μl of FastDigest MscI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 30 min 20 min 3 bp 80°C, 20 min 16 hours<br />

FastDigest MseI <br />

5’...TT A A...3’<br />

3’...A A T T...5’<br />

#FD2174 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

pBR322 DNA, 1.0% agarose<br />

15 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest MseI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 bp 65°C, 5 min 16 hours<br />

FastDigest MslI <br />

5’...C A Y N NN N R T G...3’<br />

3’...G T R N N N N Y A C...5’<br />

#FD2004 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.2% agarose<br />

62 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest MslI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 bp 65°C, 20 min 16 hours<br />

20’<br />

www.thermoscientific.com/onebio 49


50<br />

FastDigest MspI<br />

5’...CC G G...3’<br />

3’...G G C C...5’<br />

#FD0544 400 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest MspI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp No 16 hours<br />

FastDigest MssI<br />

5’...G T T TA A A C...3’<br />

3’...C A A A T T T G...5’<br />

#FD1344 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 1.4% agarose<br />

<br />

DNA, 0.7% agarose<br />

328 cleavage sites<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA/HindIII fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

MspI is an isoschizomer of<br />

HpaII. When the external C in the sequence<br />

CCGG is methylated, these enzymes cannot<br />

cleave. However, unlike HpaII, FastDigest<br />

MspI can cleave the sequence when the<br />

internal C residue is methylated.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – blocked <br />

Digestion time with 1 μl of FastDigest MssI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 10 min 16 hours<br />

FastDigest MvaI<br />

5’...C CW G G...3’<br />

3’...G G W C C...5’<br />

#FD0554 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

70 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest MvaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 4 bp No 1 hour


FastDigest Mva1269I<br />

5’...G A A T G C N...3’<br />

3’...C T T A C G N ...5’<br />

#FD0964 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

46 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest Mva1269I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 5 min 16 hours<br />

FastDigest NaeI <br />

5’...G C CG G C...3’<br />

3’...C G G C C G...5’<br />

#FD1524 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

pBR322 DNA/NdeI, 0.7% agarose<br />

4 cleavage sites<br />

Formulation<br />

<br />

DNA/NdeI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Note<br />

<br />

least two copies of its recognition sequence<br />

are required.<br />

<br />

cleave with FastDigest <br />

as with its prototype NaeI.<br />

Digestion time with 1 μl of FastDigest NaeI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

not determined 5 min 5 min 5 min 3 bp 65°C, 15 min 16 hours<br />

FastDigest NciI <br />

5’...C CS G G...3’<br />

3’...G G S C C...5’<br />

#FD0064 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

114 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps –<br />

cleavage impaired <br />

Digestion time with 1 μl of FastDigest NciI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 80°C, 20 min 16 hours<br />

www.thermoscientific.com/onebio 51


52<br />

FastDigest NcoI<br />

5’...CC A T G G...3’<br />

3’...G G T A C C...5’<br />

#FD0573 20 μl<br />

#FD0574 100 μl<br />

#FD0575 300 μl<br />

All supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest NcoI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 10 min 10 min 5 min 3 bp 65°C, 15 min 16 hours<br />

FastDigest NdeI<br />

5’...C AT A T G...3’<br />

3’...G T A T A C...5’<br />

#FD0583 100 μl<br />

#FD0584 300 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

#FD0585 1000 μl<br />

Supplied with:<br />

10X FastDigest Buffer 2X1 ml<br />

10X FastDigest Green Buffer 2X1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 0.7% agarose<br />

<br />

DNA, 0.7% agarose<br />

4 cleavage sites<br />

7 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest NdeI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 60 min 30 min 3 bp 65°C, 5 min 6 hours<br />

FastDigest NheI<br />

5’...GC T A G C...3’<br />

3’...C G A T C G...5’<br />

#FD0973 50 μl<br />

#FD0974 100 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA 0.7% agarose<br />

1 cleavage site<br />

Formulation<br />

<br />

DNA/HindIII fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

Digestion time with 1 μl of FastDigest NheI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 15 min 5 min 5 min 5 bp 65°C, 5 min 6 hours


FastDigest NlaIII <br />

5’... C A T G ...3’<br />

3’... G T A C ...5’<br />

#FD1834 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

181 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

the half-life of FastDigest <br />

months.<br />

Digestion time with 1 μl of FastDigest NlaIII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 10 min 5 min 10 min 4 bp 80°C, 5 min 16 hours<br />

FastDigest NlaIV <br />

5’...G G NN C C...3’<br />

3’...C C N N G G...5’<br />

#FD1154 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

82 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

Digestion time with 1 μl of FastDigest NlaIV bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 20 min 16 hours<br />

FastDigest NmuCI<br />

5’...G T S A C ...3’<br />

3’... C A S T G ...5’<br />

#FD1514 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

81 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

20’<br />

Note<br />

<br />

impaired by overlapping dcm methylation.<br />

To avoid dcm methylation, use a dam – , dcm –<br />

strain such as GM2163.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest NmuCI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 2 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 53


54<br />

FastDigest NotI<br />

5’...G CG G C C G C...3’<br />

3’...C G C C G G C G...5’<br />

#FD0593 20 μl<br />

#FD0594 50 μl<br />

#FD0596 250 μl<br />

All supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest NotI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

no cleavage sites 30 min 5 min 10 min 2 bp 80°C, 5 min 16 hours<br />

FastDigest NruI <br />

5’...T C GC G A...3’<br />

3’...A G C G C T...5’<br />

#FD2154 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

<br />

DNA, 0.7% agarose<br />

1 cleavage site<br />

5 cleavage sites<br />

Formulation<br />

<br />

<br />

37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Methylation Effects<br />

Dam, Dcm, EcoBI, EcoKI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest NruI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 5 bp No 4 hours<br />

FastDigest NsiI <br />

5’...A T G C AT...3’<br />

3’...T A C G T A...5’<br />

#FD0734 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

14 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest NsiI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 3 bp 65°C, 15 min 6 hours


FastDigest NspI <br />

5’...R C A T GY...3’<br />

3’...Y G T A C R...5’<br />

#FD1474 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

32 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI, CpG – no effect.<br />

Digestion time with 1 μl of FastDigest NspI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 5 min 16 hours<br />

FastDigest PacI<br />

5’...T T A A TT A A...3’<br />

3’...A A T T A A T T...5’<br />

#FD2204 25 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

1 cleavage site<br />

Formulation<br />

<br />

<br />

PacI recognition site in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoBI, CpG – no effect.<br />

EcoKI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest PacI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

no cleavage sites 5 min 5 min 5 min 2 bp 65°C, 10 min 16 hours<br />

FastDigest PdmI<br />

5’...G A A N NN N T T C...3’<br />

3’...C T T N N N N A A G...5’<br />

#FD1534 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

24 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest PdmI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 55


56<br />

FastDigest PflMI <br />

5’...C C A N N N NN T G G...3’<br />

3’...G G T N N N N N A C C...5’<br />

#FD0714 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest PflMI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 10 min 6 hours<br />

FastDigest PfoI<br />

5’...TC C N G G A...3’<br />

3’...A G G N C C T...5’<br />

#FD1754 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 0.7% agarose<br />

<br />

DNA, 0.7% agarose<br />

14 cleavage sites<br />

15 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, CpG, EcoKI, EcoBI – no effect.<br />

Dcm: may overlap – blocked <br />

Note<br />

<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Methylation Effects<br />

Dam: may overlap – cleavage impaired <br />

Dcm, CpG: may overlap – blocked <br />

EcoKI, EcoBI – no effect.<br />

Note<br />

PfoI cleavage is impaired by<br />

overlapping dam methylation and blocked by<br />

overlapping dcm methylation. To avoid dam<br />

or dcm methylation, use a dam – , dcm – strain<br />

such as GM2163.<br />

Digestion time with 1 μl of FastDigest PfoI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 5 min 16 hours<br />

FastDigest PmlI <br />

5’...C A CG T G...3’<br />

3’...G T G C A C...5’<br />

#FD0364 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

3 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest PmlI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 10 min 1 hour


FastDigest PpuMI <br />

5’...R GG W C C Y...3’<br />

3’...Y C C W G G R...5’<br />

#FD0764 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

3 cleavage sites<br />

Formulation<br />

<br />

DNA/CpoI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, CpG, EcoKI – no effect.<br />

Dcm: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Digestion time with 1 μl of FastDigest PpuMI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 20 min 2 bp 80°C, 5 min 1 hour<br />

FastDigest PshAI <br />

5’...G A C N NN N G T C...3’<br />

3’...C T G N N N N C A G...5’<br />

#FD1434 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

7 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest PshAI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 80°C, 20 min 16 hours<br />

FastDigest PsiI <br />

5’...T T AT A A ...3’<br />

3’...A A T A T T ...5’<br />

#FD2064 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

12 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest Psi bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 5 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 57


58<br />

FastDigest PspFI<br />

5’...C C C A GC...3’<br />

3’...G G G T C G...5’<br />

#FD2224 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest PspFI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 80°C, 5 min 16 hours<br />

FastDigest PstI<br />

5’...C T G C AG...3’<br />

3’...G A C G T C...5’<br />

#FD0614 800 μl<br />

Supplied with:<br />

10X FastDigest buffer 2x1 ml<br />

10X FastDigest Green Buffer 2x1 ml<br />

#FD0615 2500 μl<br />

Supplied with:<br />

10X FastDigest buffer 5x1 ml<br />

10X FastDigest Green Buffer 5x1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 0.7% agarose<br />

<br />

DNA, 0.7% agarose<br />

32 cleavage sites<br />

28 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

Note<br />

<br />

adjacent runs of G-C base pairs confers<br />

significant resistance to cleavage<br />

<br />

<br />

PstI will not cut AGCTGCAG when<br />

methylated by AluI methyltransferase.<br />

Digestion time with 1 μl of FastDigest PstI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 30 min 5 min 3 bp No 16 hours<br />

FastDigest PsuI<br />

5’...RG A T C Y...3’<br />

3’...Y C T A G R...5’<br />

#FD1554 150 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

21 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest PsuI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 5 min 16 hours


FastDigest PsyI<br />

5’...G A C NN N G T C...3’<br />

3’...C T G N N N C A G...5’<br />

#FD1334 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA/SmaI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest PsyI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 80°C, 5 min 4 hours<br />

FastDigest PvuI<br />

5’...C G A TC G...3’<br />

3’...G C T A G C...5’<br />

#FD0624 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

FastDigest PvuII<br />

5’...C A GC T G...3’<br />

3’...G T C G A C...5’<br />

#FD0634 400 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

Digestion time with 1 μl of FastDigest PvuI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 15 min 5 min 5 min 4 bp 80°C, 5 min 16 hours<br />

<br />

DNA, 0.7% agarose<br />

3 cleavage sites<br />

15 cleavage sites<br />

Formulation<br />

<br />

DNA/CpoI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest PvuII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp No 0.5 hour<br />

www.thermoscientific.com/onebio 59


60<br />

FastDigest RsaI<br />

5’...G TA C...3’<br />

3’...C A T G...5’<br />

#FD1124 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest RsaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp No 16 hours<br />

5’...C GG W C C G...3’<br />

3’...G C C W G G C...5’<br />

#FD0744 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 1.4% agarose<br />

FastDigest RsrII <br />

<br />

DNA, 0.7% agarose<br />

113 cleavage sites<br />

5 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest RsrII bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 65°C, 5 min 16 hours<br />

FastDigest SacI<br />

5’...G A G C TC...3’<br />

3’...C T C G A G...5’<br />

#FD1133 100 μl<br />

#FD1134 200 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA/HindIII fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

SacI is sensitive to cytosine<br />

methylation at GAGmCTC but not GAGCTmC<br />

and insensitive to adenine methylation at<br />

<br />

can be used to block FastDigest SacI.<br />

Digestion time with 1 μl of FastDigest SacI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 15 min 30 min 10 min 1 bp 65°C, 5 min 16 hours


FastDigest SalI<br />

5’...GT C G A C...3’<br />

3’...C A G C T G...5’<br />

#FD0644 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA/Eco81I fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest SalI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 60 min 5 min 3 bp 65°C, 10 min 16 hours<br />

FastDigest SanDI <br />

5’...G GG W C C C...3’<br />

3’...C C C W G G G...5’<br />

#FD2164 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

3 cleavage sites<br />

Formulation<br />

<br />

<br />

recognition sites in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm: may overlap – effect not determined.<br />

CpG: may overlap – cleavage impaired <br />

Digestion time with 1 μl of FastDigest SanDI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 5 bp No 16 hours<br />

FastDigest SapI <br />

5’...G C T C T T C(N) 1...3’<br />

3’...C G A G A A G(N) 4 ...5’<br />

#FD1934 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

10 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest SapI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 61


62<br />

FastDigest Sau3AI <br />

5’...G A T C ...3’<br />

3’... C T A G ...5’<br />

#FD0784 40 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest Sau3AI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 10 min 5 min 4 bp 65°C, 20 min 16 hours<br />

5’...GG N C C...3’<br />

3’...C C N G G...5’<br />

#FD0194 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 1.4% agarose<br />

FastDigest Sau96I <br />

<br />

DNA, 1.0% agarose<br />

116 cleavage sites<br />

74 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

20’<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – blocked <br />

Note<br />

DpnI, FastDigest <br />

and FastDigest MboI all recognize the same<br />

sequence but have different methylation<br />

<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – blocked <br />

Note<br />

<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Digestion time with 1 μl of FastDigest Sau96I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp No 16 hours<br />

FastDigest SbfI <br />

5’...C C T G C AG G...3’<br />

3’...G G A C G T C C...5’<br />

#FD1194 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

5 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest SbfI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp No 1 hour


FastDigest ScaI<br />

5’...A G TA C T...3’<br />

3’...T C A T G A...5’<br />

#FD0434 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

5 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Digestion time with 1 μl of FastDigest ScaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 bp 65°C, 10 min 16 hours<br />

FastDigest ScrFI <br />

5’...C CN G G...3’<br />

3’...G G N C C...5’<br />

#FD1424 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

dcm – <br />

184 cleavage sites<br />

Formulation<br />

<br />

DNA dcm – in 5 min at 37°C in 1X FastDigest<br />

Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – blocked <br />

Note<br />

<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Digestion time with 1 μl of FastDigest ScrFI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 bp No 16 hours<br />

FastDigest SexAI <br />

5’...AC C W G G T...3’<br />

3’...T G G W C C A...5’<br />

#FD2114 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

5 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoBI, EcoKI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest SexAI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 10 min 5 min 15 min 4 bp 65°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 63


64<br />

FastDigest SfaNI <br />

5’...G C A T C(N) 5...3’<br />

3’...C G T A G(N) 9 ...5’<br />

#FD2124 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest SfaNI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 65°C, 5 min 16 hours<br />

5’...CT R Y A G...3’<br />

3’...G A Y R T C...5’<br />

#FD1164 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 1.4% agarose<br />

FastDigest SfcI <br />

<br />

DNA,1.0% agarose<br />

169 cleavage sites<br />

38 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

<br />

efficient cleavage.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest SfcI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp 65°C, 20 min 16 hours<br />

FastDigest SfiI<br />

5’...G G C C N N N NN G G C C...3’<br />

3’...C C G G N N N N N C C G G...5’<br />

#FD1824 150 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

pUC19-SfiI DNA, 0.7% agarose<br />

2 cleavage sites<br />

Formulation<br />

<br />

DNA with inserted SfiI recognition sites in<br />

15 min at 50°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 50°C.<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

20’<br />

Note<br />

SfiI cleavage is impaired by<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

SfiI at least<br />

two copies of its recognition sequence are<br />

required. The two sites can be on either the<br />

<br />

<br />

Digestion time with 1 μl of FastDigest SfiI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

no cleavage sites 15 min 15 min 15 min 5 bp No 16 hours


FastDigest SmaI<br />

5’...C C CG G G...3’<br />

3’...G G G C C C...5’<br />

#FD0663 100 μl<br />

#FD0664 200 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

3 cleavage sites<br />

Formulation<br />

<br />

DNA/Eco81I fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest SmaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 1 bp 65°C, 5 min 16 hours<br />

FastDigest SnaBI <br />

5’...T A CG T A...3’<br />

3’...A T G C A T...5’<br />

#FD0404 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

1 cleavage site<br />

Formulation<br />

<br />

DNA/CpoI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion time with 1 μl of FastDigest SnaBI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 65°C, 5 min 16 hours<br />

FastDigest SpeI <br />

5’...AC T A G T...3’<br />

3’...T G A T C A...5’<br />

#FD1253 20 μl<br />

#FD1254 50 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

pUC19-BcuI DNA/Psp1406I, 1.0% agarose<br />

1 cleavage site<br />

Formulation<br />

<br />

DNA with inserted BcuI recognition site/<br />

Psp1406I fragments in 5 min at 37°C in<br />

1X FastDigest Buffer. The control DNA is.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest SpeI bp from end of DNA required Thermal Incubation time without<br />

Lambda, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

no cleavage sites 5 min 5 min 5 min 1 bp No 16 hours<br />

www.thermoscientific.com/onebio 65


66<br />

FastDigest SphI <br />

5’...G C A T GC...3’<br />

3’...C G T A C G...5’<br />

#FD0604 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest SphI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 5 bp 65°C, 5 min 16 hours<br />

FastDigest SspI<br />

5’...A A TA T T...3’<br />

3’...T T A T A A...5’<br />

#FD0774 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 0.7% agarose<br />

<br />

DNA, 1.0% agarose<br />

6 cleavage sites<br />

20 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest SspI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 30 min 2 bp 65°C, 5 min 1 hour<br />

FastDigest StuI <br />

5’...A G GC C T...3’<br />

3’...T C C G G A...5’<br />

#FD0424 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

6 cleavage sites<br />

Formulation<br />

<br />

DNA/Eco81I fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, CpG, EcoKI – no effect.<br />

Dcm: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

overlapping dcm methylation. To avoid dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Digestion time with 1 μl of FastDigest StuI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp 80°C, 10 min 16 hours


FastDigest StyI <br />

5’...CC W W G G...3’<br />

3’...G G W W C C...5’<br />

#FD0414 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

10 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest StyI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 20 min 20 min 3 bp 65°C, 5 min 16 hours<br />

FastDigest SwaI <br />

5’...A T T TA A A T...3’<br />

3’...T A A A T T T A...5’<br />

#FD1244 200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

M13mp18 DNA/MvaI, 1.0% agarose<br />

1 cleavage site<br />

Formulation<br />

<br />

M13mp18 DNA/MvaI fragments in 5 min at<br />

37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest SwaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

no cleavage sites 20 min 30 min 30 min 2 bp 65°C, 15 min 1 hour<br />

FastDigest TaaI<br />

5’...A C NG T...3’<br />

3’...T G N C A...5’<br />

#FD1364 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

187 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 65°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 65°C.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest TaaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp No 16 hours<br />

www.thermoscientific.com/onebio 67


68<br />

FastDigest TaiI<br />

5’... A C G T...3’<br />

3’... T G C A ...5’<br />

#FD1144 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

<br />

DNA, 1.4% agarose<br />

143 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 65°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 65°C.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest TaiI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp No 6 hours<br />

FastDigest TaqI<br />

5’...TC G A...3’<br />

3’...A G C T...5’<br />

#FD0674 400 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

dam – <br />

121 cleavage sites<br />

Formulation<br />

<br />

DNA dam – in 5 min at 65°C in 1X FastDigest<br />

Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 65°C.<br />

Methylation Effects<br />

Dam: may overlap – blocked <br />

Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

TaqI is blocked by overlapping<br />

dam methylation. To avoid dam methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

Digestion time with 1 μl of FastDigest TaqI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 4 bp No 16 hours<br />

FastDigest TatI<br />

5’...WG T A C W...3’<br />

3’...W C A T G W...5’<br />

#FD1294 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.0% agarose<br />

24 cleavage sites<br />

Formulation<br />

<br />

DNA in 15 min at 65°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 65°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest TatI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 15 min 15 min 20 min 5 bp No 1 hour


FastDigest TauI<br />

5’...G C S GC...3’<br />

3’...C G S C G...5’<br />

#FD1654 20 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

181 cleavage sites<br />

Formulation<br />

<br />

DNA in 15 min at 55°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 55°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoBI, EcoKI – no effect.<br />

CpG: completely overlaps – blocked <br />

Note<br />

<br />

with the cleaved DNA. This may cause DNA<br />

band shifting during electrophoresis. To<br />

avoid atypical DNA band patterns heat the<br />

digested DNA in the presence of 6X DNA<br />

<br />

SDS prior to electrophoresis.<br />

Digestion time with 1 μl of FastDigest TauI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

15 min 60 min 15 min 30 min 5 bp No 16 hours<br />

FastDigest TfiI <br />

5’...GA W T C...3’<br />

3’...C T W A G...5’<br />

#FD1784 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

87 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest TfiI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 10 min 5 min 2 bp 65°C, 5 min 16 hours<br />

FastDigest Tru1I<br />

5’...TT A A ...3’<br />

3’...A A T T...5’<br />

#FD0984 50 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 1.4% agarose<br />

195 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 65°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 65°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – blocked <br />

Digestion time with 1 μl of FastDigest Tru1I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 3 bp No 2 hours<br />

www.thermoscientific.com/onebio 69


70<br />

FastDigest Tsp509I <br />

5’...A A T T ...3’<br />

3’... T T A A ...5’<br />

#FD1354 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

Digestion time with 1 μl of FastDigest Tsp509I bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 3 bp No 6 hours<br />

5’... N N C A S T G N N...3’<br />

3’... N N G T S A C N N ...5’<br />

#FD2104 100 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

www.thermoscientific.com/onebio<br />

pBR322 DNA, 1.0% agarose<br />

FastDigest TspRI <br />

<br />

DNA, 1.4% agarose<br />

8 cleavage sites<br />

119 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 65°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 65°C.<br />

Formulation<br />

<br />

DNA in 5 min at 65°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 65°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Note<br />

<br />

fragments with a 9-base 3’-extension. This<br />

may result in atypical DNA band patterns.<br />

<br />

associated with the cleaved DNA. This<br />

may cause DNA band shifting during<br />

electrophoresis. To avoid atypical DNA<br />

band patterns heat the digested DNA in<br />

the presence of 6X DNA Loading Dye &<br />

<br />

electrophoresis.<br />

Digestion time with 1 μl of FastDigest TspRI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 5 min 2 bp No 6 hours<br />

FastDigest XapI<br />

5’...RA A T T Y...3’<br />

3’...Y T T A A R...5’<br />

#FD1383 50 μl<br />

#FD1384 100 μl<br />

Both supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

<br />

DNA, 0.7% agarose<br />

58 cleavage sites<br />

Formulation<br />

<br />

DNA in 5 min at 37°C in 1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion time with 1 μl of FastDigest XapI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 4 bp 80°C, 5 min 6 hours


FastDigest XbaI<br />

5’...TC T A G A...3’<br />

3’...A G A T C T...5’<br />

#FD0684 300 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

#FD0685 750 μl<br />

Supplied with:<br />

10X FastDigest Buffer 2X1 ml<br />

10X FastDigest Green Buffer 2X1 ml<br />

<br />

dam – <br />

1 cleavage site<br />

Formulation<br />

<br />

DNA dam – /SmaI fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

Methylation Effects<br />

Dam: may overlap – blocked <br />

Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion time with 1 μl of FastDigest XbaI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 2 bp 65°C, 20 min 16 hours<br />

FastDigest XhoI<br />

5’...CT C G A G...3’<br />

3’...G A G C T C...5’<br />

#FD0694 400 μl<br />

Supplied with:<br />

10X FastDigest Buffer 1 ml<br />

10X FastDigest Green Buffer 1 ml<br />

#FD0695 1200 μl<br />

Supplied with:<br />

10X FastDigest Buffer 3X1 ml<br />

10X FastDigest Green Buffer 3X1 ml<br />

<br />

DNA, 0.7% agarose<br />

1 cleavage site<br />

Formulation<br />

<br />

DNA/HindIII fragments in 5 min at 37°C in<br />

1X FastDigest Buffer.<br />

Reaction Conditions<br />

1X FastDigest Buffer or 1X FastDigest Green<br />

Buffer at 37°C.<br />

20’<br />

Note<br />

XbaI is blocked by overlapping<br />

dam methylation. To avoid dam methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – cleavage impaired<br />

<br />

Digestion time with 1 μl of FastDigest XhoI bp from end of DNA required Thermal Incubation time without<br />

Lambda DNA, 1μg/20μl Plasmid DNA, 1μg/20μl PCR product, ~0.2μg/30μl Genomic DNA, 1μg/10μl for complete digestion inactivation star activity<br />

5 min 5 min 5 min 10 min 2 bp 80°C, 5 min 16 hours<br />

www.thermoscientific.com/onebio 71


72<br />

Protocols and Recommendations<br />

1.1. Fast DNA digestion<br />

1. Prepare the reaction mixture at room temperature<br />

in the order indicated:<br />

Component<br />

Water,<br />

nuclease-free*<br />

<br />

10X FastDigest<br />

Buffer or<br />

10X FastDigest<br />

Green Buffer<br />

DNA*<br />

Plasmid<br />

DNA<br />

up to<br />

20 μl<br />

www.thermoscientific.com/onebio<br />

Volume<br />

PCR product<br />

unpurified purified<br />

Genomic<br />

DNA<br />

17 μl up to 30 μl up to 50 μl<br />

2 μl 2 μl 3 μl 5 μl<br />

1 μg<br />

<br />

<br />

10 μl<br />

<br />

5 μg**<br />

FastDigest<br />

enzyme<br />

1 μl 1 μl 1 μl 5 μl<br />

Total volume 20 μl 30 μl 30 μl 50 μl<br />

2. Mix gently and spin down.<br />

3. Incubate at 37°C in a heat block or water<br />

thermostat for 5-15 min.***<br />

4. ***<br />

Note<br />

* The volume of water should be adjusted to<br />

maintain the indicated total reaction volume.<br />

The volume of DNA can be scaled up to<br />

10 μl or down to 0.5 μl depending on the<br />

DNA concentration.<br />

** It is recommended that the volume of DNA<br />

sample should not exceed 30% of the total<br />

reaction volume.<br />

*** See the Certificate of Analysis or Table 1.3<br />

<br />

incubation time, recommended temperature<br />

and enzyme inactivation conditions.<br />

5. For fast simultaneous plasmid vector<br />

linearization and dephosphorylation protocol,<br />

see p.295.<br />

1.2. Reaction set-up for<br />

digestion of multiple DNA<br />

samples<br />

1. Pipette 2 μl of each DNA* sample into<br />

labeled tubes.<br />

2. Prepare a master mix for n+1 samples.<br />

<br />

<br />

Water, nuclease-free* <br />

10X FastDigest Buffer or<br />

10X FastDigest Green Buffer<br />

<br />

FastDigest enzyme <br />

3. Add 18 μl of master mix* into tubes<br />

containing DNA.<br />

Note<br />

* The volume of DNA can be scaled up to<br />

10 μl or down to 0.5 μl depending on the<br />

DNA concentration. The volume of water and<br />

master mix should be adjusted to maintain<br />

the indicated total reaction volume.<br />

1.3. Double and multiple<br />

digestion of DNA<br />

FastDigest enzymes allow simultaneous<br />

digestion of DNA with two or more enzymes in<br />

one digestion reaction.<br />

<br />

reaction conditions appropriately.<br />

<br />

should not exceed 1/10 of the total reaction<br />

volume.<br />

<br />

temperature perform sequential DNA<br />

cleavage: complete the first digestion<br />

reaction at the lower temperature, add the<br />

second enzyme and increase the digestion<br />

temperature for the second enzyme<br />

cleavage.<br />

1.4. Scaling up DNA digestion<br />

reaction<br />

DNA 1 μg 2 μg 3 μg 4 μg 5 μg<br />

FastDigest enzyme<br />

10X FastDigest Buffer<br />

1 μl 2 μl 3 μl 4 μl 5 μl<br />

or 10X FastDigest Green<br />

Buffer<br />

2 μl 2 μl 3 μl 4 μl 5 μl<br />

Total volume 20 μl 20 μl 30 μl 40 μl 50 μl


Reaction Conditions<br />

Table 1.3. Reaction conditions for <strong>Thermo</strong> <strong>Scientific</strong> FastDigest restriction enzymes.<br />

FastDigest<br />

restriction enzyme<br />

Specificity<br />

5’3’<br />

Reaction<br />

temp.<br />

Lambda<br />

DNA<br />

1μg/20μl<br />

Digestion time with 1 μl of<br />

FastDigest enzyme, min<br />

Plasmid<br />

DNA<br />

1μg/20μl<br />

PCR<br />

product<br />

~0.2μg/30μl<br />

Genomic<br />

DNA<br />

1μg/10μl<br />

bp from end of<br />

DNA required<br />

for complete<br />

digestion<br />

Thermal<br />

inactivation<br />

Incubation<br />

time<br />

without<br />

star<br />

activity<br />

FastDigest AatII GACGTC 37°C 15 20 15 15 5 80°C, 5 min 16 h<br />

FastDigest AccI GTMKAC 37°C 5 5 60 5 2 65°C, 5 min 16 h<br />

FastDigest Acc65I GGTACC 37°C 5 5 5 5 3 65°C, 5 min 16 h<br />

FastDigest AciI 37°C 5 5 5 5 2 65°C, 5 min 4 h<br />

FastDigest AclI AACGTT 37°C 5 5 5 5 3 65°C, 5 min 16 h<br />

FastDigest AcuI * 37°C 15 30 15 15 2 65°C, 5 min 16 h<br />

FastDigest AfeI AGCGCT 37°C 5 5 5 5 4 65°C, 5 min 16 h<br />

FastDigest AflII CTTAAG 37°C 5 5 5 5 4 NO 16 h<br />

FastDigest AgeI ACCGGT 37°C 5 5 5 5 3 80°C, 5 min 16 h<br />

FastDigest AjuI* 7 37°C 5 5 10 5 ND 65°C, 5 min 16 h<br />

FastDigest AleI CACNNNNGTG 37°C 5 5 10 5 3 65°C, 5 min 6 h<br />

FastDigest AluI AGCT 37°C 15 15 15 15 4 65°C, 5 min 16 h<br />

FastDigest Alw21I GWGCWC 37°C 5 5 5 5 1 80°C, 20 min 16 h<br />

FastDigest Alw26I 37°C 5 5 5 5 1 65°C, 5 min 16 h<br />

FastDigest AlwNI CAGNNNCTG 37°C 5 5 5 5 4 65°C, 10 min 16 h<br />

FastDigest ApaI GGGCCC 37°C 5 5 20 10 2 65°C, 5 min 16 h<br />

FastDigest ApaLI GTGCAC 37°C 5 60 10 5 4 80°C, 5 min 16h<br />

FastDigest AscI GGCGCGCC 37°C 5 5 5 5 2 65°C, 20 min 16 h<br />

FastDigest AseI ATTAAT 37°C 5 5 5 30 2 65°C, 5 min 16 h<br />

FastDigest AsiSI GCGATCGC 37°C no sites 5 60 5 5 80°C, 5 min 6 h<br />

FastDigest AvaI CYCGRG 37°C 5 5 5 5 2 65°C, 5 min 16 h<br />

FastDigest AvaII GGWCC 37°C 5 5 5 5 1 80°C, 20 min 16 h<br />

FastDigest AvrII CCTAGG 37°C 5 10 5 10 2 NO 16 h<br />

FastDigest BamHI GGATCC 37°C 5 5 5 5 2 80°C, 5 min 1 h<br />

FastDigest BanI GGYRCC 37°C 5 60 5 15 2 65°C, 10 min 16 h<br />

FastDigest BbsI 37°C 5 5 5 5 1 65°C, 10 min 16 h<br />

FastDigest BbvI 37°C 5 5 5 10 2 65°C, 5 min 0.5 h<br />

FastDigest BclI TGATCA 37°C 5 5 15 5 3 80°C, 20 min 16 h<br />

FastDigest BfaI CTAG 37°C 5 15 5 20 3 80°C, 5 min 16 h<br />

FastDigest BglI GCCNNNNNGGC 37°C 5 5 5 5 3 65°C, 5 min 2 h<br />

FastDigest BglII AGATCT 37°C 5 20 30 20 3 NO 16 h<br />

FastDigest BlpI GCTNAGC 37°C 5 5 5 5 2 80°C, 5 min 16 h<br />

FastDigest Bme1580I GKGCMC 37°C 5 5 5 30 3 80°C, 15 min 16 h<br />

FastDigest BmtI GCTAGC 37°C 5 5 15 5 3 80°C, 5min 1 h<br />

FastDigest BplI* 5 37°C 15 20 30 30 ND 65°C, 5 min 16 h<br />

FastDigest BpmI 30°C 15 30 15 15 2 65°C, 5 min 16 h<br />

FastDigest Bpu10I 37°C 15 15 30 15 3 80°C, 5 min 1 h<br />

FastDigest BsaAI YACGTR 37°C 5 5 5 5 1 65°C, 5 min 6 h<br />

FastDigest BsaBI GATNNNNATC 65°C 5 5 5 5 3 NO 1 h<br />

FastDigest BsaHI GRCGYC 37°C 5 5 5 5 1 65°C, 5 min 16 h<br />

FastDigest BsaJI CCNNGG 37°C 5 5 5 5 3 80°C, 5 min 16 h<br />

FastDigest BseGI 37°C 5 5 5 5 2 80°C, 5 min 16 h<br />

FastDigest BseNI 65°C 5 5 5 5 2 80°C, 5 min 16 h<br />

FastDigest BseXI 65°C 15 15 15 15 3 80°C, 15 min 16 h<br />

FastDigest Bsh1236I CGCG 37°C 5 5 5 5 1 80°C, 10 min 16 h<br />

FastDigest BsiEI CGRYCG 37°C 15 15 15 15 3 80°C, 15 min 1 h<br />

FastDigest BsiWI CGTACG 37°C 15 15 15 15 3 65°C, 5 min 16 h<br />

<br />

www.thermoscientific.com/onebio 73


74<br />

Table 1.3. Reaction conditions for <strong>Thermo</strong> <strong>Scientific</strong> FastDigest restriction enzymes.<br />

FastDigest<br />

restriction enzyme<br />

www.thermoscientific.com/onebio<br />

Specificity<br />

5’3’<br />

Reaction<br />

temp.<br />

Lambda<br />

DNA<br />

1μg/20μl<br />

Digestion time with 1 μl of<br />

FastDigest enzyme, min<br />

Plasmid<br />

DNA<br />

1μg/20μl<br />

PCR<br />

product<br />

~0.2μg/30μl<br />

Genomic<br />

DNA<br />

1μg/10μl<br />

bp from end of<br />

DNA required<br />

for complete<br />

digestion<br />

Thermal<br />

inactivation<br />

Incubation<br />

time<br />

without<br />

star<br />

activity<br />

FastDigest BslI CCNNNNNNNGG 37°C 5 5 5 5 2 NO 16 h<br />

FastDigest BsmBI * 37°C 5 5 5 5 1 65°C, 10 min 6 h<br />

FastDigest BsmFI * 37°C 15 15 15 15 3 65°C, 5 min 16 h<br />

FastDigest Bsp119I TTCGAA 37°C 5 5 5 5 1 80°C, 5 min 16 h<br />

FastDigest Bsp120I GGGCCC 37°C 5 5 15 5 3 80°C, 10 min 16 h<br />

FastDigest Bsp1286I GDGCHC 37°C 5 5 5 5 2 80°C, 15 min 1 h<br />

FastDigest Bsp1407I TGTACA 37°C 5 5 5 5 3 80°C, 10 min 16 h<br />

FastDigest BspCNI * 55°C 15 30 15 15 2 80°C, 5 min 16 h<br />

FastDigest BspHI TCATGA 37°C 5 10 5 10 3 80°C, 5 min 0.5 h<br />

FastDigest BspMI * 37°C 15 15 60 20 5 65°C, 5 min 16 h<br />

FastDigest BsrBI 37°C 5 5 5 5 3 65°C, 5 min 16 h<br />

FastDigest BsrDI 55°C 15 15 15 15 3 80°C, 5 min 16 h<br />

FastDigest BsrFI RCCGGY 37°C 5 5 10 5 2 NO 2 h<br />

FastDigest BssHII GCGCGC 37°C 5 5 5 5 3 80°C, 5 min 16 h<br />

FastDigest BstXI CCANNNNNNTGG 37°C 5 5 5 5 4 80°C, 5 min 0.5 h<br />

FastDigest BstZ17I GTATAC 37°C 5 5 5 10 3 NO 6 h<br />

FastDigest Bsu36I CCTNAGG 37°C 5 5 5 5 2 80°C, 10 min 16 h<br />

FastDigest ClaI ATCGAT 37°C 5 5 5 5 2 65°C, 15 min 16 h<br />

FastDigest Csp6I GTAC 37°C 5 5 5 5 2 80°C, 10 min 16 h<br />

FastDigest DdeI CTNAG 37°C 5 5 5 10 3 65°C, 5 min 16 h<br />

FastDigest DpnI Gm6ATC 37°C ND 5<br />

not<br />

applicable<br />

10 1 80°C, 5 min 16 h<br />

FastDigest DraI TTTAAA 37°C 5 5 5 5 4 65°C, 5 min 16 h<br />

FastDigest DraIII CACNNNGTG 37°C 5 5 5 5 2 80°C, 5 min 1 h<br />

FastDigest DrdI GACNNNNNNGTC 37°C 5 5 5 5 1 80°C, 10 min 1 h<br />

FastDigest EagI CGGCCG 37°C 5 20 20 5 3 65°C, 5 min 16 h<br />

FastDigest Eam1105I GACNNNNNGTC 37°C 5 5 5 5 3 65°C, 5 min 1 h<br />

FastDigest EarI 37°C 5 5 5 5 3 80°C, 5 min 6 h<br />

FastDigest Ecl136II GAGCTC 37°C 5 5 5 5 1 65°C, 5 min 6 h<br />

FastDigest Eco31I 37°C 5 5 5 5 3 65°C, 5 min 16 h<br />

FastDigest Eco91I GGTNACC 37°C 5 5 5 5 2 65°C, 10 min 2 h<br />

FastDigest EcoNI CCTNNNNNAGG 37°C 5 5 5 20 2 65°C, 5 min 16 h<br />

FastDigest EcoO109I RGGNCCY 37°C 5 10 15 5 2 65°C, 5 min 16 h<br />

FastDigest EcoRI GAATTC 37°C 5 5 20 5 2 80°C, 5 min 0.5 h<br />

FastDigest EcoRV GATATC 37°C 5 5 5 5 2 NO 16 h<br />

FastDigest EheI GGCGCC 37°C 5 5 5 5 2 65°C, 5 min 6 h<br />

FastDigest Fnu4HI GCNGC 37°C 5 5 10 5 3 65°C, 5 min 16 h<br />

FastDigest FokI 37°C 5 5 5 5 1 65°C, 5 min 1 h<br />

FastDigest FspI TGCGCA 37°C 5 5 5 5 3 65°C, 15 min 16 h<br />

FastDigest FspAI RTGCGCAY 37°C 5 5 5 5 4 65°C, 5 min 16 h<br />

FastDigest HaeII RGCGCY 37°C 5 5 5 5 2 65°C, 10 min 1h<br />

FastDigest HaeIII GGCC 37°C 5 5 5 5 3 NO 16 h<br />

FastDigest HgaI 37°C 15 15 30 15 2 80°C, 5 min 1 h<br />

FastDigest HhaI GCGC 37°C 5 5 5 5 1 NO 16 h<br />

FastDigest HincII GTYRAC 37°C 5 5 5 10 1 65°C, 5 min 16 h<br />

FastDigest HindIII AAGCTT 37°C 5 5 20 10 3 80°C, 10 min 16 h<br />

FastDigest HinfI GANTC 37°C 5 5 5 5 2 65°C, 20 min 16 h<br />

FastDigest HinP1I GCGC 37°C 5 10 5 5 2 80°C, 10 min 16 h<br />

FastDigest HpaI GTTAAC 37°C 5 5 5 5 3 65°C, 20 min 0.5 h<br />

FastDigest HpaII CCGG 37°C 5 5 5 5 3 65°C, 5 min 16 h<br />

FastDigest Hpy8I GTNNAC 37°C 5 5 5 10 2 80°C, 5 min 16 h<br />

FastDigest HpyF10VI GCNNNNNNNGC 37°C 5 5 5 5 2 80°C, 5 min 16 h


Table 1.3. Reaction conditions for <strong>Thermo</strong> <strong>Scientific</strong> FastDigest restriction enzymes.<br />

FastDigest<br />

restriction enzyme<br />

Specificity<br />

5’3’<br />

Reaction<br />

temp.<br />

Lambda<br />

DNA<br />

1μg/20μl<br />

Digestion time with 1 μl of<br />

FastDigest enzyme, min<br />

Plasmid<br />

DNA<br />

1μg/20μl<br />

PCR<br />

product<br />

~0.2μg/30μl<br />

Genomic<br />

DNA<br />

1μg/10μl<br />

bp from end of<br />

DNA required<br />

for complete<br />

digestion<br />

Thermal<br />

inactivation<br />

Incubation<br />

time<br />

without<br />

star<br />

activity<br />

FastDigest KpnI GGTACC 37°C 5 5 5 5 3 80°C, 5 min 16 h<br />

FastDigest Kpn2I TCCGGA 37°C 5 5 5 5 2 80°C, 5 min 16 h<br />

FastDigest MauBI CGCGCGCG 37°C no sites 5 10 5 5 65°C, 5 min 16 h<br />

FastDigest MboI GATC 37°C 5 5 5 10 1 65°C, 15 min 16 h<br />

FastDigest MboII 37°C 5 5 5 5 2 65°C, 5 min 16 h<br />

FastDigest MfeI CAATTG 37°C 5 5 5 5 3 NO 16 h<br />

FastDigest MluI ACGCGT 37°C 5 5 5 15 3 80°C, 5 min 16 h<br />

FastDigest MlyI 37°C 5 5 30 5 2 80°C, 5 min 1 h<br />

FastDigest MnlI 37°C 5 5 5 5 2 65°C, 5 min 16 h<br />

FastDigest MreI CGCCGGCG 37°C no sites 5 5 5 3 80°C, 5 min 16 h<br />

FastDigest MscI TGGCCA 37°C 5 5 30 20 3 80°C, 20 min 16 h<br />

FastDigest MseI TTAA 37°C 5 5 5 5 4 65°C, 5 min 16 h<br />

FastDigest MslI CAYNNNNRTG 37°C 5 5 5 5 4 65°C, 20 min 16 h<br />

FastDigest MspI CCGG 37°C 5 5 5 5 3 NO 16 h<br />

FastDigest MssI GTTTAAAC 37°C 5 5 5 5 2 65°C, 10 min 16 h<br />

FastDigest MvaI CCWGG 37°C 5 5 5 10 4 NO 1 h<br />

FastDigest Mva1269I 37°C 5 5 5 5 3 65°C, 5 min 16 h<br />

FastDigest NaeI GCCGGC 37°C ND 5 5 5 3 65°C, 15 min 16 h<br />

FastDigest NciI CCSGG 37°C 5 5 5 5 3 80°C, 20 min 16 h<br />

FastDigest NcoI CCATGG 37°C 5 10 10 5 3 65°C, 15 min 16 h<br />

FastDigest NdeI CATATG 37°C 5 5 60 30 3 65°C, 5 min 6 h<br />

FastDigest NheI GCTAGC 37°C 5 15 5 5 5 65°C, 5 min 6 h<br />

FastDigest NlaIII CATG 37°C 5 10 5 10 4 80°C, 5 min 16 h<br />

FastDigest NlaIV GGNNCC 37°C 5 5 5 5 2 65°C, 20 min 16 h<br />

FastDigest NmuCI GTSAC 37°C 5 5 5 10 2 65°C, 5 min 16 h<br />

FastDigest NotI GCGGCCGC 37°C no sites 30 5 10 2 80°C, 5 min 16 h<br />

FastDigest NruI TCGCGA 37°C 5 5 5 5 5 NO 4 h<br />

FastDigest NsiI ATGCAT 37°C 5 5 5 10 3 65°C, 15 min 6 h<br />

FastDigest NspI RCATGY 37°C 5 5 5 5 2 65°C, 5 min 16 h<br />

FastDigest PacI TTAATTAA 37°C no sites 5 5 5 2 65°C, 10 min 16 h<br />

FastDigest PdmI GAANNNNTTC 37°C 5 5 5 5 2 65°C, 5 min 16 h<br />

FastDigest PflMI CCANNNNNTGG 37°C 5 5 5 5 3 65°C, 10 min 6 h<br />

FastDigest PfoI TCCNGGA 37°C 5 5 5 5 3 65°C, 5 min 16 h<br />

FastDigest PmlI CACGTG 37°C 5 5 5 5 2 80°C, 10 min 1 h<br />

FastDigest PpuMI RGGWCCY 37°C 5 5 5 20 2 80°C, 5 min 1 h<br />

FastDigest PshAI GACNNNNGTC 37°C 5 5 5 5 3 80°C, 20 min 16 h<br />

FastDigest PsiI TTATAA 37°C 5 5 5 5 5 65°C, 5 min 16 h<br />

FastDigest PspFI 37°C 5 5 5 5 4 80°C, 5 min 16 h<br />

FastDigest PstI CTGCAG 37°C 5 5 30 5 3 NO 16 h<br />

FastDigest PsuI RGATCY 37°C 5 5 5 5 2 80°C, 5 min 16 h<br />

FastDigest PsyI GACNNNGTC 37°C 5 5 5 5 2 80°C, 5 min 4 h<br />

FastDigest PvuI CGATCG 37°C 5 15 5 5 4 80°C, 5 min 16 h<br />

FastDigest PvuII CAGCTG 37°C 5 5 5 5 1 NO 0.5 h<br />

FastDigest RsaI GTAC 37°C 5 5 5 5 3 NO 16 h<br />

FastDigest RsrII CGGWCCG 37°C 5 5 5 5 1 65°C, 5 min 16 h<br />

FastDigest SacI GAGCTC 37°C 5 15 30 10 1 65°C, 5 min 16 h<br />

FastDigest SalI GTCGAC 37°C 5 5 60 5 3 65°C, 10 min 16 h<br />

FastDigest SanDI GGGWCCC 37°C 5 5 5 10 5 NO 16 h<br />

FastDigest SapI 37°C 5 5 5 5 2 65°C, 5 min 16 h<br />

FastDigest Sau3AI GATC 37°C 5 5 10 5 4 65°C, 20 min 16 h<br />

FastDigest Sau96I GGNCC 37°C 5 5 5 5 2 NO 16 h<br />

FastDigest SbfI CCTGCAGG 37°C 5 5 5 5 3 NO 1 h<br />

<br />

www.thermoscientific.com/onebio 75


76<br />

Table 1.3. Reaction conditions for <strong>Thermo</strong> <strong>Scientific</strong> FastDigest restriction enzymes.<br />

FastDigest<br />

restriction enzyme<br />

Note<br />

* – for digestion with FastDigest <br />

for digestion with FastDigest AjuI and FastDigest <br />

for digestion with FastDigest BplI and FastDigest <br />

for digestion with FastDigest <br />

NO – no thermal inactivation. Spin column purification or phenol/chloroform extraction and ethanol precipitation of<br />

DNA is recommended.<br />

ND – not determined.<br />

www.thermoscientific.com/onebio<br />

Specificity<br />

5’3’<br />

Reaction<br />

temp.<br />

Lambda<br />

DNA<br />

1μg/20μl<br />

Digestion time with 1 μl of<br />

FastDigest enzyme, min<br />

Plasmid<br />

DNA<br />

1μg/20μl<br />

PCR<br />

product<br />

~0.2μg/30μl<br />

Genomic<br />

DNA<br />

1μg/10μl<br />

bp from end of<br />

DNA required<br />

for complete<br />

digestion<br />

Thermal<br />

inactivation<br />

Incubation<br />

time<br />

without<br />

star<br />

activity<br />

FastDigest ScaI AGTACT 37°C 5 5 5 5 4 65°C, 10 min 16 h<br />

FastDigest ScrFI CCNGG 37°C 5 5 5 5 4 NO 16 h<br />

FastDigest SexAI ACCWGGT 37°C 5 10 5 15 4 65°C, 5 min 16 h<br />

FastDigest SfaNI 37°C 5 5 5 5 1 65°C, 5 min 16 h<br />

FastDigest SfcI CTRYAG 37°C 5 5 5 5 2 65°C, 20 min 16 h<br />

FastDigest SfiI GGCCNNNNNGGCC 50°C no sites 15 15 15 5 NO 16 h<br />

FastDigest SmaI CCCGGG 37°C 5 5 5 5 1 65°C, 5 min 16 h<br />

FastDigest SnaBI TACGTA 37°C 5 5 5 5 3 65°C, 5 min 16 h<br />

FastDigest SpeI ACTAGT 37°C no sites 5 5 5 1 NO 16 h<br />

FastDigest SphI GCATGC 37°C 5 5 5 5 5 65°C, 5 min 16 h<br />

FastDigest SspI AATATT 37°C 5 5 5 30 2 65°C, 5 min 1 h<br />

FastDigest StuI AGGCCT 37°C 5 5 5 5 3 80°C, 10 min 16 h<br />

FastDigest StyI CCWWGG 37°C 5 5 20 20 3 65°C, 5 min 16 h<br />

FastDigest SwaI ATTTAAAT 37°C no sites 20 30 30 2 65°C, 15 min 1 h<br />

FastDigest TaaI ACNGT 65°C 5 5 5 5 3 NO 16 h<br />

FastDigest TaiI ACGT 65°C 5 5 5 5 2 NO 6 h<br />

FastDigest TaqI TCGA 65°C 5 5 5 5 4 NO 16 h<br />

FastDigest TatI WGTACW 65°C 15 15 15 20 5 NO 1 h<br />

FastDigest TauI GCSGC 55°C 15 60 15 30 5 NO 16 h<br />

FastDigest TfiI GAWTC 37°C 5 5 10 5 2 65°C, 5 min 16 h<br />

FastDigest Tru1I TTAA 65°C 5 5 5 10 3 NO 2 h<br />

FastDigest Tsp509I AATT 65°C 5 5 5 5 3 NO 6 h<br />

FastDigest TspRI 65°C 5 5 5 5 2 NO 6 h<br />

FastDigest XapI RAATTY 37°C 5 5 5 10 4 80°C, 5 min 6 h<br />

FastDigest XbaI TCTAGA 37°C 5 5 5 10 2 65°C, 20 min 16 h<br />

FastDigest XhoI CTCGAG 37°C 5 5 5 10 2 80°C, 5 min 16 h<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;


Conventional Restriction Enzymes<br />

<strong>Thermo</strong> <strong>Scientific</strong> conventional restriction<br />

endonucleases are a large collection of high<br />

quality restriction enzymes. The enzymes are<br />

optimized to work in one of the buffers in our<br />

Five Buffer System. In addition, a universal<br />

Tango buffer is provided for convenience in<br />

double digestions. All of the enzymes exhibit<br />

Activity and Quality<br />

Control Assays<br />

Activity Assay<br />

One unit is the amount of enzyme required<br />

to hydrolyze 1 μg of substrate DNA in<br />

60 min in 50 μl of reaction mixture under<br />

the recommended conditions. To determine<br />

restriction enzyme activity, concentrated<br />

enzymes are first diluted to approximately<br />

0.5-1 units/μl with an enzyme dilution<br />

<br />

<br />

2-mercaptoethanol, 10% glycerol and 0.2 mg/<br />

<br />

In general, enzymes are assayed with phage<br />

DNA at 37°C. However, some exceptions apply:<br />

<br />

activity at temperatures other than 37°C are<br />

assayed under their optimal temperature.<br />

<br />

on DNA are assayed with another specific<br />

DNA substrate.<br />

<br />

sites on the DNA are assayed using DNA<br />

hydrolyzed with another restriction enzyme.<br />

<br />

methylation are assayed with DNA<br />

dam – , dcm – <br />

Quality Control<br />

Labeled Oligonucleotide (LO) Test<br />

The labelled oligonucleotides are incubated<br />

with an excess of restriction enzyme, separated<br />

on a polyacrylamide gel under denaturing<br />

conditions and analyzed by phospho-imaging.<br />

The restriction enzyme passes this quality<br />

control test if there is no degradation of labelled<br />

oligonucleotides and no decrease in specific<br />

see <br />

100% activity in the recommended buffer<br />

and reaction conditions. To ensure consistent<br />

enzyme performance, <strong>Thermo</strong> <strong>Scientific</strong><br />

restriction enzyme reaction buffers contain<br />

premixed BSA, which enhances the stability of<br />

many enzymes and binds contaminants that<br />

may be present in DNA preparations.<br />

Non-specific Nuclease<br />

and Cross-contamination Assay<br />

Varying amounts of restriction enzyme<br />

<br />

1 μg of substrate DNA under the recommended<br />

assay conditions. After electrophoretic<br />

separation of the DNA fragments, the<br />

characteristic banding patterns are examined<br />

for alterations.<br />

To pass the test, the restriction enzyme must<br />

yield an unaltered banding pattern under<br />

<br />

<br />

restriction enzyme star activity, see the product<br />

description or Certificate of Analysis supplied<br />

with each enzyme.<br />

Blue/White (B/W) Cloning Assay<br />

The B/W assay was replaced by LO test after<br />

validating experiments showed LO test ability to<br />

detect nuclease and phosphatase activities with<br />

sensitivity that equals to that of B/W test.<br />

Ligation and Recleavage (L/R) Assay<br />

The ligation and recleavage assay was replaced<br />

with LO test after validating experiments<br />

revealed LO test ability to trace nuclease and<br />

phosphatase activities with sensitivity that is<br />

higher than L/R test by a factor of 100.<br />

Storage and Shipping<br />

All conventional restriction enzymes should<br />

be stored at -20°C. During shipment on dry ice,<br />

enzymes may freeze. This does not affect their<br />

quality – all <strong>Thermo</strong> <strong>Scientific</strong> enzymes<br />

are 100% active after at least three<br />

freeze-thaw cycles.<br />

For 24-48 hour delivery, enzymes may be<br />

shipped on blue ice since their quality is not<br />

affected by short exposure to 4°C.<br />

www.thermoscientific.com/onebio 77


78<br />

Product List and Cross-reference to FastDigest Restriction Enzymes<br />

Table 1.4. <strong>Thermo</strong> <strong>Scientific</strong> conventional restriction enzymes.<br />

Conventional<br />

restriction enzyme<br />

FastDigest<br />

restriction enzyme<br />

Prototype Specificity 5’3’ Cat. # Page<br />

AanI FastDigest PsiI PsiI TTATAA ER2061 82<br />

AarI AarI ER1581/2 82<br />

AatII FastDigest AatII AatII GACGTC ER0991/2 82<br />

Acc65I FastDigest Acc65I GGTACC ER0901/2 83<br />

AdeI FastDigest DraIII DraIII CACNNNGTG ER1231 83<br />

AjiI BtrI CACGTC ER1941 84<br />

AjuI FastDigest AjuI AjuI 7 ER1951 84<br />

AlfI AlfI 6 ER1801 85<br />

AloI AloI 6 ER1491 85<br />

AluI FastDigest AluI AluI AGCT ER0011/2 85<br />

Alw21I FastDigest Alw21I HgiAI GWGCWC ER0021 86<br />

Alw26I FastDigest Alw26I BsmAI ER0031 86<br />

Alw44I FastDigest ApaLI ApaLI GTGCAC ER0041 86<br />

ApaI FastDigest ApaI ApaI GGGCCC ER1411/5 87<br />

BamHI FastDigest BamHI BamHI GGATCC ER0051/2/3/5 88<br />

BauI BsiI ER1841 88<br />

BclI FastDigest BclI BclI TGATCA ER0721/2/5 89<br />

BcnI FastDigest NciI CauII CCSGG ER0061 89<br />

BcuI FastDigest SpeI SpeI ACTAGT ER1251/2 89<br />

BfmI FastDigest SfcI SfeI CTRYAG ER1161/2 90<br />

BfuI BciVI ER1501 90<br />

BglI FastDigest BglI BglI GCCNNNNNGGC ER0071/2 90<br />

BglII FastDigest BglII BglII AGATCT ER0081/2 91<br />

Bme1390I FastDigest ScrFI ScrFI CCNGG ER1421/2 91<br />

BoxI FastDigest PshAI PshAI GACNNNNGTC ER1431 92<br />

BpiI FastDigest BbsI BbvII ER1011/2 92<br />

BplI FastDigest BpII BplI 5 ER1311/2 92<br />

Bpu10I FastDigest Bpu10l Bpu10I ER1181 93<br />

Bpu1102I FastDigest BlpI EspI GCTNAGC ER0091/2 93<br />

BseDI FastDigest BsaJI SecI CCNNGG ER1081/2 94<br />

BseGI FastDigest BseGI ER0871/2 94<br />

BseJI FastDigest BsaBI BsaBI GATNNNNATC ER1711 94<br />

BseLI FastDigest BslI BsiYI CCNNNNNNNGG ER1201 95<br />

BseMI FastDigest BsrDI BsrDI ER1261/2 95<br />

BseMII FastDigest BspCNI BseMII ER1401 95<br />

BseNI FastDigest BseNI BsrI ER0881/2 96<br />

BseSI FastDigest Bme1580I BseSI GKGCMC ER1441 96<br />

BseXI FastDigest BseXI BbvI ER1451/2 96<br />

Bsh1236I FastDigest Bsh1236I FnuDII CGCG ER0921/2 97<br />

Bsh1285I FastDigest BsiEI McrI CGRYCG ER0891 97<br />

BshNI FastDigest BanI HgiCI GGYRCC ER1001 97<br />

BshTI FastDigest AgeI AgeI ACCGGT ER1461/2 98<br />

Bsp68I FastDigest NruI NruI TCGCGA ER0111 98<br />

Bsp119I FastDigest Bsp119I AsuII TTCGAA ER0121 99<br />

Bsp120I FastDigest Bsp120I GGGCCC ER0131 99<br />

Bsp143I FastDigest Sau3AI MboI GATC ER0781/2 99<br />

Bsp1407I FastDigest Bsp1407I Bsp1407I TGTACA ER0931/2 100<br />

BspLI FastDigest NlaIV NlaIV GGNNCC ER1151/2 100<br />

BspOI FastDigest BmtI GCTAGC ER2041 100<br />

BspPI BinI ER1321/2 101<br />

BspTI FastDigest AflII AflII CTTAAG ER0831 101<br />

www.thermoscientific.com/onebio


Table 1.4. <strong>Thermo</strong> <strong>Scientific</strong> conventional restriction enzymes.<br />

Conventional<br />

restriction enzyme<br />

FastDigest<br />

restriction enzyme<br />

Prototype Specificity 5’3’ Cat. # Page<br />

Bst1107I FastDigest BstZ17I SnaI GTATAC ER0701 102<br />

BstXI FastDigest BstXI BstXI CCANNNNNNTGG ER1021/2 102<br />

Bsu15I FastDigest ClaI ClaI ATCGAT ER0141/2/5 103<br />

BsuRI FastDigest HaeIII HaeIII GGCC ER0151 103<br />

BveI FastDigest BspMI BspMI ER1741 104<br />

CaiI FastDigest AlwNI AlwNI CAGNNNCTG ER1391 104<br />

Cfr9I CCCGGG ER0171/2 105<br />

Cfr10I FastDigest BsrFI Cfr10I RCCGGY ER0181 105<br />

Cfr13I FastDigest Sau96I AsuI GGNCC ER0191 105<br />

Cfr42I SacII CCGCGG ER0201/2/5 106<br />

CpoI FastDigest RsrII RsrII CGGWCCG ER0741/2 106<br />

CseI FastDigest HgaI HgaI ER1901 106<br />

Csp6I FastDigest Csp6I GTAC ER0211 107<br />

DpnI FastDigest DpnI DpnI Gm6ATC ER1701/2/5 107<br />

DraI FastDigest DraI AhaIII TTTAAA ER0221/3 108<br />

Eam1104I FastDigest EarI Ksp632I ER0231/2 108<br />

Eam1105I FastDigest Eam1105I Eam1105I GACNNNNNGTC ER0241 108<br />

Ecl136II FastDigest Ecl136II GAGCTC ER0251 109<br />

Eco24I GRGCYC ER0281 109<br />

Eco31I FastDigest Eco31I Eco31I ER0291/2 110<br />

Eco32I FastDigest EcoRV EcoRV GATATC ER0301/2/3/5 110<br />

Eco47I FastDigest AvaII AvaII GGWCC ER0311/2 110<br />

Eco47III FastDigest AfeI Eco47III AGCGCT ER0321/2 111<br />

Eco52I FastDigest EagI XmaIII CGGCCG ER0331/2 111<br />

Eco57I FastDigest AcuI Eco57I ER0341/2 112<br />

Eco72I FastDigest PmlI PmaCI CACGTG ER0361 112<br />

Eco81I FastDigest Bsu36I SauI CCTNAGG ER0371/2 113<br />

Eco88I FastDigest AvaI AvaI CYCGRG ER0381 113<br />

Eco91I FastDigest Eco91I BstEII GGTNACC ER0391/2 113<br />

Eco105I FastDigest SnaBI SnaBI TACGTA ER0401/2 114<br />

Eco130I FastDigest StyI StyI CCWWGG ER0411 114<br />

Eco147I FastDigest StuI StuI AGGCCT ER0421/2 114<br />

EcoO109I FastDigest EcoO109I DraII RGGNCCY ER0261 115<br />

EcoRI FastDigest EcoRI EcoRI GAATTC ER0271/2/3/5 115<br />

EcoRII EcoRII CCWGG ER1921 116<br />

EheI FastDigest EheI GGCGCC ER0441 116<br />

Esp3I FastDigest BsmBI Esp3I ER0451/2 117<br />

FaqI FastDigest BsmFI FinI ER1811 117<br />

FspAI FastDigest FspAI FspAI RTGCGCAY ER1661/2 118<br />

FspBI FastDigest BfaI MaeI CTAG ER1761/2 118<br />

GsuI FastDigest BpmI GsuI ER0461/2 118<br />

HhaI FastDigest HhaI HhaI GCGC ER1851 119<br />

Hin1I FastDigest BsaHI AcyI GRCGYC ER0471 119<br />

Hin1II FastDigest NlaIII NlaIII CATG ER1831 120<br />

Hin6I FastDigest HinP1I GCGC ER0481 120<br />

HincII FastDigest HincII HindII GTYRAC ER0491/2 120<br />

HindIII FastDigest HindIII HindIII AAGCTT ER0501/2/3/5 121<br />

HinfI FastDigest HinfI HinfI GANTC ER0801/2/3 121<br />

HpaII FastDigest HpaII HpaII CCGG ER0511/2 121<br />

HphI HphI ER1101/2 122<br />

Hpy8I FastDigest Hpy8I MjaIV GTNNAC ER1571/2 122<br />

HpyF3I FastDigest DdeI DdeI CTNAG ER1881/2 122<br />

HpyF10VI FastDigest HpyF10VI MwoI GCNNNNNNNGC ER1731/2 123<br />

<br />

www.thermoscientific.com/onebio 79


80<br />

Table 1.4. <strong>Thermo</strong> <strong>Scientific</strong> conventional restriction enzymes.<br />

Conventional<br />

restriction enzyme<br />

FastDigest<br />

restriction enzyme<br />

Prototype Specificity 5’3’ Cat. # Page<br />

KpnI FastDigest KpnI KpnI GGTACC ER0521/2/3 123<br />

Kpn2I FastDigest Kpn2I BspMII TCCGGA ER0531/2 123<br />

KspAI FastDigest HpaI HpaI GTTAAC ER1031/2 124<br />

LguI FastDigest SapI SapI ER1931/2 124<br />

Lsp1109I FastDigest BbvI BbvI ER2071 124<br />

LweI FastDigest SfaNI SfaNI ER1621/2 125<br />

MauBI FastDigest MauBI MauBI CGCGCGCG ER2081 125<br />

MbiI FastDigest BsrBI BsrBI ER1271 125<br />

MboI FastDigest MboI MboI GATC ER0811/2 126<br />

MboII FastDigest MboII MboII ER0821/2 126<br />

MlsI FastDigest MscI BalI TGGCCA ER1211/2 127<br />

MluI FastDigest MluI MluI ACGCGT ER0561/2 127<br />

MnlI FastDigest MnlI MnlI ER1071/2 127<br />

Mph1103I FastDigest NsiI AvaIII ATGCAT ER0731/2 128<br />

MreI FastDigest MreI Sse232I CGCCGGCG ER2021 128<br />

MspI FastDigest MspI HpaII CCGG ER0541/2 128<br />

MssI FastDigest MssI PmeI GTTTAAAC ER1341/2 129<br />

MunI FastDigest MfeI MfeI CAATTG ER0751/2 129<br />

MvaI FastDigest MvaI CCWGG ER0551 129<br />

Mva1269I FastDigest Mva1269I BsmI ER0961/2 130<br />

NcoI FastDigest NcoI NcoI CCATGG ER0571/2/5 130<br />

NdeI FastDigest NdeI NdeI CATATG ER0581/2/5 131<br />

NheI FastDigest NheI NheI GCTAGC ER0971/2/5 131<br />

NmuCI FastDigest NmuCI Tsp45I GTSAC ER1511 132<br />

NotI FastDigest NotI NotI GCGGCCGC ER0591/2/3/5 132<br />

NsbI FastDigest FspI MstI TGCGCA ER1221 132<br />

OliI FastDigest AleI OliI CACNNNNGTG ER1631/2 133<br />

PacI FastDigest PacI PacI TTAATTAA ER2201 133<br />

PaeI FastDigest SphI SphI GCATGC ER0601/2 133<br />

PagI FastDigest BspHI BspHI TCATGA ER1281/2 134<br />

PasI PasI CCCWGGG ER1861 134<br />

PauI FastDigest BssHII BsePI GCGCGC ER1091/2 134<br />

PdiI FastDigest NaeI NaeI GCCGGC ER1521/2 135<br />

PdmI FastDigest PdmI XmnI GAANNNNTTC ER1531/2 135<br />

PfeI FastDigest TfiI TfiI GAWTC ER1781 135<br />

Pfl23II FastDigest BsiWI SplI CGTACG ER0851 136<br />

PfoI FastDigest PfoI PfoI TCCNGGA ER1751 136<br />

Ppu21I FastDigest BsaAI BsaAI YACGTR ER1971 137<br />

PscI BspLU11I ACATGT ER1871/2 137<br />

Psp5II FastDigest PpuMI PpuMI RGGWCCY ER0761 138<br />

Psp1406I FastDigest AclI AclI AACGTT ER0941/2 138<br />

PstI FastDigest PstI PstI CTGCAG ER0611/2/5 138<br />

PsuI FastDigest PsuI XhoII RGATCY ER1551 139<br />

PsyI FastDigest PsyI Tth111I GACNNNGTC ER1331 139<br />

PvuI FastDigest PvuI PvuI CGATCG ER0621/2 139<br />

PvuII FastDigest PvuII PvuII CAGCTG ER0631/3/5 140<br />

RsaI FastDigest RsaI RsaI GTAC ER1121/2 140<br />

RseI FastDigest MslI MslI CAYNNNNRTG ER2001/2 140<br />

SacI FastDigest SacI SacI GAGCTC ER1131/2/5 141<br />

SalI FastDigest SalI SalI GTCGAC ER0641/2/5 141<br />

SatI FastDigest Fnu4HI Fnu4HI GCNGC ER1641/2 142<br />

ScaI FastDigest ScaI ScaI AGTACT ER0431/2 142<br />

SchI FastDigest MlyI ER1371 143<br />

www.thermoscientific.com/onebio


Table 1.4. <strong>Thermo</strong> <strong>Scientific</strong> conventional restriction enzymes.<br />

Conventional<br />

restriction enzyme<br />

FastDigest<br />

restriction enzyme<br />

Prototype Specificity 5’3’ Cat. # Page<br />

SdaI FastDigest SbfI Sse8387I CCTGCAGG ER1191/2 143<br />

SduI FastDigest Bsp1286I SduI GDGCHC ER0651 143<br />

SfaAI FastDigest AsiSI SgfI GCGATCGC ER2091 144<br />

SfiI FastDigest SfiI SfiI GGCCNNNNNGGCC ER1821 144<br />

SgeI SgeI ER2211 145<br />

SgrDI SgrDI CGTCGACG ER2031 145<br />

SgsI FastDigest AscI AscI GGCGCGCC ER1891/2 145<br />

SmaI FastDigest SmaI SmaI CCCGGG ER0661/2/3/5 146<br />

SmiI FastDigest SwaI SwaI ATTTAAAT ER1241 146<br />

SmoI SmlI CTYRAG ER1981 147<br />

SsiI FastDigest AciI AciI ER1791 147<br />

SspI FastDigest SspI SspI AATATT ER0771/2 148<br />

SspDI GGCGCC ER2191 148<br />

TaaI FastDigest TaaI Tsp4CI ACNGT ER1361/2 149<br />

TaiI FastDigest TaiI ACGT ER1141/2 149<br />

TaqI FastDigest TaqI TaqI TCGA ER0671/2 149<br />

TasI FastDigest Tsp509I TspEI AATT ER1351/2 150<br />

TatI FastDigest TatI TatI WGTACW ER1291 150<br />

TauI FastDigest TauI TauI GCSGC ER1651/2 150<br />

Tru1I FastDigest Tru1I MseI TTAA ER0981/2/3 151<br />

TscAI FastDigest TspRI TspRI ER2101 151<br />

Van91I FastDigest PflMI PflMI CCANNNNNTGG ER0711/2 152<br />

VspI FastDigest AseI VspI ATTAAT ER0911/2 152<br />

XagI FastDigest EcoNI EcoNI CCTNNNNNAGG ER1301 152<br />

XapI FastDigest XapI ApoI RAATTY ER1381 153<br />

XbaI FastDigest XbaI XbaI TCTAGA ER0681/2/3/5 153<br />

XceI FastDigest NspI NspI RCATGY ER1471/2 153<br />

XhoI FastDigest XhoI XhoI CTCGAG ER0691/2/3/5 154<br />

XmaJI FastDigest AvrII AvrII CCTAGG ER1561/2 154<br />

XmiI <br />

Nicking enzymes<br />

FastDigest AccI AccI GTMKAC ER1481/2 154<br />

Nb.Bpu10I Nb.Bpu10I<br />

CCTNA GC<br />

GGANTCG<br />

ER1681 155<br />

Nt.Bpu10I Nt.Bpu10I<br />

CCTNAGC<br />

GG ANTCG<br />

ER2011 156<br />

Nb.Mva1269I<br />

Homing enzyme<br />

Nb.BsmI<br />

GAATG C<br />

CTTACG<br />

ER2051 156<br />

I-SceI I-SceI<br />

TAGGG ATAACAGGGTAAT<br />

ATCCCTATT GTCCCATTA<br />

ER1771 157<br />

Alphabetic list of commercially available restriction enzymes see p.205.<br />

www.thermoscientific.com/onebio 81


82<br />

Product Description<br />

AanI <br />

5’...T T AT A A ...3’<br />

3’...A A T A T T ...5’<br />

#ER2061 200 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PsiI <br />

AarI<br />

5’...C A C C T G C (N) 4 ...3’<br />

3’...G T G G A C G (N) 8 ...5’<br />

#ER1581<br />

Supplied with:<br />

25 u<br />

10X Buffer AarI 1 ml<br />

10X Buffer Tango 1 ml<br />

50X oligonucleotide 25μl<br />

#ER1582<br />

Supplied with:<br />

125 u<br />

10X Buffer AarI 1 ml<br />

10X Buffer Tango 1 ml<br />

50X oligonucleotide 2x25 μl<br />

Note<br />

<br />

its recognition sequence are required.<br />

<br />

AarI recognition sequence in the reaction<br />

mixture significantly improves cleavage of<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

AanI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

2 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer AarI at 37°C.<br />

Oligonucleotide 0.5 μM.<br />

Storage Buffer<br />

AarI is supplied in:<br />

<br />

100 mM KCl, 1 mM EDTA, 1 mM DTT,<br />

<br />

DNAs, especially of those with a single AarI<br />

site. Still, a complete cleavage of some<br />

substrates with AarI is difficult to achieve.<br />

<br />

may result in star activity.<br />

<br />

AasI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest DrdI <br />

AatII<br />

5’...G A C G TC...3’<br />

3’...C T G C A G...5’<br />

#ER0991 300 u<br />

#ER0992 1500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AatII<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

AatII is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 0-20 0-20 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR NR 0-20 0-20 NR 50-100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required for<br />

digestion of 1 μg of agarose-embedded DNA<br />

in 16 hours.<br />

DNA. This may cause DNA band shifting<br />

during electrophoresis. To avoid atypical<br />

DNA band patterns, use the 6X DNA Loading<br />

<br />

preparation or heat the digested DNA in the<br />

presence of SDS prior to electrophoresis.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 20-50 0-20 0-20 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1μg of agaroseembedded<br />

DNA in 16 hours.


AccI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AccI and XmiI <br />

AccII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsh1236I and Bsh1236I <br />

AccIII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Kpn2I and Kpn2I <br />

Acc65I <br />

5’...GG T A C C...3’<br />

3’...C C A T G G...5’<br />

#ER0901<br />

Supplied with:<br />

1000 u<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0902<br />

Supplied with:<br />

5000 u<br />

10X Buffer O 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Acc65I<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

Acc65I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

AccB7I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PflMI and Van91I <br />

AciI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AciI and SsiI <br />

AclI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AcII and Psp1406I <br />

AcsI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest XapI and XapI <br />

AcuI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AcuI and Eco57I <br />

AcyI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsaHI and Hin1I <br />

AdeI <br />

5’...C A C N N NG T G...3’<br />

3’...G T G N N N C A C...5’<br />

#ER1231 500 u<br />

Supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest DraIII <br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

AdeI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 100 20-50 20-50 50-100<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

dcm methylation. To avoid dcm methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 100 20-50 100 100* 20-50<br />

* <br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

EcoKI, EcoBI may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

may result in star activity.<br />

www.thermoscientific.com/onebio 83


84<br />

AfaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Csp6I and Csp6I <br />

FastDigest RsaI and RsaI<br />

AfeI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AfeI and Eco47III <br />

AflII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AflII and BspTI <br />

AgeI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AgeI and BshTI <br />

AhaIII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest DraI and DraI<br />

AhdI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Eam1105I and Eam1105I <br />

AjiI <br />

5’...C A CG T C...3’<br />

3’...G T G C A G...5’<br />

#ER1941 200 u<br />

Supplied with:<br />

10X Buffer AjiI 1 ml<br />

10X Buffer Tango 1 ml<br />

AjuI<br />

5’... 7(N)GAA(N) 7TTGG(N) 11 ...3’<br />

3’... 12(N)CTT(N) 7AACC(N) 6 ...5’<br />

#ER1951 100 u<br />

Supplied with:<br />

10X Buffer R 1 ml<br />

50X SAM 0.1 ml<br />

10X BufferTango 1 ml<br />

Also available as<br />

FastDigest AjuI<br />

www.thermoscientific.com/onebio<br />

20’ Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR NR 20-50* NR NR 20-50*<br />

* <br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer AjiI at 37°C.<br />

Storage Buffer<br />

AjiI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

SAM 0.01 mM.<br />

Storage Buffer<br />

AjuI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B +SAM G +SAM O +SAM R +SAM Tango +SAM 2X Tango +SAM<br />

0-20 50-100 20-50 100 50-100 50-100<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

<br />

AjuI is difficult to achieve.<br />

<br />

maximum cleavage level achieved when<br />

no change in the fragmentation pattern is<br />

observed with further enzyme increase.<br />

<br />

sides of the interrupted recognition site. In<br />

certain sequence contexts, the cleavage<br />

position may be shifted by one base pair.<br />

However, the cleavage position indicated<br />

above will predominate.


AleI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AleI and OliI <br />

AlfI<br />

5’...10(N)GCA(N) 6TGC(N) 12 ...3’<br />

3’... 12(N)CGT(N) 6ACG(N) 10 ...5’<br />

#ER1801 50 u<br />

Supplied with:<br />

10X Buffer R 1 ml<br />

50X SAM 0.1 ml<br />

10X BufferTango 1 ml<br />

AloI<br />

5’... 7(N)GAAC(N) 6TCC(N) 12-13...3’<br />

3’... 12-13(N)CTTG(N) 6AGG(N) 7 ...5’<br />

#ER1491 100 u<br />

Supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Note<br />

<br />

<br />

sides from the interrupted recognition site.<br />

Its unique feature is a degenerate cleavage<br />

point on the 3’ side of the recognition<br />

<br />

AluI<br />

5’...A GC T...3’<br />

3’...T C G A...5’<br />

#ER0011<br />

Supplied with:<br />

600 u<br />

10X Buffer Tango 1 ml<br />

#ER0012<br />

Supplied with:<br />

3000 u<br />

10X Buffer Tango 2x1 ml<br />

Also available as<br />

FastDigest AluI<br />

20’<br />

Concentration<br />

2 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

SAM 0.01 mM.<br />

Storage Buffer<br />

AlfI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Concentration<br />

2 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 30°C.<br />

Storage Buffer<br />

AloI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

<br />

the reaction mixture results in incomplete<br />

cleavage with AloI.<br />

<br />

may result in star activity.<br />

<br />

DNA. This may cause DNA band shifting<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Activity in Five Buffer System, %<br />

B +SAM G +SAM O +SAM R +SAM Tango +SAM 2X Tango +SAM<br />

0-20 0-20 0-20 100 0-20 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

<br />

AlfI is difficult to achieve.<br />

<br />

maximum cleavage level achieved when<br />

no change in the fragmentation pattern is<br />

observed with further enzyme increase.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 100 20-50 100<br />

Methylation Effects<br />

Dam: may overlap – effect not determined.<br />

Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

during electrophoresis. To avoid atypical<br />

DNA band patterns, use the 6X DNA Loading<br />

<br />

preparation or heat the digested DNA in the<br />

presence of SDS prior to electrophoresis.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 0-20 0-20 0-20 100 20-50<br />

Storage Buffer<br />

AluI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.15% Triton X-100,<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

www.thermoscientific.com/onebio 85


86<br />

AlwI <strong>Thermo</strong> <strong>Scientific</strong> enzyme BspPI <br />

Alw21I <br />

5’...G W G C WC...3’<br />

3’...C W C G W G...5’<br />

#ER0021 500 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Alw21I<br />

Alw26I <br />

5’...G T C T C(N) 1...3’<br />

3’...C A G A G(N) 5 ...5’<br />

#ER0031 1000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Alw26I<br />

Alw44I <br />

5’...GT G C A C...3’<br />

3’...C A C G T G...5’<br />

#ER0041 1000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest ApaLI <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Alw44I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

AlwNI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AIwNI and CaiI <br />

Aor13HI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Kpn2I and Kpn2I <br />

Aor51HI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AfeI and Eco47III <br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 100 50-100 20-50 50-100<br />

Storage Buffer<br />

Alw21I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 100 0-20 0-20 100 100<br />

Storage Buffer<br />

Alw26I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 100 0-20 50-100 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.


ApaI<br />

5’...G G G C CC...3’<br />

3’...C C C G G G...5’<br />

#ER1411 3000 u<br />

#ER1415 5000 u<br />

Both supplied with:<br />

10X Buffer B 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest ApaI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Storage Buffer<br />

ApaI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 20-50 0-20 0-20 20-50 0-20<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

dcm methylation. To avoid dcm methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

ApaLI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest ApaLI and Alw44I <br />

ApoI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest XapI and XapI <br />

AscI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AscI and SgsI <br />

AseI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AseI and VspI <br />

AsiSI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AsiSI and SfaAI <br />

AspI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PsyI and PsyI <br />

Asp700I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PdmI and PdmI <br />

Asp718I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Acc65I and Acc65I ;<br />

FastDigest KpnI and KpnI <br />

AspEI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Eam1105I and Eam1105I <br />

AspHI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Alw21I and Alw21I <br />

AsuI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Sau96I and Cfr13I <br />

AsuII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsp119I and Bsp119I <br />

AvaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AvaI and Eco88I <br />

AvaII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AvaII and Eco47I <br />

AvaIII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NsiI and Mph1103I <br />

AviII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest FspI and NsbI <br />

AvrII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AvrII and XmaJI <br />

BaeGI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bme1580I and BseSI <br />

BalI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest MscI and MlsI <br />

www.thermoscientific.com/onebio 87


88<br />

BamHI<br />

5’...GG A T C C...3’<br />

3’...C C T A G G...5’<br />

#ER0051<br />

Supplied with:<br />

4000 u<br />

10X Buffer BamHI 2x1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0055<br />

Supplied with:<br />

10,000 u<br />

10X Buffer BamHI 4x1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0052 5x4000 u<br />

#ER0053 HC, 20,000 u<br />

Both supplied with:<br />

10X Buffer BamHI 4x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BamHI<br />

BauI <br />

5’...CA C G A G...3’<br />

3’...G T G C T C...5’<br />

#ER1841 200 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer BamHI at 37°C.<br />

Storage Buffer<br />

BamHI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.15% Triton X-100,<br />

<br />

BanI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BanI and BshNI <br />

BanII <strong>Thermo</strong> <strong>Scientific</strong> enzyme Eco24I <br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

BauI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.15% Triton X-100,<br />

<br />

BbeI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EheI and EheI <br />

<strong>Thermo</strong> <strong>Scientific</strong> enzyme SspDI <br />

BbrPI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PmlI and Eco72I <br />

BbsI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BbsI and BpiI <br />

BbuI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SphI and PaeI <br />

BbvI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BbvI and Lsp1109I ;<br />

FastDigest BseXI and BseXI <br />

BbvII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BbsI and BpiI <br />

BciVI <strong>Thermo</strong> <strong>Scientific</strong> enzyme BfuI <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50* 100 20-50 50-100* 100* 50-100<br />

* <br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 50-100 0-20 50-100 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1μg of agaroseembedded<br />

DNA in 16 hours.


BclI<br />

5’...TG A T C A...3’<br />

3’...A C T A G T...5’<br />

#ER0721<br />

Supplied with:<br />

1000 u<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0725 3000 u<br />

#ER0722<br />

Both supplied with:<br />

5000 u<br />

10X Buffer G 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BclI<br />

BcnI <br />

5’...C CS G G...3’<br />

3’...G G S C C...5’<br />

#ER0061 1000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NciI <br />

BcuI <br />

5’...AC T A G T...3’<br />

3’...T G A T C A...5’<br />

#ER1251 400 u<br />

#ER1252 2000 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest SpeI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer G at 55°C.<br />

Storage Buffer<br />

BclI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

BcuI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

BfaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BfaI and FspBI <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 100 20-50 20-50 100* 100<br />

* <br />

Methylation Effects<br />

Dam: completely overlaps – blocked <br />

Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Note<br />

<br />

<br />

may result in star activity.<br />

dam methylation. To avoid<br />

dam methylation, use a dam – , dcm – strain<br />

such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 50-100 50-100 100 50-100<br />

Storage Buffer<br />

BcnI is supplied in:<br />

<br />

200 mM NaCl, 1 mM EDTA, 1 mM DTT,<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – cleavage impaired<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 0-20 20-50 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

Adenovirus-2 DNA in 16 hours.<br />

www.thermoscientific.com/onebio 89


90<br />

BfmI <br />

5’...CT R Y A G...3’<br />

3’...G A Y R T C...5’<br />

#ER1161 200 u<br />

#ER1162 1000 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest SfcI <br />

BfuI <br />

5’...G T A T C C(N) 6...3’<br />

3’...C A T A G G(N) 5 ...5’<br />

#ER1501 100 u<br />

Supplied with:<br />

10X Buffer BfuI 1 ml<br />

10X Buffer Tango 1 ml<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer BfuI at 37°C.<br />

Storage Buffer<br />

BfuI is supplied in:<br />

<br />

300 mM NaCl, 1 mM DTT, 1 mM EDTA,<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR NR 0-20 0-20 NR 50-100*<br />

* <br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI, CpG – no effect.<br />

BfuAI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BspMI and BveI <br />

BfuCI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Sau3AI and Bsp143I ;<br />

FastDigest DpnI and DpnI <br />

FastDigest MboI and MboI <br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 50-100 0-20 0-20 100 20-50<br />

Storage Buffer<br />

BfmI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

BfoI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest HaeII <br />

BfrI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AflII and BspTI <br />

BfrBI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NsiI and Mph1103I <br />

BglI<br />

5’...G C C N N N NN G G C...3’<br />

3’...C G G N N N N N C C G...5’<br />

#ER0071<br />

Supplied with:<br />

2000 u<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0072<br />

Supplied with:<br />

5x2000 u<br />

10X Buffer O 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BglI<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

BglI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

may result in star activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 50-100 100 100 0-20 100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.


BglII<br />

5’...AG A T C T...3’<br />

3’...T C T A G A...5’<br />

#ER0081 500 u<br />

#ER0082 2500 u<br />

Both supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BglII<br />

5’...C CN G G...3’<br />

3’...G G N C C...5’<br />

#ER1421 500 u<br />

#ER1422 2500 u<br />

Both supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest ScrFI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

BglII is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.5 mg/ml BSA and<br />

<br />

BinI <strong>Thermo</strong> <strong>Scientific</strong> enzyme BspPI <br />

BlnI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AvrII and XmaJI <br />

BlpI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BlpI and Bpu1102I <br />

Bme1390I <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

Bme1390I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Bme1580I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bme1580I and BseSI <br />

BmgBI <strong>Thermo</strong> <strong>Scientific</strong> enzyme AjiI <br />

BmsI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest SfaNI <br />

BmtI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BmtI and BspOI ;<br />

FastDigest NheI and NheI <br />

BmyI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsp1286I and SduI <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 100 50-100 0-20 100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 100 50-100 50-100 50-100<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG may overlap – blocked <br />

<br />

Note<br />

dcm<br />

methylation. To avoid dcm methylation, use<br />

a dam – , dcm – strain such as GM2163.<br />

www.thermoscientific.com/onebio 91


92<br />

BoxI <br />

5’...G A C N NN N G T C...3’<br />

3’...C T G N N N N C A G...5’<br />

#ER1431 500 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PshAI <br />

BpiI <br />

5’...G A A G A C(N) 2...3’<br />

3’...C T T C T G(N) 6 ...5’<br />

#ER1011 200 u<br />

#ER1012 1000 u<br />

Both supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BbsI <br />

BplI<br />

5’... 8(N)G A G(N) 5C T C(N) 13...3’<br />

3’... 13(N)C T C(N) 5G A G(N) 8 ...5’<br />

#ER1311<br />

Supplied with:<br />

100 u<br />

10X Buffer Tango 1 ml<br />

50X SAM 0.1 ml<br />

#ER1312<br />

Supplied with:<br />

500 u<br />

10X Buffer Tango 1 ml<br />

50X SAM 2x0.1 ml<br />

Also available as<br />

FastDigest BpII<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

BoxI is supplied in:<br />

<br />

100 mM NaCl, 1 mM EDTA, 1 mM DTT,<br />

0.15% Triton X-100, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

BpiI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

SAM 0.05 mM.<br />

Storage Buffer<br />

BplI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 20-50 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 100 50-100 50-100 50-100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B +SAM G +SAM O +SAM R +SAM Tango +SAM 2X Tango +SAM<br />

0-20 20-50 0-20 0-20 100 20-50<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

2+ for its activity, but<br />

is stimulated by S-adenosylmethionine.<br />

0.05 mM S-adenosylmethionine gives more<br />

than a 100-fold increase in BplI activity. Still,<br />

complete cleavage of some substrates with<br />

BplI is difficult to achieve.<br />

<br />

maximum cleavage level achieved when<br />

no change in the fragmentation pattern is<br />

observed with further enzyme increase.


BpmI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BpmI and GsuI <br />

Bpu10I<br />

5’...C CT N A G C...3’<br />

3’...G G A N T C G...5’<br />

#ER1181 200 u<br />

Supplied with:<br />

10X Buffer Bpu10I 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Bpu10I<br />

Bpu1102I <br />

5’...G CT N A G C...3’<br />

3’...C G A N T C G...5’<br />

#ER0091 200 u<br />

#ER0092 1000 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BlpI <br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Bpu10I at 37°C.<br />

Storage Buffer<br />

Bpu10I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Bpu1102I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

BpuAI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BbsI and BpiI <br />

BsaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Eco31I and Eco31I <br />

BsaAI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsaAI and Ppu21I <br />

BsaBI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsaBI and BseJI <br />

BsaHI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsaHI and Hin1I <br />

BsaJI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsaJI and BseDI <br />

BsaMI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Mva1269I and Mva1269I <br />

BseAI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Kpn2I and Kpn2I <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50* 50-100* 100* 50-100* 100*<br />

* <br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

<br />

of its recognition sequence are required.<br />

<br />

may result in incomplete DNA cleavage.<br />

Therefore, we recommend increasing the<br />

incubation time instead of using an excess<br />

of Bpu10I.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 20-50 20-50 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

www.thermoscientific.com/onebio 93


94<br />

BseDI <br />

5’...CC N N G G...3’<br />

3’...G G N N C C...5’<br />

#ER1081 300 u<br />

#ER1082 1500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BsaJI <br />

BseGI <br />

5’...G G A T G N N...3’<br />

3’...C C T A C N N ...5’<br />

#ER0871 500 u<br />

#ER0872 2500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BseGI<br />

BseJI <br />

5’...G A T N NN N A T C...3’<br />

3’...C T A N N N N T A G...5’<br />

#ER1711 2000 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BsaBI <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 55°C.<br />

Storage Buffer<br />

BseDI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 55°C.<br />

Storage Buffer<br />

BseGI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 65°C.<br />

Storage Buffer<br />

<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 20-50 0-20 0-20 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

Incubation at 37°C results in 10% activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 20-50 20-50 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

Incubation at 37°C results in 25% activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR 100* 100 NR NR 100*<br />

* <br />

Methylation Effects<br />

Dam: may overlap – blocked <br />

Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

10% activity.<br />

<br />

<br />

dam<br />

methylation. To avoid dam methylation, use<br />

a dam – , dcm – strain such as GM2163.


BseLI <br />

5’...C C N N N N NN N G G...3’<br />

3’...G G N N N N N N N C C...5’<br />

#ER1201 500 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BslI <br />

BseMI <br />

5’...G C A A T G N N...3’<br />

3’...C G T T A C N N ...5’<br />

#ER1261 100 u<br />

#ER1262 500 u<br />

Both supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BsrDI <br />

BseMII <br />

5’...C T C A G(N) 10...3’<br />

3’...G A G T C(N) 8 ...5’<br />

#ER1401 100 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

50X SAM 0.1 ml<br />

Also available as<br />

FastDigest BspCNI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 55°C.<br />

Storage Buffer<br />

BseLI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 55°C.<br />

Storage Buffer<br />

BseMI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

1 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 55°C.<br />

SAM 0.01 mM.<br />

Storage Buffer<br />

BseMII is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 100 50-100 20-50 100 50-100<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

Note<br />

<br />

dcm<br />

methylation. To avoid dcm methylation, use a<br />

dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 0-20 100 50-100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

Incubation at 37°C results in 20% activity.<br />

Activity in Five Buffer System, %<br />

B +SAM G +SAM O +SAM R +SAM Tango +SAM 2X Tango +SAM<br />

50-100 50-100 50-100 50-100 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

<br />

<br />

Sinefungin can replace SAM in the restriction<br />

reaction. In this case DNA is not methylated<br />

and more than 95% of the ligated BseMII<br />

fragments can be recut by this enzyme.<br />

www.thermoscientific.com/onebio 95


96<br />

BseNI <br />

5’...A C T G G N...3’<br />

3’...T G A C C N ...5’<br />

#ER0881<br />

Supplied with:<br />

1000 u<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0882<br />

Supplied with:<br />

5000 u<br />

10X Buffer B 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BseNI<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 65°C.<br />

Storage Buffer<br />

BseNI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

BsePI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BssHII and PauI <br />

BseSI <br />

5’...G K G C MC...3’<br />

3’...C M C G K G...5’<br />

#ER1441 500 u<br />

Supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Bme1580I <br />

BseXI <br />

5’...G C A G C(N) 8...3’<br />

3’...C G T C G(N) 12 ...5’<br />

#ER1451 100 u<br />

#ER1452 500 u<br />

Both supplied with:<br />

10X Buffer BseXI 1 ml<br />

Also available as<br />

FastDigest BseXI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer G at 55°C.<br />

Storage Buffer<br />

BseSI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

3 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer BseXI at 65°C.<br />

Storage Buffer<br />

BseXI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 20-50 0-20 0-20 50-100 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 100 0-20 20-50 50-100 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR NR NR NR NR NR<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

<br />

BseXI may result in star activity.<br />

<br />

DNA. This may cause DNA band shifting during<br />

electrophoresis. To avoid atypical DNA band<br />

patterns, use the 6X DNA Loading Dye & SDS<br />

<br />

heat the digested DNA in the presence of SDS<br />

prior to electrophoresis.


BseYI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest PspFI <br />

Bsh1236I <br />

5’...C GC G...3’<br />

3’...G C G C...5’<br />

#ER0921 500 u<br />

#ER0922 2500 u<br />

Both supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Bsh1236I<br />

Bsh1285I <br />

5’...C G R YC G...3’<br />

3’...G C Y R G C...5’<br />

#ER0891 600 u<br />

Supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BsiEI <br />

BshNI <br />

5’...GG Y R C C...3’<br />

3’...C C R Y G G...5’<br />

#ER1001 2000 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BanI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

Bsh1236I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

Bsh1285I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.15% Triton X-100,<br />

<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

BshNI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 50-100 100 20-50 50-100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 100 20-50 0-20 0-20 20-50<br />

Methylation Effects<br />

Dam: may overlap – cleavage impaired<br />

<br />

Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

overlapping dam methylation. To avoid dam<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 100 50-100 0-20 100<br />

Methylation Effects<br />

Dam, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

EcoKI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

dcm methylation. To avoid dcm methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

www.thermoscientific.com/onebio 97


98<br />

BshTI <br />

5’...AC C G G T...3’<br />

3’...T G G C C A...5’<br />

#ER1461 200 u<br />

#ER1462 1000 u<br />

Both supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AgeI <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

BshTI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 100 50-100 20-50 20-50<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 20 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

BsiEI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsiEI and Bsh1285I <br />

BsiHKAI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Alw21I and Alw21I <br />

BsiWI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsiWI and Pfl23II <br />

BsiYI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BslI and BseLI <br />

BslI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BslI and BseLI <br />

BsmI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Mva1269I and Mva1269I <br />

BsmAI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Alw26I and Alw26I <br />

BsmBI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsmBI and Esp3I <br />

BsmFI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsmFI and FaqI <br />

BsoBI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AvaI and Eco88I <br />

Bsp68I <br />

5’...T C GC G A...3’<br />

3’...A G C G C T...5’<br />

#ER0111 800 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NruI <br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

Bsp68I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.5 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 100 50-100 20-50 50-100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

Bsp68I may result in star activity.


Bsp119I <br />

5’...T TC G A A...3’<br />

3’...A A G C T T...5’<br />

#ER0121 2500 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Bsp119I<br />

Bsp120I <br />

5’...GG G C C C...3’<br />

3’...C C C G G G...5’<br />

#ER0131 1500 u<br />

Supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Bsp120I<br />

Bsp143I <br />

5’...G A T C ...3’<br />

3’... C T A G ...5’<br />

#ER0781 300 u<br />

#ER0782 1500 u<br />

Both supplied with:<br />

10X Buffer Bsp143I 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Sau3Al <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Bsp119I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Storage Buffer<br />

Bsp120I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Bsp1286I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsp1286I and SduI <br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Bsp143I at 37°C.<br />

Storage Buffer<br />

Bsp143I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 0-20 0-20 0-20 100 100<br />

Methylation Effects<br />

Dam, Dcm, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 20-50 0-20 20-50 50-100 0-20<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – blocked <br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

dcm<br />

methylation. To avoid dcm methylation, use<br />

a dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 20-50 0-20 0-20 50-100 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – blocked <br />

Note<br />

<br />

the same sequence but have different<br />

<br />

www.thermoscientific.com/onebio 99


100<br />

Bsp1407I <br />

5’...TG T A C A...3’<br />

3’...A C A T G T...5’<br />

#ER0931 300 u<br />

#ER0932 1500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Bsp1407I<br />

www.thermoscientific.com/onebio<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Bsp1407I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

BspCNI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BspCNI and BseMII <br />

BspDI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest ClaI and Bsu15I <br />

BspEI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Kpn2I and Kpn2I <br />

BspHI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BspHI and PagI <br />

BspLI <br />

5’...G G NN C C...3’<br />

3’...C C N N G G...5’<br />

#ER1151 200 u<br />

#ER1152 1000 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NlaIV <br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

BspLI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

BspLU11I <strong>Thermo</strong> <strong>Scientific</strong> enzyme PscI <br />

BspMI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BspMI and BveI <br />

BspMII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Kpn2I and Kpn2I <br />

BspOI <br />

5’...G C T A GC...3’<br />

3’...C G A T C G...5’<br />

#ER2041 200 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BmtI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

BspOI is supplied in:<br />

<br />

500 mM NaCl, 1 mM DTT, 0.1 mM EDTA,<br />

0.15% Triton X-100, 0.5 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 0-20 20-50 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 0-20 20-50 100 20-50<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

Note<br />

<br />

dcm methylation. To avoid dcm methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 100 100 0-20 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 20 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

lambda DNA in 16 hours.


BspPI <br />

5’...G G A T C(N) 4...3’<br />

3’...C C T A G(N) 5 ...5’<br />

#ER1321 100 u<br />

#ER1322 500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

5’...CT T A A G...3’<br />

3’...G A A T T C...5’<br />

#ER0831 1000 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AflII <br />

Concentration<br />

2 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 55°C.<br />

Storage Buffer<br />

BspPI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

BspQI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SapI and LguI <br />

BspTI <br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

BspTI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 20-50 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam: completely overlaps – blocked <br />

Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

<br />

dam<br />

methylation. To avoid dam methylation, use a<br />

dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 100 20-50 0-20 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

BspT104I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsp119I and Bsp119I <br />

BspT107I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BanI and BshNI <br />

BsrI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BseNI and BseNI <br />

BsrBI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsrBI and MbiI <br />

BsrDI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsrDI and BseMI <br />

BsrFI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsrFI and Cfr10I <br />

BsrGI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsp1407I and Bsp1407I <br />

BsrSI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BseNI and BseNI <br />

BssHII <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest BssHII and PauI <br />

BssKI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest ScrFI and Bme1390I <br />

BssSI <strong>Thermo</strong> <strong>Scientific</strong> enzyme BauI <br />

Bst98I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AflII and BspTI (AflII)<br />

www.thermoscientific.com/onebio 101


102<br />

Bst1107I <br />

5’...G T AT A C...3’<br />

3’...C A T A T G...5’<br />

#ER0701 500 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BstZ17I <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

Bst1107I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

BstBI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsp119I and Bsp119I <br />

BstEII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Eco91I and Eco91I <br />

BstF5I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BseGI and BseGI ;<br />

<strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest FokI <br />

BstNI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest MvaI and MvaI ;<br />

EcoRII <br />

BstOI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest MvaI and MvaI ;<br />

EcoRII <br />

BstPI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Eco91I and Eco91I <br />

BstUI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsh1236I and Bsh1236I <br />

BstXI<br />

5’...C C A N N N N NN T G G...3’<br />

3’...G G T N N N N N N A C C...5’<br />

#ER1021 500 u<br />

#ER1022 2500 u<br />

Both supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BstXI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 55°C.<br />

Storage Buffer<br />

BstXI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

BstYI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PsuI and PsuI <br />

BstZI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EagI and Eco52I <br />

BstZ17I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BstZ17I and Bst1107I <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 100 100 20-50 100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 100 100 50-100 50-100 100<br />

Methylation Effects<br />

Dam, CpG, EcoKI, EcoBI – no effect.<br />

Dcm: may overlap – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

<br />

BstXI may result in star activity.<br />

dcm<br />

methylation. To avoid dcm methylation, use a<br />

dam – , dcm – strain such as GM2163.


Bsu15I <br />

5’...A TC G A T...3’<br />

3’...T A G C T A...5’<br />

#ER0141 600 u<br />

#ER0145<br />

Both supplied with:<br />

1000 u<br />

10X Buffer Tango 1 ml<br />

#ER0142<br />

Supplied with:<br />

3000 u<br />

10X Buffer Tango 2x1 ml<br />

Also available as<br />

FastDigest ClaI <br />

Bsu36I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsu36I and Eco81I <br />

BsuRI <br />

5’...G GC C...3’<br />

3’...C C G G...5’<br />

#ER0151 3000 u<br />

Supplied with:<br />

10X Buffer R 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest HaeIII <br />

Concentration<br />

10 u/μl<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Bsu15I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.5 mg/ml BSA and<br />

<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

BtrI <strong>Thermo</strong> <strong>Scientific</strong> enzyme AjiI <br />

BtsCI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BseGI and BseGI ;<br />

<strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest FokI <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 20-50 20-50 20-50 100 20-50<br />

Methylation Effects<br />

Dam: may overlap – blocked <br />

Dcm, EcoKI – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

dam<br />

methylation. To avoid dam methylation, use<br />

a dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 20-50 50-100 100 50-100 100<br />

Storage Buffer<br />

BsuRI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

50% glycerol.<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

www.thermoscientific.com/onebio 103


104<br />

BveI <br />

5’...A C C T G C (N) 4 ...3’<br />

3’...T G G A C G (N) 8 ...5’<br />

#ER1741 250 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

50X oligonucleotide 2X25 μl<br />

Also available as<br />

FastDigest BspMI <br />

Note<br />

<br />

are required for efficient cleavage.<br />

<br />

BveI recognition sequence in the reaction<br />

mixture significantly improves cleavage of<br />

plasmid DNAs, especially of those with a single<br />

CaiI <br />

5’...C A G N N NC T G...3’<br />

3’...G T C N N N G A C...5’<br />

#ER1391 500 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AlwNI <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Oligonucleotide 0.5 μM.<br />

BveI site. Still, complete cleavage of some<br />

substrates with BveI is difficult to achieve.<br />

<br />

maximum cleavage level achieved when<br />

no change in the fragmentation pattern is<br />

observed with further enzyme increase.<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

CaiI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

50% glycerol.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 100 20-50 50-100 100<br />

Storage Buffer<br />

BveI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

cleaved DNA. This may cause DNA band<br />

shifting during electrophoresis. To avoid<br />

atypical DNA band patterns, use the 6X DNA<br />

<br />

sample preparation or heat the digested<br />

DNA in the presence of SDS prior to<br />

electrophoresis.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 20-50 20-50 50-100 100 50-100<br />

Methylation Effects<br />

Dam, CpG, EcoKI – no effect.<br />

Dcm: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

CaiI is blocked by overlapping dcm methylation.<br />

To avoid dcm methylation, use a dam – , dcm –<br />

strain such as GM2163.<br />

CauII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NciI and BcnI <br />

CelII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BlpI and Bpu1102I <br />

CfoI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest HinP1I and Hin6I <br />

FastDigest HhaI and HhaI<br />

20’


Cfr9I <br />

5’...CC C G G G...3’<br />

3’...G G G C C C...5’<br />

#ER0171 300 u<br />

#ER0172 1500 u<br />

Both supplied with:<br />

10X Buffer Cfr9I 1 ml<br />

10X Buffer Tango 1 ml<br />

Cfr10I <br />

5’...RC C G G Y...3’<br />

3’...Y G G C C R...5’<br />

#ER0181 200 u<br />

Supplied with:<br />

10X Buffer Cfr10I 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BsrFI <br />

Cfr13I <br />

5’...GG N C C...3’<br />

3’...C C N G G...5’<br />

#ER0191 1000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Sau96I <br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Cfr9I at 37°C.<br />

Storage Buffer<br />

Cfr9I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Cfr10I at 37°C.<br />

Storage Buffer<br />

Cfr10I is supplied in:<br />

<br />

100 mM KCl, 1 mM DTT, 1 mM EDTA,<br />

0.2 mg/ml BSA and 50% glycerol.<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Cfr13I is supplied in:<br />

<br />

100 mM KCl, 1 mM EDTA, 1 mM DTT,<br />

<br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 0-20 20-50 0-20<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

with Cfr9I, the concentration of DNA should<br />

be no less than 50 μg/ml in the reaction<br />

buffer.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 20-50 50-100* 20-50 50-100<br />

* <br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

Cfr10I may result in star activity.<br />

<br />

of its recognition sequence are required.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 20-50 20-50 100 20-50<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – blocked <br />

<br />

Note<br />

Cfr13I is blocked by overlapping dcm<br />

methylation. To avoid dcm methylation, use a<br />

dam – , dcm – strain such as GM2163.<br />

www.thermoscientific.com/onebio 105


106<br />

Cfr42I <br />

5’...C C G CG G...3’<br />

3’...G G C G C C...5’<br />

#ER0201 1200 u<br />

#ER0205<br />

Both supplied with:<br />

2000 u<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0202<br />

Supplied with:<br />

5x1200 u<br />

10X Buffer B 2x1 ml<br />

10X Buffer Tango 1 ml<br />

ClaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest ClaI and Bsu15I <br />

CpoI <br />

5’...C GG W C C G...3’<br />

3’...G C C W G G C...5’<br />

#ER0741 200 u<br />

#ER0742 1000 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest RsrII <br />

CseI <br />

5’...G A C G C (N) 5...3’<br />

3’...C T G C G (N) 10 ...5’<br />

#ER1901 100 u<br />

Supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest HgaI <br />

www.thermoscientific.com/onebio<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Storage Buffer<br />

Cfr42I is supplied in:<br />

<br />

100 mM NaCl, 1 mM EDTA, 1 mM DTT,<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

CseI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA and<br />

50% glycerol.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100 0-20 0-20 50-100 0-20<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 20 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

to cleave with Cfr42I, the same as with its<br />

prototype SacII. At least two copies of Cfr42I<br />

recognition site are required for efficient<br />

cleavage.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 50-100 20-50 100 50-100<br />

Storage Buffer<br />

CpoI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR 50-100* 50-100 100 100* 50-100<br />

* <br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

recognition sequence are required.<br />

<br />

may result in star activity.<br />

<br />

DNA. This may cause DNA band shifting<br />

during electrophoresis. To avoid atypical<br />

DNA band patterns, use the 6X DNA Loading<br />

<br />

preparation or heat the digested DNA in the<br />

presence of SDS prior to electrophoresis.


CsiI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest SexAI <br />

CspI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest RsrII and CpoI <br />

Csp6I <br />

5’...GT A C...3’<br />

3’...C A T G...5’<br />

#ER0211 1500 u<br />

Supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Csp6I<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100 0-20 0-20 50-100 0-20<br />

Storage Buffer<br />

Csp6I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Csp45I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsp119I and Bsp119I <br />

CviAII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NlaIII and Hin1II <br />

CviQI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Csp6I and Csp6I <br />

DdeI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest DdeI and HpyF3I <br />

DpnI<br />

5’...G m6A T C...3’<br />

3’...C T m6A G...5’<br />

#ER1701 500 u<br />

#ER1705 1000 u<br />

#ER1702 2500 u<br />

All supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest DpnI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

DpnI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam: does not cut dam – Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 100 50-100 50-100 100 50-100<br />

DNA <br />

Dcm, EcoKI, CpG – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

within the recognition sequence to cleave DNA.<br />

dam + strain will be a<br />

substrate for DpnI.<br />

<br />

dam sites. Hemi-adenomethylated dam sites<br />

DpnI cleaves 60X more slowly.<br />

<br />

the same sequence but have different<br />

<br />

DpnII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest DpnI and DpnI <br />

FastDigest Sau3AI and Bsp143 <br />

FastDigest MboI and MboI<br />

www.thermoscientific.com/onebio 107


108<br />

DraI<br />

5’...T T TA A A...3’<br />

3’...A A A T T T...5’<br />

#ER0221 1500 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

#ER0223 HC, 7500 u<br />

Supplied with:<br />

10X Buffer Tango 2x1 ml<br />

Also available as<br />

FastDigest DraI,<br />

www.thermoscientific.com/onebio<br />

20’<br />

Concentration<br />

10 u/μl,<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

DraI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.15% Triton X-100,<br />

<br />

DraII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Eco0109I and EcoO109I<br />

DraIII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest DraIII and AdeI <br />

DrdI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest DrdI <br />

EagI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EagI and Eco52I <br />

Eam1104I <br />

5’...C T C T T C(N) 1...3’<br />

3’...G A G A A G(N) 4 ...5’<br />

#ER0231 300 u<br />

#ER0232 1500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest EarI <br />

Eam1105I <br />

5’...G A C N N NN N G T C...3’<br />

3’...C T G N N N N N C A G...5’<br />

#ER0241 1000 u<br />

Supplied with:<br />

10X Buffer Eam1105I 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Eam1105I<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Eam1104I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Eam1105I at 37°C.<br />

Storage Buffer<br />

Eam1105I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 20-50 20-50 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

DNA are difficult to<br />

cleave with Eam1104I, the same as with its<br />

prototype Ksp632I.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 0-20 0-20 50-100 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.


EarI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EarI and Eam1104I <br />

Ecl136II <br />

5’...G A GC T C...3’<br />

3’...C T C G A G...5’<br />

#ER0251 1500 u<br />

Supplied with:<br />

10X Buffer Ecl136II 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Ecl136II<br />

5’...G R G C YC...3’<br />

3’...C Y C G R G...5’<br />

#ER0281 1500 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Ecl136II at 37°C.<br />

Storage Buffer<br />

Ecl136II is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

EclHKI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Eam1105I and Eam1105I <br />

EclXI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EagI and Eco52I <br />

Eco24I <br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Eco24I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 20-50 0-20 0-20 50-100 0-20<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 0-20 20-50 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

www.thermoscientific.com/onebio 109


110<br />

Eco31I <br />

5’...G G T C T C(N) 1...3’<br />

3’...C C A G A G(N) 5 ...5’<br />

#ER0291<br />

Supplied with:<br />

1000 u<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0292<br />

Supplied with:<br />

5000 u<br />

10X Buffer G 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Eco31I<br />

Eco32I <br />

5’...G A TA T C...3’<br />

3’...C T A T A G...5’<br />

#ER0301<br />

Supplied with:<br />

2000 u<br />

10X Buffer R 1ml<br />

10X Buffer Tango 1ml<br />

#ER0305 4000 u<br />

#ER0302 5x2000 u<br />

#ER0303 HC, 10,000 u<br />

All supplied with:<br />

10X Buffer R 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest EcoRV <br />

Eco47I <br />

5’...GG W C C...3’<br />

3’...C C W G G...5’<br />

#ER0311<br />

Supplied with:<br />

800 u<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0312<br />

Supplied with:<br />

4000 u<br />

10X Buffer R 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AvaII <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

Eco31I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

Eco32I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 100 0-20 0-20 50-100 20-50<br />

Methylation Effects<br />

Dam, EcoKI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

dcm methylation. To avoid dcm methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 50-100 50-100 100 20-50 100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 50-100 50-100 100 50-100 50-100<br />

Storage Buffer<br />

Eco47I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – blocked <br />

Note<br />

dcm<br />

methylation. To avoid dcm methylation, use<br />

a dam – , dcm – strain such as GM2163.


Eco47III <br />

5’...A G CG C T...3’<br />

3’...T C G C G A...5’<br />

#ER0321 200 u<br />

#ER0322 1000 u<br />

Both supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AfeI <br />

Eco52I <br />

5’...CG G C C G...3’<br />

3’...G C C G G C...5’<br />

#ER0331 500 u<br />

#ER0332 2500 u<br />

Both supplied with:<br />

10X Buffer Eco52I 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest EagI <br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

Eco47III is supplied in:<br />

<br />

1 mM DTT, 1mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Eco52I at 37°C.<br />

Storage Buffer<br />

Eco52I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Eco53kI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Ecl136II and Ecl136II ;<br />

<strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SacI and SacI <br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 100 100 50-100 100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 20-50 0-20 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

www.thermoscientific.com/onebio 111


112<br />

Eco57I <br />

5’...C T G A A G(N) 16...3’<br />

3’...G A C T T C(N) 14 ...5’<br />

#ER0341<br />

Supplied with:<br />

200 u<br />

10X Buffer G 1 ml<br />

50X SAM 0.1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0342<br />

Supplied with:<br />

1000 u<br />

10X Buffer G 1 ml<br />

50X SAM 2x0.1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AcuI <br />

Eco72I <br />

5’...C A CG T G...3’<br />

3’...G T G C A C...5’<br />

#ER0361 2000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PmlI <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

5 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

SAM 0.01 mM.<br />

Note<br />

2+ for its activity, but is<br />

stimulated by S-adenosylmethionine. 0.01 mM<br />

S-adenosylmethionine gives a 100-fold<br />

increase in Eco57I activity. Still, complete<br />

cleavage of some substrates with Eco57I is<br />

difficult to achieve.<br />

<br />

its recognition sequence are required.<br />

<br />

maximum cleavage level achieved when<br />

no change in the fragmentation pattern is<br />

observed with further enzyme increase.<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Eco72I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Activity in Five Buffer System, %<br />

B +SAM G +SAM O +SAM R +SAM Tango +SAM 2X Tango +SAM<br />

100 100 20-50 20-50 50-100 50-100<br />

Storage Buffer<br />

Eco57I is supplied in:<br />

<br />

100 mM NaCl, 1 mM EDTA, 1 mM DTT and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

<br />

the cleaved DNA. This may cause DNA<br />

band shifting during electrophoresis. To<br />

avoid atypical DNA band patterns, use<br />

the 6X DNA Loading Dye & SDS Solution<br />

<br />

the digested DNA in the presence of SDS<br />

prior to electrophoresis.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR NR 0-20 0-20 100 20-50<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

Eco72I may result in star activity.


Eco81I <br />

5’...C CT N A G G...3’<br />

3’...G G A N T C C...5’<br />

#ER0371 500 u<br />

#ER0372 2500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Bsu36l <br />

Eco88I <br />

5’...CY C G R G...3’<br />

3’...G R G C Y C...5’<br />

#ER0381 1000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AvaI <br />

Eco91I <br />

5’...GG T N A C C...3’<br />

3’...C C A N T G G...5’<br />

#ER0391<br />

Supplied with:<br />

1000 u<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0392<br />

Supplied with:<br />

5000 u<br />

10X Buffer O 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Eco91I<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Eco81I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Eco88I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

Eco91I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 100 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100 0-20 0-20 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 20-50 100 50-100 NR 100<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

www.thermoscientific.com/onebio 113


114<br />

Eco105I <br />

5’...T A CG T A...3’<br />

3’...A T G C A T...5’<br />

#ER0401<br />

Supplied with:<br />

600 u<br />

10X Buffer Tango 1 ml<br />

#ER0402<br />

Supplied with:<br />

3000 u<br />

10X Buffer Tango 2x1 ml<br />

Also available as<br />

FastDigest SnaBI <br />

Eco130I <br />

5’...CC W W G G...3’<br />

3’...G G W W C C...5’<br />

#ER0411 2500 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest StyI <br />

Eco147I <br />

5’...A G GC C T...3’<br />

3’...T C C G G A...5’<br />

#ER0421<br />

Supplied with:<br />

1000 u<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0422<br />

Supplied with:<br />

5000 u<br />

10X Buffer B 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest StuI <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Eco105I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA,<br />

1 mM phenylmethylsulfonylfluoride,<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

Eco130I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Storage Buffer<br />

Eco147I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

EcoICRI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Ecl136II and Ecl136II ;<br />

FastDigest SacI and SacI <br />

EcoNI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EcoNI and XagI <br />

EcoO65I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Eco91I and Eco91I <br />

20’ Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100* 50-100 0-20 0-20 100 0-20<br />

* <br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

Eco105I may result in star activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 100 50-100 50-100 100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100 20-50 20-50 50-100 0-20<br />

Methylation Effects<br />

Dam, CpG, EcoKI – no effect.<br />

Dcm: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

dcm<br />

methylation. To avoid dcm methylation, use<br />

a dam – , dcm – strain such as GM2163.


EcoO109I <br />

5’...R GG N C C Y...3’<br />

3’...Y C C N G G R...5’<br />

#ER0261 2000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest EcoO109I<br />

EcoRI<br />

5’...GA A T T C...3’<br />

3’...C T T A A G...5’<br />

#ER0271<br />

Supplied with:<br />

5000 u<br />

10X Buffer EcoRI 2x1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0275<br />

Supplied with:<br />

10,000 u<br />

10X Buffer EcoRI 4x1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0272 5x5000 u<br />

#ER0273 HC, 25,000 u<br />

All supplied with:<br />

10X Buffer EcoRI 5x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest EcoRI<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

EcoO109I is supplied in:<br />

<br />

100 mM NaCl, 1 mM EDTA, 1 mM DTT,<br />

<br />

20’<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer EcoRI at 37°C.<br />

Storage Buffer<br />

EcoRI is supplied in:<br />

<br />

300 mM NaCl, 1 mM EDTA, 1 mM DTT,<br />

0.2 mg/ml BSA, 0.15% Triton X-100 and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 20-50 20-50 20-50 100 100<br />

Methylation Effects<br />

Dam, CpG, EcoKI – no effect.<br />

Dcm: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme is required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

dcm<br />

methylation. To avoid dcm methylation, use<br />

a dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 NR 100 100* NR 100<br />

* <br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

www.thermoscientific.com/onebio 115


116<br />

EcoRII<br />

5’...C C W G G ...3’<br />

3’... G G W C C ...5’<br />

#ER1921 200 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

EcoRV <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EcoRV and Eco32I <br />

EcoT14I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest StyI and Eco130I <br />

EcoT22I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NsiI and Mph1103I <br />

EheI <br />

5’...G G CG C C...3’<br />

3’...C C G C G G...5’<br />

#ER0441 500 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest EheI<br />

EspI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BlpI and Bpu1102I <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

EcoRII is supplied in:<br />

<br />

1 mM DTT, 1mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, CpG, EcoKI, EcoBI – no effect.<br />

Dcm: completely overlaps – blocked <br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

EheI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 100 50-100 20-50 50-100<br />

Note<br />

<br />

site are required for efficient cleavage. For<br />

cleavage of DNA substrates with only one<br />

<br />

neoschizomer of EcoRII, is recommended.<br />

<br />

DNA. This may cause DNA band shifting during<br />

electrophoresis. To avoid atypical DNA band<br />

patterns, use the 6X DNA Loading Dye & SDS<br />

<br />

heat the digested DNA in the presence of SDS<br />

prior to electrophoresis.<br />

dcm<br />

methylation. To avoid dcm methylation, use<br />

a dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 0-20 0-20 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 20 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

and<br />

pBR322 DNAs.


Esp3I <br />

5’...C G T C T C(N) 1...3’<br />

3’...G C A G A G(N) 5 ...5’<br />

#ER0451 200 u<br />

#ER0452 1000 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BsmBI <br />

FaqI <br />

5’...G G G A C(N) 10...3’<br />

3’...C C C T G(N) 14 ...5’<br />

#ER1811 100 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

50X SAM 0.1 ml<br />

Also available as<br />

FastDigest BsmFI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

<br />

Storage Buffer<br />

Esp3I is supplied in:<br />

<br />

100 mM KCl, 1 mM EDTA, 1 mM DTT,<br />

<br />

Concentration<br />

2 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

SAM 0.05 mM.<br />

Storage Buffer<br />

FaqI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – blocked <br />

FatI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NlaIII and Hin1II <br />

FbaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BclI and BclI<br />

FinI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsmFI and Faq <br />

FnuDII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsh1236I and Bsh1236I <br />

Fnu4HI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Fnu4HI and SatI <br />

FokI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest FokI;<br />

FastDigest BseGI and BseGI <br />

FspI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest FspI and NsbI <br />

20’<br />

Activity in Five Buffer System, %<br />

B +DTT G +DTT O +DTT R +DTT Tango +DTT 2X Tango +DTT<br />

100 20-50 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

Freshly made DTT solution should be added<br />

to the reaction buffer.<br />

Activity in Five Buffer System, %<br />

B +SAM G +SAM O +SAM R +SAM Tango +SAM 2X Tango +SAM<br />

20-50 20-50 0-20 0-20 100 20-50<br />

Note<br />

2+ for its activity, but<br />

is stimulated by S-adenosylmethionine.<br />

0.05 mM S-adenosylmethionine gives more<br />

than a 2-fold increase in FaqI activity. Still,<br />

complete cleavage of some substrates is<br />

difficult to achieve.<br />

<br />

recognition sequence are required.<br />

<br />

maximum cleavage level achieved when<br />

no change in the fragmentation pattern is<br />

observed with further enzyme increase.<br />

<br />

DNA. This may cause DNA band shifting<br />

during electrophoresis. To avoid atypical<br />

DNA band patterns, use the 6X DNA Loading<br />

<br />

preparation or heat the digested DNA in the<br />

presence of SDS prior to electrophoresis.<br />

www.thermoscientific.com/onebio 117


118<br />

FspAI<br />

5’...R T G CG C A Y...3’<br />

3’...Y A C G C G T R...5’<br />

#ER1661 100 u<br />

#ER1662 500 u<br />

Both supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest FspAI<br />

FspBI <br />

5’...CT A G...3’<br />

3’...G A T C...5’<br />

#ER1761 500 u<br />

#ER1762 2500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BfaI <br />

www.thermoscientific.com/onebio<br />

20’<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

GsaI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest PspFI<br />

GsuI <br />

5’...C T G G A G(N) 16...3’<br />

3’...G A C C T C(N) 14 ...5’<br />

#ER0461 100 u<br />

#ER0462 500 u<br />

Both supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BpmI <br />

Storage Buffer<br />

FspBI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 30°C.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 100 50-100 0-20 50-100<br />

Storage Buffer<br />

FspAI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

50% glycerol.<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

20’ Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 20-50 0-20 0-20 100 0-20<br />

20’<br />

Storage Buffer<br />

GsuI is supplied in:<br />

<br />

1 mM EDTA, 1 mM DTT, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, CpG, EcoKI, EcoBI – no effect.<br />

Dcm: may overlap – blocked <br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 4 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100 20-50 20-50 100 50-100<br />

Note<br />

<br />

2+ for its activity, but<br />

is stimulated by S-adenosylmethionine.<br />

0.01 mM S-adenosylmethionine gives a<br />

2-fold increase in activity.<br />

<br />

DNA. This may cause DNA band shifting<br />

during electrophoresis. To avoid atypical<br />

DNA band patterns, use the 6X DNA Loading<br />

<br />

preparation or heat the digested DNA in the<br />

presence of SDS prior to electrophoresis.<br />

dcm<br />

methylation. To avoid dcm methylation, use a<br />

dam – , dcm – strain such as GM2163.


HaeII <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest HaeII <br />

HaeIII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest HaeIII and BsuRI <br />

HapII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest HpaII and HpaII;<br />

FastDigest MspI and MspI <br />

HgaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest HgaI and CseI <br />

HgiAI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Alw21I and Alw21I <br />

HgiCI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BanI and BshNI <br />

HgiJII <strong>Thermo</strong> <strong>Scientific</strong> enzyme Eco24I<br />

HhaI<br />

5’...G C GC...3’<br />

3’...C G C G...5’<br />

#ER1851 2000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest HhaI<br />

Hin1I <br />

5’...G RC G Y C...3’<br />

3’...C Y G C R G...5’<br />

#ER0471 300 u<br />

Supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BsaHI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

Hin1I is supplied in:<br />

<br />

100 mM NaCl, 1 mM EDTA, 1 mM DTT,<br />

<br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 20-50 20-50 100 20-50<br />

Storage Buffer<br />

HhaI is supplied in:<br />

<br />

1 mM EDTA, 1 mM DTT, 0.2 mg/ml BSA and<br />

50% glycerol.<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 100 20-50 20-50 20-50 20-50<br />

Methylation Effects<br />

Dam, EcoKI – no effect.<br />

Dcm: may overlap – cleavage impaired<br />

<br />

CpG: completely overlaps – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

dcm methylation. To avoid dcm methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

www.thermoscientific.com/onebio 119


120<br />

Hin1II <br />

5’... C A T G...3’<br />

3’... G T A C ...5’<br />

#ER1831 300 u<br />

Supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NlaIII <br />

Hin6I <br />

5’...GC G C...3’<br />

3’...C G C G...5’<br />

#ER0481 2000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest HinP1I <br />

HinP1I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest HhaI and HhaI <br />

FastDigest HinP1I and Hin6I <br />

HincII <br />

5’...G T YR A C...3’<br />

3’...C A R Y T G...5’<br />

#ER0491 500 u<br />

#ER0492 2500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest HincII<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

5 u/μl<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

HindII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest HincII and HincII <br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

Hin1II is supplied in:<br />

<br />

500 mM NaCl, 1 mM EDTA, 1 mM DTT,<br />

0.15% Triton X-100, 0.5 mg/ml BSA and<br />

<br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 100 20-50 50-100 50-100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

At -20°C the half-life of Hin1II is 6 months.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 20-50 20-50 100 50-100<br />

Storage Buffer<br />

Hin6I is supplied in:<br />

<br />

100 mM NaCl, 1 mM EDTA, 1 mM DTT,<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 20-50 50-100 100 50-100<br />

Storage Buffer<br />

HincII is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.5 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

EcoKI, EcoBI: may overlap – blocked


HindIII<br />

5’...AA G C T T...3’<br />

3’...T T C G A A...5’<br />

#ER0501<br />

Supplied with:<br />

5000 u<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0505<br />

Supplied with:<br />

10,000 u<br />

10X Buffer R 4x1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0502 5x5000 u<br />

#ER0503 HC, 25,000 u<br />

Both supplied with:<br />

10X Buffer R 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest HindIII<br />

HinfI<br />

5’...GA N T C...3’<br />

3’...C T N A G...5’<br />

#ER0801<br />

Supplied with:<br />

2000 u<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0802 5x2000 u<br />

#ER0803 HC, 10,000 u<br />

Both supplied with:<br />

10X Buffer R 2x1 ml<br />

10X Buffer Tango<br />

FastDigest HinfI<br />

1 ml<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

HindIII is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

HpaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest HpaI and KspAI <br />

HpaII<br />

5’...CC G G...3’<br />

3’...G G C C...5’<br />

#ER0511<br />

Supplied with:<br />

1000 u<br />

10X Buffer Tango 1 ml<br />

#ER0512<br />

Supplied with:<br />

5000 u<br />

10X Buffer Tango 2x1 ml<br />

Also available as<br />

FastDigest HpaII<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 0-20 100 50-100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 50-100 100 50-100 50-100<br />

Storage Buffer<br />

HinfI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

EcoBI: may overlap – blocked <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 0-20 20-50 100 20-50<br />

Storage Buffer<br />

HpaII is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Note<br />

<br />

<br />

<br />

www.thermoscientific.com/onebio 121


122<br />

HphI<br />

5’...G G T G A(N) 8...3’<br />

3’...C C A C T(N) 7 ...5’<br />

#ER1101 300 u<br />

#ER1102 1500 u<br />

Both supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Hpy8I <br />

5’...G T NN A C...3’<br />

3’...C A N N T G...5’<br />

#ER1571 200 u<br />

#ER1572 1000 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Hpy8I<br />

www.thermoscientific.com/onebio<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Storage Buffer<br />

HphI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

HpyCH4III <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest TaaI and TaaI <br />

HpyCH4IV <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest TaiI and TaiI <br />

HpyF3I <br />

5’...CT N A G...3’<br />

3’...G A N T C...5’<br />

#ER1881 500 u<br />

#ER1882 2500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest DdeI <br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 0-20 0-20 0-20 20-50 0-20<br />

Methylation Effects<br />

Dam, EcoBI: may overlap – blocked <br />

Dcm, CpG, EcoKI – no effect.<br />

Note<br />

dam<br />

methylation. To avoid dam methylation, use a<br />

dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 0-20 20-50 100 50-100<br />

Storage Buffer<br />

Hpy8I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 20-50 20-50 20-50 100 50-100<br />

Storage Buffer<br />

HpyF3I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.


HpyF10VI <br />

5’...G C N N N N NN N G C...3’<br />

3’...C G N N N N N N N C G...5’<br />

#ER1731 300 u<br />

#ER1732 1500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest HpyF10VI<br />

KpnI<br />

5’...G G T A CC...3’<br />

3’...C C A T G G...5’<br />

#ER0521<br />

Supplied with:<br />

4000 u<br />

10X Buffer KpnI 2x1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0522 5x4000 u<br />

#ER0523 HC, 20,000 u<br />

Both supplied with:<br />

10X Buffer KpnI 4x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest KpnI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Hsp92I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsaHI and Hin1I <br />

Hsp92II <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NlaIII and Hin1II <br />

ItaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Fnu4HI and SatI <br />

KasI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EheI and EheI <br />

<strong>Thermo</strong> <strong>Scientific</strong> enzyme SspDI <br />

KflI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest SanDI <br />

Kpn2I <br />

5’...TC C G G A...3’<br />

3’...A G G C C T...5’<br />

#ER0531 500 u<br />

#ER0532 2500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Kpn2I<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer KpnI at 37°C.<br />

Storage Buffer<br />

KpnI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 55°C.<br />

Storage Buffer<br />

Kpn2I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 0-20 100 50-100<br />

Storage Buffer<br />

HpyF10VI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 0-20 0-20 0-20 20-50 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 0-20 20-50 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

Incubation at 37°C results in 50% activity.<br />

www.thermoscientific.com/onebio 123


124<br />

KspI <strong>Thermo</strong> <strong>Scientific</strong> enzyme Cfr42I <br />

Ksp632I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EarI and Eam1104I <br />

KspAI <br />

5’...G T TA A C...3’<br />

3’...C A A T T G...5’<br />

#ER1031 500 u<br />

#ER1032 2500 u<br />

Both supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest HpaI <br />

LguI <br />

5’...G C T C T T C(N) 1...3’<br />

3’...C G A G A A G(N) 4 ...5’<br />

#ER1931 100 u<br />

#ER1932 500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest SapI <br />

Lsp1109I <br />

5’...G C A G C(N) 8...3’<br />

3’...C G T C G(N) 12 ...5’<br />

#ER2071 200 u<br />

Supplied with:<br />

10X Buffer Lsp1109I 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BbvI <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Storage Buffer<br />

KspAI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

5 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

LguI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

5 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Lsp1109I at 37°C.<br />

Storage Buffer<br />

Lsp1109I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100* 20-50 20-50 100* 50-100<br />

* <br />

Methylation Effects<br />

Dam, Dcm, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

EcoKI: may overlap – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 20-50 20-50 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50* 50-100* 100* 20-50* 20-50*<br />

* <br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

Lsp1109I may result in star activity.<br />

<br />

cleaved DNA. This may cause DNA band<br />

shifting during electrophoresis. To avoid<br />

atypical DNA band patterns, use the 6X DNA<br />

<br />

sample preparation or heat the digested<br />

DNA in the presence of SDS prior to<br />

electrophoresis.


LweI <br />

5’...G C A T C(N) 5...3’<br />

3’...C G T A G(N) 9 ...5’<br />

#ER1621 100 u<br />

#ER1622 500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest SfaNI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

LweI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

MaeI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BfaI and FspBI <br />

MaeII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest TaiI and TaiI <br />

MamI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsaBI and BseJI <br />

MauBI<br />

5’...C GC G C G C G...3’<br />

3’...G C G C G C G C...5’<br />

#ER2081 100 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MauBI<br />

MbiI <br />

5’...C C GC T C...3’<br />

3’...G G C G A G...5’<br />

#ER1271 1000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BsrBI <br />

20’<br />

20’<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

<br />

<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

<br />

<br />

<br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 20-50 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI– no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

are required for efficient cleavage.<br />

<br />

DNA. This may cause DNA band shifting<br />

during electrophoresis. To avoid atypical<br />

DNA band patterns, use the 6X DNA Loading<br />

<br />

preparation or heat the digested DNA in the<br />

presence of SDS prior to electrophoresis.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 100 20-50 20-50 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: completely overlaps – cleavage impaired<br />

<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

www.thermoscientific.com/onebio 125


126<br />

MboI<br />

5’...G A T C ...3’<br />

3’... C T A G ...5’<br />

#ER0811 300 u<br />

#ER0812 1500 u<br />

Both supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MboI<br />

MboII<br />

5’...G A A G A(N) 8...3’<br />

3’...C T T C T(N) 7 ...5’<br />

#ER0821 300 u<br />

#ER0822 1500 u<br />

Both supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MboII<br />

www.thermoscientific.com/onebio<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

<br />

<br />

<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Storage Buffer<br />

MboII is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam: may overlap – blocked <br />

Dcm, CpG, EcoKI, EcoBI – no effect.<br />

McrI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsiEI and Bsh1285I <br />

MfeI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest MfeI and MunI <br />

MflI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PsuI and PsuI <br />

MjaIV <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Hpy8I and Hpy8I <br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 50-100 100 50-100 100<br />

Methylation Effects<br />

Dam: completely overlaps – blocked <br />

Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Note<br />

dam<br />

methylation. To avoid dam methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

<br />

the same sequence but have different<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100 20-50 0-20 50-100 20-50<br />

Note<br />

dam<br />

methylation. To avoid dam methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

<br />

MboII may result in star activity.<br />

<br />

a single-base 3’-extension which are<br />

more difficult to ligate than blunt-ended<br />

fragments.<br />

<br />

cleaved DNA. This may cause DNA band<br />

shifting during electrophoresis. To avoid<br />

atypical DNA band patterns, use the 6X DNA<br />

<br />

sample preparation or heat the digested<br />

DNA in the presence of SDS prior to<br />

electrophoresis.


MlsI <br />

5’...T G GC C A...3’<br />

3’...A C C G G T...5’<br />

#ER1211 200 u<br />

#ER1212 1000 u<br />

Both supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MscI <br />

MluI<br />

5’...AC G C G T...3’<br />

3’...T G C G C A...5’<br />

#ER0561<br />

Supplied with:<br />

1000 u<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0562<br />

Supplied with:<br />

5000 u<br />

10X Buffer R 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MluI<br />

Concentration<br />

5 u/μ<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

MlsI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

MluI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

MluNI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest MscI and MlsI <br />

MlyI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest MlyI and SchI <br />

MnlI<br />

5’...C C T C(N) 7...3’<br />

3’...G G A G(N) 6 ...5’<br />

#ER1071 300 u<br />

#ER1072 1500 u<br />

Both supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MnlI<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

MnlI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 0-20 100 20-50 50-100<br />

Methylation Effects<br />

Dam, CpG, EcoKI, EcoBI – no effect.<br />

Dcm: may overlap – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 20 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

methylation. To avoid dcm methylation, use<br />

a dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 50-100 100 20-50 50-100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 100 20-50 20-50 20-50 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Note<br />

<br />

a single-base 3’-extension which are<br />

more difficult to ligate than blunt-ended<br />

fragments.<br />

<br />

cleaved DNA. This may cause DNA band<br />

shifting during electrophoresis. To avoid<br />

atypical DNA band patterns, use the 6X DNA<br />

<br />

sample preparation or heat the digested<br />

DNA in the presence of SDS prior to<br />

electrophoresis.<br />

www.thermoscientific.com/onebio 127


128<br />

Mph1103I <br />

5’...A T G C AT...3’<br />

3’...T A C G T A...5’<br />

#ER0731<br />

Supplied with:<br />

1000 u<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0732<br />

Supplied with:<br />

5000 u<br />

10X Buffer R 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NsiI <br />

MreI <br />

5’...C GC C G G C G...3’<br />

3’...G C G G C C G C...5’<br />

#ER2021 300 u<br />

Supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MreI<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

MroI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Kpn2I and Kpn2I <br />

MscI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest MscI and MlsI <br />

MseI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Tru1I and Tru1I ;<br />

<strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest MseI <br />

MslI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest MslI and RseI <br />

MspI <br />

5’...CC G G...3’<br />

3’...G G C C...5’<br />

#ER0541<br />

Supplied with:<br />

3000 u<br />

10X Buffer Tango 2X1 ml<br />

#ER0542<br />

Supplied with:<br />

5x3000 u<br />

10X Buffer Tango 2x1 ml<br />

Also available as<br />

FastDigest MspI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

MspI is supplied in:<br />

<br />

200 mM NaCl, 1 mM DTT, 1 mM EDTA,<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 50-100 20-50 100 50-100 50-100<br />

Storage Buffer<br />

Mph1103I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 100 0-20 0-20 50-100 0-20<br />

Storage Buffer<br />

MreI is supplied in:<br />

<br />

200 mM KCl, 0.1 mM EDTA,<br />

0.01% Triton X-100, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 0-20 0-20 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

<br />

the external C in the sequence CCGG is<br />

methylated, MspI and HpaII cannot cleave.<br />

However, unlike HpaII, MspI can cleave the<br />

sequence when the internal C residue is<br />

methylated.


MssI <br />

5’...G T T TA A A C...3’<br />

3’...C A A A T T T G...5’<br />

#ER1341 250 u<br />

#ER1342 1250 u<br />

Both supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MssI<br />

MunI <br />

5’...CA A T T G...3’<br />

3’...G T T A A C...5’<br />

#ER0751 300 u<br />

#ER0752 1500 u<br />

Both supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MfeI <br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Storage Buffer<br />

MssI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

MstI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest FspI and NsbI <br />

MvaI <br />

5’...C CW G G...3’<br />

3’...G G W C C...5’<br />

#ER0551 2000 u<br />

Supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MvaI<br />

Concentration<br />

10 u/μl<br />

20’<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

MunI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

MvaI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 0-20 0-20 0-20 20-50 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 100 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 20-50 50-100 100 20-50* 100<br />

* <br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

<br />

not require multiple copies of recognition<br />

site for efficient cleavage.<br />

www.thermoscientific.com/onebio 129


130<br />

Mva1269I <br />

5’...G A A T G C N...3’<br />

3’...C T T A C G N ...5’<br />

#ER0961 200 u<br />

#ER0962 1000 u<br />

Both supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Mva1269I<br />

www.thermoscientific.com/onebio<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

Mva1269I is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

MvnI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsh1236I and Bsh1236I <br />

MwoI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest HpyF10VI and HpyF10VI <br />

NaeI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NaeI and PdiI <br />

NarI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EheI and EheI <br />

<strong>Thermo</strong> <strong>Scientific</strong> enzyme SspDI <br />

NciI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NciI and BcnI <br />

NcoI<br />

5’...CC A T G G...3’<br />

3’...G G T A C C...5’<br />

#ER0571 500 u<br />

#ER0575 1000 u<br />

#ER0572 2500 u<br />

All supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NcoI<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

NcoI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

50% glycerol.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 50-100 100 0-20 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 20-50 20-50 50-100 100 100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.


NdeI<br />

5’...C AT A T G...3’<br />

3’...G T A T A C...5’<br />

#ER0581 500 u<br />

#ER0582<br />

Both supplied with:<br />

2500 u<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0585<br />

Both supplied with:<br />

4000 u<br />

10X Buffer O 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NdeI<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

NdeI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 100 50-100 0-20 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

NdeII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Sau3AI and Bsp143I <br />

FastDigest DpnI and DpnI <br />

FastDigest MboI and MboI<br />

NgoMIV <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NaeI and PdiI <br />

NheI<br />

5’...GC T A G C...3’<br />

3’...C G A T C G...5’<br />

#ER0971 500 u<br />

#ER0975 1000 u<br />

#ER0972 2500 u<br />

All supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NheI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

NheI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

NlaIII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NlaIII and Hin1II <br />

NlaIV <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NlaIV and BspLI <br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 20-50 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

10-fold more NheI for complete digestion<br />

<br />

<br />

www.thermoscientific.com/onebio 131


132<br />

NmuCI <br />

5’...G T S A C ...3’<br />

3’... C A S T G ...5’<br />

#ER1511 200 u<br />

Supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NmuCI<br />

NotI<br />

5’...G CG G C C G C...3’<br />

3’...C G C C G G C G...5’<br />

#ER0591 300 u<br />

#ER0595 500 u<br />

#ER0592 1500 u<br />

#ER0593 HC, 1500 u<br />

All supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NotI<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

NmuCI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

NotI is supplied in:<br />

<br />

0.1 mM EDTA, 1 mM DTT, 0.02% Triton X-100,<br />

<br />

NruI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NruI and Bsp68I <br />

NsbI <br />

5’...T G CG C A...3’<br />

3’...A C G C G T...5’<br />

#ER1221 400 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest FspI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

NsbI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

NsiI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Nsil and Mph1103I <br />

NspI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NspI and XceI <br />

NspV <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsp119I and Bsp119I <br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 50-100 100 20-50 50-100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

EcoBI: may overlap – effect not determined.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 100 20-50 0-20 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

Adenovirus-2 DNA in 16 hours.<br />

Note<br />

<br />

5-fold more NotI for complete digestion than<br />

linear DNAs.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 0-20 20-50 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.


OliI <br />

5’...C A C N NN N G T G...3’<br />

3’...G T G N N N N C A C...5’<br />

#ER1631 200 u<br />

#ER1632 1000 u<br />

Both supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AleI <br />

PacI<br />

5’...T T A A TT A A...3’<br />

3’...A A T T A A T T...5’<br />

#ER2201 250 u<br />

#ER2202 1250 u<br />

Supplied with:<br />

10X Buffer PacI 1 ml<br />

Also available as<br />

FastDigest PacI<br />

PaeI <br />

5’...G C A T GC...3’<br />

3’...C G T A C G...5’<br />

#ER0601 500 u<br />

#ER0602 2500 u<br />

Both supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest SphI <br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

OliI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Storage Buffer<br />

PaeI is supplied in:<br />

<br />

50 mM KCl, 1 mM DTT, 0.1 mM EDTA,<br />

0.15% Triton X-100, 0.5 mg/ml BSA<br />

<br />

PaeR7I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest XhoI and XhoI<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer PacI at 37°C.<br />

Storage Buffer<br />

PacI is supplied in:<br />

<br />

200 mM NaCl, 1 mM DTT, 1 mM EDTA,<br />

0.2 mg/ml BSA and 50% glycerol.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 100 0-20 50-100<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

EcoKI, EcoBI: may overlap– blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 20-50 0-20 0-20 0-20 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agarose-<br />

<br />

recognition sequence in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100 0-20 0-20 50-100 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

www.thermoscientific.com/onebio 133


134<br />

PagI <br />

5’...TC A T G A...3’<br />

3’...A G T A C T...5’<br />

#ER1281 400 u<br />

#ER1282 2000 u<br />

Both supplied with:<br />

10X Buffer O 1 ml<br />

Also available as<br />

FastDigest BspHI <br />

PasI<br />

5’...C CC W G G G...3’<br />

3’...G G G W C C C...5’<br />

#ER1861 200 u<br />

Supplied with:<br />

10X Buffer PasI 1 ml<br />

PauI <br />

5’...GC G C G C...3’<br />

3’...C G C G C G...5’<br />

#ER1091 200 u<br />

#ER1092 1000 u<br />

Both supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BssHII <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

PagI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer PasI at 55°C.<br />

Storage Buffer<br />

PasI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

PauI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 50-100 100 NR NR NR<br />

Methylation Effects<br />

Dam, EcoBI: may overlap – cleavage impaired<br />

<br />

Dcm, CpG, EcoKI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

dam<br />

methylation. To avoid dam methylation, use a<br />

dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR NR NR NR NR NR<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

<br />

results in star activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 100 100 0-20 100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.


PciI <strong>Thermo</strong> <strong>Scientific</strong> enzyme PscI <br />

PdiI <br />

5’...G C CG G C...3’<br />

3’...C G G C C G...5’<br />

#ER1521 200 u<br />

#ER1522 1000 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NaeI <br />

PdmI <br />

5’...G A A N NN N T T C...3’<br />

3’...C T T N N N N A A G...5’<br />

#ER1531 500 u<br />

#ER1532 2500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PdmI<br />

PfeI <br />

5’...GA W T C...3’<br />

3’...C T W A G...5’<br />

#ER1781 500 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest TfiI <br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

PdiI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA,<br />

<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

PdmI is supplied in:<br />

<br />

1 mM DTT, 5 mM MgCl2, 0.2 mg/ml BSA<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

PfeI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 20-50 0-20 0-20 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 20 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

pBR322 DNA in 16 hours.<br />

Note<br />

<br />

recognition sequence are required.<br />

<br />

with PdiI, the same as with its prototype NaeI.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 100 50-100 20-50 50-100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI – no effect.<br />

CpG: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

www.thermoscientific.com/onebio 135


136<br />

Pfl23II <br />

5’...CG T A C G...3’<br />

3’...G C A T G C...5’<br />

#ER0851 300 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest BsiWI <br />

PflFI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PsyI and PsyI <br />

PflMI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PflMI and Van91I <br />

PfoI<br />

5’...TC C N G G A...3’<br />

3’...A G G N C C T...5’<br />

#ER1751 200 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PfoI<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

3 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Pfl23II is supplied in:<br />

<br />

1 mM EDTA, 1 mM DTT, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

PfoI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

PhoI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest HaeIII and BsuRI <br />

PinAI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AgeI and BshTI <br />

PleI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest MlyI and SchI <br />

PmaCI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PmlI and Eco72I <br />

PmeI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest MssI and MssI <br />

PmlI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PmlI and Eco72I <br />

20’<br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 20-50 20-50 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 50-100 0-20 100 50-100<br />

Methylation Effects<br />

Dam: may overlap – cleavage impaired<br />

<br />

Dcm, CpG: may overlap – blocked <br />

<br />

EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

dam methylation and blocked by overlapping<br />

dcm methylation. To avoid dam or dcm<br />

methylation, use a dam – , dcm – strain such<br />

as GM2163.


Ppu21I <br />

5’...Y A CG T R...3’<br />

3’...R T G C A Y...5’<br />

#ER1971 500 u<br />

Supplied with:<br />

10X Buffer Ppu21I 1 ml<br />

Also available as<br />

FastDigest BsaAI <br />

PpuMI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PpuMI and Psp5II <br />

PscI <br />

5’...AC A T G T...3’<br />

3’...T G T A C A...5’<br />

#ER1871 200 u<br />

#ER1872 1000 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Ppu21I at 30°C.<br />

Storage Buffer<br />

Ppu21I is supplied in:<br />

<br />

100 mM NaCl, 1 mM EDTA, 1 mM DTT,<br />

<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

PscI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

PshAI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PshAI and BoxI <br />

PshBI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AseI and VspI <br />

PsiI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PsiI and AanI <br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100* 100* 20-50 NR NR NR<br />

* <br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 20-50 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

PciI, is inhibited by nonionic detergents<br />

<br />

<br />

www.thermoscientific.com/onebio 137


138<br />

Psp5II <br />

5’...R GG W C C Y...3’<br />

3’...Y C C W G G R...5’<br />

#ER0761 500 u<br />

Supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PpuMI <br />

Psp1406I <br />

5’...A AC G T T...3’<br />

3’...T T G C A A...5’<br />

#ER0941 300 u<br />

#ER0942 1500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AclI <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

Psp5II is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.15% Triton X-100,<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

Psp1406I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA,<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 100 20-50 20-50 50-100 100<br />

Methylation Effects<br />

Dam, CpG, EcoKI – no effect.<br />

Dcm: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

dcm<br />

methylation. To avoid dcm methylation,<br />

use a dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100 0-20 20-50 100 0-20<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

PspGI <strong>Thermo</strong> <strong>Scientific</strong> enzymes EcoRII,<br />

FastDigest MvaI and MvaI <br />

PspOMI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest ApaI and ApaI <br />

FastDigest Bsp120I and Bsp120I <br />

PstI<br />

5’...C T G C AG...3’<br />

3’...G A C G T C...5’<br />

#ER0611<br />

Supplied with:<br />

3000 u<br />

10X Buffer O 2x1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0615<br />

Supplied with:<br />

10,000 u<br />

10X Buffer O 4x1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0612<br />

Supplied with:<br />

5x3000 u<br />

10X Buffer O 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PstI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

PstI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.15% Triton X-100,<br />

<br />

Methylation Effects<br />

Dam, Dcm,CpG, EcoKI, EcoBI – no effect.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 100 100 50-100 50-100<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

adjacent runs of G-C base pairs confers<br />

significant resistance to cleavage<br />

<br />

<br />

<br />

methylated by AluI methyltransferase.


PsuI <br />

5’...RG A T C Y...3’<br />

3’...Y C T A G R...5’<br />

#ER1551 500 u<br />

Supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PsuI<br />

PsyI <br />

5’...G A C NN N G T C...3’<br />

3’...C T G N N N C A G...5’<br />

#ER1331 1000 u<br />

Supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PsyI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Storage Buffer<br />

PsyI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

PteI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest BssHII <br />

PvuI<br />

5’...C G A TC G...3’<br />

3’...G C T A G C...5’<br />

#ER0621 300 u<br />

#ER0622 1500 u<br />

Both supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PvuI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

PvuI is supplied in:<br />

<br />

0.1 mM EDTA, 1 mM DTT, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 20-50 0-20 0-20 50-100 0-20<br />

Storage Buffer<br />

PsuI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100 0-20 0-20 50-100 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 50-100 100 50-100 100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

www.thermoscientific.com/onebio 139


140<br />

PvuII<br />

5’...C A GC T G...3’<br />

3’...G T C G A C...5’<br />

#ER0631<br />

Supplied with:<br />

2500 u<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0635 5000 u<br />

#ER0633 HC, 12500 u<br />

Both supplied with:<br />

10X Buffer G 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PvuII<br />

5’...G TA C...3’<br />

3’...C A T G...5’<br />

#ER1121<br />

Supplied with:<br />

1000 u<br />

10X Buffer Tango 1 ml<br />

#ER1122<br />

Supplied with:<br />

5000 u<br />

10X Buffer Tango 2x1 ml<br />

Also available as<br />

FastDigest RsaI<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

PvuII is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

RcaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BspHI and PagI <br />

RruI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest NruI <br />

RsaI<br />

RseI <br />

5’...C A Y N NN N R T G...3’<br />

3’...G T R N N N N Y A C...5’<br />

#ER2001 200 u<br />

#ER2002 1000 u<br />

Both supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MslI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

RseI is supplied in:<br />

<br />

1 mM EDTA, 1 mM DTT, 0.2 mg/ml BSA and<br />

<br />

RsrII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest RsrII and CpoI <br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100* 100 20-50 50-100 20-50* 20-50*<br />

* <br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

PvuII may result in star activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 20-50 0-20 0-20 100 0-20<br />

Storage Buffer<br />

RsaI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 50-100 50-100 100 20-50 100<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI: may overlap – blocked <br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.


SacI<br />

5’...G A G C TC...3’<br />

3’...C T C G A G...5’<br />

#ER1131 1200 u<br />

#ER1135<br />

Both supplied with:<br />

2000 u<br />

10X Buffer SacI 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER1132<br />

Supplied with:<br />

5x1200 u<br />

10X Buffer SacI 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest SacI<br />

SacII <strong>Thermo</strong> <strong>Scientific</strong> enzyme Cfr42I <br />

SalI<br />

5’...GT C G A C...3’<br />

3’...C A G C T G...5’<br />

#ER0641 1500 u<br />

#ER0645<br />

Both supplied with:<br />

2000 u<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0642<br />

Supplied with:<br />

5x1500 u<br />

10X Buffer O 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest SalI<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer SacI at 37°C.<br />

Storage Buffer<br />

SacI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

SalI is supplied in:<br />

<br />

0.1 mM EDTA, 1 mM DTT, 0.2 mg/ml BSA and<br />

<br />

SanDI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest SanDI <br />

SapI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SapI and LguI <br />

SaqAI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest MseI <br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 20-50 0-20 0-20 50-100 20-50<br />

Note<br />

<br />

GAGmCTC but not GAGCTmC and insensitive<br />

to adenine methylation at GmAGCTC.<br />

<br />

to block SacI.<br />

<br />

5-fold more SacI for complete digestion than<br />

linear DNA.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 100 20-50 0-20 50-100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

require 10-fold overdigestion with SalI to<br />

achieve complete digestion.<br />

<br />

www.thermoscientific.com/onebio 141


142<br />

SatI <br />

5’...G CN G C...3’<br />

3’...C G N C G...5’<br />

#ER1641 200 u<br />

#ER1642 1000 u<br />

Both supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Fnu4HI <br />

SauI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsu36I and Eco81I <br />

Sau96I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Sau96I and Cfr13I <br />

Sau3AI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Sau3AI and Bsp143I ;<br />

FastDigest DpnI and DpnI <br />

FastDigest MboI and MboI <br />

SbfI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SbfI and SdaI <br />

ScaI<br />

5’...A G TA C T...3’<br />

3’...T C A T G A...5’<br />

#ER0431<br />

Supplied with:<br />

1000 u<br />

10X Buffer ScaI 1 ml<br />

#ER0432<br />

Supplied with:<br />

5000 u<br />

10X Buffer ScaI 2x1 ml<br />

Also available as<br />

FastDigest ScaI<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

SatI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer ScaI at 37°C.<br />

Storage Buffer<br />

ScaI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.5 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 100 20-50 20-50 50-100 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – blocked <br />

Note<br />

<br />

are required for efficient cleavage.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 0-20 0-20 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 20 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

20-fold more ScaI for complete digestion<br />

than linear DNAs.


SchI <br />

5’...G A G T C(N) 5...3’<br />

3’...C T C A G(N) 5 ...5’<br />

#ER1371 1000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest MlyI <br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

SchI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

ScrFI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest ScrFI and Bme1390I <br />

SdaI <br />

5’...C C T G C AG G...3’<br />

3’...G G A C G T C C...5’<br />

#ER1191 300 u<br />

#ER1192 1500 u<br />

Both supplied with:<br />

10X Buffer SdaI 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest SbfI <br />

SduI <br />

5’...G D G C HC...3’<br />

3’...C H C G D G...5’<br />

#ER0651 500 u<br />

Supplied with:<br />

10X Buffer SduI 1 ml<br />

Also available as<br />

FastDigest Bsp1286I <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer SdaI at 37°C.<br />

Storage Buffer<br />

SdaI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer SduI at 37°C.<br />

SecI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsaJI and BseDI <br />

SexAI <strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest SexAI <br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam, Dcm,CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

may result in star activity.<br />

<br />

DNA. This may cause DNA band shifting<br />

during electrophoresis. To avoid atypical<br />

DNA band patterns, use the 6X DNA Loading<br />

<br />

preparation or heat the digested DNA in the<br />

presence of SDS prior to electrophoresis.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR NR 0-20 0-20 NR 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

may result in star activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR 50-100* 50-100 0-20 NR NR<br />

* <br />

Storage Buffer<br />

SduI is supplied in:<br />

<br />

1 mM EDTA, 1 mM DTT, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

www.thermoscientific.com/onebio 143


144<br />

SfaAI <br />

5’...G C G A TC G C...3’<br />

3’...C G C T A G C G...5’<br />

#ER2091 1000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AsiSI <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

SfaAI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

SfaNI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SfaNI and LweI <br />

SfcI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SfcI and BfmI <br />

SfeI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SfcI and BfmI <br />

SfiI<br />

5’...G G C C N N N NN G G C C...3’<br />

3’...C C G G N N N N N C C G G...5’<br />

#ER1821 1000 u<br />

Supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest SfiI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer G at 50°C.<br />

Storage Buffer<br />

SfiI is supplied in:<br />

<br />

10 mM MgCl2, 1 mM DTT, 0.15% Triton X-100,<br />

<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm, CpG: may overlap – cleavage impaired<br />

<br />

SfoI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EheI and EheI ;<br />

<strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest SspDI <br />

SfuI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsp119I and Bsp119I <br />

SgfI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AsiSI and SfaAI <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 0-20 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agarose-<br />

<br />

recognition site in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 100 20-50 0-20 100 0-20<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

Adenovirus-2 DNA in 16 hours.<br />

Note<br />

<br />

dcm<br />

methylation. To avoid dcm methylation, use a<br />

dam – , dcm – strain such as GM2163.<br />

<br />

of its recognition sequence are required.<br />

The two sites can be on either the same<br />

<br />

<br />

Therefore also an oligonucleotide harboring<br />

a SfiI recognition site can be supplemented.


SgeI<br />

5’... m5C N N G (N) 9 ...3’<br />

3’... G N N C (N) 13 ...5’*<br />

* SgeI cleaves DNA targets containing 5-methylcytosine on<br />

one or both DNA strands<br />

#ER2211 250 u<br />

Supplied with:<br />

10X Buffer SgeI 1 ml<br />

SgrDI<br />

5’...C GT C G A C G...3’<br />

3’...G C A G C T G C...5’<br />

#ER2031 200 u<br />

Supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

SgsI <br />

5’...G GC G C G C C...3’<br />

3’...C C G C G C G G...5’<br />

#ER1891 300 u<br />

#ER1892 1500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AscI <br />

20’<br />

Concentration<br />

3 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer SgeI at 37°C.<br />

Storage Buffer<br />

SgeI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA and 50% glycerol.<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm: always cleaves DNA methylated by Dcm<br />

methyltransferase <br />

CpG: cleaves targets overlapping with CpG<br />

methylated sequences <br />

Concentration<br />

10 u/μl<br />

20’<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

SgrDI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

SgsI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 NR NR NR<br />

Digestion of Agarose-embedded DNA<br />

A minimum of 3 units of the enzyme is<br />

required for complete digestion of 1 μg of<br />

agarose-embedded lambda DNA in 16 hours.<br />

Note<br />

<br />

methyltransferases will be a substrate for SgeI.<br />

<br />

may result in nonspecific cleavage.<br />

<br />

are required for an efficient cleavage.<br />

<br />

digestion of methylated DNA depends on<br />

the number of SgeI recognition sites. DNA<br />

cleavage products generated by target site<br />

cleavage facilitate the nonspecific cleavage<br />

by SgeI. Therefore, optimization of enzyme<br />

amount is recommended for DNA cleavage.<br />

E.coli dcm +<br />

<br />

cleavage efficiency control. SgeI cleaves all<br />

six dcm-methylated targets on pBR322 DNA.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 100 NR 100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 50-100 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

www.thermoscientific.com/onebio 145


146<br />

SinI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AvaII and Eco47I <br />

SmaI<br />

5’...C C CG G G...3’<br />

3’...G G G C C C...5’<br />

#ER0661 1200 u<br />

#ER0665<br />

Both supplied with:<br />

2000 u<br />

10X Buffer Tango 1 ml<br />

#ER0662 5x1200 u<br />

#ER0663 HC, 6000 u<br />

Both supplied with:<br />

10X Buffer Tango 2x1 ml<br />

Also available as<br />

FastDigest SmaI<br />

SmiI <br />

5’...A T T TA A A T...3’<br />

3’...T A A A T T T A...5’<br />

#ER1241 1000 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest SwaI <br />

SmlI <strong>Thermo</strong> <strong>Scientific</strong> enzyme SmoI <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 30°C.<br />

Storage Buffer<br />

SmaI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer O at 30°C.<br />

Storage Buffer<br />

SmiI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 0-20 0-20 0-20 100 0-20<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

SmaI has a half-life of 15 min at 37°C.<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 100 20-50 0-20 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

Adenovirus-2 DNA in 16 hours.<br />

Note


SmoI <br />

5’...CT Y R A G...3’<br />

3’...G A R Y T C...5’<br />

#ER1981 200 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 55°C.<br />

Storage Buffer<br />

SmoI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

SnaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BstZ17I and Bst1107I <br />

SnaBI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SnaBI and Eco105I <br />

SpeI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SpeI and BcuI <br />

SphI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SphI and PaeI <br />

SplI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BsiWI and Pfl23II <br />

Sse232I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest MreI and MreI <br />

Sse8387I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SbfI and SdaI <br />

SsiI <br />

5’...CC G C...3’<br />

3’...G G C G...5’<br />

#ER1791 200 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AciI <br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 20-50 0-20 20-50 100 20-50<br />

Methylation Effects<br />

Dam: may overlap – cleavage impaired<br />

<br />

Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

dam<br />

methylation. To avoid dam methylation, use a<br />

dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR 20-50 100 50-100 NR 100<br />

Storage Buffer<br />

SsiI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

www.thermoscientific.com/onebio 147


148<br />

SspI<br />

5’...A A TA T T...3’<br />

3’...T T A T A A...5’<br />

#ER0771 500 u<br />

#ER0772 2500 u<br />

Both supplied with:<br />

10X Buffer G 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest SspI<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer G at 37°C.<br />

Storage Buffer<br />

SspI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

SspBI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Bsp1407I and Bsp1407I <br />

SspDI <br />

5’...GG C G C C...3’<br />

3’...C C G C G G...5’<br />

#ER2191 250 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

SspDI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 100 0-20 50-100 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

may result in star activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 0-20 NR 0-20 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

StuI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest StuI and Eco147I <br />

StyI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest StyI and Eco130I <br />

StyD4I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest ScrFI and Bme1390I <br />

SwaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest SwaI and SmiI


TaaI <br />

5’...A C NG T...3’<br />

3’...T G N C A...5’<br />

#ER1361 200 u<br />

#ER1362 1000 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest TaaI<br />

Tail <br />

* Unlike MaeII, TaiI produces DNA<br />

fragments with a 4-base 3’-extension<br />

5’... A C G T...3’<br />

3’... T G C A ...5’<br />

#ER1141 400 u<br />

#ER1142<br />

Both supplied with:<br />

2000 u<br />

10X Buffer R 1 ml<br />

10X Buffer Tango<br />

FastDigest TaiI<br />

1 ml<br />

TaqI<br />

5’...TC G A...3’<br />

3’...A G C T...5’<br />

#ER0671<br />

Supplied with:<br />

3000 u<br />

10X Buffer TaqI 2x1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0672<br />

Supplied with:<br />

5x3000 u<br />

10X Buffer TaqI 4x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest TaqI<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 65°C.<br />

To ensure higher efficiency of digestion, perform<br />

the cleavage reaction under paraffin oil.<br />

Storage Buffer<br />

TaaI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 65°C.<br />

To ensure higher efficiency of digestion, perform<br />

the cleavage reaction under paraffin oil.<br />

Storage Buffer<br />

TaiI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl,<br />

Conditions for 100% Activity<br />

1X Buffer TaqI at 65°C.<br />

To ensure higher efficiency of digestion, perform<br />

the cleavage reaction under paraffin oil.<br />

Storage Buffer<br />

TaqI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.5 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 0-20 0-20 50-100 100 100<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: may overlap – cleavage impaired<br />

<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 20-50 100 100 50-100<br />

Methylation Effects<br />

Dam, Dcm – no effect.<br />

CpG: completely overlaps – blocked <br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

10% activity.<br />

Methylation Effects<br />

Dam: may overlap – blocked <br />

Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Note<br />

dam<br />

methylation. To avoid dam methylation, use<br />

a dam – , dcm – Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 20-50 20-50 20-50 20-50<br />

strain such as GM2163.<br />

<br />

<br />

at 37°C.<br />

<br />

<br />

<br />

www.thermoscientific.com/onebio 149


150<br />

TasI <br />

5’...A A T T ...3’<br />

3’... T T A A ...5’<br />

#ER1351<br />

Supplied with:<br />

1000 u<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER1352<br />

Supplied with:<br />

5000 u<br />

10X Buffer B 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Tsp509I <br />

TatI<br />

5’...WG T A C W...3’<br />

3’...W C A T G W...5’<br />

#ER1291 100 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest TatI<br />

TauI<br />

5’...G C S GC...3’<br />

3’...C G S C G...5’<br />

#ER1651 50 u<br />

#ER1652 250 u<br />

Both supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest TauI<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 65°C.<br />

To ensure higher efficiency of digestion, perform<br />

the cleavage reaction under paraffin oil.<br />

Storage Buffer<br />

TasI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 65°C.<br />

To ensure higher efficiency of digestion, perform<br />

the cleavage reaction under paraffin oil.<br />

Storage Buffer<br />

TatI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

3 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer B at 55°C.<br />

Storage Buffer<br />

TauI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

TfiI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest TfiI and PfeI <br />

TliI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest XhoI and XhoI<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100 20-50 0-20 20-50 0-20<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – blocked <br />

Note<br />

<br />

10% activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

NR 50-100* 20-50 20-50 100* 0-20<br />

* <br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

<br />

may result in star activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 50-100 0-20 0-20 20-50 0-20<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – blocked <br />

Note<br />

<br />

<br />

DNA. This may cause DNA band shifting<br />

during electrophoresis. To avoid atypical<br />

DNA band patterns, use the 6X DNA Loading<br />

<br />

preparation or heat the digested DNA in the<br />

presence of SDS prior to electrophoresis.


Tru1I <br />

5’...TT A A ...3’<br />

3’...A A T T...5’<br />

#ER0981 300 u<br />

#ER0982 1500 u<br />

#ER0983 HC, 1500 u<br />

All supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest Tru1I<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer R at 65°C.<br />

To ensure higher efficiency of digestion, perform<br />

the cleavage reaction under paraffin oil.<br />

Storage Buffer<br />

Tru1I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Tru9I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Tru1I and Tru1I ;<br />

<strong>Thermo</strong> <strong>Scientific</strong> enzyme FastDigest MseI <br />

TscAI <br />

5’... N N C A S T G N N...3’<br />

3’... N N G T S A C N N ...5’<br />

#ER2101 1000 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest TspRI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 65°C.<br />

To ensure higher efficiency of digestion, perform<br />

the cleavage reaction under paraffin oil.<br />

Storage Buffer<br />

TscAI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Tsp4CI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest TaaI and TaaI <br />

Tsp45I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest NmuCI and NmuCI <br />

Tsp509I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest Tsp509I and TasI <br />

TspMI <strong>Thermo</strong> <strong>Scientific</strong> enzymes Cfr9I ;<br />

FastDigest SmaI and SmaI <br />

TspRI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest TspRI and TscAI <br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 20-50 100 50-100 100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoBI – no effect.<br />

EcoKI: may overlap – blocked <br />

Note<br />

<br />

<br />

at 37°C.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 20-50 20-50 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG – no effect.<br />

EcoKI, EcoBI: may overlap – effect not determined.<br />

Note<br />

<br />

activity.<br />

<br />

9-base 3’-extension. To avoid atypical<br />

DNA band patterns, use 6X DNA Loading<br />

<br />

preparation or heat the digested DNA in the<br />

presence of SDS prior to electrophoresis.<br />

www.thermoscientific.com/onebio 151


152<br />

Tth111I <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PsyI and PsyI <br />

Van91I <br />

5’...C C A N N N NN T G G...3’<br />

3’...G G T N N N N N A C C...5’<br />

#ER0711 400 u<br />

#ER0712 2000 u<br />

Both supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest PflMI <br />

VpaK11BI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AvaII and Eco47I <br />

VspI <br />

5’...A TT A A T...3’<br />

3’...T A A T T A...5’<br />

#ER0911<br />

Supplied with:<br />

1000 u<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0912<br />

Supplied with:<br />

5000 u<br />

10X Buffer O 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AseI <br />

XagI <br />

5’...C C T N NN N N A G G...3’<br />

3’...G G A N N N N N T C C...5’<br />

#ER1301 1000 u<br />

Supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest EcoNI <br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

Van91I is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer O at 37°C.<br />

Storage Buffer<br />

VspI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

XagI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 50-100 50-100 100 20-50 50-100<br />

Methylation Effects<br />

Dam, CpG, EcoKI, EcoBI – no effect.<br />

Dcm: may overlap – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

dcm<br />

methylation. To avoid dcm methylation, use<br />

a dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 50-100 100 20-50 100 100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 20-50 50-100 100 20-50 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.


XapI <br />

5’...RA A T T Y...3’<br />

3’...Y T T A A R...5’<br />

#ER1381 500 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest XapI<br />

XbaI<br />

5’...T C T A G A...3’<br />

3’...A G A T C T...5’<br />

#ER0681<br />

Supplied with:<br />

1500 u<br />

10X Buffer Tango 1 ml<br />

#ER0685 3000 u<br />

#ER0682 5x1500 u<br />

#ER0683<br />

All supplied with:<br />

HC, 7500 u<br />

10X Buffer Tango 2x1 ml<br />

Also available as<br />

FastDigest XbaI<br />

XceI <br />

5’...R C A T GY...3’<br />

3’...Y G T A C R...5’<br />

#ER1471 500 u<br />

#ER1472 2500 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest NspI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

XapI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

20’<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

XbaI is supplied in:<br />

<br />

1 mM EDTA, 1 mM DTT, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 100 0-20 0-20 100 20-50<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI – no effect.<br />

EcoBI: may overlap – effect not determined.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

Greater than 15-fold overdigestion with XapI<br />

may result in star activity.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 20-50 0-20 100 50-100<br />

Methylation Effects<br />

Dam: may overlap – blocked <br />

Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

dam<br />

methylation. To avoid dam methylation, use<br />

a dam – , dcm – strain such as GM2163.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 0-20 0-20 0-20 100 0-20<br />

Storage Buffer<br />

XceI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

www.thermoscientific.com/onebio 153


154<br />

XhoI<br />

5’...CT C G A G...3’<br />

3’...G A G C T C...5’<br />

#ER0691<br />

Supplied with:<br />

2000 u<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

#ER0695 5000 u<br />

#ER0692 5x2000 u<br />

#ER0693 HC, 10,000 u<br />

All supplied with:<br />

10X Buffer R 2x1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest XhoI<br />

www.thermoscientific.com/onebio<br />

Concentration<br />

10 u/μl<br />

50 u/μl, HC<br />

Conditions for 100% Activity<br />

1X Buffer R at 37°C.<br />

Storage Buffer<br />

XhoI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

XhoII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PsuI and PsuI <br />

XmaI <strong>Thermo</strong> <strong>Scientific</strong> enzymes Cfr9I ;<br />

FastDigest SmaI and SmaI <br />

XmaIII <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest EagI and Eco52I <br />

XmaCI <strong>Thermo</strong> <strong>Scientific</strong> enzymes Cfr9I ;<br />

FastDigest SmaI and SmaI <br />

XmaJI <br />

5’...CC T A G G...3’<br />

3’...G G A T C C...5’<br />

#ER1561 200 u<br />

#ER1562 1000 u<br />

Both supplied with:<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AvrII <br />

XmiI <br />

5’...G TM K A C...3’<br />

3’...C A K M T G...5’<br />

#ER1481 400 u<br />

#ER1482 2000 u<br />

Both supplied with:<br />

10X Buffer B 1 ml<br />

10X Buffer Tango 1 ml<br />

Also available as<br />

FastDigest AccI <br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango at 37°C.<br />

Storage Buffer<br />

<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Concentration<br />

10 u/μl<br />

20’<br />

Conditions for 100% Activity<br />

1X Buffer B at 37°C.<br />

Storage Buffer<br />

XmiI is supplied in:<br />

<br />

1 mM DTT, 1 mM EDTA, 0.2 mg/ml BSA and<br />

<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

0-20 50-100 50-100 100 20-50 100<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: completely overlaps – cleavage impaired<br />

<br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Note<br />

<br />

5-fold more XhoI for complete digestion than<br />

linear DNA.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

20-50 50-100 50-100 50-100 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 10 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

100 0-20 0-20 0-20 50-100 20-50<br />

Methylation Effects<br />

Dam, Dcm, EcoKI, EcoBI – no effect.<br />

CpG: may overlap – blocked <br />

Digestion of Agarose-embedded DNA<br />

Minimum 5 units of the enzyme are required<br />

for complete digestion of 1 μg of agaroseembedded<br />

DNA in 16 hours.


XmnI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest PdmI and PdmI <br />

XspI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest BfaI and FspBI <br />

ZraI <strong>Thermo</strong> <strong>Scientific</strong> enzymes FastDigest AatII and AatII <br />

Nicking Enzymes<br />

Nb.Bpu10I<br />

5’...C C T N A G C...3’<br />

3’...G G A N T C G...5’<br />

#ER1681 1000 u<br />

Supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R:<br />

2, 100 mM KCl, 0.1 mg/ml BSA.<br />

Incubate at 37°C.<br />

Storage Buffer<br />

Nb.Bpu10I is supplied in:<br />

<br />

KCl, 1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA,<br />

50% glycerol.<br />

Nicking and Cleavage<br />

<br />

<br />

<br />

results in


156<br />

Nt.Bpu10I<br />

5’...C CT N A G C...3’<br />

3’...G G A N T C G...5’<br />

#ER2011 1000 u<br />

Supplied with:<br />

10X Buffer R 1 ml<br />

10X Buffer Tango 1 ml<br />

Nb.Mva1269I<br />

5’...G A A T G C...3’<br />

3’...C T T A C G...5’<br />

#ER2051 1000 u<br />

Supplied with:<br />

10X Buffer O 1 ml<br />

10X Buffer Tango 1 ml<br />

www.thermoscientific.com/onebio<br />

20’<br />

Concentration<br />

5 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer R:<br />

2, 100 mM KCl, 0.1 mg/ml BSA.<br />

Incubate at 37°C.<br />

Storage Buffer<br />

Nt.Bpu10I is supplied in:<br />

<br />

KCl, 1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA,<br />

50% glycerol.<br />

Nicking and Cleavage<br />

<br />

<br />

<br />

results in


Homing Enzyme<br />

I-SceI is a site-specific homing enzyme encoded by a mitochondrial intron of Saccharomyces cerevisiae <br />

that promote the first step in mobility of the intron at the DNA level. They recognize and cleave an intronless allele of their cognate gene to insert a copy of<br />

<br />

long, 14-40 base pairs sequences and are, therefore, extremely rare-cutting enzymes. They allow the introduction of a single or several double-strand<br />

breaks into complex genomes. This capability makes these enzymes powerful tools in high-resolution physical mapping, genome organization analysis, gene<br />

<br />

I-SceI<br />

5’...T A G G G A T A AC A G G G T A A T...3’<br />

3’...A T C C C T A T T G T C C C A T T A...5’<br />

#ER1771 250 u<br />

Supplied with:<br />

10X Buffer Tango 1 ml<br />

10X Buffer Tango<br />

<br />

100mM Mg-acetate 1 ml<br />

References<br />

1. Colleaux, L., et al., Recognition and cleavage site of the<br />

intron-encoded omega transposase, Proc. Natl.<br />

Acad. Sci. U.S.A.,85, 6022-6026, 1988.<br />

2. Monteihet, C., et al., Purification and characterization of<br />

the in vitro activity of I-SceI, a novel and highly specific<br />

endonuclease encoded by a group I intron, Nucleic Acids<br />

Res., 18, 1407-1413, 1990.<br />

3. Dujon, B., Group I introns as mobile genetic elements: facts<br />

and mechanistic speculations – review, Gene, 82,<br />

91-114, 1989.<br />

4. <br />

the house in order, Nucleic Acids Res., 25,<br />

3379-3388, 1997.<br />

5. Chevalier, B.S., Stoddard, B.L., Homing<br />

endonucleases:structural and functional insight into the<br />

catalysis of intron/intein mobility, Nucleic Acids Res., 29,<br />

3757-3774, 2001.<br />

6. <br />

cutting endonucleases, Trends in Genetics, 12,<br />

224-228, 1996.<br />

20’<br />

Concentration<br />

10 u/μl<br />

Conditions for 100% Activity<br />

1X Buffer Tango :<br />

<br />

10 mM Mg-acetate, 66 mM K-acetate and<br />

0.1 mg/ml BSA.<br />

Incubate at 37°C.<br />

Storage Buffer<br />

I-SceI is supplied in:<br />

<br />

1 mM DTT, 0.1 mM EDTA, 0.2 mg/ml BSA and<br />

50% glycerol.<br />

Activity in Five Buffer System, %<br />

B G O R Tango 2X Tango<br />

50-100 50-100 50-100 50-100 100 50-100<br />

Methylation Effects<br />

Dam, Dcm, CpG, EcoKI, EcoBI – no effect.<br />

Digestion of Agarose-embedded DNA<br />

Minimum 20 units of the enzyme are required<br />

for complete digestion of 1 μg of agarose-<br />

see the<br />

<br />

Note<br />

<br />

defined recognition sequences. They can<br />

tolerate minor sequence changes, which<br />

only partially affect the cleavage reaction.<br />

<br />

cleaved DNA. This may cause DNA band<br />

shifting during electrophoresis. To avoid<br />

atypical DNA band patterns, use the 6X DNA<br />

<br />

sample preparation or heat the digested<br />

DNA in the presence of SDS prior to<br />

electrophoresis.<br />

<br />

Digestion of the Agarose-embedded DNA with I-SceI<br />

1. Immerse an agarose plug in 50-100 μl of the 1X Tango buffer without Mg-acetate* <br />

<br />

2. Add 20 u of the enzyme.<br />

3. Incubate 2 hours on ice.<br />

4. <br />

5. Incubate at 37°C for 1 hour.<br />

Note<br />

* Diffusion of the enzyme in the absence of Mg-acetate prior to digestion is necessary because I-SceI is unstable in the<br />

presence of Mg 2+ ions.<br />

www.thermoscientific.com/onebio 157


158<br />

Protocols and Recommendations<br />

1.5. DNA digestion<br />

We recommend digesting 0.2-1.5 μg DNA with<br />

a 2-fold to 10-fold excess of enzyme in a total<br />

volume of 20 μl . A typical restriction enzyme<br />

digestion protocol is below.<br />

1. Add the following reaction components in<br />

the order indicated:<br />

Water, nuclease-free 16-16.5 μl<br />

10X recommended buffer for restriction enzyme 2 μl<br />

Substrate DNA <br />

Restriction enzyme <br />

Total volume 20 μl<br />

2. Mix gently and spin down briefly.<br />

3. Incubate at the optimal reaction<br />

temperature for 1-16 hours.<br />

Note<br />

<br />

<br />

the stated activity. In these cases, add the required<br />

additive and adjust the volume of water appropriately.<br />

See Table 1.5 and Table 1.6 for restriction enzyme buffer<br />

composition and reaction conditions, respectively.<br />

1.6. Digestion of PCR products<br />

The most convenient option for digestion<br />

of PCR-amplified DNA is the addition of a<br />

restriction enzyme directly to the reaction tube<br />

after completion of PCR. The majority of <strong>Thermo</strong><br />

<strong>Scientific</strong> restriction enzymes are active in PCR<br />

buffers.<br />

However, digestion of PCR products in the<br />

amplification mixture is often inefficient.<br />

Therefore, PCR reaction mixture should not<br />

make more than 1/3 volume of digestion<br />

reaction mixture to avoid inhibitory effects.<br />

1. Add the following reaction components in<br />

the order indicated:<br />

<br />

PCR reaction mixture<br />

<br />

Water, nuclease-free 16-17 μl<br />

10X recommended buffer for restriction enzyme 2 μl *<br />

Restriction enzyme <br />

Total volume 30 μl<br />

* Only 2 μl of 10X reaction buffer is required for unpurified PCR product<br />

in a 30 μl reaction volume.<br />

2. Mix gently and spin down briefly.<br />

3. Incubate at the optimal reaction<br />

temperature for 1-16 hours.<br />

Note<br />

For cloning applications, purification of PCR products prior<br />

to digestion is necessary to remove the active thermophilic<br />

DNA polymerase present in the PCR mixture. DNA<br />

polymerases may alter the ends of the cleaved DNA and<br />

reduce the yield of ligation.<br />

If the restriction enzyme requires special additives<br />

<br />

If cleavage of the PCR product is inefficient, purify the PCR<br />

<br />

prior to digestion.<br />

After digestion, gel-purify the PCR product with the<br />

<br />

<br />

which compete with the insert in a ligation reaction.<br />

www.thermoscientific.com/onebio<br />

1.7. Setting up double digestion<br />

1.7.1. Double digestion with<br />

FastDigest enzymes<br />

For protocols and recommendations for<br />

FastDigest restriction enzymes see p.72.<br />

1.7.2. DoubleDigest Engine<br />

DoubleDigest engine<br />

www.thermoscientific.com/doubledigest <br />

a web tool for finding information on buffer<br />

and reaction conditions for double digests.<br />

Simply select two restriction enzymes required<br />

for digestion, submit the query and follow the<br />

recommendations.<br />

1.7.3. Double digestion<br />

in the universal Tango Buffer<br />

<br />

conditions for your double digestion reactions in<br />

the universal Tango buffer.<br />

1. Determine the concentration of Tango buffer<br />

recommended for each restriction enzyme.<br />

2. If the recommended concentration of Tango<br />

buffer is the same for both enzymes, the<br />

digests can be performed at the same time.<br />

3. If the two restriction enzymes require<br />

different concentrations of Tango buffer,<br />

perform the digestions sequentially. Set-up<br />

<br />

buffer, then add an<br />

additional aliquot of the 10X Tango buffer<br />

<br />

2X Tango buffer concentration to optimize<br />

conditions for the second enzyme.<br />

Note<br />

If both 1X and the 2X concentrations of Tango buffer are<br />

suitable for the double digest, use the 2X concentrated buffer<br />

to reduce the probability of star activity.<br />

1.7.4. Double digestion in the Five<br />

Buffer System<br />

<br />

<strong>Thermo</strong> <strong>Scientific</strong> restriction enzymes in the<br />

Five Buffer System.<br />

1. Determine which color-coded buffers are<br />

recommended for each enzyme.<br />

2. If possible, use the buffer in which both<br />

enzymes have 100% activity.<br />

3. If this is not possible, choose the buffer in<br />

which both enzymes maintain at least 20%<br />

of their activity. Increase the amount of the<br />

enzymes in your digest according to their<br />

activity in that buffer.<br />

Note<br />

For enzymes that are prone to relaxation of target specificity,<br />

use a buffer in which they do not exhibit star activity.<br />

1.7.5. Digestion with enzymes having<br />

different optimum temperatures<br />

For double digestion with enzymes working at<br />

different temperatures, perform sequential DNA<br />

cleavage. The optimal reaction temperature<br />

for each restriction enzyme is indicated both<br />

in the product description and the Certificate<br />

of Analysis. Information about the activity of<br />

mesophilic and thermophilic restriction enzymes<br />

at 37°C is given in Table 1.7 on p.165.<br />

1.7.6. Sequential digestion<br />

If double digestion is not possible due to buffer<br />

incompatibility or star activity, perform sequential<br />

digestions in the optimal buffer for each enzyme.<br />

1. Digest the DNA with the first restriction<br />

enzyme in its optimal buffer.<br />

2. <br />

<br />

extraction and ethanol precipitation.<br />

3. Digest the DNA with the second restriction<br />

enzyme in its optimal buffer.<br />

1.8. Stability during prolonged<br />

incubation<br />

The stability of restriction enzymes in a reaction<br />

mixture depends on the nature of the enzyme,<br />

the buffer composition and the incubation<br />

temperature.<br />

If a restriction enzyme retains its activity in<br />

the reaction mixture for more than one hour,<br />

DNA can be digested with less enzyme in<br />

a prolonged incubation period. The exact<br />

quantities of enzymes sufficient for overnight<br />

digestion are listed in the Table 1.6 on p.161.<br />

1.9. Dilution of restriction<br />

enzymes<br />

<br />

is available for applications that require diluted<br />

enzymes.<br />

Enzymes diluted in this buffer retain 50-100%<br />

activity after storage for one month at -20°C.<br />

1.10. Partial digestion of DNA<br />

Certain cloning experiments may require<br />

incomplete DNA cleavage. This partial digestion<br />

of the DNA can be achieved by using the<br />

following conditions:<br />

<br />

enzyme in the reaction mixture,<br />

<br />

<br />

For certain targets, partial cleavage of the<br />

desired DNA site is inefficient due to site<br />

see Site


1.11. Digestion of<br />

agarose-embedded DNA<br />

1. Embed the substrate DNA in 1% low melting<br />

temperature agarose, 1 μg / 30 μl.<br />

2. <br />

GelSyringe or similar agarose dispensing<br />

system.<br />

3. Equilibrate the plug in 100 μl of the<br />

appropriate 1X restriction enzyme buffer for<br />

15 min.<br />

4. Place the plug in 100 μl of fresh 1X buffer<br />

see Table<br />

1.9 on p.168 for recommended quantities<br />

<br />

5. Incubate at 30-37°C for mesophilic<br />

enzymes or at 50-55°C for thermophilic<br />

enzymes for 4-16 hours.<br />

1.12. Inactivation of restriction<br />

enzymes<br />

Inactivation of restriction enzymes following<br />

a digestion reaction is often required for<br />

downstream applications.<br />

Thermal inactivation is a convenient method<br />

used to terminate enzyme activity. The majority<br />

of restriction enzymes can be heat-inactivated<br />

at 65°C or 80°C in 20 min. Information on the<br />

susceptibility of <strong>Thermo</strong> <strong>Scientific</strong> restriction<br />

enzymes to thermal inactivation is listed in the<br />

<br />

descriptions and Certificates of Analysis.<br />

All known restriction enzymes with exception<br />

of BmuI and BmrI require Mg 2+ for DNA<br />

<br />

<br />

is an alternative method that can be used to<br />

halt digestion. However, EDTA is generally not<br />

compatible with most downstream applications,<br />

therefore purification of the digested DNA<br />

<br />

see <br />

recommended.<br />

www.thermoscientific.com/onebio 159


160<br />

Reaction Conditions<br />

Reaction Buffers<br />

Our Five Buffer System ensures the optimum<br />

reaction conditions for each restriction<br />

<br />

<br />

<br />

enzymes are supplied in color-coded tubes<br />

to indicate the recommended reaction buffer.<br />

The recommended buffer and/or the universal<br />

Tango buffer, which has been designed for<br />

double digestions of DNA, are supplied with<br />

each enzyme. Restriction enzyme buffers are<br />

also available separately. see Table 1.5 below<br />

for ordering information. For more information<br />

on double digestion see p.158 or visit the<br />

<strong>Thermo</strong> <strong>Scientific</strong> DoubleDigest engine<br />

at www.thermoscientific.com/doubledigest.<br />

Table 1.5. Reaction buffers for restriction enzymes.<br />

10X buffer<br />

www.thermoscientific.com/onebio<br />

Cat.<br />

#<br />

Quantity,<br />

ml<br />

Tris-<br />

HCl,<br />

mM<br />

Trisacetate,<br />

mM<br />

To ensure consistent enzyme performance,<br />

<strong>Thermo</strong> <strong>Scientific</strong> restriction enzyme buffers<br />

contain BSA, which enhances the stability of<br />

many enzymes and binds contaminants that<br />

may be present in DNA preparations. Multiple<br />

freeze-thaw cycles of the buffers will not cause<br />

BSA precipitation.<br />

<strong>Thermo</strong> <strong>Scientific</strong> restriction enzymes<br />

exhibit 100% of their certified activity in<br />

the recommended buffer. However, some<br />

enzymes require additives to achieve 100%<br />

activity. For example, AjuI, AlfI, BplI, BseMII<br />

<br />

S-adenosylmethionine, which is supplied with<br />

<br />

<br />

<br />

Bis-Tris<br />

MgCl<br />

Propane-HCl,<br />

2,<br />

mM<br />

mM<br />

NaCl,<br />

mM<br />

1X buffer composition<br />

KCl,<br />

mM<br />

Mgacetate,<br />

mM<br />

K-acetate,<br />

mM<br />

The following enzymes require unique buffers<br />

<br />

<br />

<br />

<br />

<br />

<br />

SgeI and TaqI. The compositions of these unique<br />

buffers are listed in Table 1.5 as well as in of<br />

restriction enzymes Certificates of Analysis.<br />

All <strong>Thermo</strong> <strong>Scientific</strong> restriction enzyme buffers<br />

should be stored at -20°C.<br />

Sodium<br />

glutamate,<br />

mM<br />

Triton<br />

EDTA, DTT,<br />

X-100,<br />

mM mM<br />

%<br />

10X Buffer B BB5 5x1 10<br />

Five Buffer System<br />

10 0.1 7.5<br />

10X Buffer G BG5 5x1 10 10 50 0.1 7.5<br />

10X Buffer O BO5 5x1 50 10 100 0.1 7.5<br />

10X Buffer R BR5 5x1 10 10 100 0.1 8.5<br />

10X Buffer Tango BY5 5x1 33 10 66 0.1 7.9<br />

Buffer Set for<br />

Restriction Enzymes<br />

B30<br />

1 ml of each<br />

buffer<br />

Unique buffers<br />

10X Buffer AarI, AjiI,<br />

Bpu10I, ScaI, PasI<br />

B27 1 10 10 100 0.1 6.5<br />

10X Buffer BamHI,<br />

Lsp1109I, SgeI<br />

B57 5x1 10 5 100 0.02 0.1 8.0<br />

10X Buffer BfuI B59 1 50 15 100 0.1 7.9<br />

10X Buffer BseXI B31 1 50 2 100 0.1 7.5<br />

10X Buffer Bsp143I B13 1 33 10 66 0.02 0.1 7.9<br />

10X Buffer Cfr9I B02 1 10 5 200 0.1 7.2<br />

10X Buffer Cfr10I B04 1 10 5 100 0.02 0.1 8.0<br />

10X Buffer Eam1105I B25 1 10 5 100 0.1 7.5<br />

10X Buffer Ecl136II, PacI,<br />

SacI<br />

B26 1 10 10 0.1 6.5<br />

10X Buffer Eco52I B22 1 10 3 100 0.1 8.5<br />

10X Buffer EcoRI B12 5x1 50 10 100 0.02 0.1 7.5<br />

10X Buffer KpnI B29 1 10 10 0.02 0.1 7.5<br />

10X Buffer SdaI B24 1 37 15 150 0.1 7.0<br />

10X Buffer SduI, Ppu21I B23 1 10 3 150 0.1 7.2<br />

10X Buffer TaqI B28 1 10 5 100 0.1 8.0<br />

Dilution Buffer for<br />

Restriction Enzymes<br />

B19 5x1 ml 10 100 1 1 50 0.2 7.4<br />

Gly<br />

cerol,<br />

%<br />

BSA,<br />

mg/<br />

ml<br />

pH,<br />

at<br />

37°C


Recommended Reaction Conditions<br />

Table 1.6. Reaction conditions for restriction enzymes.<br />

Enzyme<br />

Units for<br />

overnight<br />

incubation,<br />

u/μg DNA<br />

Thermal<br />

inactivation<br />

in 20 min<br />

Recom-<br />

mended buffer<br />

for 100%<br />

activity<br />

B (blue)<br />

1X<br />

Enzyme activity in <strong>Thermo</strong> <strong>Scientific</strong> buffers, %<br />

G (green)<br />

1X<br />

O (orange)<br />

1X<br />

R (red)<br />

1X<br />

Tango (yellow)<br />

1X 2X<br />

Tango buffer<br />

for double<br />

digestion<br />

AanI 0.5 65° C Tango 50-100 50-100 0-20 0-20 100 20-50 1X or 2X<br />

AarI 1.0 65° C<br />

Unique<br />

<br />

NR NR<br />

0-20<br />

<br />

0-20<br />

<br />

NR<br />

50-100<br />

<br />

2X<br />

<br />

AatII 0.3 65° C Tango 50-100 20-50 0-20 0-20 100 20-50 1X or 2X<br />

Acc65I 0.3 65° C O 0-20 20-50 100 20-50 20-50 50-100 1X or 2X<br />

AdeI 0.5 NO G 0-20 100 20-50 100 100* 20-50 1X* or 2X<br />

AjiI 0.5 65° C Unique NR NR 20-50* NR NR 20-50* 2X*<br />

AjuI 0.5 65° C<br />

AlfI 1.0 65° C<br />

R<br />

<br />

R<br />

<br />

0-20<br />

<br />

0-20<br />

<br />

50-100<br />

<br />

0-20<br />

<br />

20-50<br />

<br />

0-20<br />

<br />

100<br />

<br />

100<br />

<br />

50-100<br />

<br />

0-20<br />

<br />

50-100<br />

<br />

20-50<br />

<br />

1X or 2X<br />

<br />

2X<br />

<br />

AloI 0.1 65° C R 0-20 0-20 0-20 100 20-50 100 1X or 2X<br />

AluI 0.1 65° C Tango 50-100 0-20 0-20 0-20 100 20-50 1X or 2X<br />

Alw21I 0.1 65° C O 0-20 20-50 100 50-100 20-50 50-100 1X or 2X<br />

Alw26I 0.2 65° C Tango 50-100 100 0-20 0-20 100 100 1X or 2X<br />

Alw44I 0.1 65° C Tango 50-100 100 0-20 50-100 100 50-100 1X or 2X<br />

ApaI 0.2 65° C B 100 20-50 0-20 0-20 20-50 0-20 1X<br />

BamHI 0.5 Unique 20-50* 100 20-50 50-100* 100* 50-100 1X* or 2X<br />

BauI 0.2 65° C Tango 0-20 50-100 0-20 50-100 100 50-100 1X or 2X<br />

BclI 0.1 G 20-50 100 20-50 20-50 100* 100 1X* or 2X<br />

BcnI 0.2 65° C Tango 20-50 50-100 50-100 50-100 100 50-100 1X or 2X<br />

BcuI 0.5 NO Tango 50-100 50-100 0-20 20-50 100 0-20 1X<br />

BfmI 1.0 65° C Tango 0-20 50-100 0-20 0-20 100 20-50 1X or 2X<br />

BfuI 1.0 80° C Unique NR NR 0-20 0-20 NR 50-100* 2X*<br />

BglI 0.1 65° C O 0-20 50-100 100 100 0-20 100 2X<br />

BglII 0.1 NO O 0-20 20-50 100 50-100 0-20 100 2X<br />

Bme1390I 0.2 80° C O 20-50 50-100 100 50-100 50-100 50-100 1X or 2X<br />

BoxI 0.5 80° C Tango 0-20 0-20 0-20 20-50 100 20-50 1X or 2X<br />

BpiI 0.3 65° C G 20-50 100 50-100 50-100 50-100 50-100 1X or 2X<br />

BplI 0.3 65° C<br />

Tango<br />

<br />

0-20<br />

<br />

20-50<br />

<br />

0-20<br />

<br />

0-20<br />

<br />

100<br />

<br />

20-50<br />

<br />

1X<br />

<br />

Bpu10I 0.2 80° C Unique 0-20 20-50* 50-100* 100* 50-100* 100* 1X* or 2X*<br />

Bpu1102I 0.1 80° C Tango 50-100 50-100 20-50 20-50 100 20-50 1X or 2X<br />

BseDI 0.2 80° C Tango 50-100 20-50 0-20 0-20 100 50-100 1X or 2X<br />

BseGI 0.2 80° C Tango 20-50 50-100 20-50 20-50 100 20-50 1X or 2X<br />

BseJI 0.1 NO O NR 100* 100 NR NR 100* 2X*<br />

BseLI 0.1 NO Tango 20-50 100 50-100 20-50 100 50-100 1X or 2X<br />

BseMI 0.3 80° C R 0-20 20-50 0-20 100 50-100 50-100 1X or 2X<br />

BseMII <br />

<br />

0.5 80° C<br />

Tango<br />

<br />

50-100<br />

<br />

50-100<br />

<br />

50-100<br />

<br />

50-100<br />

<br />

100<br />

<br />

50-100<br />

<br />

1X or 2X<br />

<br />

BseNI 0.1 80° C B 100 20-50 0-20 0-20 50-100 20-50 1X or 2X<br />

BseSI 0.1 G 20-50 100 0-20 20-50 50-100 0-20 1X<br />

BseXI 0.3 80° C Unique NR NR NR NR NR NR NR<br />

Bsh1236I 0.1 65°C R 0-20 0-20 50-100 100 20-50 50-100 1X or 2X<br />

Bsh1285I 0.2 80° C G 20-50 100 20-50 0-20 0-20 20-50 2X<br />

BshNI 0.3 65° C O 0-20 20-50 100 50-100 0-20 100 2X<br />

BshTI 0.1 80° C O 0-20 20-50 100 50-100 20-50 20-50 1X or 2X<br />

<br />

www.thermoscientific.com/onebio 161


162<br />

Table 1.6. Reaction conditions for restriction enzymes.<br />

Enzyme<br />

www.thermoscientific.com/onebio<br />

Units for<br />

overnight<br />

incubation,<br />

u/μg DNA<br />

Thermal<br />

inactivation<br />

in 20 min<br />

Recom-<br />

mended buffer<br />

for 100%<br />

activity<br />

B (blue)<br />

1X<br />

Enzyme activity in <strong>Thermo</strong> <strong>Scientific</strong> buffers, %<br />

G (green)<br />

1X<br />

O (orange)<br />

1X<br />

R (red)<br />

1X<br />

Tango (yellow)<br />

1X 2X<br />

Tango buffer<br />

for double<br />

digestion<br />

Bsp68I 0.2 65° C O 0-20 20-50 100 50-100 20-50 50-100 1X or 2X<br />

Bsp119I 0.1 80° C Tango 20-50 0-20 0-20 0-20 100 100 1X or 2X<br />

Bsp120I 0.1 80° C B 100 20-50 0-20 20-50 50-100 0-20 1X<br />

Bsp143I 0.1 65° C Unique 20-50 20-50 0-20 0-20 50-100 20-50 1X or 2X<br />

Bsp1407I 0.1 65° C Tango 0-20 20-50 0-20 20-50 100 50-100 1X or 2X<br />

BspLI 0.3 65° C Tango 50-100 50-100 0-20 20-50 100 20-50 1X or 2X<br />

BspOI 0.2 80° C O 0-20 0-20 100 100 0-20 20-50 2X<br />

BspPI 0.5 80° C Tango 20-50 20-50 0-20 0-20 100 0-20 1X<br />

BspTI 0.1 65° C O 0-20 0-20 100 20-50 0-20 50-100 2X<br />

Bst1107I 0.1 80° C O 20-50 50-100 100 100 20-50 100 1X or 2X<br />

BstXI 0.1 80° C O 20-50 100 100 50-100 50-100 100 1X or 2X<br />

Bsu15I 0.1 65° C Tango 20-50 20-50 20-50 20-50 100 20-50 1X or 2X<br />

BsuRI 0.1 80° C R 20-50 20-50 50-100 100 50-100 100 1X or 2X<br />

BveI 0.2 65° C<br />

O<br />

<br />

0-20<br />

<br />

20-50<br />

<br />

100<br />

<br />

20-50<br />

<br />

50-100<br />

<br />

100<br />

<br />

1X or 2X<br />

<br />

CaiI 0.2 65° C Tango 20-50 20-50 20-50 50-100 100 50-100 1X or 2X<br />

Cfr9I 0.2 65° C Unique 0-20 0-20 0-20 0-20 20-50 0-20 1X<br />

Cfr10I 0.1 NO Unique 0-20 20-50 20-50 50-100* 20-50 50-100 1X or 2X<br />

Cfr13I 0.3 65° C Tango 50-100 50-100 20-50 20-50 100 20-50 1X or 2X<br />

Cfr42I 0.1 65° C B 100 50-100 0-20 0-20 50-100 0-20 1X<br />

CpoI 0.5 65° C Tango 20-50 50-100 50-100 20-50 100 50-100 1X or 2X<br />

CseI 0.5 R NR 50-100* 50-100 100 100* 50-100 1X* or 2X<br />

Csp6I 0.1 65° C B 100 50-100 0-20 0-20 50-100 0-20 1X<br />

DpnI 0.1 80° C Tango 100 100 50-100 50-100 100 50-100 1X or 2X<br />

DraI 0.1 65° C Tango 50-100 50-100 20-50 20-50 100 50-100 1X or 2X<br />

Eam1104I 0.5 65° C Tango 50-100 50-100 0-20 0-20 100 0-20 1X<br />

Eam1105I 0.1 65° C Unique 20-50 50-100 0-20 0-20 50-100 20-50 1X or 2X<br />

Ecl136II 0.2 65° C Unique 50-100 20-50 0-20 0-20 50-100 0-20 1X<br />

Eco24I 0.2 65° C Tango 50-100 50-100 0-20 20-50 100 0-20 1X<br />

Eco31I 0.3 65° C G 50-100 100 0-20 0-20 50-100 20-50 1X or 2X<br />

Eco32I 0.1 80° C R 0-20 50-100 50-100 100 20-50 100 1X or 2X<br />

Eco47I 0.3 65° C R 0-20 50-100 50-100 100 50-100 50-100 1X or 2X<br />

Eco47III 0.1 65° C O 0-20 20-50 100 100 50-100 100 1X or 2X<br />

Eco52I 0.2 65° C Unique 0-20 0-20 0-20 20-50 0-20 20-50 2X<br />

Eco57I 1.0 65° C<br />

G<br />

<br />

100<br />

<br />

100<br />

<br />

20-50<br />

<br />

20-50<br />

<br />

50-100<br />

<br />

50-100<br />

<br />

1X or 2X<br />

<br />

Eco72I 0.5 65° C Tango NR NR 0-20 0-20 100 20-50 1X or 2X<br />

Eco81I 0.1 80° C Tango 50-100 100 0-20 0-20 100 0-20 1X<br />

Eco88I 0.2 65° C Tango 100 50-100 0-20 0-20 100 20-50 1X or 2X<br />

Eco91I 0.1 65° C O 20-50 20-50 100 50-100 NR 100 2X<br />

Eco105I 0.5 65° C Tango 100* 50-100 0-20 0-20 100 0-20 1X<br />

Eco130I 0.2 65° C O 0-20 20-50 100 50-100 50-100 100 1X or 2X<br />

Eco147I 0.1 80° C B 100 50-100 20-50 20-50 50-100 0-20 1X<br />

EcoO109I 0.2 65° C Tango 50-100 20-50 20-50 20-50 100 100 1X or 2X<br />

EcoRI 0.2 65° C Unique 0-20 NR 100 100* NR 100 2X<br />

EcoRII 0.1 80° C O 20-50 50-100 100 50-100 20-50 50-100 1X or 2X<br />

EheI 1.0 65° C Tango 20-50 50-100 0-20 0-20 100 20-50 1X or 2X<br />

Esp3I 0.2 65° C<br />

Tango<br />

<br />

100<br />

<br />

20-50<br />

<br />

0-20<br />

<br />

0-20<br />

<br />

100<br />

<br />

0-20<br />

<br />

1X


Table 1.6. Reaction conditions for restriction enzymes.<br />

Enzyme<br />

Units for<br />

overnight<br />

incubation,<br />

u/μg DNA<br />

Thermal<br />

inactivation<br />

in 20 min<br />

FaqI 1.0 80° C<br />

Recom-<br />

mended buffer<br />

for 100%<br />

activity<br />

Tango<br />

<br />

B (blue)<br />

1X<br />

20-50<br />

<br />

Enzyme activity in <strong>Thermo</strong> <strong>Scientific</strong> buffers, %<br />

G (green)<br />

1X<br />

20-50<br />

<br />

O (orange)<br />

1X<br />

0-20<br />

<br />

R (red)<br />

1X<br />

0-20<br />

<br />

Tango (yellow)<br />

1X 2X<br />

100<br />

<br />

20-50<br />

<br />

Tango buffer<br />

for double<br />

digestion<br />

1X or 2X<br />

<br />

FspAI 0.2 65° C O 0-20 0-20 100 50-100 0-20 50-100 2X<br />

FspBI 0.3 65° C Tango 50-100 20-50 0-20 0-20 100 0-20 1X<br />

GsuI 1.0 65° C B 100 50-100 20-50 20-50 100 50-100 1X or 2X<br />

HhaI 0.1 NO Tango 50-100 50-100 20-50 20-50 100 20-50 1X or 2X<br />

Hin1I 0.1 65° C G 20-50 100 20-50 20-50 20-50 20-50 1X or 2X<br />

Hin1II 0.3 65° C G 50-100 100 20-50 50-100 50-100 50-100 1X or 2X<br />

Hin6I 0.1 65° C Tango 50-100 50-100 20-50 20-50 100 50-100 1X or 2X<br />

HincII 0.1 65° C Tango 50-100 50-100 20-50 50-100 100 50-100 1X or 2X<br />

HindIII 0.1 80° C R 0-20 20-50 0-20 100 50-100 50-100 1X or 2X<br />

HinfI 0.1 65° C R 0-20 20-50 50-100 100 50-100 50-100 1X or 2X<br />

HpaII 0.1 65° C Tango 50-100 50-100 0-20 20-50 100 20-50 1X or 2X<br />

HphI 0.1 65° C B 100 0-20 0-20 0-20 20-50 0-20 1X<br />

Hpy8I 0.1 80° C Tango 50-100 50-100 0-20 20-50 100 50-100 1X or 2X<br />

HpyF3I 0.2 65° C Tango 20-50 20-50 20-50 20-50 100 50-100 1X or 2X<br />

HpyF10VI 0.1 80° C Tango 0-20 0-20 0-20 0-20 100 50-100 1X or 2X<br />

KpnI 0.2 80° C Unique 20-50 0-20 0-20 0-20 20-50 0-20 1X<br />

Kpn2I 0.2 80° C Tango 50-100 50-100 0-20 20-50 100 50-100 1X or 2X<br />

KspAI 0.5 65° C B 100 50-100* 20-50 20-50 100* 50-100 1X* or 2X<br />

LguI 0.5 65° C Tango 20-50 50-100 20-50 20-50 100 20-50 1X or 2X<br />

Lsp1109I 0.5 65° C Unique 0-20 20-50* 50-100* 100* 20-50* 20-50* 1X* or 2X*<br />

LweI 0.2 65° C Tango 0-20 0-20 0-20 20-50 100 20-50 1X or 2X<br />

MauBI 0.1 65° C Tango 0-20 0-20 0-20 0-20 100 0-20 1X<br />

MbiI 0.2 65° C Tango 20-50 100 20-50 20-50 100 20-50 1X or 2X<br />

MboI 0.1 65° C R 50-100 50-100 50-100 100 50-100 100 1X or 2X<br />

MboII 1.0 65° C B 100 50-100 20-50 0-20 50-100 20-50 1X or 2X<br />

MlsI 0.5 65° C R 0-20 20-50 0-20 100 20-50 50-100 1X or 2X<br />

MluI 0.1 80° C R 0-20 20-50 50-100 100 20-50 50-100 1X or 2X<br />

MnlI 0.5 65° C G 50-100 100 20-50 20-50 20-50 20-50 1X or 2X<br />

Mph1103I 0.3 65° C R 0-20 50-100 20-50 100 50-100 50-100 1X or 2X<br />

MreI 0.5 80° C G 20-50 100 0-20 0-20 50-100 0-20 1X<br />

MspI 0.3 80° C Tango 50-100 50-100 0-20 0-20 100 50-100 1X or 2X<br />

MssI 0.5 65° C B 100 0-20 0-20 0-20 20-50 0-20 1X<br />

MunI 0.1 65° C G 100 100 0-20 0-20 100 0-20 1X<br />

MvaI 0.1 NO R 20-50 20-50 50-100 100 20-50* 100 1X* or 2X<br />

Mva1269I 0.1 65° C R 0-20 20-50 50-100 100 0-20 50-100 2X<br />

NcoI 0.1 65° C Tango 20-50 20-50 20-50 50-100 100 100 1X or 2X<br />

NdeI 0.2 65° C O 0-20 0-20 100 50-100 0-20 50-100 2X<br />

NheI 0.2 65° C Tango 100 20-50 0-20 0-20 100 0-20 1X<br />

NmuCI 0.1 65° C R 0-20 20-50 50-100 100 20-50 50-100 1X or 2X<br />

NotI 0.1 80° C O 0-20 0-20 100 20-50 0-20 20-50 2X<br />

NsbI 0.1 65° C Tango 20-50 50-100 0-20 20-50 100 20-50 1X or 2X<br />

OliI 0.2 65° C R 0-20 0-20 0-20 100 0-20 50-100 2X<br />

PacI 0.3 65° C Unique 20-50 20-50 0-20 0-20 0-20 0-20 NR<br />

PaeI 0.1 65° C B 100 50-100 0-20 0-20 50-100 0-20 1X<br />

PagI 0.2 80° C O 0-20 50-100 100 NR NR NR NR<br />

PasI 0.2 80° C Unique NR NR NR NR NR NR NR<br />

PauI 0.2 80° C R 0-20 0-20 100 100 0-20 100 2X<br />

<br />

www.thermoscientific.com/onebio 163


164<br />

Table 1.6. Reaction conditions for restriction enzymes.<br />

Enzyme<br />

www.thermoscientific.com/onebio<br />

Units for<br />

overnight<br />

incubation,<br />

u/μg DNA<br />

Thermal<br />

inactivation<br />

in 20 min<br />

Recom-<br />

mended buffer<br />

for 100%<br />

activity<br />

B (blue)<br />

1X<br />

Enzyme activity in <strong>Thermo</strong> <strong>Scientific</strong> buffers, %<br />

G (green)<br />

1X<br />

O (orange)<br />

1X<br />

R (red)<br />

1X<br />

Tango (yellow)<br />

1X 2X<br />

Tango buffer<br />

for double<br />

digestion<br />

PdiI 0.5 65°C Tango 50-100 20-50 0-20 0-20 100 50-100 1X or 2X<br />

PdmI 0.5 65° C Tango 20-50 50-100 0-20 0-20 100 0-20 1X<br />

PfeI 0.1 65° C O 0-20 20-50 100 50-100 20-50 50-100 1X or 2X<br />

Pfl23II 0.3 65° C Tango 20-50 50-100 20-50 20-50 100 0-20 1X<br />

PfoI 0.1 65° C Tango 0-20 20-50 50-100 0-20 100 50-100 1X or 2X<br />

Ppu21I 0.5 65° C Unique 50-100* 100* 20-50 NR NR NR NR<br />

PscI 0.2 65° C Tango 20-50 20-50 0-20 0-20 100 0-20 1X<br />

Psp5II 0.2 80° C G 0-20 100 20-50 20-50 50-100 100 1X or 2X<br />

Psp1406I 0.5 65° C Tango 100 50-100 0-20 20-50 100 0-20 1X<br />

PstI 0.2 NO O 50-100 50-100 100 100 50-100 50-100 1X or 2X<br />

PsuI 0.5 80° C B 100 20-50 0-20 0-20 50-100 0-20 1X<br />

PsyI 0.1 80° C B 100 50-100 0-20 0-20 50-100 0-20 1X<br />

PvuI 0.2 R 0-20 20-50 50-100 100 50-100 100 1X or 2X<br />

PvuII 0.2 NO G 50-100* 100 20-50 50-100 20-50* 20-50* 1X* or 2X*<br />

RsaI 0.2 80° C Tango 50-100 20-50 0-20 0-20 100 0-20 1X<br />

RseI 0.5 65° C R 0-20 50-100 50-100 100 20-50 100 1X or 2X<br />

SacI 0.2 65° C Unique 50-100 20-50 0-20 0-20 50-100 20-50 1X or 2X<br />

SalI 0.1 65° C O 0-20 0-20 100 20-50 0-20 50-100 2X<br />

SatI 0.1 65° C G 20-50 100 20-50 20-50 50-100 20-50 1X or 2X<br />

ScaI 0.5 Unique 0-20 0-20 0-20 0-20 0-20 0-20 NR<br />

SchI 0.2 65° C Tango 20-50 50-100 0-20 0-20 100 0-20 1X<br />

SdaI 0.3 80° C Unique NR NR 0-20 0-20 NR 20-50 2X<br />

SduI 0.3 65° C Unique NR 50-100* 50-100 0-20 NR NR NR<br />

SfaAI 0.2 80° C Tango 50-100 0-20 0-20 0-20 100 0-20 1X<br />

SfiI 0.2 NO G 50-100 100 20-50 0-20 100 0-20 1X<br />

SgeI NR 65° C Unique 0-20 0-20 0-20 NR NR NR NR<br />

SgrDI 0.3 65° C R 0-20 0-20 0-20 100 NR 100 2X<br />

SgsI 0.1 65° C Tango 0-20 0-20 0-20 50-100 100 50-100 1X or 2X<br />

SmaI 0.2 65° C Tango 50-100 0-20 0-20 0-20 100 0-20 1X<br />

SmiI 0.1 65° C O 0-20 0-20 100 20-50 0-20 20-50 2X<br />

SmoI 0.2 80° C Tango 50-100 20-50 0-20 20-50 100 20-50 1X or 2X<br />

SsiI 0.5 65° C O NR 20-50 100 50-100 NR 100 2X<br />

SspI 0.1 65° C G 20-50 100 0-20 50-100 100 20-50 1X or 2X<br />

SspDI 0.1 80° C Tango 20-50 0-20 NR 0-20 100 20-50 1X or 2X<br />

TaaI 0.2 NO Tango 0-20 0-20 0-20 50-100 100 100 1X or 2X<br />

TaiI 0.3 NO R 50-100 50-100 20-50 100 100 50-100 1X or 2X<br />

TaqI 0.3 NO Unique 0-20 20-50 20-50 20-50 20-50 20-50 1X or 2X<br />

TasI 0.3 NO B 100 50-100 20-50 0-20 20-50 0-20 1X<br />

TatI 0.2 NO Tango NR 50-100* 20-50 20-50 100* 0-20 1X*<br />

TauI 1.0 NO B 100 50-100 0-20 0-20 20-50 0-20 1X<br />

Tru1I 0.2 NO R 50-100 50-100 20-50 100 50-100 100 1X or 2X<br />

TscAI 0.2 NO Tango 50-100 50-100 20-50 20-50 100 20-50 1X or 2X<br />

Van91I 0.1 65° C R 0-20 50-100 50-100 100 20-50 50-100 1X or 2X<br />

VspI 0.1 65° C O 0-20 50-100 100 20-50 100 100 1X or 2X<br />

XagI 0.1 65° C R 0-20 20-50 50-100 100 20-50 50-100 1X or 2X<br />

XapI 0.1 80° C Tango 50-100 100 0-20 0-20 100 20-50 1X or 2X<br />

XbaI 0.1 65°C Tango 50-100 50-100 20-50 0-20 100 50-100 1X or 2X<br />

XceI 0.2 65° C Tango 50-100 0-20 0-20 0-20 100 0-20 1X<br />

XhoI 0.1 80° C R 0-20 50-100 50-100 100 20-50 100 1X or 2X<br />

XmaJI 0.2 80° C Tango 20-50 50-100 50-100 50-100 100 50-100 1X or 2X


Table 1.6. Reaction conditions for restriction enzymes.<br />

Enzyme<br />

Units for<br />

overnight<br />

incubation,<br />

u/μg DNA<br />

Thermal<br />

inactivation<br />

in 20 min<br />

Recom-<br />

mended buffer<br />

for 100%<br />

activity<br />

B (blue)<br />

1X<br />

* <br />

NR – buffer is not recommended, due to high star activity.<br />

NO – no thermal inactivation.<br />

<br />

Activity of Mesophilic and <strong>Thermo</strong>philic Enzymes at 37°C<br />

Table 1.7. Activity of mesophilic and thermophilic enzymes at 37°C.<br />

Enzyme<br />

Optimal<br />

temperature<br />

Activity at<br />

37°C, %<br />

Enzyme<br />

Optimal<br />

temperature<br />

Activity at<br />

37°C, %<br />

AloI 30 20 PasI 55 30<br />

BclI 55 50 Ppu21I 30


166<br />

Double Digestion in the Universal Tango Buffer<br />

Table 1.8. Double digestion in the universal Tango buffer.<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

enzyme<br />

www.thermoscientific.com/onebio<br />

Recommended<br />

buffer<br />

Buffers for double digestions<br />

Tango<br />

1X 2X<br />

AanI Tango<br />

AarI AarI +oligo NR +oligo<br />

AatII Tango<br />

Acc65I O<br />

AdeI G *<br />

AjiI AjiI NR *<br />

AjuI R +SAM +SAM +SAM<br />

AlfI R +SAM NR +SAM<br />

AloI R<br />

AluI Tango<br />

Alw21I O<br />

Alw26I Tango<br />

Alw44I Tango<br />

ApaI B NR<br />

BamHI BamHI *<br />

BauI Tango<br />

BclI G *<br />

BcnI Tango<br />

BcuI Tango NR<br />

BfmI Tango<br />

BfuI BfuI NR *<br />

BglI O NR<br />

BglII O NR<br />

Bme1390I O<br />

BoxI Tango<br />

BpiI G<br />

BplI Tango +SAM +SAM NR<br />

Bpu10I Bpu10I * *<br />

Bpu1102I Tango<br />

BseDI Tango<br />

BseGI Tango<br />

BseJI O NR *<br />

BseLI Tango<br />

BseMI R<br />

BseMII Tango +SAM +SAM +SAM<br />

BseNI B<br />

BseSI G NR<br />

BseXI BseXI NR NR<br />

Bsh1236I R<br />

Bsh1285I G NR<br />

BshNI O NR<br />

BshTI O<br />

Bsp68I O<br />

Bsp119I Tango<br />

Bsp120I B NR<br />

Bsp143I Bsp143I<br />

Bsp1407I Tango<br />

BspLI Tango<br />

BspOI O NR<br />

BspPI Tango NR<br />

BspTI O NR<br />

Bst1107I O<br />

BstXI O<br />

Bsu15I Tango<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

enzyme<br />

Recommended<br />

buffer<br />

Buffers for double digestions<br />

Tango<br />

1X 2X<br />

BsuRI R<br />

BveI O +oligo +oligo +oligo<br />

CaiI Tango<br />

Cfr9I Cfr9I NR<br />

Cfr10I Cfr10I<br />

Cfr13I Tango<br />

Cfr42I B NR<br />

CpoI Tango<br />

CseI R *<br />

Csp6I B NR<br />

DpnI Tango<br />

DraI Tango<br />

Eam1104I Tango NR<br />

Eam1105I Eam1105I<br />

Ecl136II Ecl136II NR<br />

Eco24I Tango NR<br />

Eco31I G<br />

Eco32I R<br />

Eco47I R<br />

Eco47III O<br />

Eco52I Eco52I NR<br />

Eco57I G +SAM +SAM +SAM<br />

Eco72I Tango<br />

Eco81I Tango NR<br />

Eco88I Tango<br />

Eco91I O<br />

Eco105I Tango NR<br />

Eco130I O<br />

Eco147I B NR<br />

EcoO109I Tango<br />

EcoRI EcoRI NR<br />

EcoRII O<br />

EheI Tango<br />

Esp3I Tango +DTT +DTT NR<br />

FaqI Tango +SAM +SAM +SAM<br />

FspAI O NR<br />

FspBI Tango NR<br />

GsuI B<br />

HhaI Tango<br />

Hin1I G<br />

Hin1II G<br />

Hin6I Tango<br />

HincII Tango<br />

HindIII R<br />

HinfI R<br />

HpaII Tango<br />

HphI B NR<br />

Hpy8I Tango<br />

HpyF3I Tango<br />

HpyF10VI Tango<br />

KpnI KpnI NR<br />

Kpn2I Tango<br />

KspAI B *<br />

LguI Tango


Table 1.8. Double digestion in universal Tango buffer.<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

enzyme<br />

Recommended<br />

buffer<br />

Buffers for double digestions<br />

Tango<br />

1X 2X<br />

Lsp1109I Lsp1109I * *<br />

LweI Tango<br />

MauBI Tango NR<br />

MbiI Tango<br />

MboI R<br />

MboII B<br />

MlsI R<br />

MluI R<br />

MnlI G<br />

Mph1103I R<br />

MreI G NR<br />

MspI Tango<br />

MssI B NR<br />

MunI G NR<br />

MvaI R *<br />

Mva1269I R NR<br />

NcoI Tango<br />

NdeI O NR<br />

NheI Tango NR<br />

NmuCI R<br />

NotI O NR<br />

NsbI Tango<br />

OliI R NR<br />

PaeI B NR<br />

PacI PacI NR NR<br />

PagI O NR NR<br />

PasI PasI NR NR<br />

PauI R NR<br />

PdiI Tango<br />

PdmI Tango NR<br />

PfeI O<br />

Pfl23II Tango NR<br />

PfoI Tango<br />

Ppu21I Ppu21I NR NR<br />

PscI Tango NR<br />

Psp5II G<br />

Psp1406I Tango NR<br />

PstI O<br />

PsuI B NR<br />

PsyI B NR<br />

PvuI R<br />

PvuII G * *<br />

RsaI Tango NR<br />

RseI R<br />

SacI SacI<br />

SalI O NR<br />

SatI G<br />

ScaI ScaI NR NR<br />

SchI Tango NR<br />

SdaI SdaI NR<br />

SduI SduI NR NR<br />

SfaAI Tango NR<br />

SfiI G NR<br />

SgeI SgeI NR NR<br />

SgrDI R NR<br />

SgsI Tango<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

enzyme<br />

Recommended<br />

buffer<br />

Buffers for double digestions<br />

Tango<br />

1X 2X<br />

SmaI Tango NR<br />

SmiI O NR<br />

SmoI Tango<br />

SsiI O NR<br />

SspI G<br />

SspDI Tango<br />

TaaI Tango<br />

TaiI R<br />

TaqI TaqI<br />

TasI B NR<br />

TauI B NR<br />

TatI Tango * NR<br />

Tru1I R<br />

TscAI Tango<br />

Van91I R<br />

VspI O<br />

XagI R<br />

XapI Tango<br />

XbaI Tango<br />

XceI Tango NR<br />

XhoI R<br />

XmaJI Tango<br />

XmiI B<br />

I-SceI Tango<br />

Nb.Bpu10I R<br />

Nt.Bpu10I R NR<br />

Nb.Mva1269I O<br />

* – <br />

Optimal temperature for the enzymes listed is 37°C unless otherwise<br />

indicated in parenthesis.<br />

NR – buffer is not recommended because enzyme activity is less than 20% or<br />

star activity is too high.<br />

Cleavage efficiency<br />

20-50%<br />

50-100%<br />

www.thermoscientific.com/onebio 167


168<br />

Digestion of Agarose-Embedded DNA<br />

Table 1.9. Digestion of agarose-embedded DNA.<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

enzyme<br />

www.thermoscientific.com/onebio<br />

Units of enzyme<br />

required for DNA<br />

cleavage in 16 h<br />

AanI 5<br />

AarI 5<br />

AatII 5<br />

Acc65I 5<br />

AdeI 10<br />

AjiI 5<br />

AjuI 5<br />

AlfI 5<br />

Alw44I 5<br />

ApaI 5<br />

BamHI 5<br />

BauI 5<br />

BcuI 10<br />

BfuI 5<br />

BglI 5<br />

BglII 5<br />

BoxI 10<br />

BpiI 5<br />

BplI 10<br />

Bpu1102I 5<br />

BseSI 5<br />

Bsh1285I 5<br />

BshNI 5<br />

BshTI 20<br />

Bsp68I 5<br />

Bsp119I 5<br />

Bsp120I 5<br />

Bsp1407I 10<br />

BspOI 20<br />

BspTI 5<br />

Bst1107I 5<br />

BstXI 5<br />

Bsu15I 5<br />

CaiI 5<br />

Cfr9I 5<br />

Cfr10I 5<br />

Cfr42I 20<br />

DraI 5<br />

Eam1104I 5<br />

Eam1105I 5<br />

Ecl136II 5<br />

Eco24I 5<br />

Eco31I 5<br />

Eco32I 5<br />

Eco47III 5<br />

Eco52I 5<br />

Eco72I 5<br />

Eco81I 5<br />

Eco88I 5<br />

Eco91I 5<br />

Eco105I 5<br />

Eco130I 5<br />

Eco147I 5<br />

EcoO109I 5<br />

EcoRI 5<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

enzyme<br />

Units of enzyme<br />

required for DNA<br />

cleavage in 16 h<br />

EheI 20<br />

Esp3I 5<br />

FspBI 10<br />

Hin1I 5<br />

HindIII 5<br />

KpnI 5<br />

Kpn2I 5<br />

KspAI 5<br />

LguI 5<br />

MauBI 5<br />

MbiI 5<br />

MlsI 20<br />

MluI 5<br />

MssI 5<br />

MunI 5<br />

Mva1269I 5<br />

NcoI 5<br />

NdeI 5<br />

NheI 5<br />

NotI 5<br />

NsbI 5<br />

OliI 5<br />

PaeI 5<br />

PacI 5<br />

PagI 5<br />

PasI 10<br />

PauI 10<br />

PdiI 20<br />

PdmI 10<br />

Pfl23II 5<br />

PfoI 10<br />

Ppu21I 5<br />

PscI 5<br />

Psp5II 5<br />

Psp1406I 10<br />

PstI 5<br />

PsyI 5<br />

PvuI 5<br />

PvuII 5<br />

RseI 5<br />

SacI 5<br />

SalI 5<br />

ScaI 20<br />

SdaI 5<br />

SfaAI 5<br />

SfiI 5<br />

SgeI 3<br />

SgrDI 5<br />

SgsI 5<br />

SmaI 5<br />

SmiI 10<br />

SmoI 5<br />

SspI 5<br />

SspDI 5<br />

Van91I 5<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

enzyme<br />

Units of enzyme<br />

required for DNA<br />

cleavage in 16 h<br />

VspI 5<br />

XagI 5<br />

XapI 5<br />

XbaI 5<br />

XhoI 5<br />

XmaJI 10<br />

XmiI 5<br />

I-SceI 20<br />

Note<br />

For digestion of agarose-embedded DNA protocol<br />

see 1.11 on p.159.


Cleavage Efficiency Close to the Termini of PCR Fragments<br />

Some restriction enzymes cleave DNA poorly when<br />

their recognition sites are located close to DNA<br />

termini. Table 1.10 lists the activities of <strong>Thermo</strong><br />

<strong>Scientific</strong> restriction enzymes when their target<br />

sites are located close to the end of a PCR product.<br />

Experiments were performed as follows:<br />

PCR primers were designed with 1-5 extra<br />

Table 1.10. Cleavage efficiency close to the termini of PCR fragments.<br />

Enzyme<br />

bp from the recognition site to fragment end<br />

1 2 3 4 5<br />

AanI 0 0-20 20-50 50-100<br />

AarI 20-50 50-100<br />

AatII 0 0-20 20-50 50-100<br />

Acc65I 0-20 50-100<br />

AdeI 50-100<br />

AjiI 50-100<br />

AluI 0-20 20-50 50-100<br />

Alw21I 50-100<br />

Alw26I 50-100<br />

Alw44I 0 20-50 50-100<br />

ApaI 50-100<br />

BamHI 50-100<br />

BauI 0-20 20-50 50-100<br />

BcnI 20-50 50-100<br />

BclI 0 50-100<br />

BcuI 50-100<br />

BfmI 50-100<br />

BfuI 50-100<br />

BglI 20-50 50-100<br />

BglII 0 50-100<br />

Bme1390I 20-50 50-100<br />

BoxI 0 50-100<br />

BpiI 50-100<br />

Bpu10I 20-50 50-100<br />

Bpu1102I 50-100<br />

BseDI 0 50-100<br />

BseGI 50-100<br />

BseJI 0 50-100<br />

BseLI 0 50-100<br />

BseMI 0-20 50-100<br />

BseMII 50-100<br />

BseNI 0 50-100<br />

BseSI 50-100<br />

BseXI 20-50 50-100<br />

Bsh1236I 50-100<br />

Bsh1285I 0-20 50-100<br />

BshNI 50-100<br />

BshTI 20-50 50-100<br />

Bsp68I 0 50-100<br />

Bsp119I 50-100<br />

Bsp120I 20-50 50-100<br />

Bsp143I 50-100<br />

Bsp1407I 20-50 50-100<br />

BspLI 50-100<br />

BspOI 0 20-50 50-100<br />

BspPI 0 50-100<br />

BspTI 0 0-20 50-100<br />

Bst1107I 0-20 50-100<br />

BstXI 0 50-100<br />

Bsu15I 50-100<br />

BsuRI 0-20 20-50 50-100<br />

BveI 0-20 50-100<br />

CaiI 0 0-20 50-100<br />

Cfr9I 20-50 50-100<br />

Cfr10I 20-50 50-100<br />

Cfr13I 50-100<br />

Cfr42I 50-100<br />

CpoI 50-100<br />

CseI 50-100<br />

Csp6I 50-100<br />

DpnI 50-100<br />

DraI 0 0-20 50-100<br />

Eam1104I 0 50-100<br />

Eam1105I 0 50-100<br />

nucleotides at their 5’-end adjacent to the<br />

recognition site for the restriction enzyme.<br />

The 5’-end was labeled with [ 32 P] by T4<br />

<br />

labeled primers were used in the PCR reaction.<br />

PCR products were purified with the Silica Bead<br />

<br />

Enzyme<br />

bp from the recognition site to fragment end<br />

1 2 3 4 5<br />

Ecl136II 50-100<br />

Eco24I 50-100<br />

Eco31I 20-50 50-100<br />

Eco32I 20-50 50-100<br />

Eco47I 50-100<br />

Eco47III 0 0-20 50-100<br />

Eco52I 0-20 50-100<br />

Eco57I 50-100<br />

Eco72I 0-20 50-100<br />

Eco81I 50-100<br />

Eco88I 50-100<br />

Eco91I 20-50 50-100<br />

Eco105I 20-50 50-100<br />

Eco130I 0 50-100<br />

Eco147I 0 50-100<br />

EcoO109I 50-100<br />

EcoRI 50-100<br />

EcoRII 0 0-20 20-50 50-100<br />

EheI 20-50 50-100<br />

Esp3I 50-100<br />

FaqI 0-20 50-100<br />

FspAI 0-20 20-50 50-100<br />

FspBI 20-50 50-100<br />

GsuI 50-100<br />

HhaI 50-100<br />

Hin1I 50-100<br />

Hin1II 0 0-20 50-100<br />

Hin6I 0 0-20 50-100<br />

HincII 50-100<br />

HindIII 0 0-20 50-100<br />

HinfI 50-100<br />

HpaII 0-20 50-100<br />

HphI 0 50-100<br />

Hpy8I 0-20 50-100<br />

HpyF3I 20-50 50-100<br />

HpyF10VI 50-100<br />

KpnI 50-100<br />

Kpn2I 0 50-100<br />

KspAI 20-50 50-100<br />

LguI 50-100<br />

Lsp1109I 0-20 50-100<br />

LweI 20-50 50-100<br />

MauBI 0 0-20 20-50 50-100<br />

MbiI 0 0-20 50-100<br />

MboI 50-100<br />

MboII 50-100<br />

MlsI 0-20 50-100<br />

MluI 20-50 50-100<br />

MnlI 0 50-100<br />

Mph1103I 20-50 50-100<br />

MreI 0 20-50 50-100<br />

MspI 0-20 50-100<br />

MssI 20-50 50-100<br />

MunI 20-50 50-100<br />

MvaI 0 20-50 50-100<br />

Mva1269I 0 50-100<br />

NcoI 0 50-100<br />

NdeI* 0-20 20-50 50-100<br />

NheI 0 20-50 50-100<br />

NmuCI 20-50 50-100<br />

NotI 20-50 50-100<br />

NsbI 0 0-20 50-100<br />

OliI 0-20 20-50 50-100<br />

PacI 20-50 50-100<br />

<br />

were incubated with 10 units of restriction<br />

enzyme in the optimal buffer for 1 hour at the<br />

recommended temperature. Reaction products<br />

were separated on 10% PAGE and the cleavage<br />

<br />

Image Analysis software.<br />

Enzyme<br />

bp from the recognition site to fragment end<br />

1 2 3 4 5<br />

PaeI 0 0-20 20-50 50-100<br />

PagI 20-50 50-100<br />

PasI 50-100<br />

PauI 0 50-100<br />

PdiI 0-20 50-100<br />

PdmI 50-100<br />

PfeI 50-100<br />

Pfl23II 0-20 20-50 50-100<br />

PfoI 0 20-50 50-100<br />

Ppu21I 50-100<br />

PscI 0 50-100<br />

Psp5II 0 50-100<br />

Psp1406I 0-20 50-100<br />

PstI 0-20 50-100<br />

PsuI 0-20 50-100<br />

PsyI 0 50-100<br />

PvuI 20-50 50-100<br />

PvuII 50-100<br />

RsaI 50-100<br />

RseI 0 0-20 20-50 50-100<br />

SacI 50-100<br />

SalI 20-50 50-100<br />

SatI 0 50-100<br />

ScaI 0-20 50-100<br />

SchI 50-100<br />

SdaI 0-20 50-100<br />

SduI 50-100<br />

SfaAI 0 0-20 20-50 50-100<br />

SfiI 50-100<br />

SgrDI 0-20 20-50 50-100<br />

SgsI 50-100<br />

SmaI 50-100<br />

SmiI 0-20 50-100<br />

SmoI 0 50-100<br />

SsiI 50-100<br />

SspI 0-20 50-100<br />

SspDI 20-50 50-100<br />

TaaI 20-50 50-100<br />

TaiI 50-100<br />

TaqI 0 20-50 50-100<br />

TasI 0 20-50 50-100<br />

TatI 0-20 20-50 50-100<br />

TauI 20-50 50-100<br />

Tru1I 0 0-20 50-100<br />

TscAI 0 50-100<br />

Van91I 0 50-100<br />

VspI 50-100<br />

XagI 20-50 50-100<br />

XapI 20-50 50-100<br />

XbaI 20-50 50-100<br />

XceI 0 50-100<br />

XhoI 0-20 50-100<br />

XmaJI 50-100<br />

XmiI 50-100<br />

I-SceI 50-100<br />

* – incubation was performed for 16 hours.<br />

Cleavage efficiency<br />

0% 20-50%<br />

0-20% 50-100%<br />

www.thermoscientific.com/onebio 169


170<br />

Cleavage of Restriction Targets Located in Close Vicinity within pUC19 Multiple Cloning Site<br />

Close vicinity of restriction targets within multiple<br />

<br />

effect on the efficiency of double digestions<br />

within the MSC. For efficient double digestion<br />

within the MSC, the first reaction should be<br />

performed with a restriction enzyme that cleaves<br />

DNA inefficiently when enzyme’s target is<br />

located close to the end of DNA. The second<br />

pUC19 multiple cloning site<br />

www.thermoscientific.com/onebio<br />

digestion should be performed with a restriction<br />

enzyme which tolerates a close proximity to the<br />

DNA end.<br />

The data presented below were generated using<br />

pUC19 plasmid DNA. The plasmid was cleaved<br />

<br />

and end-labeled with [ 32 P] by T4 Polynucleotide<br />

<br />

Table 1.11. Cleavage of restriction targets located in close vicinity within pUC19 multiple cloning site.<br />

Enzyme<br />

pair<br />

Acc65I<br />

BamHI<br />

Acc65I<br />

Ecl136II<br />

Acc65I<br />

Eco24I<br />

Acc65I<br />

EcoRI<br />

Acc65I<br />

SacI<br />

Acc65I<br />

XapI<br />

BamHI<br />

Cfr9I<br />

BamHI<br />

Eco88I<br />

BamHI<br />

HincII<br />

BamHI<br />

KpnI<br />

BamHI<br />

SalI<br />

BamHI<br />

XbaI<br />

Cfr9I<br />

Ecl136I<br />

Cfr9I<br />

Eco24I<br />

Cfr9I<br />

SacI<br />

Cfr9I<br />

XbaI<br />

Ecl136II<br />

Eco88I<br />

Ecl136II<br />

EcoRI<br />

Ecl136II<br />

XapI<br />

Eco24I<br />

Eco88I<br />

Eco24I<br />

EcoRI<br />

Eco24I<br />

KpnI<br />

Eco24I<br />

XapI<br />

Eco88I<br />

SacI<br />

Eco88I<br />

XbaI<br />

First cut<br />

Second<br />

cut<br />

Efficiency<br />

of the 2nd<br />

cut, %<br />

bp from<br />

1st cut*<br />

Acc65I BamHI 100 4<br />

BamHI Acc65I 100 4<br />

Acc65I Ecl136II 100 1<br />

Ecl136II Acc65I 50-100 3<br />

Acc65I Eco24I 100 1<br />

Eco24I Acc65I 0 1<br />

Acc65I EcoRI 100 7<br />

EcoRI Acc65I 100 7<br />

Acc65I SacI 50-100 1<br />

SacI Acc65I 0-20 1<br />

Acc65I XapI 50-100 7<br />

XapI Acc65I 50-100 7<br />

BamHI Cfr9I 50-100 0<br />

Cfr9I BamHI 50-100 0<br />

BamHI Eco88I 100 0<br />

Eco88I BamHI 50-100 0<br />

BamHI HincII 50-100 7<br />

HincII BamHI 100 9<br />

BamHI KpnI 100 4<br />

KpnI BamHI 100 4<br />

BamHI SalI 50-100 7<br />

SalI BamHI 100 7<br />

BamHI XbaI 20-50 1<br />

XbaI BamHI 100 1<br />

Cfr9I Ecl136II 50-100 5<br />

Ecl136II Cfr9I 100 7<br />

Cfr9I Eco24I 50-100 5<br />

Eco24I Cfr9I 100 5<br />

Cfr9I SacI 50-100 5<br />

SacI Cfr9I 50-100 5<br />

Cfr9I XbaI 50-100 6<br />

XbaI Cfr9I 50-100 6<br />

Ecl136II Eco88I 100 7<br />

Eco88I Ecl136II 50-100 5<br />

Ecl136II EcoRI 100 3<br />

EcoRI Ecl136II 100 1<br />

Ecl136II XapI 50-100 3<br />

XapI Ecl136II 50-100 1<br />

Eco24I Eco88I 100 5<br />

Eco88I Eco24I 50-100 5<br />

Eco24I EcoRI 100 1<br />

EcoRI Eco24I 100 1<br />

Eco24I KpnI 50-100 1<br />

KpnI Eco24I 0 1<br />

Eco24I XapI 50-100 1<br />

XapI Eco24I 20-50 1<br />

Eco88I SacI 100 5<br />

SacI Eco88I 50-100 5<br />

Eco88I XbaI 100 6<br />

XbaI Eco88I 100 6<br />

Enzyme<br />

pair<br />

EcoRI<br />

Cfr9I<br />

EcoRI<br />

Eco88I<br />

EcoRI<br />

KpnI<br />

EcoRI<br />

SacI<br />

HincII<br />

PaeI<br />

HincII<br />

PstI<br />

HincII<br />

SdaI<br />

HincII<br />

XbaI<br />

HindIII<br />

PaeI<br />

HindIII<br />

PstI<br />

HindIII<br />

SdaI<br />

KpnI<br />

Ecl136II<br />

KpnI<br />

SacI<br />

KpnI<br />

XapI<br />

PaeI<br />

PstI<br />

PaeI<br />

SalI<br />

PaeI<br />

SdaI<br />

PstI<br />

BamHI<br />

PstI<br />

SalI<br />

PstI<br />

XbaI<br />

SacI<br />

SmaI<br />

SacI<br />

XapI<br />

SalI<br />

SdaI<br />

SalI<br />

XbaI<br />

SdaI<br />

XbaI<br />

First cut<br />

Second<br />

cut<br />

Efficiency<br />

of the 2nd<br />

cut, %<br />

bp from<br />

1st cut*<br />

EcoRI Cfr9I 50-100 11<br />

Cfr9I EcoRI 100 11<br />

EcoRI Eco88I 50-100 11<br />

Eco88I EcoRI 100 11<br />

EcoRI KpnI 100 7<br />

KpnI EcoRI 100 7<br />

EcoRI SacI 50-100 1<br />

SacI EcoRI 20-50 1<br />

HincII PaeI 100 9<br />

PaeI HincII 100 7<br />

HincII PstI 100 3<br />

PstI HincII 20-50 1<br />

HincII SdaI 0-20 2<br />

SdaI HincII 20-50 1<br />

HincII XbaI 50-100 3<br />

XbaI HincII 50-100 1<br />

HindIII PaeI 50-100 1<br />

PaeI HindIII 0 1<br />

HindIII PstI 100 7<br />

PstI HindIII 100 7<br />

HindIII SdaI 50-100 6<br />

SdaI HindIII 50-100 7<br />

KpnI Ecl136II 50-100 1<br />

Ecl136II KpnI 100 3<br />

KpnI SacI 50-100 1<br />

SacI KpnI 100 1<br />

KpnI XapI 100 7<br />

XapI KpnI 50-100 7<br />

PaeI PstI 0 1<br />

PstI PaeI 20-50 1<br />

PaeI SalI 50-100 7<br />

SalI PaeI 100 7<br />

PaeI SdaI 0 0<br />

SdaI PaeI 20-50 1<br />

PstI BamHI 50-100 13<br />

BamHI PstI 50-100 13<br />

PstI SalI 0 1<br />

SalI PstI 50-100 1<br />

PstI XbaI 100 7<br />

XbaI PstI 50-100 7<br />

SacI SmaI 100 5<br />

SmaI SacI 50-100 7<br />

SacI XapI 0-20 1<br />

XapI SacI 50-100 1<br />

SalI SdaI 0 0<br />

SdaI SalI 20-50 1<br />

SalI XbaI 50-100 1<br />

XbaI SalI 0-20 1<br />

SdaI XbaI 100 7<br />

XbaI SdaI 50-100 6<br />

for one hour with a second restriction enzyme<br />

<br />

separated by PAGE, and the amount of the<br />

label present on the DNA was determined by<br />

autoradiography. A decrease in radioactivity<br />

reflects cleavage efficiency of the second<br />

restriction enzyme.<br />

Eco24I Cfr9I HincII PstII<br />

XapI Ecl136II Acc65I Eco88I SalI BveI PaeI<br />

396 EcoRI SacI KpnI SmaI BamHI XbaI XmiI SdaI HindIII 452<br />

5’ - C CAG TGA ATT CGA GCT CGG TAC CCG GGG ATC CTC TAG AGT CGA CCT GCA GGC ATG CAA GCT TGG C - 3’<br />

3’ - G GTC ACT TAA GCT CGA GCC ATG GGC CCC TAG CAG ATC TCA GCT GGA CGT CCG TAC GTT CGA ACC G - 5’<br />

Enzyme<br />

pair<br />

SmaI<br />

Acc65I<br />

SmaI<br />

BamHI<br />

SmaI<br />

Ecl136II<br />

SmaI<br />

Eco24I<br />

SmaI<br />

KpnI<br />

SmaI<br />

XbaI<br />

First cut<br />

Second<br />

cut<br />

Efficiency<br />

of the 2nd<br />

cut, %<br />

* – only double-stranded portion of DNA is<br />

included, not the overhangs.<br />

– simultaneous double digestion may be<br />

performed with these enzyme pairs.<br />

– this enzyme should be used for the first cut<br />

– this enzyme should be used for the second cut<br />

– not recommended<br />

For reaction conditions see<br />

www.thermoscientific.com/doubledigest<br />

bp from<br />

1st cut*<br />

SmaI Acc65I 0-20 1<br />

Acc65I SmaI 0 -1<br />

SmaI BamHI 50-100 2<br />

BamHI SmaI 0-20 0<br />

SmaI Ecl136II 50-100 7<br />

Ecl136II SmaI 100 7<br />

SmaI Eco24I 50-100 7<br />

Eco24I SmaI 100 5<br />

SmaI KpnI 0 1<br />

KpnI SmaI 0 -1<br />

SmaI XbaI 50-100 8<br />

XbaI SmaI 100 6


Common Properties<br />

Classification of Restriction<br />

Enzymes<br />

Restriction enzymes recognize specific nucleotide<br />

sequences and cleave DNA molecules either<br />

within or outside their recognition site. Digestion<br />

results in the generation of DNA with “sticky”<br />

<br />

The phenomenon of host specificity was first<br />

observed by Luria and Human in the early<br />

<br />

<br />

proposed that host specificity is based on a<br />

two-enzyme system: a restriction enzyme,<br />

which recognizes specific DNA sequences and<br />

cleaves foreign DNA upon its entrance into<br />

the bacterial cell, and a modification enzyme<br />

<br />

DNA from degradation by its own restriction<br />

enzyme. Both restriction and modification<br />

enzymes recognize the same nucleotide<br />

sequence and together they form a restriction-<br />

<br />

Restriction-modification systems are<br />

widespread among bacteria and have also<br />

been isolated from phage, Archaea and<br />

eukaryotic algae viruses. R-M systems have<br />

<br />

depending on the complexity of their structure,<br />

cofactor requirements, mode of action and<br />

<br />

and the most frequently used are type II<br />

restriction endonucleases. These enzymes<br />

recognize specific 4-8 bp DNA sequences<br />

and cleave a DNA sequence either within the<br />

recognition site, or at a specified position up to<br />

20 base pairs outside the site.<br />

Often there is more than one enzyme that<br />

recognizes a particular nucleotide sequence.<br />

According to restriction enzyme nomenclature,<br />

an enzyme with a unique specificity which has<br />

been discovered first is called the prototype.<br />

Subsequently discovered enzymes with the<br />

same specificity are termed isoschizomers.<br />

An isoschizomer may differ from the prototype<br />

enzyme in site preferences, reaction conditions,<br />

as well as in sensitivity to methylation and<br />

exhibition of star activity. Restriction enzymes<br />

that recognize the same nucleotide sequence,<br />

but cleave DNA at different positions are called<br />

neoschizomers.<br />

Site Preferences<br />

by Restriction Enzymes<br />

In 1975, Thomas and Davis discovered that<br />

EcoRI cleaves its five recognition sites on DNA<br />

at rates that differ by an order of magnitude<br />

<br />

for other restriction enzymes. Factors such as<br />

flanking sequences and the number of cleavage<br />

<br />

<br />

<br />

never completely digest certain unmethylated<br />

target DNAs, even when using an excess of<br />

<br />

these enzymes are members of the expanding<br />

group of type II restriction enzymes which<br />

require simultaneous interaction with two copies<br />

<br />

These enzymes cleave DNA molecules with one<br />

recognition site very slowly. In the case of type<br />

<br />

sequences serves as an allosteric effector<br />

for effective cleavage of the other recognition<br />

<br />

<br />

<br />

<br />

<br />

Type IIS enzymes, such as FokI, BpmI, BsgI<br />

and MboII, also interact with two copies of their<br />

recognition sequence before cleaving DNA by<br />

<br />

Cleavage of resistant sites can be significantly<br />

enhanced by the addition of cleavable DNA,<br />

an oligodeoxyribonucleotide containing the<br />

<br />

<br />

Different restriction enzymes recognizing the<br />

<br />

or <br />

cleave the same resistant recognition site<br />

<br />

Eam1104I and PdiI and their prototypes<br />

<br />

some isoschizomers or neoschizomers cleave<br />

“resistant” sites at the same rate as normal<br />

sites. For example, EheI cleaves target DNA<br />

more efficiently than its prototype NarI. Thus,<br />

one recognition site of NarI onDNA and two<br />

sites on pBR322 are not cleaved to completion,<br />

even after incubation with 50 units of the<br />

enzyme for 16 hours. Unlike NarI, <strong>Thermo</strong><br />

<strong>Scientific</strong> neoschizomer EheI cleaves DNA<br />

and pBR322 DNA completely under standard<br />

conditions.<br />

References<br />

1. Luria, S.E., Human, M.L., A nonhereditary, host-induced<br />

<br />

557-569, 1952.<br />

2. Arber, W., Dussoix, D., Host specificity of DNA produced<br />

by Escherichia Coli: I. Host controlled modification of<br />

<br />

3. <br />

enzymes, DNA methyltransferases, homing endonucleases<br />

and their genes, Nucleic Acids Res., 31,<br />

1805-1812, 2003.<br />

4. Thomas M., Davis R.W., Studies on the cleavage of<br />

bacteriophage lambda DNA with EcoRI restriction<br />

<br />

5. <br />

the relaxed DNA sequence specificity of “promiscuous”<br />

<br />

307-324, 2005.<br />

6. Kruger, D.H., et al., EcoRII can be activated to cleave<br />

refractory DNA recognition sites, Nucleic Acids Res., 16,<br />

3997-4008, 1988.<br />

7. Oller, A. R., et al., Ability of DNA and spermidine to affect<br />

the activity of restriction endonucleases from several<br />

bacterial species, Biochemistry, 30, 2543-2549, 1991.<br />

8. <br />

endonuclease from Kluyvera species 632 with the<br />

asymmetric hexanucleotide recognition sequence:<br />

5’-CTCTTCN-3’ 3’-GAGAAGNNNN-5’, Gene, 66,<br />

31-43, 1988.<br />

9. Reuter, M., et al., Use of specific oligonucleotide duplexes<br />

to stimulate cleavage of refractory DNA sites by restriction<br />

endonucleases, Anal. Biochem., 209, 232-237, 1993.<br />

10. Halford, S.E., Hopping, jumping and looping by restriction<br />

endonucleases, Biochem. Soc. Trans, 29, 363-373, 2001.<br />

11. Gabbara, S., Bhagwat, A.S., Interaction of EcoRII<br />

endonuclease with DNA substrates containing single<br />

<br />

12. Yang, C.C., Topal, M.D., Nonidentical DNA-binding sites<br />

of endonuclease NaeI recognize different families of<br />

sequences flanking the recognition site, Biochemistry, 31,<br />

9657-9664, 1992.<br />

13. <br />

bridge between DNA endonuclease and topoisomerase,<br />

<br />

14. Wentzell, L.M., et al., The SfiI restriction endonuclease<br />

makes a four-strand DNA break at two copies of its<br />

<br />

15. Siksnys, V., et al., The Cfr10I restriction enzyme is<br />

<br />

1105-1118, 1999.<br />

16. Deibert, M., et al., Structure of the tetrameric restriction<br />

endonuclease NgoMIV in complex with cleaved DNA, Nat.<br />

Struct. Biol., 7, 792-799, 2000.<br />

17. Gormley, N.A., et al., The type IIs restriction endonuclease<br />

BspMI is a tetramer that acts concertedly at two copies of<br />

<br />

4034-4041, 2002.<br />

18. <br />

and lexcise two recognition sites from DNA,<br />

<br />

19. <br />

interact with two recognition sites before cleaving DNA,<br />

<br />

20. Conrad, M., Topal, M.D., DNA and spermidine provide a switch<br />

mechanism to regulate the activity of restriction enzyme NaeI,<br />

Proc. Natl.Acad Sci. USA, 86, 9707-9711, 1989.<br />

21. <br />

Arthrobacter aurescens SS2-322, which recognizes the<br />

4/8-3’,<br />

Nucleic Acids Res., 30, e123, 2002.<br />

www.thermoscientific.com/onebio 171


172<br />

Star Activity<br />

Restriction enzymes recognize specific<br />

nucleotide sequences within DNA molecules.<br />

However, their recognition site specificity<br />

can be reduced in vitro <br />

conditions, enzymes are able to recognize and<br />

cleave nucleotide sequences which differ from<br />

the canonical site. At low ionic strength, for<br />

<br />

<br />

sequences: NGATCC, GPuATCC and GGNTCC<br />

<br />

<br />

applications, star activity is not desirable.<br />

<br />

suggested that this phenomenon is the result of:<br />

<br />

high enzyme concentration in the reaction<br />

<br />

high glycerol concentration in the<br />

reaction mixture,<br />

presence of organic solvents, such as<br />

<br />

<br />

reaction mixture,<br />

low ionic strength of the reaction buffer,<br />

suboptimal pH values of the<br />

reaction buffer,<br />

substitution of Mg 2+ for other divalent<br />

cations, such as Mn 2+ or Co 2+ .<br />

www.thermoscientific.com/onebio<br />

In some cases, the termini generated by DNA<br />

cleavage with a restriction enzyme at the<br />

canonical site have been shown to stimulate<br />

<br />

Both star activity and incomplete DNA digestion<br />

result in atypical electrophoresis patterns that<br />

can be distinguished by careful examination of<br />

see <br />

Any tendency of a restriction enzyme to exhibit<br />

star activity is indicated both in the product<br />

description and in the Certificate of Analysis.<br />

How to distinguish between star activity and incomplete digestion<br />

Star activity results in additional DNA<br />

bands below the expected bands and<br />

no additional bands above the largest<br />

expected fragment. These additional bands<br />

become more intense, while the expected<br />

bands become less intense, when either<br />

the incubation time or the amount of<br />

enzyme is increased.<br />

Incomplete DNA digestion results in<br />

additional bands above the expected<br />

DNA bands on the gel. Additional bands<br />

disappear when the incubation time<br />

or amount of enzyme is increased. No<br />

additional bands below the smallest<br />

expected fragment are observed.<br />

Note<br />

Certain restriction enzymes remain associated<br />

with the substrate DNA after cleavage and<br />

cause a change in the mobility of the digestion<br />

products during electrophoresis. The resulting<br />

atypical pattern is not related to star activity.<br />

In these cases, use a loading dye with SDS<br />

<br />

heat the sample for 10 min at 65°C and chill on<br />

see <br />

effect is characteristic of the following<br />

FastDigest enzymes:<br />

FastDigest <br />

FastDigest FokI,<br />

FastDigest MboII, FastDigest TauI, FastDigest<br />

<br />

Conventional restriction enzymes:<br />

<br />

<br />

<br />

<br />

References<br />

1. Nasri, M., Thomas, D., Relaxation of recognition sequence<br />

of specific endonuclease HindIII, Nucleic Acids Res., 14,<br />

811-821, 1986.<br />

<br />

endonuclease BamHI: Relaxation of sequence recognition,<br />

Proc. Natl. Acad. Sci. USA, 79, 2432-2436, 1982.<br />

3. Kolesnikov, V.A., et al., Relaxed specificity of endonuclease<br />

BamHI as determined by identification of recognition sites<br />

in SV40 and pBR322 DNAs, FEBS Letters, 132, 101-103,<br />

1981.<br />

4. Polisky, B., et al., Specificity of substrate recognition by<br />

the EcoRI restriction endonuclease, Proc. Natl. Acad. Sci.<br />

USA, 72, 3310-3314, 1975.<br />

5. Woodbury, C.P., et al., DNA site recognition and reduced<br />

<br />

11534-11546, 1980.<br />

<br />

<br />

7. Malyguine, E., et al., Alteration of the specificity of<br />

restriction endonucleases in the presence of organic<br />

solvents, Gene, 8, 163-177, 1980.<br />

8. Hsu, M., Berg, P., Altering the specificity of restriction<br />

endonuclease: effect of replacing Mg 2+ with Mn 2+ ,<br />

Biochemistry, 17, 131-138, 1978.<br />

9. Mayer, H., Optimization of the EcoRI* activity of EcoRI<br />

endonuclease, FEBS Letters, 90, 341-344, 1978.<br />

10. Nasri, M., Thomas, D., Alteration of the specificity of PvuII<br />

restriction endonuclease, Nucleic Acids Res., 15, 7677-<br />

7687, 1987.<br />

<br />

relax the specificity of SgrAI restriction endonuclease,<br />

Proc. Natl. Acad. Sci. USA, 99, 1164-1169, 2002.<br />

Complete digestion<br />

Incomplete cleavage Star activity<br />

1 2 3 4 5 6<br />

Enzyme complete digestion and star activity.<br />

1 – Lambda DNA.<br />

2 – Lambda DNA incubated 1 hour with 0.15 u of<br />

<br />

3 – Lambda DNA incubated 1 hour with 0.4 u of<br />

<br />

4 – Lambda DNA incubated 1 hour with 1 u of<br />

<br />

5 – Lambda DNA incubated 16 hours with 40 u of<br />

<br />

6 – Lambda DNA incubated 16 hours with 70 u of


Digestion of Methylated DNA<br />

DNA methylation is the process of transferring<br />

a methyl group from a donor molecule to<br />

either a cytosine or an adenine by DNA<br />

methyltransferases. Such methylation is the<br />

most common and abundant DNA modification<br />

process in living organisms. Three types of<br />

methylated bases are predominantly<br />

found in DNA:<br />

<br />

<br />

<br />

Other modified bases, such as<br />

<br />

<br />

described. The organism-specific pattern of<br />

methylation depends on the methyltransferases’<br />

specificity.<br />

In prokaryotes, DNA cleavage by a cognate<br />

restriction enzyme is prevented by the<br />

methylation of DNA by a sequence-specific<br />

methyltransferase which is an integral<br />

component of every restriction-modification<br />

<br />

The majority of E.coli strains used for propagation<br />

of plasmid DNA contain two site-specific DNA<br />

<br />

methylase encoded by the dam gene methylates<br />

the N6-position of an adenine residue within the<br />

<br />

by the dcm gene methylates the C5-position of<br />

the internal cytosine residue within the CCWGG<br />

<br />

In addition to Dam and Dcm methylases,<br />

laboratory strains of E.coli K12 and B may<br />

contain EcoKI or EcoBI enzymes, respectively,<br />

encoded by a type I R-M system. These<br />

methyltransferases modify adenine residues<br />

within their respective recognition sequences:<br />

6 8TGCT<br />

<br />

DNA from higher eukaryotic organisms<br />

possesses modified 5-methylcytosine residues<br />

<br />

tissue-specific methylation patterns are heritable.<br />

They participate in regulation of gene expression<br />

and cellular differentiation.<br />

In cases where a restriction enzyme target<br />

site overlaps a methylation site, the following<br />

digestion results are possible:<br />

no effect<br />

partial inhibition<br />

complete block<br />

The ability to cleave methylated DNA is an<br />

intrinsic and unpredictable property of each<br />

restriction enzyme. Therefore, isoschizomers<br />

and neoschizomers which recognize the same<br />

DNA sequences can differ in their sensitivity<br />

<br />

<br />

<br />

while the isoschizomer Bsp143I is insensitive to<br />

Dam methylation. EcoRII does not cleave DNA<br />

at the CCWGG site if it is methylated by Dcm,<br />

while its neoisoschizomer MvaI will cleave this<br />

<br />

DNA digestion, it is necessary to take into<br />

account both the type of DNA methylation and<br />

the sensitivity of the restriction enzyme to that<br />

type of methylation.<br />

All our restriction enzymes have been examined<br />

for their sensitivity to Dam, Dcm, CpG, EcoKI and<br />

EcoBI methylation of substrate DNA. Detailed<br />

methylation sensitivity information for our<br />

restriction enzymes is listed in the tables on<br />

pp.174-179, as well as in the product<br />

descriptions and Certificates of Analysis.<br />

Table 1.12. <strong>Thermo</strong> <strong>Scientific</strong> isoschizomers and neoschizomers with differing sensitivities to target methylation.<br />

Conventional<br />

restriction enzyme<br />

couple<br />

Recognition and<br />

cleavage sites<br />

Sensitivity to methylation<br />

Acc65I GGTACC Overlapping Dcm or CpG methylation may influence DNA cleavage<br />

KpnI GGTACC Not influenced by Dcm or CpG methylation<br />

ApaI GGGCCC Overlapping Dcm or CpG methylation may influence DNA cleavage<br />

Bsp120I GGGCCC Blocked by overlapping Dcm or CpG methylation<br />

Bsp143I GATC Not influenced by Dam, blocked by CpG methylation<br />

MboI GATC Blocked by Dam methylated DNA<br />

DpnI GATC Cleaves only Dam methylated DNA<br />

BspOI GCTAGC Not influenced by CpG methylation<br />

NheI GCTAGC Overlapping CpG methylation may influence DNA cleavage<br />

Cfr9I CCCGGG CpG methylation may influence DNA cleavage<br />

SmaI CCCGGG Blocked by CpG methylation<br />

Csp6I GTAC Not influenced by CpG methylation<br />

RsaI GTAC Overlapping CpG methylation may influence DNA cleavage<br />

Ecl136II GAGCTC Overlapping CpG methylation may influence DNA cleavage<br />

SacI GAGCTC Not influenced by CpG methylation<br />

EcoRII CCWGG Blocked by Dcm methylation<br />

MvaI CCWGG Not influenced by Dcm methylation<br />

HpaII CCGG Blocked by CpG methylation<br />

MspI CCGG Not influenced by CpG methylation<br />

References<br />

1. Luria, S.E., Human, M.L., A nonhereditary, host-induced<br />

<br />

2. Arber, W., Dussoix, D., Host specificity of DNA produced<br />

by Escherichia Coli: I. Host controlled modification of<br />

<br />

3. <br />

DNA methyltransferases, homing endonucleases and their<br />

genes, Nucleic Acids Res., 31, 1805-1812, 2003.<br />

4. McClelland, M., The effect of sequence specific DNA<br />

methylation on restriction endonuclease cleavage, Nucleic<br />

Acids Res., 9, 5859-5866, 1981.<br />

5. McClelland, M., et al., Effect of site-specific modification<br />

on restriction endonucleases and DNA modification<br />

methyltransferases, Nucleic Acids Res., 22,<br />

3640-3659, 1994.<br />

6. Marinus, M.G., Morris, N.R., Isolation of deoxyribonucleic<br />

acid methylase mutants of Escherichia coli K-12,<br />

<br />

7. May, M.S., Hattman, S., Analysis of bacteriophage<br />

deoxyribonucleic acid sequences methylated by host- and<br />

<br />

768-770, 1975.<br />

8. Hattman, S., et al., Sequence specificity of the P1<br />

<br />

Escherichia coli dam gene,<br />

<br />

9. Geier, G.E., Modrich, P., Recognition sequence of the dam<br />

methylase of Escherichia coli K12 and mode of cleavage<br />

<br />

1408-1413, 1979.<br />

10. Buryanov, Ya.I., et al., Site specificity and chromatographic<br />

properties of E.coli K12 and EcoRII DNA-cytosine<br />

methylases, FEBS Letters, 88, 251-254, 1978.<br />

11. Waalwijk, C., Flavell, R.A., MspI, an isochizomer of HpaII<br />

which cleaves both unmethylated and methylated HpaII<br />

sites, Nucleic Acids Res., 5, 3231-3236, 1978.<br />

12. Bird, A.P., et al., Methylated and unmethylated DNA<br />

compartments in the sea urchin genome, Cell, 17,<br />

889-902, 1979.<br />

13. McClelland, M., The frequency and distribution of<br />

methylatable DNA sequences in leguminous plant protein<br />

<br />

14. Dreiseikelmann, B., et al., The effect of differential<br />

methylation by Escherichia coli of plasmid DNA and<br />

phage T7 and lambda DNA on the cleavage by restriction<br />

endonuclease MboI from Moraxella bovis, Biochim.<br />

Biophys. Acta, 562, 418-428, 1979.<br />

15. Butkus, V. et al., Investigation of restriction-modification<br />

enzymes from M.varians RFL19 with a new type of<br />

specificity toward modification of substrate, Nucleic Acids<br />

Res., 13, 5727-5746, 1985.<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;<br />

www.thermoscientific.com/onebio 173


174<br />

Effect of Dam Methylation on DNA Cleavage<br />

To cleave with a restriction enzyme which<br />

is sensitive to the Dam methylation, DNA<br />

should be purified from dam – E.coli strains;<br />

e.g., GM2163. Control digestions should be<br />

performed with dam – , dcm – <br />

#SD0021.<br />

Table 1.13. Completely overlapping<br />

Dam methyltransferase and restriction enzyme<br />

recognition sites.<br />

Conventional<br />

FastDigest<br />

Sequence* Effect<br />

BamHI<br />

BamHI<br />

GGm6ATCC<br />

BclI<br />

BclI<br />

TGm6ATCA<br />

BglII<br />

BglII<br />

AGm6ATCT<br />

Bsp143I<br />

Sau3AI<br />

Gm6ATC<br />

BspPI<br />

GGm6ATC<br />

DpnI**<br />

DpnI<br />

MboI<br />

MboI<br />

PsuI<br />

PsuI<br />

PvuI<br />

PvuI<br />

SfaAI<br />

AsiSI<br />

Gm6ATC<br />

Gm6ATC<br />

www.thermoscientific.com/onebio<br />

RGm6ATCY<br />

CGm6ATCG<br />

GCGm6ATCGC<br />

Table 1.14. Partially overlapping<br />

Dam methyltransferase and restriction enzyme<br />

recognition sites.<br />

Conventional<br />

Sequence*<br />

FastDigest<br />

Effect<br />

AloI<br />

5’...GAAC(N) 4Gm6A TCC...3’<br />

3’...CTTG(N) 4C Tm6AGG...5’ ?<br />

BseJI<br />

BsaBI<br />

Bsh1285I<br />

BsiEI<br />

Bsp68I<br />

NruI<br />

Bsu15I<br />

ClaI<br />

HphI<br />

Kpn2I<br />

Kpn2I<br />

MboII<br />

MboII<br />

PagI<br />

BspHI<br />

PfoI<br />

PfoI<br />

SmoI<br />

TaqI<br />

TaqI<br />

XbaI<br />

XbaI<br />

Note<br />

** – DpnI Dam<br />

methylated DNA.<br />

* – recognition sequence is indicated in bold.<br />

m6A = N6-methyladenine.<br />

– overlapping methylase sequences.<br />

– cleavage not blocked.<br />

– cleavage blocked.<br />

5’...Gm6A TC(N) 3ATC...3’<br />

3’...C Tm6AG(N) 3TAG...5’<br />

5’...CGm6A TCG...3’<br />

3’...GC Tm6AGC...5’<br />

5’...Gm6A TCGCGm6A TC...3’<br />

3’...C Tm6AGCGC Tm6AG...5’<br />

5’...ATCGm6A TC...3’<br />

3’...TAGC Tm6AG...5’<br />

5’...GGTGm6A TC...3’<br />

3’...CCAC Tm6AG...5’<br />

5’...TCCGGm6A TC...3’<br />

3’...AGGCC Tm6AG...5’<br />

5’...Gm6A TCCGGm6A TC...3’<br />

3’...C Tm6AGGCC Tm6AG...5’<br />

5’...GAAGm6A TC...3’<br />

3’...CTTC Tm6AG...5’<br />

5’...TCATGm6A TC...3’<br />

3’...AGTAC Tm6AG...5’<br />

5’...Gm6A TCATGm6A TC...3’<br />

3’...C Tm6AGTAC Tm6AG...5’<br />

5’...TCCNGGm6A TC...3’<br />

3’...AGGNCC Tm6AG...5’<br />

5’...CTYRAGm6A TC...3’<br />

3’...GARYTC Tm6AG...5’<br />

5’...TCGm6A TC...3’<br />

3’...AGC Tm6AG...5’<br />

5’...TCTAGm6A TC...3’<br />

3’...AGATC Tm6AG...5’<br />

– cleavage rate is slowed significantly by<br />

methylation.<br />

? – the sensitivity to methylation has not been<br />

determined.<br />

?<br />

?<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;


Effect of Dcm Methylation on DNA Cleavage<br />

To cleave with a restriction enzyme which is<br />

sensitive to Dcm methylation, DNA should be<br />

purified from dcm – E.coli strains; e.g., GM2163.<br />

Control digestions should be performed with<br />

dam – , dcm – <br />

Table 1.15. Completely overlapping<br />

Dcm methyltransferase and restriction<br />

enzyme recognition sites.<br />

Conventional<br />

FastDigest Sequence* Effect<br />

EcoRII Cm5CWGG<br />

MvaI<br />

MvaI<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;<br />

Note<br />

* – recognition sequence is indicated in bold.<br />

** – SgeI cleaves only methylated DNA.<br />

– overlapping methylase sequences.<br />

m5C = 5-methylcytosine.<br />

– cleavage not blocked.<br />

– cleavage blocked.<br />

Cm5CWGG<br />

PasI CCm5CWGGG<br />

SexAI ACm5CWGGT<br />

SgeI** Cm5CWGG<br />

– cleavage rate is slowed significantly by<br />

methylation.<br />

Table 1.16. Partially overlapping<br />

Dcm methyltransferase and restriction enzyme<br />

recognition sites.<br />

Conventional<br />

FastDigest<br />

Acc65I<br />

Acc65I<br />

AloI<br />

ApaI<br />

ApaI<br />

BamHI<br />

BamHI<br />

BfuI<br />

BglI<br />

BglI<br />

Bme1390I<br />

ScrFI<br />

BseDI<br />

BsaJI<br />

BseGI<br />

BseGI<br />

BseLI<br />

BslI<br />

BseSI<br />

Bme1580I<br />

BshNI<br />

BanI<br />

Bsp120I<br />

Bsp120I<br />

BspLI<br />

NlaIV<br />

BspPI<br />

BstXI<br />

BstXI<br />

BsuRI<br />

HaeIII<br />

CaiI<br />

AlwNI<br />

Cfr13I<br />

Sau96I<br />

Sequence* Effect<br />

5’...GGTACm5CW GG...3’<br />

3’...CCATG GWm5CC...5’<br />

5’...Cm5CW GGTACm5CW GG...3’<br />

3’...G GWm5CCATG GWm5CC...5’<br />

5’...GAAC(N) 6TCm5CW GG...3’<br />

3’...CTTG(N) 6AG GWm5CC...5’<br />

5’...GGGCCm5CW GG...3’<br />

3’...CCCGG GWm5CC...5’<br />

5’...Cm5CW GGATCm5CW GG...3’<br />

3’...G GWm5CCTAG GWm5CC...5’<br />

5’...GTATCm5CW GG...3’<br />

3’...CATAG GWm5CC...5’<br />

5’...GCm5CW GGNNGGC...3’<br />

3’...CG GWm5CCNNCCG...5’<br />

5’...Cm5CW GG...3’<br />

3’...G GWm5CC...5’<br />

5’...Cm5CW GGG...3’<br />

3’...G GWm5CCC...5’<br />

5’...Cm5CW GGATG...3’<br />

3’...G GWm5CCTAC...5’<br />

5’...Cm5CW GG(N) 4GG...3’<br />

3’...G GWm5CC(N) 4CC...5’<br />

5’...Cm5CW GGNCm5CW GG...3’<br />

3’...G GWm5CCNG GWm5CC...5’<br />

5’...GKGCCm5CW GG...3’<br />

3’...CMCGG GWm5CC...5’<br />

5’...GGYRCm5CW GG...3’<br />

3’...CCRYG GWm5CC...5’<br />

5’...Cm5CW GGYRCm5CW GG...3’<br />

3’...G GWm5CCRYG GWm5CC...5’<br />

5’...GGGCCm5CW GG...3’<br />

3’...CCCGG GWm5CC...5’<br />

5’...GGNNCm5CW GG...3’<br />

3’...CCNNG GWm5CC...5’<br />

5’...Cm5CW GGNNCm5CW GG...3’<br />

3’...G GWm5CCNNG GWm5CC...5’<br />

5’...Cm5CW GGATC...3’<br />

3’...G GWm5CCTAG...5’<br />

5’...Cm5CA GG(N) 4TGG...3’<br />

3’...G GTm5CC(N) 4ACC...5’<br />

5’...Cm5CA GGNNCm5CT GG...3’<br />

3’...G GTm5CCNNG GAm5CC...5’<br />

5’...GGCm5CW GG...3’<br />

3’...CCG GWm5CC...5’<br />

5’...Cm5CW GGCm5CW GG...3’<br />

3’...G GWm5CCG GWm5CC...5’<br />

5’...CAGNNCm5CT GG...3’<br />

3’...GTCNNG GTm5CC...5’<br />

5’...GGNCm5CW GG...3’<br />

3’...CCNG GWm5CC...5’<br />

Conventional<br />

FastDigest<br />

Eco24I<br />

Eco31I<br />

Eco31I<br />

Eco47I<br />

AvaII<br />

Eco91I<br />

Eco91I<br />

Eco147I<br />

StuI<br />

EcoO109I<br />

EcoO109I<br />

EheI<br />

EheI<br />

FaqI<br />

BsmFI<br />

FokI<br />

GsuI<br />

BpmI<br />

Hin1I<br />

BsaHI<br />

HphI<br />

KpnI<br />

KpnI<br />

MlsI<br />

MscI<br />

PfoI<br />

PfoI<br />

Psp5II<br />

PpuMI<br />

SduI<br />

Bsp1286I<br />

SfiI<br />

SfiI<br />

SgsI<br />

AscI<br />

SspDI<br />

Van91I<br />

PflMI<br />

XagI<br />

EcoNI<br />

Sequence* Effect<br />

5’...Cm5CW GGGCCm5CW GG...3’<br />

3’...G GWm5CCCGG GWm5CC...5’<br />

5’...Cm5CW GGTCTC...3’<br />

3’...G GWm5CCAGAG...5’<br />

5’...GGWCm5CW GG...3’<br />

3’...CCWG GWm5CC...5’<br />

5’...Cm5CW GGTNACm5CW GG...3’<br />

3’...G GWm5CCANTG GWm5CC...5’<br />

5’...AGGCm5CT GG...3’<br />

3’...TCCG GAm5CC...5’<br />

5’...RGGNCm5CT GG...3’<br />

3’...YCCNG GAm5CC...5’<br />

5’...Cm5CW GGCGCm5CW GG...3’<br />

3’...G GWm5CCGCG GWm5CC...5’<br />

5’...Cm5CW GGGAC...3’<br />

3’...G GWm5CCCTG...5’<br />

5’...Cm5CW GGATG...3’<br />

3’...G GWm5CCTAC...5’<br />

5’...CTCm5CA GG...3’<br />

3’...GAG GTm5CC...5’<br />

5’...GRCGCm5CW GG...3’<br />

3’...CYGCG GWm5CC...5’<br />

5’...Cm5CW GGTGA...3’<br />

3’...G GWm5CCACT...5’<br />

5’...GGTACm5CW GG...3’<br />

3’...CCATG GWm5CC...5’<br />

5’...Cm5CW GGTACm5CW GG...3’<br />

3’...G GWm5CCATG GWm5CC...5’<br />

5’...TGGCm5CA GG...3’<br />

3’...ACCG GTm5CC...5’<br />

5’...TCm5CA GGA...3’<br />

3’...AG GTm5CCT...5’<br />

5’...RGGWCm5CT GG...3’<br />

3’...YCCWG GAm5CC...5’<br />

5’...Cm5CW GGGCCm5CW GG...3’<br />

3’...G GWm5CCCGG GWm5CC...5’<br />

5’...GGCm5CW GGNNGGCC...3’<br />

3’...CCG GWm5CCNNCCGG...5’<br />

5’...Cm5CW GGCC(N) 5GGCm5CW GG...3’<br />

3’...G GWm5CCGG(N) 5CCG GWm5CC...5’<br />

5’...Cm5CW GGCGCGCm5CW GG...3’<br />

3’...G GWm5CCGCGCG GWm5CC...5’<br />

5’...Cm5CW GGCGCC...3’<br />

3’...G GWm5CCGCGG...5’<br />

5’...Cm5CA GG(N) 3TGG...3’<br />

3’...G GTm5CC(N) 3ACC...5’<br />

5’...Cm5CT GG(N) 3AGG...3’<br />

3’...G GAm5CC(N) 3TCC...5’<br />

5’...Cm5CT GGNCm5CA GG...3’<br />

3’...G GAm5CCNG GTm5CC...5’<br />

www.thermoscientific.com/onebio 175


176<br />

Effect of CpG Methylation on DNA Cleavage<br />

Methylated DNA substrates were prepared using SssI methyltransferase.<br />

Table 1.17. CpG is located inside the recognition site.<br />

Conventional<br />

FastDigest<br />

Sequence Effect<br />

AatII<br />

AatII<br />

GACGTC<br />

AjiI CACGTC<br />

BauI CACGAG<br />

BcnI<br />

NciI<br />

Bsh1236I<br />

Bsh1236I<br />

Bsh1285I<br />

BsiEI<br />

BshTI<br />

AgeI<br />

Bsp68I<br />

NruI<br />

Bsp119I<br />

Bsp119I<br />

Bsu15I<br />

ClaI<br />

CCSGG<br />

CGCG<br />

CGRYCG<br />

ACCGGT<br />

TCGCGA<br />

TTCGAA<br />

ATCGAT<br />

Cfr9I CCCGGG<br />

Cfr10I<br />

BsrFI<br />

RCCGGY<br />

Cfr42I CCGCGG<br />

CpoI<br />

RsrII<br />

CseI<br />

HgaI<br />

Eco47III<br />

AfeI<br />

Eco52I<br />

EagI<br />

Eco72I<br />

PmlI<br />

Eco88I<br />

AvaI<br />

Eco105I<br />

SnaBI<br />

EheI<br />

EheI<br />

Esp3I<br />

BsmBI<br />

FspAI<br />

FspAI<br />

CGGWCCG<br />

GACGC<br />

AGCGCT<br />

CGGCCG<br />

CACGTG<br />

CYCGRG<br />

TACGTA<br />

GGCGCC<br />

CGTCTC<br />

RTGCGCAY<br />

HaeII RGCGCY<br />

HhaI<br />

HhaI<br />

Hin1I<br />

BsaHI<br />

Hin6I<br />

HinP1I<br />

GCGC<br />

GRCGYC<br />

GCGC<br />

www.thermoscientific.com/onebio<br />

Conventional<br />

FastDigest<br />

Sequence Effect<br />

HpaII<br />

HpaII<br />

CCGG<br />

Kpn2I<br />

Kpn2I<br />

TCCGGA<br />

MauBI<br />

MauBI<br />

CGCGCGCG<br />

MbiI<br />

BsrBI<br />

GAGCGG<br />

MluI<br />

MluI<br />

ACGCGT<br />

MreI<br />

MreI<br />

CGCCGGCG<br />

MspI<br />

MspI<br />

CCGG<br />

NotI<br />

NotI<br />

GCGGCCGC<br />

NsbI<br />

FspI<br />

TGCGCA<br />

PauI<br />

BssHII<br />

GCGCGC<br />

PdiI<br />

NaeI<br />

GCCGGC<br />

Pfl23II<br />

BsiWI<br />

CGTACG<br />

Ppu21I<br />

BsaAI<br />

YACGTR<br />

Psp1406I<br />

AclI<br />

AACGTT<br />

PvuI<br />

PvuI<br />

CGATCG<br />

SalI<br />

SalI<br />

GTCGAC<br />

SfaAI<br />

AsiSI<br />

GCGATCGC<br />

SgrDI CGTCGACG<br />

SgsI<br />

AscI<br />

SmaI<br />

SmaI<br />

SsiI<br />

AciI<br />

GGCGCGCC<br />

CCCGGG<br />

CCGC<br />

SspDI GGCGCC<br />

TaiI<br />

TaiI<br />

TaqI<br />

TaqI<br />

ACGT<br />

TCGA<br />

TauI GCSGC<br />

XhoI<br />

XhoI<br />

Note<br />

CTCGAG<br />

– cleavage not blocked.<br />

– cleavage blocked.<br />

– cleavage rate is reduced significantly by<br />

methylation.<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;


Table 1.18. CpG partially overlaps the recognition site.<br />

Conventional<br />

FastDigest<br />

AarI<br />

DrdI<br />

Acc65I<br />

Acc65I<br />

AdeI<br />

DraIII<br />

AjuI<br />

AjuI<br />

AlfI<br />

AloI<br />

Alw21I<br />

Alw21I<br />

Alw26I<br />

Alw26I<br />

Alw44I<br />

ApaLI<br />

ApaI<br />

ApaI<br />

BamHI<br />

BamHI<br />

BfuI<br />

BglI<br />

BglI<br />

Bme1390I<br />

ScrFI<br />

Sequence* Effect<br />

5’...CACCTGm5C G...3’<br />

3’...GTGGAC Gm5C...5’<br />

5’...m5C GAC(N) 6GTC...3’<br />

3’... Gm5CTG(N) 6CAG...5’<br />

5’...m5C GAC(N) 6GTm5C G...3’<br />

3’... Gm5CTG(N) 6CA Gm5C...5’<br />

5’...GAm5C G(N) 5GTC...3’<br />

3’...CT Gm5C(N) 5CAG...5’<br />

5’...GAm5C G(N) 4m5C GTC...3’<br />

3’...CT Gm5C(N) 4 Gm5CAG...5’<br />

5’...GGTACm5C G...3’<br />

3’...CCATG Gm5C...5’<br />

5’...m5C GGTACm5C G...3’<br />

3’... Gm5CCATG Gm5C...5’<br />

5’...CAm5C GNNGTG...3’<br />

3’...GT Gm5CNNCAC...5’<br />

5’...CAm5C GNm5C GTG...3’<br />

3’...GT Gm5CN Gm5CAC...5’<br />

5’...m5C GAA(N) 7TTGG...3’<br />

3’... Gm5CTT(N) 7AACC...5’<br />

5’...GCA(N) 6TGm5C G...3’<br />

3’...CGT(N) 6AC Gm5C...5’<br />

5’...m5C GAAC(N) 6TCC...3’<br />

3’... Gm5CTTG(N) 6AGG...5’<br />

5’...GAAC(N) 6TCm5C G...3’<br />

3’...CTTG(N) 6AG Gm5C...5’<br />

5’...GAAm5C G(N) 5TCC...3’<br />

3’...CTT Gm5C(N) 5AGG...5’<br />

5’...m5C GWGCWm5C G...3’<br />

3’... Gm5CWCGW Gm5C...5’<br />

5’...GTCTm5C G...3’<br />

3’...CAGA Gm5C...5’<br />

5’...m5C GTCTC...3’<br />

3’... Gm5CAGAG...5’<br />

5’...GTGCAm5C G...3’<br />

3’...CACGT Gm5C...5’<br />

5’...GGGCCm5C G...3’<br />

3’...CCCGG Gm5C...5’<br />

5’...m5C GGGCCm5C G...3’<br />

3’... Gm5CCCGG Gm5C...5’<br />

5’...m5C GGATCm5C G...3’<br />

3’... Gm5CCTAG Gm5C...5’<br />

5’...m5C GTATCC...3’<br />

3’... Gm5CATAGG...5’<br />

5’...GTATCm5C G...3’<br />

3’...CATAG Gm5C...5’<br />

5’...GCm5C G(N) 3m5C GGC...3’<br />

3’...CG Gm5C(N) 3 Gm5CCG...5’<br />

5’...GCC(N) 5GGm5C G...3’<br />

3’...CGG(N) 5CC Gm5C...5’<br />

5’...m5C GCC(N) 5GGm5C G...3’<br />

3’... Gm5CGG(N) 5CC Gm5C...5’<br />

5’...Cm5C GGG...3’<br />

3’...G Gm5CCC...5’<br />

?<br />

?<br />

Conventional<br />

FastDigest<br />

BoxI<br />

PshAI<br />

BpiI<br />

BbsI<br />

BplI<br />

BplI<br />

Bpu10I<br />

Bpu10I<br />

Bpu1102I<br />

BlpI<br />

BseDI<br />

BsaJI<br />

BseGI<br />

BseGI<br />

BseJI<br />

BsaBI<br />

BseLI<br />

BslI<br />

BseMI<br />

BsrDI<br />

BseSI<br />

Bme1580I<br />

BseXI<br />

BseXI<br />

BshNI<br />

BanI<br />

Bsp120I<br />

Bsp120I<br />

Bsp143I<br />

Sau3AI<br />

BspLI<br />

NlaIV<br />

BspOI<br />

BmtI<br />

Sequence* Effect<br />

5’...GAm5C G(N) 3GTC...3’<br />

3’...CT Gm5C(N) 3CAG...5’<br />

5’...GAm5C GNNm5C GTC...3’<br />

3’...CT Gm5CNN Gm5CAG...5’<br />

5’...GAC(N) 4GTm5C G...3’<br />

3’...CTG(N) 4CA Gm5C...5’<br />

5’...GAAGAm5C G...3’<br />

3’...CTTCT Gm5C...5’<br />

5’...m5C GAAGAC...3’<br />

3’... Gm5CTTCTG...5’<br />

5’...m5C GAG(N) 5CTm5C G...3’<br />

3’... Gm5CTC(N) 5GA Gm5C...5’<br />

5’...CCTNAGm5C G...3’<br />

3’...GGANTC Gm5C...5’<br />

5’...m5C GCTNAGm5C G...3’<br />

3’... Gm5CGANTC Gm5C...5’<br />

5’...Cm5C Gm5C GG...3’<br />

3’...G Gm5C Gm5CC...5’<br />

5’...m5C GGATG...3’<br />

3’... Gm5CCTAC...5’<br />

5’...GAT(N) 4ATm5C G...3’<br />

3’...CTA(N) 4TA Gm5C...5’<br />

5’...m5C GAT(N) 4ATm5C G...3’<br />

3’... Gm5CTA(N) 4TA Gm5C...5’<br />

5’...Cm5C G(N) 6GG...3’<br />

3’...G Gm5C(N) 6CC...5’<br />

5’...Cm5C G(N) 5m5C GG...3’<br />

3’...G Gm5C(N) 5 Gm5CC...5’<br />

5’...m5C GCAATG...3’<br />

3’... Gm5CGTTAC...5’<br />

5’...m5C GKGCMm5C G...3’<br />

3’... Gm5CMCGK Gm5C...5’<br />

5’...m5C GCAGm5C G...3’<br />

3’... Gm5CGTC Gm5C...5’<br />

5’...GGYRCm5C G...3’<br />

3’...CCRYG Gm5C...5’<br />

5’...m5C GGYRCm5C G...3’<br />

3’... Gm5CCRYG Gm5C...5’<br />

5’...GGm5C GCC...3’<br />

3’...CC Gm5CGG...5’<br />

5’...GGGCCm5C G...3’<br />

3’...CCCGG Gm5C...5’<br />

5’...GATm5C G...3’<br />

3’...CTA Gm5C...5’<br />

5’...GGNNCm5C G...3’<br />

3’...CCNNG Gm5C...5’<br />

5’...m5C GGNNCm5C G...3’<br />

3’... Gm5CCNNG Gm5C...5’<br />

5’...GCTAGm5C G...3’<br />

3’...CGATC Gm5C...5’<br />

5’...m5C GCTAGm5C G...3’<br />

3’... Gm5CGATC Gm5C...5’<br />

?<br />

Conventional<br />

FastDigest<br />

BspPI<br />

Bst1107I<br />

BstZ17I<br />

BsuRI<br />

HaeIII<br />

BveI<br />

BspMI<br />

Cfr13I<br />

Sau96I<br />

Csp6I<br />

Csp6I<br />

DpnI<br />

DpnI<br />

Eam1104I<br />

EarI<br />

Eam1105I<br />

Eam1105I<br />

Ecl136II<br />

Ecl136II<br />

Eco24I<br />

Eco31I<br />

Eco31I<br />

Eco32I<br />

EcoRV<br />

Eco47I<br />

AvaII<br />

Eco91I<br />

Eco91I<br />

EcoRI<br />

EcoRI<br />

FaqI<br />

BsmFI<br />

FokI<br />

Sequence* Effect<br />

5’...GGATm5C G...3’<br />

3’...CCTA Gm5C...5’<br />

5’...m5C GGATC...3’<br />

3’... Gm5CCTAG...5’<br />

5’...GTATAm5C G...3’<br />

3’...CATAT Gm5C...5’<br />

5’...m5C GTATAm5C G...3’<br />

3’... Gm5CATAT Gm5C...5’<br />

5’...m5C GGCm5C G...3’<br />

3’... Gm5CCG Gm5C...5’<br />

5’...ACCTGm5C G...3’<br />

3’...TGGAC Gm5C...5’<br />

5’...GGNCm5C G...3’<br />

3’...CCNG Gm5C...5’<br />

5’...m5C GTAm5C G...3’<br />

3’... Gm5CAT Gm5C...5’<br />

5’...Gm6A Tm5C G...3’<br />

3’...C Tm6A Gm5C...5’<br />

5’...CTCTTm5C G...3’<br />

3’...GAGAA Gm5C...5’<br />

5’...GAm5C G(N) 3m5C GTC...3’<br />

3’...CT Gm5C(N) 3 Gm5CAG...5’<br />

5’...GAC(N) 5GTm5C G...3’<br />

3’...CTG(N) 5CA Gm5C...5’<br />

5’...m5C GAC(N) 5GTm5C G...3’<br />

3’... Gm5CTG(N) 5CA Gm5C...5’<br />

5’...GAGCTm5C G...3’<br />

3’...CTCGA Gm5C...5’<br />

5’...m5C GAGCTm5C G...3’<br />

3’... Gm5CTCGA Gm5C...5’<br />

5’...m5C GRGCYm5C G...3’<br />

3’... Gm5CYCGR Gm5C...5’<br />

5’...GGTCTm5C G...3’<br />

3’...CCAGA Gm5C...5’<br />

5’...m5C GGTCTC...3’<br />

3’... Gm5CCAGAG...5’<br />

5’...m5C GATATm5C G...3’<br />

3’... Gm5CTATA Gm5C...5’<br />

5’...GGWCm5C G...3’<br />

3’...CCWG Gm5C...5’<br />

5’...m5C GGTNACm5C G...3’<br />

3’... Gm5CCANTG Gm5C...5’<br />

5’...m5C GAATTC...3’<br />

3’... Gm5CTTAAG...5’<br />

5’...m5C GAATTm5C G...3’<br />

3’... Gm5CTTAA Gm5C...5’<br />

5’...GGGAm5C G...3’<br />

3’...CCCT Gm5C...5’<br />

5’...m5C GGGAC...3’<br />

3’... Gm5CCCTG...5’<br />

5’...m5C GGATG...3’<br />

3’... Gm5CCTAC...5’’<br />

www.thermoscientific.com/onebio 177<br />

?


178<br />

Table 1.18. CpG partially overlaps the recognition site.<br />

Conventional<br />

FastDigest<br />

HincII<br />

HincII<br />

HinfI<br />

HinfI<br />

HphI<br />

Hpy8I<br />

Hpy8I<br />

HpyF10VI<br />

HpyF10VI<br />

KpnI<br />

KpnI<br />

KspAI<br />

HpaI<br />

LguI<br />

SapI<br />

Lsp1109I<br />

BbvI<br />

LweI<br />

SfaNI<br />

MbiI<br />

BsrBI<br />

MboI<br />

MboI<br />

MboII<br />

MboII<br />

MnlI<br />

MnlI<br />

MssI<br />

MssI<br />

Mva1269I<br />

Mva1269I<br />

NheI<br />

NheI<br />

www.thermoscientific.com/onebio<br />

Sequence* Effect<br />

5’...GTYRAm5C G...3’<br />

3’...CARYT Gm5C...5’<br />

5’...m5C GTYRAm5C G...3’<br />

3’... Gm5CARYT Gm5C...5’<br />

5’...GTm5C GAC...3’<br />

3’...CA Gm5CTG...5’<br />

5’...GANTm5C G...3’<br />

3’...CTNA Gm5C...5’<br />

5’...m5C GANTm5C G...3’<br />

3’... Gm5CTNA Gm5C...5’<br />

5’...m5C GGTGA...3’<br />

3’... Gm5CCACT...5’<br />

5’...GTNNAm5C G...3’<br />

3’...CANNT Gm5C...5’<br />

5’...m5C GTNNAm5C G...3’<br />

3’... Gm5CANNT Gm5C...5’<br />

5’...GC(N) 7Gm5C G...3’<br />

3’...CG(N) 7C Gm5C...5’<br />

5’...m5C GC(N) 7Gm5C G...3’<br />

3’... Gm5CG(N) 7C Gm5C...5’<br />

5’...Gm5C G(N) 6GC...3’<br />

3’...C Gm5C(N) 6CG...5’<br />

5’...Gm5C G(N) 5m5C GC...3’<br />

3’...C Gm5C(N) 5 Gm5CG...5’<br />

5’...m5C GGTACm5C G...3’<br />

3’... Gm5CCATG Gm5C...5’<br />

5’...GTTAAm5C G...3’<br />

3’...CAATT Gm5C...5’<br />

5’...m5C GTTAAm5C G...3’<br />

3’... Gm5CAATT Gm5C...5’<br />

5’...m5C GCTCTTC...3’<br />

3’... Gm5CGAGAAG...5’<br />

5’...GCTCTTm5C G...3’<br />

3’...CGAGAA Gm5C...5’<br />

5’...m5C GCAGm5C G...3’<br />

3’... Gm5CGTC Gm5C...5’<br />

5’...GCATm5C G...3’<br />

3’...CGTA Gm5C...5’<br />

5’...m5C GAGCGG...3’<br />

3’... Gm5CTCGCC...5’<br />

5’...m5C GATm5C G...3’<br />

3’... Gm5CTA Gm5C...5’<br />

5’...m5C GAAGA...3’<br />

3’... Gm5CTTCT...5’<br />

5’...CCTm5C G...3’<br />

3’...GGA Gm5C...5’<br />

5’...GTTTAAAm5C G...3’<br />

3’...CAAATTT Gm5C...5’<br />

5’...m5C GTTTAAAm5C G...3’<br />

3’... Gm5CAAATTT Gm5C...5’<br />

5’...GAATGm5C G...3’<br />

3’...CTTAC Gm5C...5’<br />

5’...m5C GAATGC...3’<br />

3’... Gm5CTTACG...5’<br />

5’...GCTAGm5C G...3’<br />

3’...CGATC Gm5C...5’<br />

5’...m5C GCTAGm5C G...3’<br />

3’... Gm5CGATC Gm5C...5’<br />

?<br />

?<br />

Conventional<br />

FastDigest<br />

NmuCI<br />

NmuCI<br />

OliI<br />

AleI<br />

PaeI<br />

SphI<br />

PdmI<br />

PdmI<br />

PfeI<br />

TfiI<br />

PfoI<br />

PfoI<br />

PspFI<br />

PsuI<br />

PsuI<br />

PsyI<br />

PsyI<br />

RsaI<br />

RsaI<br />

RseI<br />

MslI<br />

SacI<br />

SacI<br />

SanDI<br />

SatI<br />

Fnu4HI<br />

SchI<br />

MlyI<br />

SduI<br />

Bsp1286I<br />

SfaNI<br />

SfiI<br />

SfiI<br />

Sequence* Effect<br />

5’...GTCAm5C G...3’<br />

3’...CAGT Gm5C...5’<br />

5’...m5C GTCAm5C G...3’<br />

3’... Gm5CAGT Gm5C...5’<br />

5’...CAm5C GNNNGTG...3’<br />

3’...GT Gm5CNNNCAC...5’<br />

5’...CAm5C GNNm5C GTG...3’<br />

3’...GT Gm5CNN Gm5CAC...5’<br />

5’...m5C GCATGm5C G...3’<br />

3’... Gm5CGTAC Gm5C...5’<br />

5’...GAA(N) 4TTm5C G...3’<br />

3’...CTT(N) 4AA Gm5C...5’<br />

5’...m5C GAA(N) 4TTm5C G...3’<br />

3’... Gm5CTT(N) 4AA Gm5C...5’<br />

5’...GAWTm5C G...3’<br />

3’...CTWA Gm5C...5’<br />

5’...TCm5C GGGA...3’<br />

3’...AG Gm5CCCT...5’<br />

5’...CCCAGm5C G...3’<br />

3’...GGGTC Gm5C...5’<br />

5’...m5C GGATCm5C G...3’<br />

3’... Gm5CCTAG Gm5C...5’<br />

5’...GAm5C GNNGTm5C G...3’<br />

3’...CT Gm5CNNCA Gm5C...5’<br />

5’...GTAm5C G...3’<br />

3’...CAT Gm5C...5’<br />

5’...m5C GTAm5C G...3’<br />

3’... Gm5CAT Gm5C...5’<br />

5’...CAm5C GNNNRTG...3’<br />

3’...GT Gm5CNNNYAC...5’<br />

5’...m5C GAGCTm5C G...3’<br />

3’... Gm5CTCGA Gm5C...5’<br />

5’...GGGWCCm5C G...3’<br />

3’...CCCWGG Gm5C...5’<br />

5’...m5C GGGWCCm5C G...3’<br />

3’... Gm5CCWGG Gm5C...5’<br />

5’...Gm5C GGC...3’<br />

3’...C Gm5CCG...5’<br />

5’...GCNGm5C G...3’<br />

3’...CGNC Gm5C...5’<br />

5’...GAGTm5C G...3’<br />

3’...CTCA Gm5C...5’<br />

5’...m5C GAGTC...3’<br />

3’... Gm5CTCAG...5’<br />

5’...m5C GDGCHm5C G...3’<br />

3’... Gm5CHCGD Gm5C...5’<br />

5’...m5C GCATC...3’<br />

3’... Gm5CGTAG...5’<br />

5’...GCATm5C G...3’<br />

3’...CGTA Gm5C...5’<br />

5’...m5C GGCC(N) 5GGCm5C G...3’<br />

3’... Gm5CCGG(N) 5CCG Gm5C...5’<br />

5’...GGCm5C G(N) 4GGCC...3’<br />

3’...CCG Gm5C(N) 4CCGG...5’<br />

5’...GGCm5C G(N) 3m5C GGCC...3’<br />

3’...CCG Gm5C(N) 3 Gm5CCGG...5’<br />

Conventional<br />

FastDigest<br />

SgeI**<br />

SmoI<br />

TaaI<br />

TaaI<br />

XapI<br />

XapI<br />

XceI<br />

NspI<br />

XmiI<br />

AccI<br />

Note<br />

* – recognition sequence is indicated in bold.<br />

** – SgeI cleaves only methylated DNA.<br />

– overlapping methylase sequences.<br />

m5C = 5-methylcytosine.<br />

– cleavage not blocked.<br />

– cleavage blocked.<br />

Sequence* Effect<br />

5’...m5C GNG...3’<br />

3’... Gm5CNC...5’<br />

5’...m5C Gm5C G...3’<br />

3’... Gm5C Gm5C...5’<br />

5’...CTm5C GAG...3’<br />

3’...GA Gm5CTC...5’<br />

5’...Am5C GGT...3’<br />

3’...T Gm5CCA...5’<br />

5’...m5C GAATTm5C G...3’<br />

3’... Gm5CTTAA Gm5C...5’<br />

5’...RCATGm5C G...3’<br />

3’...YGTAC Gm5C...5’<br />

5’...m5C GCATGm5C G...3’<br />

3’... Gm5CGTAC Gm5C...5’<br />

5’...GTm5C GAC...3’<br />

3’...CA Gm5CTG...5’<br />

5’...GTMKAm5C G...3’<br />

3’...CAKMT Gm5C...5’<br />

– cleavage rate is reduced significantly<br />

by methylation.<br />

? – the sensitivity to methylation has not been<br />

determined.<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;<br />

?


Effect of EcoKI and EcoBI Methylation on DNA Cleavage<br />

Methylated DNA substrates were purified from E.coli K12 or E.coli B strains.<br />

Table 1.19. EcoBI overlapping methylation.<br />

Conventional<br />

FastDigest<br />

AatII<br />

AatII<br />

AluI<br />

AluI<br />

BclI<br />

BclI<br />

BglII<br />

BglII<br />

Bpu10I<br />

BpuI<br />

Bsp143I<br />

Sau3AI<br />

EcoRI<br />

EcoRI<br />

HincII<br />

HincII<br />

HindIII<br />

HindIII<br />

HinfI<br />

HinfI<br />

HphI<br />

MboI<br />

MboI<br />

MboII<br />

MboII<br />

MluI<br />

MluI<br />

MnlI<br />

MnlI<br />

NdeI<br />

NdeI<br />

OliI<br />

AleI<br />

PaeI<br />

SphI<br />

PagI<br />

BspHI<br />

SacI<br />

SacI<br />

ScaI<br />

ScaI<br />

SspI<br />

SspI<br />

TasI<br />

Tsp509I<br />

Sequence* Effect<br />

5’...TGm6ACGTC(N) 4 TGCT...3’<br />

3’...AC TGCAG(N) 4m6ACGA...5’<br />

5’...TGm6AGCT(N) 5 TGCT...3’<br />

3’...AC TCGA(N) 5m6ACGA...5’<br />

5’...TGm6A TCA(N) 5 TGCT...3’<br />

3’...AC Tm6AGT(N) 5m6ACGA...5’<br />

5’...TGm6AGATCT(N) 3 TGCT...3’<br />

3’...AC TCTAGA(N) 3m6ACGA...5’<br />

5’...CCTGm6AGC(N) 6 TGCT...3’<br />

3’...GGAC TCG(N) 6m6ACGA...5’<br />

5’...TGm6ATC(N) 6 TGCT...3’<br />

3’...AC TAG(N) 6m6ACGA...5’<br />

5’...TGm6AATTC(N) 4 TGCT...3’<br />

3’...AC TTAAG(N) 4m6ACGA...5’<br />

5’...GTTGm6AC(N) 7 TGCT...3’<br />

3’...CAAC TG(N) 7m6ACGA...5’<br />

5’...TGm6AAGCTT(N) 3 TGCT...3’<br />

3’...AC TTCGAA(N) 3m6ACGA...5’<br />

5’...TGm6ANTC(N) 5 TGCT...3’<br />

3’...AC TNAG(N) 5m6ACGA...5’<br />

5’...GGTGm6A(N) 8 TGCT...3’<br />

3’...CCAC T(N) 8m6ACGA...5’<br />

5’...TGm6ATC(N) 6 TGCT...3’<br />

3’...AC TAG(N) 6m6ACGA...5’<br />

5’...TGm6AAGA(N) 5 TGCT...3’<br />

3’...AC TTCT(N) 5m6ACGA...5’<br />

5’...TGm6ACGCGT(N) 3 TGCT...3’<br />

3’...AC TGCGCA(N) 3m6ACGA...5’<br />

5’...TGm6AGG(N) 6 TGCT...3’<br />

3’...AC TCC(N) 6m6ACGA...5’<br />

5’...TGm6A(N) 4CATA TGCT...3’<br />

3’...AC T(N) 4GTATm6ACGA...5’<br />

5’...TGm6A(N) 4CACG TGCT...3’<br />

3’...AC T(N) 4GTGCm6ACGA...5’<br />

5’...TGm6A(N) 5GCA TGCT...3’<br />

3’...AC T(N) 5CGTm6ACGA...5’<br />

5’...TCATGm6A(N) 8 TGCT...3’<br />

3’...AGTAC T(N) 8m6ACGA...5’<br />

5’...TGm6AGCTC(N) 4 TGCT...3’<br />

3’...AC TCGAG(N) 4m6ACGA...5’<br />

5’...TGm6AGTACT(N) 3 TGCT...3’<br />

3’...AC TCATGA(N) 3m6ACGA...5’<br />

5’...TGm6AATATT(N) 3 TGCT...3’<br />

3’...AC TTATAA(N) 3m6ACGA...5’<br />

5’...TGm6AATT(N) 5 TGCT...3’<br />

3’...AC TTAA(N) 5m6ACGA...5’<br />

Table 1.20. EcoKI overlapping methylation.<br />

Conventional<br />

FastDigest<br />

Alw21I<br />

Alw21I<br />

Alw44I<br />

ApaLI<br />

BseSI<br />

Bme1580I<br />

DraI<br />

DraI<br />

HincII<br />

HincII<br />

KspAI<br />

HpaI<br />

MluI<br />

MluI<br />

MssI<br />

MssI<br />

NsbI<br />

FspI<br />

OliI<br />

AleI<br />

RseI<br />

MslI<br />

Tru1I<br />

Tru1I<br />

Note<br />

* – recognition sequence is indicated in bold.<br />

– cleavage not blocked.<br />

– cleavage blocked.<br />

Sequence* Effect<br />

5’...Am6AC(N) 6G TGCWC...3’<br />

3’...T TG(N) 6Cm6ACGWG...5’<br />

5’...Am6AC(N) 6G TGCAC...3’<br />

3’...T TG(N) 6Cm6ACGTG...5’<br />

5’...Am6AC(N) 6G TGCMC...3’<br />

3’...T TG(N) 6Cm6ACGKG...5’<br />

5’...TTTAAm6AC(N) 6G TGC...3’<br />

3’...AAATT TG(N) 6Cm6ACG...5’<br />

5’...GTYAm6AC(N) 6G TGC...3’<br />

3’...CART TG(N) 6Cm6ACG...5’<br />

5’...GTTAm6AC(N) 6G TGC...3’<br />

3’...CAAT TG(N) 6Cm6ACG...5’<br />

5’...Am6ACGCGTNNG TGC...3’<br />

3’...T TGCGCANNCm6ACG...5’<br />

5’...GTTTAAm6AC(N) 6G TGC...3’<br />

3’...CAAATT TG(N) 6Cm6ACG...5’<br />

5’...Am6AC(N) 6G TGCGCA...3’<br />

3’...T TG(N) 6Cm6ACGCGT...5’<br />

5’...Am6ACAC(N) 4G TGC...3’<br />

3’...T TGTG(N) 4Cm6ACG...5’<br />

5’...GCm6ACNNNNRTG TT...3’<br />

3’...CG TGNNNNYACm6AT...5’<br />

5’...TTAm6AC(N) 6G TGC...3’<br />

3’...AAT TG(N) 6Cm6ACG...5’<br />

– cleavage rate is reduced significantly by<br />

methylation.<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;<br />

Recognition sequences of the following<br />

endonucleases may also overlap with DNA<br />

sequences methylated by EcoBI and EcoKI.<br />

The following conventional restriction enzymes<br />

and the respective FastDigest enzymes have not<br />

been tested for sensitivity to EcoBI methylation:<br />

AarI, AdeI, AjiI, Alw21I, BauI, BcuI, BglII, BoxI,<br />

<br />

BseXI, BshTI, Bsp143II, BspPI, Bsu15I, BveI,<br />

CaiI, Cfr10I, CseI, DpnI, Eam1104I, Ecl136II,<br />

Eco24I, Eco31I, Eco32I, Eco47III, Eco57I,<br />

Eco72I, Eco81I, Eco91I, Eco147I, EcoO109I,<br />

Esp3I, FspAI, FokI*, HaeII*, HindIII, Hin1I,<br />

Hin1II, Hpy8I, HpyF3I, LguI, Lsp1109I, LweI,<br />

MbiI, Mph1103I, MunI, Mva1269I, NdeI,<br />

NmuCI, PdmI, PfeI, Ppu21I, PscI, Psp5II,<br />

Psp1406I, PsuI, PsyI, PvuII, RseI, SchI, SduI,<br />

SexAI*, SfaNI*, SmiI, SmoI, SspI, TaaI, TaiI,<br />

TatI, TscAI, VspI, XagI, XapI and XceI.<br />

The following conventional restriction enzymes<br />

and the respective FastDigest enzymes have not<br />

been tested for sensitivity to EcoKI methylation:<br />

AanI, AdeI, AjiI, BauI, BcuI, BseNI, BshNI,<br />

BshTI, Bsp119I, BveI, Cfr10I, Eco72I, Eco91I,<br />

FspAI, Hpy8I, MseI*, PacI, PdmI, Ppu21I, PscI,<br />

Psp1406I, SexAI*, SduI, TaaI, TaiI, TscAI<br />

and XceI.<br />

* enzymes are available in FastDigest format only.<br />

www.thermoscientific.com/onebio 179


180<br />

Newly Generated Cleavage Sites<br />

Recognition Sites Resulting from Ligation of Blunt DNA Ends<br />

Note<br />

* Restriction enzymes that have degenerate recognition sequences<br />

<br />

Be aware that these restriction enzymes will cleave sequences in<br />

addition to the one listed.<br />

enzymes are shown in purple.<br />

<strong>Thermo</strong> <strong>Scientific</strong> conventional enzymes are shown in orange.<br />

Table 1.21. Newly generated recognition sites resulting from ligation of blunt DNA ends.<br />

First restriction<br />

enzyme<br />

Second restriction enzyme<br />

Restriction enzymes that cleave the newly generated<br />

recognition sequence<br />

Bst1107I /FastDigest BstZ17I <br />

DraI/FastDigest DraI Eco32I /FastDigest EcoRV HincII<br />

FaiI<br />

AanI /<br />

FastDigest PsiI<br />

<br />

/FastDigest HincII KspAI /FastDigest HpaI MssI /<br />

FastDigest MssI RsaI/FastDigest RsaI ScaI/FastDigest ScaI <br />

SmiI /FastDigest SwaI <br />

Eco147I /FastDigest StuI <br />

Eco47III /FastDigest AfeI <br />

FastDigest MseI , Tru1I /FastDigest Tru1I<br />

SetI<br />

AluI/FastDigest AluI <br />

EheI /FastDigest EheI <br />

SspI/FastDigest SspI <br />

FastDigest MseI , TasI /FastDigest<br />

Tsp509I , Tru1I /FastDigest Tru1I<br />

AluI/FastDigest AluI PvuII/FastDigest PvuII SetI<br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI MnlI/FastDigest MnlI, SetI<br />

Eco105I /FastDigest SnaBI Ppu21I /FastDigest BsaAI * MaeII, Ppu21I /FastDigest BsaAI , SetI, TaiI<br />

<br />

/FastDigest TaiI<br />

AjiI *<br />

<br />

Eco72I /FastDigest PmlI Ppu21I /FastDigest BsaAI *<br />

<br />

Eco72I /FastDigest PmlI , MaeII, Ppu21I<br />

/FastDigest BsaAI , SetI, TaiI /<br />

FastDigest TaiI<br />

TscAI /FastDigest TspRI <br />

MbiI /FastDigest BsrBI HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

PdiI /FastDigest NaeI BceAI<br />

AjiI , MaeII, SetI, TaiI /FastDigest TaiI<br />

AluI/FastDigest AluI PvuII/FastDigest PvuII SetI<br />

DpnI/FastDigest DpnI HinfI/FastDigest HinfI<br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI <br />

Eco105I /FastDigest SnaBI Eco72I /FastDigest PmlI <br />

MnlI/FastDigest MnlI, SetI<br />

Ppu21I /FastDigest BsaAI Ppu21I /FastDigest BsaAI<br />

<br />

MaeII, SetI, TaiI /FastDigest TaiI<br />

AjiI *<br />

<br />

Eco47III /FastDigest AfeI FspAI/FastDigest FspAI FspAI/<br />

FastDigest FspAI NsbI /FastDigest FspI <br />

CseI /FastDigest HgaI <br />

EheI /FastDigest EheI <br />

CseI /FastDigest HgaI , Hin1I /<br />

FastDigest BsaHI <br />

MbiI /FastDigest BsrBI HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

PdiI /FastDigest NaeI BceAI<br />

<br />

AjiI AjiI Eco105I /FastDigest SnaBI <br />

AatII/FastDigest AatII, Hin1I /FastDigest BsaHI<br />

, MaeII, SetI, TaiI /FastDigest TaiI, ZraI<br />

Eco72I /FastDigest PmlI Ppu21I /FastDigest BsaAI<br />

Ppu21I /FastDigest BsaAI <br />

SetI<br />

Bst1107I /FastDigest BstZ17I <br />

BsuRI /FastDigest HaeIII Eco147I /FastDigest StuI<br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

AluI/FastDigest AluI Eco47III /FastDigest AfeI MlsI /FastDigest <br />

<br />

MscI <br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI<br />

PvuII/FastDigest PvuII <br />

AluI/FastDigest AluI <br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI<br />

EheI /FastDigest EheI BsuRI /FastDigest HaeIII <br />

Bst1107I /FastDigest BstZ17I Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

Bsh1236I /<br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI<br />

FastDigest Bsh1236I Eco47III /FastDigest AfeI <br />

<br />

EheI /FastDigest EheI BsuRI /FastDigest HaeIII <br />

Bsp68I /FastDigest NruI MbiI /FastDigest BsrBI <br />

<br />

Bsh1236I /FastDigest Bsh1236I<br />

<br />

www.thermoscientific.com/onebio<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;


Table 1.21. Newly generated recognition sites resulting from ligation of blunt DNA ends.<br />

First restriction<br />

enzyme<br />

Second restriction enzyme<br />

Restriction enzymes that cleave the newly generated<br />

recognition sequence<br />

Bsh1236I /FastDigest Bsh1236I MbiI /FastDigest BsrBI <br />

<br />

Bsh1236I /FastDigest Bsh1236I<br />

Bst1107I /FastDigest BstZ17I <br />

DraI/FastDigest DraI HincII /FastDigest HincII KspAI /<br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

Bsp68I /<br />

FastDigest HpaI MssI /FastDigest MssI RsaI/FastDigest RsaI<br />

TaqI/FastDigest TaqI<br />

ScaI/FastDigest ScaI SmiI /FastDigest SwaI SspI/<br />

FastDigest NruI FastDigest SspI <br />

<br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

Eco32I /FastDigest EcoRV <br />

FastDigest DpnI, MboI/FastDigest MboI, TaqI/<br />

FastDigest TaqI<br />

Eco47III /FastDigest AfeI <br />

EheI /FastDigest EheI BsuRI /FastDigest HaeIII <br />

HincII /FastDigest HincII Hpy188I<br />

AanI /FastDigest PsiI <br />

AluI/FastDigest AluI Bsh1236I /FastDigest Bsh1236I Bsp68I /<br />

FastDigest NruI BsuRI /FastDigest HaeIII <br />

FaiI<br />

Ecl136II /FastDigest Ecl136II MbiI /<br />

FastDigest BsrBI MbiI /FastDigest BsrBI MlsI /<br />

FastDigest MscI PvuII/FastDigest PvuII<br />

<br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

Bst1107I /<br />

FastDigest BstZ17I<br />

<br />

Eco147I /FastDigest StuI <br />

Eco47III /FastDigest AfeI <br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI,<br />

SetI<br />

AluI/FastDigest AluI <br />

EheI /FastDigest EheI <br />

HincII /FastDigest HincII KspAI /FastDigest HpaI Hpy8I /FastDigest Hpy8I<br />

HincII /FastDigest HincII <br />

Hpy8I /FastDigest Hpy8I, XmiI /FastDigest<br />

AccI <br />

RsaI/FastDigest RsaI ScaI/FastDigest ScaI MaeIII<br />

SspI/FastDigest SspI <br />

AluI/FastDigest AluI Ecl136II /FastDigest Ecl136II <br />

TasI /FastDigest Tsp509I <br />

Eco47III /FastDigest AfeI MbiI /FastDigest BsrBI <br />

PvuII/FastDigest PvuII <br />

<br />

Bst1107I /FastDigest BstZ17I Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

BsuRI /<br />

Eco147I /FastDigest StuI MlsI /FastDigest MscI <br />

BsuRI /FastDigest HaeIII <br />

<br />

FastDigest HaeIII<br />

<br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , BspPI<br />

, DpnI/FastDigest DpnI, MboI/FastDigest MboI<br />

EheI /FastDigest EheI <br />

BmgT120I, BsuRI /FastDigest HaeIII , Cfr13I<br />

/FastDigest Sau96I <br />

FspAI/FastDigest FspAI <br />

BseSI /FastDigest Bme1580I , SduI<br />

/FastDigest Bsp1286I <br />

HincII /FastDigest HincII <br />

AjiI AjiI Eco105I /FastDigest SnaBI <br />

FaqI /FastDigest BsmFI <br />

Eco72I /FastDigest PmlI Ppu21I /FastDigest BsaAI<br />

Ppu21I /FastDigest BsaAI <br />

SetI<br />

AluI/FastDigest AluI Ecl136II /FastDigest Ecl136II MbiI /<br />

FastDigest BsrBI PvuII/FastDigest PvuII <br />

AluI/FastDigest AluI <br />

Bst1107I /FastDigest BstZ17I Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

BsuRI /FastDigest HaeIII Eco147I /FastDigest StuI <br />

Eco47III /FastDigest AfeI MlsI /FastDigest MscI <br />

<br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI<br />

EheI /FastDigest EheI <br />

AluI/FastDigest AluI Ecl136II /FastDigest Ecl136II Eco47III /<br />

BsuRI /FastDigest HaeIII <br />

FastDigest AfeI MbiI /FastDigest BsrBI <br />

PvuII/FastDigest PvuII <br />

<br />

Bst1107I /FastDigest BstZ17I Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

BsuRI /FastDigest HaeIII Eco147I /FastDigest StuI <br />

MlsI /FastDigest MscI <br />

BsuRI /FastDigest HaeIII <br />

<br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , BspPI<br />

, DpnI/FastDigest DpnI, MboI/FastDigest MboI<br />

EheI /FastDigest EheI <br />

BmgT120I, BsuRI /FastDigest HaeIII , Cfr13I<br />

/FastDigest Sau96I <br />

FspAI/FastDigest FspAI <br />

BseSI /FastDigest Bme1580I , SduI<br />

/FastDigest Bsp1286I <br />

HincII /FastDigest HincII FaqI /FastDigest BsmFI <br />

<br />

www.thermoscientific.com/onebio 181


182<br />

Table 1.21. Newly generated recognition sites resulting from ligation of blunt DNA ends.<br />

First restriction<br />

enzyme<br />

Second restriction enzyme<br />

Restriction enzymes that cleave the newly generated<br />

recognition sequence<br />

AjiI <br />

HinfI/FastDigest HinfI, PleI, SchI /FastDigest MlyI<br />

<br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI HinfI/FastDigest HinfI<br />

Eco147I /FastDigest StuI SetI<br />

DpnI/FastDigest Eco32I /FastDigest EcoRV HinfI/FastDigest HinfI, PfeI /FastDigest TfiI <br />

DpnI Eco47III /FastDigest AfeI AluI/FastDigest AluI <br />

EheI /FastDigest EheI <br />

FspAI/FastDigest FspAI <br />

Alw21I /FastDigest Alw21I, SduI /<br />

FastDigest Bsp1286I <br />

SspI/FastDigest SspI TasI /FastDigest Tsp509I <br />

AanI /FastDigest PsiI HincII /FastDigest HincII KspAI /<br />

FastDigest MseI , Tru1I /FastDigest Tru1I<br />

FastDigest HpaI <br />

Bsp68I /FastDigest NruI <br />

DraI/FastDigest DraI<br />

FspAI/FastDigest FspAI FspAI/FastDigest FspAI NsbI /<br />

<br />

FastDigest FspI <br />

TaqI/FastDigest TaqI<br />

HpyCH4V<br />

MssI /FastDigest MssI SmiI /FastDigest SwaI <br />

AjiI AjiI Eco105I /FastDigest SnaBI <br />

DraI/FastDigest DraI, FastDigest MseI , Tru1I<br />

/FastDigest Tru1I<br />

Eco72I /FastDigest PmlI Ppu21I /FastDigest BsaAI<br />

Ppu21I /FastDigest BsaAI <br />

SetI<br />

AluI/FastDigest AluI PvuII/FastDigest PvuII AluI/FastDigest AluI <br />

Bst1107I /FastDigest BstZ17I <br />

BsuRI /FastDigest HaeIII Eco147I /FastDigest StuI<br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

Eco47III /FastDigest AfeI MlsI /FastDigest <br />

Ecl136II / MscI <br />

FastDigest Ecl136II<br />

<br />

DpnI/FastDigest DpnI <br />

HinfI/FastDigest HinfI, PleI, SchI /FastDigest MlyI<br />

<br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI<br />

EheI /FastDigest EheI BsuRI /FastDigest HaeIII <br />

AluI/FastDigest AluI, Alw21I /FastDigest<br />

MbiI /FastDigest BsrBI <br />

Alw21I Ecl136II /FastDigest Ecl136II,<br />

Eco24I , SacI/FastDigest SacI, SduI /<br />

FastDigest Bsp1286I , SetI<br />

AjiI MaeII, SetI, TaiI /FastDigest TaiI<br />

AjiI Eco72I /FastDigest PmlI Ppu21I / MaeII, Ppu21I /FastDigest BsaAI , SetI, TaiI<br />

FastDigest BsaAI <br />

/FastDigest TaiI<br />

Eco105I /<br />

FastDigest SnaBI<br />

<br />

AluI/FastDigest AluI PvuII/FastDigest PvuII SetI<br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI MnlI/FastDigest MnlI, SetI<br />

MbiI /FastDigest BsrBI HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

PdiI /FastDigest NaeI BceAI<br />

Eco105I /FastDigest SnaBI , MaeII,<br />

Ppu21I /FastDigest BsaAI <br />

Ppu21I /FastDigest BsaAI , SetI, TaiI<br />

/FastDigest TaiI<br />

AanI /FastDigest PsiI DpnI/FastDigest DpnI SetI<br />

AluI/FastDigest AluI Ecl136II /FastDigest Ecl136II <br />

Eco47III /FastDigest AfeI MbiI /FastDigest BsrBI <br />

PvuII/FastDigest PvuII <br />

<br />

Bst1107I /FastDigest BstZ17I <br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI,<br />

SetI<br />

Eco147I /<br />

FastDigest StuI<br />

BsuRI /FastDigest HaeIII MlsI /FastDigest MscI <br />

<br />

BsuRI /FastDigest HaeIII <br />

<br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , BspPI<br />

, DpnI/FastDigest DpnI, MboI/FastDigest MboI<br />

EheI /FastDigest EheI <br />

BmgT120I, BsuRI /FastDigest HaeIII , Cfr13I<br />

/FastDigest Sau96I <br />

FspAI/FastDigest FspAI <br />

BseSI /FastDigest Bme1580I , SduI<br />

/FastDigest Bsp1286I <br />

HincII /FastDigest HincII FaqI /FastDigest BsmFI <br />

www.thermoscientific.com/onebio


Table 1.21. Newly generated recognition sites resulting from ligation of blunt DNA ends.<br />

First restriction<br />

enzyme<br />

Second restriction enzyme<br />

Restriction enzymes that cleave the newly generated<br />

recognition sequence<br />

AanI /FastDigest PsiI <br />

AluI/FastDigest AluI Bsh1236I /FastDigest Bsh1236I BsuRI /<br />

FastDigest HaeIII Ecl136II /FastDigest<br />

FastDigest MseI , Tru1I /FastDigest Tru1I<br />

Ecl136II Eco147I /FastDigest StuI MbiI Bsp143I /FastDigest Sau3AI , DpnI/<br />

/FastDigest BsrBI MbiI /FastDigest BsrBI MlsI FastDigest DpnI, MboI/FastDigest MboI<br />

Eco32I / /FastDigest MscI PvuII/FastDigest<br />

FastDigest EcoRV PvuII <br />

<br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

Bsp68I /FastDigest NruI <br />

FastDigest DpnI, MboI/FastDigest MboI, TaqI/<br />

FastDigest TaqI<br />

DpnI/FastDigest DpnI HinfI/FastDigest HinfI, PfeI /FastDigest TfiI <br />

FspAI/FastDigest FspAI NsbI /FastDigest FspI HpyCH4V<br />

FspAI/FastDigest FspAI HpyCH4V, Mph1103I /FastDigest NsiI <br />

AanI /FastDigest PsiI Bst1107I /FastDigest BstZ17I <br />

DpnI/FastDigest DpnI <br />

AluI/FastDigest AluI Bsh1236I /FastDigest Bsh1236I Bsp68I /<br />

AluI/FastDigest AluI <br />

FastDigest NruI BsuRI /FastDigest HaeIII <br />

Eco147I /FastDigest StuI MlsI /<br />

FastDigest MscI PvuII/FastDigest PvuII <br />

<br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI MnlI/FastDigest MnlI<br />

Eco47III / Eco32I /FastDigest EcoRV LweI /FastDigest SfaNI <br />

FastDigest AfeI<br />

<br />

EheI /FastDigest EheI <br />

FastDigest HaeII , HhaI/FastDigest HhaI, Hin6I<br />

/FastDigest HinP1I <br />

FspAI/FastDigest FspAI FspAI/FastDigest FspAI NsbI / HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I<br />

FastDigest FspI <br />

<br />

MbiI /FastDigest BsrBI <br />

HpaII/FastDigest HpaII, MspI /FastDigest<br />

MspI<br />

PdiI /FastDigest NaeI <br />

SatI /FastDigest Fnu4HI , TauI/FastDigest<br />

TauI<br />

Cac8I<br />

AjiI AjiI , MaeII, SetI, TaiI /FastDigest TaiI<br />

Eco72I /FastDigest PmlI , MaeII, Ppu21I<br />

AjiI Ppu21I /FastDigest BsaAI <br />

/FastDigest BsaAI , SetI, TaiI /<br />

FastDigest TaiI<br />

Eco72I / AluI/FastDigest AluI PvuII/FastDigest PvuII SetI<br />

FastDigest PmlI Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI MnlI/FastDigest MnlI, SetI<br />

Eco105I /FastDigest SnaBI Ppu21I /FastDigest BsaAI * MaeII, Ppu21I /FastDigest BsaAI , SetI, TaiI<br />

<br />

/FastDigest TaiI<br />

TscAI /FastDigest TspRI <br />

MbiI /FastDigest BsrBI HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

PdiI /FastDigest NaeI BceAI<br />

AanI /FastDigest PsiI Bst1107I /FastDigest BstZ17I <br />

DpnI/FastDigest DpnI <br />

<br />

AjiI <br />

AluI/FastDigest AluI Bsh1236I /FastDigest Bsh1236I Bsp68I /<br />

Hin1I /FastDigest BsaHI <br />

FastDigest NruI PvuII/<br />

FastDigest PvuII <br />

BsuRI /FastDigest HaeIII <br />

BsuRI /FastDigest HaeIII Eco147I /FastDigest StuI BmgT120I, BsuRI /FastDigest HaeIII , Cfr13I<br />

MlsI /FastDigest MscI <br />

/FastDigest Sau96I <br />

EheI /<br />

FastDigest EheI<br />

<br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI <br />

Eco32I /FastDigest EcoRV <br />

Eco47III /FastDigest AfeI <br />

BsuRI /FastDigest HaeIII MnlI/<br />

FastDigest MnlI<br />

LweI /FastDigest SfaNI <br />

FastDigest HaeII , HhaI/FastDigest HhaI, Hin6I<br />

/FastDigest HinP1I <br />

FspAI/FastDigest FspAI FspAI/FastDigest FspAI NsbI / HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I<br />

FastDigest FspI <br />

<br />

MbiI /FastDigest BsrBI <br />

BsuRI /FastDigest HaeIII HpaII/<br />

FastDigest HpaII, MspI /FastDigest MspI<br />

PdiI /FastDigest NaeI <br />

SatI /FastDigest Fnu4HI , TauI/FastDigest<br />

TauI<br />

Cac8I<br />

AanI /FastDigest PsiI Bst1107I /FastDigest BstZ17I <br />

<br />

FaiI<br />

<br />

AjiI Eco72I /FastDigest PmlI <br />

Ppu21I /FastDigest BsaAI PvuII/FastDigest PvuII <br />

Eco147I /FastDigest StuI <br />

TscAI /FastDigest TspRI <br />

SetI<br />

Eco47III /FastDigest AfeI AluI/FastDigest AluI <br />

EheI /FastDigest EheI <br />

SspI/FastDigest SspI TasI /FastDigest Tsp509I <br />

<br />

www.thermoscientific.com/onebio 183


184<br />

Table 1.21. Newly generated recognition sites resulting from ligation of blunt DNA ends.<br />

First restriction<br />

enzyme<br />

Second restriction enzyme<br />

Restriction enzymes that cleave the newly generated<br />

recognition sequence<br />

AanI /FastDigest PsiI Bst1107I /FastDigest BstZ17I <br />

<br />

FaiI<br />

<br />

Eco147I /FastDigest StuI <br />

Eco47III /FastDigest AfeI <br />

SetI<br />

AluI/FastDigest AluI <br />

EheI /FastDigest EheI <br />

SspI/FastDigest SspI <br />

DraI/FastDigest DraI HincII /FastDigest HincII KspAI /<br />

TasI /FastDigest Tsp509I <br />

FastDigest HpaI MssI /FastDigest MssI RsaI/FastDigest RsaI HpyCH4VI<br />

ScaI/FastDigest ScaI SmiI /FastDigest SwaI <br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI MnlI/FastDigest MnlI<br />

Eco32I /FastDigest EcoRV <br />

LweI /FastDigest SfaNI , HpyCH4V, Mph1103I<br />

/FastDigest NsiI <br />

FspAI/FastDigest<br />

FspAI <br />

Eco47III /FastDigest AfeI EheI /FastDigest EheI <br />

MbiI /FastDigest BsrBI <br />

HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I<br />

<br />

HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

NsbI /FastDigest FspI <br />

HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I<br />

, NsbI /FastDigest FspI <br />

PdiI /FastDigest NaeI <br />

SatI /FastDigest Fnu4HI , TauI/FastDigest<br />

TauI<br />

Cac8I<br />

SspI/FastDigest SspI HpyCH4V, Mph1103I /FastDigest NsiI <br />

BsuRI /FastDigest HaeIII Eco147I /FastDigest StuI BseSI /FastDigest Bme1580I , SduI<br />

MlsI /FastDigest MscI <br />

/FastDigest Bsp1286I <br />

DpnI/FastDigest DpnI <br />

DraI/FastDigest DraI HincII /FastDigest HincII KspAI /<br />

Alw21I /FastDigest Alw21I, SduI /<br />

FastDigest Bsp1286I <br />

FastDigest HpaI MssI /FastDigest MssI SmiI /<br />

FastDigest SwaI SspI/FastDigest SspI <br />

HpyCH4V<br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI MnlI/FastDigest MnlI<br />

Eco32I /FastDigest EcoRV LweI /FastDigest SfaNI , HpyCH4V<br />

FspAI/FastDigest<br />

FspAI <br />

Eco47III /FastDigest AfeI EheI /FastDigest EheI <br />

MbiI /FastDigest BsrBI <br />

HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I<br />

<br />

HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

NsbI /FastDigest FspI <br />

HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I<br />

, NsbI /FastDigest FspI <br />

PdiI /FastDigest NaeI <br />

SatI /FastDigest Fnu4HI , TauI/FastDigest<br />

TauI<br />

Alw21I /FastDigest Alw21I, Alw44I /<br />

RsaI/FastDigest RsaI ScaI/FastDigest ScaI <br />

FastDigest ApaLI , BseSI /FastDigest<br />

Bme1580I , Hpy8I /FastDigest Hpy8I,<br />

HpyCH4V, SduI /FastDigest Bsp1286I <br />

Cac8I<br />

Bsp68I /FastDigest NruI Hpy188I<br />

Bst1107I /FastDigest BstZ17I <br />

Hpy8I /FastDigest Hpy8I, XmiI /FastDigest<br />

AccI <br />

HincII / DpnI/FastDigest DpnI Alw26I /FastDigest Alw26I<br />

FastDigest HincII* Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI MnlI/FastDigest MnlI<br />

<br />

KspAI /FastDigest HpaI <br />

HincII /FastDigest HincII, Hpy8I /FastDigest<br />

Hpy8I<br />

MbiI /FastDigest BsrBI HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

RsaI/FastDigest RsaI ScaI/FastDigest ScaI <br />

AanI /FastDigest PsiI Bsp68I /FastDigest NruI DraI/<br />

MaeIII, NmuCI /FastDigest NmuCI<br />

FastDigest DraI MssI /FastDigest MssI SmiI /FastDigest SwaI FastDigest MseI , Tru1I /FastDigest Tru1I<br />

<br />

Bsp68I /FastDigest NruI TaqI/FastDigest TaqI<br />

HincII / Bst1107I /FastDigest BstZ17I Hpy8I /FastDigest Hpy8I<br />

FastDigest HincII*<br />

<br />

FspAI/FastDigest FspAI FspAI/FastDigest FspAI NsbI /<br />

FastDigest FspI <br />

HpyCH4V<br />

HincII /FastDigest HincII, Hpy8I /FastDigest<br />

KspAI /FastDigest HpaI <br />

Hpy8I, KspAI /FastDigest HpaI , FastDigest<br />

MseI , Tru1I /FastDigest Tru1I<br />

RsaI/FastDigest RsaI ScaI/FastDigest ScaI MaeIII<br />

Bst1107I /FastDigest BstZ17I Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

<br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI<br />

Eco47III /FastDigest AfeI <br />

EheI /FastDigest EheI BsuRI /FastDigest HaeIII <br />

<br />

www.thermoscientific.com/onebio


Table 1.21. Newly generated recognition sites resulting from ligation of blunt DNA ends.<br />

First restriction<br />

enzyme<br />

Second restriction enzyme<br />

Restriction enzymes that cleave the newly generated<br />

recognition sequence<br />

AanI /FastDigest PsiI DraI/FastDigest DraI MssI /FastDigest<br />

MssI SmiI /FastDigest SwaI <br />

FastDigest MseI , Tru1I /FastDigest Tru1I<br />

Bsp68I /FastDigest NruI TaqI/FastDigest TaqI<br />

Bst1107I /FastDigest BstZ17I Hpy8I /FastDigest Hpy8I<br />

KspAI /<br />

FastDigest HpaI<br />

<br />

FspAI/FastDigest FspAI FspAI/FastDigest FspAI NsbI /<br />

FastDigest FspI <br />

HincII /FastDigest HincII <br />

HpyCH4V<br />

HincII /FastDigest HincII, Hpy8I /FastDigest<br />

Hpy8I, KspAI /FastDigest HpaI , FastDigest<br />

MseI , Tru1I /FastDigest Tru1I<br />

HincII /FastDigest HincII <br />

HincII /FastDigest HincII, Hpy8I /FastDigest<br />

Hpy8I<br />

RsaI/FastDigest RsaI ScaI/FastDigest ScaI <br />

AjiI AjiI Eco105I /FastDigest SnaBI <br />

Eco72I /FastDigest PmlI FspAI/FastDigest FspAI*<br />

MaeIII<br />

FspAI/FastDigest FspAI HincII /FastDigest HincII <br />

NsbI /FastDigest FspI Ppu21I /FastDigest BsaAI <br />

Ppu21I /FastDigest BsaAI <br />

AluI/FastDigest AluI BsuRI /FastDigest HaeIII <br />

HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Eco147I /FastDigest StuI MlsI /<br />

FastDigest MscI <br />

SsiI /FastDigest AciI <br />

Bsh1236I /FastDigest Bsh1236I Bsp68I /FastDigest NruI <br />

Bsh1236I /FastDigest Bsh1236I, SsiI /<br />

FastDigest AciI <br />

Bst1107I /FastDigest BstZ17I Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

Ecl136II /FastDigest Ecl136II <br />

MbiI /FastDigest BsrBI , SsiI /FastDigest<br />

AciI <br />

MbiI /<br />

FastDigest BsrBI<br />

<br />

Eco32I /FastDigest EcoRV <br />

Eco47III /FastDigest AfeI <br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI<br />

HpaII/FastDigest HpaII, MspI /FastDigest<br />

MspI<br />

EheI /FastDigest EheI <br />

BsuRI /FastDigest HaeIII HpaII/<br />

FastDigest HpaII, MspI /FastDigest MspI<br />

BseDI /FastDigest BsaJI , Bsh1236I /<br />

<br />

FastDigest Bsh1236I, BtgI, Cfr42I , MspA1I, SsiI<br />

/FastDigest AciI <br />

PvuII/FastDigest PvuII MspA1I, SsiI /FastDigest AciI <br />

BcnI /FastDigest NciI , Bme1390I /<br />

PdiI /FastDigest NaeI <br />

FastDigest ScrFI , BssKI, HpaII/FastDigest<br />

HpaII, MspI /FastDigest MspI<br />

BcnI /FastDigest NciI , Bme1390I /<br />

SmaI/FastDigest SmaI <br />

AjiI AjiI Eco105I /FastDigest SnaBI <br />

FastDigest ScrFI , BseDI /FastDigest<br />

BsaJI , BssKI, HpaII/FastDigest HpaII, MspI /<br />

FastDigest MspI<br />

Eco72I /FastDigest PmlI Ppu21I /FastDigest BsaAI<br />

Ppu21I /FastDigest BsaAI <br />

SetI<br />

AluI/FastDigest AluI PvuII/FastDigest PvuII AluI/FastDigest AluI <br />

Bst1107I /FastDigest BstZ17I <br />

BsuRI /FastDigest HaeIII Eco147I /FastDigest StuI<br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

Eco47III /FastDigest AfeI MlsI /FastDigest <br />

MbiI / MscI <br />

FastDigest BsrBI<br />

<br />

DpnI/FastDigest DpnI <br />

HinfI/FastDigest HinfI, PleI, SchI /FastDigest MlyI<br />

<br />

AluI/FastDigest AluI, Alw21I /FastDigest<br />

Ecl136II /FastDigest Ecl136II <br />

Alw21I Ecl136II /FastDigest Ecl136II,<br />

Eco24I , SacI/FastDigest SacI, SduI /<br />

FastDigest Bsp1286I , SetI<br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI<br />

EheI /FastDigest EheI BsuRI /FastDigest HaeIII <br />

<br />

www.thermoscientific.com/onebio 185


186<br />

Table 1.21. Newly generated recognition sites resulting from ligation of blunt DNA ends.<br />

First restriction<br />

enzyme<br />

MlsI /<br />

FastDigest MscI<br />

<br />

<br />

<br />

MssI /<br />

FastDigest MssI<br />

<br />

www.thermoscientific.com/onebio<br />

Second restriction enzyme<br />

AluI/FastDigest AluI Ecl136II /FastDigest Ecl136II <br />

Restriction enzymes that cleave the newly generated<br />

recognition sequence<br />

Eco47III /FastDigest AfeI MbiI /FastDigest BsrBI <br />

PvuII/FastDigest PvuII <br />

<br />

Bst1107I /FastDigest BstZ17I Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

BsuRI /FastDigest HaeIII Eco147I /FastDigest StuI<br />

<br />

BsuRI /FastDigest HaeIII <br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , BspPI<br />

, DpnI/FastDigest DpnI, MboI/FastDigest MboI<br />

EheI /FastDigest EheI <br />

BmgT120I, BsuRI /FastDigest HaeIII , Cfr13I<br />

/FastDigest Sau96I <br />

FspAI/FastDigest FspAI <br />

BseSI /FastDigest Bme1580I , SduI<br />

/FastDigest Bsp1286I <br />

HincII /FastDigest HincII <br />

AjiI AjiI Eco105I /FastDigest SnaBI <br />

FaqI /FastDigest BsmFI <br />

Eco72I /FastDigest PmlI Ppu21I /FastDigest BsaAI<br />

Ppu21I /FastDigest BsaAI <br />

SetI<br />

AluI/FastDigest AluI Ecl136II /FastDigest Ecl136II MbiI<br />

AluI/FastDigest AluI <br />

/FastDigest BsrBI <br />

Bst1107I /FastDigest BstZ17I <br />

BsuRI /FastDigest HaeIII Eco147I /FastDigest StuI<br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

Eco47III /FastDigest AfeI MlsI /FastDigest<br />

MscI <br />

<br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI<br />

EheI /FastDigest EheI BsuRI /FastDigest HaeIII <br />

TscAI /FastDigest TspRI <br />

MbiI /FastDigest BsrBI MspA1I<br />

PvuII/FastDigest PvuII <br />

AjiI AjiI Eco105I /FastDigest SnaBI <br />

Eco72I /FastDigest PmlI FspAI/FastDigest FspAI*<br />

AluI/FastDigest AluI PvuII/FastDigest<br />

PvuII, SetI<br />

FspAI/FastDigest FspAI HincII /FastDigest HincII <br />

NsbI /FastDigest FspI Ppu21I /FastDigest BsaAI <br />

Ppu21I /FastDigest BsaAI <br />

AluI/FastDigest AluI BsuRI /FastDigest HaeIII <br />

HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Eco147I /FastDigest StuI MlsI /<br />

FastDigest MscI <br />

SsiI /FastDigest AciI <br />

Bsh1236I /FastDigest Bsh1236I Bsp68I /FastDigest NruI <br />

Bsh1236I /FastDigest Bsh1236I, SsiI /<br />

FastDigest AciI <br />

Bst1107I /FastDigest BstZ17I Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI <br />

MbiI /FastDigest BsrBI , SsiI /FastDigest<br />

AciI <br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI<br />

Eco47III /FastDigest AfeI <br />

HpaII/FastDigest HpaII, MspI /FastDigest<br />

MspI<br />

EheI /FastDigest EheI <br />

BsuRI /FastDigest HaeIII HpaII/<br />

FastDigest HpaII, MspI /FastDigest MspI<br />

BseDI /FastDigest BsaJI , Bsh1236I /<br />

MbiI /FastDigest BsrBI <br />

FastDigest Bsh1236I, BtgI, Cfr42I , MspA1I, SsiI<br />

/FastDigest AciI <br />

BcnI /FastDigest NciI , Bme1390I /<br />

PdiI /FastDigest NaeI <br />

FastDigest ScrFI , BssKI, HpaII/FastDigest<br />

HpaII, MspI /FastDigest MspI<br />

PvuII/FastDigest PvuII MspA1I, SsiI /FastDigest AciI <br />

BcnI /FastDigest NciI , Bme1390I /<br />

SmaI/FastDigest SmaI <br />

FastDigest ScrFI , BseDI /FastDigest<br />

BsaJI , BssKI, HpaII/FastDigest HpaII, MspI /<br />

FastDigest MspI<br />

AanI /FastDigest PsiI HincII /FastDigest HincII KspAI /<br />

FastDigest MseI , Tru1I /FastDigest Tru1I,<br />

FastDigest HpaI <br />

Bsp68I /FastDigest NruI TaqI/FastDigest TaqI<br />

DraI/FastDigest DraI SmiI /FastDigest SwaI <br />

DraI/FastDigest DraI, FastDigest MseI , Tru1I<br />

/FastDigest Tru1I<br />

FspAI/FastDigest FspAI FspAI/FastDigest FspAI NsbI /<br />

FastDigest FspI <br />

HpyCH4V<br />

RsaI/FastDigest RsaI ScaI/FastDigest ScaI Hpy8I /FastDigest Hpy8I


Table 1.21. Newly generated recognition sites resulting from ligation of blunt DNA ends.<br />

First restriction<br />

enzyme<br />

NsbI /<br />

FastDigest FspI<br />

<br />

PdiI /<br />

FastDigest NaeI<br />

<br />

Second restriction enzyme<br />

DraI/FastDigest DraI HincII /FastDigest HincII KspAI /<br />

Restriction enzymes that cleave the newly generated<br />

recognition sequence<br />

FastDigest HpaI MssI /FastDigest MssI RsaI/FastDigest RsaI<br />

HpyCH4V<br />

ScaI/FastDigest ScaI SmiI /FastDigest SwaI SspI/<br />

FastDigest SspI <br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI MnlI/FastDigest MnlI<br />

Eco32I /FastDigest EcoRV LweI /FastDigest SfaNI , HpyCH4V<br />

Eco47III /FastDigest AfeI EheI /FastDigest EheI <br />

HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I<br />

<br />

FspAI/FastDigest FspAI FspAI/FastDigest FspAI <br />

HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I<br />

, NsbI /FastDigest FspI <br />

MbiI /FastDigest BsrBI HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

PdiI /FastDigest NaeI <br />

SatI /FastDigest Fnu4HI , TauI/FastDigest<br />

TauI<br />

Cac8I<br />

DpnI/FastDigest DpnI Ecl136II /FastDigest Ecl136II MbiI /<br />

FastDigest BsrBI <br />

MnlI/FastDigest MnlI<br />

Eco32I /FastDigest EcoRV BccI<br />

Eco47III /FastDigest AfeI EheI /FastDigest EheI FspAI/<br />

SatI /FastDigest Fnu4HI , SsiI /<br />

FastDigest FspAI FspAI/FastDigest FspAI NsbI /FastDigest FspI<br />

FastDigest AciI , TauI/FastDigest TauI<br />

<br />

MbiI /FastDigest BsrBI SmaI/FastDigest SmaI<br />

<br />

BcnI /FastDigest NciI , Bme1390I /<br />

FastDigest ScrFI , BssKI, HpaII/FastDigest<br />

HpaII, MspI /FastDigest MspI<br />

AjiI AjiI , MaeII, SetI, TaiI /FastDigest TaiI<br />

Eco72I /FastDigest PmlI , MaeII, Ppu21I<br />

AjiI Eco72I /FastDigest PmlI <br />

/FastDigest BsaAI , SetI, TaiI /<br />

FastDigest TaiI<br />

Ppu21I / AluI/FastDigest AluI PvuII/FastDigest PvuII SetI<br />

FastDigest BsaAI Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI MnlI/FastDigest MnlI, SetI<br />

<br />

Eco105I /FastDigest SnaBI <br />

MaeII, Ppu21I /FastDigest BsaAI , SetI, TaiI<br />

/FastDigest TaiI<br />

TscAI /FastDigest TspRI <br />

MbiI /FastDigest BsrBI HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

PdiI /FastDigest NaeI BceAI<br />

AjiI MaeII, SetI, TaiI /FastDigest TaiI<br />

AjiI Eco72I /FastDigest PmlI <br />

MaeII, Ppu21I /FastDigest BsaAI , SetI, TaiI<br />

/FastDigest TaiI<br />

Ppu21I /<br />

FastDigest BsaAI<br />

<br />

AluI/FastDigest AluI PvuII/FastDigest PvuII SetI<br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI MnlI/FastDigest MnlI, SetI<br />

Eco105I /FastDigest SnaBI , MaeII,<br />

Eco105I /FastDigest SnaBI <br />

Ppu21I /FastDigest BsaAI , SetI, TaiI<br />

/FastDigest TaiI<br />

MbiI /FastDigest BsrBI HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

PdiI /FastDigest NaeI <br />

AjiI AjiI Eco105I /FastDigest SnaBI <br />

BceAI<br />

Eco72I /FastDigest PmlI Ppu21I /FastDigest BsaAI<br />

Ppu21I /FastDigest BsaAI <br />

SetI<br />

AluI/FastDigest AluI Ecl136II /FastDigest Ecl136II MbiI<br />

AluI/FastDigest AluI <br />

/FastDigest BsrBI <br />

Bst1107I /FastDigest BstZ17I <br />

BsuRI /FastDigest HaeIII Eco147I /FastDigest StuI<br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

PvuII/FastDigest Eco47III /FastDigest AfeI MlsI /FastDigest <br />

PvuII MscI <br />

Eco32I /FastDigest EcoRV <br />

Bsp143I /FastDigest Sau3AI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI<br />

EheI /FastDigest EheI BsuRI /FastDigest HaeIII <br />

TscAI /FastDigest TspRI <br />

MbiI /FastDigest BsrBI MspA1I<br />

<br />

AluI/FastDigest AluI PvuII/FastDigest<br />

PvuII, SetI<br />

<br />

www.thermoscientific.com/onebio 187


188<br />

Table 1.21. Newly generated recognition sites resulting from ligation of blunt DNA ends.<br />

First restriction<br />

enzyme<br />

RsaI/FastDigest<br />

RsaI <br />

ScaI/FastDigest<br />

ScaI <br />

SmaI/FastDigest<br />

SmaI <br />

SmiI /<br />

FastDigest SwaI<br />

<br />

www.thermoscientific.com/onebio<br />

Second restriction enzyme<br />

Restriction enzymes that cleave the newly generated<br />

recognition sequence<br />

AanI /FastDigest PsiI FastDigest MseI , Tru1I /FastDigest Tru1I<br />

Bsp68I /FastDigest NruI TaqI/FastDigest TaqI<br />

Bst1107I /FastDigest BstZ17I HincII /FastDigest HincII*<br />

KspAI /FastDigest HpaI <br />

MaeIII<br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI Alw26I /FastDigest Alw26I<br />

Alw21I /FastDigest Alw21I, Alw44I /<br />

FspAI/FastDigest FspAI <br />

FastDigest ApaLI , BseSI /FastDigest<br />

Bme1580I , Hpy8I /FastDigest Hpy8I,<br />

HpyCH4V, SduI /FastDigest Bsp1286I <br />

FspAI/FastDigest FspAI NsbI /FastDigest FspI HpyCH4V<br />

HincII /FastDigest HincII MaeIII, NmuCI /FastDigest NmuCI<br />

MssI /FastDigest MssI Hpy8I /FastDigest Hpy8I<br />

ScaI/FastDigest ScaI Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

AanI /FastDigest PsiI FastDigest MseI , Tru1I /FastDigest Tru1I<br />

Bsp68I /FastDigest NruI TaqI/FastDigest TaqI<br />

Bst1107I /FastDigest BstZ17I HincII /FastDigest HincII*<br />

KspAI /FastDigest HpaI <br />

MaeIII<br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI Alw26I /FastDigest Alw26I<br />

Alw21I /FastDigest Alw21I, Alw44I /<br />

FspAI/FastDigest FspAI <br />

FastDigest ApaLI , BseSI /FastDigest<br />

Bme1580I , Hpy8I /FastDigest Hpy8I,<br />

HpyCH4V, SduI /FastDigest Bsp1286I <br />

FspAI/FastDigest FspAI NsbI /FastDigest FspI HpyCH4V<br />

HincII /FastDigest HincII MaeIII, NmuCI /FastDigest NmuCI<br />

MssI /FastDigest MssI Hpy8I /FastDigest Hpy8I<br />

RsaI/FastDigest RsaI Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

DpnI/FastDigest DpnI Ecl136II /FastDigest Ecl136II MbiI /<br />

FastDigest BsrBI <br />

MnlI/FastDigest MnlI<br />

Eco32I /FastDigest EcoRV <br />

Eco47III /FastDigest AfeI EheI /FastDigest EheI FspAI/<br />

BccI<br />

FastDigest FspAI FspAI/FastDigest FspAI NsbI /FastDigest FspI FauI, SsiI /FastDigest AciI <br />

<br />

BcnI /FastDigest NciI , Bme1390I /<br />

MbiI /FastDigest BsrBI <br />

FastDigest ScrFI , BseDI /FastDigest<br />

BsaJI , BssKI, HpaII/FastDigest HpaII, MspI /<br />

FastDigest MspI<br />

BcnI /FastDigest NciI , Bme1390I /<br />

PdiI /FastDigest NaeI <br />

FastDigest ScrFI , BssKI, HpaII/FastDigest<br />

HpaII, MspI /FastDigest MspI<br />

BcnI /FastDigest NciI , Bme1390I /<br />

FastDigest ScrFI , BmeT110I, BseDI /<br />

<br />

FastDigest BsaJI , BssKI, Cfr9I , Eco88I<br />

/FastDigest AvaI , HpaII/FastDigest HpaII,<br />

MspI /FastDigest MspI, SmaI/FastDigest SmaI<br />

AanI /FastDigest PsiI HincII /FastDigest HincII KspAI /<br />

FastDigest MseI , Tru1I /FastDigest Tru1I<br />

FastDigest HpaI <br />

Bsp68I /FastDigest NruI TaqI/FastDigest TaqI<br />

DraI/FastDigest DraI MssI /FastDigest MssI <br />

DraI/FastDigest DraI, FastDigest MseI , Tru1I<br />

/FastDigest Tru1I<br />

FspAI/FastDigest FspAI FspAI/FastDigest FspAI NsbI /<br />

FastDigest FspI <br />

HpyCH4V


Table 1.21. Newly generated recognition sites resulting from ligation of blunt DNA ends.<br />

First restriction<br />

enzyme<br />

Second restriction enzyme<br />

Restriction enzymes that cleave the newly generated<br />

recognition sequence<br />

DpnI/FastDigest DpnI Ecl136II /FastDigest Ecl136II MbiI /<br />

FastDigest BsrBI <br />

MnlI/FastDigest MnlI<br />

Eco32I /FastDigest EcoRV <br />

Eco47III /FastDigest AfeI EheI /FastDigest EheI FspAI/<br />

BccI<br />

FastDigest FspAI FspAI/FastDigest FspAI NsbI /FastDigest FspI Cac8I, FauI, SsiI /FastDigest AciI <br />

<br />

BcnI /FastDigest NciI , Bme1390I /<br />

<br />

MbiI /FastDigest BsrBI <br />

FastDigest ScrFI , BseDI /FastDigest<br />

BsaJI , BssKI, HpaII/FastDigest HpaII, MspI /<br />

FastDigest MspI<br />

BcnI /FastDigest NciI , Bme1390I /<br />

PdiI /FastDigest NaeI <br />

FastDigest ScrFI , BssKI, HpaII/FastDigest<br />

HpaII, MspI /FastDigest MspI<br />

BcnI /FastDigest NciI , Bme1390I /<br />

FastDigest ScrFI , BmeT110I, BseDI /<br />

SmaI/FastDigest SmaI <br />

FastDigest BsaJI , BssKI, Cfr9I , Eco88I<br />

/FastDigest AvaI , HpaII/FastDigest HpaII,<br />

MspI /FastDigest MspI, SmaI/FastDigest SmaI<br />

AanI /FastDigest PsiI <br />

FastDigest MseI , TasI /FastDigest<br />

Tsp509I , Tru1I /FastDigest Tru1I<br />

SspI/FastDigest<br />

SspI <br />

Bsp68I /FastDigest NruI <br />

Bst1107I /FastDigest BstZ17I DpnI/FastDigest DpnI <br />

<br />

TaqI/FastDigest TaqI<br />

TasI /FastDigest Tsp509I <br />

FspAI/FastDigest FspAI NsbI /FastDigest FspI HpyCH4V<br />

FspAI/FastDigest FspAI HpyCH4V, Mph1103I /FastDigest NsiI <br />

AjiI <br />

AjiI Eco105I /FastDigest SnaBI Eco72I /<br />

AatII/FastDigest AatII, Hin1I /FastDigest BsaHI<br />

, MaeII, SetI, TaiI /FastDigest TaiI, ZraI<br />

FastDigest PmlI Ppu21I /FastDigest BsaAI Ppu21I<br />

/FastDigest BsaAI <br />

MaeII, SetI, TaiI /FastDigest TaiI<br />

AluI/FastDigest AluI PvuII/FastDigest PvuII SetI<br />

<br />

DpnI/FastDigest DpnI <br />

Ecl136II /FastDigest Ecl136II MbiI /FastDigest BsrBI <br />

HinfI/FastDigest HinfI<br />

MnlI/FastDigest MnlI, SetI<br />

Eco47III /FastDigest AfeI FspAI/FastDigest FspAI FspAI/<br />

FastDigest FspAI NsbI /FastDigest FspI <br />

CseI /FastDigest HgaI <br />

EheI /FastDigest EheI <br />

CseI /FastDigest HgaI , Hin1I /<br />

FastDigest BsaHI <br />

MbiI /FastDigest BsrBI HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

PdiI /FastDigest NaeI BceAI<br />

www.thermoscientific.com/onebio 189


190<br />

Recognition Sites Resulting from Ligation of Protruding Compatible DNA Ends<br />

Note<br />

* Restriction enzymes that have degenerate recognition sequences<br />

<br />

enzymes will cleave sequences in addition to the one listed.<br />

enzymes are shown in purple.<br />

<strong>Thermo</strong> <strong>Scientific</strong> conventional enzymes are shown in orange.<br />

Table 1.22. Newly generated recognition sites resulting from ligation of protruding compatible DNA ends.<br />

First<br />

Second<br />

Restriction enzyme that cleave the newly generated recognition<br />

restriction enzyme restriction enzyme<br />

sequence<br />

AatII/FastDigest AatII<br />

<br />

TaiI /FastDigest TaiI MaeII, SetI, TaiI /FastDigest TaiI<br />

Eco88I /FastDigest AvaI SmoI BmeT110I, Eco88I /FastDigest AvaI , MnlI/FastDigest MnlI,<br />

XhoI/FastDigest XhoI <br />

SmoI , TaqI/FastDigest TaqI, XhoI/FastDigest XhoI<br />

<br />

<br />

<br />

BmeT110I, Eco88I /FastDigest AvaI , MnlI/FastDigest MnlI,<br />

PspXI, SmoI , TaqI/FastDigest TaqI, XhoI/FastDigest XhoI<br />

AbsI, BmeT110I, Eco88I /FastDigest AvaI , MnlI/FastDigest<br />

MnlI, PspXI, SmoI , TaqI/FastDigest TaqI, XhoI/FastDigest XhoI<br />

SalI/FastDigest SalI MnlI/FastDigest MnlI, TaqI/FastDigest TaqI<br />

SgrDI Hpy99I, MnlI/FastDigest MnlI, TaqI/FastDigest TaqI<br />

Acc65I /FastDigest Acc65I, BshNI /FastDigest BanI ,<br />

BshNI /FastDigest BanI <br />

BspLI /FastDigest NlaIV , Csp6I /FastDigest Csp6I,<br />

Acc65I /FastDigest<br />

KpnI/FastDigest KpnI, RsaI/FastDigest RsaI<br />

Acc65I Bsp1407I /FastDigest Bsp1407I Pfl23II /<br />

FastDigest BsiWI TatI/FastDigest TatI <br />

TatI/FastDigest TatI <br />

Eco130I /FastDigest StyI <br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

NcoI/FastDigest NcoI PagI /FastDigest BspHI CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII <br />

<br />

<br />

PscI <br />

AflIII, CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII , PscI , XceI<br />

/FastDigest NspI <br />

Bsh1236I /FastDigest Bsh1236I<br />

<br />

MauBI/FastDigest MauBI SgsI /FastDigest AscI Bsh1236I /FastDigest Bsh1236I, HhaI/FastDigest HhaI, Hin6I<br />

PauI /FastDigest BssHII /FastDigest HinP1I <br />

MluI/FastDigest MluI AflIII, Bsh1236I /FastDigest Bsh1236I, MluI/FastDigest MluI<br />

MaeII, SetI, TaiI /FastDigest TaiI<br />

Alw21I /FastDigest<br />

SduI /FastDigest Bsp1286I <br />

Alw21I <br />

Alw21I /FastDigest Alw21I, SduI /FastDigest Bsp1286I<br />

<br />

Eco24I SacI/FastDigest SacI SduI<br />

Alw21I /FastDigest<br />

/FastDigest Bsp1286I <br />

Alw21I <br />

AluI/FastDigest AluI, Alw21I /FastDigest Alw21I Ecl136II<br />

/FastDigest Ecl136II, Eco24I , SacI/FastDigest SacI, SduI<br />

/FastDigest Bsp1286I , SetI<br />

AluI/FastDigest AluI <br />

BseSI /FastDigest Bme1580I SduI<br />

/FastDigest Bsp1286I <br />

Alw21I /FastDigest<br />

Alw21I /FastDigest Alw21I, Alw44I /FastDigest ApaLI<br />

, BseSI /FastDigest Bme1580I , Hpy8I /<br />

FastDigest Hpy8I, HpyCH4V, SduI /FastDigest Bsp1286I <br />

Alw21I Mph1103I /FastDigest NsiI HpyCH4V<br />

PstI/FastDigest PstI SdaI /FastDigest SbfI <br />

<br />

BsgI, HpyCH4V<br />

Alw21I /FastDigest<br />

SduI /FastDigest Bsp1286I <br />

Alw21I <br />

Alw21I /FastDigest Alw21I, SduI /FastDigest Bsp1286I<br />

<br />

Alw44I /FastDigest<br />

ApaLI <br />

BfmI /FastDigest SfcI BsgI, HpyCH4V<br />

ApaI/FastDigest ApaI, BmgT120I, BseSI /FastDigest Bme1580I<br />

ApaI/FastDigest ApaI<br />

<br />

, Bsp120I /FastDigest Bsp120I, BspLI /FastDigest<br />

BseSI /FastDigest Bme1580I Eco24I *<br />

NlaIV , BsuRI /FastDigest HaeIII , Cfr13I /<br />

SduI /FastDigest Bsp1286I <br />

FastDigest Sau96I Eco24I , SduI /FastDigest<br />

Bsp1286I <br />

BclI/FastDigest BclI Bsp143I /FastDigest Sau3AI Bsp143I /FastDigest Sau3AI , BspPI , DpnI/<br />

MboI/FastDigest MboI <br />

FastDigest DpnI, MboI/FastDigest MboI<br />

BamHI/FastDigest BamHI<br />

<br />

BglII/FastDigest BglII PsuI /FastDigest PsuI <br />

Bsp143I /FastDigest Sau3AI , BspPI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI, PsuI /FastDigest PsuI<br />

BamHI/FastDigest BamHI, Bsp143I /FastDigest Sau3AI ,<br />

PsuI /FastDigest PsuI <br />

BspLI /FastDigest NlaIV , BspPI , DpnI/FastDigest DpnI,<br />

MboI/FastDigest MboI, PsuI /FastDigest PsuI<br />

BbeI, FastDigest HaeII , BshNI /FastDigest BanI ,<br />

<br />

FastDigest HaeII <br />

BspLI /FastDigest NlaIV , EheI /FastDigest EheI, HhaI/<br />

FastDigest HhaI, Hin1I /FastDigest BsaHI , Hin6I /<br />

FastDigest HinP1I , NarI, SspDI <br />

FastDigest HaeII <br />

FastDigest HaeII , HhaI/FastDigest HhaI, Hin6I /FastDigest<br />

HinP1I <br />

www.thermoscientific.com/onebio<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;


Table 1.22. Newly generated recognition sites resulting from ligation of protruding compatible DNA ends.<br />

First<br />

restriction enzyme<br />

BclI/FastDigest BclI<br />

<br />

BcuI /FastDigest SpeI<br />

<br />

BfmI /FastDigest SfcI<br />

<br />

BglII/FastDigest BglII<br />

<br />

<br />

<br />

<br />

<br />

BseSI /<br />

FastDigest Bme1580I<br />

<br />

BseSI /<br />

FastDigest Bme1580I<br />

<br />

BseSI /<br />

FastDigest Bme1580I<br />

<br />

BseSI /<br />

FastDigest Bme1580I<br />

<br />

Second<br />

restriction enzyme<br />

BamHI/FastDigest BamHI BglII/FastDigest BglII <br />

Bsp143I /FastDigest Sau3AI MboI/FastDigest<br />

MboI PsuI /FastDigest PsuI PsuI /<br />

FastDigest PsuI <br />

Eco130I /FastDigest StyI NheI/FastDigest NheI<br />

XbaI/FastDigest XbaI XmaJI /FastDigest AvrII<br />

<br />

Alw44I /FastDigest ApaLI HpyCH4V<br />

BamHI/FastDigest BamHI PsuI /FastDigest PsuI*<br />

<br />

BclI/FastDigest BclI Bsp143I /FastDigest Sau3AI<br />

MboI/FastDigest MboI <br />

PsuI /FastDigest PsuI <br />

Hin1I /FastDigest BsaHI Hin6I /<br />

FastDigest HinP1I SsiI /FastDigest<br />

AciI <br />

HpaII/FastDigest HpaII MspI /FastDigest MspI <br />

SsiI /FastDigest AciI <br />

Bsp119I /FastDigest Bsp119I Bsu15I /FastDigest<br />

ClaI TaqI/FastDigest TaqI XmiI /<br />

FastDigest AccI <br />

BshTI /FastDigest AgeI Cfr10I /FastDigest<br />

BsrFI <br />

Cfr10I /FastDigest BsrFI MreI /<br />

FastDigest MreI <br />

Restriction enzyme that cleave the newly generated recognition<br />

sequence<br />

Bsp143I /FastDigest Sau3AI , DpnI/FastDigest DpnI,<br />

MboI/FastDigest MboI<br />

FspBI /FastDigest BfaI <br />

Bsp143I /FastDigest Sau3AI , DpnI/FastDigest DpnI,<br />

MboI/FastDigest MboI, PsuI /FastDigest PsuI<br />

Bsp143I /FastDigest Sau3AI , DpnI/FastDigest DpnI,<br />

MboI/FastDigest MboI<br />

BglII/FastDigest BglII, Bsp143I /FastDigest Sau3AI ,<br />

DpnI/FastDigest DpnI, MboI/FastDigest MboI, PsuI /FastDigest PsuI<br />

FauI, SsiI /FastDigest AciI <br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

TaqI/FastDigest TaqI<br />

BsaWI, BshTI /FastDigest AgeI , Cfr10I /FastDigest BsrFI<br />

, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

/FastDigest MspI<br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Cfr9I Eco88I /FastDigest AvaI <br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Kpn2I /FastDigest Kpn2I BsaWI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

BshTI /FastDigest AgeI Cfr10I /FastDigest<br />

BsaWI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

BsrFI <br />

Cfr10I /FastDigest BsrFI MreI /<br />

HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

FastDigest MreI <br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Cfr9I Eco88I /FastDigest AvaI <br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

BsaWI, HpaII/FastDigest HpaII, Hpy188III, Kpn2I /FastDigest Kpn2I,<br />

Kpn2I /FastDigest Kpn2I <br />

MspI /FastDigest MspI<br />

SduI /FastDigest Bsp1286I <br />

ApaI/FastDigest ApaI Eco24I SduI<br />

/FastDigest Bsp1286I <br />

Alw21I /FastDigest Alw21I SduI /<br />

FastDigest Bsp1286I <br />

Mph1103I /FastDigest NsiI HpyCH4V<br />

PstI/FastDigest PstI SdaI /FastDigest SbfI <br />

<br />

BsgI, HpyCH4V<br />

SduI /FastDigest Bsp1286I <br />

Bsh1285I /FastDigest<br />

PvuI/FastDigest PvuI SfaAI /FastDigest AsiSI <br />

BsiEI <br />

<br />

BshNI /FastDigest<br />

BanI <br />

BshNI /FastDigest<br />

BanI <br />

BseSI /FastDigest Bme1580I , SduI /<br />

FastDigest Bsp1286I <br />

ApaI/FastDigest ApaI, BmgT120I, BseSI /FastDigest Bme1580I<br />

, Bsp120I /FastDigest Bsp120I, BspLI /FastDigest<br />

NlaIV , BsuRI /FastDigest HaeIII , Cfr13I /<br />

FastDigest Sau96I Eco24I , SduI /FastDigest<br />

Bsp1286I <br />

Alw21I /FastDigest Alw21I, Alw44I /FastDigest ApaLI<br />

, BseSI /FastDigest Bme1580I , Hpy8I /<br />

FastDigest Hpy8I, HpyCH4V, SduI /FastDigest Bsp1286I <br />

BseSI /FastDigest Bme1580I , SduI /<br />

FastDigest Bsp1286I <br />

PacI/FastDigest PacI FastDigest MseI , Tru1I /FastDigest Tru1I<br />

SspDI <br />

Acc65I /FastDigest Acc65I <br />

Bsp1407I /FastDigest Bsp1407I Pfl23II /<br />

FastDigest BsiWI TatI/FastDigest TatI <br />

TatI/FastDigest TatI <br />

Bsh1285I /FastDigest BsiEI , Bsp143I /FastDigest<br />

Sau3AI , DpnI/FastDigest DpnI, MboI/FastDigest MboI, PvuI/<br />

FastDigest PvuI<br />

BbeI, FastDigest HaeII , BshNI /FastDigest BanI ,<br />

BspLI /FastDigest NlaIV , EheI /FastDigest EheI, HhaI/<br />

FastDigest HhaI, Hin1I /FastDigest BsaHI , Hin6I /<br />

FastDigest HinP1I , NarI, SspDI <br />

Acc65I /FastDigest Acc65I, BshNI /FastDigest BanI ,<br />

BspLI /FastDigest NlaIV , Csp6I /FastDigest Csp6I,<br />

KpnI/FastDigest KpnI, RsaI/FastDigest RsaI<br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

<br />

www.thermoscientific.com/onebio 191


192<br />

Table 1.22. Newly generated recognition sites resulting from ligation of protruding compatible DNA ends.<br />

First<br />

Second<br />

Restriction enzyme that cleave the newly generated recognition<br />

restriction enzyme restriction enzyme<br />

sequence<br />

Kpn2I /FastDigest Kpn2I BsaWI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Cfr10I /FastDigest BsrFI BsaWI, BshTI /FastDigest AgeI , Cfr10I /FastDigest BsrFI<br />

BshTI /FastDigest<br />

AgeI <br />

<br />

Cfr10I /FastDigest BsrFI MreI /<br />

FastDigest MreI <br />

, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

/FastDigest MspI<br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Cfr9I Eco88I /FastDigest AvaI <br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Bsp119I /FastDigest<br />

Bsp119I <br />

Bsu15I /FastDigest ClaI <br />

TaqI/FastDigest TaqI XmiI /FastDigest AccI *<br />

<br />

TaqI/FastDigest TaqI<br />

Eco52I /FastDigest EagI BmgT120I, BsuRI /FastDigest HaeIII , Cfr13I /<br />

Bsp120I / <br />

FastDigest Sau96I <br />

FastDigest Bsp120I<br />

BmgT120I, BsuRI /FastDigest HaeIII , Cfr13I /<br />

<br />

NotI/FastDigest NotI <br />

Acc65I /FastDigest Acc65I BshNI /FastDigest<br />

FastDigest Sau96I SatI /FastDigest Fnu4HI ,<br />

SsiI /FastDigest AciI , TauI/FastDigest TauI<br />

BanI Pfl23II /FastDigest BsiWI Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

Bsp1407I /FastDigest <br />

Bsp1407I <br />

TatI/FastDigest TatI <br />

Bsp1407I /FastDigest Bsp1407I, Csp6I /FastDigest Csp6I,<br />

RsaI/FastDigest RsaI, TatI/FastDigest TatI<br />

TatI/FastDigest TatI <br />

BamHI/FastDigest BamHI BclI/FastDigest BclI <br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI, TatI/FastDigest TatI<br />

Bsp143I /FastDigest BglII/FastDigest BglII MboI/FastDigest MboI Bsp143I /FastDigest Sau3AI , DpnI/FastDigest DpnI,<br />

Sau3AI PsuI /FastDigest PsuI PsuI /FastDigest PsuI*<br />

<br />

MboI/FastDigest MboI<br />

BspTI /FastDigest AflII<br />

SmoI <br />

<br />

BspTI /FastDigest AflII , FastDigest MseI , SmoI ,<br />

Tru1I /FastDigest Tru1I<br />

Bsu15I /FastDigest<br />

ClaI <br />

Bsp119I /FastDigest Bsp119I <br />

TaqI/FastDigest TaqI XmiI /FastDigest AccI *<br />

<br />

TaqI/FastDigest TaqI<br />

MaeII, SetI, TaiI /FastDigest TaiI<br />

PagI /FastDigest BspHI <br />

PscI <br />

CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII <br />

<br />

BseDI /FastDigest BsaJI , BtgI, CviAII, Eco130I /FastDigest<br />

Eco130I /FastDigest StyI NcoI/FastDigest NcoI<br />

StyI , FaiI, FatI, Hin1II /FastDigest NlaIII , NcoI/<br />

<br />

FastDigest NcoI<br />

MluI/FastDigest MluI Bsh1236I /FastDigest Bsh1236I, SsiI /FastDigest AciI <br />

<br />

MauBI/FastDigest MauBI SgsI /FastDigest AscI Bsh1236I /FastDigest Bsh1236I, HhaI/FastDigest HhaI, Hin6I<br />

PauI /FastDigest BssHII /FastDigest HinP1I , SsiI /FastDigest AciI <br />

Kpn2I /FastDigest Kpn2I BsaWI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

BshTI /FastDigest AgeI BsaWI, BshTI /FastDigest AgeI , Cfr10I /FastDigest BsrFI<br />

Cfr10I /FastDigest<br />

BsrFI <br />

<br />

, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Cfr9I Eco88I /FastDigest AvaI <br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

MreI /FastDigest MreI Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

<br />

/FastDigest MspI<br />

Kpn2I /FastDigest Kpn2I HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

BshTI /FastDigest AgeI Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

Cfr10I /FastDigest<br />

BsrFI <br />

<br />

/FastDigest MspI<br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Cfr9I Eco88I /FastDigest AvaI <br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

MreI /FastDigest MreI Cac8I, Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

<br />

/FastDigest MspI, NgoMIV, PdiI /FastDigest NaeI <br />

Cfr42I Bsh1285I /FastDigest BsiEI <br />

BshTI /FastDigest<br />

AgeI Cfr10I /FastDigest BsrFI *<br />

SsiI /FastDigest AciI <br />

Cfr10I /FastDigest BsrFI Kpn2I BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

/FastDigest Kpn2I MreI /FastDigest , BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Cfr9I <br />

MreI <br />

<br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Eco88I /FastDigest AvaI <br />

, BmeT110I, BseDI /FastDigest BsaJI , BssKI, Cfr9I<br />

, Eco88I /FastDigest AvaI , HpaII/FastDigest HpaII, MspI<br />

/FastDigest MspI, SmaI/FastDigest SmaI<br />

<br />

www.thermoscientific.com/onebio


Table 1.22. Newly generated recognition sites resulting from ligation of protruding compatible DNA ends.<br />

First<br />

Second<br />

Restriction enzyme that cleave the newly generated recognition<br />

restriction enzyme restriction enzyme<br />

sequence<br />

Bsp120I /FastDigest Bsp120I <br />

BmgT120I, BsuRI /FastDigest HaeIII , Cfr13I /<br />

FastDigest Sau96I <br />

<br />

Eco52I /FastDigest EagI <br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest<br />

HaeIII Eco52I /FastDigest EagI <br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest<br />

NotI/FastDigest NotI <br />

HaeIII Eco52I /FastDigest EagI , SatI<br />

/FastDigest Fnu4HI , SsiI /FastDigest AciI , TauI/<br />

FastDigest TauI<br />

Bsp120I /FastDigest Bsp120I <br />

BmgT120I, BsuRI /FastDigest HaeIII , Cfr13I /<br />

FastDigest Sau96I <br />

<br />

Eco52I /FastDigest EagI BsuRI /FastDigest HaeIII <br />

NotI/FastDigest NotI <br />

BsuRI /FastDigest HaeIII SatI /FastDigest<br />

Fnu4HI , SsiI /FastDigest AciI , TauI/FastDigest TauI<br />

Eco47I /FastDigest AvaII <br />

BmgT120I, Cfr13I /FastDigest Sau96I , Eco47I /<br />

FastDigest AvaII <br />

CpoI /FastDigest RsrII FastDigest SanDI Psp5II /FastDigest PpuMI BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

<br />

Sau96I , Eco47I /FastDigest AvaII <br />

Psp5II /FastDigest PpuMI <br />

BmgT120I, Cfr13I /FastDigest Sau96I , Eco47I /<br />

FastDigest AvaII , SetI<br />

Eco47I /FastDigest AvaII Psp5II / BmgT120I, Cfr13I /FastDigest Sau96I , Eco47I /<br />

CpoI /FastDigest RsrII FastDigest PpuMI <br />

FastDigest AvaII <br />

FastDigest SanDI Psp5II /FastDigest PpuMI BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

<br />

Sau96I , Eco47I /FastDigest AvaII <br />

Csp6I /FastDigest<br />

Csp6I <br />

NdeI/FastDigest NdeI FaiI<br />

XmiI /FastDigest AccI FaiI<br />

Eco130I /FastDigest<br />

StyI <br />

PagI /FastDigest BspHI <br />

PscI <br />

NcoI/FastDigest NcoI <br />

CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII <br />

BseDI /FastDigest BsaJI , BtgI, CviAII, Eco130I /FastDigest<br />

StyI , FaiI, FatI, Hin1II /FastDigest NlaIII , NcoI/<br />

FastDigest NcoI<br />

Eco130I /FastDigest<br />

StyI <br />

BcuI /FastDigest SpeI NheI/FastDigest NheI<br />

XbaI/FastDigest XbaI <br />

XmaJI /FastDigest AvrII <br />

FspBI /FastDigest BfaI <br />

BseDI /FastDigest BsaJI , Eco130I /FastDigest StyI<br />

, FspBI /FastDigest BfaI , XmaJI /FastDigest AvrII<br />

<br />

Eco24I SduI /FastDigest Bsp1286I Eco24I , SduI /FastDigest Bsp1286I <br />

Eco24I <br />

Alw21I /FastDigest Alw21I SacI/FastDigest SacI<br />

SduI /FastDigest Bsp1286I <br />

AluI/FastDigest AluI, Alw21I /FastDigest Alw21I Ecl136II<br />

/FastDigest Ecl136II, Eco24I , SacI/FastDigest SacI, SduI<br />

/FastDigest Bsp1286I , SetI<br />

AluI/FastDigest AluI <br />

ApaI/FastDigest ApaI, BmgT120I, BseSI /FastDigest Bme1580I<br />

ApaI/FastDigest ApaI BseSI /FastDigest Bme1580I , Bsp120I /FastDigest Bsp120I, BspLI /FastDigest<br />

Eco24I SduI /FastDigest Bsp1286I * NlaIV , BsuRI /FastDigest HaeIII , Cfr13I /<br />

<br />

FastDigest Sau96I Eco24I , SduI /FastDigest<br />

Bsp1286I <br />

Eco24I SduI /FastDigest Bsp1286I Eco24I , SduI /FastDigest Bsp1286I <br />

CpoI /FastDigest RsrII <br />

BmgT120I, Cfr13I /FastDigest Sau96I , Eco47I /<br />

FastDigest AvaII <br />

Eco47I /FastDigest FastDigest SanDI Psp5II /FastDigest PpuMI BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

AvaII <br />

Sau96I , Eco47I /FastDigest AvaII <br />

Psp5II /FastDigest PpuMI <br />

BmgT120I, Cfr13I /FastDigest Sau96I , Eco47I /<br />

FastDigest AvaII , SetI<br />

CpoI /FastDigest RsrII Psp5II /FastDigest BmgT120I, Cfr13I /FastDigest Sau96I , Eco47I /<br />

Eco47I /FastDigest PpuMI <br />

FastDigest AvaII <br />

AvaII FastDigest SanDI Psp5II /FastDigest PpuMI BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

<br />

Sau96I , Eco47I /FastDigest AvaII <br />

Bsp120I /FastDigest Bsp120I <br />

BmgT120I, BsuRI /FastDigest HaeIII , Cfr13I /<br />

FastDigest Sau96I <br />

BsuRI /FastDigest HaeIII <br />

Eco52I /FastDigest<br />

EagI <br />

<br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest<br />

HaeIII Eco52I /FastDigest EagI <br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest<br />

NotI/FastDigest NotI <br />

HaeIII Eco52I /FastDigest EagI , SatI<br />

/FastDigest Fnu4HI , SsiI /FastDigest AciI , TauI/<br />

FastDigest TauI<br />

<br />

www.thermoscientific.com/onebio 193


194<br />

Table 1.22. Newly generated recognition sites resulting from ligation of protruding compatible DNA ends.<br />

First<br />

Second<br />

Restriction enzyme that cleave the newly generated recognition<br />

restriction enzyme restriction enzyme<br />

BshTI /FastDigest<br />

AgeI Cfr10I /FastDigest BsrFI *<br />

sequence<br />

Cfr10I /FastDigest BsrFI Kpn2I BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

/FastDigest Kpn2I MreI /FastDigest , BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Eco88I /FastDigest MreI <br />

AvaI <br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Cfr9I <br />

, BmeT110I, BseDI /FastDigest BsaJI , BssKI, Cfr9I<br />

, Eco88I /FastDigest AvaI , HpaII/FastDigest HpaII, MspI<br />

/FastDigest MspI, SmaI/FastDigest SmaI<br />

BmeT110I, Eco88I /FastDigest AvaI , SmoI , TaqI/<br />

Eco88I /FastDigest SmoI XhoI/FastDigest XhoI FastDigest TaqI, XhoI/FastDigest XhoI<br />

AvaI SalI/FastDigest SalI TaqI/FastDigest TaqI<br />

SgrDI Hpy99I, TaqI/FastDigest TaqI<br />

EcoRI/FastDigest EcoRI<br />

<br />

MunI /FastDigest MfeI TasI /FastDigest<br />

Tsp509I <br />

XapI /FastDigest XapI <br />

TasI /FastDigest Tsp509I <br />

EcoRI/FastDigest EcoRI, TasI /FastDigest Tsp509I , XapI<br />

/FastDigest XapI<br />

XapI /FastDigest XapI TasI /FastDigest Tsp509I , XapI /FastDigest XapI<br />

EcoRII FastDigest SexAI <br />

Bme1390I /FastDigest ScrFI , BssKI, EcoRII, MvaI /<br />

FastDigest MvaI, SetI<br />

EcoRII FastDigest SexAI <br />

Eco130I /FastDigest StyI *<br />

Bme1390I /FastDigest ScrFI , BssKI, EcoRII, MvaI /<br />

FastDigest MvaI<br />

<br />

NcoI/FastDigest NcoI PagI /FastDigest<br />

BspHI PscI <br />

CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII <br />

FspBI /FastDigest BfaI<br />

NdeI/FastDigest NdeI <br />

<br />

FaiI<br />

FastDigest HaeII *<br />

<br />

<br />

FastDigest HaeII , HhaI/FastDigest HhaI, Hin6I /FastDigest<br />

HinP1I <br />

BbeI, FastDigest HaeII , BshNI /FastDigest BanI ,<br />

FastDigest HaeII *<br />

<br />

<br />

BspLI /FastDigest NlaIV , EheI /FastDigest EheI, HhaI/<br />

FastDigest HhaI, Hin1I /FastDigest BsaHI , Hin6I /<br />

FastDigest HinP1I , NarI, SspDI <br />

Hin1I /FastDigest<br />

Hin6I /FastDigest HinP1I SsiI /FastDigest AciI<br />

CseI /FastDigest HgaI <br />

<br />

BsaHI Psp1406I /FastDigest AclI MaeII, SetI, TaiI /FastDigest TaiI<br />

CseI /FastDigest HgaI , Hin1I /FastDigest BsaHI <br />

Hin1I /FastDigest<br />

Hin6I /FastDigest HinP1I SsiI /FastDigest AciI<br />

HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I <br />

<br />

BbeI, FastDigest HaeII , BshNI /FastDigest BanI ,<br />

BsaHI <br />

<br />

BspLI /FastDigest NlaIV , EheI /FastDigest EheI, HhaI/<br />

FastDigest HhaI, Hin1I /FastDigest BsaHI , Hin6I /<br />

FastDigest HinP1I , NarI, SspDI <br />

Hin1II /FastDigest<br />

NlaIII <br />

PaeI /FastDigest SphI XceI /FastDigest NspI<br />

XceI /FastDigest NspI <br />

CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII <br />

Hin6I /FastDigest<br />

HinP1I <br />

Hin1I /FastDigest BsaHI SsiI<br />

/FastDigest AciI <br />

HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I <br />

<br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

HpaII/FastDigest HpaII<br />

<br />

Hin1I /FastDigest BsaHI Hin6I /<br />

FastDigest HinP1I SsiI /FastDigest<br />

AciI <br />

SsiI /FastDigest AciI <br />

MspI /FastDigest MspI SsiI /FastDigest AciI *<br />

<br />

HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

<br />

BsaWI, HpaII/FastDigest HpaII, Hpy188III, Kpn2I /FastDigest Kpn2I,<br />

MspI /FastDigest MspI<br />

Kpn2I /FastDigest<br />

BshTI /FastDigest AgeI Cfr10I<br />

BsaWI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

/FastDigest BsrFI <br />

Kpn2I Cfr10I /FastDigest BsrFI MreI /<br />

FastDigest MreI <br />

HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Cfr9I Eco88I /FastDigest AvaI <br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

<br />

Hin1I /FastDigest BsaHI Psp1406I /<br />

FastDigest AclI <br />

MaeII, SetI, TaiI /FastDigest TaiI<br />

MauBI/FastDigest MauBI<br />

MluI/FastDigest MluI <br />

Bsh1236I /FastDigest Bsh1236I, HhaI/FastDigest HhaI, Hin6I<br />

/FastDigest HinP1I <br />

<br />

PauI /FastDigest BssHII SgsI /FastDigest Bsh1236I /FastDigest Bsh1236I, Cac8I, HhaI/FastDigest HhaI, Hin6I<br />

AscI <br />

/FastDigest HinP1I , PauI /FastDigest BssHII <br />

<br />

www.thermoscientific.com/onebio


Table 1.22. Newly generated recognition sites resulting from ligation of protruding compatible DNA ends.<br />

First<br />

Second<br />

Restriction enzyme that cleave the newly generated recognition<br />

restriction enzyme restriction enzyme<br />

BamHI/FastDigest BamHI BclI/FastDigest BclI <br />

sequence<br />

MboI/FastDigest MboI BglII/FastDigest BglII Bsp143I /FastDigest Sau3AI Bsp143I /FastDigest Sau3AI , DpnI/FastDigest DpnI,<br />

<br />

PsuI /FastDigest PsuI PsuI /<br />

FastDigest PsuI <br />

MboI/FastDigest MboI<br />

AflIII, Bsh1236I /FastDigest Bsh1236I, MluI/FastDigest MluI<br />

MluI/FastDigest MluI Bsh1236I /FastDigest Bsh1236I<br />

<br />

MauBI/FastDigest MauBI SgsI /FastDigest AscI Bsh1236I /FastDigest Bsh1236I, HhaI/FastDigest HhaI, Hin6I<br />

PauI /FastDigest BssHII <br />

Alw21I /FastDigest Alw21I BseSI /<br />

/FastDigest HinP1I <br />

Mph1103I /FastDigest<br />

NsiI <br />

FastDigest Bme1580I PstI/FastDigest PstI <br />

HpyCH4V<br />

SdaI /FastDigest SbfI SduI /FastDigest<br />

Bsp1286I <br />

Kpn2I /FastDigest Kpn2I HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

BshTI /FastDigest AgeI Cfr10I Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

/FastDigest BsrFI <br />

/FastDigest MspI<br />

Cfr10I /FastDigest BsrFI <br />

Cac8I, Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

/FastDigest MspI, NgoMIV, PdiI /FastDigest NaeI <br />

MreI /FastDigest<br />

MreI <br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Cfr9I Eco88I /FastDigest AvaI <br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Cac8I, Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII,<br />

<br />

MreI /FastDigest MreI, MspI /FastDigest MspI, NgoMIV, PdiI<br />

/FastDigest NaeI , SgrAI<br />

<br />

Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

/FastDigest MspI, SgrAI<br />

FastDigest MseI <br />

<br />

NdeI/FastDigest NdeI <br />

Tru1I /FastDigest Tru1I VspI /FastDigest AseI <br />

<br />

FaiI<br />

FastDigest MseI , Tru1I /FastDigest Tru1I<br />

<br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

MspI /FastDigest Hin1I /FastDigest BsaHI Hin6I /<br />

MspI <br />

FastDigest HinP1I SsiI /FastDigest<br />

AciI <br />

SsiI /FastDigest AciI <br />

HpaII/FastDigest HpaII SsiI /FastDigest AciI HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

EcoRI/FastDigest EcoRI TasI /FastDigest Tsp509I<br />

MunI /FastDigest MfeI<br />

XapI /FastDigest XapI XapI /<br />

<br />

FastDigest XapI <br />

TasI /FastDigest Tsp509I <br />

BbeI, FastDigest HaeII , BshNI /FastDigest BanI ,<br />

Hin1I /FastDigest BsaHI <br />

BspLI /FastDigest NlaIV , EheI /FastDigest EheI, HhaI/<br />

FastDigest HhaI, Hin1I /FastDigest BsaHI , Hin6I /<br />

<br />

FastDigest HinP1I , NarI, SspDI <br />

Hin1I /FastDigest BsaHI Hin1I /FastDigest BsaHI <br />

Hin6I /FastDigest HinP1I SsiI /FastDigest AciI<br />

HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I <br />

<br />

NcoI/FastDigest NcoI<br />

<br />

PagI /FastDigest BspHI <br />

PscI <br />

Eco130I /FastDigest StyI <br />

CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII <br />

BseDI /FastDigest BsaJI , BtgI, CviAII, Eco130I /FastDigest<br />

StyI , FaiI, FatI, Hin1II /FastDigest NlaIII , NcoI/<br />

FastDigest NcoI<br />

NdeI/FastDigest NdeI<br />

<br />

Csp6I /FastDigest Csp6I FspBI /FastDigest BfaI <br />

FastDigest MseI Tru1I /FastDigest Tru1I FaiI<br />

VspI /FastDigest AseI <br />

Kpn2I /FastDigest Kpn2I HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

BshTI /FastDigest AgeI Cfr10I Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

/FastDigest BsrFI /FastDigest MspI<br />

Cfr10I /FastDigest BsrFI MreI / Cac8I, Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

FastDigest MreI <br />

/FastDigest MspI, NgoMIV, PdiI /FastDigest NaeI <br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Cfr9I Eco88I /FastDigest AvaI <br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

NheI/FastDigest NheI<br />

<br />

BcuI /FastDigest SpeI Eco130I /FastDigest<br />

StyI XbaI/FastDigest XbaI XmaJI /<br />

FastDigest AvrII <br />

FspBI /FastDigest BfaI <br />

BmgT120I, BsuRI /FastDigest HaeIII , Cfr13I /<br />

Bsp120I /FastDigest Bsp120I <br />

FastDigest Sau96I SatI /FastDigest Fnu4HI ,<br />

TauI/FastDigest TauI<br />

NotI/FastDigest NotI<br />

<br />

<br />

BsuRI /FastDigest HaeIII SatI /FastDigest<br />

Fnu4HI , TauI/FastDigest TauI<br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest<br />

Eco52I /FastDigest EagI HaeIII Eco52I /FastDigest EagI , SatI<br />

/FastDigest Fnu4HI , TauI/FastDigest TauI<br />

<br />

www.thermoscientific.com/onebio 195


196<br />

Table 1.22. Newly generated recognition sites resulting from ligation of protruding compatible DNA ends.<br />

First<br />

Second<br />

Restriction enzyme that cleave the newly generated recognition<br />

restriction enzyme restriction enzyme<br />

sequence<br />

PacI/FastDigest PacI<br />

<br />

Bsh1285I /FastDigest BsiEI PvuI/FastDigest<br />

PvuI SfaAI /FastDigest AsiSI <br />

FastDigest MseI , Tru1I /FastDigest Tru1I<br />

Hin1II /FastDigest NlaIII CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII <br />

PaeI /FastDigest SphI XceI /FastDigest NspI <br />

<br />

XceI /FastDigest NspI <br />

Cac8I, CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII , PaeI /<br />

FastDigest SphI , XceI /FastDigest NspI <br />

CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII , XceI /<br />

FastDigest NspI <br />

PagI /FastDigest<br />

BspHI <br />

Eco130I /FastDigest StyI *<br />

NcoI/FastDigest NcoI PscI <br />

<br />

CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII <br />

PasI BseYI<br />

PauI /FastDigest<br />

MluI/FastDigest MluI <br />

Bsh1236I /FastDigest Bsh1236I, HhaI/FastDigest HhaI, Hin6I<br />

/FastDigest HinP1I <br />

BssHII MauBI/FastDigest MauBI SgsI /FastDigest AscI Bsh1236I /FastDigest Bsh1236I, Cac8I, HhaI/FastDigest HhaI, Hin6I<br />

<br />

/FastDigest HinP1I , PauI /FastDigest BssHII <br />

Pfl23II /FastDigest<br />

BsiWI <br />

Acc65I /FastDigest Acc65I BshNI /FastDigest<br />

BanI Bsp1407I /FastDigest Bsp1407I Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

TatI/FastDigest TatI TatI/FastDigest TatI <br />

<br />

AflIII, CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII , PscI , XceI<br />

/FastDigest NspI <br />

PscI Eco130I /FastDigest StyI <br />

NcoI/FastDigest NcoI PagI /FastDigest BspHI<br />

<br />

CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII <br />

Psp1406I /FastDigest<br />

AclI <br />

Hin1I /FastDigest BsaHI MaeII, SetI, TaiI /FastDigest TaiI<br />

CpoI /FastDigest RsrII Eco47I /FastDigest BmgT120I, Cfr13I /FastDigest Sau96I , Eco47I /<br />

Psp5II /FastDigest<br />

PpuMI <br />

AvaII <br />

FastDigest SanDI <br />

FastDigest AvaII <br />

BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

Sau96I , Eco47I /FastDigest AvaII , EcoO109I /<br />

FastDigest EcoO109I, Psp5II /FastDigest PpuMI <br />

CpoI /FastDigest RsrII Eco47I /FastDigest BmgT120I, Cfr13I /FastDigest Sau96I , Eco47I /<br />

Psp5II /FastDigest<br />

PpuMI <br />

AvaII <br />

FastDigest SanDI <br />

FastDigest AvaII , SetI<br />

BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

Sau96I , Eco47I /FastDigest AvaII , EcoO109I /<br />

FastDigest EcoO109I, Psp5II /FastDigest PpuMI , SetI<br />

Psp5II /FastDigest<br />

PpuMI <br />

CpoI /FastDigest RsrII Eco47I /FastDigest<br />

AvaII <br />

FastDigest SanDI <br />

BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /<br />

FastDigest Sau96I , Eco47I /FastDigest AvaII , FaqI<br />

/FastDigest BsmFI <br />

BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

Sau96I , Eco47I /FastDigest AvaII , EcoO109I /<br />

FastDigest EcoO109I, FaqI /FastDigest BsmFI , FastDigest<br />

SanDI , Psp5II /FastDigest PpuMI <br />

CpoI /FastDigest RsrII Eco47I /FastDigest BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

AvaII <br />

Sau96I , Eco47I /FastDigest AvaII <br />

Psp5II /FastDigest<br />

BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

PpuMI <br />

FastDigest SanDI <br />

Sau96I , Eco47I /FastDigest AvaII , EcoO109I /<br />

FastDigest EcoO109I, FastDigest SanDI , Psp5II /FastDigest<br />

PpuMI <br />

<br />

BmeT110I, Eco88I /FastDigest AvaI , PspXI, SmoI , TaqI/<br />

FastDigest TaqI, XhoI/FastDigest XhoI<br />

<br />

Eco88I /FastDigest AvaI SmoI BmeT110I, Eco88I /FastDigest AvaI , SmoI , TaqI/<br />

XhoI/FastDigest XhoI <br />

FastDigest TaqI, XhoI/FastDigest XhoI<br />

SalI/FastDigest SalI TaqI/FastDigest TaqI<br />

SgrDI Hpy99I, TaqI/FastDigest TaqI<br />

<br />

AbsI, BmeT110I, Eco88I /FastDigest AvaI , MnlI/FastDigest<br />

MnlI, PspXI, SmoI , TaqI/FastDigest TaqI, XhoI/FastDigest XhoI<br />

<br />

Eco88I /FastDigest AvaI SmoI BmeT110I, Eco88I /FastDigest AvaI , MnlI/FastDigest MnlI,<br />

XhoI/FastDigest XhoI <br />

SmoI , TaqI/FastDigest TaqI, XhoI/FastDigest XhoI<br />

SalI/FastDigest SalI MnlI/FastDigest MnlI, TaqI/FastDigest TaqI<br />

SgrDI Hpy99I, MnlI/FastDigest MnlI, TaqI/FastDigest TaqI<br />

<br />

BmeT110I, Eco88I /FastDigest AvaI , PspXI, SmoI , TaqI/<br />

FastDigest TaqI, XhoI/FastDigest XhoI<br />

<br />

Eco88I /FastDigest AvaI SmoI BmeT110I, Eco88I /FastDigest AvaI , SmoI , TaqI/<br />

XhoI/FastDigest XhoI <br />

FastDigest TaqI, XhoI/FastDigest XhoI<br />

SalI/FastDigest SalI TaqI/FastDigest TaqI<br />

SgrDI Hpy99I, TaqI/FastDigest TaqI<br />

www.thermoscientific.com/onebio


Table 1.22. Newly generated recognition sites resulting from ligation of protruding compatible DNA ends.<br />

First<br />

Second<br />

Restriction enzyme that cleave the newly generated recognition<br />

restriction enzyme restriction enzyme<br />

Alw21I /FastDigest Alw21I BseSI /<br />

sequence<br />

PstI/FastDigest PstI<br />

<br />

FastDigest Bme1580I Mph1103I /FastDigest<br />

NsiI SduI /FastDigest Bsp1286I *<br />

<br />

HpyCH4V<br />

SdaI /FastDigest SbfI BfmI /FastDigest SfcI , HpyCH4V, PstI/FastDigest PstI<br />

BamHI/FastDigest BamHI <br />

Bsp143I /FastDigest Sau3AI , DpnI/FastDigest DpnI,<br />

MboI/FastDigest MboI, PsuI /FastDigest PsuI<br />

PsuI /FastDigest PsuI* BclI/FastDigest BclI Bsp143I /FastDigest Sau3AI Bsp143I /FastDigest Sau3AI , DpnI/FastDigest DpnI,<br />

<br />

MboI/FastDigest MboI <br />

MboI/FastDigest MboI<br />

BglII/FastDigest BglII <br />

BglII/FastDigest BglII, Bsp143I /FastDigest Sau3AI ,<br />

DpnI/FastDigest DpnI, MboI/FastDigest MboI, PsuI /FastDigest PsuI<br />

BamHI/FastDigest BamHI, Bsp143I /FastDigest Sau3AI ,<br />

BamHI/FastDigest BamHI <br />

BspLI /FastDigest NlaIV , BspPI , DpnI/FastDigest DpnI,<br />

PsuI /FastDigest PsuI*<br />

BclI/FastDigest BclI Bsp143I /FastDigest Sau3AI<br />

<br />

MboI/FastDigest MboI <br />

MboI/FastDigest MboI, PsuI /FastDigest PsuI<br />

Bsp143I /FastDigest Sau3AI , BspPI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI<br />

BglII/FastDigest BglII <br />

Bsp143I /FastDigest Sau3AI , BspPI , DpnI/<br />

FastDigest DpnI, MboI/FastDigest MboI, PsuI /FastDigest PsuI<br />

PvuI/FastDigest PvuI<br />

<br />

Bsh1285I /FastDigest BsiEI SfaAI /<br />

FastDigest AsiSI <br />

Bsh1285I /FastDigest BsiEI , Bsp143I /FastDigest<br />

Sau3AI , DpnI/FastDigest DpnI, MboI/FastDigest MboI, PvuI/<br />

FastDigest PvuI<br />

PacI/FastDigest PacI FastDigest MseI , Tru1I /FastDigest Tru1I<br />

SacI/FastDigest SacI<br />

<br />

AluI/FastDigest AluI, Alw21I /FastDigest Alw21I Ecl136II<br />

Alw21I /FastDigest Alw21I Eco24I <br />

/FastDigest Ecl136II, Eco24I , SacI/FastDigest SacI, SduI<br />

SduI /FastDigest Bsp1286I <br />

/FastDigest Bsp1286I , SetI<br />

<br />

Eco88I /FastDigest AvaI <br />

AluI/FastDigest AluI <br />

SmoI TaqI/FastDigest TaqI<br />

SalI/FastDigest SalI XhoI/FastDigest XhoI <br />

<br />

HincII /FastDigest HincII, Hpy8I /FastDigest Hpy8I, Hpy99I,<br />

SgrDI <br />

SalI/FastDigest SalI, TaqI/FastDigest TaqI, XmiI /FastDigest AccI<br />

<br />

CpoI /FastDigest RsrII Eco47I /FastDigest<br />

AvaII <br />

BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /<br />

FastDigest Sau96I , Eco47I /FastDigest AvaII , FaqI<br />

/FastDigest BsmFI <br />

BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

FastDigest SanDI *<br />

<br />

Psp5II /FastDigest PpuMI <br />

Sau96I , Eco47I /FastDigest AvaII , EcoO109I /<br />

FastDigest EcoO109I, FaqI /FastDigest BsmFI , FastDigest<br />

SanDI , Psp5II /FastDigest PpuMI <br />

BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

Psp5II /FastDigest PpuMI <br />

Sau96I , Eco47I /FastDigest AvaII , EcoO109I /<br />

FastDigest EcoO109I, FaqI /FastDigest BsmFI , Psp5II /<br />

FastDigest PpuMI , SetI<br />

CpoI /FastDigest RsrII Eco47I /FastDigest BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

AvaII <br />

Sau96I , Eco47I /FastDigest AvaII <br />

BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

FastDigest SanDI *<br />

<br />

Psp5II /FastDigest PpuMI <br />

Sau96I , Eco47I /FastDigest AvaII , EcoO109I /<br />

FastDigest EcoO109I, FastDigest SanDI , Psp5II /FastDigest<br />

PpuMI <br />

BmgT120I, BspLI /FastDigest NlaIV , Cfr13I /FastDigest<br />

Psp5II /FastDigest PpuMI <br />

Alw21I /FastDigest Alw21I BseSI /<br />

Sau96I , Eco47I /FastDigest AvaII , EcoO109I /<br />

FastDigest EcoO109I, Psp5II /FastDigest PpuMI <br />

SdaI /FastDigest SbfI<br />

<br />

FastDigest Bme1580I Mph1103I /FastDigest<br />

NsiI SduI /FastDigest Bsp1286I *<br />

<br />

HpyCH4V<br />

PstI/FastDigest PstI BfmI /FastDigest SfcI , HpyCH4V, PstI/FastDigest PstI<br />

SduI /FastDigest<br />

Alw21I /FastDigest Alw21I <br />

Bsp1286I <br />

Alw21I /FastDigest Alw21I, SduI /FastDigest Bsp1286I<br />

<br />

SduI /FastDigest<br />

Eco24I <br />

Bsp1286I <br />

Eco24I , SduI /FastDigest Bsp1286I <br />

SduI /FastDigest<br />

Bsp1286I <br />

AluI/FastDigest AluI, Alw21I /FastDigest Alw21I Ecl136II<br />

Alw21I /FastDigest Alw21I Eco24I <br />

/FastDigest Ecl136II, Eco24I , SacI/FastDigest SacI, SduI<br />

SacI/FastDigest SacI <br />

/FastDigest Bsp1286I , SetI<br />

AluI/FastDigest AluI <br />

SduI /FastDigest<br />

BseSI /FastDigest Bme1580I <br />

Bsp1286I <br />

BseSI /FastDigest Bme1580I , SduI /<br />

FastDigest Bsp1286I <br />

<br />

www.thermoscientific.com/onebio 197


198<br />

Table 1.22. Newly generated recognition sites resulting from ligation of protruding compatible DNA ends.<br />

First<br />

Second<br />

Restriction enzyme that cleave the newly generated recognition<br />

restriction enzyme restriction enzyme<br />

sequence<br />

ApaI/FastDigest ApaI, BmgT120I, BseSI /FastDigest Bme1580I<br />

, Bsp120I /FastDigest Bsp120I, BspLI /FastDigest<br />

SduI /FastDigest ApaI/FastDigest ApaI BseSI /FastDigest Bme1580I<br />

NlaIV , BsuRI /FastDigest HaeIII , Cfr13I /<br />

Bsp1286I Eco24I <br />

FastDigest Sau96I Eco24I , SduI /FastDigest<br />

Bsp1286I <br />

SduI /FastDigest<br />

Eco24I <br />

Bsp1286I <br />

Eco24I , SduI /FastDigest Bsp1286I <br />

SduI /FastDigest<br />

Alw21I /FastDigest Alw21I BseSI /<br />

FastDigest Bme1580I <br />

Alw21I /FastDigest Alw21I, Alw44I /FastDigest ApaLI<br />

, BseSI /FastDigest Bme1580I , Hpy8I /<br />

FastDigest Hpy8I, HpyCH4V, SduI /FastDigest Bsp1286I <br />

Bsp1286I Mph1103I /FastDigest NsiI HpyCH4V<br />

PstI/FastDigest PstI SdaI /FastDigest SbfI <br />

<br />

BsgI, HpyCH4V<br />

SduI /FastDigest<br />

BseSI /FastDigest Bme1580I <br />

Bsp1286I <br />

BseSI /FastDigest Bme1580I , SduI /<br />

FastDigest Bsp1286I <br />

SduI /FastDigest<br />

Alw21I /FastDigest Alw21I <br />

Bsp1286I <br />

Alw21I /FastDigest Alw21I, SduI /FastDigest Bsp1286I<br />

<br />

AatII/FastDigest AatII TaiI /FastDigest TaiI <br />

Alw21I /FastDigest Alw21I Eco24I <br />

MaeII, SetI, TaiI /FastDigest TaiI<br />

<br />

SacI/FastDigest SacI SduI /FastDigest Bsp1286I<br />

<br />

AluI/FastDigest AluI <br />

FastDigest SexAI *<br />

<br />

EcoRII <br />

Bme1390I /FastDigest ScrFI , BssKI, EcoRII, MvaI /<br />

FastDigest MvaI<br />

FastDigest SexAI *<br />

<br />

EcoRII <br />

Bme1390I /FastDigest ScrFI , BssKI, EcoRII, MvaI /<br />

FastDigest MvaI, SetI<br />

SfaAI /FastDigest<br />

AsiSI <br />

Bsh1285I /FastDigest BsiEI PvuI/FastDigest<br />

PvuI <br />

Bsh1285I /FastDigest BsiEI , Bsp143I /FastDigest<br />

Sau3AI , DpnI/FastDigest DpnI, MboI/FastDigest MboI, PvuI/<br />

FastDigest PvuI<br />

PacI/FastDigest PacI FastDigest MseI , Tru1I /FastDigest Tru1I<br />

Kpn2I /FastDigest Kpn2I BsaWI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

BshTI /FastDigest AgeI Cfr10I BsaWI, BshTI /FastDigest AgeI , Cfr10I /FastDigest BsrFI<br />

/FastDigest BsrFI <br />

, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

<br />

Cfr10I /FastDigest BsrFI <br />

Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

/FastDigest MspI<br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Cfr9I Eco88I /FastDigest AvaI <br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

MreI /FastDigest MreI <br />

Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

/FastDigest MspI, SgrAI<br />

Kpn2I /FastDigest Kpn2I HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

BshTI /FastDigest AgeI Cfr10I Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

/FastDigest BsrFI <br />

/FastDigest MspI<br />

<br />

Cac8I, Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII, MspI<br />

Cfr10I /FastDigest BsrFI <br />

/FastDigest MspI, NgoMIV, PdiI /FastDigest NaeI <br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

Cfr9I Eco88I /FastDigest AvaI <br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Cac8I, Cfr10I /FastDigest BsrFI , HpaII/FastDigest HpaII,<br />

MreI /FastDigest MreI <br />

Eco88I /FastDigest AvaI <br />

MreI /FastDigest MreI, MspI /FastDigest MspI, NgoMIV, PdiI<br />

/FastDigest NaeI , SgrAI<br />

SmoI Hpy99I, TaqI/FastDigest TaqI<br />

SgrDI <br />

XhoI/FastDigest XhoI <br />

HincII /FastDigest HincII, Hpy8I /FastDigest Hpy8I, Hpy99I,<br />

SalI/FastDigest SalI <br />

SalI/FastDigest SalI, TaqI/FastDigest TaqI, XmiI /FastDigest AccI<br />

<br />

SgsI /FastDigest AscI<br />

MluI/FastDigest MluI <br />

Bsh1236I /FastDigest Bsh1236I, HhaI/FastDigest HhaI, Hin6I<br />

/FastDigest HinP1I <br />

MauBI/FastDigest MauBI PauI /FastDigest BssHII Bsh1236I /FastDigest Bsh1236I, Cac8I, HhaI/FastDigest HhaI, Hin6I<br />

<br />

/FastDigest HinP1I , PauI /FastDigest BssHII <br />

SmoI <br />

Eco88I /FastDigest AvaI <br />

XhoI/<br />

FastDigest XhoI <br />

BmeT110I, Eco88I /FastDigest AvaI , SmoI , TaqI/<br />

FastDigest TaqI, XhoI/FastDigest XhoI<br />

SalI/FastDigest SalI TaqI/FastDigest TaqI<br />

SgrDI Hpy99I, TaqI/FastDigest TaqI<br />

SmoI BspTI /FastDigest AflII <br />

BspTI /FastDigest AflII , FastDigest MseI , SmoI ,<br />

Tru1I /FastDigest Tru1I<br />

<br />

www.thermoscientific.com/onebio


Table 1.22. Newly generated recognition sites resulting from ligation of protruding compatible DNA ends.<br />

First<br />

Second<br />

Restriction enzyme that cleave the newly generated recognition<br />

restriction enzyme restriction enzyme<br />

sequence<br />

SsiI /FastDigest AciI<br />

<br />

<br />

Hin1I /FastDigest BsaHI Hin6I /<br />

FastDigest HinP1I <br />

BcnI /FastDigest NciI , Bme1390I /FastDigest ScrFI<br />

, BssKI, HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

SsiI /FastDigest AciI <br />

HpaII/FastDigest HpaII MspI /FastDigest MspI HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

SsiI /FastDigest AciI<br />

<br />

Hin1I /FastDigest BsaHI Hin6I /<br />

FastDigest HinP1I <br />

HhaI/FastDigest HhaI, Hin6I /FastDigest HinP1I <br />

BbeI, FastDigest HaeII , BshNI /FastDigest BanI ,<br />

SspDI BshNI /FastDigest BanI <br />

BspLI /FastDigest NlaIV , EheI /FastDigest EheI, HhaI/<br />

FastDigest HhaI, Hin1I /FastDigest BsaHI , Hin6I /<br />

FastDigest HinP1I , NarI, SspDI <br />

TaiI /FastDigest TaiI<br />

<br />

AatII/FastDigest AatII MaeII, SetI, TaiI /FastDigest TaiI<br />

TaqI/FastDigest TaqI<br />

<br />

Bsp119I /FastDigest Bsp119I <br />

Bsu15I /FastDigest ClaI XmiI /FastDigest<br />

AccI <br />

TaqI/FastDigest TaqI<br />

TasI /FastDigest<br />

Tsp509I <br />

EcoRI/FastDigest EcoRI MunI /FastDigest MfeI <br />

XapI /FastDigest XapI XapI /FastDigest TasI /FastDigest Tsp509I <br />

XapI <br />

Acc65I /FastDigest Acc65I BshNI /FastDigest<br />

TatI/FastDigest TatI* BanI Pfl23II /FastDigest BsiWI Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

<br />

<br />

Bsp1407I /FastDigest Bsp1407I <br />

Acc65I /FastDigest Acc65I BshNI /FastDigest<br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI, TatI/FastDigest TatI<br />

TatI/FastDigest TatI*<br />

<br />

BanI Pfl23II /FastDigest BsiWI <br />

<br />

Bsp1407I /FastDigest Bsp1407I <br />

Csp6I /FastDigest Csp6I, RsaI/FastDigest RsaI<br />

Bsp1407I /FastDigest Bsp1407I, Csp6I /FastDigest Csp6I,<br />

RsaI/FastDigest RsaI, TatI/FastDigest TatI<br />

Tru1I /FastDigest<br />

Tru1I <br />

NdeI/FastDigest NdeI <br />

FastDigest MseI VspI /FastDigest AseI <br />

<br />

FaiI<br />

FastDigest MseI , Tru1I /FastDigest Tru1I<br />

VspI /FastDigest AseI NdeI/FastDigest NdeI FaiI<br />

<br />

FastDigest MseI Tru1I /FastDigest Tru1I FastDigest MseI , Tru1I /FastDigest Tru1I<br />

EcoRI/FastDigest EcoRI <br />

XapI /FastDigest XapI*<br />

MunI /FastDigest MfeI TasI /FastDigest<br />

<br />

Tsp509I <br />

TasI /FastDigest Tsp509I , XapI /FastDigest XapI<br />

TasI /FastDigest Tsp509I <br />

EcoRI/FastDigest EcoRI <br />

XapI /FastDigest XapI*<br />

EcoRI/FastDigest EcoRI, TasI /FastDigest Tsp509I , XapI<br />

/FastDigest XapI<br />

<br />

MunI /FastDigest MfeI TasI /FastDigest<br />

Tsp509I <br />

TasI /FastDigest Tsp509I <br />

XbaI/FastDigest XbaI<br />

<br />

BcuI /FastDigest SpeI Eco130I /FastDigest<br />

StyI NheI/FastDigest NheI XmaJI /<br />

FastDigest AvrII <br />

FspBI /FastDigest BfaI <br />

Hin1II /FastDigest NlaIII <br />

XceI /FastDigest NspI<br />

<br />

PaeI /FastDigest SphI <br />

CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII <br />

CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII , XceI /<br />

FastDigest NspI <br />

Hin1II /FastDigest NlaIII <br />

XceI /FastDigest NspI<br />

PaeI /FastDigest SphI <br />

CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII <br />

Cac8I, CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII , PaeI /<br />

FastDigest SphI , XceI /FastDigest NspI <br />

XhoI/FastDigest XhoI<br />

<br />

Eco88I /FastDigest AvaI <br />

SmoI<br />

<br />

SalI/FastDigest SalI <br />

BmeT110I, Eco88I /FastDigest AvaI , SmoI , TaqI/<br />

FastDigest TaqI, XhoI/FastDigest XhoI<br />

TaqI/FastDigest TaqI<br />

SgrDI Hpy99I, TaqI/FastDigest TaqI<br />

XmaJI /FastDigest<br />

AvrII <br />

BcuI /FastDigest SpeI NheI/FastDigest NheI<br />

XbaI/FastDigest XbaI <br />

Eco130I /FastDigest StyI <br />

FspBI /FastDigest BfaI <br />

BseDI /FastDigest BsaJI , Eco130I /FastDigest StyI<br />

, FspBI /FastDigest BfaI , XmaJI /FastDigest AvrII<br />

<br />

XmiI /FastDigest AccI<br />

<br />

<br />

FaiI<br />

Bsp119I /FastDigest Bsp119I <br />

XmiI /FastDigest AccI<br />

Bsu15I /FastDigest ClaI TaqI/FastDigest TaqI<br />

<br />

<br />

TaqI/FastDigest TaqI<br />

www.thermoscientific.com/onebio 199


200<br />

Recognition Sites Resulting from Fill-in of 5’-overhang and Self-ligation<br />

Note<br />

* Restriction enzymes that have degenerate recognition sequences<br />

tion<br />

enzymes will cleave sequences in addition to the one listed.<br />

[ ] Enzymes that cleave the target both before and after the ligation.<br />

enzymes are shown in purple.<br />

<strong>Thermo</strong> <strong>Scientific</strong> conventional enzymes are shown in orange.<br />

Table 1.23. Newly generated recognition sites resulting from fill-in of 5’-overhang and self-ligation.<br />

Restriction<br />

Recognition Newly generated Restriction enzymes that cleave<br />

enzyme<br />

sequence sequence after reaction the newly generated recognition sequence<br />

Bsh1285I /FastDigest BsiEI , Bsp143I /FastDigest Sau3AI ,<br />

AbsI CCTCGAGG CCTCGATCGAGG<br />

DpnI/FastDigest DpnI, MboI/FastDigest MboI, [MnlI/FastDigest MnlI], PvuI/FastDigest PvuI,<br />

[TaqI/FastDigest TaqI]<br />

Acc65I /FastDigest Acc65I GGTACC GGTACGTACC<br />

[Csp6I /FastDigest Csp6I], Eco105I /FastDigest SnaBI , MaeII, Ppu21I<br />

/FastDigest BsaAI , [RsaI/FastDigest RsaI], SetI, TaiI /FastDigest TaiI<br />

AflIII* ACACGT ACACGCACGT [MaeII], [SetI], [TaiI /FastDigest TaiI]<br />

AflIII* ACATGT ACATGCATGT<br />

[CviAII], [FaiI], [FatI], [Hin1II /FastDigest NlaIII ], HpyCH4V, Mph1103I /<br />

FastDigest NsiI , [XceI /FastDigest NspI ]<br />

AflIII* ACGCGT ACGCGCGCGT<br />

[Bsh1236I /FastDigest Bsh1236I], Cac8I, HhaI/FastDigest HhaI, Hin6I /<br />

FastDigest HinP1I , MauBI/FastDigest MauBI, PauI /FastDigest BssHII <br />

AflIII* ACGTGT ACGTGCGTGT [MaeII], [SetI], [TaiI /FastDigest TaiI]<br />

Alw44I /FastDigest ApaLI<br />

<br />

GTGCAC GTGCATGCAC<br />

Cac8I, CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII , [HpyCH4V], PaeI /FastDigest<br />

SphI , XceI /FastDigest NspI <br />

BamHI/FastDigest BamHI GGATCC GGATCGATCC<br />

[Bsp143I /FastDigest Sau3AI ], [BspPI ], Bsu15I /FastDigest ClaI<br />

, [DpnI/FastDigest DpnI], [MboI/FastDigest MboI], TaqI/FastDigest TaqI<br />

BbvCI CCTCAGC CCTCATCAGC [MnlI/FastDigest MnlI]<br />

BclI/FastDigest BclI TGATCA TGATCGATCA<br />

[Bsp143I /FastDigest Sau3AI ], Bsu15I /FastDigest ClaI , [DpnI/<br />

FastDigest DpnI], [MboI/FastDigest MboI], TaqI/FastDigest TaqI<br />

BcnI /FastDigest NciI CCSGG CCSSGG BseDI /FastDigest BsaJI <br />

[BcnI /FastDigest NciI ], [Bme1390I /FastDigest ScrFI ], BseDI<br />

BcnI /FastDigest NciI * CCCGG CCCCGG<br />

/FastDigest BsaJI , [BssKI], [HpaII/FastDigest HpaII], [MspI /FastDigest<br />

MspI]<br />

BcnI /FastDigest NciI * CCGGG CCGGGG<br />

[BcnI /FastDigest NciI ], [Bme1390I /FastDigest ScrFI ], BseDI /<br />

FastDigest BsaJI , [BssKI], [HpaII/FastDigest HpaII], [MspI /FastDigest MspI]<br />

BcuI /FastDigest SpeI ACTAGT ACTAGCTAGT AluI/FastDigest AluI FspBI /FastDigest BfaI ], SetI<br />

BfmI /FastDigest SfcI CTRYAG CTRYATRYAG FaiI<br />

BfmI /FastDigest SfcI * CTACAG CTACATACAG FaiI<br />

BfmI /FastDigest SfcI * CTATAG CTATATATAG [FaiI]<br />

BfmI /FastDigest SfcI * CTGCAG CTGCATGCAG<br />

Cac8I, CviAII, FaiI, FatI, Hin1II /FastDigest NlaIII , [HpyCH4V], PaeI /FastDigest<br />

SphI , XceI /FastDigest NspI <br />

BfmI /FastDigest SfcI * CTGTAG CTGTATGTAG FaiI<br />

BglII/FastDigest BglII AGATCT AGATCGATCT<br />

[Bsp143I /FastDigest Sau3AI ], Bsu15I /FastDigest ClaI , [DpnI/<br />

FastDigest DpnI], [MboI/FastDigest MboI], TaqI/FastDigest TaqI<br />

Bme1390I /FastDigest ScrFI<br />

<br />

CCNGG CCNNGG BseDI /FastDigest BsaJI <br />

Bme1390I /FastDigest ScrFI<br />

*<br />

CCAGG CCAAGG BseDI /FastDigest BsaJI , Eco130I /FastDigest StyI <br />

Bme1390I /FastDigest ScrFI<br />

*<br />

CCCGG CCCCGG<br />

[BcnI /FastDigest NciI ], [Bme1390I /FastDigest ScrFI ], BseDI /<br />

FastDigest BsaJI , [BssKI], [HpaII/FastDigest HpaII], [MspI /FastDigest MspI]<br />

Bme1390I /FastDigest ScrFI<br />

*<br />

CCGGG CCGGGG<br />

[BcnI /FastDigest NciI ], [Bme1390I /FastDigest ScrFI ], BseDI /<br />

FastDigest BsaJI , [BssKI], [HpaII/FastDigest HpaII], [MspI /FastDigest MspI]<br />

Bme1390I /FastDigest ScrFI<br />

*<br />

CCTGG CCTTGG BseDI /FastDigest BsaJI , Eco130I /FastDigest StyI <br />

BmeT110I CYCGRG CYCGCGRG Bsh1236I /FastDigest Bsh1236I<br />

BmgT120I GGNCC GGNNCC BspLI /FastDigest NlaIV <br />

BmgT120I* GGACC GGAACC BspLI /FastDigest NlaIV <br />

BmgT120I* GGCCC GGCCCC<br />

[BmgT120I], BspLI /FastDigest NlaIV , [BsuRI /FastDigest HaeIII ],<br />

[Cfr13I /FastDigest Sau96I <br />

BmgT120I* GGGCC GGGGCC<br />

[BmgT120I], BspLI /FastDigest NlaIV , [BsuRI /FastDigest HaeIII ],<br />

[Cfr13I /FastDigest Sau96I <br />

BmgT120I* GGTCC GGTTCC BspLI /FastDigest NlaIV <br />

Bpu10I/FastDigest Bpu10I* CCTCAGC CCTCATCAGC [MnlI/FastDigest MnlI]<br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest HaeIII , EaeI,<br />

BsaWI WCCGGW WCCGGCCGGW<br />

Eco52I /FastDigest EagI , [HpaII/FastDigest HpaII], [MspI /FastDigest<br />

MspI]<br />

www.thermoscientific.com/onebio<br />

Single letter code<br />

R = G or A; K = G or T; B = C, G or T;<br />

Y = C or T; S = C or G; D = A, G or T;<br />

W = A or T; H = A, C or T; N = G, A, T or C.<br />

M = A or C; V = A, C or G;


Table 1.23. Newly generated recognition sites resulting from fill-in of 5’-overhang and self-ligation.<br />

Restriction<br />

Recognition Newly generated Restriction enzymes that cleave<br />

enzyme<br />

sequence sequence after reaction the newly generated recognition sequence<br />

BseYI CCCAGC CCCAGCCAGC <br />

BshNI /FastDigest BanI * GGCACC GGCACGCACC Cac8I<br />

BshNI /FastDigest BanI * GGCGCC GGCGCGCGCC<br />

Bsh1236I /FastDigest Bsh1236I, Cac8I, [HhaI/FastDigest HhaI], [Hin6I /<br />

FastDigest HinP1I ], PauI /FastDigest BssHII <br />

BshNI /FastDigest BanI * GGTACC GGTACGTACC<br />

[Csp6I /FastDigest Csp6I], Eco105I /FastDigest SnaBI , MaeII, Ppu21I<br />

/FastDigest BsaAI , [RsaI/FastDigest RsaI], SetI, TaiI /FastDigest TaiI<br />

BshNI /FastDigest BanI * GGTGCC GGTGCGTGCC Cac8I<br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest HaeIII , [Cfr10I<br />

BshTI /FastDigest AgeI ACCGGT ACCGGCCGGT<br />

/FastDigest BsrFI Eco52I /FastDigest EagI , [HpaII/<br />

FastDigest HpaII], [MspI /FastDigest MspI]<br />

Bsp119I /FastDigest Bsp119I TTCGAA TTCGCGAA Bsh1236I /FastDigest Bsh1236I, Hpy188III, Bsp68I /FastDigest NruI <br />

[BmgT120I], [BsuRI /FastDigest HaeIII ], Cac8I, Cfr10I /FastDigest BsrFI<br />

Bsp120I /FastDigest Bsp120I GGGCCC GGGCCGGCCC<br />

, [Cfr13I /FastDigest Sau96I HpaII/FastDigest HpaII, MspI<br />

/FastDigest MspI, NgoMIV, PdiI /FastDigest NaeI <br />

Bsp1407I /FastDigest Bsp1407I TGTACA TGTACGTACA<br />

[Csp6I /FastDigest Csp6I], Eco105I /FastDigest SnaBI , MaeII, Ppu21I<br />

/FastDigest BsaAI , [RsaI/FastDigest RsaI], SetI, TaiI /FastDigest TaiI<br />

Bsp143I /FastDigest Sau3AI<br />

<br />

GATC GATCGATC<br />

[Bsp143I /FastDigest Sau3AI ], Bsu15I /FastDigest ClaI , [DpnI/<br />

FastDigest DpnI], [MboI/FastDigest MboI], TaqI/FastDigest TaqI<br />

BspTI /FastDigest AflII CTTAAG CTTAATTAAG<br />

PacI/FastDigest PacI FastDigest MseI ], TasI /FastDigest<br />

Tsp509I , [Tru1I /FastDigest Tru1I]<br />

BssKI CCNGG CCNGGCCNGG<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

<br />

BssKI* CCAGG CCAGGCCAGG<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

EcoRII], [MvaI /FastDigest MvaI]<br />

[BcnI /FastDigest NciI ], [Bme1390I /FastDigest ScrFI ], BmgT120I,<br />

BssKI* CCCGG CCCGGCCCGG<br />

[BssKI], BsuRI /FastDigest HaeIII , Cfr13I /FastDigest Sau96I ,<br />

HpaII/FastDigest HpaII], [MspI /FastDigest MspI]<br />

[BcnI /FastDigest NciI ], [Bme1390I /FastDigest ScrFI ], BmgT120I,<br />

BssKI* CCGGG CCGGGCCGGG<br />

[BssKI], BsuRI /FastDigest HaeIII , Cfr13I /FastDigest Sau96I ,<br />

HpaII/FastDigest HpaII], [MspI /FastDigest MspI]<br />

BssKI* CCTGG CCTGGCCTGG<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

EcoRII], [MvaI /FastDigest MvaI]<br />

Bsu15I /FastDigest ClaI ATCGAT ATCGCGAT Bsh1236I /FastDigest Bsh1236I, Hpy188III, Bsp68I /FastDigest NruI <br />

BtgI* CCATGG CCATGCATGG<br />

[CviAII], [FaiI], [FatI], [Hin1II /FastDigest NlaIII ], HpyCH4V, Mph1103I /<br />

FastDigest NsiI <br />

[Bsh1236I /FastDigest Bsh1236I], Cac8I, HhaI/FastDigest HhaI, Hin6I /<br />

BtgI* CCGCGG CCGCGCGCGG<br />

FastDigest HinP1I , MauBI/FastDigest MauBI, [SsiI /FastDigest AciI ], PauI<br />

/FastDigest BssHII <br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest HaeIII , [Cfr10I<br />

Cfr10I /FastDigest BsrFI RCCGGY RCCGGCCGGY<br />

/FastDigest BsrFI Eco52I /FastDigest EagI , [HpaII/<br />

FastDigest HpaII], [MspI /FastDigest MspI]<br />

Cfr13I /FastDigest Sau96I<br />

*<br />

GGCCC GGCCGCCC<br />

[BsuRI /FastDigest HaeIII SatI /FastDigest Fnu4HI , SsiI<br />

/FastDigest AciI , TauI/FastDigest TauI<br />

Cfr13I /FastDigest Sau96I<br />

*<br />

GGGCC GGGCGGCC<br />

[BsuRI /FastDigest HaeIII SatI /FastDigest Fnu4HI , TauI/<br />

FastDigest TauI<br />

[BcnI /FastDigest NciI ], [Bme1390I /FastDigest ScrFI ], Bsh1285I<br />

Cfr9I CCCGGG CCCGGCCGGG<br />

/FastDigest BsiEI , [BssKI], BsuRI /FastDigest HaeIII <br />

Eco52I /FastDigest EagI , [HpaII/FastDigest HpaII], [MspI /FastDigest<br />

MspI]<br />

[BsuRI /FastDigest HaeIII ], Cac8I, Cfr10I /FastDigest BsrFI ,<br />

EaeI YGGCCR YGGCCGGCCR<br />

HpaII/FastDigest HpaII, MspI /FastDigest MspI, NgoMIV, PdiI /<br />

FastDigest NaeI <br />

CpoI /FastDigest RsrII * CGGACCG CGGACGACCG Bsh1285I /FastDigest BsiEI <br />

CpoI /FastDigest RsrII * CGGTCCG CGGTCGTCCG Bsh1285I /FastDigest BsiEI <br />

FastDigest SexAI ACCWGGT ACCWGGCCWGGT<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

EcoRII], [MvaI /FastDigest MvaI]<br />

FastDigest SexAI * ACCAGGT ACCAGGCCAGGT<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

EcoRII], [MvaI /FastDigest MvaI], [SetI]<br />

FastDigest SexAI * ACCTGGT ACCTGGCCTGGT<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

EcoRII], [MvaI /FastDigest MvaI], [SetI]<br />

Csp6I /FastDigest Csp6I GTAC GTATAC<br />

Bst1107I /FastDigest BstZ17I , FaiI, Hpy8I /FastDigest Hpy8I, XmiI<br />

/FastDigest AccI <br />

CviAII CATG CATATG [FaiI], NdeI/FastDigest NdeI<br />

Eco130I /FastDigest StyI<br />

*<br />

CCATGG CCATGCATGG<br />

[CviAII], [FaiI], [FatI], [Hin1II /FastDigest NlaIII ], HpyCH4V, Mph1103I /<br />

FastDigest NsiI <br />

Eco130I /FastDigest StyI<br />

*<br />

CCTAGG CCTAGCTAGG AluI/FastDigest AluI FspBI /FastDigest BfaI ], SetI<br />

[Bsh1285I /FastDigest BsiEI ], [BsuRI /FastDigest HaeIII ], Cac8I,<br />

Eco52I /FastDigest EagI CGGCCG CGGCCGGCCG<br />

Cfr10I /FastDigest BsrFI Eco52I /FastDigest EagI ],<br />

FseI, HpaII/FastDigest HpaII, MspI /FastDigest MspI, NgoMIV, PdiI /FastDigest<br />

NaeI <br />

<br />

www.thermoscientific.com/onebio 201


202<br />

Table 1.23. Newly generated recognition sites resulting from fill-in of 5’-overhang and self-ligation.<br />

Restriction<br />

Recognition Newly generated Restriction enzymes that cleave<br />

enzyme<br />

sequence sequence after reaction the newly generated recognition sequence<br />

Eco81I /FastDigest Bsu36I<br />

*<br />

CCTCAGG CCTCATCAGG [MnlI/FastDigest MnlI]<br />

Eco88I /FastDigest AvaI CYCGRG CYCGRYCGRG Bsh1285I /FastDigest BsiEI <br />

Eco88I /FastDigest AvaI * CCCGAG CCCGACCGAG Bsh1285I /FastDigest BsiEI <br />

[BcnI /FastDigest NciI ], [Bme1390I /FastDigest ScrFI ], Bsh1285I<br />

Eco88I /FastDigest AvaI * CCCGGG CCCGGCCGGG<br />

/FastDigest BsiEI , [BssKI], BsuRI /FastDigest HaeIII <br />

Eco52I /FastDigest EagI , [HpaII/FastDigest HpaII], [MspI /FastDigest<br />

MspI]<br />

Eco88I /FastDigest AvaI * CTCGAG CTCGATCGAG<br />

Bsh1285I /FastDigest BsiEI , Bsp143I /FastDigest Sau3AI ,<br />

DpnI/FastDigest DpnI, MboI/FastDigest MboI, PvuI/FastDigest PvuI, [TaqI/FastDigest TaqI]<br />

Eco88I /FastDigest AvaI * CTCGGG CTCGGTCGGG Bsh1285I /FastDigest BsiEI <br />

Eco91I /FastDigest Eco91I GGTNACC GGTNACGTNACC MaeII, [MaeIII], SetI, TaiI /FastDigest TaiI<br />

Eco91I /FastDigest Eco91I* GGTAACC GGTAACGTAACC MaeII, [MaeIII], SetI, TaiI /FastDigest TaiI<br />

Eco91I /FastDigest Eco91I* GGTCACC GGTCACGTCACC AjiI , MaeII, [MaeIII], [NmuCI /FastDigest NmuCI], SetI, TaiI /FastDigest TaiI<br />

Eco91I /FastDigest Eco91I* GGTGACC GGTGACGTGACC [HphI], MaeII, [MaeIII], [NmuCI /FastDigest NmuCI], SetI, TaiI /FastDigest TaiI<br />

Eco91I /FastDigest Eco91I* GGTTACC GGTTACGTTACC MaeII, [MaeIII], SetI, TaiI /FastDigest TaiI<br />

EcoO109I /FastDigest EcoO109I* RGGCCCY RGGCCGCCCY<br />

[BsuRI /FastDigest HaeIII SatI /FastDigest Fnu4HI , SsiI<br />

/FastDigest AciI , TauI/FastDigest TauI<br />

EcoO109I /FastDigest EcoO109I* RGGGCCY RGGGCGGCCY<br />

[BsuRI /FastDigest HaeIII SatI /FastDigest Fnu4HI , TauI/<br />

FastDigest TauI<br />

EcoRI/FastDigest EcoRI GAATTC GAATTAATTC<br />

PdmI /FastDigest PdmI, FastDigest MseI , [TasI /FastDigest Tsp509I<br />

], Tru1I /FastDigest Tru1I, VspI /FastDigest AseI <br />

EcoRII CCWGG CCWGGCCWGG<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

EcoRII], [MvaI /FastDigest MvaI]<br />

EcoRII* CCAGG CCAGGCCAGG<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

EcoRII], [MvaI /FastDigest MvaI]<br />

EcoRII* CCTGG CCTGGCCTGG<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

EcoRII], [MvaI /FastDigest MvaI]<br />

FatI CATG CATGCATG<br />

[CviAII], [FaiI], [FatI], [Hin1II /FastDigest NlaIII ], HpyCH4V, Mph1103I /<br />

FastDigest NsiI <br />

FspBI /FastDigest BfaI CTAG CTATAG BfmI /FastDigest SfcI , FaiI<br />

Hin1I /FastDigest BsaHI GRCGYC GRCGCGYC Bsh1236I /FastDigest Bsh1236I<br />

Hin6I /FastDigest HinP1I<br />

<br />

GCGC GCGCGC<br />

Bsh1236I /FastDigest Bsh1236I, Cac8I, [HhaI/FastDigest HhaI], [Hin6I /<br />

FastDigest HinP1I ], PauI /FastDigest BssHII <br />

HindIII/FastDigest HindIII AAGCTT AAGCTAGCTT<br />

[AluI/FastDigest AluI], BspOI /FastDigest BmtI FspBI /<br />

FastDigest BfaI , NheI/FastDigest NheI, [SetI]<br />

HpaII/FastDigest HpaII CCGG CCGCGG<br />

BseDI /FastDigest BsaJI , Bsh1236I /FastDigest Bsh1236I, BtgI, Cfr42I<br />

, MspA1I, SsiI /FastDigest AciI <br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest HaeIII , EaeI,<br />

Kpn2I /FastDigest Kpn2I TCCGGA TCCGGCCGGA<br />

Eco52I /FastDigest EagI , [HpaII/FastDigest HpaII], [MspI /FastDigest<br />

MspI]<br />

MaeII ACGT ACGCGT AflIII, Bsh1236I /FastDigest Bsh1236I, MluI/FastDigest MluI<br />

MaeIII GTNAC GTNACGTNAC MaeII, [MaeIII], SetI, TaiI /FastDigest TaiI<br />

MaeIII* GTAAC GTAACGTAAC MaeII, [MaeIII], SetI, TaiI /FastDigest TaiI<br />

MaeIII* GTCAC GTCACGTCAC AjiI , MaeII, [MaeIII], [NmuCI /FastDigest NmuCI], SetI, TaiI /FastDigest TaiI<br />

MaeIII* GTGAC GTGACGTGAC MaeII, [MaeIII], [NmuCI /FastDigest NmuCI], SetI, TaiI /FastDigest TaiI<br />

MaeIII* GTTAC GTTACGTTAC MaeII, [MaeIII], SetI, TaiI /FastDigest TaiI<br />

MauBI/FastDigest MauBI CGCGCGCG CGCGCGCGCGCG<br />

[Bsh1236I /FastDigest Bsh1236I], [Cac8I], [HhaI/FastDigest HhaI], [Hin6I /<br />

FastDigest HinP1I ], [MauBI/FastDigest MauBI], [PauI /FastDigest BssHII ]<br />

MboI/FastDigest MboI GATC GATCGATC<br />

[Bsp143I /FastDigest Sau3AI ], Bsu15I /FastDigest ClaI , [DpnI/<br />

FastDigest DpnI], [MboI/FastDigest MboI], TaqI/FastDigest TaqI<br />

MluI/FastDigest MluI ACGCGT ACGCGCGCGT<br />

[Bsh1236I /FastDigest Bsh1236I], Cac8I, HhaI/FastDigest HhaI, Hin6I /<br />

FastDigest HinP1I , MauBI/FastDigest MauBI, PauI /FastDigest BssHII <br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest HaeIII , [Cac8I],<br />

MreI /FastDigest MreI CGCCGGCG CGCCGGCCGGCG<br />

[Cfr10I /FastDigest BsrFI Eco52I /FastDigest EagI ,<br />

[HpaII/FastDigest HpaII], [MspI /FastDigest MspI], [NgoMIV], [PdiI /FastDigest<br />

NaeI ]<br />

FastDigest MseI TTAA TTATAA AanI /FastDigest PsiI , FaiI<br />

MspI /FastDigest MspI CCGG CCGCGG<br />

BseDI /FastDigest BsaJI , Bsh1236I /FastDigest Bsh1236I, BtgI, Cfr42I<br />

, MspA1I, SsiI /FastDigest AciI <br />

MunI /FastDigest MfeI CAATTG CAATTAATTG<br />

FastDigest MseI , [TasI /FastDigest Tsp509I ], Tru1I /FastDigest<br />

Tru1I, VspI /FastDigest AseI <br />

MvaI /FastDigest MvaI CCWGG CCWWGG BseDI /FastDigest BsaJI , Eco130I /FastDigest StyI <br />

MvaI /FastDigest MvaI* CCAGG CCAAGG BseDI /FastDigest BsaJI , Eco130I /FastDigest StyI <br />

MvaI /FastDigest MvaI* CCTGG CCTTGG BseDI /FastDigest BsaJI , Eco130I /FastDigest StyI <br />

NarI GGCGCC GGCGCGCC<br />

Bsh1236I /FastDigest Bsh1236I, Cac8I, [HhaI/FastDigest HhaI], [Hin6I /FastDigest<br />

HinP1I ], SgsI /FastDigest AscI , PauI /FastDigest BssHII <br />

NcoI/FastDigest NcoI CCATGG CCATGCATGG<br />

[CviAII], [FaiI], [FatI], [Hin1II /FastDigest NlaIII ], HpyCH4V, Mph1103I /<br />

FastDigest NsiI <br />

www.thermoscientific.com/onebio


Table 1.23. Newly generated recognition sites resulting from fill-in of 5’-overhang and self-ligation.<br />

Restriction<br />

Recognition Newly generated Restriction enzymes that cleave<br />

enzyme<br />

sequence sequence after reaction the newly generated recognition sequence<br />

NdeI/FastDigest NdeI CATATG CATATATG [FaiI]<br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest HaeIII , [Cac8I],<br />

NgoMIV GCCGGC GCCGGCCGGC<br />

[Cfr10I /FastDigest BsrFI Eco52I /FastDigest EagI ,<br />

[HpaII/FastDigest HpaII], [MspI /FastDigest MspI], [NgoMIV], [PdiI /FastDigest<br />

NaeI ]<br />

NheI/FastDigest NheI GCTAGC GCTAGCTAGC<br />

AluI/FastDigest AluI, [BspOI /FastDigest BmtI FspBI /<br />

FastDigest BfaI ], [NheI/FastDigest NheI], SetI<br />

NmuCI /FastDigest NmuCI GTSAC GTSACGTSAC MaeII, [MaeIII], [NmuCI /FastDigest NmuCI], SetI, TaiI /FastDigest TaiI<br />

NmuCI /FastDigest NmuCI* GTCAC GTCACGTCAC AjiI , MaeII, [MaeIII], [NmuCI /FastDigest NmuCI], SetI, TaiI /FastDigest TaiI<br />

NmuCI /FastDigest NmuCI* GTGAC GTGACGTGAC MaeII, [MaeIII], [NmuCI /FastDigest NmuCI], SetI, TaiI /FastDigest TaiI<br />

[Bsh1285I /FastDigest BsiEI ], [BsuRI /FastDigest HaeIII ], Cac8I,<br />

Cfr10I /FastDigest BsrFI Eco52I /FastDigest EagI ],<br />

NotI/FastDigest NotI GCGGCCGC GCGGCCGGCCGC FseI, HpaII/FastDigest HpaII, MspI /FastDigest MspI, NgoMIV, PdiI /FastDigest<br />

NaeI , [SatI /FastDigest Fnu4HI ], [SsiI /FastDigest AciI ], [TauI/<br />

FastDigest TauI]<br />

PagI /FastDigest BspHI TCATGA TCATGCATGA<br />

[CviAII], [FaiI], [FatI], [Hin1II /FastDigest NlaIII ], HpyCH4V, Mph1103I /<br />

FastDigest NsiI <br />

PasI* CCCAGGG CCCAGCAGGG BseYI, EcoP15I<br />

PauI /FastDigest BssHII GCGCGC GCGCGCGCGC<br />

[Bsh1236I /FastDigest Bsh1236I], [Cac8I], [HhaI/FastDigest HhaI], [Hin6I /<br />

FastDigest HinP1I ], MauBI/FastDigest MauBI, [PauI /FastDigest BssHII ]<br />

Pfl23II /FastDigest BsiWI<br />

<br />

CGTACG CGTACGTACG<br />

[Csp6I /FastDigest Csp6I], Eco105I /FastDigest SnaBI , MaeII, [Pfl23II<br />

/FastDigest BsiWI ], Ppu21I /FastDigest BsaAI , [RsaI/FastDigest<br />

RsaI], SetI, TaiI /FastDigest TaiI<br />

PfoI/FastDigest PfoI TCCNGGA TCCNGGCCNGGA<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

<br />

PfoI/FastDigest PfoI* TCCAGGA TCCAGGCCAGGA<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

EcoRII], [MvaI /FastDigest MvaI]<br />

[BcnI /FastDigest NciI ], [Bme1390I /FastDigest ScrFI ], BmgT120I,<br />

PfoI/FastDigest PfoI* TCCCGGA TCCCGGCCCGGA [BssKI], BsuRI /FastDigest HaeIII , Cfr13I /FastDigest Sau96I ,<br />

HpaII/FastDigest HpaII], [MspI /FastDigest MspI]<br />

[BcnI /FastDigest NciI ], [Bme1390I /FastDigest ScrFI ], BmgT120I,<br />

PfoI/FastDigest PfoI* TCCGGGA TCCGGGCCGGGA [BssKI], BsuRI /FastDigest HaeIII , Cfr13I /FastDigest Sau96I ,<br />

HpaII/FastDigest HpaII], [MspI /FastDigest MspI]<br />

PfoI/FastDigest PfoI* TCCTGGA TCCTGGCCTGGA<br />

[Bme1390I /FastDigest ScrFI ], [BssKI], BsuRI /FastDigest HaeIII<br />

EcoRII], [MvaI /FastDigest MvaI]<br />

PscI ACATGT ACATGCATGT<br />

[CviAII], [FaiI], [FatI], [Hin1II /FastDigest NlaIII ], HpyCH4V, Mph1103I /<br />

FastDigest NsiI , [XceI /FastDigest NspI ]<br />

Psp1406I /FastDigest AclI<br />

<br />

AACGTT AACGCGTT AflIII, Bsh1236I /FastDigest Bsh1236I, MluI/FastDigest MluI<br />

PspXI VCTCGAGB VCTCGATCGAGB<br />

Bsh1285I /FastDigest BsiEI , Bsp143I /FastDigest Sau3AI ,<br />

DpnI/FastDigest DpnI, MboI/FastDigest MboI, PvuI/FastDigest PvuI, [TaqI/FastDigest TaqI]<br />

PsuI /FastDigest PsuI RGATCY RGATCGATCY<br />

[Bsp143I /FastDigest Sau3AI ], Bsu15I /FastDigest ClaI , [DpnI/<br />

FastDigest DpnI], [MboI/FastDigest MboI], TaqI/FastDigest TaqI<br />

PsyI /FastDigest PsyI GACNNNGTC GACNNNNGTC BoxI /FastDigest PshAI <br />

PsyI /FastDigest PsyI* GACNANGTC GACNAANGTC BoxI /FastDigest PshAI <br />

PsyI /FastDigest PsyI* GACNCNGTC GACNCCNGTC BoxI /FastDigest PshAI <br />

PsyI /FastDigest PsyI* GACNGNGTC GACNGGNGTC BoxI /FastDigest PshAI <br />

PsyI /FastDigest PsyI* GACNTNGTC GACNTTNGTC BoxI /FastDigest PshAI <br />

SalI/FastDigest SalI GTCGAC GTCGATCGAC<br />

Bsh1285I /FastDigest BsiEI , Bsp143I /FastDigest Sau3AI ,<br />

DpnI/FastDigest DpnI, MboI/FastDigest MboI, PvuI/FastDigest PvuI, [TaqI/FastDigest TaqI]<br />

FastDigest SanDI * GGGACCC GGGACGACCC [FaqI /FastDigest BsmFI ]<br />

SatI /FastDigest Fnu4HI GCNGC GCNNGC Cac8I<br />

SatI /FastDigest Fnu4HI * GCAGC GCAAGC Cac8I<br />

SatI /FastDigest Fnu4HI * GCCGC GCCCGC Cac8I, FauI, [SsiI /FastDigest AciI ]<br />

SatI /FastDigest Fnu4HI * GCGGC GCGGGC Cac8I<br />

SatI /FastDigest Fnu4HI * GCTGC GCTTGC Cac8I<br />

Bsh1285I /FastDigest BsiEI , BsuRI /FastDigest HaeIII , [Cfr10I<br />

SgrAI CRCCGGYG CRCCGGCCGGYG /FastDigest BsrFI Eco52I /FastDigest EagI , [HpaII/<br />

FastDigest HpaII], [MspI /FastDigest MspI]<br />

Bsh1285I /FastDigest BsiEI , Bsp143I /FastDigest Sau3AI ,<br />

SgrDI CGTCGACG CGTCGATCGACG<br />

DpnI/FastDigest DpnI, [Hpy99I], MboI/FastDigest MboI, PvuI/FastDigest PvuI, [TaqI/<br />

FastDigest TaqI]<br />

SgsI /FastDigest AscI GGCGCGCC GGCGCGCGCGCC<br />

[Bsh1236I /FastDigest Bsh1236I], [Cac8I], [HhaI/FastDigest HhaI], [Hin6I /<br />

FastDigest HinP1I ], MauBI/FastDigest MauBI, [PauI /FastDigest BssHII ]<br />

SmoI * CTCGAG CTCGATCGAG<br />

Bsh1285I /FastDigest BsiEI , Bsp143I /FastDigest Sau3AI ,<br />

DpnI/FastDigest DpnI, MboI/FastDigest MboI, PvuI/FastDigest PvuI, [TaqI/FastDigest TaqI]<br />

SmoI * CTTAAG CTTAATTAAG<br />

PacI/FastDigest PacI FastDigest MseI ], TasI /FastDigest<br />

Tsp509I , [Tru1I /FastDigest Tru1I]<br />

SsiI /FastDigest AciI CCGC CCGCGC<br />

Bsh1236I /FastDigest Bsh1236I, HhaI/FastDigest HhaI, Hin6I /FastDigest<br />

HinP1I , [SsiI /FastDigest AciI ]<br />

<br />

www.thermoscientific.com/onebio 203


204<br />

Table 1.23. Newly generated recognition sites resulting from fill-in of 5’-overhang and self-ligation.<br />

Restriction<br />

Recognition Newly generated Restriction enzymes that cleave<br />

enzyme<br />

sequence sequence after reaction the newly generated recognition sequence<br />

SspDI GGCGCC GGCGCGCGCC<br />

Bsh1236I /FastDigest Bsh1236I, Cac8I, [HhaI/FastDigest HhaI], [Hin6I /<br />

FastDigest HinP1I ], PauI /FastDigest BssHII <br />

TaqI/FastDigest TaqI TCGA TCGCGA Bsh1236I /FastDigest Bsh1236I, Hpy188III, Bsp68I /FastDigest NruI <br />

TasI /FastDigest Tsp509I<br />

<br />

AATT AATTAATT<br />

FastDigest MseI , [TasI /FastDigest Tsp509I ], Tru1I /FastDigest<br />

Tru1I, VspI /FastDigest AseI <br />

TatI/FastDigest TatI WGTACW WGTACGTACW<br />

[Csp6I /FastDigest Csp6I], Eco105I /FastDigest SnaBI , MaeII, Ppu21I<br />

/FastDigest BsaAI , [RsaI/FastDigest RsaI], SetI, TaiI /FastDigest TaiI<br />

Tru1I /FastDigest Tru1I TTAA TTATAA AanI /FastDigest PsiI , FaiI<br />

TseI GCWGC GCWGCWGC [SatI /FastDigest Fnu4HI ], [TseI]<br />

TseI* GCAGC GCAGCAGC<br />

[BseXI /FastDigest BseXI], EcoP15I, [Lsp1109I /FastDigest BbvI ], [SatI<br />

/FastDigest Fnu4HI ], [TseI]<br />

TseI* GCTGC GCTGCTGC [SatI /FastDigest Fnu4HI ], [TseI]<br />

VspI /FastDigest AseI ATTAAT ATTATAAT AanI /FastDigest PsiI , FaiI<br />

XapI /FastDigest XapI RAATTY RAATTAATTY<br />

FastDigest MseI , [TasI /FastDigest Tsp509I ], Tru1I /FastDigest<br />

Tru1I, VspI /FastDigest AseI <br />

XbaI/FastDigest XbaI TCTAGA TCTAGCTAGA AluI/FastDigest AluI FspBI /FastDigest BfaI ], SetI<br />

XhoI/FastDigest XhoI CTCGAG CTCGATCGAG<br />

Bsh1285I /FastDigest BsiEI , Bsp143I /FastDigest Sau3AI ,<br />

DpnI/FastDigest DpnI, MboI/FastDigest MboI, PvuI/FastDigest PvuI, [TaqI/FastDigest TaqI]<br />

XmaJI /FastDigest AvrII CCTAGG CCTAGCTAGG AluI/FastDigest AluI FspBI /FastDigest BfaI ], SetI<br />

XmiI /FastDigest AccI * GTATAC GTATATAC [FaiI]<br />

XmiI /FastDigest AccI * GTCGAC GTCGCGAC Bsh1236I /FastDigest Bsh1236I, Hpy188III, Bsp68I /FastDigest NruI <br />

XmiI /FastDigest AccI * GTCTAC GTCTCTAC Alw26I /FastDigest Alw26I<br />

Recognition Sites Resulting from Removal of 3’-overhang and Self-ligation<br />

Table 1.24. Newly generated recognition sites resulting from removal of 3’-overhang and self-ligation.<br />

Restriction<br />

Recognition Newly generated Restriction enzymes that cleave<br />

enzyme<br />

sequence<br />

sequence after reaction the newly generated recognition sequence<br />

FastDigest DrdI /DrdI GACNNNNNNGTC GACNNNNGTC BoxI /FastDigest PshAI <br />

AdeI /FastDigest DraIII<br />

<br />

CACNNNGTG CACGTG<br />

Eco72I /FastDigest PmlI , MaeII, Ppu21I /FastDigest BsaAI , SetI,<br />

TaiI /FastDigest TaiI<br />

AgsI TTSAA TTAA FastDigest MseI , Tru1I /FastDigest Tru1I<br />

BglI/FastDigest BglI GCCNNNNNGGC GCCNNGGC BseDI /FastDigest BsaJI <br />

Bsh1285I /FastDigest<br />

BsiEI <br />

CGRYCG CGCG Bsh1236I /FastDigest Bsh1236I<br />

CaiI /FastDigest AlwNI<br />

<br />

CAGNNNCTG CAGCTG AluI/FastDigest AluI PvuII/FastDigest PvuII, SetI<br />

Cfr42I CCGCGG CCGG HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

Eam1105I /FastDigest<br />

Eam1105I<br />

GACNNNNNGTC GACNNNNGTC BoxI /FastDigest PshAI <br />

FseI GGCCGGCC GGCC [BsuRI /FastDigest HaeIII <br />

Hpy188I TCNGA TCGA TaqI/FastDigest TaqI<br />

PacI/FastDigest PacI<br />

<br />

TTAATTAA TTATAA AanI /FastDigest PsiI , FaiI<br />

PvuI/FastDigest PvuI CGATCG CGCG Bsh1236I /FastDigest Bsh1236I<br />

SdaI /FastDigest SbfI CCTGCAGG CCGG HpaII/FastDigest HpaII, MspI /FastDigest MspI<br />

SfaAI /FastDigest AsiSI<br />

<br />

GCGATCGC GCGCGC<br />

Bsh1236I /FastDigest Bsh1236I, Cac8I, HhaI/FastDigest HhaI, Hin6I /<br />

FastDigest HinP1I , PauI /FastDigest BssHII <br />

SfiI/FastDigest SfiI GGCCNNNNNGGCC GGCCNNGGCC BseDI /FastDigest BsaJI , [BsuRI /FastDigest HaeIII <br />

TaaI /FastDigest TaaI ACNGT ACGT MaeII, SetI, TaiI /FastDigest TaiI<br />

Note<br />

enzymes are shown in purple.<br />

<strong>Thermo</strong> <strong>Scientific</strong> conventional enzymes are shown in orange.<br />

www.thermoscientific.com/onebio<br />

Single letter code<br />

R = G or A; K = G or T; B = C, G or T; M = A or C<br />

Y = C or T; S = C or G; D = A, G or T; V = A, C or G;<br />

W = A or T; H = A, C or T; N = G, A, T or C.


Selection Guides<br />

Alphabetic List of Commercially Available Restriction Enzymes<br />

Note<br />

[ ] <br />

m Isoschizomers with different sensitivity to methylation.<br />

* <strong>Thermo</strong> <strong>Scientific</strong> restriction enzymes are shown in bold.<br />

FastDigest enzymes are shown in purple.<br />

Conventional enzymes are shown in orange.<br />

Table 1.25. Commercially available restriction enzymes.<br />

Single letter code<br />

R = G or A; H = A, C or T;<br />

Y = C or T; V = A, C or G;<br />

W = A or T; B = C, G or T;<br />

M = A or C; D = A, G or T;<br />

K = G or T; N = G, A, T or C.<br />

S = C or G;<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

Commercially available<br />

isoschizomers from other vendors<br />

AanI TTATAA FastDigest PsiI 57 AanI 82 PsiI<br />

AarI AarI 82<br />

AasI GACNNNNNNGTC FastDigest DrdI 36 DrdI, DseDI<br />

AatI AGGCCT FastDigest StuI 66 Eco147I 114 PceI, SseBI, StuI<br />

AatII GACGTC FastDigest AatII 13 AatII 82 [ZraIm ]<br />

AbsI CCTCGAGG<br />

Acc16I TGCGCA FastDigest FspI 41 NsbI 132 AviII, FspI<br />

Acc36I FastDigest BspMI 31 BveI 104 BfuAI, BspMI<br />

Acc65I GGTACC<br />

FastDigest Acc65I,<br />

[FastDigest KpnIm 13<br />

45<br />

Acc65I ,<br />

[KpnIm 83<br />

123<br />

Asp718Im AccB1I GGYRCC FastDigest BanI 21 BshNI 97 BanI, BspT107I<br />

AccB7I CCANNNNNTGG FastDigest PflMI 56 Van91I 152 BasI, PflMI<br />

AccBSI FastDigest BsrBI 32 MbiI 125 BsrBI<br />

AccI GTMKAC FastDigest AccI 13 XmiI 154 AccI, FblI<br />

AccII CGCG FastDigest Bsh1236I 27 Bsh1236I 97 BspFNI, BstFNI, BstUI, MvnI<br />

AccIII TCCGGA FastDigest Kpn2Im 46 Kpn2I m 123 Aor13HI, BseAIm , Bsp13I, BspEIm , MroIm AciI FastDigest AciI 14 SsiI 147 AciI, BspACI<br />

AclI AACGTT FastDigest AclI 14 Psp1406I 138 AclI<br />

AclWI BspPI 101 AlwI<br />

AcoI YGGCCR EaeI<br />

AcsI RAATTY FastDigest XapI 70 XapI 153 ApoI<br />

AcuI FastDigest AcuI 14 Eco57I 112 AcuI<br />

AcvI CACGTG FastDigest PmlI 56 Eco72I 112 BbrPI, PmaCI, PmlI, PspCI<br />

AcyI GRCGYC FastDigest BsaHI 26 Hin1I 119 BsaHI, BssNI, BstACI, Hsp92I<br />

AdeI CACNNNGTG FastDigest DraIII 36 AdeI 83 DraIII<br />

AfaI GTAC<br />

[FastDigest Csp6Im FastDigest RsaI<br />

34<br />

60<br />

[Csp6I m RsaI<br />

107<br />

140<br />

m ], [RsaNI]<br />

AfeI AGCGCT FastDigest AfeI 15 Eco47III 111 AfeI, Aor51HI<br />

AfiI CCNNNNNNNGG FastDigest BslI 28 BseLI 95 Bsc4I, BslI<br />

AflII CTTAAG FastDigest AflII 15 BspTI 101 AflII, BfrI, Bst98I, BstAFI, MspCI, Vha464I<br />

AflIII ACRYGT<br />

AgeI ACCGGT FastDigest AgeI 15 BshTI 98 AgeI, AsiGI, CspAIm , PinAI<br />

AgsI TTSAA<br />

AhdI GACNNNNNGTC FastDigest Eam1105I 37 Eam1105I 108 AspEI, BmeRI, DriI, EclHKI<br />

AhlI ACTAGT FastDigest SpeI 65 BcuI 89 SpeI<br />

AjiI AjiI 84 BmgBI, BtrI<br />

AjnI CCWGG [FastDigest MvaI 50<br />

EcoRIIm ,<br />

[MvaI <br />

116<br />

129<br />

[BseBI], [Bst2UI], [BstNI], [BstOI],<br />

Psp6I, PspGIm AjuI 7 FastDigest AjuI 16 AjuI 84<br />

AleI CACNNNNGTG FastDigest AleI 16 OliI 133 AleI<br />

AlfI 6 AlfI 85<br />

AloI 6 AloI 85<br />

AluI AGCT FastDigest AluI 16 AluI 85 AluBI<br />

AluBI AGCT FastDigest AluI 16 AluI 85<br />

Alw21I GWGCWC FastDigest Alw21I 17 Alw21I 86 Bbv12I, BsiHKAI<br />

Alw26I FastDigest Alw26I 17 Alw26I 86 BsmAIm , BstMAI<br />

Alw44I GTGCAC FastDigest ApaLI 18 Alw44I 86 ApaLIm , VneI<br />

AlwI BspPI 101 AclWI<br />

AlwNI CAGNNNCTG FastDigest AlwNI 17 CaiI 104 AlwNI<br />

Ama87I CYCGRG FastDigest AvaI 19 Eco88I 113 AvaI, [BmeT110I], BsiHKCI, BsoBI<br />

Aor13HI TCCGGA FastDigest Kpn2I 46 Kpn2I 123 AccIII, BseAI, Bsp13I, BspEI, MroI<br />

Aor51HI AGCGCT FastDigest AfeI 15 Eco47III 111 AfeI<br />

ApaI GGGCCC<br />

FastDigest ApaI,<br />

[FastDigest Bsp120I<br />

18<br />

30<br />

ApaI,<br />

[Bsp120I <br />

87<br />

99<br />

[PspOMI]<br />

<br />

www.thermoscientific.com/onebio 205


206<br />

Table 1.25. Commercially available restriction enzymes.<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

Commercially available<br />

isoschizomers from other vendors<br />

ApaLI GTGCAC FastDigest ApaLI m 18 Alw44I m 86 ApaLI, VneI<br />

ApeKI GCWGC TseI<br />

ApoI RAATTY FastDigest XapI 70 XapI 153 AcsI<br />

ArsI 6 AscI GGCGCGCC FastDigest AscI 18 SgsI 145 AscI, PalAI<br />

AseI ATTAAT FastDigest AseI 19 VspI 152 AseI, PshBI<br />

AsiGI ACCGGT FastDigest AgeI 15 BshTI 98 AgeI, CspAI, PinAI<br />

AsiSI GCGATCGC FastDigest AsiSI 19 SfaAI 144 AsiSI, RgaI, SgfI<br />

Asp700I GAANNNNTTC FastDigest PdmI 55 PdmI 135 MroXI, XmnI<br />

Asp718I GGTACC<br />

FastDigest Acc65Im ,<br />

[FastDigest KpnIm 13<br />

45<br />

Acc65I m ,<br />

[KpnIm 83<br />

123<br />

AspA2I CCTAGG FastDigest AvrII 20 XmaJI 154 AvrII, BlnI<br />

AspEI GACNNNNNGTC FastDigest Eam1105I 37 Eam1105I 108 AhdI, BmeRI, DriI, EclHKI<br />

AspI GACNNNGTC FastDigest PsyI 59 PsyI 139 PflFI, Tth111I<br />

AspLEI GCGC<br />

FastDigest HhaI,<br />

[FastDigest HinP1I <br />

42<br />

44<br />

HhaI,<br />

[Hin6I <br />

119<br />

120<br />

BstHHI, CfoI, [HinP1I], [HspAI]<br />

AspS9I GGNCC FastDigest Sau96I 62 Cfr13I 105 [BmgT120I], PspPI, Sau96I<br />

AssI AGTACT FastDigest ScaI 63 ScaI 142 BmcAI, ZrmI<br />

AsuC2I CCSGG FastDigest NciI 51 BcnI 89 BpuMI, NciI<br />

AsuHPI HphI 122<br />

AsuII TTCGAA FastDigest Bsp119Im 29 Bsp119I m 99<br />

Bpu14I, BspT104Im , BstBIm , Csp45I,<br />

NspVm , SfuI<br />

AsuNHI GCTAGC<br />

www.thermoscientific.com/onebio<br />

[FastDigest BmtI <br />

FastDigest NheI<br />

24<br />

52<br />

[BspOI <br />

NheI<br />

AvaI CYCGRG FastDigest AvaI m 19 Eco88I m 113<br />

Ama87I, AvaI, [BmeT110Im ], BsiHKCI,<br />

BsoBIm AvaII GGWCC FastDigest AvaII 20 Eco47I 110 AvaII, Bme18I, SinI, VpaK11BI<br />

AviII TGCGCA FastDigest FspI 41 NsbI 132 Acc16I, FspI<br />

AvrII CCTAGG FastDigest AvrII 20 XmaJI 154 AspA2I, AvrII, BlnI<br />

AxyI CCTNAGG FastDigest Bsu36I 34 Eco81I 113 Bse21I, Bsu36I<br />

BaeGI GKGCMC FastDigest Bme1580I 23 BseSI 96 BstSLI<br />

BaeI 4 BalI TGGCCA FastDigest MscI 49 MlsI 127 MluNI, MscI, Msp20I<br />

BamHI GGATCC FastDigest BamHI 20 BamHI 88<br />

BanI GGYRCC FastDigest BanI 21 BshNI 97 AccB1I, BanI, BspT107I<br />

BanII GRGCYC Eco24I 109 EcoT38I, FriOI<br />

BanIII ATCGAT FastDigest ClaI 34 Bsu15I 103<br />

Bsa29I, BseCI, BshVI, BspDI, BspXI,<br />

BsuTUI, ClaI<br />

BarI 6 BasI CCANNNNNTGG FastDigest PflMI 56 Van91I 152 AccB7I, PflMI<br />

BauI BauI 88 BssSI, Bst2BI<br />

BbeI GGCGCC [FastDigest EheI 40<br />

[EheI <br />

[SspDI <br />

116<br />

148<br />

[DinI], [EgeI], [KasI], [Mly113I], [NarI],<br />

[SfoIm ]<br />

BbrPI CACGTG FastDigest PmlI 56 Eco72I 112 AcvI, PmaCI, PmlI, PspCI<br />

BbsI FastDigest BbsI 21 BpiI 92 BbsI, BpuAI, BstV2I<br />

BbuI GCATGC FastDigest SphI 66 PaeI 133 SphI<br />

Bbv12I GWGCWC FastDigest Alw21I 17 Alw21I 86 BsiHKAI<br />

BbvCI <br />

BbvI <br />

FastDigest BbvI ,<br />

FastDigest BseXI<br />

21<br />

27<br />

Lsp1109I ,<br />

BseXI <br />

100<br />

131<br />

124<br />

96<br />

[BmtI]<br />

BbvI, BstV1I<br />

BccI <br />

BceAI <br />

BcgI 6 BciVI BfuI 90<br />

BclI TGATCA FastDigest BclI 22 BclI 89 FbaI, Ksp22I<br />

BcnI CCSGG FastDigest NciI 51 BcnI 89 AsuC2I, BpuMI, NciI<br />

BcuI ACTAGT FastDigest SpeI 65 BcuI 89 AhlI, SpeI<br />

BdaI 6 BfaI CTAG FastDigest BfaI 22 FspBI 118 BfaI, MaeI, XspI<br />

BfiI BmrI, BmuI<br />

BfmI CTRYAG FastDigest SfcI 64 BfmI 90 BstSFI, SfcI<br />

BfrI CTTAAG FastDigest AflII 15 BspTI 101 AflII, Bst98I, BstAFI, MspCI, Vha464I<br />

BfuAI FastDigest BspMI 31 BveI 104 Acc36I, BspMI<br />

BfuCI GATC<br />

FastDigest Sau3AI ,<br />

FastDigest MboIm 62<br />

46<br />

Bsp143I ,<br />

MboIm 99<br />

126<br />

BssMI, [BstKTIm ], BstMBI, DpnIIm ,<br />

Kzo9I, NdeIIm , Sau3AIm BfuI BfuI 90 BciVI<br />

BglI GCCNNNNNGGC FastDigest BglI 22 BglI 90


Table 1.25. Commercially available restriction enzymes.<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

Commercially available<br />

isoschizomers from other vendors<br />

BglII AGATCT FastDigest BglII 23 BglII 91<br />

BisI GCNGC [BlsI], GluI<br />

BlnI CCTAGG FastDigest AvrII 20 XmaJI 154 AspA2I, AvrII<br />

BlpI GCTNAGC FastDigest BlpI 23 Bpu1102I 93 BlpI, Bsp1720I, CelII<br />

BlsI GCNGC [BisI], [GluI]<br />

BmcAI AGTACT FastDigest ScaI 63 ScaI 142 AssI, ZrmI<br />

Bme1390I CCNGG FastDigest ScrFI 63 Bme1390I 91<br />

BmrFI, [BssKI], [BstSCI], MspR9I, ScrFI,<br />

[StyD4I]<br />

Bme1580I GKGCMC FastDigest Bme1580I 23 BseSI 96 BaeGI, BstSLI<br />

Bme18I GGWCC FastDigest AvaII 20 Eco47I 110 AvaII, SinI, VpaK11BI<br />

BmeRI GACNNNNNGTC FastDigest Eam1105I 37 Eam1105I 108 AhdI, AspEI, DriI, EclHKI<br />

BmeT110I CYCGRG [FastDigest AvaI <br />

<br />

m 19 [Eco88I m 113 [Ama87I], [AvaIm ], [BsiHKCI], [BsoBI]<br />

BmgBI AjiI 84 BtrI<br />

BmgT120I GGNCC [FastDigest Sau96I 62 [Cfr13I 105 [AspS9I], [PspPI], [Sau96I]<br />

BmiI GGNNCC FastDigest NlaIV 53 BspLI 100 NlaIV, PspN4I<br />

BmrFI CCNGG FastDigest ScrFI 63 Bme1390I 91 [BssKI], [BstSCI], MspR9I, ScrFI, [StyD4I]<br />

BmrI BmuI<br />

BmtI GCTAGC<br />

FastDigest BmtI ,<br />

[FastDigest NheIm 24<br />

52<br />

BspOI ,<br />

[NheIm 100<br />

131<br />

[AsuNHI], BmtI<br />

BmuI BmrI<br />

BoxI GACNNNNGTC FastDigest PshAI 57 BoxI 92 BstPAI, PshAI<br />

BpiI FastDigest BbsI 21 BpiI 92 BbsI, BpuAI, BstV2I<br />

BplI 5 FastDigest BplI 24 BplI 92<br />

BpmI FastDigest BpmI m 24 GsuI m 118 BpmI<br />

Bpu10I FastDigest Bpu10I 25 Bpu10I 93<br />

Bpu1102I GCTNAGC FastDigest BlpI 23 Bpu1102I 93 BlpI, Bsp1720I, CelII<br />

Bpu14I TTCGAA FastDigest Bsp119I 29 Bsp119I 99 AsuII, BspT104I, BstBI, Csp45I, NspV, SfuI<br />

BpuAI FastDigest BbsI 21 BpiI 92 BbsI, BstV2I<br />

BpuEI <br />

BpuMI CCSGG FastDigest NciI 51 BcnI 89 AsuC2I, NciI<br />

BpvUI CGATCG FastDigest PvuI 59 PvuI 139 MvrI, Ple19I<br />

Bsa29I ATCGAT FastDigest ClaI 34 Bsu15I 103<br />

BanIII, BseCI, BshVI, BspDI, BspXI,<br />

BsuTUI, ClaI<br />

BsaAI YACGTR FastDigest BsaAI 25 Ppu21I 137 BsaAI, BstBAI<br />

BsaBI GATNNNNATC FastDigest BsaBI 25 BseJI 94 BsaBI, Bse8I<br />

BsaHI GRCGYC FastDigest BsaHI m 26 Hin1I m 119 AcyI, BsaHI, BssNI, BstACI, Hsp92I<br />

BsaI FastDigest Eco31I 38 Eco31I 110 Bso31I, BspTNI<br />

BsaJI CCNNGG FastDigest BsaJI 26 BseDI 94 <br />

BsaMI FastDigest Mva1269I 51 Mva1269I 130 BsmI, PctI<br />

BsaWI WCCGGW<br />

BsaXI 5 Bsc4I CCNNNNNNNGG FastDigest BslI 28 BseLI 95 AfiI, BslI<br />

Bse118I RCCGGY FastDigest BsrFI 32 Cfr10I 105 BsrFI, BssAI<br />

Bse1I FastDigest BseNI 27 BseNI 96 BsrI, BsrSI<br />

Bse21I CCTNAGG FastDigest Bsu36I 34 Eco81I 113 AxyI, Bsu36I<br />

Bse3DI FastDigest BsrDI 32 BseMI 95 BsrDI<br />

Bse8I GATNNNNATC FastDigest BsaBI 25 BseJI 94 BsaBI<br />

BseAI TCCGGA FastDigest Kpn2Im 46 Kpn2I m 123 AccIIIm , Aor13HI, Bsp13I, BspEIm , MroIm BseBI CCWGG FastDigest MvaI 50<br />

[EcoRII<br />

MvaI <br />

116<br />

129<br />

[AjnI], Bst2UI, BstNI, BstOI, [Psp6I],<br />

[PspGI]<br />

BseCI ATCGAT FastDigest ClaI 34 Bsu15I 103<br />

BanIII, Bsa29I, BshVI, BspDI, BspXI,<br />

BsuTUI, ClaI<br />

BseDI CCNNGG FastDigest BsaJI 26 BseDI 94 <br />

BseGI <br />

FastDigest BseGI,<br />

[FastDigest FokI<br />

26<br />

40<br />

BseGI 94 BstF5I, BtsCI, [FokI]<br />

BseJI GATNNNNATC FastDigest BsaBI 25 BseJI 94 BsaBI, Bse8I<br />

BseLI CCNNNNNNNGG FastDigest BslI 28 BseLI 95 AfiI, Bsc4I, BslI<br />

BseMI FastDigest BsrDI 32 BseMI 95 Bse3DI, BsrDI<br />

BseMII FastDigest BspCNI 31 BseMII 95 [BspCNI]<br />

BseNI FastDigest BseNI 27 BseNI 96 Bse1I, BsrI, BsrSI<br />

BsePI GCGCGC FastDigest BssHII 33 PauI 134 BssHII<br />

BseRI <br />

BseSI GKGCMC FastDigest Bme1580I 23 BseSI 96 BaeGI, BstSLI<br />

BseXI <br />

FastDigest BseXI,<br />

FastDigest BbvI <br />

27<br />

21<br />

BseXI ,<br />

Lsp1109I <br />

96<br />

124<br />

BbvI, BstV1I<br />

BseX3I CGGCCG FastDigest EagI 36 Eco52I 111 BstZI, EagI, EclXI<br />

BseYI [FastDigest PspFI 58 [GsaI]<br />

www.thermoscientific.com/onebio 207


208<br />

Table 1.25. Commercially available restriction enzymes.<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

Commercially available<br />

isoschizomers from other vendors<br />

BsgI <br />

Bsh1236I CGCG FastDigest Bsh1236I 27 Bsh1236I 97 AccII, BspFNI, BstFNI, BstUI, MvnI<br />

Bsh1285I CGRYCG FastDigest BsiEI 28 Bsh1285I 97 BsiEIm , BstMCI<br />

BshFI GGCC FastDigest HaeIII 42 BsuRI 103 BsnI, BspANI, HaeIII, PhoI<br />

BshNI GGYRCC FastDigest BanI 21 BshNI 97 AccB1I, BanI, BspT107I<br />

BshTI ACCGGT FastDigest AgeI 15 BshTI 98 AgeI, AsiGI, CspAIm , PinAI<br />

BshVI ATCGAT FastDigest ClaI 34 Bsu15I 103<br />

BanIII, Bsa29I, BseCI, BspDI, BspXI,<br />

BsuTUI, ClaI<br />

BsiEI CGRYCG FastDigest BsiEI m 28 Bsh1285I m 97 BsiEI, BstMCI<br />

BsiHKAI GWGCWC FastDigest Alw21I 17 Alw21I 86 Bbv12I<br />

BsiHKCI CYCGRG FastDigest AvaI 19 Eco88I 113 Ama87I, AvaI, [BmeT110I], BsoBI<br />

BsiSI CCGG<br />

FastDigest HpaIIm ,<br />

FastDigest MspI<br />

44<br />

50<br />

HpaIIm ,<br />

MspI <br />

121<br />

128<br />

HapIIm BsiWI CGTACG FastDigest BsiWI 28 Pfl23II 136 BsiWI, PspLI<br />

BslFI FastDigest BsmFI 29 FaqI 117 BsmFI<br />

BslI CCNNNNNNNGG FastDigest BslI 28 BseLI 95 AfiI, Bsc4I, BslI<br />

BsmAI FastDigest Alw26Im 17 Alw26I m 86 BstMAI<br />

BsmBI FastDigest BsmBI 29 Esp3I 117 BsmBI<br />

BsmFI FastDigest BsmFI 29 FaqI 117 BslFI, BsmFI<br />

BsmI FastDigest Mva1269I 51 Mva1269I 130 BsaMI, PctI<br />

BsnI GGCC FastDigest HaeIII 42 BsuRI 103 BshFI, BspANI, HaeIII, PhoI<br />

Bso31I FastDigest Eco31I 38 Eco31I 110 BsaI, BspTNI<br />

BsoBI CYCGRG FastDigest AvaI m 19 Eco88I m 113 Ama87I, AvaIm , [BmeT110I], BsiHKCI<br />

Bsp119I TTCGAA FastDigest Bsp119I 29 Bsp119I 99<br />

AsuIIm , Bpu14I, BspT104I, BstBI,<br />

Csp45I, NspV, SfuIm Bsp120I GGGCCC<br />

[FastDigest ApaI<br />

FastDigest Bsp120I<br />

18<br />

30<br />

[ApaI<br />

Bsp120I <br />

87<br />

99<br />

PspOMI<br />

Bsp1286I GDGCHC FastDigest Bsp1286I 30 SduI 143 Bsp1286I, MhlI<br />

Bsp1407I TGTACA FastDigest Bsp1407I 30 Bsp1407I 100 BsrGI, BstAUI<br />

Bsp143I GATC<br />

FastDigest Sau3AI ,<br />

FastDigest MboIm 62<br />

46<br />

Bsp143I ,<br />

MboIm 99<br />

126<br />

BfuCI, BssMI, [BstKTIm ], BstMBI, DpnIIm ,<br />

Kzo9I, NdeIIm , Sau3AIm Bsp13I TCCGGA FastDigest Kpn2I 46 Kpn2I 123 AccIII, Aor13HI, BseAI, BspEI, MroI<br />

Bsp1720I GCTNAGC FastDigest BlpI 23 Bpu1102I 93 BlpI, CelII<br />

Bsp19I CCATGG FastDigest NcoI 52 NcoI 130<br />

Bsp68I TCGCGA FastDigest NruI 54 Bsp68I 98 BtuMI, NruI<br />

BspACI FastDigest AciI 14 SsiI 147 AciI<br />

BspANI GGCC FastDigest HaeIII 42 BsuRI 103 BshFI, BsnI, HaeIII, PhoI<br />

BspCNI <br />

[FastDigest BspCNI ]<br />

<br />

31 [BseMII 95 BspCNI<br />

BspDI ATCGAT FastDigest ClaI 34 Bsu15I 103<br />

BanIII, Bsa29I, BseCI, BshVI, BspXI,<br />

BsuTUI, ClaI<br />

BspEI TCCGGA FastDigest Kpn2Im 46 Kpn2I m 123 AccIIIm , Aor13HI, BseAIm , Bsp13I, MroIm BspFNI CGCG FastDigest Bsh1236I 27 Bsh1236I 97 AccII, BstFNI, BstUI, MvnI<br />

BspHI TCATGA FastDigest BspHI m 31 PagI m 134 BspHI, CciI, RcaI<br />

BspLI GGNNCC FastDigest NlaIV 53 BspLI 95 BmiI, NlaIVm , PspN4I<br />

BspMAI CTGCAG FastDigest PstI 58 PstI 138<br />

BspMI FastDigest BspMI 31 BveI 104 Acc36I, BfuAI, BspMI<br />

BspOI GCTAGC<br />

FastDigest BmtI ,<br />

[FastDigest NheI<br />

24<br />

52<br />

BspOI ,<br />

[NheI<br />

100<br />

131<br />

[AsuNHI], BmtI<br />

BspPI BspPI 101 AclWI, AlwI<br />

FastDigest SapI 61 LguI 124 PciSI, SapI<br />

BspT104I TTCGAA FastDigest Bsp119I 29 Bsp119I 99 AsuIIm , Bpu14I, BstBI, Csp45I, NspV, SfuIm BspT107I GGYRCC FastDigest BanI 21 BshNI 97 AccB1I, BanI<br />

BspTI CTTAAG FastDigest AflII 15 BspTI 101 AflII, BfrI, Bst98I, BstAFI, MspCI, Vha464I<br />

BspTNI FastDigest Eco31I 38 Eco31I 110 BsaI, Bso31I<br />

BspXI ATCGAT FastDigest ClaI 34 Bsu15I 103<br />

BanIII, Bsa29I, BseCI, BshVI, BspDI,<br />

BsuTUI, ClaI<br />

BsrBI FastDigest BsrBI m 32 MbiI m 125 AccBSI, BsrBI<br />

BsrDI FastDigest BsrDI 32 BseMI 95 Bse3DI, BsrDI<br />

BsrFI RCCGGY FastDigest BsrFI 32 Cfr10I 105 Bse118I, BsrFI, BssAIm BsrGI TGTACA FastDigest Bsp1407I 30 Bsp1407I 100 BstAUI<br />

BsrI FastDigest BseNI 27 BseNI 96 Bse1I, BsrSI<br />

BsrSI FastDigest BseNI 27 BseNI 96 Bse1I, BsrI<br />

BssAI RCCGGY FastDigest BsrFI m 32 Cfr10I m 105 Bse118I, BsrFIm BssECI CCNNGG FastDigest BsaJI 26 BseDI 94 <br />

BssHII GCGCGC FastDigest BssHII 33 PauI 134 BsePI, BssHII<br />

BssKI CCNGG [FastDigest ScrFI 63 [Bme1390I 91 [BmrFI], BstSCI, [MspR9I], [ScrFI], StyD4I<br />

www.thermoscientific.com/onebio


Table 1.25. Commercially available restriction enzymes.<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

Commercially available<br />

isoschizomers from other vendors<br />

BssMI GATC<br />

FastDigest Sau3AI ,<br />

FastDigest MboI<br />

62<br />

46<br />

Bsp143I ,<br />

MboI<br />

99<br />

126<br />

BfuCI, [BstKTI], BstMBI, DpnII, Kzo9I,<br />

NdeII, Sau3AI<br />

BssNAI GTATAC FastDigest BstZ17I 33 Bst1107I 102 BstZ17I<br />

BssNI GRCGYC FastDigest BsaHI 26 Hin1I 119 AcyI, BsaHI, BstACI, Hsp92I<br />

BssSI BauI 88 Bst2BI<br />

BssT1I CCWWGG FastDigest StyI 67 Eco130I 114 EcoT14I, ErhI, StyI<br />

Bst1107I GTATAC FastDigest BstZ17I 33 Bst1107I 102 BssNAI, BstZ17I<br />

Bst2BI BauI 88 BssSI<br />

Bst2UI CCWGG FastDigest MvaI 50<br />

[EcoRIIm MvaI <br />

116<br />

129<br />

[AjnI], BseBI, BstNI, BstOI, [Psp6I],<br />

[PspGIm ]<br />

Bst4CI ACNGT FastDigest TaaI 67 TaaI 149 HpyCH4III<br />

Bst6I FastDigest EarI 37 Eam1104I 108 EarI<br />

Bst98I CTTAAG FastDigest AflII 15 BspTI 101 AflII, BfrI, BstAFI, MspCI, Vha464I<br />

BstACI GRCGYC FastDigest BsaHI 26 Hin1I 119 AcyI, BsaHI, BssNI, Hsp92I<br />

BstAFI CTTAAG FastDigest AflII 15 BspTI 101 AflII, BfrI, Bst98I, MspCI, Vha464I<br />

BstAPI GCANNNNNTGC<br />

BstAUI TGTACA FastDigest Bsp1407I 30 Bsp1407I 100 BsrGI<br />

BstBAI YACGTR FastDigest BsaAI 25 Ppu21I 137 BsaAI<br />

BstBI TTCGAA FastDigest Bsp119I 29 Bsp119I 99<br />

AsuIIm , Bpu14I, BspT104I, Csp45I,<br />

NspVm , SfuIm BstC8I GCNNGC Cac8I<br />

BstDEI CTNAG FastDigest DdeI 35 HpyF3I 122 DdeI<br />

BstDSI CCRYGG BtgI<br />

BstEII GGTNACC FastDigest Eco91I 38 Eco91I 113 BstPI, EcoO65I, PspEI<br />

BstENI CCTNNNNNAGG FastDigest EcoNI 38 XagI 152 EcoNI<br />

BstF5I <br />

FastDigest BseGI,<br />

[FastDigest FokI<br />

26<br />

40<br />

BseGI 94 BtsCI, [FokI]<br />

BstFNI CGCG FastDigest Bsh1236I 27 Bsh1236I 97 AccII, BspFNI, BstUI, MvnI<br />

BstH2I RGCGCY FastDigest HaeII 43 HaeII<br />

BstHHI GCGC<br />

FastDigest HhaI,<br />

[FastDigest HinP1I <br />

42<br />

44<br />

HhaI,<br />

[Hin6I <br />

119<br />

120<br />

AspLEI, CfoI, [HinP1I], [HspAI]<br />

BstKTI GATC<br />

[FastDigest Sau3AI m [FastDigest MboI<br />

62<br />

46<br />

[Bsp143I m [MboI<br />

99<br />

126<br />

[BfuCIm ], [BssMI], [BstMBI], [DpnII],<br />

[Kzo9Im ], [NdeIIm ], [Sau3AIm ]<br />

BstMAI FastDigest Alw26I 17 Alw26I 86 BsmAI<br />

BstMBI GATC<br />

FastDigest Sau3AI ,<br />

FastDigest MboI<br />

62<br />

46<br />

Bsp143I ,<br />

MboI<br />

99<br />

126<br />

BfuCI, BssMI, [BstKTI], DpnII, Kzo9I,<br />

NdeII, Sau3AI<br />

BstMCI CGRYCG FastDigest BsiEI 28 Bsh1285I 97 BsiEI<br />

BstMWI GCNNNNNNNGC FastDigest HpyF10VI 45 HpyF10VI 123 MwoI<br />

BstNI CCWGG FastDigest MvaI 50<br />

[EcoRIIm MvaI <br />

116<br />

129<br />

[AjnI], BseBI, Bst2UI, BstOI, [Psp6I],<br />

[PspGIm ]<br />

BstNSI RCATGY FastDigest NspI 55 XceI 153 NspI<br />

BstOI CCWGG FastDigest MvaI 50<br />

[EcoRIIm MvaI <br />

116<br />

129<br />

[AjnI], BseBI, Bst2UI, BstNI, [Psp6I],<br />

[PspGIm ]<br />

BstPAI GACNNNNGTC FastDigest PshAI 57 BoxI 92 PshAI<br />

BstPI GGTNACC FastDigest Eco91I 38 Eco91I 113 BstEII, EcoO65I, PspEI<br />

BstSCI CCNGG [FastDigest ScrFI 63 [Bme1390I 91 [BmrFI], BssKI, [MspR9I], [ScrFI], StyD4I<br />

BstSFI CTRYAG FastDigest SfcI 64 BfmI 90 SfcI<br />

BstSLI GKGCMC FastDigest Bme1580I 23 BseSI 96 BaeGI<br />

BstSNI TACGTA FastDigest SnaBI 65 Eco105I 114 SnaBI<br />

BstUI CGCG FastDigest Bsh1236I 27 Bsh1236I 97 AccII, BspFNI, BstFNI, MvnI<br />

BstV1I <br />

FastDigest BbvI ,<br />

FastDigest BseXI<br />

21<br />

27<br />

Lsp1109I ,<br />

BseXI <br />

124<br />

96<br />

BbvI<br />

BstV2I FastDigest BbsI 21 BpiI 92 BbsI, BpuAI<br />

BstX2I RGATCY FastDigest PsuI 58 PsuI 139 BstYI, MflI, XhoII<br />

BstXI CCANNNNNNTGG FastDigest BstXI 33 BstXI 102<br />

BstYI RGATCY FastDigest PsuI 58 PsuI 139 BstX2I, MflIm , XhoII<br />

BstZ17I GTATAC FastDigest BstZ17I 33 Bst1107I 102 BssNAI, BstZ17I<br />

BstZI CGGCCG FastDigest EagI 36 Eco52I 111 BseX3I, EagI, EclXI<br />

Bsu15I ATCGAT FastDigest ClaI 34 Bsu15I 103<br />

BanIII, Bsa29I, BseCI, BshVI, BspDI,<br />

BspXI, BsuTUI, ClaI<br />

Bsu36I CCTNAGG FastDigest Bsu36I 34 Eco81I 113 AxyI, Bse21I, Bsu36I<br />

BsuRI GGCC FastDigest HaeIII 42 BsuRI 103 BshFI, BsnI, BspANI, HaeIII, PhoI<br />

BsuTUI ATCGAT FastDigest ClaI 34 Bsu15I 103<br />

BanIII, Bsa29I, BseCI, BshVI, BspDI,<br />

BspXI, ClaI<br />

BtgI CCRYGG BstDSI<br />

BtgZI <br />

BtrI AjiI 84 BmgBI<br />

<br />

www.thermoscientific.com/onebio 209


210<br />

Table 1.25. Commercially available restriction enzymes.<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

BtsCI <br />

www.thermoscientific.com/onebio<br />

FastDigest BseGI,<br />

[FastDigest FokI<br />

26<br />

40<br />

BseGI 94 BstF5I, [FokI]<br />

Commercially available<br />

isoschizomers from other vendors<br />

BtsI <br />

BtuMI TCGCGA FastDigest NruI 54 Bsp68I 98 NruI<br />

BveI FastDigest BspMI 31 BveI 104 Acc36I, BfuAI, BspMI<br />

Cac8I GCNNGC BstC8I<br />

CaiI CAGNNNCTG FastDigest AlwNI 17 CaiI 104 AlwNI<br />

CciI TCATGA FastDigest BspHI 31 PagI 134 BspHI, RcaI<br />

CciNI GCGGCCGC FastDigest NotI 54 NotI 132<br />

CelII GCTNAGC FastDigest BlpI 23 Bpu1102I 93 BlpI, Bsp1720I<br />

CfoI GCGC<br />

FastDigest HhaI,<br />

[FastDigest HinP1I <br />

42<br />

44<br />

HhaI,<br />

[Hin6I <br />

119<br />

120<br />

AspLEI, BstHHI, [HinP1I], [HspAI]<br />

Cfr10I RCCGGY FastDigest BsrFI 32 Cfr10I 105 Bse118I, BsrFI, BssAIm Cfr13I GGNCC FastDigest Sau96I 62 Cfr13I 105 AspS9I, [BmgT120I], PspPI, Sau96I<br />

Cfr42I CCGCGG Cfr42I 106 KspI, SacII, Sfr303I, SgrBI, SstII<br />

Cfr9I CCCGGG [FastDigest SmaIm 65<br />

Cfr9I ,<br />

[SmaIm 105<br />

146<br />

TspMIm , XmaCI, XmaIm CfrI YGGCCR AcoI, EaeI<br />

ClaI ATCGAT FastDigest ClaI 34 Bsu15I 103<br />

BanIII, Bsa29I, BseCI, BshVI, BspDI,<br />

BspXI, BsuTUI, ClaI<br />

CpoI CGGWCCG FastDigest RsrII 60 CpoI 106 CspI, Rsr2I, RsrII<br />

CseI FastDigest HgaI 42 CseI 106 HgaI<br />

Csp45I TTCGAA FastDigest Bsp119I 29 Bsp119I 99<br />

AsuII, Bpu14I, BspT104I, BstBI,<br />

NspVm , SfuI<br />

Csp6I GTAC<br />

FastDigest Csp6I,<br />

[FastDigest RsaIm 34<br />

60<br />

Csp6I ,<br />

[RsaIm 107<br />

140<br />

[AfaIm <br />

CspAI ACCGGT FastDigest AgeI m 15 BshTI m 98 AgeIm , AsiGI, PinAI<br />

CspCI 5 CspI CGGWCCG FastDigest RsrII 60 CpoI 106 Rsr2I, RsrII<br />

CviAII CATG [FastDigest NlaIII 53 [Hin1II 120 [FaeI], [FatIm ][Hsp92II], [NlaIII]<br />

RGCY CviKI-1<br />

CviKI-1 RGCY <br />

GTAC<br />

FastDigest Csp6I,<br />

[FastDigest RsaIm 34<br />

60<br />

Csp6I ,<br />

[RsaIm 107<br />

140<br />

[AfaIm ], RsaNI<br />

DdeI CTNAG FastDigest DdeI 35 HpyF3I 122 BstDEI, DdeI<br />

DinI GGCGCC FastDigest EheI 116<br />

EheI ,<br />

[SspDI <br />

116<br />

148<br />

[BbeI], EgeI, [KasI], [Mly113I], [NarI],<br />

SfoI<br />

DpnI Gm6ATC FastDigest DpnI 35 DpnI 107 MalI<br />

DpnII GATC<br />

FastDigest Sau3AI m ,<br />

FastDigest MboIm 62<br />

46<br />

[Bsp143I m ],<br />

MboIm 99<br />

126<br />

BfuCIm , BssMI, [BstKTIm ], BstMBI,<br />

Kzo9Im , NdeII, Sau3AIm DraI TTTAAA FastDigest DraI 35 DraI 108<br />

DraII RGGNCCY FastDigest EcoO109I 39 EcoO109I 115<br />

DraIII CACNNNGTG FastDigest DraIII 36 AdeI 83 DraIII<br />

DrdI GACNNNNNNGTC FastDigest DrdI 36 DrdI, DseDI<br />

DriI GACNNNNNGTC FastDigest Eam1105I 37 Eam1105I 108 AhdI, AspEI, BmeRI, EclHKI<br />

DseDI GACNNNNNNGTC FastDigest DrdI 36 DrdI<br />

EaeI YGGCCR AcoI<br />

EagI CGGCCG FastDigest EagI 36 Eco52I 111 BseX3I, BstZI, EagI, EclXI<br />

Eam1104I FastDigest EarI 37 Eam1104I 108 Bst6I, EarI<br />

Eam1105I GACNNNNNGTC FastDigest Eam1105I 37 Eam1105I 108 AhdI, AspEI, BmeRI, DriI, EclHKI<br />

EarI FastDigest EarI 37 Eam1104I 108 Bst6I, EarI<br />

EciI <br />

Ecl136II GAGCTC<br />

FastDigest Ecl136II,<br />

[FastDigest SacIm 37<br />

60<br />

Ecl136II ,<br />

[SacIm 109<br />

141<br />

Eco53kIm , EcoICRI, [Psp124BI], [SstIm ]<br />

EclHKI GACNNNNNGTC FastDigest Eam1105I 37 Eam1105I 108 AhdI, AspEI, BmeRI, DriI<br />

EclXI CGGCCG FastDigest EagI 36 Eco52I 111 BseX3I, BstZI, EagI<br />

Eco105I TACGTA FastDigest SnaBI 65 Eco105I 114 BstSNI, SnaBI<br />

Eco130I CCWWGG FastDigest StyI 67 Eco130I 114 BssT1I, EcoT14I, ErhI, StyI<br />

Eco147I AGGCCT FastDigest StuI 66 Eco147I 114 AatI, PceI, SseBI, StuI<br />

Eco24I GRGCYC Eco24I 109 BanII, EcoT38I, FriOI<br />

Eco31I FastDigest Eco31I 38 Eco31I 110 BsaI, Bso31I, BspTNI<br />

Eco32I GATATC FastDigest EcoRV 39 Eco32I 110 EcoRV<br />

Eco47I GGWCC FastDigest AvaII 20 Eco47I 110 AvaII, Bme18I, SinI, VpaK11BI<br />

Eco47III AGCGCT FastDigest AfeI 15 Eco47III 111 AfeI, Aor51HI<br />

Eco52I CGGCCG FastDigest EagI 36 Eco52I 111 BseX3I, BstZI, EagI, EclXI<br />

Eco53kI GAGCTC<br />

FastDigest Ecl136II m ,<br />

[FastDigest SacI m <br />

37<br />

60<br />

Ecl136II m ,<br />

[SacI m <br />

109<br />

141<br />

EcoICRI, [Psp124BI], [SstI]


Table 1.25. Commercially available restriction enzymes.<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

Commercially available<br />

isoschizomers from other vendors<br />

Eco57I FastDigest AcuI 14 Eco57I 112 AcuI<br />

Eco57MI <br />

Eco72I CACGTG FastDigest PmlI 56 Eco72I 112 AcvI, BbrPI, PmaCI, PmlI, PspCI<br />

Eco81I CCTNAGG FastDigest Bsu36I 34 Eco81I 113 AxyI, Bse21I, Bsu36I<br />

Eco88I CYCGRG FastDigest AvaI 19 Eco88I 113<br />

Ama87I, AvaI<br />

<br />

m , [BmeT110Im ], BsiHKCI,<br />

BsoBIm Eco91I GGTNACC FastDigest Eco91I 38 Eco91I 113 BstEII, BstPI, EcoO65I, PspEI<br />

EcoICRI GAGCTC<br />

FastDigest Ecl136II,<br />

[FastDigest SacI<br />

37<br />

60<br />

Ecl136II ,<br />

[SacI<br />

109<br />

141<br />

Eco53kI, [Psp124BI], [SstI]<br />

EcoNI CCTNNNNNAGG FastDigest EcoNI 38 XagI 152 BstENI, EcoNI<br />

EcoO109I RGGNCCY FastDigest EcoO109I 39 EcoO109I 115 DraII<br />

EcoO65I GGTNACC FastDigest Eco91I 38 Eco91I 113 BstEII, BstPI, PspEI<br />

EcoP15I <br />

EcoRI GAATTC FastDigest EcoRI 39 EcoRI 115<br />

EcoRII CCWGG [FastDigest MvaIm 50<br />

EcoRII,<br />

[MvaI m 116<br />

129<br />

AjnIm , [BseBI], [Bst2UIm ], [BstNIm ],<br />

[BstOIm ], Psp6I, PspGI<br />

EcoRV GATATC FastDigest EcoRV 39 Eco32I 110 EcoRV<br />

EcoT14I CCWWGG FastDigest StyI 67 Eco130I 114 BssT1I, ErhI, StyI<br />

EcoT22I ATGCAT FastDigest NsiI 54 Mph1103I 128 NsiIm , Zsp2I<br />

EcoT38I GRGCYC Eco24I 109 BanII, FriOI<br />

EgeI GGCGCC FastDigest EheI 40<br />

EheI ,<br />

[SspDI <br />

116<br />

148<br />

[BbeI], DinI, [KasI], [Mly113I], [NarI],<br />

SfoI<br />

EheI GGCGCC FastDigest EheI 40<br />

EheI ,<br />

[SspDI <br />

116<br />

148<br />

[BbeI], DinI, EgeI, [KasI], [Mly113I],<br />

[NarI], SfoIm ErhI CCWWGG FastDigest StyI 67 Eco130I 114 BssT1I, EcoT14I, StyI<br />

Esp3I FastDigest BsmBI 29 Esp3I 117 BsmBI<br />

FaeI CATG FastDigest NlaIII 53 Hin1II 120 [CviAII], [FatI], Hsp92II, NlaIII<br />

FaiI YATR<br />

FaqI FastDigest BsmFI 29 FaqI 117 BslFI, BsmFI<br />

FalI 5 FatI CATG [FastDigest NlaIII 53 [Hin1II 120 [CviAIIm ], [FaeI], [Hsp92II], [NlaIIIm ]<br />

FauI <br />

FauNDI CATATG FastDigest NdeI 52 NdeI 131<br />

FbaI TGATCA FastDigest BclI 22 BclI 89 Ksp22I<br />

FblI GTMKAC FastDigest AccI 13 XmiI 154 AccI<br />

Fnu4HI GCNGC FastDigest Fnu4HI 40 SatI 142 Fnu4HI, Fsp4HI, ItaIm FokI <br />

[FastDigest BseGI<br />

FastDigest FokI<br />

26<br />

40<br />

[BseGI 94 [BstF5I], [BtsCI], FokI<br />

FriOI GRGCYC Eco24I 109 BanII, EcoT38I<br />

FseI GGCCGGCC RigI<br />

Fsp4HI GCNGC FastDigest Fnu4HI 40 SatI 142 Fnu4HI, ItaIm FspAI RTGCGCAY FastDigest FspAI 41 FspAI 118<br />

FspBI CTAG FastDigest BfaI 22 FspBI 118 BfaI, MaeI, XspI<br />

FspI TGCGCA FastDigest FspI 41 NsbI 132 Acc16I, AviII, FspI<br />

GlaI GCGC<br />

GluI GCNGC BisI, [BlsI]<br />

GsaI FastDigest PspFI 58 [BseYI]<br />

GsuI FastDigest BpmI 24 GsuI 118 BpmIm HaeII RGCGCY FastDigest HaeII 41 BstH2I, HaeII<br />

HaeIII GGCC FastDigest HaeIII 42 BsuRI 103 BshFI, BsnI, BspANI, HaeIII, PhoI<br />

HapII CCGG<br />

FastDigest HpaII,<br />

FastDigest MspIm 44<br />

50<br />

HpaII,<br />

MspI m 121<br />

128<br />

BsiSIm HgaI FastDigest HgaI 42 CseI 106 HgaI<br />

HhaI GCGC<br />

FastDigest HhaI,<br />

[FastDigest HinP1I <br />

42<br />

44<br />

HhaI,<br />

[Hin6I <br />

119<br />

120<br />

AspLEI, BstHHI, CfoI, [HinP1I], [HspAI]<br />

Hin1I GRCGYC FastDigest BsaHI 26 Hin1I 119 AcyI, BsaHIm , BssNI, BstACI, Hsp92I<br />

Hin1II CATG FastDigest NlaIII 53 Hin1II 120 [CviAII], FaeI, [FatI], Hsp92II, NlaIII<br />

Hin4I 5 Hin6I GCGC<br />

[FastDigest HhaI FastDigest<br />

HinP1I <br />

42<br />

44<br />

[HhaI<br />

Hin6I <br />

119<br />

120<br />

[AspLEI], [BstHHI], [CfoI], HinP1I, HspAI<br />

HincII GTYRAC FastDigest HincII 43 HincII 120 HindII<br />

HindII GTYRAC FastDigest HincII 43 HincII 120<br />

HindIII AAGCTT FastDigest HindIII 43 HindIII 121<br />

HinfI GANTC FastDigest HinfI 43 HinfI 121<br />

HinP1I GCGC<br />

[FastDigest HhaI FastDigest<br />

HinP1I <br />

42<br />

44<br />

[HhaI<br />

Hin6I <br />

119<br />

120<br />

[AspLEI], [BstHHI], [CfoI], HinP1I, HspAI<br />

HpaI GTTAAC FastDigest HpaI m 44 KspAI m 124 HpaI<br />

www.thermoscientific.com/onebio 211


212<br />

Table 1.25. Commercially available restriction enzymes.<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

Commercially available<br />

isoschizomers from other vendors<br />

HpaII CCGG<br />

FastDigest HpaII,<br />

FastDigest MspIm 44<br />

50<br />

HpaII,<br />

MspI m 121<br />

128<br />

BsiSIm , HapII<br />

HphI HphI 122 AsuHPI<br />

Hpy166II GTNNAC FastDigest Hpy8I 45 Hpy8I 122<br />

Hpy188I TCNGA<br />

Hpy188III TCNNGA<br />

Hpy8I GTNNAC FastDigest Hpy8I 45 Hpy8I 122 Hpy166II<br />

Hpy99I CGWCG<br />

HpyAV <br />

HpyCH4III ACNGT FastDigest TaaI 67 TaaI 149 Bst4CI<br />

HpyCH4IV ACGT [FastDigest TaiIm 68 [TaiI m 149 MaeII<br />

HpyCH4V TGCA<br />

HpyF10VI GCNNNNNNNGC FastDigest HpyF10VI 45 HpyF10VI 123 BstMWI, MwoIm HpyF3I CTNAG FastDigest DdeI 35 HpyF3I 122 BstDEI, DdeI<br />

Hsp92I GRCGYC FastDigest BsaHI 26 Hin1I 119 AcyI, BsaHI, BssNI, BstACI<br />

Hsp92II CATG FastDigest NlaIII 53 Hin1II 120 [CviAII], FaeI, [FatI], NlaIII<br />

HspAI GCGC<br />

[FastDigest HhaI FastDigest<br />

HinP1I <br />

42<br />

44<br />

[HhaI<br />

Hin6I <br />

119<br />

120<br />

[AspLEI], [BstHHI], [CfoI], HinP1I<br />

ItaI GCNGC FastDigest Fnu4HI m 40 SatI m 142 Fnu4HIm , Fsp4HIm KasI GGCGCC [FastDigest EheI 40<br />

[EheI <br />

SspDI <br />

116<br />

148<br />

[BbeI], [DinI], [EgeI], [Mly113I], [NarI],<br />

[SfoIm ]<br />

Kpn2I TCCGGA FastDigest Kpn2I 46 Kpn2I 123<br />

AccIIIm , Aor13HI, BseAIm , Bsp13I,<br />

BspEIm , MroI<br />

KpnI GGTACC<br />

[FastDigest Acc65Im FastDigest KpnI<br />

13<br />

45<br />

[Acc65I m KpnI<br />

83<br />

123<br />

[Asp718Im ]<br />

Ksp22I TGATCA FastDigest BclI 22 BclI 89 FbaI<br />

KspAI GTTAAC FastDigest HpaI 44 KspAI 124 HpaI<br />

KspI CCGCGG Cfr42I 106 SacII, Sfr303I, SgrBI, SstII<br />

Kzo9I GATC<br />

FastDigest Sau3AI ,<br />

FastDigest MboIm 62<br />

46<br />

Bsp143I ,<br />

MboIm 99<br />

126<br />

BfuCI, BssMI, [BstKTIm ], BstMBI,<br />

DpnIIm , NdeIIm , Sau3AI<br />

LguI FastDigest SapI 61 LguI 124 <br />

Lsp1109I <br />

FastDigest BbvI ,<br />

FastDigest BseXI<br />

21<br />

27<br />

Lsp1109I ,<br />

BseXI <br />

124<br />

96<br />

BbvI, BstV1I<br />

LweI FastDigest SfaNI 64 LweI 125 SfaNI<br />

MabI ACCWGGT FastDigest SexAI 63 SexAIm MaeI CTAG FastDigest BfaI 22 FspBI 118 BfaI, XspI<br />

MaeII ACGT [FastDigest TaiI 68 [TaiI 149 HpyCH4IV<br />

MaeIII GTNAC<br />

MalI GATC FastDigest DpnI 35 DpnI 107<br />

MauBI CGCGCGCG FastDigest MauBI 46 MauBI 125<br />

MbiI FastDigest BsrBI 32 MbiI 125 AccBSI, BsrBIm MboI GATC<br />

FastDigest Sau3AI m ,<br />

FastDigest MboI<br />

62<br />

46<br />

Bsp143I m ,<br />

MboI<br />

99<br />

126<br />

BfuCIm , BssMI, [BstKTI], BstMBI,<br />

DpnIIm , Kzo9Im , NdeIIm , Sau3AIm MboII FastDigest MboII 47 MboII 126<br />

MfeI CAATTG FastDigest MfeI 47 MunI 129 MfeI<br />

MflI RGATCY FastDigest PsuIm 58 PsuI m 139 BstX2I, BstYIm , XhoIIm MhlI GDGCHC FastDigest Bsp1286I 30 SduI 143 Bsp1286I<br />

MlsI TGGCCA FastDigest MscI 49 MlsI 127 BalI, MluNI, MscI, Msp20I<br />

MluI ACGCGT FastDigest MluI 47 MluI 127<br />

MluNI TGGCCA FastDigest MscI 49 MlsI 127 BalI, MscI, Msp20I<br />

Mly113I GGCGCC [FastDigest EheI 40<br />

[EheI <br />

[SspDI <br />

116<br />

148<br />

[BbeI], [DinI], [EgeI], [KasI], NarI, [SfoI]<br />

MlyI FastDigest MlyI 48 SchI 143 MlyI, [PleIm ], [PpsI]<br />

MmeI <br />

MnlI FastDigest MnlI 48 MnlI 127<br />

Mph1103I ATGCAT FastDigest NsiI 54 Mph1103I 128 EcoT22I, NsiI, Zsp2I<br />

MreI CGCCGGCG FastDigest MreI 48 MreI 128<br />

MroI TCCGGA FastDigest Kpn2I 46 Kpn2I 123 AccIIIm , Aor13HI, BseAIm , Bsp13I, BspEIm MroNI GCCGGC [FastDigest NaeI 51 [PdiI 135 [NaeI], NgoMIV<br />

MroXI GAANNNNTTC FastDigest PdmI 55 PdmI 135 Asp700I, XmnI<br />

MscI TGGCCA FastDigest MscI 49 MlsI 127 BalI, MscI, MluNI, Msp20I<br />

MseI TTAA<br />

FastDigest MseI ,<br />

FastDigest Tru1I<br />

49<br />

69<br />

Tru1I 151 MseI, Tru9I<br />

MslI CAYNNNNRTG FastDigest MslI 49 RseI 140 MslI, SmiMI<br />

Msp20I TGGCCA FastDigest MscI 49 MlsI 127 BalI, MluNI, MscI<br />

MspA1I CMGCKG<br />

MspCI CTTAAG FastDigest AflII 15 BspTI 101 AflII, BfrI, Bst98I, BstAFI, Vha464I<br />

www.thermoscientific.com/onebio


Table 1.25. Commercially available restriction enzymes.<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

Commercially available<br />

isoschizomers from other vendors<br />

MspI CCGG<br />

FastDigest HpaIIm ,<br />

FastDigest MspI<br />

44<br />

50<br />

HpaIIm ,<br />

MspI <br />

121<br />

128<br />

BsiSI, HapIIm MspR9I CCNGG FastDigest ScrFI 63 Bme1390I 91 BmrFI, [BssKI], [BstSCI], ScrFI, [StyD4I]<br />

MssI GTTTAAAC FastDigest MssI 50 MssI 129 PmeIm MunI CAATTG FastDigest MfeI 47 MunI 129 MfeI<br />

Mva1269I FastDigest Mva1269I 51 Mva1269I 130 BsaMI, BsmI, PctI<br />

MvaI CCWGG FastDigest MvaI 50<br />

[EcoRIIm MvaI <br />

116<br />

129<br />

[AjnI], BseBI, Bst2UI, BstNI, BstOI,<br />

[Psp6I], [PspGIm ]<br />

MvnI CGCG FastDigest Bsh1236I 27 Bsh1236I 97 AccII, BspFNI, BstFNI, BstUI<br />

MvrI CGATCG FastDigest PvuI 59 PvuI 139 BpvUI, Ple19I<br />

MwoI GCNNNNNNNGC FastDigest HpyF10VIm 123 HpyF10VI m 123 BstMWI<br />

NaeI GCCGGC FastDigest NaeI 51 PdiI 135 [MroNI], NaeI, [NgoMIV]<br />

NarI GGCGCC [FastDigest EheI 40<br />

[EheI <br />

[SspDI <br />

116<br />

148<br />

[BbeI], [DinI], [EgeI], [KasI], Mly113I,<br />

[SfoIm ]<br />

NciI CCSGG FastDigest NciI 51 BcnI 89 AsuC2I, BpuMI, NciI<br />

NcoI CCATGG FastDigest NcoI 52 NcoI 130 Bsp19I<br />

NdeI CATATG FastDigest NdeI 52 NdeI 131 FauNDI<br />

NdeII GATC<br />

FastDigest Sau3AI m ,<br />

FastDigest MboIm 62<br />

46<br />

Bsp143I m ,<br />

MboIm 99<br />

126<br />

BfuCIm , BssMI, [BstKTIm ], BstMBI,<br />

DpnII, Kzo9Im , Sau3AIm NgoMIV GCCGGC [FastDigest NaeI 51 [PdiI 135 MroNI, [NaeI]<br />

NheI GCTAGC<br />

FastDigest NheI,<br />

[FastDigest BmtI <br />

52<br />

24<br />

NheI,<br />

[BspOI <br />

131<br />

100<br />

AsuNHI, [BmtI] m<br />

NlaIII CATG FastDigest NlaIII 53 Hin1II 120 [CviAII], FaeI, [FatIm ], Hsp92II, NlaIII<br />

NlaIV GGNNCC FastDigest NlaIV m 53 BspLI m 100 BmiI, NlaIV, PspN4I<br />

NmeAIII <br />

NmuCI GTSAC FastDigest NmuCI 53 NmuCI 132 Tsp45I<br />

NotI GCGGCCGC FastDigest NotI 54 NotI 132 CciNI<br />

NruI TCGCGA FastDigest NruI 54 Bsp68I 98 BtuMI, NruI<br />

NsbI TGCGCA FastDigest FspI 41 NsbI 132 Acc16I, AviII, FspI<br />

NsiI ATGCAT FastDigest NsiI 54 Mph1103I 128 EcoT22Im , NsiI, Zsp2I<br />

NspI RCATGY FastDigest NspI 55 XceI 153 BstNSI, NspI<br />

NspV TTCGAA FastDigest Bsp119I 29 Bsp119I 99<br />

AsuIIm , Bpu14I, BspT104I, BstBIm ,<br />

Csp45Im , SfuIm OliI CACNNNNGTG FastDigest AleI 16 OliI 133 AleI<br />

PacI TTAATTAA FastDigest PacI 55 PacI 133<br />

PaeI GCATGC FastDigest SphI 66 PaeI 133 BbuI, SphI<br />

PaeR7I CTCGAG FastDigest XhoI 71 XhoI 154 Sfr274I, SlaI, StrI, TliI<br />

PagI TCATGA FastDigest BspHI 31 PagI 134 CciI, BspHIm , RcaI<br />

PalAI GGCGCGCC FastDigest AscI 18 SgsI 145 AscI<br />

PasI CCCWGGG PasI 134<br />

PauI GCGCGC FastDigest BssHII 33 PauI 134 BsePI, BssHII<br />

PceI AGGCCT FastDigest StuI 66 Eco147I 114 AatI, SseBI, StuI<br />

PciI ACATGT PscI 137<br />

PciSI FastDigest SapI 61 LguI 124 <br />

PctI FastDigest Mva1269I 51 Mva1269I 130 BsaMI, BsmI<br />

PdiI GCCGGC FastDigest NaeI 51 PdiI 135 [MroNI], NaeI, [NgoMIV]<br />

PdmI GAANNNNTTC FastDigest PdmI 55 PdmI 135 Asp700I, MroXI, XmnIm PfeI GAWTC FastDigest TfiI 69 PfeI 135 TfiI<br />

Pfl23II GGTACG FastDigest BsiWI 28 Pfl23II 136 BsiWI, PspLI<br />

PflFI GACNNNGTC FastDigest PsyI 59 PsyI 139 AspI, Tth111I<br />

PflMI CCANNNNNTGG FastDigest PflMI 56 Van91I 152 AccB7I, BasI, PflMI<br />

PfoI TCCNGGA FastDigest PfoI 56 PfoI 136<br />

PhoI GGCC FastDigest HaeIII 42 BsuRI 103 BshFI, BsnI, BspANI, HaeIII<br />

PinAI ACCGGT FastDigest AgeI 15 BshTI 101 AgeI, AsiGI, CspAI<br />

Ple19I CGATCG FastDigest PvuI 59 PvuI 139 BpvUI, MvrI<br />

PleI [FastDigest MlyI 48 [SchI 143 [MlyIm ], PpsI<br />

PmaCI CACGTG FastDigest PmlI 56 Eco72I 112 AcvI, BbrPI, PmlI, PspCI<br />

PmeI GTTTAAAC FastDigest MssIm 50 MssI m 129<br />

PmlI CACGTG FastDigest PmlI 56 Eco72I 112 AcvI, BbrPI, PmaCI, PmlI, PspCI<br />

PpiI 5 PpsI [FastDigest MlyI 48 [SchI 143 [MlyI], PleI<br />

Ppu21I YACGTR FastDigest BsaAI 25 Ppu21I 137 BsaAI, BstBAI<br />

PpuMI RGGWCCY FastDigest PpuMI 57 Psp5II 138 PpuMI, PspPPI<br />

PscI ACATGT PscI 137 PciI<br />

PshAI GACNNNNGTC FastDigest PshAI 57 BoxI 92 BstPAI, PshAI<br />

PshBI ATTAAT FastDigest AseI 19 VspI 152 AseI<br />

<br />

www.thermoscientific.com/onebio 213


214<br />

Table 1.25. Commercially available restriction enzymes.<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

Commercially available<br />

isoschizomers from other vendors<br />

PsiI TTATAA FastDigest PsiI 57 AanI 82 PsiI<br />

Psp124BI GAGCTC<br />

[FastDigest Ecl136II<br />

FastDigest SacI<br />

37<br />

60<br />

[Ecl136II <br />

SacI<br />

109<br />

141<br />

[Eco53kI], [EcoICRI], SstI<br />

Psp1406I AACGTT FastDigest AclI 14 Psp1406I 138 AclI<br />

Psp5II RGGWCCY FastDigest PpuMI 57 Psp5II 138 PpuMI, PspPPI<br />

Psp6I CCWGG [FastDigest MvaI 50<br />

EcoRII,<br />

[MvaI <br />

116<br />

129<br />

AjnI, [BseBI], [Bst2UI], [BstNI], [BstOI],<br />

PspGI<br />

PspCI CACGTG FastDigest PmlI 56 Eco72I 112 AcvI, BbrPI, PmaCI, PmlI<br />

PspEI GGTNACC FastDigest Eco91I 38 Eco91I 113 BstEII, BstPI, EcoO65I<br />

PspFI FastDigest PspFI 58 GsaI, [BseYI]<br />

PspGI CCWGG [FastDigest MvaIm 129<br />

EcoRII,<br />

[MvaI m 116<br />

129<br />

AjnIm , [BseBI], [Bst2UIm ], [BstNIm ],<br />

[BstOIm ], Psp6I<br />

PspLI CGTACG FastDigest BsiWI 28 Pfl23II 136 BsiWI<br />

PspN4I GGNNCC FastDigest NlaIV 53 BspLI 100 BmiI, NlaIV<br />

PspOMI GGGCCC<br />

[FastDigest ApaI<br />

FastDigest Bsp120I<br />

18<br />

30<br />

[ApaI<br />

Bsp120I <br />

87<br />

99<br />

PspPI GGNCC FastDigest Sau96I 62 Cfr13I 105 AspS9I, [BmgT120I], Sau96I<br />

PspPPI RGGWCCY FastDigest PpuMI 57 Psp5II 138 PpuMI<br />

PspXI VCTCGAGB<br />

PsrI 6 PstI CTGCAG FastDigest PstI 58 PstI 138 BspMAI<br />

PsuI RGATCY FastDigest PsuI 58 PsuI 139 BstX2I, BstYI, MflIm , XhoII<br />

PsyI GACNNNGTC FastDigest PsyI 59 PsyI 139 AspI, PflFI, Tth111I<br />

PvuI CGATCG FastDigest PvuI 59 PvuI 139 BpvUI, MvrI, Ple19I<br />

PvuII CAGCTG FastDigest PvuII 59 PvuII 140<br />

RcaI TCATGA FastDigest BspHI 31 PagI 134 BspHI, CciI<br />

RgaI GCGATCGC FastDigest AsiSI 19 SfaAI 144 AsiSI, SgfI<br />

RigI GGCCGGCC FseI<br />

RsaI GTAC<br />

[FastDigest Csp6Im FastDigest RsaI<br />

34<br />

60<br />

[Csp6I m RsaI<br />

107<br />

140<br />

m ], [RsaNI]<br />

RsaNI GTAC<br />

FastDigest Csp6I,<br />

[FastDigest RsaI<br />

34<br />

60<br />

Csp6I ,<br />

[RsaI<br />

107<br />

140<br />

<br />

RseI CAYNNNNRTG FastDigest MslI 49 RseI 140 MslI, SmiMI<br />

Rsr2I CGGWCCG FastDigest RsrII 60 CpoI 106 CspI, RsrII<br />

RsrII CGGWCCG FastDigest RsrII 60 CpoI 106 CspI, Rsr2I, RsrII<br />

SacI GAGCTC<br />

[FastDigest Ecl136IIm FastDigest SacI<br />

37<br />

60<br />

[Ecl136II m SacI<br />

109<br />

141<br />

[Eco53kIm ], [EcoICRI], Psp124BI, SstI<br />

SacII CCGCGG Cfr42I 106 KspI, Sfr303I, SgrBI, SstII<br />

SalI GTCGAC FastDigest SalI 61 SalI 141<br />

SanDI GGGWCCC FastDigest SanDI 61 SanDI<br />

SapI FastDigest SapI 61 LguI 124 <br />

SatI GCNGC FastDigest Fnu4HI 40 SatI 142 Fnu4HI, Fsp4HI, ItaIm Sau3AI GATC<br />

FastDigest Sau3AI ,<br />

FastDigest MboIm 62<br />

46<br />

Bsp143I ,<br />

MboIm 99<br />

126<br />

BfuCIm , BssMI, [BstKTIm ], BstMBI,<br />

DpnIIm , Kzo9I, NdeIIm Sau96I GGNCC FastDigest Sau96I 62 Cfr13I 105 AspS9I, [BmgT120I], PspPI, Sau96I<br />

SbfI CCTGCAGG FastDigest SbfI 62 SdaI 143 SbfI, Sse8387I<br />

ScaI AGTACT FastDigest ScaI 63 ScaI 142 AssI, BmcAI, ZrmI<br />

SchI FastDigest MlyI 48 SchI 143 MlyI, [PleI], [PpsI], SchI<br />

ScrFI CCNGG FastDigest ScrFI 63 Bme1390I 91<br />

BmrFI, [BssKI], [BstSCI], MspR9I, ScrFI,<br />

[StyD4I]<br />

SdaI CCTGCAGG FastDigest SbfI 62 SdaI 143 SbfI, Sse8387I<br />

SduI GDGCHC FastDigest Bsp1286I 30 SduI 143 Bsp1286I, MhlI<br />

SetI ASST<br />

SexAI ACCWGGT FastDigest SexAI m 63 MabI m , SexAI<br />

SfaAI GCGATCGC FastDigest AsiSI 19 SfaAI 144 AsiSI, RgaI, SgfI<br />

SfaNI FastDigest SfaNI 64 LweI 125<br />

SfcI CTRYAG FastDigest SfcI 64 BfmI 90 BstSFI, SfcI<br />

SfiI GGCCNNNNNGGCC FastDigest SfiI 64 SfiI 144<br />

SfoI GGCGCC FastDigest EheIm 40<br />

EheI m ,<br />

[SspDI <br />

116<br />

148<br />

[BbeIm ], DinI, EgeI, [KasIm ], [Mly113I],<br />

[NarIm ]<br />

Sfr274I CTCGAG FastDigest XhoI 71 XhoI 154 PaeR7I, SlaI, StrI, TliI<br />

Sfr303I CCGCGG Cfr42I 106 KspI, SacII, SgrBI, SstII<br />

SgeI SgeI 145<br />

SfuI TTCGAA FastDigest Bsp119Im 29 Bsp119I m 99<br />

AsuII, Bpu14I, BspT104Im , BstBIm ,<br />

Csp45I, NspVm SgfI GCGATCGC FastDigest AsiSI 19 SfaAI 144 AsiSI, RgaI<br />

SgrAI CRCCGGYG<br />

www.thermoscientific.com/onebio


Table 1.25. Commercially available restriction enzymes.<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

Commercially available<br />

isoschizomers from other vendors<br />

SgrBI CCGCGG Cfr42I 106 KspI, SacII, Sfr303I, SstII<br />

SgrDI CGTCGACG SgrDI 145<br />

SgsI GGCGCGCC FastDigest AscI 18 SgsI 145 AscI, PalAI<br />

SinI GGWCC FastDigest AvaII 20 Eco47I 110 AvaII, Bme18I, VpaK11BI<br />

SlaI CTCGAG FastDigest XhoI 71 XhoI 154 PaeR7I, Sfr274I, StrI, TliI<br />

SmaI CCCGGG FastDigest SmaI 65<br />

[Cfr9I m SmaI<br />

105<br />

146<br />

[TspMI], [XmaCI], [XmaIm ]<br />

SmiI ATTTAAAT FastDigest SwaI 67 SmiI 146 SwaI<br />

SmiMI CAYNNNNRTG FastDigest MslI 49 RseI 140 MslI<br />

SmlI CTYRAG SmoI 147<br />

SmoI CTYRAG SmoI 147 SmlI<br />

SmuI FauI<br />

SnaBI TACGTA FastDigest SnaBI 65 Eco105I 114 BstSNI, SnaBI<br />

SpeI ACTAGT FastDigest SpeI 65 BcuI 89 AhlI, SpeI<br />

SphI GCATGC FastDigest SphI 66 PaeI 133 BbuI, SphI<br />

SrfI GCCCGGGC<br />

Sse8387I CCTGCAGG FastDigest SbfI 62 SdaI 143 SbfI<br />

Sse9I AATT FastDigest Tsp509I 70 TasI 150 Tsp509I, TspEI<br />

SseBI AGGCCT FastDigest StuI 66 Eco147I 114 AatI, PceI, StuI<br />

SsiI FastDigest AciI 14 SsiI 147 AciI, BspACI<br />

SspDI GGCGCC [FastDigest EheI 40<br />

[EheI <br />

SspDI <br />

116<br />

148<br />

[BbeI], [DinI], [EgeI], KasI, [Mly113I],<br />

[NarI], [SfoI]<br />

SspI AATATT FastDigest SspI 66 SspI 148<br />

SstI GAGCTC<br />

[FastDigest Ecl136IIm FastDigest SacI<br />

37<br />

60<br />

[Ecl136II m SacI<br />

109<br />

141<br />

[Eco53kI], [EcoICRI], Psp124BI<br />

SstII CCGCGG Cfr42I 106 KspI, SacII, Sfr303I, SgrBI<br />

StrI CTCGAG FastDigest XhoI 71 XhoI 154 PaeR7I, Sfr274I, SlaI, TliI<br />

StuI AGGCCT FastDigest StuI 66 Eco147I 114 AatI, PceI, SseBI, StuI<br />

StyD4I CCNGG [FastDigest ScrFI 63 [Bme1390I 91 [BmrFI], BssKI, BstSCI, [MspR9I], [ScrFI]<br />

StyI CCWWGG FastDigest StyI 67 Eco130I 114 BssT1I, EcoT14I, ErhI, StyI<br />

SwaI ATTTAAAT FastDigest SwaI 67 SmiI 146 SwaI<br />

TaaI ACNGT FastDigest TaaI 149 TaaI 149 Bst4CI, HpyCH4III<br />

TaiI ACGT FastDigest TaiI 68 TaiI 149 [HpyCH4IVm ], [MaeII]<br />

TaqI TCGA FastDigest TaqI 68 TaqI 149<br />

TaqII<br />

,<br />

<br />

TasI AATT FastDigest Tsp509I 70 TasI 150 Sse9I, Tsp509I, TspEI<br />

TatI WGTACW FastDigest TatI 68 TatI 150<br />

TauI GCSGC FastDigest TauI 69 TauI 150<br />

TfiI GAWTC FastDigest TfiI 69 PfeI 135 TfiI<br />

TliI CTCGAG FastDigest XhoI 71 XhoI 154 PaeR7I, Sfr274I, SlaI, StrI<br />

Tru1I TTAA<br />

FastDigest MseI ,<br />

FastDigest Tru1I<br />

49<br />

69<br />

Tru1I 151 MseI, Tru9I<br />

Tru9I TTAA<br />

FastDigest MseI ,<br />

FastDigest Tru1I<br />

49<br />

69<br />

Tru1I 151 MseI<br />

TscAI FastDigest TspRI 70 TscAI 151 TspRI<br />

TseI GCWGC ApeKI<br />

TsoI <br />

Tsp45I GTSAC FastDigest NmuCI 53 NmuCI 132<br />

Tsp509I AATT FastDigest Tsp509I 70 TasI 150 Sse9I, Tsp509I, TspEI<br />

TspDTI <br />

TspEI AATT FastDigest Tsp509I 70 TasI 150 Sse9I, Tsp509I<br />

TspGWI <br />

TspMI CCCGGG [FastDigest SmaI 65<br />

Cfr9I m ,<br />

[SmaI<br />

105<br />

146<br />

XmaCI, XmaIm TspRI FastDigest TspRI 70 TscAI 151 TspRI<br />

TstI 6 Tth111I GACNNNGTC FastDigest PsyI 59 PsyI 139 AspI, PflFI<br />

Van91I CCANNNNNTGG FastDigest PflMI 56 Van91I 152 AccB7I, BasI, PflMI<br />

Vha464I CTTAAG FastDigest AflII 15 BspTI 101 AflII, BfrI, Bst98I, BstAFI, MspCI<br />

VneI GTGCAC FastDigest ApaLI 18 Alw44I 86 ApaLI<br />

VpaK11BI GGWCC FastDigest AvaII 20 Eco47I 110 AvaII, Bme18I, SinI<br />

VspI ATTAAT FastDigest AseI 19 VspI 152 AseI, PshBI<br />

XagI CCTNNNNNAGG FastDigest EcoNI 38 XagI 152 BstENI, EcoNI<br />

XapI RAATTY FastDigest XapI 70 XapI 153 AcsI, ApoI<br />

XbaI TCTAGA FastDigest XbaI 71 XbaI 153<br />

<br />

www.thermoscientific.com/onebio 215


216<br />

Table 1.25. Commercially available restriction enzymes.<br />

Enzyme Specificity 5’3’ FastDigest enzyme Page Conventional enzyme Page<br />

Commercially available<br />

isoschizomers from other vendors<br />

XceI RCATGY FastDigest NspI 55 XceI 153 BstNSI, NspI<br />

XcmI CCANNNNNNNNNTGG<br />

XhoI CTCGAG FastDigest XhoI 71 XhoI 154 PaeR7I, Sfr274I, SlaI, StrI, TliI<br />

XhoII RGATCY FastDigest PsuI 58 PsuI 139 BstX2I, BstYI, MflIm ,<br />

XmaCI CCCGGG [FastDigest SmaI 65<br />

Cfr9I ,<br />

[SmaI<br />

105<br />

146<br />

TspMI, XmaI<br />

XmaI CCCGGG [FastDigest SmaIm 65<br />

Cfr9I m ,<br />

[SmaIm 105<br />

146<br />

TspMIm , XmaCI<br />

XmaJI CCTAGG FastDigest AvrII 20 XmaJI 154 AspA2I, AvrII, BlnI<br />

XmiI GTMKAC FastDigest AccI 13 XmiI 154 AccI, FblI<br />

XmnI GAANNNNTTC FastDigest PdmIm 55 PdmI m 135 Asp700I, MroXI<br />

XspI CTAG FastDigest BfaI 22 FspBI 118 BfaI, MaeI<br />

ZraI GACGTC [FastDigest AatIIm 13 [AatIIm 82<br />

ZrmI AGTACT FastDigest ScaI 142 ScaI 142 AssI, BmcAI<br />

Zsp2I ATGCAT FastDigest NsiI 54 Mph1103I 128 EcoT22I, NsiI<br />

www.thermoscientific.com/onebio


Alphabetic List of Recognition Sequences<br />

Table 1.26. Recognition sequences of restriction enzymes.<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

AACGTT FastDigest AclI Psp1406I <br />

AAGCTT FastDigest HindIII HindIII<br />

5 FalI<br />

AATATT FastDigest SspI SspI<br />

AATT FastDigest Tsp509I TasI <br />

ACATGT PscI <br />

ACCGGT FastDigest AgeI BshTI <br />

* FastDigest BspMI BveI <br />

ACCWGGT FastDigest SexAI SexAI<br />

ACGCGT FastDigest MluI MluI<br />

* TspGWI<br />

* BceAI<br />

ACGT FastDigest TaiI TaiI <br />

ACGT MaeII<br />

ACNGT FastDigest TaaI TaaI <br />

4* BaeI<br />

5* BsaXI<br />

ACRYGT AflIII<br />

ACTAGT FastDigest SpeI BcuI <br />

* FastDigest BseNI BseNI <br />

AGATCT FastDigest BglII BglII<br />

AGCGCT FastDigest AfeI Eco47III <br />

AGCT FastDigest AluI AluI<br />

AGGCCT FastDigest StuI Eco147I <br />

AGTACT FastDigest ScaI ScaI<br />

ASST SetI<br />

ATCGAT FastDigest ClaI Bsu15I <br />

* TspDTI<br />

ATGCAT FastDigest NsiI Mph1103I <br />

ATTAAT FastDigest AseI VspI <br />

ATTTAAAT<br />

C<br />

FastDigest SwaI SmiI <br />

5* CspCI<br />

CAATTG FastDigest MfeI MunI <br />

* TaqII<br />

* AarI<br />

* BauI <br />

* AjiI <br />

CACGTG FastDigest PmlI Eco72I <br />

CACNNNGTG FastDigest DraIII AdeI <br />

CACNNNNGTG FastDigest AleI OliI <br />

BtsI<br />

* EcoP15I<br />

CAGCTG FastDigest PvuII PvuII<br />

CAGNNNCTG FastDigest AlwNI CaiI <br />

FastDigest TspRI TscAI <br />

CATATG FastDigest NdeI NdeI<br />

FastDigest FokI FokI<br />

FastDigest BseGI BseGI <br />

BtgZI<br />

CATG FastDigest NlaIII Hin1II <br />

CATG FatI<br />

CATG CviAII<br />

FastDigest BsrDI BseMI <br />

CAYNNNNRTG FastDigest MslI RseI <br />

7* FastDigest AjuI AjuI<br />

5* CspCI<br />

FastDigest BseNI BseNI <br />

CCANNNNNNNNNTGG XcmI<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

CCANNNNNNTGG FastDigest BstXI BstXI<br />

CCANNNNNTGG FastDigest PflMI Van91I <br />

* BccI<br />

CCATGG FastDigest NcoI NcoI<br />

* BseYI<br />

* FastDigest PspFI GsaI<br />

* FauI<br />

CCCGGG Cfr9I <br />

CCCGGG FastDigest SmaI SmaI<br />

CCCWGGG PasI<br />

* FastDigest AciI SsiI <br />

CCGCGG Cfr42I <br />

* FastDigest BsrBI MbiI <br />

CCGG<br />

FastDigest HpaII<br />

FastDigest MspI<br />

HpaII<br />

MspI <br />

CCNGG StyD4I<br />

CCNGG FastDigest ScrFI Bme1390I <br />

CCNNGG FastDigest BsaJI BseDI <br />

CCNNNNNNNGG FastDigest BslI BseLI <br />

CCRYGG BtgI<br />

CCSGG FastDigest NciI BcnI <br />

CCTAGG FastDigest AvrII XmaJI <br />

* FastDigest MnlI MnlI<br />

* BbvCI<br />

CCTCGAGG AbsI<br />

CCTGCAGG FastDigest SbfI SdaI <br />

* FastDigest Bpu10I Bpu10I<br />

CCTNAGG FastDigest Bsu36I Eco81I <br />

CCTNNNNNAGG FastDigest EcoNI XagI <br />

* HpyAV<br />

CCWGG EcoRII<br />

CCWGG FastDigest MvaI MvaI <br />

CCWWGG FastDigest StyI Eco130I <br />

6* BcgI<br />

CGATCG FastDigest PvuI PvuI<br />

CGCCGGCG FastDigest MreI MreI <br />

CGCG FastDigest Bsh1236I Bsh1236I <br />

CGCGCGCG FastDigest MauBI MauBI<br />

CGGCCG FastDigest EagI Eco52I <br />

CGGWCCG FastDigest RsrII CpoI <br />

CGRYCG FastDigest BsiEI Bsh1285I <br />

CGTACG FastDigest BsiWI Pfl23II <br />

CGTCGACG SgrDI<br />

* FastDigest BsmBI Esp3I <br />

CGWCG Hpy99I<br />

CMGCKG MspA1I<br />

SgeI<br />

6* ArsI<br />

CRCCGGYG SgrAI<br />

CTAG FastDigest BfaI FspBI <br />

BpuEI<br />

* BspCNI<br />

* FastDigest BspCNI BseMII <br />

FastDigest BpmI GsuI <br />

BseRI<br />

CTCGAG FastDigest XhoI XhoI<br />

NmeAIII<br />

* BauI <br />

* FastDigest EarI Eam1104I <br />

<br />

www.thermoscientific.com/onebio 217


218<br />

Table 1.26. Recognition sequences of restriction enzymes.<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

* FastDigest AcuI Eco57I <br />

BspCNI<br />

FastDigest BspCNI BseMII <br />

BsgI<br />

CTGCAG FastDigest PstI PstI<br />

EcoP15I<br />

* FastDigest BpmI GsuI <br />

CTNAG FastDigest DdeI HpyF3I <br />

CTRYAG FastDigest SfcI BfmI <br />

CTTAAG FastDigest AflII BspTI <br />

FastDigest AcuI Eco57I <br />

* BpuEI<br />

CTYRAG SmoI <br />

CYCGRG FastDigest AvaI Eco88I <br />

CYCGRG<br />

G<br />

BmeT110I<br />

6* PsrI<br />

6* AloI<br />

* FastDigest MboII MboII<br />

* FastDigest BbsI BpiI <br />

FastDigest EarI Eam1104I <br />

FastDigest SapI LguI <br />

HpyAV<br />

6* BarI<br />

7* FastDigest AjuI AjuI<br />

GAANNNNTTC FastDigest PdmI PdmI <br />

* FastDigest Mva1269I Mva1269I <br />

GAATTC FastDigest EcoRI EcoRI<br />

* TaqII<br />

* FastDigest HgaI CseI <br />

GACGTC ZraI<br />

GACGTC FastDigest AatII AatII<br />

* AjiI <br />

GACNNNGTC FastDigest PsyI PsyI <br />

GACNNNNGTC FastDigest PshAI BoxI <br />

GACNNNNNGTC FastDigest Eam1105I Eam1105I <br />

GACNNNNNNGTC FastDigest DrdI DrdI<br />

6* ArsI<br />

FastDigest MlyI SchI <br />

PleI<br />

FastDigest Alw26I Alw26I <br />

FastDigest Eco31I Eco31I <br />

FastDigest BsmBI Esp3I <br />

* FastDigest BsrBI MbiI <br />

GAGCTC FastDigest SacI SacI<br />

GAGCTC FastDigest Ecl136II Ecl136II <br />

FastDigest MnlI MnlI<br />

* BseRI<br />

5 FastDigest BplI BplI<br />

* FastDigest MlyI SchI <br />

* PleI<br />

GANTC FastDigest HinfI HinfI<br />

GATATC FastDigest EcoRV Eco32I <br />

GATC<br />

FastDigest Sau3AI <br />

FastDigest MboI<br />

Bsp143I <br />

MboI<br />

Gm6ATC FastDigest DpnI DpnI<br />

GATC BstKTI<br />

BspPI <br />

FastDigest SfaNI LweI <br />

BccI<br />

GATNNNNATC FastDigest BsaBI BseJI <br />

www.thermoscientific.com/onebio<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

GAWTC FastDigest TfiI PfeI <br />

* FastDigest BsrDI BseMI <br />

*<br />

FastDigest BbvI <br />

FastDigest BseXI<br />

Lsp1109I <br />

BseXI <br />

FastDigest BspMI BveI <br />

AarI<br />

* BtsI<br />

6* BcgI<br />

6 AlfI<br />

GCANNNNNTGC BstAPI<br />

* FastDigest SfaNI LweI <br />

GCATGC FastDigest SphI PaeI <br />

FastDigest Mva1269I Mva1269I <br />

GCCCGGGC SrfI<br />

* NmeAIII<br />

GCCGGC NgoMIV<br />

GCCGGC FastDigest NaeI PdiI <br />

BceAI<br />

GCCNNNNNGGC FastDigest BglI BglI<br />

GCGATCGC FastDigest AsiSI SfaAI <br />

* BtgZI<br />

GCGC FastDigest HinP1I Hin6I <br />

GCGC FastDigest HhaI HhaI<br />

GCCG GlaI<br />

GCGCGC FastDigest BssHII PauI <br />

* FastDigest AciI SsiI <br />

GCGGCCGC FastDigest NotI NotI<br />

FauI<br />

FastDigest HgaI CseI <br />

GCNGC FastDigest Fnu4HI SatI <br />

GCNGC BisI<br />

GCNGC BlsI<br />

GCNNGC Cac8I<br />

GCNNNNNNNGC FastDigest HpyF10VI HpyF10VI <br />

GCSGC FastDigest TauI TauI<br />

GCTAGC FastDigest BmtI BspOI <br />

GCTAGC FastDigest NheI NheI<br />

* FastDigest SapI LguI <br />

* BbvCI<br />

<br />

FastDigest BbvI <br />

FastDigest BseXI<br />

Lsp1109I <br />

BseXI <br />

* BseYI<br />

* FastDigest PspFI GsaI<br />

GCTNAGC FastDigest BlpI Bpu1102I <br />

* FastDigest Bpu10I Bpu10I<br />

GCWGC TseI<br />

GDGCHC FastDigest Bsp1286I SduI <br />

5* BsaXI<br />

6* AloI<br />

BfuI <br />

* BspPI <br />

GGATCC FastDigest BamHI BamHI<br />

* FastDigest FokI FokI<br />

* FastDigest BseGI BseGI <br />

GGCC FastDigest HaeIII BsuRI <br />

GGCCGGCC FseI<br />

GGCCNNNNNGGCC FastDigest SfiI SfiI<br />

GGCGCC FastDigest EheI EheI <br />

GGCGCC NarI<br />

GGCGCC SspDI <br />

GGCGCC BbeI


Table 1.26. Recognition sequences of restriction enzymes.<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

GGCGCGCC FastDigest AscI SgsI <br />

* EciI<br />

* FastDigest BsmFI FaqI <br />

GGGCCC FastDigest Bsp120I Bsp120I <br />

GGGCCC FastDigest ApaI ApaI<br />

GGGWCCC FastDigest SanDI SanDI<br />

GGNCC FastDigest Sau96I Cfr13I <br />

GGNCC BmgT120I<br />

GGNNCC FastDigest NlaIV BspLI <br />

GGTACC FastDigest KpnI KpnI<br />

GGTACC FastDigest Acc65I Acc65I <br />

* FastDigest Eco31I Eco31I <br />

* HphI<br />

GGTNACC FastDigest Eco91I Eco91I <br />

GGWCC FastDigest AvaII Eco47I <br />

GGYRCC FastDigest BanI BshNI <br />

GKGCMC FastDigest Bme1580I BseSI <br />

GRCGYC FastDigest BsaHI Hin1I <br />

GRGCYC Eco24I <br />

4* BaeI<br />

GTAC FastDigest RsaI RsaI<br />

GTAC FastDigest Csp6I Csp6I <br />

6* BarI<br />

6* PsrI<br />

GTATAC FastDigest BstZ17I Bst1107I <br />

* BfuI <br />

FastDigest BsmFI FaqI <br />

GTCGAC FastDigest SalI SalI<br />

* FastDigest Alw26I Alw26I <br />

FastDigest BbsI BpiI <br />

GTGCAC FastDigest ApaLI Alw44I <br />

* BsgI<br />

GTMKAC FastDigest AccI XmiI <br />

GTNAC MaeIII<br />

GTNNAC FastDigest Hpy8I Hpy8I <br />

GTSAC FastDigest NmuCI NmuCI <br />

GTTAAC FastDigest HpaI KspAI <br />

GTTTAAAC FastDigest MssI MssI <br />

MmeI<br />

GTYRAC FastDigest HincII HincII <br />

GWGCWC<br />

R<br />

FastDigest Alw21I Alw21I <br />

RAATTY FastDigest XapI XapI <br />

RCATGY FastDigest NspI XceI <br />

RCCGGY FastDigest BsrFI Cfr10I <br />

RGATCY FastDigest PsuI PsuI <br />

RGCGCY FastDigest HaeII HaeII<br />

RGCY <br />

RGGNCCY FastDigest EcoO109I EcoO109I <br />

RGGWCCY FastDigest PpuMI Psp5II <br />

RTGCGCAY<br />

T<br />

FastDigest FspAI FspAI<br />

TACGTA FastDigest SnaBI Eco105I <br />

HphI<br />

TCATGA FastDigest BspHI PagI <br />

EciI<br />

TCCGGA FastDigest Kpn2I Kpn2I <br />

TspGWI<br />

TaqII<br />

TCCNGGA FastDigest PfoI PfoI<br />

* MmeI<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

TCGA FastDigest TaqI TaqI<br />

TCGCGA FastDigest NruI Bsp68I <br />

TCNGA Hpy188I<br />

TCNNGA Hpy188III<br />

TCTAGA FastDigest XbaI XbaI<br />

FastDigest MboII MboII<br />

TGATCA FastDigest BclI BclI<br />

TGCA HpyCH4V<br />

TGCGCA FastDigest FspI NsbI <br />

TGGCCA FastDigest MscI MlsI <br />

TaqII<br />

FastDigest MscI <br />

TGTACA FastDigest Bsp1407I Bsp1407I <br />

TTAA<br />

FastDigest MseI <br />

FastDigest Tru1I<br />

Tru1I <br />

TTAATTAA FastDigest PacI PacI<br />

TTATAA FastDigest PsiI AanI <br />

TspDTI<br />

TTCGAA FastDigest Bsp119I Bsp119I <br />

TTSAA AgsI<br />

TTTAAA<br />

V<br />

FastDigest DraI DraI<br />

VCTCGAGB<br />

W<br />

PspXI<br />

WCCGGW BsaWI<br />

WGTACW<br />

Y<br />

FastDigest TatI TatI<br />

YACGTR FastDigest BsaAI Ppu21I <br />

YATR FaiI<br />

YGGCCR EaeI<br />

Note<br />

* Asymetric sequences.<br />

enzymes are shown in purple.<br />

<strong>Thermo</strong> <strong>Scientific</strong> conventional enzymes are shown in orange.<br />

Single letter code<br />

R = G or A; K = G or T; B = C, G or T;<br />

Y = C or T; S = C or G; D = A, G or T;<br />

W = A or T; H = A, C or T; N = G, A, T or C.<br />

M = A or C; V = A, C or G;<br />

www.thermoscientific.com/onebio 219


220<br />

Enzyme Recognizing 2 bp Long Targets<br />

Table 1.27. Enzyme recognizing 2 bp long targets.<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

SgeI<br />

Alphabetic List of Enzymes<br />

Recognizing 4 bp Long Targets<br />

Table 1.28. Enzymes recognizing 4 bp long targets.<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

AATT FastDigest Tsp509I TasI <br />

ACGT FastDigest TaiI TaiI <br />

ACGT MaeII<br />

ACNGT FastDigest TaaI TaaI <br />

AGCT FastDigest AluI AluI<br />

ASST SetI<br />

CATG FastDigest NlaIII Hin1II <br />

CATG FatI<br />

CATG CviAII<br />

* FastDigest AciI SsiI <br />

CCGG<br />

FastDigest HpaII<br />

FastDigest MspI<br />

HpaII<br />

MspI <br />

CCNGG StyD4I<br />

CCNGG FastDigest ScrFI Bme1390I <br />

CCNNGG FastDigest BsaJI BseDI <br />

CCNNNNNNNGG FastDigest BslI BseLI <br />

* FastDigest MnlI MnlI<br />

CGCG FastDigest Bsh1236I Bsh1236I <br />

CTAG FastDigest BfaI FspBI <br />

CTNAG FastDigest DdeI HpyF3I <br />

FastDigest MnlI MnlI<br />

GANTC FastDigest HinfI HinfI<br />

GATC<br />

FastDigest MboI<br />

FastDigest Sau3AI <br />

MboI<br />

Bsp143I <br />

Gm6ATC FastDigest DpnI DpnI<br />

GATC BstKTI<br />

GCGC FastDigest HinP1I Hin6I <br />

GCGC FastDigest HhaI HhaI<br />

GCGC GlaI<br />

* FastDigest AciI SsiI <br />

GCNGC FastDigest Fnu4HI SatI <br />

GCNGC BisI<br />

GCNGC BlsI<br />

GCNNGC Cac8I<br />

GCNNNNNNNGC FastDigest HpyF10VI HpyF10VI <br />

GGCC FastDigest HaeIII BsuRI <br />

GGNCC FastDigest Sau96I Cfr13I <br />

GGNCC BmgT120I<br />

GGNNCC FastDigest NlaIV BspLI <br />

GTAC FastDigest RsaI RsaI<br />

GTAC FastDigest Csp6I Csp6I <br />

GTNAC MaeIII<br />

GTNNAC FastDigest Hpy8I Hpy8I <br />

RGCY <br />

TCGA FastDigest TaqI TaqI<br />

TCNGA Hpy188I<br />

TCNNGA Hpy188III<br />

TGCA HpyCH4V<br />

TTAA<br />

FastDigest MseI <br />

FastDigest Tru1I<br />

Tru1I <br />

YATR FaiI<br />

Note<br />

* Asymetric sequences.<br />

enzymes are shown in purple.<br />

<strong>Thermo</strong> <strong>Scientific</strong> conventional enzymes are shown in orange.<br />

www.thermoscientific.com/onebio<br />

Alphabetic List of Enzymes<br />

Recognizing 5 bp Long Targets<br />

Table 1.29. Enzymes recognizing 5 bp long targets.<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

* TspGWI<br />

* BceAI<br />

* FastDigest BseNI BseNI <br />

* TspDTI<br />

FastDigest TspRI TscAI <br />

FastDigest FokI FokI<br />

FastDigest BseGI BseGI <br />

FastDigest BseNI BseNI <br />

* BccI<br />

* FauI<br />

CCSGG FastDigest NciI BcnI <br />

* HpyAV<br />

CCWGG EcoRII<br />

CCWGG FastDigest MvaI MvaI <br />

CGWCG Hpy99I<br />

* BspCNI<br />

* FastDigest BspCNI BseMII <br />

BspCNI<br />

FastDigest BspCNI BseMII <br />

* FastDigest MboII MboII<br />

HpyAV<br />

* FastDigest HgaI CseI <br />

FastDigest MlyI SchI <br />

PleI<br />

FastDigest Alw26I Alw26I <br />

* FastDigest MlyI SchI <br />

* PleI<br />

BspPI <br />

FastDigest SfaNI LweI <br />

BccI<br />

GAWTC FastDigest TfiI PfeI <br />

*<br />

FastDigest BbvI <br />

FastDigest BseXI<br />

Lsp1109I <br />

BseXI <br />

* FastDigest SfaNI LweI <br />

BceAI<br />

FauI<br />

FastDigest HgaI CseI <br />

GCSGC FastDigest TauI TauI<br />

<br />

FastDigest BbvI <br />

FastDigest BseXI<br />

Lsp1109I <br />

BseXI <br />

GCWGC TseI<br />

* BspPI <br />

* FastDigest FokI FokI<br />

* FastDigest BseGI BseGI <br />

* FastDigest BsmFI FaqI <br />

* HphI<br />

GGWCC FastDigest AvaII Eco47I <br />

FastDigest BsmFI FaqI <br />

* FastDigest Alw26I Alw26I <br />

GTSAC FastDigest NmuCI NmuCI <br />

HphI<br />

TspGWI<br />

FastDigest MboII MboII<br />

TspDTI<br />

TTSAA AgsI<br />

Single letter code<br />

R = G or A; K = G or T; B = C, G or T;<br />

Y = C or T; S = C or G; D = A, G or T;<br />

W = A or T; H = A, C or T; N = G, A, T or C.<br />

M = A or C; V = A, C or G;


Alphabetic List of Enzymes Recognizing 6 bp Long Targets<br />

Table 1.30. Enzymes recognizing 6 bp long targets.<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

AACGTT FastDigest AclI Psp1406I <br />

AAGCTT FastDigest HindIII HindIII<br />

5 FalI<br />

AATATT FastDigest SspI SspI<br />

ACATGT PscI <br />

ACCGGT FastDigest AgeI BshTI <br />

* FastDigest BspMI BveI <br />

ACGCGT FastDigest MluI MluI<br />

5* BsaXI<br />

ACRYGT AflIII<br />

ACTAGT FastDigest SpeI BcuI <br />

AGATCT FastDigest BglII BglII<br />

AGCGCT FastDigest AfeI Eco47III <br />

AGGCCT FastDigest StuI Eco147I <br />

AGTACT FastDigest ScaI ScaI<br />

ATCGAT FastDigest ClaI Bsu15I <br />

ATGCAT FastDigest NsiI Mph1103I <br />

ATTAAT FastDigest AseI VspI <br />

CAATTG FastDigest MfeI MunI <br />

* TaqII<br />

* BauI <br />

* AjiI <br />

CACGTG FastDigest PmlI Eco72I <br />

CACNNNGTG FastDigest DraIII AdeI <br />

CACNNNNGTG FastDigest AleI OliI <br />

BtsI<br />

* EcoP15I<br />

CAGCTG FastDigest PvuII PvuII<br />

CAGNNNCTG FastDigest AlwNI CaiI <br />

CATATG FastDigest NdeI NdeI<br />

BtgZI<br />

FastDigest BsrDI BseMI <br />

CAYNNNNRTG FastDigest MslI RseI <br />

CCANNNNNNNNNTGG XcmI<br />

CCANNNNNNTGG FastDigest BstXI BstXI<br />

CCANNNNNTGG FastDigest PflMI Van91I <br />

CCATGG FastDigest NcoI NcoI<br />

* BseYI<br />

* FastDigest PspFI GsaI<br />

CCCGGG Cfr9I <br />

CCCGGG FastDigest SmaI SmaI<br />

CCGCGG Cfr42I <br />

* FastDigest BsrBI MbiI <br />

CCRYGG BtgI<br />

CCTAGG FastDigest AvrII XmaJI <br />

* FastDigest Bpu10I Bpu10I<br />

CCTNAGG FastDigest Bsu36I Eco81I <br />

CCTNNNNNAGG FastDigest EcoNI XagI <br />

CCWWGG FastDigest StyI Eco130I <br />

6* BcgI<br />

CGATCG FastDigest PvuI PvuI<br />

CGGCCG FastDigest EagI Eco52I <br />

CGRYCG FastDigest BsiEI Bsh1285I <br />

CGTACG FastDigest BsiWI Pfl23II <br />

* FastDigest BsmBI Esp3I <br />

CMGCKG MspA1I<br />

BpuEI<br />

FastDigest BpmI GsuI <br />

BseRI<br />

CTCGAG FastDigest XhoI XhoI<br />

NmeAIII<br />

* BauI <br />

* FastDigest EarI Eam1104I <br />

* FastDigest AcuI Eco57I <br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

BsgI<br />

CTGCAG FastDigest PstI PstI<br />

EcoP15I<br />

* FastDigest BpmI GsuI <br />

CTRYAG FastDigest SfcI BfmI <br />

CTTAAG FastDigest AflII BspTI <br />

FastDigest AcuI Eco57I <br />

* BpuEI<br />

CTYRAG SmoI <br />

CYCGRG FastDigest AvaI Eco88I <br />

CYCGRG BmeT110I<br />

* FastDigest BbsI BpiI <br />

FastDigest EarI Eam1104I <br />

GAANNNNTTC FastDigest PdmI PdmI <br />

* FastDigest Mva1269I Mva1269I <br />

GAATTC FastDigest EcoRI EcoRI<br />

* TaqII<br />

GACGTC ZraI<br />

GACGTC FastDigest AatII AatII<br />

* AjiI <br />

GACNNNGTC FastDigest PsyI PsyI <br />

GACNNNNGTC FastDigest PshAI BoxI <br />

GACNNNNNGTC FastDigest Eam1105I Eam1105I <br />

GACNNNNNNGTC FastDigest DrdI DrdI<br />

FastDigest Eco31I Eco31I <br />

FastDigest BsmBI Esp3I <br />

* FastDigest BsrBI MbiI <br />

GAGCTC FastDigest SacI SacI<br />

GAGCTC FastDigest Ecl136II Ecl136II <br />

* BseRI<br />

5 FastDigest BplI BplI<br />

GATATC FastDigest EcoRV Eco32I <br />

GATNNNNATC FastDigest BsaBI BseJI <br />

* FastDigest BsrDI BseMI <br />

FastDigest BspMI BveI <br />

* BtsI<br />

6* BcgI<br />

6 AlfI<br />

GCANNNNNTGC BstAPI<br />

GCATGC FastDigest SphI PaeI <br />

FastDigest Mva1269I Mva1269I <br />

* NmeAIII<br />

GCCGGC NgoMIV<br />

GCCGGC FastDigest NaeI PdiI <br />

GCCNNNNNGGC FastDigest BglI BglI<br />

* BtgZI<br />

GCGCGC FastDigest BssHII PauI <br />

GCTAGC FastDigest BmtI BspOI <br />

GCTAGC FastDigest NheI NheI<br />

* BseYI<br />

* FastDigest PspFI GsaI<br />

GCTNAGC FastDigest BlpI Bpu1102I <br />

* FastDigest Bpu10I Bpu10I<br />

GDGCHC FastDigest Bsp1286I SduI <br />

5* BsaXI<br />

BfuI <br />

GGATCC FastDigest BamHI BamHI<br />

GGCGCC FastDigest EheI EheI <br />

GGCGCC NarI<br />

GGCGCC SspDI <br />

GGCGCC BbeI<br />

* EciI<br />

GGGCCC FastDigest Bsp120I Bsp120I <br />

GGGCCC FastDigest ApaI ApaI<br />

<br />

www.thermoscientific.com/onebio 221


222<br />

Table 1.30. Enzymes recognizing 6 bp long targets.<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

GGTACC FastDigest KpnI KpnI<br />

GGTACC FastDigest Acc65I Acc65I <br />

* FastDigest Eco31I Eco31I <br />

GGTNACC FastDigest Eco91I Eco91I <br />

GGYRCC FastDigest BanI BshNI <br />

GKGCMC FastDigest Bme1580I BseSI <br />

GRCGYC FastDigest BsaHI Hin1I <br />

GRGCYC Eco24I <br />

GTATAC FastDigest BstZ17I Bst1107I <br />

* BfuI <br />

GTCGAC FastDigest SalI SalI<br />

FastDigest BbsI BpiI <br />

GTGCAC FastDigest ApaLI Alw44I <br />

* BsgI<br />

GTMKAC FastDigest AccI XmiI <br />

GTTAAC FastDigest HpaI KspAI <br />

MmeI<br />

GTYRAC FastDigest HincII HincII <br />

GWGCWC FastDigest Alw21I Alw21I <br />

RAATTY FastDigest XapI XapI <br />

RCATGY FastDigest NspI XceI <br />

RCCGGY FastDigest BsrFI Cfr10I <br />

RGATCY FastDigest PsuI PsuI <br />

RGCGCY FastDigest HaeII HaeII<br />

RGGNCCY FastDigest EcoO109I EcoO109I <br />

TACGTA FastDigest SnaBI Eco105I <br />

TCATGA FastDigest BspHI PagI <br />

EciI<br />

TCCGGA FastDigest Kpn2I Kpn2I <br />

TCCNGGA FastDigest PfoI PfoI<br />

* MmeI<br />

TCGCGA FastDigest NruI Bsp68I <br />

TaqII<br />

TCTAGA FastDigest XbaI XbaI<br />

TGATCA FastDigest BclI BclI<br />

TGCGCA FastDigest FspI NsbI <br />

TGGCCA FastDigest MscI MlsI <br />

TaqII<br />

TGTACA FastDigest Bsp1407I Bsp1407I <br />

TTATAA FastDigest PsiI AanI <br />

TTCGAA FastDigest Bsp119I Bsp119I <br />

TTTAAA FastDigest DraI DraI<br />

WCCGGW BsaWI<br />

WGTACW FastDigest TatI TatI<br />

YACGTR FastDigest BsaAI Ppu21I <br />

YGGCCR EaeI<br />

Note<br />

* Asymetric sequences.<br />

enzymes are shown in purple.<br />

<strong>Thermo</strong> <strong>Scientific</strong> conventional enzymes are shown in orange.<br />

www.thermoscientific.com/onebio<br />

Alphabetic List of Enzymes<br />

Recognizing 7 bp Long Targets<br />

Table 1.31. Enzymes recognizing 7 bp long targets.<br />

Specificity<br />

FastDigest<br />

Conventional<br />

5’3’<br />

enzyme<br />

enzyme<br />

ACCWGGT FastDigest SexAI SexAI<br />

4* BaeI<br />

5* CspCI<br />

* AarI<br />

7* FastDigest AjuI AjuI<br />

5* CspCI<br />

CCCWGGG PasI<br />

* BbvCI<br />

CGGWCCG FastDigest RsrII CpoI <br />

6* ArsI<br />

6* PsrI<br />

6* AloI<br />

FastDigest SapI LguI <br />

6* BarI<br />

7* FastDigest AjuI AjuI<br />

6* ArsI<br />

AarI<br />

* FastDigest SapI LguI <br />

* BbvCI<br />

6* AloI<br />

GGGWCCC FastDigest SanDI SanDI<br />

* BaeI<br />

6* BarI<br />

6* PsrI<br />

RGGWCCY FastDigest PpuMI Psp5II <br />

Alphabetic List of Enzymes<br />

Recognizing 8 bp Long Targets<br />

Table 1.32. Enzymes recognizing 8 bp long targets.<br />

Specificity 5’3’<br />

FastDigest<br />

enzyme<br />

Conventional<br />

enzyme<br />

ATTTAAAT FastDigest SwaI SmiI <br />

CCTCGAGG AbsI<br />

CCTGCAGG FastDigest SbfI SdaI <br />

CGCCGGCG FastDigest MreI MreI <br />

CGCGCGCG FastDigest MauBI MauBI<br />

CGTCGACG SgrDI<br />

CRCCGGYG SgrAI<br />

GCCCGGGC SrfI<br />

GCGATCGC FastDigest AsiSI SfaAI <br />

GCGGCCGC FastDigest NotI NotI<br />

GGCCGGCC FseI<br />

GGCCNNNNNGGCC FastDigest SfiI SfiI<br />

GGCGCGCC FastDigest AscI SgsI <br />

GTTTAAAC FastDigest MssI MssI <br />

RTGCGCAY FastDigest FspAI FspAI<br />

TTAATTAA FastDigest PacI PacI<br />

VCTCGAGB PspXI<br />

Single letter code<br />

R = G or A; K = G or T; B = C, G or T; M = A or C;<br />

Y = C or T; S = C or G; D = A, G or T; V = A, C or G.<br />

W = A or T; H = A, C or T; N = G, A, T or C;


Commercial Restriction Enzymes Generating 5’-protruding Ends<br />

Table 1.33. Commercial restriction enzymes generating 5’-protruding ends.<br />

Recognition FastDigest<br />

Conventional<br />

5’-protruding end (5’ 3’)<br />

sequence<br />

enzyme<br />

enzyme<br />

1 nt 2 nt 3 nt 4 nt 5 nt<br />

AACGTT FastDigest AclI Psp1406I CG<br />

AAGCTT FastDigest HindIII HindIII AGCT<br />

AATT FastDigest Tsp509I TasI AATT<br />

ACATGT PscI CATG<br />

ACCGGT FastDigest AgeI BshTI CCGG<br />

* FastDigest BspMI BveI NNNN<br />

ACCWGGT FastDigest SexAI SexAI CCWGG<br />

ACGCGT FastDigest MluI MluI CGCG<br />

* BceAI NN<br />

ACGT MaeII CG<br />

ACRYGT AflIII CRYG<br />

ACTAGT FastDigest SpeI BcuI CTAG<br />

AGATCT FastDigest BglII BglII GATC<br />

ATCGAT FastDigest ClaI Bsu15I CG<br />

ATTAAT FastDigest AseI VspI TA<br />

CAATTG FastDigest MfeI MunI AATT<br />

* AarI NNNN<br />

* BauI ACGA<br />

* EcoP15I NN<br />

CATATG FastDigest NdeI NdeI TA<br />

FastDigest FokI FokI NNNN<br />

BtgZI NNNN<br />

CATG FatI CATG<br />

CATG CviAII AT<br />

* BccI N<br />

CCATGG FastDigest NcoI NcoI CATG<br />

* BseYI CCAG<br />

* FauI NN<br />

CCCGGG Cfr9I CCGG<br />

CCCWGGG PasI CWG<br />

* FastDigest AciI SsiI CG<br />

CCGG<br />

FastDigest HpaII<br />

FastDigest MspI<br />

HpaII<br />

MspI <br />

CG<br />

CCNGG StyD4I CCNGG<br />

CCNGG FastDigest ScrFI Bme1390I N<br />

CCNNGG FastDigest BsaJI BseDI CNNG<br />

CCRYGG BtgI CRYG<br />

CCSGG FastDigest NciI BcnI S<br />

CCTAGG FastDigest AvrII XmaJI CTAG<br />

* BbvCI TCA<br />

CCTCGAGG AbsI TCGA<br />

* FastDigest Bpu10I Bpu10I TNA<br />

CCTNAGG FastDigest Bsu36I Eco81I TNA<br />

CCTNNNNNAGG FastDigest EcoNI XagI N<br />

CCWGG EcoRII CCWGG<br />

CCWGG FastDigest MvaI MvaI W<br />

CCWWGG FastDigest StyI Eco130I CWWG<br />

CGCCGGCG FastDigest MreI MreI CCGG<br />

CGCGCGCG FastDigest MauBI MauBI CGCG<br />

CGGCCG FastDigest EagI Eco52I GGCC<br />

CGGWCCG FastDigest RsrII CpoI GWC<br />

CGTACG FastDigest BsiWI Pfl23II GTAC<br />

SgeI NNNN<br />

CGTCGACG SgrDI TCGA<br />

* FastDigest BsmBI Esp3I NNNN<br />

CRCCGGYG SgrAI CCGG<br />

<br />

www.thermoscientific.com/onebio 223


224<br />

Table 1.33. Commercial restriction enzymes generating 5’-protruding ends.<br />

Recognition FastDigest<br />

Conventional<br />

5’-protruding end (5’ 3’)<br />

sequence<br />

enzyme<br />

enzyme<br />

1 nt 2 nt 3 nt 4 nt 5 nt<br />

CTAG FastDigest BfaI FspBI TA<br />

CTCGAG FastDigest XhoI XhoI TCGA<br />

* BauI TCGT<br />

* FastDigest EarI Eam1104I NNN<br />

EcoP15I NN<br />

CTNAG FastDigest DdeI HpyF3I TNA<br />

CTRYAG FastDigest SfcI BfmI TRYA<br />

CTTAAG FastDigest AflII BspTI TTAA<br />

CTYRAG SmoI TYRA<br />

CYCGRG FastDigest AvaI Eco88I YCGR<br />

CYCGRG BmeT110I CG<br />

* FastDigest BbsI BpiI NNNN<br />

FastDigest EarI Eam1104I NNN<br />

FastDigest SapI LguI NNN<br />

GAATTC FastDigest EcoRI EcoRI AATT<br />

* FastDigest HgaI CseI NNNNN<br />

GACNNNGTC FastDigest PsyI PsyI N<br />

PleI N<br />

FastDigest Alw26I Alw26I NNNN<br />

FastDigest Eco31I Eco31I NNNN<br />

FastDigest BsmBI Esp3I NNNN<br />

* PleI N<br />

GANTC FastDigest HinfI HinfI ANT<br />

GATC<br />

FastDigest MboI<br />

FastDigest Sau3AI <br />

MboI<br />

Bsp143I <br />

GATC<br />

BspPI N<br />

FastDigest SfaNI LweI NNNN<br />

BccI N<br />

GAWTC FastDigest TfiI PfeI AWT<br />

*<br />

FastDigest BbvI <br />

FastDigest BseXI <br />

Lsp1109I <br />

BseXI <br />

NNNN<br />

FastDigest BspMI BveI NNNN<br />

AarI NNNN<br />

* FastDigest SfaNI LweI NNNN<br />

GCCGGC NgoMIV CCGG<br />

BceAI NN<br />

* BtgZI NNNN<br />

GCGC FastDigest HinP1I Hin6I CG<br />

GCGCGC FastDigest BssHII PauI CGCG<br />

* FastDigest AciI SsiI CG<br />

GCGGCCGC FastDigest NotI NotI GGCC<br />

FauI NN<br />

FastDigest HgaI CseI NNNNN<br />

GCNGC FastDigest Fnu4HI SatI N<br />

GCTAGC FastDigest NheI NheI CTAG<br />

* FastDigest SapI LguI NNN<br />

* BbvCI TGA<br />

<br />

FastDigest BbvI <br />

FastDigest BseXI <br />

Lsp1109I <br />

BseXI <br />

NNNN<br />

* BseYI CTGG<br />

GCTNAGC FastDigest BlpI Bpu1102I TNA<br />

* FastDigest Bpu10I Bpu10I TNA<br />

GCWGC TseI CWG<br />

* BspPI N<br />

GGATCC FastDigest BamHI BamHI GATC<br />

* FastDigest FokI FokI NNNN<br />

GGCGCC NarI CG<br />

GGCGCC SspDI GCGC<br />

GGCGCGCC FastDigest AscI SgsI CGCG<br />

* FastDigest BsmFI FaqI NNNN<br />

<br />

www.thermoscientific.com/onebio


Table 1.33. Commercial restriction enzymes generating 5’-protruding ends.<br />

Recognition FastDigest<br />

Conventional<br />

5’-protruding end (5’ 3’)<br />

sequence<br />

enzyme<br />

enzyme<br />

1 nt 2 nt 3 nt 4 nt 5 nt<br />

GGGCCC FastDigest Bsp120I Bsp120I GGCC<br />

GGGWCCC FastDigest SanDI SanDI GWC<br />

GGNCC FastDigest Sau96I Cfr13I GNC<br />

GGNCC BmgT120I N<br />

GGTACC FastDigest Acc65I Acc65I GTAC<br />

* FastDigest Eco31I Eco31I NNNN<br />

GGTNACC FastDigest Eco91I Eco91I GTNAC<br />

GGWCC FastDigest AvaII Eco47I GWC<br />

GGYRCC FastDigest BanI BshNI GYRC<br />

GRCGYC FastDigest BsaHI Hin1I CG<br />

GTAC FastDigest Csp6I Csp6I TA<br />

FastDigest BsmFI FaqI NNNN<br />

GTCGAC FastDigest SalI SalI TCGA<br />

* FastDigest Alw26I Alw26I NNNN<br />

FastDigest BbsI BpiI NNNN<br />

GTGCAC FastDigest ApaLI Alw44I TGCA<br />

GTMKAC FastDigest AccI XmiI MK<br />

GTNAC MaeIII GTNAC<br />

GTSAC FastDigest NmuCI NmuCI GTSAC<br />

RAATTY FastDigest XapI XapI AATT<br />

RCCGGY FastDigest BsrFI Cfr10I CCGG<br />

RGATCY FastDigest PsuI PsuI GATC<br />

RGGNCCY FastDigest EcoO109I EcoO109I GNC<br />

RGGWCCY FastDigest PpuMI Psp5II GWC<br />

TCATGA FastDigest BspHI PagI CATG<br />

TCCGGA FastDigest Kpn2I Kpn2I CCGG<br />

TCCNGGA FastDigest PfoI PfoI CCNGG<br />

TCGA FastDigest TaqI TaqI CG<br />

TCNNGA Hpy188III NN<br />

TCTAGA FastDigest XbaI XbaI CTAG<br />

TGATCA FastDigest BclI BclI GATC<br />

TGTACA FastDigest Bsp1407I Bsp1407I GTAC<br />

TTAA<br />

FastDigest MseI <br />

FastDigest Tru1I<br />

Tru1I TA<br />

TTCGAA FastDigest Bsp119I Bsp119I CG<br />

VCTCGAGB PspXI TCGA<br />

WCCGGW BsaWI CCGG<br />

WGTACW FastDigest TatI TatI GTAC<br />

YGGCCR EaeI GGCC<br />

Note<br />

* Asymetric sequences.<br />

enzymes are shown in purple.<br />

<strong>Thermo</strong> <strong>Scientific</strong> conventional enzymes are shown in orange.<br />

Single letter code<br />

R = G or A; K = G or T; B = C, G or T;<br />

Y = C or T; S = C or G; D = A, G or T;<br />

W = A or T; H = A, C or T; N = G, A, T or C.<br />

M = A or C; V = A, C or G;<br />

www.thermoscientific.com/onebio 225


226<br />

Commercial Restriction Enzymes Generating 3’-protruding Ends<br />

Table 1.34. Commercial restriction enzymes generating 3’-protruding ends.<br />

Recognition sequence<br />

<br />

FastDigest<br />

enzyme<br />

Conventional<br />

enzyme<br />

1 nt<br />

3’-protruding end (5’ 3’)<br />

2 nt 3 nt 4 nt 5 nt 9 nt<br />

* TspGWI NN<br />

ACGT FastDigest TaiI TaiI ACGT<br />

ACNGT FastDigest TaaI TaaI N<br />

* FastDigest BseNI BseNI GN<br />

ASST SetI ASST<br />

* TspDTI NN<br />

ATGCAT FastDigest NsiI Mph1103I TGCA<br />

* TaqII NN<br />

CACNNNGTG FastDigest DraIII AdeI NNN<br />

BtsI NN<br />

CAGNNNCTG FastDigest AlwNI CaiI NNN<br />

FastDigest TspRI TscAI NNCASTGNN<br />

FastDigest BseGI BseGI NN<br />

CATG FastDigest NlaIII Hin1II CATG<br />

FastDigest BsrDI BseMI NN<br />

FastDigest BseNI BseNI NC<br />

CCANNNNNNNNNTGG XcmI N<br />

CCANNNNNNTGG FastDigest BstXI BstXI NNNN<br />

CCANNNNNTGG FastDigest PflMI Van91I NNN<br />

* FastDigest PspFI GsaI CCAG<br />

CCGCGG Cfr42I GC<br />

CCNNNNNNNGG FastDigest BslI BseLI NNN<br />

* FastDigest MnlI MnlI N<br />

CCTGCAGG FastDigest SbfI SdaI TGCA<br />

* HpyAV N<br />

CGATCG FastDigest PvuI PvuI AT<br />

CGRYCG FastDigest BsiEI Bsh1285I RY<br />

CGWCG Hpy99I CGWCG<br />

BpuEI NN<br />

* BspCNI NN<br />

* FastDigest BspCNI BseMII NN<br />

FastDigest BpmI GsuI NN<br />

BseRI NN<br />

NmeAIII NN<br />

* FastDigest AcuI Eco57I NN<br />

BspCNI NN<br />

FastDigest BspCNI BseMII NN<br />

BsgI NN<br />

CTGCAG FastDigest PstI PstI TGCA<br />

* FastDigest BpmI GsuI NN<br />

FastDigest AcuI Eco57I NN<br />

* BpuEI NN<br />

* FastDigest MboII MboII N<br />

HpyAV N<br />

* FastDigest Mva1269I Mva1269I CN<br />

* TaqII NN<br />

GACGTC FastDigest AatII AatII ACGT<br />

GACNNNNNGTC FastDigest Eam1105I Eam1105I N<br />

GACNNNNNNGTC FastDigest DrdI DrdI NN<br />

GAGCTC FastDigest SacI SacI AGCT<br />

FastDigest MnlI MnlI N<br />

* BseRI NN<br />

GATC BstKTI AT<br />

* FastDigest BsrDI BseMI NN<br />

* BtsI NN<br />

GCANNNNNTGC BstAPI NNN<br />

GCATGC FastDigest SphI PaeI CATG<br />

FastDigest Mva1269I Mva1269I NG<br />

* NmeAIII NN<br />

www.thermoscientific.com/onebio


Table 1.34. Commercial restriction enzymes generating 3’-protruding ends.<br />

Recognition sequence FastDigest<br />

enzyme<br />

Conventional<br />

enzyme<br />

1 nt<br />

3’-protruding end (5’ 3’)<br />

2 nt 3 nt 4 nt 5 nt 9 nt<br />

GCCNNNNNGGC FastDigest BglI BglI NNN<br />

GCGATCGC FastDigest AsiSI SfaAI AT<br />

GCGC FastDigest HhaI HhaI CG<br />

GCNNNNNNNGC FastDigest HpyF10VI HpyF10VI NNN<br />

GCSGC FastDigest TauI TauI CSG<br />

GCTAGC FastDigest BmtI BspOI CTAG<br />

* FastDigest PspFI GsaI CTGG<br />

GDGCHC FastDigest Bsp1286I SduI DGCH<br />

BfuI N<br />

* FastDigest BseGI BseGI NN<br />

GGCCGGCC FseI CCGG<br />

GGCCNNNNNGGCC FastDigest SfiI SfiI NNN<br />

GGCGCC BbeI GCGC<br />

* EciI NN<br />

GGGCCC FastDigest ApaI ApaI GGCC<br />

GGTACC FastDigest KpnI KpnI GTAC<br />

* HphI N<br />

GKGCMC FastDigest Bme1580I BseSI KGCM<br />

GRGCYC Eco24I RGCY<br />

* BfuI N<br />

* BsgI NN<br />

MmeI NN<br />

GWGCWC FastDigest Alw21I Alw21I WGCW<br />

RCATGY FastDigest NspI XceI CATG<br />

RGCGCY FastDigest HaeII HaeII GCGC<br />

HphI N<br />

EciI NN<br />

TspGWI NN<br />

* MmeI NN<br />

TaqII NN<br />

TCNGA Hpy188I N<br />

FastDigest MboII MboII N<br />

TaqII NN<br />

TTAATTAA FastDigest PacI PacI AT<br />

TspDTI NN<br />

TTSAA AgsI S<br />

Note<br />

* Asymetric sequences.<br />

enzymes are shown in purple.<br />

<strong>Thermo</strong> <strong>Scientific</strong> conventional enzymes are shown in orange.<br />

Single letter code<br />

R = G or A; K = G or T; B = C, G or T;<br />

Y = C or T; S = C or G; D = A, G or T;<br />

W = A or T; H = A, C or T; N = G, A, T or C.<br />

M = A or C; V = A, C or G;<br />

www.thermoscientific.com/onebio 227


228<br />

Commercial Restriction<br />

Enzymes Generating Blunt Ends<br />

Table 1.35. Commercial restriction enzymes generating<br />

blunt ends.<br />

Reccognition FastDigest<br />

Conventional<br />

sequence enzyme<br />

enzyme<br />

AATATT FastDigest SspI SspI<br />

AGCGCT FastDigest AfeI Eco47III <br />

AGCT FastDigest AluI AluI<br />

AGGCCT FastDigest StuI Eco147I <br />

AGTACT FastDigest ScaI ScaI<br />

ATTTAAAT FastDigest SwaI SmiI <br />

* AjiI <br />

CACGTG FastDigest PmlI Eco72I <br />

CACNNNNGTG FastDigest AleI OliI <br />

CAGCTG FastDigest PvuII PvuII<br />

CAYNNNNRTG FastDigest MslI RseI <br />

CCCGGG FastDigest SmaI SmaI<br />

* FastDigest BsrBI MbiI <br />

CGCG FastDigest Bsh1236I Bsh1236I <br />

CMGCKG MspA1I<br />

GAANNNNTTC FastDigest PdmI PdmI <br />

GACGTC ZraI<br />

* AjiI <br />

GACNNNNGTC FastDigest PshAI BoxI <br />

FastDigest MlyI SchI <br />

* FastDigest BsrBI MbiI <br />

GAGCTC FastDigest Ecl136II Ecl136II <br />

* FastDigest MlyI SchI <br />

GATATC FastDigest EcoRV Eco32I <br />

GATC FastDigest DpnI DpnI<br />

GATNNNNATC FastDigest BsaBI BseJI <br />

GCCCGGGC SrfI<br />

GCCGGC FastDigest NaeI PdiI <br />

GCGC GlaI<br />

GCNNGC Cac8I<br />

GGCC FastDigest HaeIII BsuRI <br />

GGCGCC FastDigest EheI EheI <br />

GGNNCC FastDigest NlaIV BspLI <br />

GTAC FastDigest RsaI RsaI<br />

GTATAC FastDigest BstZ17I Bst1107I <br />

GTNNAC FastDigest Hpy8I Hpy8I <br />

GTTAAC FastDigest HpaI KspAI <br />

GTTTAAAC FastDigest MssI MssI <br />

GTYRAC FastDigest HincII HincII <br />

RGCY <br />

RTGCGCAY FastDigest FspAI FspAI<br />

TACGTA FastDigest SnaBI Eco105I <br />

TCGCGA FastDigest NruI Bsp68I <br />

TGCA HpyCH4V<br />

TGCGCA FastDigest FspI NsbI <br />

TGGCCA FastDigest MscI MlsI <br />

TTATAA FastDigest PsiI AanI <br />

TTTAAA FastDigest DraI DraI<br />

YACGTR FastDigest BsaAI Ppu21I <br />

YATR FaiI<br />

Note<br />

* Asymetric sequences.<br />

enzymes are shown in purple.<br />

<strong>Thermo</strong> <strong>Scientific</strong> conventional enzymes are shown in orange.<br />

www.thermoscientific.com/onebio<br />

Commercial Restriction Enzymes Cleaving DNA on<br />

the Both Sides of their Recognition Sequence<br />

Table 1.36. Commercial restriction enzymes cleaving DNA on<br />

the both sides of their recognition sequence.<br />

Recognition sequence<br />

FastDigest<br />

enzyme<br />

Conventional<br />

enzyme<br />

5 FalI<br />

5 BsaXI<br />

4 BaeI<br />

5 CspCI<br />

7 FastDigest AjuI AjuI<br />

5 CspCI<br />

6 BcgI<br />

6 ArsI<br />

7 FastDigest AjuI AjuI<br />

6 PsrI<br />

6 AloI<br />

6 BarI<br />

6 ArsI<br />

5 FastDigest BplI BplI<br />

6 BcgI<br />

6 AlfI<br />

6 AloI<br />

5 BsaXI<br />

4 BaeI<br />

6 BarI<br />

6 PsrI<br />

Single letter code<br />

R = G or A; K = G or T; B = C, G or T;<br />

Y = C or T; S = C or G; D = A, G or T;<br />

W = A or T; H = A, C or T; N = G, A, T or C.<br />

M = A or C; V = A, C or G;


Troubleshooting Guide<br />

1.1<br />

Inactive<br />

enzyme<br />

1.2.1<br />

Suboptimal<br />

digestion<br />

protocol<br />

1.2.2<br />

Improper<br />

enzyme<br />

dilution<br />

1.2.3<br />

Improper<br />

reaction<br />

assembly<br />

1.2.4<br />

Excess<br />

glycerol<br />

1.2.5<br />

Suboptimal<br />

DNA<br />

concentration<br />

1<br />

Incomplete<br />

digestion, no<br />

digestion<br />

Assess enzyme<br />

activity with<br />

control DNA<br />

1.2<br />

Suboptimal<br />

reaction<br />

conditions<br />

Active<br />

enzyme<br />

1.3.1<br />

Contaminants<br />

in DNA<br />

solution<br />

Inhibition<br />

1.3.4.1<br />

Supercoiled<br />

plasmid<br />

DNA<br />

Digestion problem<br />

1.3<br />

Unsuitable or<br />

contaminated<br />

DNA<br />

Evaluate<br />

inhibition by<br />

template DNA<br />

solution<br />

1.3.4.2<br />

Proximity of<br />

site to DNA<br />

ends<br />

1.3.2<br />

Absence of<br />

recognition<br />

sites<br />

1.3.3<br />

Cleavage<br />

blocked by<br />

methylation<br />

1.3.4<br />

Structure of<br />

DNA<br />

substrate<br />

1.4<br />

Water<br />

contains<br />

impurities<br />

No inhibition<br />

1.3.4.3<br />

At least two<br />

sites required<br />

2<br />

Unexpected<br />

cleavage<br />

pattern<br />

2.1<br />

Star<br />

activity<br />

2.2<br />

Contamination<br />

with another<br />

RE<br />

2.3<br />

Contamination<br />

with another<br />

DNA<br />

2.4<br />

Incomplete<br />

DNA digestion<br />

2.5<br />

Gel shift<br />

2.6<br />

Unexpected<br />

sites in<br />

template DNA<br />

1.3.4.4<br />

Site<br />

preference<br />

3<br />

Diffuse DNA<br />

bands on gel<br />

3.1<br />

Gel shift<br />

3.2<br />

Contaminated<br />

reagents<br />

www.thermoscientific.com/onebio 229


230<br />

Table 1.37. Troubleshooting guide for DNA digestion.<br />

Problem Possible cause and recommended solution<br />

1. Incomplete digestion or<br />

no digestion<br />

www.thermoscientific.com/onebio<br />

Assess enzyme activity<br />

The restriction enzyme may lose activity due to improper storage or handling. Perform a digestion reaction with<br />

dam – , dcm – <br />

1.1. Inactive enzyme.<br />

If the enzyme does not cut the control DNA:<br />

<br />

<br />

<br />

<br />

1.2. Suboptimal reaction conditions.<br />

1.2.1. Suboptimal digestion protocol.<br />

<br />

<br />

DNA, as well as PCR products. Please refer to Table 1.3 on p.73 for specific recommendations.<br />

enzymes, use FastDigest or FastDigest Green Buffer. All FastDigest enzymes are 100% active<br />

in these buffers.<br />

<br />

For double digestions, follow the recommendations of the DoubleDigest engine at<br />

www.thermoscientific.com/doubledigest.<br />

<br />

<br />

with enzymes requiring different incubation temperatures, perform sequential DNA cleavage: complete<br />

the first digestion reaction at the lower temperature, add the second enzyme and increase the digestion<br />

temperature for the second enzyme cleavage.<br />

<br />

increase in salt concentration may reduce enzyme activity. For thermophilic enzymes use a heat block with a<br />

hot bonnet; e.g., a PCR cycler.<br />

1.2.2. Improper dilution of conventional enzyme.<br />

<br />

enzymes diluted with this buffer are stable for at least 3-4 weeks at -20°C.<br />

<br />

<br />

enzymes, which are experimentally tested on four different<br />

see <br />

1.2.3. Improper reaction assembly.<br />

<br />

<br />

1.2.4. Excess glycerol in the reaction mixture.<br />

<br />

enzyme added to the mixture should not exceed 1/10 of the total reaction volume.<br />

<br />

Hin6I, HinfI, Mph1103I, Mva1269I and NcoI.<br />

1.2.5. Suboptimal DNA concentration.<br />

The optimal range of DNA concentration in the reaction mixture is 0.02-0.1 μg/μl.<br />

1.3. Unsuitable DNA template or contaminated DNA solution.<br />

If the enzyme is active in the control digest, assay the substrate DNA solution for inhibitory contaminants in<br />

dam – , dcm – <br />

digest with two templates, control and sample, in one reaction mixture. Do not exceed the optimal DNA<br />

<br />

see <br />

<br />

see <br />

see see <br />

Note<br />

Always ensure that the control DNA contains a recognition site for the enzyme present in the reaction. For example, there is no NotI<br />

recognition site in lambda DNA.


Table 1.37. Troubleshooting guide for DNA digestion.<br />

Problem Possible cause and recommended solution<br />

1. Incomplete digestion or<br />

no digestion<br />

1.3.1. Contaminants in the DNA solution.<br />

<br />

<br />

see 260/280 ratio should be 1.8-2.0. To remove EDTA and salts, wash the pellet<br />

with 70% cold ethanol.<br />

<br />

<br />

enzyme buffer see protocols on p.72 or p.158.<br />

<br />

centrifugation for 10 min at 10,000 rpm and ensure that no resin is carried over while transferring the DNA<br />

solution into a new tube.<br />

1.3.2. The substrate DNA does not contain a recognition sequence for the restriction enzyme.<br />

<br />

<br />

see <br />

see <br />

<br />

recognition site.<br />

1.3.3. Methylation effects.<br />

<br />

<br />

impairs or blocks DNA digestion with the enzyme. See Digestion of Methylated DNA on p.173 and use<br />

Table 1.13 and Table 1.20 on pp.174-179.<br />

If methylation impairs or blocks DNA cleavage:<br />

E.coli dam – , dcm – E.coli GM2163 dam – , dcm – <br />

engine at www.thermoscientific.com/research or check the <strong>Thermo</strong> <strong>Scientific</strong><br />

molecular biology tools catalog for the availability of a restriction enzyme isoschizomer not sensitive<br />

to DNA methylation.<br />

<br />

of unmethylated DNA will result in no DNA cleavage. Propagate your plasmid in E.coli dam + or dcm + strains<br />

E.coli <br />

DpnI or SgeI recognition sequences. Alternatively, in the case of DpnI, the neoschizomers Bsp143I or MboI<br />

can be used to digest non-methylated DpnI recognition sites.<br />

Note<br />

When PCR is carried out with standard dNTPs and non-methylated primers the resulting DNA product is not methylated.<br />

1.3.4. Structure of substrate DNA.<br />

1.3.4.1. Supercoiled plasmid DNA.<br />

enzymes which are qualified for supercoiled DNA and provided with specific<br />

see <br />

<br />

<br />

of the enzyme or refer to the Certificate of Analysis.<br />

1.3.4.2. Proximity of the recognition sequence to the DNA ends.<br />

Some restriction enzymes cleave DNA poorly if the recognition site is too close to the end of the DNA molecule.<br />

enzymes refer to Table 1.3 on p.73 or the product description to determine the<br />

effectiveness of restriction enzyme cleavage at the ends of DNA.<br />

<br />

1.3.4.3. Restriction enzyme requires at least two sites per DNA molecule for optimal activity.<br />

Some restriction enzymes such as AarI, BveI, Cfr10I, Cfr42I, Eco57I, EcoRII, LweI, SfiI require at least two<br />

see Site Preferences by Restriction<br />

<br />

containing the recognition site.<br />

1.3.4.4. Site Preferences by Restriction Enzymes.<br />

The DNA sequence surrounding the recognition site may influence the efficiency of digestion. Some DNA sites are<br />

see <br />

<br />

see Table 1.25 on p.205 or REsearch engine at www.thermoscientific.com/research<br />

<br />

www.thermoscientific.com/onebio 231


232<br />

Table 1.37. Troubleshooting guide for DNA digestion.<br />

Problem Possible cause and recommended solution<br />

1. Incomplete digestion or<br />

no digestion<br />

2. Unexpected cleavage pattern<br />

www.thermoscientific.com/onebio<br />

1.4. Water contains impurities.<br />

<br />

<br />

18 M.<br />

<br />

see <br />

2.1. Star activity (relaxed specificity) of restriction enzyme see <br />

restriction enzymes. For these enzymes, incubation time without star activity has been<br />

experimentally determined.<br />

<br />

<br />

<br />

enzymes, refer to Table 1.3 on p.73 for maximum incubation<br />

times.<br />

<br />

resulting increase in glycerol concentration may cause star activity.<br />

2.2. Contamination with another restriction enzyme.<br />

The restriction enzyme or buffer may be contaminated with another restriction enzyme due to improper<br />

handling. Use a new tube of enzyme and/or buffer.<br />

2.3. Contamination with another substrate DNA.<br />

The sample DNA may contain a mixture of two or more different DNAs. Prepare new sample of DNA.<br />

E.coli grow cells and purify plasmid<br />

<br />

<br />

<br />

2.4. Incomplete DNA digestion see <br />

2.5. Gel shift see <br />

2.6. Unexpected recognition sites in template DNA.<br />

Newly generated target sites in constructed DNA may be overlooked. Re-check your DNA sequence and<br />

cloning strategy. Refer to Tables Table 1.21, Table 1.22, Table 1.23 or Table 1.24 for Newly Generated


Table 1.37. Troubleshooting guide for DNA digestion.<br />

Problem Possible cause and recommended solution<br />

3. Diffused DNA bands<br />

3.1. Gel shift.<br />

Enzyme that remains bound to the substrate DNA will affect the electrophoretic mobility of the digestion products.<br />

FastDigest <br />

conventional restriction enzymes AarI, AloI, BseXI, BveI, CseI, Eco57I, EcoRII, FaqI, GsuI, Lsp1109I, LweI, MboII,<br />

MnlI, SchI, TauI and TscAI are particularly prone to remaining bound to the substrate DNA. This will result in a<br />

see <br />

presence of <br />

M 1 2 3 4<br />

M – GeneRuler <br />

1 – 0.5 μg <br />

2 – 0.5 μg <br />

3 – 0.5 μg DNA digested with FastDigest <br />

<br />

4 – 0.5 μg DNA digested with FastDigest FokI, probe prepared for loading with<br />

<br />

3.2. Contaminated reagents.<br />

Any restriction digestion reaction components may become contaminated with nucleases due to improper<br />

handling or storage. Nuclease contamination causes DNA degradation, which appears as diffused DNA bands on<br />

a gel.<br />

Perform four control reactions in order to check for the nuclease contamination:<br />

I – without restriction enzyme, II – with a new vial of buffer, III – without restriction enzyme, with a new vial of<br />

buffer, IV <br />

<br />

<br />

improper handling. Use a new vial of enzyme.<br />

<br />

DNA degradation. Use a new vial of buffer. Store all buffers at -20°C.<br />

<br />

given above.<br />

<br />

handled water will cause DNA degradation. Use commercially available nuclease-free molecular biology grade<br />

<br />

www.thermoscientific.com/onebio 233


234<br />

www.thermoscientific.com/onebio


<strong>Thermo</strong> <strong>Scientific</strong> DNA/RNA<br />

Modifying Enzymes<br />

Quality Control .................................................................................................................236<br />

Quality Control Assays ...................................................................................................236<br />

Storage and Shipping ..................................................................................................... 237<br />

Description of Icons ....................................................................................................... 237<br />

Ligases ..............................................................................................................................238<br />

T4 DNA Ligase ..............................................................................................................239<br />

T4 RNA Ligase............................................................................................................... 240<br />

Phosphatase and Kinase ............................................................................................... 241<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase ...........................................................242<br />

T4 Polynucleotide Kinase (T4 PNK) .............................................................................. 243<br />

DNA Polymerases ............................................................................................................ 244<br />

phi29 DNA Polymerase ................................................................................................ 245<br />

DNA Polymerase I ........................................................................................................ 246<br />

Klenow Fragment ......................................................................................................... 247<br />

Klenow Fragment, exo – ................................................................................................ 248<br />

T4 DNA Polymerase ...................................................................................................... 249<br />

T7 DNA Polymerase .....................................................................................................250<br />

Terminal Deoxynucleotidyl Transferase (TdT) ............................................................ 251<br />

Terminal Transferase ................................................................................................... 252<br />

Bsm DNA Polymerase, Large Fragment .....................................................................253<br />

Deoxyribonucleases (DNases) .....................................................................................254<br />

DNase I, RNase-free .....................................................................................................255<br />

Endonuclease IV, E.coli (Endo IV) .................................................................................256<br />

Endonuclease V, T.maritima (Endo V) .......................................................................... 257<br />

Exonuclease I (Exo I) .....................................................................................................258<br />

Exonuclease III (Exo III) ................................................................................................. 259<br />

Lambda Exonuclease ...................................................................................................260<br />

Ribonucleases (RNases) ................................................................................................ 261<br />

RNase A, DNase and Protease-free ............................................................................262<br />

RNase T1 .......................................................................................................................263<br />

RNase A/T1 Mix ............................................................................................................264<br />

RNase I ..........................................................................................................................265<br />

RNase H .........................................................................................................................266<br />

PowerCut Dicer ............................................................................................................ 267<br />

Sugar Nonspecific Nucleases.......................................................................................268<br />

Micrococcal Nuclease .................................................................................................268<br />

S1 Nuclease ..................................................................................................................269<br />

Other Products ................................................................................................................. 270<br />

Proteinase K (recombinant), PCR grade ......................................................................... 270<br />

RiboLock RNase Inhibitor ............................................................................................ 271<br />

Pyrophosphatase, Inorganic (from yeast) .................................................................... 272<br />

Uracil-DNA Glycosylase (UDG, UNG) ............................................................................ 273<br />

Protocols and Recommendations ............................................................................... 274<br />

2.1. Activity of DNA/RNA modifying enzymes in <strong>Thermo</strong> <strong>Scientific</strong> buffers ......................... 274<br />

2.2. Dilution of DNA/RNA modifying enzymes .................................................................. 275<br />

Learn about<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

modifying enzymes for<br />

cloning applications at:<br />

www.thermoscientific.com/onebio<br />

Purify<br />

Digest<br />

Amplify<br />

Modify<br />

www.thermoscientific.com/onebio 235


236<br />

Quality Control<br />

All <strong>Thermo</strong> <strong>Scientific</strong> DNA/RNA modifying<br />

enzymes are produced in class D clean<br />

room facilities under ISO 9001:2008 quality<br />

management system and are subjected to<br />

extensive quality control.<br />

Quality Control Assays<br />

Activity Assays<br />

Activity unit definitions for <strong>Thermo</strong> <strong>Scientific</strong><br />

DNA/RNA modifying enzymes are those<br />

commonly used in molecular biology. Activity<br />

unit definitions and activity assay conditions are<br />

provided in the catalog entry for each product.<br />

Reaction conditions may differ for specific<br />

research applications.<br />

Labeled Oligonucleotide (LO) Test<br />

The LO test is a unique quality test designed<br />

and applied for detection of endo- and<br />

exodeoxyribonucleases. This test is able<br />

to detect trace amounts of contaminating<br />

activities and is the most sensitive assay in the<br />

industry. The assay is performed in reaction<br />

buffer containing a particular enzyme or<br />

other protein of interest and 5’-[ 32 P]-labeled<br />

synthetic oligonucleotides (single-stranded<br />

and double-stranded). After incubation under<br />

the appropriate conditions, reaction products<br />

are separated on a polyacrylamide gel and<br />

then analyzed by phosphorimaging. The<br />

product passes the LO quality control test<br />

if there is no degradation of both the singlestranded<br />

oligonucleotide and double-stranded<br />

oligonucleotide.<br />

Double-stranded<br />

Endodeoxyribonuclease Assay<br />

The assay is performed in a 50 μl reaction<br />

mixture containing reaction buffer, enzyme and<br />

1 μg of supercoiled pUC19 DNA or X174 RF1<br />

DNA. After incubation under the appropriate<br />

conditions, the DNA is analyzed on a 1%<br />

agarose gel. The product passes this quality<br />

control test if neither nicked DNA nor linear DNA<br />

is detected.<br />

www.thermoscientific.com/onebio<br />

Our products are monitored for unit<br />

concentration accuracy, the absence of<br />

contaminant activities (nucleases, proteases)<br />

and their performance in specific functional<br />

tests.<br />

Single-stranded<br />

Endodeoxyribonuclease Assay<br />

The assay is performed in a 50 μl reaction<br />

mixture containing reaction buffer, enzyme<br />

and 1 μg of covalently closed circular singlestranded<br />

DNA of M13mp19. After incubation<br />

under appropriate conditions, DNA is analyzed<br />

on a 1% agarose gel. The product passes this<br />

quality control test if no decrease in the amount<br />

of closed circular DNA is observed.<br />

Exodeoxyribonuclease Assay<br />

The assay is performed in a 50 μl reaction<br />

mixture containing reaction buffer, enzyme and<br />

1 μg of either the lambda DNA or plasmid DNA<br />

fragments. After incubation under appropriate<br />

conditions, the DNA is analyzed on an agarose<br />

gel. The product passes this quality control test<br />

if the DNA fragments are not degraded.<br />

Ribonuclease Assay I<br />

The assay is performed in a 50 μl reaction<br />

mixture containing reaction buffer, enzyme<br />

and 1 μg of [ 3 H]-labeled RNA. After incubation<br />

under the appropriate conditions, the RNA is<br />

precipitated with trichloroacetic acid and the<br />

radioactivity of the supernatant is determined.<br />

RNase contamination is specified as a<br />

percentage of the total RNA released into the<br />

acid soluble fraction.<br />

A warranty is assigned and an expiry date<br />

is listed both on the product label and in the<br />

Certificate of Analysis supplied with each<br />

product. Product lots are monitored to ensure<br />

quality specifications are met up to the expiry<br />

date.<br />

Ribonuclease Assay II<br />

The assay is performed in a 20 μl reaction<br />

mixture containing reaction buffer, enzyme and<br />

160 ng of 2 kb synthetic RNA. After incubation<br />

under the appropriate conditions, the RNA<br />

integrity is analyzed on a 1% agarose gel. The<br />

product passes this quality control test if no<br />

degradation of RNA is observed.<br />

Protease Assay<br />

The assay is performed in a 200 μl reaction<br />

mixture containing 10 mM Tris-HCl buffer<br />

(pH 7.5), enzyme and 200 μg of azocasein.<br />

After incubation under the appropriate<br />

conditions, the reaction is terminated with<br />

trichloroacetic acid and the absorbance of<br />

the supernatant is measured at 400 nm.<br />

The product passes this quality control test if<br />

azocasein is not degraded.<br />

E.coli Genomic DNA Assay<br />

Contamination of enzymes with E.coli genomic<br />

DNA is tested by qPCR with primers and probes<br />

specific to 23S rRNA gene.<br />

Functional Assays<br />

Specific assays performed for a particular<br />

modifying enzyme or other protein are indicated<br />

both in the product entry and in the Certificate<br />

of Analysis supplied with each product.<br />

Note<br />

The conditions for Quality Control Assays for the enzymes are<br />

described in the Certificate of Analysis.


Storage and Shipping<br />

DNA/RNA modifying enzymes should be stored<br />

at -20°C.<br />

Enzymes may freeze during shipment on dry<br />

ice. This does not affect their quality, as all<br />

<strong>Thermo</strong> <strong>Scientific</strong> enzymes are tested 100%<br />

Description of Icons<br />

20’<br />

active after at least three freeze-thaw cycles.<br />

For 24-48 hour delivery, enzymes may be<br />

shipped on blue ice, because their quality is not<br />

affected by short exposure to 4°C.<br />

FastDigest Buffer. Denotes 100% activity of the enzyme in the FastDigest or FastDigest<br />

Green Buffer.<br />

Five Buffer System. Letters in the buffer icons correspond to the codes of the Five Buffer System:<br />

B (blue), G (green), O (orange), R (red) and Tango respectively. Denotes 100% activity of the enzyme<br />

in the indicated buffer.<br />

Thermal Inactivation. Denotes the possibility and conditions for thermal inactivation.<br />

Thermal Inactivation in the presence of EDTA. Denotes the possibility and conditions of thermal<br />

inactivation in the presence of EDTA.<br />

EDTA Inactivation. Denotes the possibility of inactivation by EDTA.<br />

High Concentration enzyme format is available.<br />

Low Concentration enzyme format is available.<br />

Recombinant Protein. Purified from an E.coli strain carrying a cloned gene encoding the protein.<br />

LO Certified. Product has been tested in the Labeled Oligonucleotide (LO) test, see p.236.<br />

NEW for <strong>2012</strong>.<br />

www.thermoscientific.com/onebio 237


238<br />

Ligases<br />

Table 2.1. Properties of ligases.<br />

Ligase Applications Substrate Reaction catalyzed Inactivation Cat. # Page<br />

T4 DNA Ligase<br />

T4 RNA Ligase<br />

ss – single-stranded,<br />

ds – double-stranded.<br />

www.thermoscientific.com/onebio<br />

<br />

termini.<br />

<br />

adaptors to dsDNA.<br />

<br />

DNA-RNA hybrids.<br />

<br />

<br />

<br />

<br />

3’,5’-bis [- 32 P] phosphate.<br />

<br />

<br />

oligodeoxyribonucleotides.<br />

<br />

<br />

single-stranded cDNAs for 5’ RACE.<br />

<br />

primers for PCR.<br />

dsDNA<br />

dsRNA<br />

dsDNA-RNA<br />

hybrids<br />

ds poly- and<br />

oligonucleotides<br />

ssDNA<br />

ssRNA<br />

poly- and<br />

oligonucleotides<br />

ATP dependent intra- and<br />

intermolecular formation of a<br />

phosphodiester bond between<br />

juxtaposed 5’-phosphate and<br />

3’-hydroxyl termini in duplex<br />

DNA or RNA.<br />

ATP dependent intra- and<br />

intermolecular formation<br />

of phosphodiester bonds<br />

between 5’-phosphate and<br />

3’-hydroxyl termini of poly-<br />

and oligonucleotides, ssRNA<br />

and ssDNA.<br />

65°C, 10 min or<br />

70°C, 5 min<br />

EL0011/2/3/4/6 239<br />

70°C, 10 min EL0021 240


T4 DNA Ligase<br />

#EL0014 200 u (5 u/μl)<br />

Supplied with:<br />

10X T4 DNA Ligase Buffer 0.5 ml<br />

50% PEG 0.3 ml<br />

#EL0011 1000 u (5 u/μl)<br />

#EL0016 LC, 2x500 u (1 u/μl)<br />

Supplied with:<br />

10X T4 DNA Ligase Buffer 1.5 ml<br />

50% PEG 1.5 ml<br />

#EL0012 5x1000 u (5 u/μl)<br />

#EL0013 HC, 5000 u (30 u/μl)<br />

Supplied with:<br />

10X T4 DNA Ligase Buffer 5x1.5 ml<br />

50% PEG 5x1.5 ml<br />

10X T4 DNA Ligase Buffer<br />

#B69 1.5 ml<br />

Related Products<br />

Rapid DNA Ligation Kit p.288<br />

PCR Cloning Kit p.279<br />

InsTAclone PCR Cloning Kit p.281<br />

TransformAid Bacterial Transformation Kit p.289<br />

Nicking Enzymes p.155<br />

T4 DNA Polymerase p.249<br />

Klenow Fragment p.247<br />

T7 DNA Polymerase<br />

FastAP <strong>Thermo</strong>sensitive Alkaline<br />

p.250<br />

Phosphatase p.242<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

6X DNA Loading Dye & SDS Solution p.373<br />

ATP p.411<br />

Water, nuclease-free p.420<br />

References<br />

1. Rossi, R., et al., Functional characterization of the T4<br />

DNA Ligase: a new insight into the mechanism of action,<br />

Nucleic Acids Res., 25, 2106-2113, 1997.<br />

2. Cherepanov, A.V., et al., Binding of nucleotides by T4<br />

DNA Ligase and T4 RNA Ligase: optical absorbance and<br />

<br />

3. Nilsson, M., et al., RNA-templated DNA ligation for<br />

transcript analysis, Nucleic Acids Res., 29,<br />

578-581, 2001.<br />

4. Weiss, B., et al., Enzymatic breakage and joining of<br />

<br />

4543-4555, 1968.<br />

5. Pheiffer, B.H., Zimmerman, S.B., Polymer-stimulated<br />

ligation: enchanced blunt- or cohesive-end ligation of DNA<br />

or deoxyribo-oligonucleotides by T4 DNA ligase in polymer<br />

solutions, Nucleic Acids Res., 11, 7853-7871, 1983.<br />

Description<br />

T4 DNA Ligase catalyzes the formation of a<br />

phosphodiester bond between juxtaposed<br />

5’-phosphate and 3’-hydroxyl termini in duplex<br />

DNA or RNA. The enzyme repairs single-strand<br />

nicks in duplex DNA, RNA or DNA/RNA hybrids,<br />

joins DNA fragments with either cohesive or<br />

blunt termini (1, 2).<br />

The T4 DNA Ligase requires ATP as cofactor.<br />

Features<br />

Fast – sticky-end ligation is completed in<br />

10 min at room temperature.<br />

Active in buffers for restriction enzymes, PCR<br />

and RT (when supplemented with ATP).<br />

Supplied with PEG solution for efficient bluntend<br />

ligation.<br />

Applications<br />

Cloning of restriction enzyme generated DNA<br />

fragments.<br />

Cloning of PCR products.<br />

<br />

linkers or adaptors to DNA.<br />

Site-directed mutagenesis.<br />

Amplified fragment length polymorphism<br />

(AFLP).<br />

Ligase-mediated RNA detection (3).<br />

Nick repair in duplex DNA, RNA or DNA/RNA<br />

hybrids.<br />

Self-circularization of linear DNA.<br />

Concentration<br />

1 Weiss u/μl = 200 CEU*/μl<br />

5 Weiss u/μl = 1000 CEU*/μl<br />

30 Weiss u/μl = 6000 CEU*/μl<br />

* One CEU is defined as the amount of enzyme required to give<br />

50% ligation of HindIII fragments of lambda DNA in 30 min<br />

at 16°C.<br />

Source<br />

E.coli cells with a cloned gene 30 of<br />

bacteriophage T4.<br />

<strong>Molecular</strong> Weight<br />

55.3 kDa monomer.<br />

Definition of Activity Unit<br />

One Weiss unit of the enzyme catalyzes the<br />

conversion of 1 nmol of [ 32PPi] into Noritadsorbable<br />

form in 20 min at 37°C (4). One<br />

Weiss unit is equivalent to approximately 200<br />

cohesive end ligation units (CEU)*.<br />

Enzyme activity is assayed in the following mixture:<br />

66 mM Tris-HCl (pH 7.6), 6.6 mM MgCl2, 0.066 mM ATP, 10 mM DTT, 3.3 μM [ 32PPi]. Storage Buffer<br />

The enzyme is supplied in:<br />

20 mM Tris-HCl (pH 7.5), 1 mM DTT,<br />

50 mM KCl, 0.1 mM EDTA 0.015% ELUGENT<br />

Detergent and 50% (v/v) glycerol.<br />

10X T4 DNA Ligase Buffer (#B69)<br />

400 mM Tris-HCl, 100 mM MgCl2, 100 mM<br />

DTT, 5 mM ATP (pH 7.8 at 25°C).<br />

50% PEG Solution<br />

50% (w/v) polyethylene glycol 4000.<br />

Inhibition and Inactivation<br />

<br />

by NaCl or KCl at >200 mM.<br />

Inactivated by heating at 65°C for 10 min or<br />

70°C for 5 min.<br />

Note<br />

<br />

the rate of ligation of blunt-end DNA (5). The<br />

suggested concentration of PEG 4000 in the<br />

reaction mixture is 5% (w/v).<br />

<br />

in a band shift in agarose gels. To avoid this,<br />

incubate samples with 6X DNA Loading Dye<br />

& SDS Solution (#R1151) at 70°C for 5 min<br />

or 65°C for 10 min and chill on ice prior to<br />

electrophoresis.<br />

<br />

should not exceed 10% of the competent<br />

cell volume in the transformation process.<br />

<br />

T4 DNA Ligase from the ligation mixture by<br />

spin column or chloroform extraction. The<br />

extracted DNA can be further precipitated<br />

with ethanol.<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying<br />

enzymes in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

» 3.1.1. Sticky-end ligation p.294<br />

3.1.2. Blunt-end ligation p.294<br />

» 3.1.3. Self-circularization of linear DNA p.294<br />

» 3.1.4. Linker ligation p.294<br />

» 3.1.5. Analysis of ligation products by<br />

agarose gel electrophoresis p.294<br />

www.thermoscientific.com/onebio 239


240<br />

T4 RNA Ligase<br />

#EL0021 1000 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 0.2 ml<br />

1mg/ml BSA Solution 0.2 ml<br />

Related Products<br />

RiboLock RNase Inhibitor p.271<br />

TranscriptAid T7 High Yield Transcription Kit p.328<br />

RNA Polymerases pp.330-331<br />

RNase H<br />

FastAP <strong>Thermo</strong>sensitive Alkaline<br />

p.266<br />

Phosphatase p.242<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

RiboRuler RNA Ladders p.386<br />

ATP p.411<br />

Bovine Serum Albumin (BSA) p.422<br />

Water, nuclease-free p.420<br />

Protocols and Recommendations<br />

» 6.1.6. RNA 3’-end labeling by ligation p.350<br />

www.thermoscientific.com/onebio<br />

Description<br />

T4 RNA Ligase catalyzes the ATP-dependent<br />

intra- and intermolecular formation of<br />

phosphodiester bonds between 5’-phosphate<br />

and 3’-hydroxyl termini of oligonucleotides,<br />

single-stranded RNA and DNA.<br />

The minimal substrate is a nucleoside<br />

3’,5’-biphosphate in intermolecular reaction<br />

and oligonucleotide of 8 bases in<br />

intramolecular reaction.<br />

Applications<br />

RNA 3’-end labeling with cytidine 3’,5’-bis<br />

[-32P] phosphate (1).<br />

<br />

Synthesis of oligoribonucleotides and<br />

oligodeoxyribonucleotides (3, 4).<br />

Specific modifications of tRNAs (5).<br />

Oligodeoxyribonucleotide ligation to<br />

single-stranded cDNAs for 5’ RACE (Rapid<br />

Amplification of cDNA Ends) (6).<br />

Site-specific generation of composite primers<br />

for PCR (7).<br />

Concentration<br />

10 u/μl<br />

Source<br />

E.coli cells with a cloned gene 63 of<br />

bacteriophage T4.<br />

<strong>Molecular</strong> Weight<br />

43.6 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes the conversion<br />

of 1 nmol of 5’-[ 32P]-(A) 12-18 to a phosphataseresistant<br />

form in 30 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 50 mM Tris-HCl (pH 7.5), 10 mM<br />

MgCl2, 10 mM DTT, 1 mM ATP, 10 μM 5’-[ 32P]- (A) 12-18 (10 μM in 5’-termini).<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

20 mM Tris-HCl (pH 7.5), 1 mM DTT,<br />

50 mM KCl,<br />

0.1 mM EDTA, 0.015% (v/v) ELUGENT<br />

Detergent and 50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

500 mM Tris-HCl (pH 7.5 at 25°C),<br />

100 mM MgCl2, 100 mM DTT, 10 mM ATP.<br />

Inhibition and Inactivation<br />

<br />

modifying reagents (8).<br />

<br />

Note<br />

<br />

reaction mixture is 0.1 mg/ml.<br />

References<br />

1. Uhlenbeck, O.C., Gumport, R.I., T4 RNA ligase, The<br />

Enzymes (Boyer, P.D., Ed.), Academic Press Inc., New York,<br />

15B, 31-60, 1982.<br />

2. Middleton, T., et al., Synthesis and purification of<br />

oligoribonucleotides using T4 RNA ligase and reverse-phase<br />

chromatography, Anal. Biochem., 144, 110-117, 1985.<br />

3. Brennan, C.A., et al., Using T4 RNA ligase with DNA<br />

substrates, Meth. Enzymol., 100, 38-52, 1983.<br />

4. Tessier, D.C., et al., Ligation of single-stranded<br />

oligodeoxyribonucleotides by T4 RNA ligase, Anal.<br />

Biochem., 158, 171-178, 1986.<br />

5. Heckler, T.G., et al., T4 RNA ligase mediated preparation of<br />

novel “chemically misacylated’’ tRNA Phe s, Biochemistry, 23,<br />

1468-1473, 1984.<br />

6. <br />

single-stranded cDNAs: a new tool for cloning 5’-ends<br />

of mRNAs and for constructing cDNA libraries by in vitro<br />

amplification, Nucleic Acids Res., 19, 5227-5232, 1991.<br />

7. Kaluz, S., et al., Enzymatically produced composite<br />

primers: an application of T4 RNA ligase-coupled primers<br />

to PCR, BioTechniques, 19, 182-186, 1995.<br />

8. Eun, H. M., Enzymology Primer for Recombinant DNA<br />

Technology, Academic Press. Inc., 1996.


Phosphatase and Kinase<br />

Table 2.2. Properties of phosphatase and kinase.<br />

Phosphatase /<br />

Kinase<br />

FastAP<br />

<strong>Thermo</strong>sensitive<br />

Alkaline<br />

Phosphatase<br />

T4 Polynucleotide<br />

Kinase (T4 PNK)<br />

Applications Substrates<br />

Dephosphorylation<br />

of DNA, RNA and<br />

oligonucleotides.<br />

Dephosphorylation of<br />

vector DNA to avoid<br />

recircularization.<br />

PCR product clean-up<br />

before sequencing.<br />

Dephosphorylation of<br />

proteins.<br />

Phosphorylation of PCR<br />

products prior to ligation.<br />

Phosphorylation of PCR<br />

primers.<br />

5’-phosphorylation of<br />

oligonucleotide and DNA<br />

or RNA prior to ligation.<br />

Labeling 5’-termini of<br />

nucleic acids.<br />

<br />

primers.<br />

Labeling of DNA and<br />

RNA markers.<br />

Detection of DNA<br />

modification by the<br />

[ 32 P]-postlabeling assay.<br />

Removal of 3’-phosphate<br />

group.<br />

5’- and<br />

3’-phosphorylated<br />

DNA/RNA,<br />

oligonucleotides<br />

dNTPs/NTPs,<br />

phosphorylated<br />

proteins<br />

ATP*, DNA/RNA,<br />

oligonucleotides,<br />

3’-NMP,<br />

3’-phosphorylated<br />

DNA/RNA,<br />

3’-P-oligonucleotides,<br />

deoxynucleoside<br />

3’-monophosphates,<br />

deoxynucleoside<br />

3’-diphosphates<br />

Reaction<br />

catalyzed<br />

Release of<br />

phosphate group<br />

Transfer of the<br />

-phosphate from<br />

ATP* to the 5’-OH<br />

group of DNA/RNA,<br />

oligonucleotides,<br />

3’-NMP,<br />

exchange of<br />

phosphate group<br />

between<br />

5’-P-oligo-/<br />

polynucleotides<br />

and ATP (in the<br />

presence of ADP),<br />

release of<br />

3’-phosphate group<br />

ss – single-stranded,<br />

ds – double-stranded,<br />

* although ATP is routinely used as a phosphate donor, CTP, UTP, GTP, dATP, dTTP are equally effective.<br />

Reaction<br />

products<br />

5’, 3’-OH ends of<br />

DNA/RNA,<br />

oligonucleotides,<br />

deoxynucleosides/<br />

nucleosides,<br />

dephosphorylated<br />

proteins<br />

5’-phosphory-<br />

lated DNA/RNA,<br />

5’-P-oligonucleotides,<br />

3’, 5’-NDP,<br />

3’-dephosphorylated<br />

DNA/RNA<br />

oligonucleotides,<br />

deoxynucleosides<br />

Reaction<br />

conditions<br />

Inactivation Cat. # Page<br />

37°C, 10 min 75°C, 5 min EF0651/2 242<br />

37°C, 20 min<br />

75°C, 10 min<br />

or addition of<br />

EDTA<br />

EK0031/2 243<br />

www.thermoscientific.com/onebio 241


242<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase<br />

#EF0651 1000 u (1 u/μl)<br />

(for 1000 rxns)<br />

Supplied with:<br />

10X FastAP Buffer 2x1.5 ml<br />

#EF0652 5x1000 u (1 u/μl)<br />

(for 5000 rxns)<br />

Supplied with:<br />

10X FastAP Buffer 10x1.5 ml<br />

#EF0654 300 u (1 u/μl)<br />

(for 300 rxns)<br />

Supplied with:<br />

10X FastAP Buffer 1x1.5 ml<br />

Related Products<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

Exonuclease I (Exo I) p.258<br />

T4 DNA Ligase p.239<br />

T4 RNA Ligase p.240<br />

Rapid DNA Ligation Kit p.288<br />

6X DNA Loading Dye & SDS Solution p.373<br />

Water, nuclease-free p.420<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying enzymes<br />

in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

» 3.4. Dephosphorylation of DNA and RNA p.295<br />

» 3.4.2. Fast simultaneous plasmid vector<br />

linearization and dephosphorylation p.295<br />

» 4.8. PCR product clean-up prior to<br />

sequencing p.323<br />

» 6.1.3. Radiolabeling of RNA Ladders<br />

by T4 PNK p.349<br />

www.thermoscientific.com/onebio<br />

Description<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase<br />

catalyzes the release of 5’- and 3’-phosphate<br />

groups from DNA, RNA and nucleotides.<br />

This enzyme also removes phosphate groups<br />

from proteins.<br />

FastAP is a novel alkaline phosphatase, which is<br />

active in all <strong>Thermo</strong> <strong>Scientific</strong> restriction enzyme<br />

buffers as well as in PCR and RT buffers. It<br />

dephosphorylates all types of DNA ends in<br />

10 min at 37°C. The enzyme is inactivated in<br />

5 min at 75°C eliminating the need to remove<br />

the enzyme from the reaction mixture<br />

prior to ligation.<br />

Features<br />

Recombinant enzyme.<br />

Fast dephosphorylation – 10 min at 37°C.<br />

Fast thermoinactivation – 5 min at 75°C.<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for<br />

restriction enzymes PCR and RT buffers.<br />

Does not require additives or buffer change.<br />

Single protocol for all types of DNA ends.<br />

Active on nucleotides.<br />

Applications<br />

Dephosphorylation of cloning vector DNA to<br />

prevent recircularization during ligation.<br />

Simultaneous digestion and<br />

dephosphorylation of vector DNA.<br />

PCR product clean-up: nucleotide<br />

degradation prior to sequencing of PCR<br />

product.<br />

Dephosphorylation of nucleic acid 5’-termini<br />

prior to labeling with T4 Polynucleotide Kinase.<br />

Other applications where dephosphorylation<br />

of DNA and RNA substrates is necessary.<br />

Protein dephosphorylation.<br />

Concentration<br />

1 u/μl<br />

Source<br />

E.coli cells with a cloned bacterial AP gene.<br />

Definition of Activity Unit<br />

One unit is amount of the enzyme required to<br />

dephosphorylate 1 μg of linearized pUC57 DNA<br />

5’-termini in 10 min at 37°C in FastAP buffer.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

20 mM HEPES-NaOH (pH 7.4), 1 mM MgCl2, 0.1 mM ZnCl2, 0.1% (v/v) Triton X-100,<br />

50% (v/v) glycerol.<br />

10X FastAP Buffer<br />

100 mM Tris-HCl (pH 8.0 at 37°C),<br />

50 mM MgCl2, 1 M KCl, 0.2% (v/v) Triton X-100,<br />

1 mg/ml BSA.<br />

Inhibition and Inactivation<br />

<br />

<br />

Note<br />

<strong>Thermo</strong>sensitive Alkaline<br />

Phosphatase to DNA may result in a band<br />

shift in agarose gels. To avoid this, incubate<br />

samples with 6X DNA Loading Dye & SDS<br />

Solution (#R1151) at 65°C for 10 min and<br />

chil on ice prior to electrophoresis.<br />

<strong>Thermo</strong>sensitive Alkaline<br />

Phosphatase is active in all restriction<br />

enzyme buffers and may be added directly<br />

to digested DNA. Heat inactivation of the<br />

restriction enzyme before dephosphorylation<br />

reaction is not necessary.<br />

2<br />

1<br />

0<br />

0 5 10 15<br />

Incubation time, min<br />

% of activity remaining 100<br />

<strong>Thermo</strong>inactivation curve for <strong>Thermo</strong> <strong>Scientific</strong><br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase<br />

at 75°C.<br />

The DNA dephosphorylation reaction mixture (200 u/ml<br />

phosphatase) was incubated for 30 min at 37°C.<br />

Aliquots were heated at 75°C for the time indicated<br />

on the graph. The remaining activity was measured by<br />

p-NPP assay.


T4 Polynucleotide Kinase (T4 PNK)<br />

#EK0031 500 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer A 0.4 ml<br />

10X Reaction Buffer B 0.2 ml<br />

24% PEG Solution 0.2 ml<br />

#EK0032 2500 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer A 2x1 ml<br />

10X Reaction Buffer B 1 ml<br />

24% PEG Solution 1 ml<br />

Related Products<br />

T4 DNA Ligase p.239<br />

T4 RNA Ligase p.240<br />

GeneRuler DNA Ladders p.358<br />

RiboRuler RNA Ladders p.386<br />

ATP p.411<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

References<br />

1. Berkner, K.L., Folk, W.R., Polynucleotide kinase exchange<br />

<br />

2. Richardson, C.C., Bacteriophage T4 polynucleotide kinase,<br />

The Enzymes (Boyer, P.D., Ed.), Academic Press, San<br />

Diego, 14, 299-314, 1981.<br />

3. <br />

A Laboratory Manual, the Third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York, 2001.<br />

4. Current Protocols in <strong>Molecular</strong> <strong>Biology</strong>, vol. 1 (Ausubel,<br />

<br />

York, 3.10.2-3.10.5, 1994-2004.<br />

5. Phillips, D.H., Detection of DNA modifications by the<br />

32 P-postlabelling assay, Mutation Res., 378, 1-12, 1997.<br />

6. Keith, G., Dirheimer, G., Postlabeling: a sensitive method<br />

for studying DNA adducts and their role in carcinogenesis,<br />

Curr. Opin. Biotechnol., 6, 3-11, 1995.<br />

7. Harrison, B., Zimmerman, S.B., T4 polynucleotide kinase:<br />

macromolecular crowding increases the efficiency of<br />

reaction at DNA termini, Anal. Biochem., 158,<br />

307-315, 1986.<br />

Description<br />

T4 Polynucleotide Kinase (T4 PNK) catalyzes<br />

the transfer of the -phosphate from ATP to the<br />

5’-OH group of single- and double-stranded<br />

DNAs and RNAs, oligonucleotides or nucleoside<br />

3’-monophosphates (forward reaction). The<br />

reaction is reversible. In the presence of ADP T4<br />

Polynucleotide Kinase exhibits 5’-phosphatase<br />

activity and catalyzes the exchange of<br />

phosphate groups between 5’-P-oligo-/polynucleotides<br />

and ATP (exchange reaction) (1).<br />

The enzyme also displays 3’-phosphatase<br />

activity (2).<br />

Features<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for<br />

restriction enzymes, reverse transcriptases<br />

and T4 DNA Ligase.<br />

Applications<br />

Labeling 5’-termini of nucleic acids (3, 4) to<br />

be used as:<br />

– probes for hybridization,<br />

– probes for transcript mapping,<br />

– markers for gel-electrophoresis,<br />

– primers for DNA sequencing,<br />

– primers for PCR.<br />

5’-phosphorylation of oligonucleotides, PCR<br />

products, other DNA or RNA prior to ligation.<br />

Phosphorylation of PCR primers.<br />

Detection of DNA modification by the<br />

[ 32P]-postlabeling assay (5, 6).<br />

Removal of 3’-phosphate groups (2).<br />

Concentration<br />

10 u/μl<br />

Source<br />

E.coli cells with a cloned pseT gene of<br />

bacteriophage T4.<br />

<strong>Molecular</strong> Weight<br />

The enzyme is a homotetramer. It consists of<br />

four identical subunits of 28.9 kDa.<br />

x10 6 dpm/pmol 5’-ends<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5’-overhang<br />

ends of DNA<br />

forward reaction in buffer A<br />

exchange reaction in buffer B<br />

blunt ends<br />

of DNA<br />

5’-recessed<br />

ends of DNA<br />

Labeling efficiency of DNA containing different<br />

types of 5’-ends.<br />

Definition of Activity Unit<br />

One unit of the enzyme transfers 1 nmol of<br />

-phosphate from ATP to 5’-OH DNA in<br />

30 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 100 mM Tris-HCl (pH 8.0),<br />

10 mM MgCl 2, 5 mM DTT, 0.5 mM 5’-OH DNA,<br />

0.05 mM ATP and 0.1 MBq/ml [- 33 P]-ATP.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

20 mM Tris-HCl (pH 7.5), 25 mM KCl,<br />

0.1 mM EDTA, 2 mM DTT and<br />

50% (v/v) glycerol.<br />

10X Reaction Buffer A (for forward reaction)<br />

500 mM Tris-HCl (pH 7.6 at 25°C),<br />

100 mM MgCl2, 50 mM DTT, 1 mM spermidine.<br />

10X Reaction Buffer B (for exchange reaction)<br />

500 mM imidazole-HCl (pH 6.4 at 25°C),<br />

180 mM MgCl2, 50 mM DTT, 1 mM spermidine<br />

and 1 mM ADP.<br />

24% PEG Solution<br />

24% (w/v) polyethylene glycol 6000.<br />

Inhibition and Inactivation<br />

<br />

and ammonium ions, KCl and NaCl at a<br />

concentration higher than 50 mM.<br />

Inactivated by heating at 75°C for 10 min<br />

or by addition of EDTA.<br />

Note<br />

<br />

improve the rate and efficiency of the<br />

phosphorylation reaction (7). PEG is used<br />

in the exchange reaction.<br />

<br />

ammonium ions, use sodium<br />

acetate to precipitate DNA prior to<br />

phosphorylation (1, 2).<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying enzymes<br />

in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

» 3.3. Phosphorylation of DNA p.295<br />

» 6.1.1. DNA 5’-end labeling by T4 PNK<br />

in the exchange reaction p.349<br />

» 6.1.2. DNA/RNA 5’-end labeling by T4 PNK<br />

in the forward reaction p.349<br />

» 6.1.3. Radiolabeling of RNA Ladders<br />

by T4 PNK p.349<br />

www.thermoscientific.com/onebio 243


244<br />

DNA Polymerases<br />

Table 2.3. Properties of mesophilic DNA polymerases.<br />

Polymerase Applications Template<br />

phi29 DNA Polymerase<br />

DNA Polymerase I<br />

Klenow Fragment<br />

Klenow Fragment, exo –<br />

T4 DNA Polymerase<br />

T7 DNA Polymerase<br />

Terminal<br />

Deoxynucleotidyl<br />

Transferase (TdT)<br />

www.thermoscientific.com/onebio<br />

<br />

<br />

<br />

<br />

<br />

<br />

In situ genotyping.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

synthetic oligonucleotides.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

overhangs.<br />

<br />

<br />

<br />

products.<br />

Purification of covalently closed circular DNA<br />

by removal of residual genomic DNA.<br />

<br />

<br />

<br />

mutagenesis.<br />

<br />

<br />

In situ detection of DNA fragmentation<br />

associated with apoptosis.<br />

<br />

heteropolymers.<br />

<br />

with any type of 3’-OH terminus.<br />

<br />

<br />

In situ localization of apoptosis.<br />

<br />

(LAMP).<br />

<br />

<br />

<br />

<br />

3’5’<br />

exonuclease<br />

5’3’ Strand<br />

Inactivation Cat. # Page<br />

exonuclease displacement<br />

DNA ++++ – ++++ 65°C, 10min EP0091/2/4 245<br />

DNA ++ + – 75°C, 10min EP0041/2 246<br />

DNA ++ – ++ 75°C, 10min EP0051/2/4 247<br />

DNA – – ++ 75°C, 10min EP0421/2 248<br />

DNA ++++ – – 75°C, 10min EP0061/2 249<br />

DNA ++++ – – 75°C, 10min EP0081 250<br />

ssDNA<br />

dsDNA<br />

EN0361/2 251<br />

ssRNA<br />

– – NA 70°C, 10min<br />

Terminal Transferase* dsRNA<br />

F-203S/L 252<br />

Bsm DNA Polymerase<br />

– no activity, + active.<br />

NA – not applicable.<br />

* – formerly manufactured by Finnzymes OY, now part of <strong>Thermo</strong> Fisher <strong>Scientific</strong>.<br />

DNA – – ++++ 80°C, 10 min EP0691 253<br />

Find <strong>Thermo</strong> <strong>Scientific</strong><br />

DNA polymerases and reverse<br />

transcriptases for PCR and<br />

qPCR applications at:<br />

www.thermoscientific.com/pcr


phi29 DNA Polymerase<br />

#EP0091 2.5 μg (0.1 μg/μl)<br />

250 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 0.25 ml<br />

#EP0092 10 μg (0.1 μg/μl)<br />

1000 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 1 ml<br />

#EP0094 50 μg (0.1 μg/μl)<br />

5000 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 5x1 ml<br />

Related Products<br />

GeneRuler High Range DNA Ladder p.358<br />

Conventional Lambda DNA Markers p.368<br />

Pyrophosphatase, Inorganic (from yeast) p.272<br />

dNTP Set p.408<br />

dNTP Mix, 10 mM each p.408<br />

Water, nuclease-free p.420<br />

References<br />

1. Blanco, L., et al., Highly Efficient DNA Synthesis by the phage phi29<br />

<br />

Chem., 264, 8935-8940, 1989.<br />

2. Garmendia, C., et al., The bacteriophage phi29 DNA polymerase, a<br />

<br />

3. Lagunavicius, A., et al., Duality of polynucleotide substrates for<br />

Phi29 DNA polymerase: 3’5’ RNase activity of the enzyme, RNA,<br />

14, 503-513, 2008.<br />

4. Skerra, A., Phosphorothioate primers improve the amplification of<br />

DNA sequences by DNA polymerases with proofreading activity,<br />

Nucleic Acids Res., 20, 3551-3554, 1992.<br />

5. <br />

Chem., 268, 2719-2726, 1993.<br />

6. Lizardi, P. M., et al., Mutation detection and single-molecule<br />

counting using isothermal rolling-circle amplification, Nat. Genet.,<br />

19, 225-232, 1998.<br />

7. Simmel, F.C., et al., Periodic DNA nanotemplates synthesized by<br />

rolling circle amplification, Nano Letters, 4, 719-722, 2005.<br />

8. Dean, F.B., et al., Comprehensive human genome amplification<br />

using multiple displacement amplification, Proc. Natl. Acad. Sci.<br />

USA, 99, 5261-5266, 2002.<br />

9. Wojnowski, L., et al., Genome-wide single-nucleotide polymorphism<br />

arrays demonstrate high fidelity of multiple displacement-based<br />

whole-genome amplification, Electrophoresis, 26, 710-715, 2005.<br />

10. <br />

amplification in a 5 cM STR genome-wide scan, Nucleic Acids Res.,<br />

13, e1191, 2005.<br />

11. Gadkar V, Rillig MC., Suitability of genomic DNA synthesized<br />

by strand displacement amplification (SDA) for AFLP analysis,<br />

genotyping single spores of arbuscular mycorrhizal (AM) fungi,<br />

<br />

12. Sgaramella, V., et al., Towards the analysis of the genomes of<br />

single cells, Further characterisation of the multiple displacement<br />

amplification, Gene 372, 1-7, 2006.<br />

13. Matsunaga, T., et al., Whole-metagenome amplification of a<br />

microbial community associated with scleractinian coral by multiple<br />

displacement amplification using phi29 polymerase, Environmental<br />

Microbiology, 8, 1155-1163, 2006.<br />

14. Andersen, P.S., et al., Whole genome amplification on DNA from<br />

filter paper blood spot samples, an evaluation of selected systems,<br />

Genetic Testing, 11, 2007<br />

15. Blanco, L., et al., Terminal protein – primed DNA amplification, Proc.<br />

Natl. Acad. Sci. USA, 91, 12198-12202, 1994.<br />

16. Lagunavicius, A., et al., Novel application of phi29 DNA polymerase:<br />

RNA detection and analysis in vitro and in situ by target RNA-primed<br />

RCA, RNA, 12, 765-771, 2009.<br />

17. Larsson, C., et al., In situ genotyping individual DNA molecules by<br />

target-primed rolling-circle amplification of padlock probes, Nat.<br />

Methods, 1, 227-232, 2004.<br />

Description<br />

phi29 DNA Polymerase is a highly processive<br />

polymerase (more than 70 kb) featuring strong<br />

strand displacement activity which allows for<br />

highly efficient isothermal DNA amplification<br />

(1). phi29 DNA Polymerase also demonstrates<br />

3’5’ exonuclease (proofreading) activity<br />

acting preferentially on single-stranded DNA (2)<br />

or RNA (3). Therefore 3’-modified exonuclease<br />

resistant primers are highly recommended<br />

for use in reactions containing phi29 DNA<br />

polymerase (4).<br />

Features<br />

Highest processivity and strand displacement<br />

activity among known DNA polymerases –<br />

more than 70 kb long DNA stretches can be<br />

synthesized (1).<br />

Highly accurate DNA synthesis (5).<br />

Extremely high yields of amplified DNA even<br />

from minimal amounts of template.<br />

Amplification products can be directly used<br />

in downstream applications (PCR, restriction<br />

digestion, SNP genotyping, etc.).<br />

Applications<br />

Rolling circle amplification (RCA) (6):<br />

generation of periodic DNA nanotemplates (7).<br />

Multiple displacement amplification (MDA) (8).<br />

Unbiased amplification of whole genome<br />

(WGA):<br />

– amplification of DNA for SNP (9) and STR<br />

(10) detection,<br />

– cell-free amplification of DNA from single<br />

cells (11, 12), pathogenic organisms or<br />

metagenomes (13),<br />

– amplification of DNA from filter paper<br />

blood spot samples (14).<br />

DNA template preparation for sequencing.<br />

Protein-primed DNA amplification (15).<br />

RNA-primed DNA amplification (16).<br />

In situ genotyping with padlock probes (17).<br />

Recombination based-cloning (18).<br />

Cell-free cloning of lethal DNA (19).<br />

Concentration<br />

0.1 μg/μl; 10 u/μl<br />

Source<br />

E.coli cells with a cloned gene 2 of Bacillus<br />

subtilis phage phi29.<br />

18. <br />

products are compatible with recombination-based cloning,<br />

BioTechniques, 42, 706-708, 2007.<br />

19. Hutchison CA et al., Cell-free cloning using phi29 DNA polymerase,<br />

Proc. Natl. Acad. Sci. U S A 29,102, 17332-17336, 2005.<br />

20. Blanco, L., Salas, M., Effect of aphidicolin and nucleotide analogs of<br />

on the phage phi29 DNA polymerase, Virology, 153,<br />

179-187, 1986.<br />

<strong>Molecular</strong> Weight<br />

66.7 kDa monomer.<br />

Specific Activity<br />

100,000 u/mg<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes the<br />

incorporation of 0.5 pmol of dCMP into a<br />

polynucleotide fraction (adsorbed on DE-81) in<br />

10 min at 30°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 50 mM Tris-HCl (pH 7.5),<br />

10 mM MgCl2, 1 mM DTT, 0.01 mg/ml lambda DNA/HindIII,<br />

0.2 μM dCTP including [ 3H]-dCTP, 0.2 mM dATP,<br />

0.2 mM dGTP and 0.2 mM dTTP.<br />

Storage Buffer<br />

The enzyme is supplied in: 50 mM Tris-HCl<br />

(pH 7.5), 0.1 mM EDTA, 1 mM DTT, 100 mM<br />

KCl, 0.5% (v/v) Nonidet P40, 0.5% (v/v) Tween<br />

20 and 50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

330 mM Tris-acetate (pH 7.9 at 37°C),<br />

100 mM Mg-acetate, 660 mM K-acetate,<br />

1% (v/v) Tween 20, 10 mM DTT.<br />

Inhibition and Inactivation<br />

aphidicolin, N2-(p-n-butylphenyl) dGTP (BuPdGTP), 2-(p-n-butylanilino)-dATP<br />

(BuAdATP) (20).<br />

<br />

Note<br />

<br />

the phi29 reaction mixture may enhance<br />

DNA synthesis (8).<br />

Copy number of genome<br />

1.00E+08<br />

1.00E+07<br />

chromosome No<br />

6 8 15 18 total DNA<br />

Unbiased amplification of human genomic DNA<br />

with phi29 <strong>Thermo</strong> <strong>Scientific</strong> DNA Polymerase.<br />

100 copies (0.33 ng) of human genomic DNA were<br />

amplified with phi29 DNA Polymerase according<br />

to the procedure described by Dean, F.B., et al. (8).<br />

Radioactive [-33 1.00E+06<br />

1.00E+05<br />

1.00E+04<br />

1.00E+03<br />

1.00E+02<br />

1.00E+01<br />

1.00E+00<br />

tnf c-myc igf1r bcl2<br />

P]-dATP incorporation into the<br />

DE-81 adsorbable form was calculated to quantify<br />

amplification of total DNA. Amplification efficiency of<br />

specific genes located in different chromosomes was<br />

determined by real-time PCR using the ABI 7700.<br />

Use of this enzyme in certain applications may be covered by<br />

patents and may require a license.<br />

www.thermoscientific.com/onebio 245


246<br />

DNA Polymerase I<br />

#EP0041 500 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 1 ml<br />

#EP0042 2500 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 5x1 ml<br />

Related Products<br />

RNase H p.266<br />

DNase I, RNase-free p.255<br />

Pyrophosphatase, Inorganic (from yeast) p.272<br />

dNTP Set p.408<br />

dNTP Mix, 10 mM each p.408<br />

Modified Nucleotides p.413<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying enzymes<br />

in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

» 6.3.1. Radioactive DNA labeling by<br />

nick-translation p.350<br />

» 6.3.2. Non-radioactive DNA labeling by<br />

nick-translation p.350<br />

www.thermoscientific.com/onebio<br />

Description<br />

DNA Polymerase I, a template-dependent DNA<br />

polymerase, catalyzes 5’3’ synthesis of DNA.<br />

The enzyme also exhibits 3’5’ exonuclease<br />

(proofreading) activity, 5’3’ exonuclease<br />

activity and ribonuclease H activity.<br />

Features<br />

Incorporates modified nucleotides<br />

(e.g., biotin-, digoxigenin-, aminoallyl-,<br />

fluorescently-labeled nucleotides).<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for<br />

restriction enzymes, PCR and RT.<br />

Applications<br />

DNA labeling by nick-translation in<br />

conjunction with DNase I (1-3).<br />

Second-strand synthesis of cDNA in<br />

conjunction with RNase H (4).<br />

Concentration<br />

10 u/μl<br />

Source<br />

E.coli cells with a cloned polA gene from E.coli.<br />

<strong>Molecular</strong> Weight<br />

103 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes<br />

the incorporation of 10 nmol of<br />

deoxyribonucleotides into a polynucleotide<br />

fraction (adsorbed on DE-81) in 30 min at<br />

37°C, using poly(dA-dT)·poly(dA-dT) as a<br />

template·primer.<br />

Enzyme activity is assayed in the following<br />

mixture: 67 mM potassium phosphate (pH 7.4),<br />

6.7 mM MgCl2, 1 mM 2-mercaptoethanol,<br />

0.033 mM dATP, 0.033 mM dTTP,<br />

0.4 MBq/ml [ 3H]-dTTP and<br />

62.5 μg/ml poly(dA-dT)·poly(dA-dT).<br />

Storage Buffer<br />

The enzyme is supplied in: 25 mM Tris-HCl<br />

(pH 7.5), 0.1 mM EDTA, 1 mM DTT and<br />

50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

500 mM Tris-HCl (pH 7.5 at 25°C),<br />

100 mM MgCl2, 10 mM DTT.<br />

Inhibition and Inactivation<br />

Inhibitors: metal chelators, PPi, Pi (at high<br />

concentrations) (5).<br />

Inactivated by heating at 75°C for 10 min or<br />

by addition of EDTA.<br />

References<br />

1. Ausubel, F.M., et al., Current Protocols in <strong>Molecular</strong><br />

<br />

York, 3.5.3-3.5.6., 1994-2005.<br />

2. <br />

Laboratory Manual, Third Edition, Cold Spring Harbor<br />

laboratory, Cold Spring Harbor, N. Y., 2001.<br />

3. Yu, H., et al., Cyanine dye dUTP analogs for enzymatic<br />

labeling of DNA probes, Nucleic Acids Res., 22,<br />

3226-3232, 1994.<br />

4. <br />

method for generating cDNA libraries, Gene, 25,<br />

263-269, 1983.<br />

5. Eun, H-M., Enzymology Primer for Recombinant DNA<br />

Technology, Academic Press, INC, 1996.


Klenow Fragment<br />

#EP0051 300 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 1 ml<br />

#EP0052 1500 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 5x1 ml<br />

#EP0054 LC, 300 u (2 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 1 ml<br />

Related Products<br />

T4 DNA Ligase p.239<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

Terminal Deoxynucleotidyl Transferase (TdT) p.251<br />

RNase H p.266<br />

Pyrophosphatase, Inorganic (from yeast) p.272<br />

dNTP Set p.408<br />

dNTP Mixes p.408<br />

Modified Nucleotides p.413<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

References<br />

1. Ausubel, F.M., et al., Current Protocols in <strong>Molecular</strong><br />

<br />

York, 3.5.7-3.5.10, 1994-2005.<br />

2. Feinberg, A.P., Vogelstein, B., A technique for radiolabeling<br />

DNA restriction endonucleases fragments to high specific<br />

activity, Anal. Biochem., 132, 6-13, 1983.<br />

3. Feinberg, A.P., Vogelstein, B., Addendum to: A technique<br />

for radiolabeling DNA restriction endonuclease fragments<br />

to high specific activity, Anal. Biochem., 137,<br />

266-267, 1984.<br />

4. Yu, H., et al., Cyanine dye dUTP analogs for enzymatic<br />

labeling of DNA probes, Nucleic Acids Res., 22,<br />

3226-3232, 1994.<br />

5. Sanger, F., et al., DNA sequencing with chain-terminating<br />

inhibitors, Proc. Natl. Acad. Sci. USA, 74,<br />

5463-5467, 1977.<br />

6. Wallace, R.B., et al., Directed deletion of a yeast transfer<br />

RNA intervening sequence, Science, 209,<br />

1396-1400, 1980.<br />

7. Rougeon, F., et al., Insertion of rabbit -globin gene<br />

sequence into an E.coli plasmid, Nucleic Acids Res., 2,<br />

2365-2378, 1975.<br />

8. Eun, H-M., Enzymology Primer for Recombinant DNA<br />

Technology, Academic Press, Inc., 1996.<br />

Description<br />

Klenow Fragment is the Large Fragment of DNA<br />

Polymerase I. It exhibits 5’3’ polymerase<br />

activity and 3’5’ exonuclease (proofreading)<br />

activity, but lacks 5’3’ exonuclease activity of<br />

DNA Polymerase I.<br />

Features<br />

Incorporates modified nucleotides<br />

(e.g., Cy3-, Cy5-, aminoallyl-, biotin-,<br />

digoxigenin- and fluorescently-labeled<br />

nucleotides).<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for<br />

restriction enzymes, PCR, RT and T4 DNA<br />

Ligase.<br />

Applications<br />

DNA blunting by fill-in 5’-overhangs. (1).<br />

Random-primed DNA labeling (2-4).<br />

Labeling by fill-in 5’-overhangs of dsDNA.<br />

DNA sequencing by the Sanger method (5).<br />

Site-specific mutagenesis of DNA with<br />

synthetic oligonucleotides (6).<br />

Second strand synthesis of cDNA (7).<br />

Concentration<br />

10 u/μl<br />

2 u/μl, LC<br />

Source<br />

E.coli cells with a cloned fragment of the polA gene.<br />

<strong>Molecular</strong> Weight<br />

68 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes<br />

the incorporation of 10 nmol of<br />

deoxyribonucleotides into a polynucleotide<br />

fraction (adsorbed on DE-81) in 30 min at<br />

37°C, using poly(dA-dT)·poly(dA-dT) as a<br />

template·primer.<br />

Enzyme activity is assayed in the following<br />

mixture: 67 mM potassium phosphate (pH 7.4),<br />

6.7 mM MgCl2, 1 mM 2-mercaptoethanol,<br />

0.033 mM dATP, 0.033 mM dTTP,<br />

0.4 MBq/ml [ 3H]-dTTP and<br />

62.5 μg/ml poly(dA-dT)·poly(dA-dT).<br />

Storage Buffer<br />

The enzyme is supplied in: 25 mM Tris-HCl<br />

(pH 7.5), 0.1 mM EDTA, 1 mM DTT and<br />

50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

500 mM Tris-HCl (pH 8.0 at 25°C),<br />

50 mM MgCl2, 10 mM DTT.<br />

Inhibition and Inactivation<br />

Inhibitors: metal chelators, PPi, Pi (at high<br />

concentrations) (8).<br />

Inactivated by heating at 75°C for 10 min or<br />

by addition of EDTA.<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying enzymes<br />

in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

» 3.2.2. Fill-in of 5’-overhangs with<br />

Klenow Fragment p.295<br />

» 6.1.4. DNA 3’-end labeling by fill-in<br />

of 5’-overhangs p.349<br />

www.thermoscientific.com/onebio 247


248<br />

Klenow Fragment, exo –<br />

#EP0421 300 u (5 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 1 ml<br />

#EP0422 1500 u (5 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 5x1 ml<br />

Related Products<br />

Pyrophosphatase, Inorganic (from yeast) p.272<br />

dNTP Set p.408<br />

dNTP Mixes p.408<br />

Modified Nucleotides p.413<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying enzymes<br />

in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

» 6.1.4. DNA 3’-end labeling by fill-in of<br />

5’-overhangs p.349<br />

» 6.2.1. Radioactive random-primed<br />

DNA labeling p.350<br />

» 6.2.2. Non-radioactive random-primed<br />

DNA labeling p.350<br />

www.thermoscientific.com/onebio<br />

Description<br />

Klenow Fragment, exo – is the Large Fragment<br />

of DNA Polymerase I. It exhibits 5’3’<br />

polymerase activity, but lacks the 3’5’<br />

and 5’3’ exonuclease activities of DNA<br />

Polymerase I. The 3’5’ exonuclease activity<br />

of the enzyme is eliminated by mutations in the<br />

3’5’-exonuclease active site (1).<br />

Features<br />

Lacks 3’5’ exonuclease activity.<br />

Incorporates modified nucleotides (e.g., Cy3-,<br />

Cy5-, fluorescein-, rhodamine-, aminoallyl-,<br />

biotin-labeled nucleotides).<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for<br />

restriction enzymes, PCR and RT.<br />

Applications<br />

Random-primed DNA labeling (2-4).<br />

Labeling by fill-in 5’-overhangs of dsDNA.<br />

Strand displacement amplification (SDA) (5).<br />

DNA sequencing by the Sanger method (6).<br />

Concentration<br />

5 u/μl<br />

Source<br />

E.coli cells with a cloned DNA fragment of the<br />

mutated polA gene.<br />

<strong>Molecular</strong> Weight<br />

68 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes<br />

the incorporation of 10 nmol of<br />

deoxyribonucleotides into a polynucleotide<br />

fraction (adsorbed on DE-81) in 30 min at<br />

37°C, using poly(dA-dT)·poly(dA-dT) as a<br />

template·primer.<br />

Enzyme activity is assayed in the following<br />

mixture: 67 mM potassium phosphate (pH 7.4),<br />

6.7 mM MgCl2, 1 mM 2-mercaptoethanol,<br />

0.033 mM dATP, 0.033 mM dTTP,<br />

0.4 MBq/ml [ 3H]-dTTP and<br />

62.5 μg/ml poly(dA-dT)·poly(dA-dT).<br />

Storage Buffer<br />

The enzyme is supplied in: 25 mM Tris-HCl<br />

(pH 7.5), 0.1 mM EDTA, 1 mM DTT and<br />

50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

500 mM Tris-HCl (pH 8.0 at 25°C),<br />

50 mM MgCl2, 10 mM DTT.<br />

Inhibition and Inactivation<br />

Inhibitors: metal chelators, PPi, Pi (at high<br />

concentrations) (7).<br />

Inactivated by heating at 75°C for 10 min or<br />

by the addition of EDTA.<br />

Note<br />

– , is not recommended<br />

for DNA blunting reactions prior to DNA<br />

ligation since it frequently adds one or more<br />

extra nucleotides to the 3’-terminus of<br />

blunt-end DNA substrates in a non-template<br />

directed fashion (8).<br />

References<br />

1. Derbyshire, V., et al., Genetic and crystallographic studies<br />

of the 3’,5’-exonucleolytic site of DNA polymerase I,<br />

Science, 240, 199-201, 1988.<br />

2. Feinberg, A.P., Vogelstein, B., A technique for radiolabeling<br />

DNA restriction endonuclease fragments to high specific<br />

activity, Anal. Biochem., 132, 6-13, 1983.<br />

3. Feinberg, A.P., Vogelstein, B., Addendum to: A technique<br />

for radiolabeling DNA restriction endonuclease fragments<br />

to high specific activity, Anal. Biochem., 137,<br />

266-267, 1984.<br />

4. Yu, H., et al., Cyanine dye dUTP analogs for enzymatic<br />

labeling of DNA probes, Nucleic Acids Res., 22,<br />

3226-3232, 1994.<br />

5. Walker, G.T., Empirical aspects of strand displacement<br />

amplification, PCR Methods Appl., 3, 1-6, 1993.<br />

6. Sanger, F., et al., DNA sequencing with chain-terminating<br />

inhibitors, Proc. Natl. Acad. Sci. USA, 74,<br />

5463-5467, 1977.<br />

7. Eun, H-M., Enzymology Primer for Recombinant DNA<br />

Technology, Academic Press, Inc., 1996.<br />

8. <br />

catalyzed by DNA polymerase I of Escherichia coli,


T4 DNA Polymerase<br />

#EP0061 100 u (5 u/μl)<br />

Supplied with:<br />

5X Reaction Buffer 0.35 ml<br />

#EP0062 500 u (5 u/μl)<br />

Supplied with:<br />

5X Reaction Buffer 2x1 ml<br />

Related Products<br />

T4 DNA Ligase p.239<br />

Rapid DNA Ligation Kit p.288<br />

dNTP Set p.408<br />

dNTP Mixes p.408<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

References<br />

1. <br />

Laboratory Manual, Third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York, 2001.<br />

2. Ausubel, F.M., et al., Current Protocols in <strong>Molecular</strong><br />

<br />

York, 3.5.11-3.5.12, 1994-2005.<br />

3. Challberg, M.D., Englund, P.T., Specific labeling of<br />

3’-termini with T4 DNA polymerase, Methods Enzymol.,<br />

65, 39-43, 1980.<br />

4. Kunkel, I.A., et al., Rapid and efficient site-specific<br />

mutagenesis without phenotypic selection, Methods<br />

Enzymol., 154, 367-382, 1987.<br />

5. Haun, R.S., et al., Rapid, reliable ligation-independent<br />

cloning of PCR products using modified plasmid vectors,<br />

BioTechniques, 13, 515-518, 1992.<br />

6. Wang, K., et al., A simple method using T4 DNA<br />

polymerase to clone polymerase chain reaction products,<br />

BioTechniques, 17, 236-238, 1994.<br />

7. Eun, H-M., Enzymology Primer for Recombinant DNA<br />

Technology, Academic Press, Inc., 1996.<br />

Description<br />

T4 DNA Polymerase, a template-dependent<br />

DNA polymerase, catalyzes 5’3’ synthesis<br />

from primed single-stranded DNA. The enzyme<br />

has a 3’5’ exonuclease activity, but lacks<br />

5’3’ exonuclease activity.<br />

Features<br />

Stronger 3’5’ exonuclease activity on<br />

single-stranded than on double-stranded<br />

DNA and greater (more than 200 times) than<br />

DNA polymerase I and Klenow fragment (1).<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for<br />

restriction enzymes, PCR, RT and T4 DNA<br />

Ligase.<br />

Applications<br />

Blunting of DNA ends: fill-in 5’-overhangs or/<br />

and removal of 3’-overhangs (1, 2).<br />

Blunting of PCR products with 3’-dA<br />

overhangs.<br />

Synthesis of labeled DNA probes by the<br />

replacement reaction (3).<br />

Oligonucleotide-directed site-specific<br />

mutagenesis (4).<br />

Ligation-independent cloning of PCR<br />

products (5, 6).<br />

Concentration<br />

5 u/μl<br />

Source<br />

E.coli cells with a cloned gene 43 of<br />

bacteriophage T4.<br />

<strong>Molecular</strong> Weight<br />

104 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes<br />

the incorporation of 10 nmol of<br />

deoxyribonucleotides into a polynucleotide<br />

fraction (adsorbed on DE-81) in 30 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 67 mM Tris-HCl (pH 8.8),<br />

6.7 mM MgCl2, 1 mM DTT, 16.7 mM (NH4) 2SO4, 0.2 mg/ml BSA, 0.033 mM of each dNTP,<br />

0.4 MBq/ml [ 3H]-dTTP and 0.2 mM<br />

heat-denatured and nuclease-digested calf<br />

thymus DNA.<br />

Storage Buffer<br />

The enzyme is supplied in: 20 mM potassium<br />

phosphate (pH 7.5), 200 mM KCl, 2 mM DTT<br />

and 50% (v/v) glycerol.<br />

5X Reaction Buffer<br />

335 mM Tris-HCl (pH 8.8 at 25°C),<br />

33 mM MgCl2, 5 mM DTT, 84 mM (NH4) 2SO4. Inhibition and Inactivation<br />

Inhibitors: metal chelators, nucleotide<br />

analogs 2(p-n-butylanilino)-dATP,<br />

N2-(p-n-butylphenyl)-dGTP), SH-blocking<br />

compounds (7).<br />

Inactivated by heating at 75°C for 10 min.<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying enzymes<br />

in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

» 3.2.1. Blunting of 5’- or 3’-overhangs<br />

with T4 DNA Polymerase p.295<br />

www.thermoscientific.com/onebio 249


250<br />

T7 DNA Polymerase<br />

#EP0081 300 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 0.4 ml<br />

Related Products<br />

Nicking Enzymes p.155<br />

T4 DNA Ligase p.239<br />

dNTP Mix, 10mM each p.408<br />

dNTP Set p.408<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying enzymes<br />

in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

www.thermoscientific.com/onebio<br />

Description<br />

T7 DNA Polymerase, a template dependent DNA<br />

polymerase, catalyzes DNA synthesis in the<br />

5’3’ direction. It is a highly processive DNA<br />

polymerase allowing continuous synthesis of<br />

long stretches of DNA. The enzyme also exhibits<br />

a high 3’5’ exonuclease activity towards<br />

single- and double-stranded DNA.<br />

Features<br />

Strong 3’5’ exonuclease activity,<br />

approximately 1000-fold greater than Klenow<br />

Fragment (1).<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for<br />

restriction enzymes.<br />

Applications<br />

Purification of covalently closed circular DNA<br />

by removal of residual genomic DNA.<br />

Primer extension reactions on long templates (1).<br />

DNA 3’-end labeling (1).<br />

Strand extensions in site-directed<br />

mutagenesis (2).<br />

Fill-in blunting of 5’-overhang DNA.<br />

Second strand synthesis of cDNA (3).<br />

In situ detection of DNA fragmentation<br />

associated with apoptosis (4).<br />

Concentration<br />

10 u/μl<br />

Source<br />

Two E.coli strains, one with the cloned gene 5 of<br />

bacteriophage T7, and the other with the cloned<br />

trxA gene of E.coli.<br />

<strong>Molecular</strong> Weight<br />

The T7 DNA Polymerase is composed of two<br />

subunits: an 80 kDa polypeptide (the product<br />

of gene 5 of bacteriophage T7) and a 12 kDa<br />

thioredoxin (from the trxA gene of E.coli).<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes<br />

the incorporation of 10 nmol of<br />

deoxyribonucleotides into a polynucleotide<br />

fraction (adsorbed on DE-81) in 30 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 40 mM Tris-HCl (pH 7.5), 10 mM<br />

MgCl2, 1 mM DTT, 0.1 mg/ml BSA,<br />

0.33 mM of each dNTP, 0.4 MBq/ml [ 3H]-dTTP and 0.5 mM alkali-denatured calf thymus DNA.<br />

Storage Buffer<br />

The enzyme is supplied in: 20 mM potassium<br />

phosphate (pH 7.4), 1 mM DTT, 0.1 mM EDTA<br />

and 50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

400 mM Tris-HCl (pH 7.5 at 25°C),<br />

100 mM MgCl2, 10 mM DTT.<br />

Inhibition and Inactivation<br />

Inhibitors: metal chelators, modification<br />

reagents (acetic anhydride, N-ethylmaleimide<br />

inactivate the 3’5’ exonuclease activity but<br />

not the polymerase activity) (5).<br />

Inactivated by heating at 75°C for 10 min.<br />

Note<br />

<br />

times (6).<br />

References<br />

1. <br />

Laboratory Manual, Third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York, 2001.<br />

2. Bebenek, K., Kunkel, T.A., The use of native T7 DNA<br />

polymerase for site-directed mutagenesis, Nucleic Acids<br />

Res., 17, 5408, 1989.<br />

3. Bodescot, M., Brison, O., Efficient second-strand cDNA<br />

synthesis using T7 DNA polymerase, DNA and Cell <strong>Biology</strong>,<br />

13, 977-985, 1994.<br />

4. Wood, K.A., et al., In situ labeling of granule cells for<br />

apoptosis-associated DNA fragmentation reveals different<br />

mechanisms of cell loss in developing cerebellum, Neuron,<br />

11, 621-632, 1993.<br />

5. Eun, H-M., Enzymology Primer for Recombinant DNA<br />

Technology, Academic Press, Inc., 1996.<br />

6. Bodescot, M., Brison, O., T7 DNA polymerase requires<br />

unusual reaction conditions for blunt-ending activity, Anal.<br />

Biochemistry, 216, 234-235, 1994.


Terminal Deoxynucleotidyl Transferase (TdT)<br />

#EP0161 500 u (20 u/μl)<br />

Supplied with:<br />

5X Reaction Buffer 0.4 ml<br />

#EP0162 2500 u (20 u/μl)<br />

Supplied with:<br />

5X Reaction Buffer 2x1 ml<br />

Related Products<br />

Uracil-DNA Glycosylase (UDG, UNG) p.273<br />

Endonuclease V, T.maritima (Endo V) p.257<br />

Biotin Chomogenic Detection Kit p.345<br />

dNTP Set p.408<br />

dNTPs p.408<br />

Modified Nucleotides p.413<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

References<br />

1. <br />

Enzymes, the third edition (Boyer, P.D., ed.), Academic Press,<br />

New York, vol.10, 145-171, 1974.<br />

2. Deng, G.R., Wu, R., Terminal transferase: Use in the tailing<br />

of DNA and for in vitro mutagenesis, Meth. Enzymol., 100,<br />

96-116, 1983.<br />

3. Eschenfeldt, W.H., et al., Homopolymeric tailing, Meth.<br />

Enzymol., 152, 337-342, 1987.<br />

4. Tu, C.-P.D., Cohen, S.N., 3’-end labeling of DNA with<br />

[- 32 P]-cordycepin-5’-triphosphate, Gene, 10, 177-183, 1980.<br />

5. Vincent, C., et al., Synthesis of 8-(2,4-dinitrophenyl-2,6aminohexyl)aminoadenosine-5’-triphosphate:<br />

Biological<br />

properties and potential uses, Nucleic Acids Res.,<br />

10, 6787-6796, 1982.<br />

6. Kumar, A., et al., Nonradioactive labeling of synthetic<br />

oligonucleotide probes with terminal deoxynucleotidyl<br />

transferase, Anal. Biochem., 169, 376-382, 1988.<br />

7. Gaastra, W., Klemm, P., Radiolabeling of DNA with terminal<br />

transferase, Methods in <strong>Molecular</strong> <strong>Biology</strong>, vol.2: Nucleic Acids<br />

<br />

8. Igloi, G.L., Schiefermayr, E., Enzymatic addition of fluorescein-<br />

or biotin-riboUTP to oligonucleotides results in primers suitable<br />

for DNA sequencing and PCR, BioTechniques, 15,<br />

486-497, 1993.<br />

9. Frohman, M.A., et al., Rapid Production of Full-Length cDNAs<br />

from Rare Transcripts: Amplification Using a Single Gene-<br />

Specific Oligonucleotide Primer, Proc. Natl. Acad. Sci. USA, 85,<br />

8998-9002, 1988.<br />

10. Gorczyca, W., et al., Detection of DNA strand breaks<br />

in individual apoptotic cells by the in situ terminal<br />

deoxynucleotidyl transferase and nick translation assays,<br />

Cancer Res., 53, 1945-1951,1993.<br />

Description<br />

Terminal Deoxynucleotidyl Transferase<br />

(TdT), a template-independent DNA<br />

polymerase, catalyzes the repetitive addition<br />

of deoxyribonucleotides to the 3’-OH of<br />

oligodeoxyribonucleotides and single- or<br />

double-stranded DNA (1). TdT requires an<br />

oligonucleotide of at least three nucleotides<br />

to serve as a primer. With an RNA template,<br />

TdT shows variable performance which<br />

strongly depends upon the tertiary structure<br />

of the acceptor RNA 3’-end and the nature of<br />

nucleotide. Generally, the polymerase activity<br />

with an RNA template is lower compared to the<br />

activity with a DNA template.<br />

Features<br />

Incorporates modified nucleotides<br />

(e.g., fluorescein-, biotin-, aminoallyl-labeled<br />

nucleotides).<br />

Applications<br />

Production of synthetic homo- and<br />

heteropolymers (1).<br />

Homopolymeric tailing of linear duplex DNA<br />

with any type of 3’-OH terminus (2, 3),<br />

see protocol below.<br />

Oligodeoxyribonucleotide and DNA labeling<br />

(2, 4-8).<br />

5’-RACE (Rapid Amplification of cDNA Ends) (9).<br />

In situ localization of apoptosis (10).<br />

Concentration<br />

20 u/μl<br />

Source<br />

E.coli cells carrying a cloned gene encoding calf<br />

thymus terminal deoxynucleotidyl transferase.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes the<br />

incorporation of 1 nmol of deoxythymidylate into<br />

a polynucleotide fraction (adsorbed on DE-81) in<br />

60 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 200 mM potassium cacodylate<br />

(pH 7.2),<br />

1 mM CoCl2, 0.01% (v/v) Triton X-100,<br />

10 μM oligo(dT) 10, 1 mM dTTP and<br />

0.4 MBq/ml [ 3H]-dTTP. Storage Buffer<br />

The enzyme is supplied in: 100 mM potassium<br />

acetate (pH 6.8), 2 mM 2-mercaptoethanol,<br />

0.01% (v/v) Triton X-100 and 50% (v/v) glycerol.<br />

5X Reaction Buffer<br />

1 M potassium cacodylate, 125 mM Tris,<br />

0.05% (v/v) Triton X-100,<br />

5 mM CoCl2 (pH 7.2 at 25°C).<br />

Inhibition and Inactivation<br />

Inhibitors: metal chelators, ammonium,<br />

chloride, iodide, phosphate ions.<br />

Inactivated by heating at 70°C for 10 min or<br />

by addition of EDTA.<br />

Protocol for tailing of DNA 3’-termini<br />

1. Prepare the following reaction mixture:<br />

5X reaction buffer for Terminal Deoxynucleotidyl Transferase 4 μl<br />

DNA fragments 1 pmol of 3’-ends<br />

(dATP or dTTP) or<br />

(dGTP or dCTP)<br />

Note<br />

<br />

Reaction Buffer is incompatible with<br />

downstream applications. It is necessary to<br />

remove CoCl2 from the reaction mixture by<br />

spin column or phenol/chloroform extraction<br />

and subsequent ethanol precipitation.<br />

130 pmol or<br />

60 pmol<br />

Terminal Deoxynucleotidyl Transferase (#EP0161) 1.5 μl (30u)<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

2. Incubate the mixture at 37°C for 15 min.<br />

3. Stop the reaction by heating at 70°C for 10 min or by the addition of 2 μl 0.5 M EDTA (#R1021).<br />

Note<br />

<br />

end of DNA.<br />

<br />

3’-overhangs are tailed with higher efficiency than recessed or blunt ends.<br />

Protocols and Recommendations<br />

» 6.1.5. DNA and oligonucleotide 3’-end<br />

labeling by tailing p.349<br />

www.thermoscientific.com/onebio 251


252<br />

Terminal Transferase<br />

Formerly manufactured by Finnzymes OY, now part of <strong>Thermo</strong> Fisher <strong>Scientific</strong><br />

#F-203S 500 u (15 u/μl)<br />

Supplied with:<br />

10x TdT Buffer 1.5 ml<br />

25 mM CoCl2 1.5 ml<br />

#F-203L<br />

Supplied with:<br />

2500 u (15 u/μl)<br />

10x TdT Buffer 1.5 ml<br />

25 mM CoCl2 1.5 ml<br />

Related Products<br />

Uracil-DNA Glycosylase (UDG, UNG) p.273<br />

Endonuclease V, T.maritima (Endo V) p.257<br />

Biotin Chomogenic Detection Kit p.345<br />

dNTP Set p.408<br />

Deoxyribonucleoside Triphosphates p.406<br />

Modified Nucleotides p.413<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

www.thermoscientific.com/onebio<br />

Description<br />

Terminal transferase (TdT) is a template<br />

independent polymerase that catalyzes the<br />

addition of deoxynucleotides to the 3´ hydroxyl<br />

terminus of DNA molecules. Protruding,<br />

recessed or blunt ended double or single<br />

stranded DNA molecules serve as<br />

a substrate for TdT.<br />

Applications<br />

Addition of homopolymeric tails to plasmid<br />

DNA and to cDNA.<br />

Double- or single-stranded DNA 3´-termini<br />

labeling with radioactively labeled or nonradioactively<br />

labeled nucleotides.<br />

Addition of single nucleotides to the 3´ ends<br />

of DNA for in vitro mutagenesis.<br />

Production of synthetic homo- and<br />

heteropolymers.<br />

RACE (Rapid Amplification of cDNA Ends).<br />

Concentration<br />

15 u/μl<br />

Source<br />

E.coli cells with a cloned gene of terminal<br />

transferase from calf thymus.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes the<br />

incorporation of 1 nmol of deoxythymidylate into<br />

a polynucleotide fraction (adsorbed on DE-81) in<br />

60 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 200 mM potassium cacodylate<br />

(pH 7.2),<br />

1 mM CoCl2, 0.01% (v/v) Triton X-100,<br />

10 μM oligo(dT) 10, 1 mM dTTP and<br />

0.4 MBq/ml [ 3H]-dTTP. Storage Buffer<br />

Enzyme is supplied in: 60 mM KPO4, 150<br />

mM KCl, 1 mM -mercaptoethanol, 1% Triton<br />

X-100, 50% glycerol (v/v), (pH 7.2 at 25°C).<br />

10x TdT Buffer<br />

200 mM Tris-acetate (pH 7.9 at 25°C),<br />

500 mM Potassium acetate.<br />

Recommended concentration<br />

of CoCl2 in 1X reaction buffer is 1.5 mM.<br />

Note<br />

2 the TdT<br />

Reaction Buffer is incompatible with<br />

downstream applications. It is necessary to<br />

remove CoCl 2 from the reaction mixture by<br />

spin column or phenol/chloroform extraction<br />

and subsequent ethanol precipitation.<br />

<br />

with 10X reaction buffer. This product is<br />

recommended for use in small volume<br />

reactions and/or with dilute samples.<br />

Find <strong>Thermo</strong> <strong>Scientific</strong> thermostable DNA polymerases, reverse transcriptases,<br />

qPCR reagents, PCR & qPCR instruments and consumables at<br />

www.thermoscientific.com/pcr


Bsm DNA Polymerase, Large Fragment<br />

#EP0691 1600 u (8 u/μl)<br />

Supplied with:<br />

10X Bsm Buffer 1.25 ml<br />

Related Products<br />

dNTP Set p.408<br />

dNTP Mix, 10mM each p.408<br />

Water, nuclease-free p.420<br />

dUTP p.409<br />

Biotin-11-dUTP p.414<br />

Pyrophosphatase, Inorganic (from yeast) p.272<br />

References<br />

1. Tsugunori Notomi, et al., Loop-mediated isothermal<br />

amplification of DNA, Nucleic Acids Res., v. 28,<br />

No. 12, e63, 2000.<br />

2. Masaki Imai, et al., Rapid diagnosis of H5N1 avian<br />

influenza virus infection by newly developed influenza<br />

H5 hemagglutinin gene-specific loop-mediated isothermal<br />

<br />

141, 173-180, 2007.<br />

3. Dean, F.B., et al., Comprehensive human genome<br />

amplification using multiple displacement amplification,<br />

Proc. NatI. Acad. Sci. USA, 99, 5261-5266, 2002.<br />

4. <br />

real-time isothermal DNA amplification, Nucleic Acids<br />

Res., v.34, No.11, e81, 2006.<br />

Description<br />

Bsm DNA Polymerase is the large fragment<br />

portion of the Bacillus smithii DNA polymerase<br />

enzyme, which catalyzes 5’3’ synthesis of<br />

DNA and lacks 5’3’ and 3’5’ exonuclease<br />

activities. The enzyme has strong strand<br />

displacement activity and is active in wide<br />

range of temperatures from 30°C to 63°C,<br />

with an optimum of activity at 60°C. Bsm<br />

DNA Polymerase is an enzyme with high<br />

functional similarity to Bst DNA Polymerase,<br />

Large fragment and can replace Bst in most<br />

applications. The enzyme is not suitable for use<br />

in PCR.<br />

Features<br />

<strong>Thermo</strong>philic DNA polymerase with strong<br />

strand displacement activity.<br />

Applications<br />

Isothermal DNA amplification by the method of:<br />

– loop- mediated isothermal amplification,<br />

(LAMP) (1, 2),<br />

– whole genome amplification (WGA) (3),<br />

– ramification amplification (RAM) (4).<br />

Random- primed DNA labeling.<br />

Labeling by fill-in 5’-overhangs of dsDNA.<br />

Concentration<br />

8 u/μl<br />

Use of this enzyme in certain applications may be covered by<br />

patents and may require a license.<br />

Source<br />

E.coli cells with a cloned part of polA gene from<br />

Bacillus smithii.<br />

<strong>Molecular</strong> Weight<br />

67 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes<br />

the incorporation of 10 nmol of<br />

deoxyribonucleotides into a polynucleotide<br />

fraction (absorbed on DE-81) in 30 min at 60°C.<br />

Enzyme activity is assayed in the following<br />

mixture 10 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 100 μg/ml BSA, 0.75 mM activated salmon<br />

milt DNA, 0.2 mM of each dNTP, 0.4 MBq/ml<br />

[H3 ]-dTTP.<br />

Storage Buffer<br />

Enzyme is supplied in:<br />

10 mM Tris-HCl (pH 7.5), 50 mM KCl,<br />

1 mM DTT, 0.1 mM EDTA, 0.15% Triton X-100,<br />

50% glycerol.<br />

10X Bsm Buffer<br />

200 mM Tris-HCl (pH 8.8 at 25°C),<br />

100 mM KCl, 100 mM (NH4) 2SO4, 20 mM MgSO4, 1% Tween 20.<br />

Inactivation<br />

By heating at 80°C for 10 min.<br />

Protocols and Recommendations<br />

» 6.1.4. DNA 3’-end labeling by fill-in of<br />

5’-overhangs p.349<br />

» 6.2.1. Radioactive random-primed DNA<br />

labeling p.350<br />

www.thermoscientific.com/onebio 253


254<br />

Deoxyribonucleases (DNases)<br />

Table 2.4. Properties of deoxyribonucleases (DNases).<br />

Nuclease Applications Substrate Type<br />

DNase I,<br />

RNase-free<br />

Endonuclease IV,<br />

E.coli (Endo IV)<br />

Endonuclease V,<br />

T.maritima<br />

(Endo V)<br />

Exonuclease I<br />

(Exo I)<br />

Exonuclease III<br />

(Exo III)<br />

Lambda<br />

Exonuclease<br />

www.thermoscientific.com/onebio<br />

<br />

<br />

following in vitro transcription.<br />

ssDNA<br />

<br />

to RT-PCR.<br />

<br />

<br />

<br />

randomly overlapping DNA inserts.<br />

a<br />

dsDNA<br />

DNA in RNA-DNA<br />

hybrids<br />

Studies of DNA damage and repair.<br />

Single cell electrophoresis.<br />

Antitumor drug research.<br />

DNA structure research.<br />

SNP analysis.<br />

AP DNA<br />

Specificity,<br />

polarity of<br />

cleavage<br />

Endonuclease b Sequence and<br />

base unspecific<br />

AP endonuclease<br />

c<br />

5’ to an abasic<br />

site, 3’5’<br />

exonuclease<br />

Reaction<br />

products<br />

5’-dNMPs,<br />

5’-oligonucleotides<br />

DNA with<br />

nicks 5’ to<br />

AP sites<br />

Inactivation Cat. # Page<br />

Heating at<br />

65°C for 10 min in the presence<br />

of EGTA or EDTA<br />

EN0521/3/5 255<br />

Heating at 80°C for<br />

15 min d EN0591 256<br />

<br />

mutation research.<br />

Second<br />

<br />

repair.<br />

Deaminated DNA<br />

phosphodiester<br />

Endonuclease<br />

Nicked DNA<br />

bond 3’ to the<br />

<br />

<br />

lesion<br />

e Heating at >95°C for 10 min<br />

in the presence of EDTA<br />

<br />

<br />

acid mixtures.<br />

Assay for the presence of singlestranded<br />

DNA with a 3’-hydroxyl<br />

terminus.<br />

<br />

deletions in DNA fragments.<br />

<br />

sequencing.<br />

<br />

<br />

<br />

probes.<br />

ssDNA f Exonuclease g 3’5’<br />

dsDNA (with<br />

nicks, blunt ends,<br />

5’-overhangs) h<br />

AP DNA<br />

RNA in<br />

RNA-DNA hybrids<br />

DNA with 3’-phosphorylated<br />

ends<br />

Exonuclease i 3’5’<br />

AP endonuclease<br />

RNase H<br />

(exonuclease)<br />

5’ to an abasic<br />

site<br />

3’-phosphatase –<br />

5’-dNMPs,<br />

5’-terminal<br />

dinucleotides<br />

5’-dNMPs,<br />

ssDNA<br />

DNA with<br />

nicks 5’ to<br />

AP sites<br />

3’5’ NMPs<br />

3’-OH ends<br />

of DNA<br />

Generation of ssPCR products for<br />

sequencing, SSCP analysis, rolling<br />

circle amplification.<br />

Producing ssDNA from<br />

dsDNA fragments.<br />

Cloning of PCR products.<br />

5’-phosphorylated<br />

dsDNAj Exonuclease 5’3’ 5’-dNMPs<br />

a – ssDNA is cleaved slower than dsDNA.<br />

b – in the presence of Mg 2+ , the resulting DNA fragments have overhang termini; in the presence of Mn 2+ the individual fragments are shorter,<br />

they are blunt-end or have 1-2 nucleotide long overhang termini.<br />

c – also removes 3’-blocking groups (e.g., 3’-phosphoglycolate and 3’-phosphate) from damaged ends of dsDNA.<br />

d – the enzyme has no requirement for Mg 2+ and is active in the presence of EDTA.<br />

e – when enzyme is in excess, complementary strand is also nicked, generating a double-stranded break.<br />

f – does not cleave DNA chains with terminal 3’-phosphoryl or acetyl groups. Not suitable for removing 3’-overhang ends of dsDNA – this activity is greatly reduced.<br />

g – also exhibits DNA deoxyribophosphodiesterase activity.<br />

h – not active on 3’-overhang ends of DNA that are at least 4 base long or on phosphorothioate-linked nucleotides or ssDNA.<br />

i – it is also a DNA 3’-phosphomonoesterase and 3’-repair diesterase.<br />

j – selectively digests the 5’-phosphorylated strand of dsDNA. Exhibits greatly reduced activity on ssDNA and non-phosphorylated DNA;<br />

has limited activity at gaps in DNA and no activity at nicks.<br />

ss – single-stranded.<br />

ds – double-stranded.<br />

dNMP – deoxyribonucleoside monophosphate.<br />

NMP – ribonucleoside monophosphate.<br />

AP – apurinic/apyrimidinic.<br />

SSCP – single-stranded conformation polymorphism.<br />

Heating at<br />

80°C for 15 min<br />

Heating at<br />

70°C for 10 min<br />

Heating at<br />

80°C for 15 min<br />

EN0141 257<br />

EN0581/2 258<br />

EN0191 259<br />

EN0561/2 260


DNase I, RNase-free<br />

#EN0521 1000 u (1 u/μl)<br />

#EN0523 HC,1000 u (50 u/μl)<br />

Both supplied with:<br />

10X Reaction Buffer with MgCl 2 1 ml<br />

50 mM EDTA 1 ml<br />

#EN0525 1000 u (1 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer with MgCl2 1 ml<br />

10X Reaction Buffer w/o MnCl2 1 ml<br />

100 mM MnCl2 1 ml<br />

50 mM EDTA 1 ml<br />

#B43 10X Reaction Buffer with<br />

MgCl 2 for DNase I,<br />

RNase-free 1 ml<br />

Related Products<br />

RNA Polymerases pp.330-331<br />

RiboLock RNase Inhibitor p.271<br />

DNA Polymerase I p.246<br />

dNTP Sets p.408<br />

Modified Nucleotides p.413<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

<br />

<br />

References<br />

1. <br />

A Laboratory Manual, the third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York, 2001.<br />

2. Kienzle, N., et al., DNase I treatment is a prerequisite for<br />

the amplification of cDNA from episomal-based genes,<br />

BioTechniques, 20, 612-616, 1996.<br />

3. Anderson, S., Shotgun DNA sequencing using cloned<br />

DNaseI-generated fragments, Nucleic Acids Res., 9,<br />

3015-3027, 1981.<br />

4. <br />

5. Wiame, I., et al., Irreversible heat inactivation of DNase<br />

I without RNA degradation, BioTechniques, 29,<br />

252-256, 2000.<br />

Description<br />

DNase I iis an endonuclease that digests<br />

single- and double-stranded DNA. The enzyme<br />

hydrolyzes phosphodiester bonds producing<br />

mono- and oligodeoxyribonucleotides with<br />

5’-phosphate and 3’-OH groups.<br />

The enzyme activity is strictly dependent on Ca2+ and is activated by Mg2+ or Mn2+ ions<br />

2+ , DNase I cleaves<br />

each strand of dsDNA independently, in a<br />

statistically random fashion (1);<br />

2+ , the enzyme cleaves<br />

both DNA strands at approximately the same<br />

site, producing DNA fragments with bluntends<br />

or with overhang termini of only one or<br />

two nucleotides (1).<br />

Features<br />

Recombinant enzyme.<br />

Purified from non-animal host with a lower<br />

level of intrinsic RNases.<br />

Applications<br />

Preparation of DNA-free RNA (1).<br />

Removal of template DNA following in vitro<br />

transcription (1).<br />

Preparation of DNA-free RNA prior to<br />

RT-PCR (2).<br />

DNA labeling by nick-translation in<br />

conjunction with DNA Polymerase I (1).<br />

Studies of DNA-protein interactions by<br />

DNase I, RNase-free footprinting (1).<br />

Generation of a library of randomly<br />

overlapping DNA inserts. Reaction buffer<br />

containing Mn2+ is used (3).<br />

5’<br />

3’<br />

dsDNA<br />

P<br />

P – phosphate<br />

3’<br />

5’<br />

P P P<br />

5’ 3’<br />

5’<br />

3’<br />

5’<br />

3’<br />

dsDNA<br />

3’ OH<br />

5’ P<br />

P 5’<br />

OH 3’<br />

P<br />

Mg 2+<br />

DNase I activity in the presence of Mg2+ or Mn2+ P 5’ 3’ OH P 5’ 3’<br />

OH 3’<br />

P – phosphate<br />

5’ P OH 3’ 5’<br />

.<br />

P<br />

Mn 2+<br />

3’<br />

5’<br />

3’ OH<br />

5’ P<br />

Concentration<br />

1 u/μl<br />

50 u/μl, HC<br />

Source<br />

E.coli cells with a cloned gene encoding bovine<br />

DNase I.<br />

<strong>Molecular</strong> Weight<br />

29 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme completely degrades<br />

1 μg of plasmid DNA in 10 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 40 mM Tris-HCl (pH 8.0), 10 mM<br />

MgSO4, 1 mM CaCl2, 1 μg of pUC19 DNA. One<br />

DNase I unit is equivalent to 0,3 Kunitz unit (4).<br />

Storage Buffer<br />

The enzyme is supplied in: 50 mM Tris-HCl<br />

(pH 7.5), 10 mM CaCl2 and 50% (v/v) glycerol.<br />

10X Reaction Buffer with MgCl2 100 mM Tris-HCl (pH 7.5 at 25°C),<br />

25 mM MgCl2, 1 mM CaCl2. 10X Reaction Buffer without MnCl2 100 mM Tris-HCl (pH 7.5 at 25°C), 1 mM CaCl2. Recommended concentration of MnCl2 in<br />

1X reaction buffer is 10 mM.<br />

Inhibition and Inactivation<br />

<br />

(e.g., Zn) in millimolar concentrations,<br />

SDS (even at concentrations less than<br />

0.1%), reducing agents (DTT and<br />

-mercaptoethanol), ionic strength above<br />

50-100 mM.<br />

<br />

the presence of EGTA or EDTA (use at least 1<br />

mol of EGTA/EDTA per 1 mol of Mn2+ /Mg2+ (5)).<br />

Note<br />

<br />

Mix gently by inverting the tube. Do not<br />

vortex.<br />

Protocols and Recommendations<br />

» 4.6. Removal of template DNA after in vitro<br />

transcription p.323<br />

» 4.7. Removal of genomic DNA from RNA<br />

preparations p.323<br />

» 6.3.1. Radioactive DNA labeling by<br />

nick-translation p.350<br />

» 6.3.2. Non-radioactive DNA labeling by<br />

nick-translation p.350<br />

www.thermoscientific.com/onebio 255


256<br />

Endonuclease IV, E.coli (Endo IV)<br />

#EN0591 100 u (2 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 1 ml<br />

Related Products<br />

Uracil-DNA Glycosylase (UDG, UNG) p.273<br />

Exonuclease I (Exo I) p.258<br />

Water, nuclease-free p.420<br />

www.thermoscientific.com/onebio<br />

Description<br />

Endonuclease IV (Endo IV) recognizes apurinic/<br />

apyrimidinic (AP) sites of dsDNA and cleaves<br />

the phosphodiester bond 5’ to the lesion<br />

generating a hydroxyl group at the 3’-terminus.<br />

The enzyme can also act as a 3’-diesterase that<br />

is able to release 3’-phosphoglycolate or<br />

3’-phosphate from the damaged ends of dsDNA (1).<br />

Endo IV also demonstrates 3’5’ exonuclease<br />

activity. The rate of enzyme activity is<br />

sensitive to ionic strength, metal ions, EDTA,<br />

and reducing conditions. Substrates with<br />

3’-recessed ends are preferred substrates for<br />

the 3’5’ exonuclease activity (2).<br />

The enzyme has no requirement for Mg 2+ but is<br />

more active in the presence of Mg 2+ .<br />

Applications<br />

Studies of DNA damage and repair (3, 4, 5).<br />

Single cell electrophoresis (comet assay) (6).<br />

Antitumor drug research (4).<br />

DNA structure research (5, 7).<br />

SNP analysis (8).<br />

Concentration<br />

2 u/μl<br />

5’<br />

3’<br />

dsDNA<br />

5’<br />

3’<br />

P – phosphate<br />

a – abasic site<br />

P-a-P<br />

OH<br />

Endonuclease IV activity.<br />

P-a-P<br />

3’<br />

5’<br />

3’<br />

5’<br />

Source<br />

E.coli cells with a cloned nfo gene.<br />

<strong>Molecular</strong> Weight<br />

31.6 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme relaxes 1 μg of depurinated,<br />

supercoiled plasmid DNA in 30 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 50 mM Tris-acetate (pH 7.5),<br />

50 mM KCl, 1 mM EDTA, 0.05% (v/v) Triton<br />

X-100 and<br />

2 μg of partially depurinated pUC19 DNA.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

50 mM Tris-acetate (pH 7.7), 50 mM KCl,<br />

1 mM DTT, 0.05% (v/v) Triton X-100 and<br />

50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

500 mM Tris-acetate (pH 7.5), 500 mM KCl,<br />

10 mM EDTA, 0.5% (v/v) Triton X-100.<br />

Inhibition and Inactivation<br />

<br />

EDTA during the reaction, but becomes<br />

sensitive to even submillimolar quantities of<br />

chelators when no DNA substrate is present.<br />

<br />

References<br />

1. Escherichia coli endonuclease<br />

<br />

2. Kerins, S.M., et al., Characterization of an endonuclease IV<br />

<br />

3048-3054, 2003.<br />

3. Demple, B., Harrison, L., Repair of oxidative damage to<br />

DNA: Enzymology and biology, Annu. Rev. Biochem., 63,<br />

915-948, 1994.<br />

4. In vitro detection of endonuclease<br />

IV – specific DNA damage formed by bleomycin in vivo,<br />

Nucleic Acids Res., 24, 885-889, 1996.<br />

5. <br />

formamidopyrimidine lesions Fapy.dA and Fapy.dG in DNA<br />

using endonuclease IV, Biochemistry, 43,<br />

13397-13403, 2004.<br />

6. Collins, A.R., The comet assay for DNA damage and repair,<br />

Molec. Biotechnol., 26, 249-261, 2004.<br />

7. <br />

endonuclease IV and its DNA complex: double-nucleotide<br />

flipping at abasic sites and three-metal-ion catalysis, Cell,<br />

98, 397-408, 1999.<br />

8. Kutyavin I.V., et al., A novel endonuclease IV post-PCR<br />

genotyping system, Nucleic Acids Res., 29, 1-9, 2006.


Endonuclease V, T.maritima (Endo V)<br />

#EN0141 250 u (5 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 1 ml<br />

Related Products<br />

dNTP Sets and Mixes p.408<br />

dUTP p.409<br />

dITP p.410<br />

Water, nuclease-free p.420<br />

References<br />

1. <br />

endonuclease V from <strong>Thermo</strong>toga maritima: recognition<br />

and strand nicking mechanism, Biochemistry, 40,<br />

8738-8748, 2001.<br />

2. Hitchcock, T.M., et al., Cleavage of deoxyoxanosinecontaining<br />

oligodeoxyribonucleotides by bacterial<br />

endonuclease V, Nucleic Acids Res., 32,<br />

4071-4080, 2004.<br />

3. Pincas, H., et al., High sensitivity EndoV mutation scanning<br />

through real-time ligase proofreading, Nucleic Acids Res,<br />

32, 148, 2004.<br />

4. <br />

scanning method especially suited for analysis of<br />

neoplastic tissue, Oncogene, 21, 1909-1921, 2002.<br />

Description<br />

Endonuclease V, T.maritima (Endo V), is a<br />

3’-endonuclease involved in DNA repair which<br />

initiates removal of deaminated bases from<br />

damaged DNA, including uracil, hypoxanthine<br />

and xanthine.<br />

Endonuclease V is also active toward abasic<br />

sites and urea sites, base pair mismatches, flap<br />

and pseudo Y structures, and small insertions/<br />

deletions in DNA molecules. The cleavage site<br />

generated by Endonuclease V is at the second<br />

phosphodiester bond 3’ to a lesion. When<br />

the enzyme is in excess, the primary nicked<br />

products experience a second nicking event on<br />

the complementary strand, leading to a doublestranded<br />

break. At low concentrations, however,<br />

Endonuclease V first nicks a DNA strand at the<br />

lesions located closer to the 5’-end of DNA<br />

molecule. Single-stranded DNA is cleaved with<br />

much lower efficiency. Mg 2+ or Mn 2+ ions are<br />

required for enzyme activity (1, 2, 3).<br />

Features<br />

Temperature optimum of activity at 65-70°C.<br />

Applications<br />

High-throughput methods for mutation<br />

research (3, 4).<br />

Studies in mutagenesis and DNA repair.<br />

Mismatch cleavage.<br />

Genotyping.<br />

5’<br />

3’<br />

dsDNA<br />

5’<br />

3’<br />

P – phosphate<br />

X – nucleoside with deaminated base, i.e. uracil,<br />

hypoxanthine, xantine; abasic site, urea site or<br />

mismatched nucleoside (A=G>T>C)<br />

N – nucleoside, adjacent to improper nucleoside<br />

Endonuclease V activity.<br />

P-X-P-N-P<br />

P-X-P-N-3’<br />

5’ P<br />

3’<br />

5’<br />

3’<br />

5’<br />

Use of this enzyme in certain applications may be covered by<br />

patents and may require a license.<br />

Concentration<br />

5 u/μl<br />

Source<br />

E.coli with a cloned nfi gene of <strong>Thermo</strong>toga<br />

maritima.<br />

<strong>Molecular</strong> Weight<br />

25 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme relaxes one μg of<br />

depurinated, supercoiled plasmid DNA in<br />

30 min at 65°C. Enzyme activity is assayed in<br />

the following mixture: 25 mM HEPES-NaOH<br />

(pH 7.4), 5 mM MgCl2, 5 mM DTT, 2% (v/v)<br />

glycerol, 2 μg of depurinated pUC19 DNA.<br />

Storage Buffer<br />

The enzyme is supplied in: 20 mM HEPES-NaOH<br />

(pH 7.4), 5 mM DTT, 50 mM NaCl,<br />

0.1% (v/v) Triton X-100 and 50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

250 mM HEPES-NaOH (pH 7.4 at 25°C),<br />

50 mM MgCl2, 50 mM DTT, 20% glycerol.<br />

Inhibition and Inactivation<br />

<br />

described.<br />

Inactivated by heating in boiling water<br />

bath for 10 min, preferably in the<br />

presence of EDTA.<br />

www.thermoscientific.com/onebio 257


258<br />

Exonuclease I (Exo I)<br />

#EN0581 4000 u (20 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 1 ml<br />

#EN0582 20,000 u (20 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 5x1 ml<br />

Related Products<br />

FastAP <strong>Thermo</strong>sensitive Alkaline<br />

Phosphatase p.242<br />

Endonuclease IV, E.coli (Endo IV) p.256<br />

Water, nuclease-free p.420<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying enzymes<br />

in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

» 4.8. PCR product clean-up prior to<br />

sequencing p.323<br />

www.thermoscientific.com/onebio<br />

Description<br />

Exonuclease I (ExoI) degrades singlestranded<br />

DNA in a 3’5’ direction, releasing<br />

deoxyribonucleoside 5’-monophosphates in<br />

a stepwise manner and leaving 5’-terminal<br />

dinucleotides intact. It does not cleave DNA<br />

strands with terminal 3’-OH groups blocked by<br />

phosphoryl or acetyl groups (1).<br />

Features<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for PCR.<br />

Applications<br />

Primer removal from PCR mixtures:<br />

– prior to PCR product sequencing (2),<br />

– for one-tube “megaprimer” PCR<br />

mutagenesis (3).<br />

Removal of single-stranded DNA containing a<br />

3’-hydroxyl terminus from nucleic acid mixtures.<br />

Assay for the presence of single-stranded<br />

DNA with a 3’-hydroxyl terminus (4).<br />

Concentration<br />

20 u/μl<br />

Source<br />

E.coli cells with a cloned E.coli sbcB gene.<br />

5’ 3’ OH<br />

sDNA or<br />

oligonucleotide Mg2+ 5’<br />

5’ NpN-OH 3’+ 5’ dNMPs<br />

Exonuclease I activity.<br />

3’ OH + 5’ dNMPs<br />

<strong>Molecular</strong> Weight<br />

54.5 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes the release of<br />

10 nmol of acid soluble nucleotides in 30 min<br />

at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 67 mM glycine-KOH (pH 9.5),<br />

6.7 mM MgCl 2, 1 mM DTT and<br />

0.17 mg/ml single-stranded [ 3 H]-DNA.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

20 mM Tris-HCl (pH 7.5), 0.1 mM EDTA,<br />

1 mM DTT and 50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

670 mM glycine-KOH (pH 9.5 at 25°C),<br />

67 mM MgCl2, 10 mM DTT.<br />

Inhibition and Inactivation<br />

<br />

Inactivated by heating at 80°C for 15 min.<br />

Note<br />

<br />

3’-overhangs in dsDNA.<br />

References<br />

1. Lehman, I.R., Nussbaum, A.L., The deoxyribonucleases of<br />

Escherichia coli. V. On the specificity of exonuclease<br />

<br />

2628-2636, 1964.<br />

2. Werle, E., et al., Convenient single-step, one tube<br />

purification of PCR products for direct sequencing, Nucleic<br />

Acids Res., 22, 4354-4355, 1994.<br />

3. Nabavi S., Nazar R.N., Simplified one-tube “megaprimer”<br />

polymerase chain reaction mutagenesis, Anal Biochem., 2,<br />

346-348, 2005.<br />

4. <br />

enzyme of Escherichia coli K-12 by Ca 2+ <br />

254, 8646-8652, 1979.<br />

5. Sasaki, Y., Miyoshi, D. and Sugimoto, N., Regulation of<br />

DNA nucleases by molecular crowding., Nucleic Acids<br />

Res., 35, 4086-4093, 2007.


Exonuclease III (Exo III)<br />

#EN0191 4000 u (200 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 0.2 ml<br />

Related Products<br />

S1 Nuclease p.269<br />

Nicking Enzymes p.155<br />

Glycogen p.423<br />

Water, nuclease-free p.420<br />

References<br />

1. Rogers, S.G., Weiss, B., Exonuclease III of Escherichia<br />

coli K-12, an AP endonuclease, Methods Enzymol., 65,<br />

201-211, 1980.<br />

2. Escherichia coli<br />

Exonuclease III, Anal. Biochem., 209, 238-246, 1993.<br />

3. Henikoff, S., Unidirectional digestion with exonuclease III<br />

creates targeted breakpoints for DNA sequencing, Gene,<br />

28, 351-359, 1984.<br />

4. Guo, Li-He., Wu, R., New rapid methods for DNA<br />

sequencing based on exonuclease III digestion<br />

followed by repair synthesis, Nucleic Acids Res., 10,<br />

2065-2084, 1982.<br />

5. Vandeyar, M.A., et al., A simple and rapid method for the<br />

selection of oligodeoxynucleotide-directed mutants, Gene,<br />

65, 129-133, 1988.<br />

6. Li, Ch., Evans, R.M., Ligation independent cloning<br />

irrespective of restriction site compatibility, Nucleic Acids<br />

Res., 25, 4165-4166, 1997.<br />

7. Eun, H.-M. Enzymology Primer for Recombinant DNA<br />

Technology, Academic Press. Inc., 1996.<br />

8. <br />

of exonuclease III by varying the sodium chloride<br />

concentration, BioTechniques, 7, 932-933, 1989.<br />

Description<br />

Exonuclease III (Exo III) exhibits four different<br />

catalytic activities (1):<br />

5’ exodeoxyribonuclease activity specific<br />

for double-stranded DNA:<br />

Exo III degrades dsDNA from blunt<br />

ends, 5’-overhangs or nicks, releasing<br />

5’-mononucleotides from the 3’-ends of DNA<br />

strands and producing stretches of singlestranded<br />

DNA. It is not active on 3’-overhang<br />

ends of DNA that are at least four bases long<br />

and do not carry a 3’-terminal C-residue (2); on<br />

single-stranded DNA, or on phosphorothioatelinked<br />

nucleotides.<br />

<br />

Exo III removes the 3’-terminal phosphate<br />

and generates a 3’-OH group.<br />

<br />

Exo III degrades the RNA strand in RNA-DNA<br />

hybrids.<br />

<br />

Exo III cleaves phosphodiester bonds at<br />

apurinic or apyrimidinic sites to produce<br />

5’-termini that are base-free deoxyribose<br />

5’-phosphate residues.<br />

Features<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for<br />

Restriction Enzymes.<br />

Applications<br />

Creation of unidirectional deletions in<br />

DNA fragments in conjunction with S1<br />

Nuclease (2, 3).<br />

Generation of a single-stranded template<br />

for dideoxy-sequencing of DNA (4).<br />

Site-directed mutagenesis (5).<br />

Cloning of PCR products (6).<br />

Preparation of strand-specific probes.<br />

5’<br />

3’<br />

dsDNA<br />

Exonuclease III activity.<br />

Mg 2+<br />

3’<br />

5’<br />

5’ 3’<br />

3’ 5’<br />

+<br />

5’ dNMPs<br />

Concentration<br />

200 u/μl<br />

Source<br />

E.coli cells with a cloned E.coli xth gene.<br />

<strong>Molecular</strong> Weight<br />

31 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes the release of<br />

1 nmol of acid soluble reaction products from<br />

E.coli [ 3H]-DNA in 30 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 50 mM Tris-HCl (pH 8.0), 5 mM MgCl2, 1 mM DTT and 0.05 mM sonicated E.coli<br />

[ 3H]-DNA. Storage Buffer<br />

The enzyme is supplied in:<br />

50 mM Tris-HCl (pH 8.0), 50 mM KCl,<br />

1 mM DTT and 50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

660 mM Tris-HCl (pH 8.0 at 30°C),<br />

6.6 mM MgCl2. Inhibition and Inactivation<br />

<br />

benzoate (50-90% inhibitory at 0.1 mM) (7).<br />

<br />

Note<br />

<br />

upon temperature, salt concentration<br />

and the molar ratio of DNA to enzyme<br />

in the reaction mixture (4, 8). Optimal<br />

reaction conditions should be determined<br />

experimentally.<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying enzymes<br />

in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

www.thermoscientific.com/onebio 259


260<br />

Lambda Exonuclease<br />

#EN0561 1000 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 1 ml<br />

#EN0562 5000 u (10 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 5x1 ml<br />

Related Products<br />

T4 Polynucleotide Kinase (T4 PNK)<br />

FastAP Thernosensitive Alkaline<br />

p.243<br />

Phosphatase p.242<br />

Klenow Fragment p.247<br />

Water, nuclease-free p.420<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying<br />

enzymes in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

www.thermoscientific.com/onebio<br />

Description<br />

Lambda Exonuclease is a highly processive<br />

5’3’ exodeoxyribonuclease. It selectively<br />

digests the 5’-phosphorylated strand of<br />

double-stranded DNA. The enzyme exhibits<br />

low activity on single-stranded DNA and nonphosphorylated<br />

DNA, has no activity at nicks<br />

and limited activity at gaps in DNA (1, 2).<br />

Features<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for PCR.<br />

Applications<br />

Generating single-stranded PCR products for<br />

use in:<br />

– DNA sequencing (3),<br />

– analysis of DNA single-strand<br />

conformation polymorphism (SSCP) (4),<br />

– rolling circle amplification.<br />

Producing single-stranded DNA from doublestranded<br />

DNA fragments.<br />

Cloning of PCR products (5).<br />

Concentration<br />

10 u/μl<br />

Source<br />

E.coli cells with a cloned exo gene of phage<br />

lambda.<br />

HO 5’<br />

HO 3’<br />

dsDNA<br />

Mg 2+<br />

3’<br />

5’<br />

OH<br />

P<br />

HO 5’ 3’ OH<br />

+<br />

5’ dNMPs<br />

P – phosphate<br />

Lambda Exonuclease activity.<br />

Use of this enzyme in certain applications may be covered by<br />

patents and may require a license.<br />

<strong>Molecular</strong> Weight<br />

26 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes the release of<br />

10 nmol of acid soluble reaction products from<br />

double-stranded substrate in 30 min at 37ºC.<br />

Enzyme activity is assayed in the following<br />

mixture: 67 mM glycine-KOH (pH 9.4),<br />

2.5 mM MgCl2, 0.1% (v/v) Triton X-100 and<br />

20 μg/ml sonicated E.coli [³H]-DNA.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

25 mM Tris-HCl (pH 8.0), 0.1 mM EDTA,<br />

1 mM DTT, 50 mM NaCl, 0.1% (v/v) Triton X-100<br />

and 50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

670 mM glycine-KOH (pH 9.4), 25 mM MgCl2, 0.1% (v/v) Triton X-100.<br />

Inhibition and Inactivation<br />

<br />

concentration (0.2 M KCl, 0.1 M NaCl),<br />

p-chloromercuribenzoate.<br />

<br />

References<br />

1. :<br />

<br />

679-686, 1967.<br />

2. <br />

interaction of lambda exonuclease with the ends of DNA,<br />

Nucleic Acids Res., 27, 3057-3063, 1999.<br />

3. Higuchi, R.G., Ochman, H., Production of single-stranded<br />

DNA templates by exonuclease digestion following the<br />

polymerase chain reaction, Nucleic Acids Res., 17,<br />

5865, 1989.<br />

4. Schwieger, F., Tebbe, C.C., A new approach to utilize PCRsingle-stranded-conformation<br />

polymorphism for 16S rRNA<br />

gene-based microbial community analysis, Appl. Environ.<br />

Microbiol. 64, 4870-4876, 1998.<br />

5. Tseng, H., DNA cloning without restriction enzyme and<br />

ligase, Biotechniques. 27, 1240-1244, 1999.


Ribonucleases (RNases)<br />

Table 2.5. Properties of ribonucleases (RNases).<br />

Ribonuclease Applications<br />

RNase A, DNase and<br />

protease-free<br />

RNase T1<br />

RNase A/T1 Mix<br />

RNase I<br />

RNase H<br />

PowerCut Dicer<br />

ss – single-stranded.<br />

ds – double-stranded.<br />

NMP – ribonucleoside monophosphate.<br />

<br />

DNA preparations.<br />

<br />

preparations.<br />

<br />

<br />

DNA or RNA.<br />

<br />

<br />

<br />

<br />

preparations.<br />

<br />

transcripts synthesized in vitro from DNA<br />

templates containing a “G-less cassette”.<br />

<br />

<br />

preparations.<br />

<br />

<br />

<br />

preparations.<br />

<br />

<br />

second strand cDNA.<br />

<br />

synthesis.<br />

<br />

of mRNA after the hybridization with<br />

oligo(dT).<br />

<br />

in vitro polyadenylation reaction<br />

products.<br />

<br />

studies.<br />

Reaction<br />

catalyzed<br />

Cleavage of<br />

phosphodiester bonds<br />

between 3’-C or 3’-U<br />

residues and the<br />

5’-OH residue of an<br />

adjacent nucleotide.<br />

Cleavage of<br />

phosphodiester bonds<br />

between 3’-G residues<br />

and the 5’-OH residue of<br />

an adjacent nucleotide.<br />

Combines the activities of<br />

RNase A and RNase T1.<br />

Cleavage of all<br />

phosphodiester bonds in<br />

an RNA template.<br />

Cleavage of RNA<br />

phosphodiester bonds in<br />

RNA-DNA hybrids.<br />

Cleavage of all<br />

phosphodiester bonds<br />

in RNA.<br />

Substrate<br />

ssRNA<br />

ssRNA<br />

ssRNA<br />

Reaction<br />

products<br />

3’-CMP,<br />

3’-UMP,<br />

oligonucleotides<br />

with terminal<br />

3’-CMP, 3’-UMP<br />

3’-GMP,<br />

oligonucleotides<br />

with terminal<br />

3’-GMP<br />

3’-CMP,<br />

3’-UMP,<br />

3’-GMP,<br />

oligonucleotides<br />

with terminal<br />

3’-CMP, 3’-UMP<br />

or 3’-GMP<br />

ssRNA 3’-NMP<br />

RNA in<br />

RNA-DNA<br />

hybrids<br />

dsRNA<br />

5’-P<br />

oligonucleotides<br />

25-27 bp<br />

fragments<br />

Inactivation Cat. # Page<br />

Spin column<br />

or phenol/<br />

chloroform<br />

extraction<br />

Spin column<br />

or phenol/<br />

chloroform<br />

extraction<br />

Spin column<br />

or phenol/<br />

chloroform<br />

extraction<br />

Heating at<br />

100°C, 30 min<br />

Heating at<br />

65°C, 10 min<br />

Spin column<br />

or phenol/<br />

chloroform<br />

extraction<br />

EN0531 262<br />

EN0541/2 263<br />

EN0551 264<br />

EN0601/2 265<br />

EN0201/2 266<br />

F-602S/L 267<br />

www.thermoscientific.com/onebio 261


262<br />

RNase A, DNase and Protease-free<br />

#EN0531 10 mg (10 mg/ml)<br />

Related Products<br />

RNase T1 p.263<br />

RNase A/T1 Mix p.264<br />

RNase I p.265<br />

Proteinase K (recombinant), PCR grade p.270<br />

Plasmid Miniprep Kit p.304<br />

Genomic DNA Purification Kit p.311<br />

<br />

<br />

<br />

<br />

Water, nuclease-free p.420<br />

www.thermoscientific.com/onebio<br />

Description<br />

RNase A is an endoribonuclease that specifically<br />

degrades single-stranded RNA at C and U<br />

residues.<br />

The enzyme cleaves the phosphodiester bond<br />

between the 5’-ribose group of a particular<br />

nucelotide and the phosphate group attached<br />

to the 3’-ribose of an adjacent pyrimidine<br />

nucleotide. The resulting 2’, 3’-cyclic<br />

phosphate is hydrolyzed to the corresponding<br />

3’-nucleoside phosphate (1, 2).<br />

Features<br />

Guaranteed DNase free not necessary to heat<br />

RNase A for optimal activity.<br />

Applications<br />

Plasmid and genomic DNA preparation (3, 4).<br />

Removal of RNA from recombinant protein<br />

preparations.<br />

Ribonuclease protection assays. Used in<br />

conjunction with RNase T1 (3).<br />

Mapping single-base mutations in DNA or<br />

RNA (5, 6).<br />

Concentration<br />

10 mg/ml.<br />

Protein concentration is determined<br />

by measuring the absorbance at 278<br />

nm using molar absorption coefficient<br />

=9800 M -1 cm -1 (7).<br />

Source<br />

Bovine pancreas.<br />

<strong>Molecular</strong> Weight<br />

13.7 kDa monomer.<br />

5’ pPupPupPupPypPypPupPupPupPupPypPupPypPupPupPu 3’<br />

ssRNA<br />

pPupPupPupPyp + Pyp + PupPupPupPupPyp + PupPyp + PupPupPu<br />

Pu – purine ribonucleoside (i.e. A, G)<br />

Py – pyridine ribonucleoside (i.e. C, U)<br />

p – phosphate<br />

RNase A activity.<br />

Definition of Activity Unit<br />

One unit of the enzyme causes an increase in<br />

absorbance of 1.0 at 260 nm when yeast RNA<br />

is hydrolyzed at 37°C and pH 5.0.<br />

Fifty units are approximately equivalent to<br />

1 Kunitz unit (8).<br />

Specific Activity<br />

>5000 u/mg protein (>100 Kunitz units/mg<br />

protein).<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

50 mM Tris-HCl (pH 7.4) and 50% (v/v) glycerol.<br />

Inhibition and Inactivation<br />

<br />

mamalian ribonuclease inhibitor, e.g.,<br />

RiboLock RNase Inhibitor (#EO0381).<br />

Other inhibitors:<br />

uridine 2’,3’-cyclic vanadate,<br />

5’-diphosphoadenosine 3’-phosphate and<br />

5’-diphosphoadenosine 2’-phosphate (2),<br />

SDS, diethyl pyrocarbonate,<br />

4 M guanidinium thiocyanate plus 0.1 M<br />

2-mercaptoethanol and heavy metal ions.<br />

<br />

spin column or phenol/chloroform extraction.<br />

Note<br />

<br />

1-100 μg/ml depending on the application.<br />

<br />

range of reaction conditions. At low salt<br />

concentrations (0 to 100 mM NaCl), RNase<br />

A cleaves single-stranded and doublestranded<br />

RNA as well the RNA strand<br />

in RNA-DNA hybrids. However, at NaCl<br />

concentrations of 0.3 M or higher, RNase A<br />

specifically cleaves single-stranded RNA (9).<br />

References<br />

1. Blackburn, P., Moore S., Pancreatic ribonuclease,<br />

The Enzymes, V, (Boyer, P.D, Ed.), Academic Press, New<br />

York, the third edition, vol. 15, 317-433, 1982.<br />

2. Raines, R.T., Ribonuclease A, Chem. Rev., 98,<br />

1045-1065, 1998.<br />

3. <br />

Laboratory Manual, the third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York, 1.31-<br />

1.38, 2001.<br />

4. Sharma, R.C., et al., A rapid procedure for isolation<br />

of RNA-free genomic DNA from mammalian cells,<br />

BioTechniques, 14, 176-178, 1993.<br />

5. Myers R.M., et al., Detection of single base substitutions<br />

by ribonuclease cleavage at mismatches in RNA:DNA<br />

duplexes, Science 230, 1242-1246, 1985.<br />

6. Winter E., et al., A method to detect and characterize<br />

point mutations in transcribed genes: Amplification and<br />

overexpression of the mutant c-Ki-ras allele in human<br />

tumor cells, Proc. Natl. Acad. Sci. USA, 82, 7575-7579,<br />

1985.<br />

7. Sela, M., Anfinsen, C.B., Some spectrophotometric and<br />

polarimetric experiments with ribonuclease, Biochim.<br />

Biophys. Acta, 24, 229-235, 1957.<br />

8. Kunitz, M.A., A spectrophotometric method for the<br />

<br />

563-568, 1946.<br />

9. Ausubel, F.M., et al., Current Protocols in <strong>Molecular</strong><br />

<br />

York, 3.13.1, 1994-2005.


RNase T1<br />

#EN0541 100,000 u (1000 u/μl)<br />

#EN0542 500,000 u (1000 u/μl)<br />

Related Products<br />

RNase A p.262<br />

RNase A/T1 Mix p.264<br />

Plasmid Miniprep Kit p.304<br />

Genomic DNA Purification Kit p.311<br />

<br />

<br />

<br />

<br />

Proteinase K (recombinant), PCR grade p.270<br />

Water, nuclease-free p.420<br />

References<br />

1. Takahashi K., Moore S., Ribonuclease T1, The Enzymes,<br />

V, (Boyer, P.D, Ed.), Academic Press, New York, the third<br />

edition, vol. 15, 435-468, 1982.<br />

2. <br />

Laboratory Manual, the third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York, 2001.<br />

3. Sawadogo, M., Roeder, R.G., Factors involved in specific<br />

transcription by human RNA polymerase II: Analysis by a<br />

rapid and quantitative in vitro assay, Proc. Natl. Acad. Sci.<br />

USA, 82, 4394-4398, 1985.<br />

4. Eun, H-M., Enzymology Primer for Recombinant DNA<br />

Technology, Academic Press, Inc., 1996.<br />

Description<br />

RNase T1 is an endoribonuclease that<br />

specifically degrades single-stranded RNA at<br />

G residues. It cleaves the phosphodiester<br />

bond between 3’-guanylic residue and the<br />

5’-OH residue of adjacent nucleotide with the<br />

formation of corresponding intermediate<br />

2’, 3’-cyclic phosphate (1). The reaction<br />

products are 3’-GMP and oligonucleotides with<br />

a terminal 3’-GMP.<br />

RNase T1 does not require metal ions for activity.<br />

Applications<br />

Removal of RNA from DNA preparations.<br />

RNA sequencing (1).<br />

Ribonuclease protection assays. Used in<br />

conjunction with RNase A (2).<br />

Removal of RNA from recombinant protein<br />

preparations.<br />

Determination of the level of RNA transcripts<br />

synthesized in vitro from DNA templates<br />

containing a “G-less cassette” (3).<br />

Concentration<br />

1000 u/μl<br />

5’ pNpNpNpGpGpNpNpNpNpGpNpGpNpNpN 3’<br />

ssRNA<br />

pNpNpNpGp + GMP + NpNpNpNpGp<br />

+ NpGp + NpNpN<br />

N – any ribonucleoside, except G (i.e. A, C or U)<br />

G – guanosine<br />

p – phosphate<br />

RNase T1 activity.<br />

Source<br />

E.coli cells with a cloned rntA gene of<br />

Aspergillus oryzae.<br />

<strong>Molecular</strong> Weight<br />

11.2 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme causes an increase in<br />

absorbance of 1.0 at 260 nm in 15 min when<br />

yeast RNA is hydrolyzed at 37°C and pH 7.5.<br />

Enzyme activity is assayed in the following<br />

mixture: 50 mM Tris-HCl (pH 7.5), 2 mM EDTA,<br />

3 mg/ml yeast RNA.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

50 mM Tris-HCl (pH 7.4) and 50% (v/v) glycerol.<br />

Inhibition and Inactivation<br />

2+ , Ca2+ , Zn2+ , Fe2+ ,<br />

Cu2+ (MgCl2 at 100 mM concentration is<br />

approx. 40% inhibitory, CaCl2 at 10 mM is<br />

approx. 30% inhibitory);<br />

mononucleotides (2’-GMP, 3’-GMP, etc.);<br />

guanilyl-2’,5’-guanosine is a specific<br />

inhibitor (4).<br />

<br />

reliably removed by spin column or phenol/<br />

chloroform extraction.<br />

Recommendations for Use<br />

Reaction mixture for complete digestion of RNA:<br />

50 mM Tris-HCl (pH 7.5), 1 mM EDTA and 0.2 u RNase T1/μg RNA. Incubate at 37°C for 30 min.<br />

RNase digestion mixture for RNase protection assay (2):<br />

10 mM Tris-HCl (pH 7.5), 300 mM NaCl, 5 mM EDTA (pH 7.5), 40 μg/ml RNase A, 1000 u/ml RNase T1.<br />

www.thermoscientific.com/onebio 263


264<br />

RNase A/T1 Mix<br />

#EN0551 1 ml<br />

(2 mg/ml of RNase A and<br />

5000 u/ml of RNase T1)<br />

Related Products<br />

Genomic DNA Purification Kit p.311<br />

Plasmid Miniprep Kit p.304<br />

Proteinase K (recombinant), PCR grade p.270<br />

Water, nuclease-free p.420<br />

<br />

<br />

<br />

<br />

www.thermoscientific.com/onebio<br />

Description<br />

RNase A/T1 Mix combines the RNA degradation<br />

activity of both RNase A and RNase T1. The<br />

RNase A specifically hydrolyzes RNA at C and U<br />

residues; RNase T1 specifically hydrolyzes RNA<br />

at G residues (1).<br />

Features<br />

Higher level RNA degradation than with<br />

RNase A and RNase T1 separately.<br />

Guaranteed DNase free not necessary to heat<br />

the mix for optimal activity.<br />

Applications<br />

Removal of RNA from DNA preparations.<br />

Removal of RNA from recombinant protein<br />

preparations.<br />

Ribonuclease protection assays<br />

(see recommendations for use bellow).<br />

Concentration<br />

2 mg/ml (approx. 10,000 u/ml (200 Kunitz u/ml))<br />

of RNase A, 5000 u/ml of RNase T1.<br />

5’ pBpBpBpApApBpBpBpBpApBpApBpBpB 3’<br />

ssRNA<br />

5’ pBp + 3’ BMP + ApApBp+ ApBp + B<br />

B – pyridine ribonucleoside (i.e. C, U) or<br />

guanoside (i.e. G)<br />

A – adenosine<br />

p – phosphate<br />

RNase A/T1 Mix activity.<br />

Recommendations for Use<br />

RNase digestion mixture for RNase protection assay:<br />

10 mM Tris-HCl (pH 7.5), 300 mM NaCl,<br />

5 mM EDTA (pH 7.5), 20 μl of RNase A/T1 Mix per 1 ml of reaction mixture.<br />

Source<br />

RNase A: Bovine pancreas.<br />

RNase T1: E.coli cells with a cloned rntA gene<br />

of Aspergillus oryzae.<br />

Unit Definition for RNase A<br />

One unit of the enzyme causes an increase in<br />

absorbance of 1.0 at 260 nm when yeast RNA<br />

is hydrolyzed at 37°C and pH 5.0.<br />

Fifty units are approximately equivalent to<br />

1 Kunitz unit (3).<br />

Unit Definition for RNase T1<br />

One unit of the enzyme causes an increase in<br />

absorbance of 1.0 at 260 nm in 15 min when<br />

yeast RNA is hydrolyzed at 37°C and pH 7.5.<br />

Storage Buffer<br />

The enzymes are supplied in: 50 mM Tris-HCl<br />

(pH 7.4) and 50% (v/v) glycerol.<br />

Inhibition and Inactivation<br />

see pp.262-263.<br />

<br />

by spin column or phenol/chloroform extraction.<br />

References<br />

1. Ausubel, F.M., et al., Current Protocols in <strong>Molecular</strong><br />

<br />

York, 3.13.1-3.13.3, 1994-2005.<br />

2. <br />

Laboratory Manual, the third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York, 2001.<br />

3. Kunitz, M.A., A spectrophotometric method for the<br />

<br />

563-568, 1946.


RNase I<br />

#EN0601 1000 u (10 u/μl)<br />

#EN0602 5000 u (10 u/μl)<br />

Related Products<br />

RNase A/T1 Mix p.264<br />

Plasmid Miniprep Kit p.304<br />

Genomic DNA Purification Kit p.311<br />

Bovine Serum Albumin (BSA) p.422<br />

Water, nuclease-free p.420<br />

<br />

<br />

<br />

<br />

References<br />

1. Shen, V., Schlessinger, D., RNase I of Escherichia coli, The<br />

Enzymes (Boyer, P.D., Ed.), Academic Press Inc., New York,<br />

vol. 15B, 503-506, 1982.<br />

2. Zhu, L., Deutscher, M.P., The Escherichia coli rna gene<br />

encoding RNase I: sequence and unusual promoter<br />

structure, Gene, 119, 101-106, 1992.<br />

3. <br />

Laboratory Manual, the third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York, 2001.<br />

Description<br />

Ribonuclease I (RNase I), an endoribonuclease,<br />

preferentially hydrolyzes single-stranded RNA to<br />

nucleoside 3’-monophosphates via nucleoside<br />

2’,3’-cyclic monophosphate intermediates. The<br />

enzyme does not require any metal ions for<br />

activity.<br />

Features<br />

Stable and active under a wide variety of<br />

reaction conditions.<br />

Can be heat inactivated in 30 min at 100°C.<br />

Applications<br />

Removal of RNA from DNA solutions (2).<br />

Removal of RNA from recombinant protein<br />

preparations.<br />

Ribonuclease protection assays (3).<br />

Concentration<br />

10 u/μl<br />

Source<br />

E.coli cells with a cloned rna gene of E.coli.<br />

<strong>Molecular</strong> Weight<br />

29.6 kDa monomer.<br />

5’ 3’<br />

ssRNA<br />

RNase I activity.<br />

5’ NMPs<br />

Recommendations for Use<br />

Removal of RNA from DNA solutions.<br />

1. Add 15-20 u of RNase I per 1 μg of RNA. RNase I is 90% active within pH<br />

range 7.0-8.8 at salt concentration 100-200 mM. Incubation with RNase I<br />

can be performed simultaneously with the digestion of DNA by restriction<br />

endonucleases.<br />

2. Incubate at 37°C for 30 minutes.<br />

3. Purify DNA by spin column or phenol/chloroform extraction.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes degradation of<br />

100 ng of E.coli ribosomal RNA per second into<br />

acid-soluble nucleotides at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 20 mM Tris-acetate (pH 8.0),<br />

100 mM NaCl, 0.1 mM EDTA,<br />

0.01% (v/v) Triton X-100,<br />

40 μM E.coli ribosomal [ 3 H]-RNA.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

50 mM Tris-HCl (pH 8.0), 100 mM NaCl,<br />

0.01% (v/v) Triton X-100 and 50% (v/v) glycerol.<br />

Inhibition and Inactivation<br />

<br />

irreversibly inactivates the enzyme.<br />

<br />

reliably removed by spin column or phenol/<br />

chloroform extraction.<br />

Note<br />

<br />

effect on RNase I.<br />

<br />

<br />

the RNase T2 family.<br />

<br />

not inhibit RNase I, and may even slightly<br />

stimulate its activity and stabilize it against heat<br />

inactivation. Triton X-100 or BSA (at 0.1 mg/<br />

ml) may prevent RNase I from sticking to glass<br />

vessels when working with dilute solutions.<br />

<br />

www.thermoscientific.com/onebio 265


266<br />

RNase H<br />

#EN0201 100 u (5 u/μl)<br />

#EN0202 500 u (5 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 1 ml<br />

Related Products<br />

DNA Polymerase I p.246<br />

T4 DNA Ligase p.239<br />

T4 DNA Polymerase p.249<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

www.thermoscientific.com/onebio<br />

Description<br />

Ribonuclease H (RNase H) specifically degrades<br />

the RNA strand in RNA-DNA hybrids. It does<br />

not hydrolyze the phosphodiester bonds within<br />

single-stranded and double-stranded DNA and<br />

RNA.<br />

Applications<br />

Removal of mRNA prior to synthesis of second<br />

strand cDNA (1).<br />

RT-PCR and RT-qPCR: removal of RNA after<br />

first strand cDNA synthesis.<br />

Removal of the poly(A) sequences of mRNA<br />

after hybridization with oligo(dT) (2).<br />

Site-specific cleavage of RNA (3).<br />

Studies of in vitro polyadenylation reaction<br />

products (4).<br />

Concentration<br />

5 u/μl<br />

Source<br />

E.coli cells with a cloned rnh gene of E.coli.<br />

RNA 5’ RpRpRpRpRpRpRpRpRp 3’<br />

DNA 3’ DpDpDpDpDpDpDpDpDp 5’<br />

RNA/DNA duplex<br />

RpR + pRpRpRpR + pRpRpRp+ ssDNA<br />

R – ribonucleoside<br />

D – deoxyribonucleoside<br />

p – phosphate<br />

RNase H activity.<br />

<strong>Molecular</strong> Weight<br />

18.4 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes the formation of<br />

1 nmol of acid soluble products in 20 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 20 mM Tris-HCl (pH 7.8), 40 mM KCl,<br />

8 mM MgCl2, 1 mM DTT,<br />

24 μM [ 3H]-poly(A)·poly(dT), 0.03 mg/ml BSA,<br />

4% (v/v) glycerol.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

25 mM HEPES-KOH (pH 8.0), 50 mM KCl,<br />

0.1 mM EDTA, 1 mM DTT, 0.1 mg/ml BSA and<br />

50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

200 mM Tris-HCl (pH 7.8), 400 mM KCl,<br />

80 mM MgCl2, 10 mM DTT.<br />

Inhibition and Inactivation<br />

<br />

reagents.<br />

<br />

References<br />

1. <br />

method for generating cDNA libraries, Gene, 25,<br />

263-269, 1983.<br />

2. Davis, R., et al., Tandemly repeated exons encode<br />

81-base repeats in multiple, developmentally regulated<br />

Schistosoma mansoni transcripts, Mol. Cell Biol., 8,<br />

4745-4755, 1988.<br />

3. Donis-Keller, H., Site specific enzymatic cleavage of RNA,<br />

Nucleic Acids Res., 7, 179-192, 1979.<br />

4. Goodwin, E.C., Rottman, F.M., The use of RNase H and<br />

poly(A) junction oligonucleotides in the analysis of in vitro<br />

polyadenylation reaction products, Nucleic Acids Res., 20,<br />

916, 1992.


PowerCut Dicer<br />

(Not available in USA)<br />

#F-602S 60 u (1 u/μl)<br />

Supplied with:<br />

5x PowerCut Dicer Reaction Buffer 500 μl<br />

#F-602L 300 u (1 u/μl)<br />

Supplied with:<br />

5x PowerCut Dicer Reaction Buffer 500 μl<br />

Related Products<br />

Replicator RNAi Kit p.329<br />

Phi6 dsRNA p.387<br />

NTP Set p.411<br />

dNTPs p.408<br />

GeneRuler Ultra Low Range DNA Laders p.359<br />

T7 RNA Polymerase p.330<br />

TranscriptAid T7 High Yield Transcription Kit p.328<br />

Phi6 RNA replicase p.332<br />

References<br />

1. Calegari, F. et al., Tissue-specific RNA interference in<br />

postimplantation mouse embryos with endoribonucleaseprepared<br />

short interfering RNA, Proc. Natl. Acad. Sci. USA,<br />

99, 14236-14240, 2002.<br />

<br />

large dsRNAs into siRNAs suitable for gene silencing, Nat.<br />

Biotechnol., 21, 324-328, 2003.<br />

3. Yang D. et al., Short RNA duplexes produced by hydrolysis<br />

with Escherichia coli RNase III mediate effective RNA<br />

interference in mammalian cells, Proc. Natl. Acad. Sci.<br />

USA, 99, 9942-9947, 2002.<br />

Description<br />

PowerCut Dicer is a novel recombinant<br />

endoribonuclease originating from Giardia<br />

intestinalis. It cleaves dsRNA to small interfering<br />

RNA (siRNA) with a 100% efficiency and<br />

outperforms all other available siRNA producing<br />

enzymes. The resulting siRNA fragments are<br />

25-27 nucleotides long and are capable of<br />

triggering RNA interference when transfected<br />

into cells. Therefore the siRNA fragments<br />

generated with the PowerCut Dicer enzyme are<br />

ideal for use in gene silencing studies. Pooled<br />

siRNAs the siRNA fragments generated with the<br />

PowerCut Dicer enzyme are also preferred over<br />

synthetic siRNA oligos if the target sequence<br />

cannot be specified well enough or when the<br />

sequence is prone to variations (e.g., viral<br />

targets).<br />

PowerCut Dicer combined with the Replicator<br />

RNAi Kit are a powerful combination for<br />

generating high amounts of siRNA from<br />

in vitro-produced dsRNA.<br />

Features<br />

100% cleavage efficiency for maximal siRNA<br />

yields.<br />

Will not overdigest siRNAs.<br />

Produces 25-27 nucleotide-long siRNAs with<br />

strong silencing function.<br />

Free of contaminating RNase, endo- and<br />

exonuclease activities.<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

PowerCut Dicer<br />

Application<br />

For production of siRNA ideal for gene silencing<br />

studies.<br />

Source<br />

E.coli cells with a cloned gene of PowerCut<br />

Dicer gene from Giardia intestinalis.<br />

Concentration<br />

1 u/μl<br />

Definition of Activity Unit<br />

One unit is defined as the amount of enzyme that<br />

is needed to completely cleave 1 μg of 192 bp<br />

double stranded RNA substrate to siRNA<br />

in 16 hours at 37°C.<br />

Storage Buffer<br />

Enzyme is supplied in: 50 mM Tris-HCl<br />

(pH 8.0 at 5°C), 50 mM NaCl, 5 mM MgCl2,<br />

0.2 mg/ml BSA, 50% glycerol.<br />

Conventional<br />

dicer<br />

RNase III<br />

M 1 2 3 1 2 3 1 2 3<br />

Demonstration of efficient generation of siRNAs without<br />

overdigestion using the <strong>Thermo</strong> <strong>Scientific</strong> PowerCut Dicer.<br />

Three different dsRNA substrates (Furin, eGFP and Phi6 dsRNA) were<br />

cleaved using PowerCut Dicer and two other commercial enzymes used<br />

for producing siRNAs (from major suppliers). Reactions were performed<br />

according to the manufacturers’ instructions. PowerCut Dicer cleaved<br />

all the three substrates with 100% efficiency. The conventional dicer<br />

gave only partial digestion, whereas RNase III also digested part of the<br />

produced siRNAs resulting in lower yield.<br />

1 – Furin dsRNA cleaved with appropriate enzyme.<br />

2 – eGFP dsRNA cleaved with appropriate enzyme.<br />

3 – Phi6 dsRNA cleaved with appropriate enzyme.<br />

M – a 27-bp RNA marker.<br />

www.thermoscientific.com/onebio 267


268<br />

Sugar Nonspecific Nucleases<br />

Table 2.6. Properties of sugar nonspecific nucleases.<br />

Nuclease Applications Reaction catalyzed Substrate Reaction products Inactivation Cat. # Page<br />

Micrococcal<br />

Nuclease<br />

S1 Nuclease<br />

www.thermoscientific.com/onebio<br />

<br />

crude cell-free extracts.<br />

<br />

<br />

<br />

for structure-function studies.<br />

<br />

<br />

<br />

<br />

deletions in DNA fragments.<br />

* – the enzyme activity is strictly dependent on Ca 2+ .<br />

ss – single-stranded.<br />

ds – double-stranded.<br />

dNMP – deoxyribonucleoside monophosphate.<br />

NMP – ribonucleoside monophosphate.<br />

Micrococcal Nuclease<br />

Degradation of nucleic<br />

acids preferentially at AT or<br />

AU-rich regions.<br />

Degradation of ss nucleic<br />

acids. Five times more<br />

active on DNA than on RNA.<br />

DNA<br />

RNA<br />

ssDNA<br />

ssRNA<br />

#EN0181 8000 u (300 u/μl) Description<br />

Micrococcal Nuclease (S7 Nuclease) is a<br />

relatively nonspecific endo-exonuclease that<br />

digests single-stranded and double-stranded<br />

nucleic acids, but is more active on singlestranded<br />

substrates. Cleavage of DNA or RNA<br />

occurs preferentially at AT or AU-rich regions<br />

yielding mononucleotides and oligonucleotides<br />

with terminal 3’-phosphates. The enzyme<br />

activity is strictly dependent on Ca 2+ .<br />

5’<br />

3’<br />

dsDNA<br />

5’<br />

ssDNA/RNA<br />

Ca 2+<br />

3’dNMPs + 3’oligonucleotides<br />

Ca 2+<br />

Micrococcal nuclease activity.<br />

3’<br />

5’<br />

3’NMPs or 3’dNMPs + 3’oligonucleotides<br />

3’<br />

Applications<br />

Hydrolysis of nucleic acids in crude cell-free<br />

extracts (1).<br />

Sequencing of RNA (2).<br />

Studies of chromatin structure (3).<br />

Protein folding and structure-function<br />

studies (4, 5).<br />

Concentration<br />

300 u/μl<br />

Source<br />

E.coli cells with a cloned nuc gene encoding<br />

Staphylococcus aureus extracellular nuclease<br />

(micrococcal nuclease).<br />

3’-dNMPs<br />

3’-oligonucleotides<br />

3’-NMPs<br />

3’-oligonucleotides<br />

5’-dNMPs<br />

5’-oligonucleotides<br />

5’-NMPs<br />

5’-oligonucleotides<br />

Addition of<br />

EGTA or EDTA*<br />

Heating at<br />

70°C for<br />

10 min in the<br />

presence of<br />

EDTA<br />

EN0181 268<br />

EN0321 269<br />

<strong>Molecular</strong> Weight<br />

16.9 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme releases 1.0 A260 unit of<br />

acid-soluble products in 30 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 100 mM sodium-glycine (pH 8.6),<br />

10 mM CaCl2 and 4.5 mM calf thymus DNA.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

20 mM Tris-HCl (pH 7.6), 50 mM NaCl and<br />

50% (v/v) glycerol.<br />

Inhibition and Inactivation<br />

<br />

3’ 5’-diphosphate.<br />

<br />

References<br />

1. <br />

dependent translation system from reticulocyte lysates,<br />

<br />

2. <br />

from Staphylococcus aureus and Neurospora crassa<br />

discriminate between uridine and cytidine, Nucleic Acids<br />

Res., 6, 3481-3490, 1979.<br />

3. <br />

<br />

21, 127-137, 1989.<br />

4. Tucker, P.W., et al., Staphylococcal nuclease reviewed:<br />

a prototypic study in contemporary enzymology. IV. The<br />

nuclease as a model for protein folding, Molec. Cell.<br />

Biochem., 23, 131-140, 1979.<br />

5. Torchia, D.A., et al, Staphylococcal nuclease: sequential<br />

assignments and solution structure, Biochemistry, 27,<br />

5509-5524, 1989.


S1 Nuclease<br />

#EN0321 10,000 u (100 u/μl)<br />

Supplied with:<br />

5X Reaction Buffer 2x1 ml<br />

Related Products<br />

Exonuclease III (Exo III) p.259<br />

Water, nuclease-free p.420<br />

References<br />

1. Lehman, R.I., Endonucleases specific for single-stranded<br />

polynucleotides, The Enzymes, 3rd. Ed. (Boyer, P.D., Ed.),<br />

4,193-201,1981.<br />

2. Roberts T.M. et al., A general method for maximizing the<br />

expression of a cloned gene, Proc. Natl. Acad. Sci. USA,<br />

76, 760-764, 1979.<br />

3. <br />

simian virus 40, Proc. Natl. Acad. Sci. USA, 75,<br />

1274-1278, 1978.<br />

4. Weidle, U., Weissmann, C., The 5’-flanking region of<br />

a human IFN-alpha gene mediates viral induction of<br />

transcription, Nature, 303, 442-446, 1983.<br />

5. Henikoff, S., Unidirectional digestion with exonuclease III<br />

creates targeted breakpoints for DNA sequencing, Gene,<br />

28, 351-359, 1984.<br />

6. Vogt, V.M., Purification and further properties of singlestrand-specific<br />

nuclease from Aspergillus oryzae,<br />

<br />

Description<br />

S1 Nuclease degrades single-stranded nucleic<br />

acids, releasing 5’-phosphoryl mono- or<br />

oligonucleotides. It is five times more active on<br />

DNA than on RNA (1). S1 Nuclease also cleaves<br />

dsDNA at the single-stranded region caused<br />

by a nick, gap, mismatch or loop. S1 Nuclease<br />

exhibits 3’-phosphomonoesterase activity.<br />

This glycoprotein enzyme contains a<br />

carbohydrate content of 18%.<br />

Applications<br />

Removal of single-stranded overhangs from<br />

DNA fragments (2).<br />

S1 transcript mapping (3, 4).<br />

Cleavage of hairpin loops.<br />

Creation of unidirectional deletions in DNA<br />

fragments in conjunction with Exo III (5).<br />

Concentration<br />

100 u/μl<br />

Source<br />

Aspergillus oryzae.<br />

5’<br />

5’<br />

3’<br />

3’<br />

dsDNA<br />

5’<br />

3’<br />

5’<br />

ssDNA/RNA<br />

5’<br />

3’<br />

dsDNA/RNA<br />

Nuclease S1 activities.<br />

Zn 2+<br />

Zn 2+<br />

5’dNMPs or rNMPs<br />

High enzyme concentration<br />

Zn 2+<br />

5’dNMPs or rNMPs<br />

Moderate enzyme concentration<br />

5’<br />

3’<br />

nicked DNA<br />

3’<br />

5’<br />

+<br />

Zn 2+<br />

5’<br />

3’<br />

3’<br />

3’<br />

5’<br />

3’<br />

3’<br />

5’<br />

3’<br />

5’<br />

5’<br />

3’<br />

5’<br />

<strong>Molecular</strong> Weight<br />

29 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme produces 1 μg of acid<br />

soluble deoxyribonucleotides in 1 min at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 30 mM sodium acetate (pH 4.5),<br />

50 mM NaCl, 0.1 mM ZnCl2, 5% (v/v) glycerol,<br />

800 μg/ml heat denatured calf thymus DNA.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

20 mM Tris-HCl (pH 7.5), 50 mM NaCl,<br />

0.1 mM ZnCl2 and 50% (v/v) glycerol.<br />

5X Reaction Buffer<br />

200 mM sodium acetate (pH 4.5 at 25°C),<br />

1.5 M NaCl and 10 mM ZnSO4. Inhibition and Inactivation<br />

i, Pi, 5’-ribonucleotides and deoxyribonucleotides<br />

<br />

the presence of EDTA.<br />

Note<br />

<br />

double-stranded DNA, RNA and DNA/<br />

RNA hybrids at high enzyme and low salt<br />

concentrations (6).<br />

Protocols and Recommendations<br />

» 3.2.3. Removal of 3’- and 5’-overhangs<br />

with S1 Nuclease p.295<br />

www.thermoscientific.com/onebio 269


270<br />

Other Products<br />

Proteinase K (recombinant), PCR grade<br />

#EO0491 1 ml<br />

(>600 u/ml, ~20 mg/ml)<br />

#EO0492 5x1 ml<br />

(>600 u/ml, ~20 mg/ml)<br />

Related Products<br />

RNase A/T1 Mix p.264<br />

Water, nuclease-free<br />

<br />

p.420<br />

DNA Purification Kit p.312<br />

<br />

<br />

Protocols and Recommendations<br />

» 4.1. Purification of genomic DNA from<br />

mouse tail with Proteinase K p.322<br />

» 4.2. Purification of DNA from cultured<br />

eukaryotic cells with Proteinase K p.322<br />

www.thermoscientific.com/onebio<br />

Description<br />

Proteinase K is an endolytic protease that<br />

cleaves peptide bonds at the carboxylic sides of<br />

aliphatic, aromatic or hydrophobic amino acids.<br />

Proteinase K is classified as a serine protease<br />

(1). The smallest peptide to be hydrolyzed by<br />

this enzyme is a tetrapeptide.<br />

Features<br />

Ready-to-use solution.<br />

Active in a wide range of reaction conditions.<br />

Applications<br />

Isolation of genomic DNA from mouse tail.<br />

Isolation of genomic DNA from cultured cells.<br />

Removal of DNases and RNases when isolating<br />

DNA and RNA from tissues or cell lines (2, 3).<br />

Determination of enzyme localization (4).<br />

Improving cloning efficiency of PCR<br />

products (5).<br />

Concentration<br />

Approx. 600-1000 u/ml<br />

14-22 mg/ml<br />

Source<br />

Pichia pastoris cells with a cloned gene from<br />

Tritirachium album.<br />

<strong>Molecular</strong> Weight<br />

28.9 kDa monomer (6).<br />

Definition of Activity Unit<br />

One unit of the enzyme liberates Folin-positive<br />

amino acids and peptides corresponding to<br />

1 μmol tyrosine in 1 min at 37°C using<br />

denatured hemoglobin as substrate.<br />

Enzyme activity is assayed in the following<br />

mixture: 0.08 M potassium phosphate (pH 7.5),<br />

5 M urea, 4 mM NaCl, 3 mM CaCl 2 and<br />

16.7 mg/ml hemoglobin.<br />

20’<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

10 mM Tris-HCl (pH 7.5),<br />

containing calcium acetate and<br />

50% (v/v) glycerol.<br />

Inhibition and Inactivation<br />

Inhibitors: Proteinase K is not inactivated by<br />

metal chelators, by thiol-reactive reagents or<br />

by specific trypsin and chymotrypsin inhibitors.<br />

Phenylmethylsulfonyl fluoride and diisopropyl<br />

phosphorofluoridate completely inhibit the<br />

enzyme (1).<br />

<br />

Note<br />

The recommended working concentration of<br />

Proteinase K is 0.05-1 mg/ml. The activity of<br />

the enzyme is stimulated by 0.2-1% SDS or<br />

by 1-4 M urea (3).<br />

2+ protects Proteinase K against autolysis,<br />

increases the thermal stability and has a<br />

regulatory function for the substrate binding<br />

site of Proteinase K (7).<br />

<br />

optimum pH 7.5-8.0 (8).<br />

References<br />

1. Ebeling, W., et al., Proteinase K from Tritirachium album<br />

<br />

2. Wiegers, U., Hilz, H., A new method using ‘proteinase<br />

K’ to prevent mRNA degradation during isolation from<br />

HeLa cells, Biochem. and Biophys. Res. Commun., 44,<br />

513-519, 1971.<br />

3. Hilz, H., et al., Stimulation of proteinase K action by<br />

denaturing agents: application to the isolation of nucleic<br />

<br />

Biochem., 56, 103-108, 1975.<br />

4. Brdiczka, D., Krebs, W., Localization of enzymes by means<br />

of proteases, Biochim. Biophys. Acta, 297, 203-212, 1973.<br />

5. <br />

polymerase chain reaction (PCR) products after proteinase<br />

K digestion, Nucleic Acids Res., 19, 184, 1991.<br />

6. <br />

from mold Tritirachtum album Limber Proteinase K – a<br />

subtilisin related enzyme with disulfide bonds, FEBS Lett.,<br />

199, 139-144, 1986.<br />

7. <br />

<br />

8. <br />

domain inhibits eight different serine proteinases of varied<br />

specificity on the same... Leu18-Glu19... reactive site,<br />

Biochemistry, 24, 5313-5320, 1985.


RiboLock RNase Inhibitor<br />

#EO0381 2500 u (40 u/μl)<br />

#EO0382 4x2500 u (40 u/μl)<br />

#EO0384 24x2500 u (40 u/μl)<br />

Related Products<br />

RNA Polymerases pp.330-331<br />

TranscriptAid T7 High Yield Transcription Kit p.328<br />

T4 RNA Ligase p.240<br />

NTPs p.411<br />

DTT p.420<br />

DEPC-treated Water p.420<br />

M C 1 C 2 1 2 3 4<br />

Inhibition of RNase A by <strong>Thermo</strong> <strong>Scientific</strong><br />

RiboLock RNase Inhibitor.<br />

Total human RNA (1 μg) was incubated at 37°C with<br />

20 u of RiboLock RNase Inhibitor and increasing<br />

amounts of RNase A (#EN0531).<br />

M – RiboRuler High Range RNA Ladder (#SM1821).<br />

C 1 – total human RNA.<br />

C 2 – total human RNA with RNase A (no RiboLock added).<br />

1-4 – total human RNA with RiboLock and RNase A.<br />

References<br />

1. Nielsen, D.A., Shapiro <br />

transcripts using T7 RNA polymerase, Nucleic Acids Res.,<br />

14, 5936, 1986.<br />

2. Martynoff, G., et al., Synthesis of a full length DNA<br />

complementary to thyroglobulin 33S messenger RNA,<br />

Biochem. Biophys. Res. Commun., 93, 645-653, 1980.<br />

3. Scheele, G., Blackburn, P., Role of mammalian RNase<br />

inhibitor in cell-free protein synthesis, Proc. Natl. Acad.<br />

Sci. USA, 76, 1898-1902, 1979.<br />

4. Van Gelder., et al., Amplified RNA synthesized from limited<br />

quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci.<br />

USA, 87, 1663-1667, 1990.<br />

5. Eichler, D.C., et al., Effect of human placental ribonuclease<br />

inhibitor in cell-free ribosomal RNA synthesis, Biochem.<br />

Biophys. Res. Commun., 101, 396-403, 1981.<br />

6. <br />

anti-angiogenic properties and leads to reduced tumor<br />

<br />

Description<br />

RiboLock RNase Inhibitor inhibits the activity<br />

of RNases A. B and C by binding them in a<br />

noncompetitive mode at a 1:1 ratio. RiboLock<br />

does not inhibit eukaryotic RNases T1, T2, U1,<br />

U2, CL3 or prokaryotic RNases I and H.<br />

Features<br />

Protects RNA from degradation at<br />

temperatures up to 55°C.<br />

Performs under a wide range of reaction<br />

conditions.<br />

Applications<br />

Inhibition of RNA degradation in the following:<br />

– in vitro transcription (1),<br />

– cDNA synthesis (2),<br />

– in vitro translation (3),<br />

– isolation of mammalian cell fractions that<br />

contain mRNA-protein complex (3),<br />

– RNA amplification (4).<br />

RNA purification and storage.<br />

Separation and identification of specific<br />

ribonuclease activities (5).<br />

Studies of tumor suppression (6).<br />

M C1 C2 1 2 3 4 5<br />

<strong>Thermo</strong>stability of <strong>Thermo</strong> <strong>Scientific</strong> RiboLock<br />

RNase Inhibitor.<br />

Total human RNA (1 μg) was incubated with 20 u of<br />

RiboLock RNase Inhibitor and 50 pg of RNase A<br />

(#EN0531), and incubated at increasing temperatures.<br />

M – RiboRuler High Range RNA Ladder (#SM1821).<br />

C1 – total human RNA.<br />

C2 – total human RNA with RNase A<br />

(no RiboLock added).<br />

1-5 – total human RNA with RiboLock and RNase A.<br />

Concentration<br />

40 u/μl<br />

Source<br />

E.coli cells with a cloned gene encoding<br />

mammalian ribonuclease inhibitor.<br />

<strong>Molecular</strong> Weight<br />

49.6 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the RiboLock RNase Inhibitor inhibits<br />

the activity of 5 ng RNase A by 50%.<br />

Inhibitor activity is assayed in the following<br />

mixture: 100 mM Tris-HCl (pH 7.5),<br />

1.2 mM EDTA, 0.1 mg/ml BSA,<br />

100 ng/ml RNase A, 0.1 mg/ml [ 3H]-RNA, 10 mg/ml yeast RNA, 8 mM DTT.<br />

Storage Buffer<br />

The protein is supplied in:<br />

20 mM HEPES-NaOH (pH 7.5),<br />

50 mM NaCl, 8 mM DTT,<br />

0.015% (v/v) ELUGENT Detergent and<br />

50% (v/v) glycerol.<br />

Inhibition and Inactivation<br />

Inhibitors: common denaturants<br />

(SDS, urea and all oxidizing reagents<br />

(p-chloromercuribenzoate, dissolved oxygen,<br />

ions in their higher oxidation states) strongly<br />

inhibit<br />

RiboLock RNase Inhibitor and release the<br />

RNase bound.<br />

<br />

Residual activity detectable after 10 min<br />

heating at 70°C.<br />

Note<br />

<br />

stability during long term storage, but is not<br />

necessary for inhibitor activity.<br />

<br />

reaction mixture.<br />

Protocols and Recommendations<br />

» 5.3. In vitro transcription p.335<br />

» 5.4. Synthesis of radiolabeled RNA probes<br />

of high specific activity p.335<br />

» 6.4.1. Synthesis of radiolabeled RNA probes<br />

of high specific activity p.350<br />

» 6.5. Synthesis of labeled cDNA p.350<br />

www.thermoscientific.com/onebio 271


272<br />

Pyrophosphatase, Inorganic (from yeast)<br />

#EF0221 10 u (0.1 u/μl)<br />

Supplied with:<br />

Storage (Dilution) Buffer 1 ml<br />

Related Products<br />

RNA Polymerases pp.330-331<br />

phi29 DNA Polymerase p.245<br />

Klenow Fragment p.247<br />

Klenow Fragment, exo – p.248<br />

DNA Polymerase I p.246<br />

T4 DNA Polymerase p.249<br />

Terminal Deoxynucleotidyl Transferase (TdT) p.251<br />

Terminal Transferase p.252<br />

Water, nuclease-free p.420<br />

www.thermoscientific.com/onebio<br />

Description<br />

Inorganic Pyrophosphatase catalyzes the<br />

hydrolysis of inorganic pyrophosphate to two<br />

orthophosphates. The enzyme requires a<br />

divalent metal cation, with Mg 2+ conferring the<br />

highest activity (1).<br />

Features<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for DNA<br />

Polymerases, RNA Polymerases and Reverse<br />

Transcriptases.<br />

Applications<br />

High yield RNA synthesis by in vitro transcription (2).<br />

DNA polymerization reactions: preventing<br />

accumulation of pyrophosphate (3, 4).<br />

Removal of contaminant PPi in reagents used<br />

for SNP genotyping by methods based on the<br />

detection of pyrophosphate (5).<br />

Concentration<br />

0.1 u/μl<br />

Source<br />

E.coli cells with a cloned ppa gene of<br />

Sacharomyces cerevisiae.<br />

polymerase<br />

Template + (d)NTPs<br />

<strong>Molecular</strong> Weight<br />

This enzyme is homodimer. It consists of two<br />

identical subunits of 32 kDa.<br />

Definition of Activity Unit<br />

One unit of the enzyme hydrolyzes 1 μmol of<br />

inorganic pyrophosphate in 1 min at 25°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 100 mM Tris-HCl (pH 7.2), 2 mM MgCl2 and 2 mM inorganic pyrophosphate (PPi).<br />

Storage (Dilution) Buffer<br />

The enzyme is supplied in:<br />

10 mM Tris-HCl (pH 7.5), 0.1 mM EDTA and<br />

50% (v/v) glycerol.<br />

Inhibition and Inactivation<br />

Inhibitors: imidodiphosphate, -glycol<br />

disphosphates, methanedial diphosphate,<br />

1,2-ethanedial diphosphate (6).<br />

<br />

reliably removed by spin column or phenol/<br />

chloroform extraction.<br />

polymerase<br />

pyrophosphatase<br />

3-<br />

Template + (d)NTPs Product + Template + (d)NTPs + 2 PO4 Use of Pyrophosphatase, in preventing inhibition of nucleic acid synthesis by<br />

phyrophosphate.<br />

Pyrophosphatase prevents inhibition of the polymerization reaction by hydrolysis of<br />

pyrophosphate accumulated during reaction.<br />

Use of this enzyme in certain applications may be covered by<br />

patents and may require a license.<br />

Note<br />

<br />

storage (dilution) buffer.<br />

Product + Template + (d)NTPs + PP i<br />

References<br />

1. Cooperman, B.S., The mechanism of action of yeast<br />

inorganic pyrophosphatase, Meth. Enzymol., 87,<br />

526-548, 1982.<br />

2. <br />

pyrophosphatase to improve the yield of in vitro<br />

transcription reactions catalyzed by T7 RNA polymerase,<br />

Biotechniques, 9, 713-714, 1990.<br />

3. Tabor, S., Richardson, C.C., DNA sequence analysis with<br />

a modified bacteriophage T7 DNA polymerase. Effect of<br />

<br />

8322-8328, 1990.<br />

4. Dean, B.F., et al., Rapid amplification of plasmid and<br />

phage DNA using phi29 DNA polymerase and multiplyprimed<br />

Rolling Circle amplification, Genome Res., 11,<br />

1095-1099, 2001.<br />

5. Zhou, G.H., et al., Quantitative detection of single<br />

nucleotide polymorphisms for a pooled sample by a<br />

bioluminometric assay coupled with modified primer<br />

extension reactions (BAMPER), Nucleic Acids Res., 29,<br />

E93, 2001.<br />

6.


Uracil-DNA Glycosylase (UDG, UNG)<br />

#EN0361 200 u (1 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 0.4 ml<br />

#EN0362 5x200 u (1 u/μl)<br />

Supplied with:<br />

10X Reaction Buffer 2x1 ml<br />

Related Products<br />

Exonuclease III (Exo III) p.259<br />

Endonuclease IV, E.coli (Endo IV) p.256<br />

dNTP/dUTP Mix p.408<br />

dUTP p.409<br />

Water, nuclease-free p.420<br />

References<br />

1. <br />

252, 10, 3286-3294, 1977.<br />

2. Longo, M.C., et al., Use of uracil DNA glycosylase to<br />

control carry-over contamination in polymerase chain<br />

reactions, Gene, 93, 125-128, 1990.<br />

3. Vaughan, P., McCarthy, T.V., A novel process for mutation<br />

detection using uracil DNA glycosylase, Nucleic Acids<br />

Res., 26, 810-815, 1998.<br />

4. Kunkel, T.A., Rapid and efficient site-specific mutagenesis<br />

without phenotypic selection, Proc. Natl. Acad. Sci. USA,<br />

82, 488-492, 1985.<br />

5. Devchand, P.R., et al., Uracil-DNA glycosylase as a probe<br />

for protein-DNA interactions, Nucleic Acids Res, 21,<br />

3437-3443, 1993.<br />

6. Booth, P.M., et al., Assembly and cloning of coding<br />

sequences for neurotrophic factors directly from genomic<br />

DNA using polymerase chain reaction and uracil DNA<br />

glycosylase, Gene, 146, 303-308, 1994.<br />

7. Serrano-Heras, G., et al., Protein p56 from the Bacillus<br />

subtilis phage phi29 inhibits DNA-binding ability of uracil-<br />

DNA glycosylase, Nucleic Acids Res, 13, 1-9, 2007.<br />

Description<br />

Uracil-DNA Glycosylase catalyzes the hydrolysis<br />

of the N-glycosylic bond between uracil and<br />

sugar, leaving an apyrimidinic site in uracil<br />

containing single- or double-stranded DNA. The<br />

enzyme has no activity on RNA (1).<br />

Features<br />

Active in <strong>Thermo</strong> <strong>Scientific</strong> buffers for<br />

restriction enzymes and thermophilic<br />

polymerases.<br />

Applications<br />

Control of carry-over contamination in PCR (2).<br />

Glycosylase mediated single nucleotide<br />

polymorphism detection (GMPD) (3).<br />

Site-directed mutagenesis (4).<br />

As a probe for protein-DNA interaction<br />

studies (5).<br />

SNP genotyping.<br />

Cloning of PCR products (6).<br />

Generation of single strand overhangs on<br />

PCR products and cDNA.<br />

Concentration<br />

1 u/μl<br />

Source<br />

E.coli K12 cells.<br />

5’<br />

3’<br />

uracil containing<br />

dsDNA<br />

5’<br />

3’<br />

dsDNA with<br />

abasic site<br />

U – uracil<br />

P – phosphate<br />

a – abasic site<br />

uracil<br />

Uracil-DNA Glycosylase activity.<br />

U<br />

P-a-P<br />

3’<br />

5’<br />

3’<br />

5’<br />

Use of this enzyme in certain applications may be covered by<br />

patents and may require a license.<br />

+<br />

<strong>Molecular</strong> Weight<br />

25.6 kDa monomer.<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes the release<br />

1 nanomole of uracil from uracil-containing DNA<br />

template in 60 min at 37°C.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

30 mM Tris-HCl (pH 7.5), 150 mM NaCl,<br />

1 mM EDTA, 1 mM DTT, 0.05% (v/v) Tween 20<br />

and 50% (v/v) glycerol.<br />

10X Reaction Buffer<br />

200 mM Tris-HCl (pH 8.2 at 25°C),<br />

10 mM EDTA, 100 mM NaCl.<br />

Inhibition and Inactivation<br />

<br />

Bacillus subtilis phage PBS2, protein p56<br />

from the Bacillus subtilis phage phi29 (7).<br />

<br />

Enzyme activity is partially restored at<br />

temperatures lower than 55°C. Therefore,<br />

put PCR products on ice after PCR and load<br />

directly on a gel.<br />

Note<br />

<br />

DNA Glycosylase may be subsequently<br />

cleaved by heat, alkali-treatment or<br />

endonucleases that cleave specifically at<br />

abasic sites.<br />

<br />

divalent cations.<br />

Protocols and Recommendations<br />

» 2.1. Activity of DNA/RNA modifying<br />

enzymes in <strong>Thermo</strong> <strong>Scientific</strong> buffers p.274<br />

www.thermoscientific.com/onebio 273


274<br />

Protocols and Recommendations<br />

2.1. Activity of DNA/RNA modifying enzymes in <strong>Thermo</strong> <strong>Scientific</strong> buffers<br />

<strong>Thermo</strong> <strong>Scientific</strong> DNA/RNA modifying enzymes<br />

are supplied with optimized reaction buffers.<br />

However, it is often convenient to use these<br />

enzymes in other buffers for experiments that<br />

involve multiple enzymatic reactions.<br />

Activity of DNA/RNA modifying enzymes in <strong>Thermo</strong> <strong>Scientific</strong> buffers.<br />

DNA/RNA<br />

modifying enzyme<br />

* – buffers were supplemented with 0.5 mM ATP, required for T4 DNA Ligase activity.<br />

** – the activity of this enzyme was compared to activity in buffer A (for forward reaction).<br />

ND – not determined.<br />

www.thermoscientific.com/onebio<br />

Fast-<br />

Digest /<br />

Fast-<br />

Digest<br />

Green<br />

B G O R Tango 2X<br />

Tango<br />

Enzyme activity in 1X buffers, %<br />

BamHI Ecl136II,<br />

SacI<br />

EcoRI KpnI<br />

Taq<br />

with<br />

KCl<br />

Taq with<br />

(NH4)2SO4<br />

T4 DNA Ligase* 75-100 100 100 75-100 75-100 75-100 75-100 75-100 50 75-100 100 75 75 75 100<br />

FastAP<br />

<strong>Thermo</strong>sensitive<br />

Alkaline Phosphatase<br />

T4 Polynucleotide<br />

Kinase** (T4 PNK)<br />

The table below lists activities of DNA/RNA<br />

modifying enzymes in common reaction buffers,<br />

supplied with <strong>Thermo</strong> <strong>Scientific</strong> enzymes.<br />

100 100 100 100 100 100 100 100 100 100 100 100 50 100 ND<br />

100 75-100 100 100 75-100 100 100 100 50-75 100 75-100 100 0 100 100<br />

DNA Polymerase I 100 25-50 75-100 100 100 100 100 100 50-75 100 50-75 100 100 100 ND<br />

Klenow Fragment 100 25-50 20-50 100 100 100 100 100 50-75 100 50-75 100 100 100 100<br />

Klenow Fragment, exo – 100 25-50 25-50 100 100 100 100 100 50-75 100 75-100 100 100 100 ND<br />

T4 DNA Polymerase 100 75-100 75-100 100 100 100 100 100 100 100 100 50 100 100 100<br />

T7 DNA Polymerase 100 75-100 100 100 100 100 100 75-100 75-100 100 100 ND ND ND ND<br />

Exonuclease I (Exo I) ND ND ND ND ND ND ND ND ND ND ND 100 100 ND ND<br />

Exonuclease III (Exo III) 0-25 100 25-50 0-25 0-25 25-50 0-25 0-25 100 0-25 100 ND ND ND ND<br />

Lambda Exonuclease ND ND ND ND ND ND ND ND ND ND ND 50-75 50-75 ND ND<br />

phi29 DNA Polymerase 100 25-100 100 100 100 100 100 100 50-75 100 50-75 25-50 75-100 75-100 25-100<br />

Bsm DNA Polymerase 100 25-50 75-100 100 100 100 100 100 0-25 100 25-50 100 100 100 50-75<br />

RT<br />

T4 DNA<br />

Ligase


Buffer composition.<br />

Buffer 1X buffer composition<br />

B 10 mM Tris-HCl (pH 7.5 at 37°C) 10 mM MgCl 2 – – – 0.1 mg/ml BSA – –<br />

G 10 mM Tris-HCl (pH 7.5 at 37°C) 10 mM MgCl 2 50 mM NaCl – – 0.1 mg/ml BSA – –<br />

O 50 mM Tris-HCl (pH 7.5 at 37°C) 10 mM MgCl 2 100 mM NaCl – – 0.1 mg/ml BSA – –<br />

R 10 mM Tris-HCl (pH 8.5 at 37°C) 10 mM MgCl 2 100 mM KCl – – 0.1 mg/ml BSA – –<br />

Tango 33 mM Tris-acetate (pH 7.9 at 37°C) 10 mM Mg-acetate 66 mM K-acetate – – 0.1 mg/ml BSA – –<br />

2X Tango 66 mM Tris-acetate (pH 7.9 at 37°C) 20 mM Mg-acetate 132 mM K-acetate – – 0.2 mg/ml BSA – –<br />

BamHI 10 mM Tris-HCl (pH 8.0 at 37°C) 5 mM MgCl 2 100 mM KCl – 0.02% Triton X-100 0.1 mg/ml BSA – 1 mM BME<br />

Ecl136II, SacI<br />

10 mM Bis-Tris Propane-HCl<br />

(pH 6.5 at 37°C)<br />

2.2. Dilution of DNA/RNA modifying enzymes<br />

DNA/RNA modifying enzymes are supplied in<br />

their optimal storage buffers which are specially<br />

formulated for long term storage.<br />

10 mM MgCl 2 – – – 0.1 mg/ml BSA – –<br />

EcoRI 50 mM Tris-HCl (pH 7.5 at 37°C) 10 mM MgCl 2 100 mM NaCl – 0.02% Triton X-100 0.1 mg/ml BSA – –<br />

KpnI 10 mM Tris-HCl (pH 7.5 at 37°C) 10 mM MgCl 2 – – 0.02% Triton X-100 0.1 mg/ml BSA – –<br />

Taq with KCl 10 mM Tris-HCl (pH 8.8 at 25°C) 1.5 mM MgCl 2 50 mM KCl – 0.08% Nonidet P40 – – –<br />

Taq with<br />

(NH 4) 2SO 4<br />

75 mM Tris-HCl (pH 8.8 at 25°C) 2 mM MgCl 2 – – 0.01% Tween 20 – 20 mM (NH4) 2SO 4 –<br />

RT 50 mM Tris-HCl (pH 8.3 at 25°C) 4 mM MgCl 2 50 mM KCl – – – – 10 mM DTT<br />

T4 DNA Ligase 40 mM Tris-HCl (pH 7.8 at 25°C) 10 mM MgCl 2 – 0.5 mM ATP – – – 10 mM DTT<br />

If required for a specific application, dilute<br />

the enzyme with 1X reaction buffer for<br />

short-term use.<br />

www.thermoscientific.com/onebio 275


276<br />

www.thermoscientific.com/onebio


<strong>Thermo</strong> <strong>Scientific</strong><br />

<strong>Molecular</strong> Cloning Products<br />

Selection Guide ................................................................................................................ 278<br />

Products ............................................................................................................................ 279<br />

CloneJET PCR Cloning Kit ............................................................................................ 279<br />

InsTAclone PCR Cloning Kit ......................................................................................... 281<br />

aLICator Ligation Independent Cloning (LIC) and Expression System ................... 282<br />

WELQut Protease ..........................................................................................................285<br />

Maxima H Minus Double-Stranded cDNA Synthesis Kit ...........................................286<br />

Fast DNA End Repair Kit .............................................................................................. 287<br />

Rapid DNA Ligation Kit ................................................................................................288<br />

TransformAid Bacterial Transformation Kit ............................................................... 289<br />

Phusion Site-Directed Mutagenesis Kit .....................................................................290<br />

Lambda DNA ................................................................................................................. 291<br />

Lambda DNA (dam – , dcm – ) ........................................................................................ 291<br />

X174 RF1 DNA ............................................................................................................ 291<br />

pBR322 DNA .................................................................................................................291<br />

pTZ19R DNA ..................................................................................................................292<br />

pUC57 DNA....................................................................................................................292<br />

pUC18 DNA ....................................................................................................................292<br />

pUC19 DNA ....................................................................................................................292<br />

Related Products by Application .................................................................................293<br />

Protocols and Recommendations ...............................................................................294<br />

3.1. DNA ligation .............................................................................................................294<br />

3.2. DNA blunting ............................................................................................................295<br />

3.3. Phosphorylation of DNA ............................................................................................295<br />

3.4. Dephosphorylation of DNA and RNA ..........................................................................295<br />

3.5. Removal of tags from recombinant proteins using WELQut Protease ...........................295<br />

3.6. Transformation .........................................................................................................296<br />

3.7. Cultivation of E.coli ....................................................................................................296<br />

3.8. Analysis of recombinant clones .................................................................................296<br />

Troubleshooting Guide ................................................................................................... 297<br />

Streamline your<br />

entire cloning workflow<br />

Learn more:<br />

www.thermoscientific.com/cloning<br />

Useful webtools:<br />

www.thermoscientific.com/REviewer<br />

www.thermoscientific.com/onebio 277


278<br />

Selection Guide<br />

Applications Procedures Products to use Cat. # Page<br />

Digestion by restriction enzymes<br />

FastDigest Restriction Enzymes<br />

Conventional Restriction Enzymes<br />

FDXXXX<br />

ERXXXX<br />

2<br />

77<br />

Generation of DNA<br />

fragments for cloning<br />

Preparation of cloning<br />

vector and insert for<br />

ligation<br />

Ligation of vector and<br />

insert DNA<br />

www.thermoscientific.com/onebio<br />

PCR & RT-PCR<br />

See complete portfolio for <strong>Thermo</strong> <strong>Scientific</strong> PCR & RT-PCR products<br />

at www.thermoscientific.com/pcr<br />

Maxima H Minus Double-Stranded cDNA Synthesis Kit K2561 286<br />

Double-stranded cDNA synthesis RNase H EN0201/2 266<br />

DNA Polymerase I EP0041/2 246<br />

GeneJET Plasmid Miniprep Kit K0502/3 304<br />

Purification of plasmid DNA<br />

GeneJET Plasmid Midiprep Kit K0481/2 305<br />

GeneJET Plasmid Maxiprep Kit K0491/2 306<br />

Dephosphorylation of cloning vector FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase EF0651/2/4 242<br />

DNA end repair Fast DNA End Repair Kit K0771 287<br />

Blunting of DNA<br />

fragment ends<br />

3’- overhang removal<br />

T4 DNA Polymerase<br />

S1 Nuclease<br />

EP0061/2<br />

EN0321<br />

249<br />

269<br />

5’- overhang fill in<br />

T4 DNA Polymerase<br />

Klenow Fragment, exo<br />

EP0061/2 249<br />

– EP0421/2 248<br />

5’- overhang removal S1 Nuclease EN0321 269<br />

Phosphorylation of PCR products or<br />

synthetic DNA<br />

T4 Polynucleotide Kinase (T4 PNK) EK0031/2 243<br />

Purification from PCR or other reaction<br />

mixtures<br />

GeneJET PCR Purification Kit K0701/2 316<br />

GeneJET Gel Extraction Kit K0691/2 317<br />

Purification from agarose gel<br />

Silica Bead DNA Gel Extraction Kit K0513 318<br />

Agarase EO0461 319<br />

Blunt-end cloning CloneJET PCR Cloning Kit K1231/2 279<br />

TA cloning InsTAclone PCR Cloning Kit* K1213/4 281<br />

Ligation<br />

Rapid DNA Ligation Kit<br />

T4 DNA Ligase<br />

K1422/3<br />

EL001X<br />

288<br />

239<br />

Ligation Independent Cloning (LIC) aLICator LIC Cloning and Expression System<br />

K1241/51/61/<br />

71/81/91<br />

282<br />

Transformation TransformAid Bacterial Transformation Kit K2710/1 289<br />

Protein expression in E.coli aLICator LIC Cloning and Expression System<br />

K1241/51/61/<br />

71/81/91<br />

282<br />

Site-Directed Mutagenesis Phusion Site-Directed Mutagenesis Kit F-541 290<br />

pUC18 DNA SD0051<br />

Cloning vectors Closed circular plasmids<br />

pUC19 DNA<br />

pUC57 DNA<br />

SD0061<br />

SD0171<br />

292<br />

pTZ19R DNA SD0141<br />

pBR322 DNA SD0041 291<br />

Agarose<br />

TopVision Agarose<br />

TopVision Low Melting Point Agarose<br />

R0491/2<br />

R0801<br />

427<br />

Analysis of DNA<br />

Electrophoresis buffers<br />

10X TBE Buffer<br />

50X TAE Buffer<br />

B52<br />

B49<br />

371<br />

DNA ladders Wide range of <strong>Thermo</strong> <strong>Scientific</strong> DNA ladders SMXXXX 358<br />

X-Gal R0401/2/4<br />

Cultivation of E.coli Media additives<br />

X-Gal Solution, ready-to-use<br />

IPTG<br />

R0941<br />

R0391/2/3<br />

424<br />

IPTG Solution, ready-to-use R1171<br />

* not available in USA.


Products<br />

CloneJET PCR Cloning Kit<br />

#K1231 for 20 rxns<br />

#K1232 for 40 rxns<br />

Related Products<br />

Nucleotides p.408<br />

TransformAid Bacterial Transformation Kit p.289<br />

GeneJET Plasmid Miniprep Kit p.304<br />

GeneJET PCR Purification Kit p.316<br />

GeneJET Gel Extraction Kit p.317<br />

FastDigest Restriction Enzymes p.2<br />

pJET1.2 Sequencing Primers p.416<br />

Maxima H Minus Double-Stranded<br />

cDNA Synthesis Kit p.286<br />

Reference<br />

1. Michelsen, B.K., Anal. Biochem., 225, 172, 1995.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> CloneJET PCR Cloning<br />

Kit is an advanced positive selection system<br />

for high efficiency cloning of PCR products<br />

generated with any thermostable DNA<br />

polymerase. Additionally, any other blunt or<br />

sticky-end DNA fragment can be cloned.<br />

The kit is ideal for phosphorylated or nonphosphorylated<br />

DNA fragments. Ligation into<br />

the included positive selection vector takes<br />

only 5 minutes and yields more than 99%<br />

recombinant clones. Blunt-end PCR products<br />

generated with a proofreading enzyme<br />

(e.g., Pfu or Phusion polymerase) are ligated<br />

directly into the cloning vector. PCR products<br />

generated either with non-proofreading DNA<br />

polymerases (e.g., Taq polymerase) or mixtures<br />

of DNA polymerases are blunted prior to<br />

ligation in 5 minutes with the thermostable<br />

DNA Blunting Enzyme provided with the kit. All<br />

common laboratory E.coli strains can be directly<br />

transformed with the ligation product.<br />

The kit contains a novel, ready-to-use positive<br />

selection cloning vector – pJET1.2/blunt. The<br />

vector contains a lethal restriction enzyme gene<br />

that is disrupted by ligation of a DNA insert<br />

into the cloning site. As a result, only bacterial<br />

cells with recombinant plasmids are able to<br />

form colonies. Recircularized pJET1.2/blunt<br />

vector molecules lacking an insert express a<br />

lethal restriction enzyme which kills the host<br />

E.coli cell after transformation. This positive<br />

selection drastically accelerates the process of<br />

colony screening and eliminates additional costs<br />

required for blue/white selection.<br />

For convenience in mapping and manipulation<br />

of the insert, the pJET1.2/blunt cloning<br />

vector multiple cloning site contains two BglII<br />

recognition sequences that flank the insertion<br />

site.<br />

In addition, the vector contains a T7 promoter<br />

for in vitro and in vivo transcription as well as<br />

sequencing of the insert.<br />

Table 3.1. <strong>Thermo</strong> <strong>Scientific</strong> CloneJET cloning flowchart.<br />

Procedure<br />

Blunt-end<br />

PCR<br />

product<br />

3’-dA tailed<br />

PCR<br />

product<br />

Blunting – 5 min<br />

Ligation 5 min 5 min<br />

Total time 5 min 10 min<br />

Features<br />

Fast – PCR cloning in only 5 minutes.<br />

Highest efficiency – >99% of positive clones.<br />

No cloning background – positive selection<br />

vector.<br />

Versatile – ideal for of cloning blunt-and<br />

sticky-end DNA fragments.<br />

Economical – no expensive blue/white<br />

screening.<br />

Applications<br />

Cloning of blunt-end or 3’-dA tailed PCR<br />

products up to 10 kb.<br />

Cloning of DNA fragments generated by<br />

restriction enzymes.<br />

Cloning of ds cDNA.<br />

cDNA library construction.<br />

Sequencing of cloned DNA.<br />

In vitro and in vivo transcription of cloned<br />

inserts from the T7 promoter.<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Notes<br />

<br />

inactivate T4 DNA ligase by chloroform<br />

extraction or spin column purification,<br />

e.g., with GeneJET PCR Purification Kit<br />

(#K0701) (1).<br />

www.thermoscientific.com/onebio 279


280<br />

www.thermoscientific.com/onebio<br />

pJET1.2/blunt vector map.<br />

Transformants/μg DNA<br />

2.5x10 5<br />

2x10 5<br />

1.5x10 5<br />

1x10 5<br />

5x10 4<br />

0<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

CloneJET PCR<br />

cloning kit<br />

5 min<br />

Ligase-based blunt<br />

PCR cloning kit<br />

60 min<br />

Other vendors<br />

Topoisomerase-based<br />

blunt PCR cloning kit<br />

5 min<br />

Cloning of blunt-end PCR products: efficiency of different blunt-end PCR<br />

cloning systems with positive selection. A 976 bp blunt-end PCR product,<br />

generated with Pfu DNA Polymerase, was directly ligated into different positive<br />

selection blunt-end PCR cloning vectors according to the suppliers, protocols. Ligation<br />

mixtures (2 μl) were used to transform E.coli DH10B cells. Transformation efficiency of<br />

competent cells was 1x10 7 transformants per μg supercoiled DNA.<br />

Transformants/μg DNA<br />

5x10 5<br />

4x10 5<br />

3x10 5<br />

2x10 5<br />

1x10 5<br />

0<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

CloneJET PCR<br />

cloning kit<br />

10 min<br />

InsTAclone PCR<br />

cloning kit<br />

60 min<br />

vendor A<br />

vendor B<br />

Topoisomerase- Ligase-based<br />

based TA cloning kit TA cloning kit<br />

5 min 60 min<br />

Cloning of 3’-dA tailed PCR products: efficiency of different PCR cloning<br />

strategies. A 976 bp 3’-dA tailed PCR product, generated with Taq DNA Polymerase,<br />

was ligated into pJET1.2/blunt and into different TA cloning vectors according to the<br />

suppliers, protocols. Ligation mixtures (2 μl) were used to transform E.coli DH10B<br />

cells. Transformation efficiency of competent cells was 1x10 7 transformants per μg<br />

supercoiled DNA.


InsTAclone PCR Cloning Kit<br />

(Not available in USA)<br />

#K1213 for 10 rxns<br />

#K1214 for 30 rxns<br />

Related Products<br />

Nucleotides p.408<br />

FastDigest Restriction Enzymes p.2<br />

IPTG p.424<br />

X-Gal p.424<br />

Sequencing Primers p.416<br />

TranscriptAid T7 High Yield Transcription Kit p.328<br />

GeneJET Plasmid Miniprep Kit p.304<br />

GeneJET Gel Extraction Kit p.317<br />

GeneJET PCR Purification Kit p.316<br />

PCR product cloning procedure.<br />

bla (Ap R )<br />

pTZ57R/T<br />

2886 bp<br />

rep (pMB1)<br />

Restriction map of vector pTZ57R/T.<br />

f1 (IG)<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> InsTAclone PCR Cloning<br />

Kit is a TA system for direct one-step cloning<br />

of PCR products with 3’-dA overhangs (1)<br />

generated by<br />

Taq DNA Polymerase and other thermostable<br />

DNA polymerases which lack proofreading<br />

activity. The kit includes a ready-to-use cloning<br />

vector pTZ57R/T (see Restriction map below)<br />

constructed on the backbone of the pTZ57R<br />

vector. The 3’-ddT overhangs at both ends of<br />

the cloning site prevent recircularization of the<br />

vector during ligation, resulting in high cloning<br />

yields and low background. To increase the<br />

speed, convenience and efficiency of cloning<br />

experiment, the InsTAclone PCR Cloning Kit has<br />

been combined with the unique TransformAid<br />

Bacterial Transformation Kit. Ligation and<br />

preparation of competent cells is performed in<br />

parallel; therefore, it takes only one hour from<br />

the completion of PCR to cell plating.<br />

Our transformation protocol is often faster than<br />

the transformation of commercially available<br />

competent cells.<br />

lacZ<br />

ddT<br />

ddT<br />

P T7<br />

EcoRI<br />

Ecl136II<br />

SacI<br />

Acc65I<br />

KpnI<br />

Bsp68I<br />

Mva1269I<br />

Mph1103I<br />

XbaI<br />

ddT<br />

ddT<br />

BamHI<br />

Cfr9I<br />

Eco88I<br />

SmaI<br />

ApaI<br />

Bsp120I<br />

HincII<br />

SalI<br />

XmiI<br />

PstI<br />

AlfI<br />

Eco147I<br />

PaeI<br />

HindIII<br />

T7 promoter<br />

Features<br />

Fast – approximately one hour from PCR<br />

completion to cell plating.<br />

High efficiency – more than 90% of the<br />

recombinant clones contain the target DNA.<br />

One-step procedure – additional<br />

modifications of the PCR fragment are not<br />

required.<br />

Compatible with Taq, Tth, Tfl and other nonproofreading<br />

DNA polymerases, as well as<br />

with the Long PCR Enzyme Mix.<br />

Convenient pTZ57R/T cloning vector:<br />

– ready-to-use: linearized and 3’-ddT tailed,<br />

– MCS designed for easy mapping and<br />

manipulation of the cloned insert,<br />

– blue/white screening,<br />

– M13/pUC primer sites for sequencing or<br />

colony PCR screening,<br />

– T7 promoter for in vitro transcription of<br />

the insert.<br />

Applications<br />

TA cloning.<br />

Sequencing of cloned insert.<br />

In vitro transcription of insert DNA.<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Notes<br />

E.coli<br />

strains. E.coli cells are not included.<br />

Reference<br />

1. Clark, J.M., Novel non-templated nucleotide addition<br />

reactions catalyzed by prokaryotic and eukaryotic DNA<br />

polymerases, Nucl. Acids Res., 16 (20),<br />

9677-9686, 1988.<br />

www.thermoscientific.com/onebio 281


282<br />

aLICator Ligation Independent Cloning (LIC) and Expression System<br />

aLICator LIC Cloning and Expression Kit 1<br />

#K1241 for 20 rxns<br />

aLICator LIC Cloning and Expression Kit 2<br />

#K1251 for 20 rxns<br />

aLICator LIC Cloning and Expression Kit 3<br />

#K1261 for 20 rxns<br />

aLICator LIC Cloning and Expression Kit 4<br />

#K1281 for 20 rxns<br />

aLICator LIC Cloning and Expression Set 1<br />

#K1271 for 30 rxns<br />

aLICator LIC Cloning and Expression Set 2<br />

#K1291 for 30 rxns<br />

Related Products<br />

DNA Ladders pp.364-367<br />

Nucleotides p.408<br />

FastDigest Restriction Enzymes p.2<br />

WELQut Protease p.285<br />

IPTG p.424<br />

TransformAid Bacterial Transformation Kit p.289<br />

www.thermoscientific.com/onebio<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> aLICator LIC Cloning and<br />

Expression System is designed for fast and<br />

efficient ligation independent cloning and tight<br />

regulation of gene expression in E. coli. The<br />

pLATE bacterial expression vectors are designed<br />

for high levels of target protein expression in<br />

concert with minimal background (uninduced)<br />

expression, which permits expression of<br />

proteins that are toxic to E. coli cells. To<br />

streamline and facilitate the process of insert<br />

cloning into the expression vector, the aLICator<br />

system uses directional LIC cloning technology,<br />

a rapid and robust procedure that consistently<br />

provides high cloning efficiencies.<br />

The aLICator system consists of six kits based<br />

on the pLATE series of bacterial expression<br />

vectors. For proteins with a known preference<br />

for either the N- or C-terminal 6xHis-tag<br />

position, using the appropriate N- or C-terminal<br />

kit is recommended. When the protein<br />

structure and features are not well known, it is<br />

recommended to use a set, clone into all three<br />

vectors and determine the most compatible<br />

vector for further research. Following protein<br />

affinity purification, amino-terminal tags can be<br />

removed either via enterokinase (EK), DDDDK ^<br />

or a novel WELQut (WQ), WELQ ^ cleavage sites<br />

that are located immediately N-terminal to the<br />

target protein.<br />

Table 3.2. <strong>Thermo</strong> <strong>Scientific</strong> aLICator cloning system overview.<br />

Features<br />

High efficiency robust directional LIC cloning.<br />

Tight control of gene expression.<br />

High yield expression.<br />

Versatile – tagged or untagged protein<br />

expression with tag removal option.<br />

Applications<br />

Directional PCR product cloning.<br />

Tightly regulated protein expression.<br />

Expression of toxic genes.<br />

Cat# aLICator LIC Cloning Kits Feature<br />

#K1241 aLICator LIC Cloning and Expression Kit 1<br />

#K1251<br />

#K1261<br />

#K1281<br />

#K1271<br />

#K1291<br />

aLICator LIC Cloning and Expression Kit 2<br />

(N-terminal His-tag/EK)<br />

aLICator LIC Cloning and Expression Kit 3<br />

(C-terminal His-tag)<br />

aLICator LIC Cloning and Expression Kit 4<br />

(N-terminal His-tag/WQ)<br />

aLICator LIC Cloning and Expression Set 1<br />

(All-in-One/EK)<br />

aLICator LIC Cloning and Expression Set 2<br />

(All-in-One/WQ)<br />

pLATE11 vector, untagged protein<br />

expression<br />

pLATE51 vector, N-terminal His-tag protein<br />

expression, enterokinase cleavage<br />

pLATE31 vector, C-terminal His-tag protein<br />

expression<br />

pLATE52 vector, N-terminal His-tag protein<br />

expression, WELQut cleavage<br />

pLATE11, pLATE51 and pLATE31 vectors,<br />

choice of untagged, N- or C-terminal His-tag<br />

protein expression, enterokinase cleavage<br />

pLATE11, pLATE52 and pLATE31 vectors,<br />

choice of untagged, N- or C-terminal Histag<br />

protein expression, WELQut cleavage


P T7 – T7 RNA polymerase promoter<br />

T rrnBT1-T2 – Transcription terminator<br />

lacO – lac operator<br />

RBS – Ribosome binding site<br />

EKS – Enterokinase recognition sequence<br />

WQS – WELQut protease recognition sequence<br />

P tet – P tet promoter<br />

T T7 – T7 terminator<br />

lacI – lac repressor<br />

rop – rop protein regulates plasmid copy number<br />

rep (pMB1) – Origin of replication (rep)<br />

of the pMB1 plasmid<br />

bla (Ap R ) – -lactamase gene<br />

6xHis – Polyhistidine tag<br />

pLATE vector elements.<br />

pLATE expression vectors use elements from bacteriophage T7 to control expression of heterologous genes in E.coli. The expression of the gene of interest is driven by<br />

a strong bacteriophage T7 promoter, which is specifically recognized by T7 RNA polymerase. To express the gene of interest, E.coli strains such as BL21 (DE3),<br />

HMS 174 (DE3) must be used, in which expression of T7 RNA polymerase gene is under the control of an inducible promoter such as lacUV5.<br />

After IPTG induction, T7 RNA polymerase is expressed within the cell, and starts transcription of genes under the T7 promoter.<br />

www.thermoscientific.com/onebio 283


284<br />

Generation of sticky ends on the gene of interest with T4 DNA polymerase and dGTP.<br />

The LIC method uses T4 DNA polymerase to create specific 14 – 21 nucleotide single-stranded overhangs on the pLATE vectors and DNA inserts (2). T4 DNA<br />

polymerase has two enzymatic activities: 3’ – 5’ exonuclease activity removes nucleotides from the 3’ ends of the DNA while 5’ – 3’ polymerase activity restores<br />

the chain using dNTPs and the complementary DNA strand as a template. In the LIC protocol, only dGTP is included in the reaction mix, causing the exonuclease<br />

and polymerase activities to equilibrate at the first occurrence of cytosine in the complementary strand. After annealing, the LIC vector and insert are transformed<br />

into competent E.coli cells without the use of T4 DNA ligase. Covalent bond formation at the vector-insert junctions occurs within the cell to yield circular plasmid.<br />

M 1 2 3 4 5 6 M N C M N C M N C M N C M<br />

Expression of a toxic gene.<br />

Restriction endonuclease Cfr9I R gene was cloned into<br />

pLATE expression vectors expressed in E.coli ER2566<br />

cells without expressed methylase.<br />

3 hours post-induction, bacterial cells were collected,<br />

normalized according to optical density and sonicated.<br />

1 μl of cell-free extract was assessed for Cfr9I<br />

restriction activity by its ability to cleave lambda DNA.<br />

M – GeneRuler High Range DNA Ladder (#SM1353),<br />

1 – Lambda DNA,<br />

2 – Lambda DNA / Cfr9I,<br />

3, 4, 5, 6 – cell-free extract with Cfr9I expressed within<br />

pLATE11, pLATE31, pLATE51 and pLATE52<br />

vectors respectively.<br />

www.thermoscientific.com/onebio<br />

0.5 μg Cat 0.5 μg Klenow 4 μg Cat 4 μg Klenow<br />

Functionality of C-terminal and N-terminal 6XHis-tags.<br />

M – PageRuler Prestained Protein Ladder,<br />

C – pLATE31 (C-terminal His-tag),<br />

N – pLATE51 (N-terminal His-tag),<br />

Cat – chloramphenicolacetyl transferase,<br />

Klenow – Klenow Fragment, exo – .<br />

References<br />

1. Studier F.W. and Moffatt B.A., Use of bacteriophage T7 RNA<br />

polymerase to direct selective high-level expression of cloned<br />

genes. J Mol Biol, 189:113-130, 1986.<br />

2. Aslanidis C., de Jong P. J., Ligation-independent cloning<br />

of PCR products (LIC-PCR). Nucleic Acids Res., 18(20):<br />

6069-6074, 1990.<br />

3. Rand, K.N., Crystal Violet can be used to Visualize DNA Bands<br />

during Gel Electrophoresis and to Improve Cloning Efficiency,<br />

Elsevier Trends Journals Technical Tips, Online, T40022, 1996.<br />

4. Adkins, S., Burmeister, M., Visualization of DNA in agarose<br />

gels and educational demonstrations, Anal Biochem., 240 (1),<br />

17-23, 1996.


WELQut Protease<br />

#EO0861 500 u (5 u/μl)<br />

Related Products<br />

aLICator LIC Cloning and Expression Kit 4<br />

(N-terminal His-tag/WQ) p.282<br />

aLICator LIC Cloning and Expression Set 2<br />

(All-in-One/WQ) p.282<br />

Target<br />

protein<br />

Specific<br />

cleavage<br />

product<br />

WELQut<br />

Protease<br />

WELQut Protease Enterokinase<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> WELQut Protease is<br />

highly specific, recombinant serine protease<br />

of Staphylococcus aureus. It recognizes<br />

and precisely cleaves recombinant proteins<br />

containing an engineered recognition sequence*<br />

W- E- L- Q X (Trp, Glu, Leu, Gln,<br />

X can be any amino acid). The protease cleaves<br />

outside the recognition sequence without<br />

leaving additional amino acids bound to the<br />

target protein.<br />

The WELQut Protease is active in a broad<br />

temperature (4-30°C) and pH (pH 6.5-9.0)<br />

range and does not require specific buffers.<br />

In addition, this new protease has several<br />

procedural advantages – it is ideal for<br />

on-column proteolysis reactions and can be<br />

easily removed from reaction mixtures using its<br />

built-in His-tag.<br />

* This cleavage sequence is present in expression vector<br />

included into the <strong>Thermo</strong> <strong>Scientific</strong> aLICator LIC Cloning<br />

and Expression Kit 4 (N-terminal His-tag/WQ) available from<br />

<strong>Thermo</strong> <strong>Scientific</strong> (#K1281).<br />

M K 1 2 3 4 5 6 K 7 8 9 10 11 M<br />

Highly specific proteolysis of target protein performed by <strong>Thermo</strong> <strong>Scientific</strong><br />

WELQut Protease vs. Enterokinase.<br />

Target protein (Klenow Fragment, exo – ), containing a WELQut Protease or<br />

Enterokinase recognition sequence) was treated with WELQut Protease or Enterokinase<br />

according to the recommendations provided by the suppliers. Various enzyme/<br />

substrate ratios were tested and reaction products were analyzed in SDS-PAGE.<br />

M – PageRuler Prestained Protein Ladder (<strong>Thermo</strong> <strong>Scientific</strong>, #SM0671).<br />

K – Control - uncut target protein. 1-6 various WELQut/target protein amount ratios, u/μg.<br />

1 – 1:100, 2 – 1:50, 3 – 1:40, 4 – 1:20, 5 – 1:10, 6 – 1:5.<br />

7-11 various Enterokinase/target protein amount ratios, μg/μg.<br />

7 – 1:100, 8 – 1:40, 9 – 1:20, 10 – 1:10, 11 – 1:5.<br />

Non-specific cleavage<br />

products<br />

Features<br />

Cleaves outside WELQ recognition sequence,<br />

without leaving additional amino acids bound<br />

to the target protein.<br />

Highly specific to cognate recognition site,<br />

does not generate non-specific product<br />

bands, even after long incubation.<br />

Easy to remove from the reaction mixture<br />

using the built-in His-tag.<br />

Ideal for on-column proteolysis reactions.<br />

Applications<br />

Removal of N-terminal fusion tags from<br />

recombinant protein preparations.<br />

Definition of Activity Unit<br />

Each unit is defined as the amount of enzyme<br />

required to cleave 99% of 100 μg of a control<br />

protein in 16 h at 20°C.<br />

Enzyme activity is assayed in 100 μl 100 mM<br />

Tris-HCl (pH 8.0).<br />

Source<br />

Bacillus subtilis cells with a cloned gene of SplB<br />

protease from Staphylococcus aureus.<br />

<strong>Molecular</strong> Weight<br />

22 kDa monomer.<br />

Storage Buffer<br />

Enzyme is supplied in: 10 mM Na 2HPO 4;<br />

1.8 mM KH 2PO 4, pH 7.3; 140 mM NaCl;<br />

2.7 mM KCl; 50% glycerol.<br />

Protocols and Recommendations<br />

» 3.5.1. Optimization of WELQut<br />

Protease cleavage p.295<br />

» 3.5.2. Cleavage of fusion proteins<br />

in solution p.296<br />

» 3.5.3. Cleavage of fusion proteins<br />

during affinity purification p.296<br />

www.thermoscientific.com/onebio 285


286<br />

Maxima H Minus Double-Stranded cDNA Synthesis Kit<br />

#K2561 for 10 rxns<br />

Related Products<br />

GeneJET RNA Purification Kit p.307<br />

GeneJET Plant RNA Purification Kit p.309<br />

GeneJET Whole Blood RNA<br />

Purification Kit p.308<br />

CloneJET PCR Cloning Kit p.279<br />

Rapid DNA Ligation Kit p.288<br />

T4 DNA Ligase p.239<br />

DNA Ladders pp.364-367<br />

RNA Ladders p.386<br />

Protocols and Recommendations<br />

» 3.1.2. Blunt-end ligation p.294<br />

www.thermoscientific.com/onebio<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Maxima H Minus<br />

Double-Stranded cDNA Synthesis Kit is an<br />

efficient system for synthesis of high quality<br />

double-stranded blunt end cDNA from total<br />

RNA or mRNA. The kit works at a wide range of<br />

starting RNA amounts (1-20 μg total RNA, 50<br />

ng-5 μg mRNA) and at elevated temperatures<br />

(50-60°C). First- and second-strand cDNA<br />

synthesis reactions are performed in the<br />

same tube without the need for intermediate<br />

purification steps. The kit contains premixed<br />

components to reduce the number of pipetting<br />

steps necessary to complete the procedure.<br />

This convenient one-tube format speeds up the<br />

synthesis procedure, reduces risk of pipeting<br />

error and maximizes cDNA recovery.<br />

The kit uses an advanced reverse transcriptase,<br />

Maxima H Minus, which was developed through<br />

in vitro evolution of M-MuLV RT for increased<br />

thermostability and speed. In addition, it lacks<br />

RNase H activity, resulting in greater cDNA<br />

yields and increased full-length cDNA.<br />

The kit is a complete solution. All necessary<br />

components are supplied within the kit: both<br />

oligo(dT) 18 and random hexamer primer primers,<br />

controls, RiboLock RNase Inhibitor, RNase I for<br />

residual RNA removal.<br />

Yield, %<br />

Features<br />

Efficient synthesis of full-length doublestranded<br />

cDNA.<br />

Fast – procedure completed in less than<br />

2 hours.<br />

Convenient – premixed components.<br />

Complete – includes all primers, controls and<br />

residual RNA removal reagents.<br />

Applications<br />

Full-length double-stranded blunt-end cDNA<br />

synthesis for cloning.<br />

Double-stranded cDNA library construction.<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

18 Primer<br />

<br />

<br />

<br />

100<br />

90<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

Vendor A<br />

<strong>Thermo</strong><br />

<strong>Scientific</strong> vendor A vendor B<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Vendor B<br />

0<br />

M ss ds ss ds ss ds M<br />

1a 1b<br />

Efficient synthesis of double-stranded cDNA.<br />

20 μg of total Jurkat RNA was used as a template for oligo-dT primed first and second strand cDNA synthesis<br />

using the Maxima H Minus Double-Stranded cDNA Synthesis Kit and kits from other vendors, according<br />

to the manufacturers, instructions. Yields of purified reaction products were estimated using a NanoDrop<br />

spectrophotometer (calculated based on assumption that mRNA accounts for 5% of total RNA) (1a). One half<br />

of the each reaction product was analyzed on agarose gel (1b).<br />

M – ZipRuler Express DNA Ladder Mix (#SM1373)<br />

ss – single-stranded cDNA<br />

ds – double-stranded cDNA


Fast DNA End Repair Kit<br />

#K0771 for 50 rxns<br />

Related Products<br />

T4 DNA Polymerase p.249<br />

Klenow Fragment p.247<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

T4 DNA Ligase p.239<br />

Rapid DNA Ligation Kit p.288<br />

FastDigest Restriction Enzymes p.2<br />

M C1 C2 T A B M<br />

Efficient ligation after DNA end repair with<br />

the <strong>Thermo</strong> <strong>Scientific</strong> Fast DNA End Repair Kit.<br />

A 130 bp PCR product with 3’- dA overhangs was<br />

end-repaired using the Fast DNA End Repair Kit and<br />

kits from other vendors according to the suppliers’,<br />

recommendations, and subsequently ligated with T4<br />

DNA Ligase (#EL0014). Ligation conditions: 200 ng of<br />

130 bp PCR product ligated with 5u T4 DNA Ligase<br />

in 1X T4 DNA Ligase Buffer with 5% PEG 4000 for<br />

1h at 22°C.<br />

M – GeneRuler 1 kb Plus DNA Ladder (#SM1333),<br />

C1 – PCR product,<br />

C2 – PCR product after ligation,<br />

T – PCR product after end repair using Fast DNA End<br />

Repair Kit (20°C, 5 min) and ligation,<br />

A – PCR product after end repair using Vendor A’s kit<br />

(20°C, 30 min) and ligation,<br />

B – PCR product after end repair using Vendor B’s kit<br />

(RT, 45 min; 70°C, 10 min) and ligation.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Fast DNA End Repair<br />

Kit is used for blunting and phosphorylation<br />

of DNA ends in just 5 minutes for subsequent<br />

use in blunt-end ligation. During the DNA end<br />

repair reaction, fragmented DNA is converted<br />

into blunt-end DNA containing 5’-phosphate<br />

and 3’-hydroxyl groups. The 5’3’ polymerase<br />

activity of the End Repair Enzyme Mix fills-in<br />

5’ protruded DNA ends while its 3’5’<br />

exonuclease activity removes 3’-overhangs.<br />

T4 polynucleotide Kinase (PNK) adds<br />

5’-phosphates to ends of unphosphorylated<br />

DNA fragments such as PCR products.<br />

All components of the kit contain premixed<br />

reagents to reduce pipetting steps and provide<br />

convenience. The End Repair Enzyme Mix<br />

contains an optimized mixture of T4 DNA<br />

Polymerase and Klenow Fragment to achieve<br />

highly effective blunting of fragmented DNA,<br />

and T4 PNK for efficient phosphorylation of<br />

DNA ends. The 10X End Repair Reaction Mix<br />

contains an optimized reaction buffer,<br />

ATP and dNTPs.<br />

Features<br />

Efficient – blunting and phosphorylation of<br />

0.5-5 μg DNA.<br />

Fast – reaction is completed in 5 minutes.<br />

Convenient – reaction components are<br />

premixed to reduce pipetting steps.<br />

Applications<br />

Blunting and phosphorylation of doublestranded<br />

DNA (nebulized DNA, sonicated<br />

DNA, restriction enzyme digested DNA, cDNA,<br />

PCR products).<br />

Components of the Kit<br />

<br />

<br />

<br />

5’-overhangs 3’-overhangs Blunt PCR product PCR product with 3’-dA overhangs<br />

dA<br />

dA 5’<br />

5’<br />

5’<br />

5’<br />

P<br />

P<br />

P<br />

Blunting and phosphorylation of different types of DNA ends<br />

P<br />

P<br />

P<br />

Protocols and Recommendations<br />

» 3.1.2. Blunt-end ligation p.294<br />

P<br />

P<br />

www.thermoscientific.com/onebio 287


288<br />

Rapid DNA Ligation Kit<br />

#K1422 for 50 rxns<br />

#K1423 for 150 rxns<br />

Related Products<br />

TransformAid Bacterial Transformation Kit p.289<br />

Cloning Vectors p.292<br />

IPTG p.424<br />

X-Gal p.424<br />

T4 DNA Polymerase p.249<br />

Klenow Fragment p.247<br />

FastAP <strong>Thermo</strong>stabile Alkaline Phosphatase p.242<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

GeneJET Plasmid Miniprep Kit p.304<br />

GeneJET Gel Extraction Kit p.317<br />

GeneJET PCR Purification Kit p.316<br />

Fast DNA End Repair Kit p.287<br />

Maxima H Minus Double Strand cDNA Kit p.286<br />

T4 DNA Ligase p.239<br />

www.thermoscientific.com/onebio<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Rapid DNA Ligation Kit<br />

allows fast sticky-end or blunt-end DNA ligation<br />

in only 5 min at room temperature.<br />

The kit contains T4 DNA Ligase and a specially<br />

formulated 5X rapid ligation buffer optimized<br />

for fast and efficient DNA ligation. Fast ligation<br />

efficiency is equal to that obtained with T4<br />

DNA Ligase in a standard 1 hour ligation. The<br />

ligation reaction mixture can be used directly for<br />

bacterial transformation with the TransformAid<br />

Bacterial Transformation Kit or with other<br />

conventional transformation procedures.<br />

Features<br />

Fast – ligation of either sticky- or blunt-end<br />

DNA in only 5 minutes.<br />

Convenient – reaction mixture can be used<br />

directly for bacterial transformation.<br />

Transformants per μg DNA<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

sticky ends<br />

blunt ends<br />

0 5 10 15 20 25 30<br />

Time, min<br />

Ligation of sticky- and blunt-end DNA<br />

fragments with the <strong>Thermo</strong> <strong>Scientific</strong><br />

Rapid DNA Ligation Kit.<br />

Blunt-end ligation: pUC19 DNA/SmaI dephosphorylated<br />

vector was ligated with DNA/PvuII fragment (2.3 kb).<br />

Sticky-end ligation: pUC19 DNA/PstI dephosphorylated<br />

vector was ligated with DNA/PstI fragment (2.1 kb).<br />

The efficiency of ligation was determined by<br />

transformation of E.coli XL1-Blue cells.<br />

Applications<br />

Routine cloning experiments.<br />

Blunt-end cloning.<br />

Library construction.<br />

TA cloning.<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

Notes<br />

<br />

inactivate T4 DNA ligase by chloroform<br />

extraction or spin column purification,<br />

e.g., with GeneJET PCR Purification Kit<br />

(#K0701) (1).<br />

Reference<br />

1. Michelsen, B.K., Anal. Biochem., 225,172, 1995.


TransformAid Bacterial Transformation Kit<br />

#K2710 for 20 transformations<br />

#K2711 for 40 transformations<br />

Related Products<br />

Rapid DNA Ligation Kit p.288<br />

T4 DNA Ligase<br />

FastAP <strong>Thermo</strong>stabile Alkaline<br />

p.239<br />

Phosphatase p.242<br />

T4 DNA Polymerase p.249<br />

Klenow Fragment p.247<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

Cloning Vectors p.292<br />

IPTG p.424<br />

X-Gal p.424<br />

GeneJET Plasmid Miniprep Kit p.304<br />

From Overnight Bacterial Culture<br />

Add an aliquot of overnight<br />

culture to C-medium<br />

Incubate 20 min at 37°C<br />

Aliquot, centrifuge 1 min<br />

Resuspend in T-solution<br />

Incubate 5 min on ice<br />

Centrifuge 1 min<br />

Resuspend in T-solution<br />

incubate 5 min on ice, aliquot<br />

Mix with DNA<br />

transform 5 min<br />

Plate immediately<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> TransformAid Bacterial<br />

Transformation Kit uses a novel method for<br />

rapid preparation of chemically competent<br />

E.coli cells from overnight bacterial cultures<br />

or bacterial colonies. The key component of<br />

this system is the unique T-solution, which<br />

produces competent cells in a few easy steps.<br />

The quick and convenient procedure guarantees<br />

transformation efficiencies of more than 107 transformants per μg of plasmid DNA, ideal for<br />

routine cloning experiments. The option to use<br />

bacterial colonies for preparation of competent<br />

cells adds flexibility to any cloning experiment.<br />

The TransformAid Bacterial Transformation Kit<br />

can be used with most E.coli strains commonly<br />

used for cloning.<br />

Features<br />

Efficient – more than 107 transformants<br />

per μg of plasmid DNA.<br />

Practical – E.coli competent cells can be<br />

prepared from an overnight culture or from<br />

bacterial colonies.<br />

Fast – less than 1 hour from the overnight<br />

bacterial culture to cell plating. Starting from<br />

bacterial colonies, the procedure requires<br />

only 2.5 hours.<br />

Easy – all procedures are performed on<br />

ice on your bench. Brief centrifugations are<br />

carried out in standard microcentrifuges.<br />

From Bacterial Colonies<br />

Add a few colonies to<br />

C-medium<br />

Incubate 2 hours at 37°C<br />

Aliquot, centrifuge 1 min<br />

Resuspend in T-solution<br />

Incubate 5 min on ice<br />

Centrifuge 1 min<br />

Resuspend in T-solution<br />

incubate 5 min on ice, aliquot<br />

Mix with DNA<br />

transform 5 min<br />

Plate immediately<br />

Total time: 50 min<br />

Total time: 2.5 hours<br />

Transformation workflow with the <strong>Thermo</strong> <strong>Scientific</strong> TransformAid Bacterial Transformation Kit.<br />

Applications<br />

Routine cloning experiments.<br />

Blunt-end cloning.<br />

TA cloning.<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

Notes<br />

<br />

Bacterial Transformation Kit are suitable for<br />

direct use only. Freezing down and storage<br />

at -70°C is not recommended.<br />

Protocols and Recommendations<br />

» 3.7. Cultivation of E.coli p.296<br />

www.thermoscientific.com/onebio 289


290<br />

Phusion Site-Directed Mutagenesis Kit<br />

#F-541 for 20 rxns incl.<br />

10 control rxns<br />

Related Products<br />

IPTG p.424<br />

X-Gal p.424<br />

GeneJET Plasmid Miniprep Kit p.304<br />

POINT MUTATION DELETION INSERTION OPTION 1<br />

R<br />

5'P<br />

Mu t<br />

Linear amplified target plasmid<br />

with desired mutation<br />

The Phusion Site-Directed Mutagenesis protocol<br />

www.thermoscientific.com/onebio<br />

X<br />

5'P<br />

Target<br />

plasmid<br />

F<br />

R<br />

Del<br />

5'P<br />

5'P<br />

Target<br />

plasmid<br />

5'P<br />

X<br />

F<br />

X<br />

Mutated target<br />

plasmid<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Phusion Site-Directed<br />

Mutagenesis Kit is a versatile and efficient<br />

tool for introducing point mutations, insertions<br />

or deletions in any type of plasmid DNA. With<br />

this kit, the entire plasmid is amplified using<br />

phosphorylated primers that introduce the<br />

desired changes. The amplified linear PCR<br />

product, containing the desired mutation, is<br />

circularized in a 5-minute ligation reaction. The<br />

resulting plasmid then can be transformed into<br />

competent E.coli cells.<br />

5'P<br />

R<br />

Ins<br />

5'P<br />

Target<br />

plasmid<br />

5'P<br />

F<br />

INSERTION OPTION 2<br />

R<br />

5'P Ins<br />

5'P<br />

Target<br />

plasmid<br />

Step 1.<br />

Amplification of target plasmid<br />

with two phosphorylated primers.<br />

Step 2.<br />

Plasmid circularization<br />

by ligation.<br />

Step 3.<br />

Transformation into E. coli.<br />

F<br />

Features<br />

Robust and reliable exponential amplification<br />

method.<br />

No specific requirements for vectors,<br />

restriction sites or methylation status of the<br />

target plasmid.<br />

No need to destroy the starting template in a<br />

separate step.<br />

High fidelity Phusion Hot Start II DNA<br />

Polymerase minimizes unwanted secondary<br />

mutations.<br />

Amplification of large plasmids up to 10 kb.<br />

Hot start modification of the polymerase<br />

prevents amplification of non-specific<br />

products and unwanted degradation of<br />

primers prior to first cycle of PCR.<br />

Compatible with all strains of competent<br />

E.coli cells.<br />

Applications<br />

Generating point mutations, insertions and<br />

deletions in plasmid DNA.<br />

Storage<br />

Store at -20°C.<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Notes<br />

<br />

inactivate T4 DNA ligase by chloroform<br />

extraction or spin column purification,<br />

e.g., with GeneJET PCR Purification Kit<br />

(#K0701) (1).<br />

Reference<br />

1. Catic, et al., Sequence and structure evolved separately in a<br />

ribosomal ubiquitin variant., EMBO J. 26, 3474-3483, 2007.


Lambda DNA<br />

#SD0011 500 μg<br />

(0.3 μg/μl)<br />

Storage Buffer<br />

10 mM Tris-HCl (pH 7.6) and 1 mM EDTA.<br />

Lambda DNA (dam – , dcm – )<br />

#SD0021 500 μg<br />

(0.3 μg/μl)<br />

Storage Buffer<br />

10 mM Tris-HCl (pH 7.6) and 1 mM EDTA.<br />

X174 RF1 DNA<br />

#SD0031 50 μg<br />

(0.5 μg/μl)<br />

Storage Buffer<br />

10 mM Tris-HCl (pH 7.6) and 1 mM EDTA.<br />

pBR322 DNA<br />

#SD0041 100 μg<br />

(0.5 μg/μl)<br />

Storage Buffer<br />

10 mM Tris-HCl (pH 7.6) and 1 mM EDTA.<br />

Description<br />

Linear double-stranded lambda bacteriophage<br />

(cI857 Sam7) DNA, 48502 base pairs with a<br />

molecular weight of 31.5 x 10 6 Da. Isolated from<br />

a heat-inducible lysogenic E.coli W3110 strain.<br />

For map and features see p.434.<br />

Description<br />

Linear double-stranded Dam and Dcm<br />

methylation-free lambda bacteriophage<br />

(cI 857 Sam7) DNA, 48502 base pairs with a<br />

molecular weight of 31.5 x 10 6 Da. Isolated<br />

from a heat-inducible lysogenic E.coli GM2163<br />

strain. For map and features see p.434.<br />

Description<br />

Double-stranded closed circular plasmid,<br />

5386 base pairs with a molecular weight of<br />

3.50 x 10 6 Da. Isolated from E.coli HF4704<br />

infected with X174 am3. For map and<br />

features see p.435.<br />

Description<br />

Double-stranded closed circular medium copy<br />

plasmid, 4361 base pairs with a molecular<br />

weight of 2.83 x 10 6 Da. Isolated from<br />

E.coli (dam + , dcm + ). For map and features<br />

see p.439.<br />

Applications<br />

Activity and specificity assays of restriction<br />

enzymes.<br />

Preparation of DNA molecular weight standards.<br />

Cloning.<br />

Applications<br />

Activity and specificity assays of restriction<br />

enzymes sensitive to dam or<br />

dcm methylation.<br />

Preparation of DNA molecular<br />

weight standards.<br />

Cloning.<br />

Features<br />

Purified by chromatography using proprietary<br />

technology.<br />

More than 90% in the supercoiled form.<br />

Application<br />

Preparation of DNA molecular weight<br />

standards.<br />

Features<br />

Purified by chromatography using proprietary<br />

technology.<br />

More than 90% in the supercoiled form.<br />

Applications<br />

Cloning.<br />

Preparation of DNA molecular weight<br />

standards.<br />

www.thermoscientific.com/onebio 291


292<br />

pTZ19R DNA<br />

#SD0141 50 μg<br />

(0.5 μg/μl)<br />

Storage Buffer<br />

10 mM Tris-HCl (pH 7.6) and 1 mM EDTA.<br />

pUC57 DNA<br />

#SD0171 50 μg<br />

(0.5 μg/μl)<br />

Storage Buffer<br />

10 mM Tris-HCl (pH 7.6) and 1 mM EDTA.<br />

pUC18 DNA<br />

#SD0051 50 μg<br />

(0.5 μg/μl)<br />

Storage Buffer<br />

10 mM Tris-HCl (pH 7.6) and 1 mM EDTA.<br />

pUC19 DNA<br />

#SD0061 50 μg<br />

(0.5 μg/μl)<br />

Storage Buffer<br />

10 mM Tris-HCl (pH 7.6) and 1 mM EDTA.<br />

www.thermoscientific.com/onebio<br />

Description<br />

Double-stranded closed circular high copy<br />

phagemid, 2862 base pairs with a molecular<br />

weight of 1.86 x 10 6 Da. Isolated from E.coli<br />

(dam + , dcm + ). For map and features see p.445.<br />

Description<br />

Double-stranded closed circular high copy<br />

plasmid, 2710 base pairs with a molecular<br />

weight of 1.76 x 10 6 Da. Isolated from E.coli<br />

(dam + , dcm + ). For map and features see p.443.<br />

Description<br />

Double-stranded closed circular high copy<br />

plasmid, 2686 base pairs with a molecular<br />

weight of 1.74 x 10 6 Da. Isolated from E.coli<br />

(dam + , dcm + ). For map and features see p.441.<br />

Description<br />

Double-stranded closed circular high copy<br />

plasmid, 2686 base pairs with a molecular<br />

weight of 1.74 x 10 6 Da. Isolated from E.coli<br />

(dam + , dcm + ). For map and features see p.441.<br />

Features<br />

Purified by chromatography using proprietary<br />

technology.<br />

More than 90% in the supercoiled form.<br />

Applications<br />

Cloning.<br />

Sequencing of insert DNA.<br />

In vitro transcription.<br />

Features<br />

Purified by chromatography using proprietary<br />

technology.<br />

More than 90% in the supercoiled form.<br />

Applications<br />

Cloning.<br />

Sequencing of insert DNA.<br />

Generation of nested deletions with ExoIII.<br />

Features<br />

Purified by chromatography using proprietary<br />

technology.<br />

More than 90% in the supercoiled form.<br />

Applications<br />

Cloning.<br />

Sequencing of insert DNA.<br />

Preparation of DNA molecular weight standards.<br />

Features<br />

Purified by chromatography using proprietary<br />

technology.<br />

More than 90% in the supercoiled form.<br />

Applications<br />

Cloning.<br />

Sequencing of insert DNA.


Related Products by Application<br />

Dephosphorylation & phosphorylation Cat. # Size Supplied with Applications Page<br />

FastAP <strong>Thermo</strong>sensitive Alkaline<br />

Phosphatase, 1 u/μl<br />

T4 Polynucleotide Kinase<br />

(T4 PNK), 10 u/μl<br />

EF0651 1000 u 10X FastAP Buffer 2x1.5 ml<br />

<br />

EF0652 5x1000 u 10X FastAP Buffer 10x1.5 ml<br />

cloning vector DNA during ligation.<br />

EF0654 300 u 10X FastAP Buffer 1.5 ml<br />

EK0031 500 u<br />

EK0032 2500 u<br />

10X Reaction Buffer A 0.4 ml<br />

10X Reaction Buffer B 0.2 ml<br />

24% PEG Solution 0.2 ml<br />

10X Reaction Buffer A 2 ml<br />

10X Reaction Buffer B 1 ml<br />

24% PEG Solution 1 ml<br />

<br />

products prior to ligation into<br />

dephosphorylated vector DNA.<br />

<br />

linkers and DNA or RNA prior to<br />

ligation.<br />

Protocols and Recommendations<br />

» 3.3. Phosphorylation of DNA<br />

» 3.4.2. Fast simultaneous plasmid vector linearization and dephosphorylation<br />

» 3.4.1. Dephosphorylation of DNA 5’-termini<br />

DNA blunting Cat. # Size Supplied with Applications Page<br />

T4 DNA Polymerase, 5 u/μl<br />

Klenow Fragment, exo – , 5 u/μl<br />

EP0061 100 u 10X Reaction Buffer 0.35 ml <br />

of 3’-overhangs or fill in of<br />

5’-overhangs.<br />

EP0062 500 u 10X Reaction Buffer 2x1 ml <br />

PCR products.<br />

EP0421 300 u 10X Reaction Buffer 1 ml <br />

EP0422 1500 u 10X Reaction Buffer 5x1 ml 5’-overhangs.<br />

S1 Nuclease, 100 u/μl EN0321 10000 u 5X Reaction Buffer 2x1 ml<br />

<br />

3’, 5’-overhangs.<br />

<br />

DNA fragments (in conjunction with<br />

Exonuclease III).<br />

242<br />

243<br />

p.295<br />

p.295<br />

p.295<br />

Protocols and Recommendations<br />

» 3.2.1. Blunting of 5’- or 3’-overhangs with T4 DNA Polymerase p.295<br />

» 3.2.2. Fill-in of 5’-overhangs with Klenow Fragment p.295<br />

» 3.2.3. Removal of 3’- and 5’-overhangs with S1 Nuclease p.295<br />

Cultivation of E.coli Cat. # Size Applications Page<br />

IPTG Solution, ready-to-use, 100 mM R1171 10x1.5 ml<br />

R0391 1 g<br />

IPTG, dioxane-free<br />

R0392 5 g<br />

R0393 5x5 g<br />

X-Gal Solution, ready-to-use, 20 mg/ml R0941 10 ml<br />

X-Gal<br />

Reference<br />

1. Sambrook, J., Russell, D.W., <strong>Molecular</strong> Cloning: A<br />

Laboratory Manual, the Third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York, 1.124-<br />

1.125, A1.27, 2001.<br />

R0401 0.5 g<br />

R0402 2x1 g<br />

R0404 1 g<br />

Blue/white colony screening, distinguishing recombinant (white) from nonrecombinant<br />

(blue) colonies (1).<br />

Protocols and Recommendations<br />

» 3.7.2. Preparation of X-Gal/IPTG LB agar plates for blue/white colony screening p.296<br />

249<br />

248<br />

269<br />

424<br />

www.thermoscientific.com/onebio 293


294<br />

Protocols and Recommendations<br />

3.1. DNA ligation<br />

3.1.1. Sticky-end ligation<br />

1. Prepare the following reaction mixture:<br />

Linear vector DNA 20-100 ng<br />

Insert DNA<br />

1:1 to 5:1<br />

molar ratio over vector<br />

10X T4 DNA Ligase Buffer 2 μl<br />

T4 DNA ligase 1 u<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

2. Incubate 10 min at 22°C.<br />

3. Use up to 5 μl of the mixture to transform<br />

50 μl of chemically competent cells or<br />

0.5-1 μl per 50 μl of electrocompetent cells.<br />

Note<br />

The electrotransformation efficiency may be improved by:<br />

– heat inactivation of T4 DNA ligase at 65°C for 10 min or<br />

at 70°C for 5 min,<br />

– purification of DNA using the GeneJET PCR Purification<br />

Kit (#K0701) or by chloroform extraction.<br />

The overall number of transformants may be increased by<br />

extending the reaction time to 1 hour.<br />

If more than 2 u of T4 DNA ligase is used in a 20 μl<br />

reaction mixture, it is necessary to purify the DNA<br />

by spin column or chloroform extraction before<br />

electrotransformation.<br />

3.1.2. Blunt-end ligation<br />

1. Prepare the following reaction mixture:<br />

Linear vector DNA 20-100 ng<br />

Insert DNA<br />

1:1 to 5:1<br />

molar ratio over vector<br />

10X T4 DNA Ligase Buffer 2 μl<br />

50% PEG 4000 solution 2 μl<br />

T4 DNA ligase 5 u<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

2. Incubate 1 hour at 22°C.<br />

3. Use up to 5 μl of the mixture to transform<br />

50 μl of chemically competent cells.<br />

Purify DNA for electrotransformation using<br />

the GeneJET PCR Purification Kit (#K0701)<br />

or by cloroform extraction. Use 1-2 μl of DNA<br />

solution per 50 μl of electrocompetent cells.<br />

3.1.3. Self-circularization of linear DNA<br />

1. Prepare the following reaction mixture:<br />

Linear DNA 10-50 ng<br />

10X T4 DNA Ligase Buffer 5 μl<br />

T4 DNA ligase 5 u<br />

Water, nuclease-free (#R0581) to 50 μl<br />

Total volume 50 μl<br />

2. Mix thoroughly, spin briefly and incubate<br />

10 min at 22°C.<br />

3. Use up to 5 μl of the mixture to transform<br />

50 μl of chemically competent cells and<br />

0.5-1 μl per 50 μl of electrocompetent cells.<br />

www.thermoscientific.com/onebio<br />

Note<br />

The electrotransformation efficiency may be improved by:<br />

– heat inactivation of T4 DNA ligase at 65°C for 10 min or<br />

at 70°C for 5 min,<br />

– purification of DNA using the GeneJET PCR Purification<br />

Kit (#K0701) or by chloroform extraction.<br />

The overall number of transformants may be increased by<br />

extending the reaction time to 1 hour.<br />

Important Notes<br />

<br />

in the rection mixture.<br />

<br />

in agarose gels. To avoid this, incubate samples with<br />

6X Loading Dye & SDS Solution (#R1151) at 65°C<br />

for 10 min and chill on ice prior to loading.<br />

<br />

reaction mixture should not exceed 10% of the competent<br />

cell volume.<br />

3.1.4. Linker ligation<br />

Double-stranded oligonucleotide linkers are<br />

often used to generate overhangs not found in<br />

the insert. Linkers normally contain restriction<br />

enzyme recognition sequences and are digested<br />

after ligation to generate overhangs compatible<br />

with cloning vectors. Alternatively, linkers may<br />

have overhangs which are ready for ligation<br />

with a cloning vector and do not require further<br />

manipulation following ligation.<br />

1. Prepare the following reaction mixture:<br />

Linear DNA 100-500 ng<br />

Phosphorylated linkers 1-2 μg<br />

10X T4 DNA Ligase Buffer 2 μl<br />

50% PEG 4000 solution 2 μl<br />

T4 DNA ligase 2 u<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

2. Mix thoroughly, spin briefly and incubate for<br />

1 hour at 22°C.<br />

3. Heat inactivate at 65°C for 10 min or at 70°C<br />

for 5 min.<br />

Note<br />

T4 DNA Ligase is active in PCR and restriction digestion<br />

buffers (see table below). Therefore, linker ligation reactions<br />

can be performed in the restriction enzyme buffer optimal<br />

for the subsequent digestion. In this case, the ligation<br />

reaction should be supplemented with ATP to a final<br />

concentration of 0.5 mM. After inactivation of the T4 DNA<br />

Ligase, add the restriction enzyme directly to the reaction<br />

mixture and incubate according to the digestion protocol.<br />

Buffers<br />

Activity in PCR and restriction digestion buffers<br />

Activity*, %<br />

PCR and RT buffers 75<br />

Reaction buffers for<br />

restriction enzymes<br />

FastDigest, 1X Tango,<br />

2X Tango, B, G, O, R,<br />

KpnI, BamHI, EcoRI<br />

75-100<br />

Ecl136II, SacI 50<br />

* activity of T4 DNA Ligase in various buffers supplemented with 0.5 mM ATP.<br />

3.1.5. Analysis of ligation products by<br />

agarose gel electrophoresis<br />

Ligation efficiency can be assessed by agarose<br />

gel electrophoresis of ligation reaction products.<br />

For sample loading, use of SDS-supplemented<br />

loading dye; e.g., 6X DNA Loading Dye & SDS<br />

Solution (#R1151) is recommended to eliminate<br />

band shift due to T4 DNA ligase binding to DNA<br />

(see Fig. below).<br />

1. Prepare the loading mixture:<br />

Ligation reaction product 10 μl<br />

6X DNA Loading Dye & SDS Solution (#R1151) 2 μl<br />

2. Heat the sample for 10 min at 65°C or for<br />

5 min at 70°C, chill on ice and load.<br />

1 2 3 M<br />

Analysis of ligation reaction products on an<br />

agarose gel.<br />

400 ng of vector and insert in total were used. Standard<br />

ligation experiments normally use less DNA; therefore,<br />

bands on a gel may appear at lower intensity.<br />

M – GeneRuler DNA Ladder Mix (#SM0331).<br />

1 – Mixture of DNA insert and vector in T4 DNA<br />

Ligase Buffer.<br />

2 – Mixture of DNA insert and vector after the ligation<br />

sample loaded with 6X DNA Loading Dye (#R0611).<br />

3 – Mixture of DNA insert and vector after the ligation<br />

sample loaded with 6X DNA Loading Dye & SDS<br />

Solution (#R1141).<br />

Interpretation of results<br />

Appearance of higher molecular weight<br />

bands and decreased intensity of the vector<br />

and insert bands indicate successful ligation.<br />

<br />

indicates unsuccessful ligation.<br />

3.1.6. Control reaction for T4 DNA<br />

Ligase activity<br />

Unsuccessful ligation may be the result of inactive<br />

ligase or inhibition of the ligation reaction by<br />

impurities in sample DNA. To assess the activity<br />

of T4 DNA Ligase we recommend performing a<br />

ligation reaction with control DNA; e.g., Lambda<br />

DNA/HindIII DNA Marker (#SM0101).<br />

1. Prepare the control ligation mixture:<br />

Lambda DNA/HindIII DNA Marker (#SM0101) 1 μl (0.5 μg)<br />

10X T4 DNA Ligase Buffer 2 μl<br />

T4 DNA Ligase 1 u<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl


2. Mix thoroughly, spin briefly and incubate at<br />

22°C for 10 min.<br />

3. Prepare the loading mixture:<br />

Ligation reaction product 10 μl<br />

6X DNA Loading Dye & SDS Solution (#R1151) 2 μl<br />

4. Heat the sample for 10 min at 65°C or for<br />

5 min at 70°C, chill on ice and load.<br />

1 2<br />

Evaluation of T4 DNA Ligase activity in control<br />

experiment.<br />

1 – Lambda DNA/HindIII fragments, unligated.<br />

2 – Lambda DNA/HindIII after ligation reaction.<br />

Interpretation of results<br />

Appearance of higher molecular weight bands<br />

and decreased intensity of the lower molecular<br />

weight bands indicates active ligase.<br />

<br />

indicates inactive ligase.<br />

3.2. DNA blunting<br />

3.2.1. Blunting of 5’- or 3’-overhangs<br />

with T4 DNA Polymerase<br />

T4 DNA Polymerase fills-in 5’-overhangs and<br />

removes 3’-overhangs.<br />

1. Prepare the following reaction mixture:<br />

5X reaction buffer for T4 DNA Polymerase 4 μl<br />

Linear DNA or PCR product 1 μg<br />

dNTP Mix, 2 mM each (#R0241)<br />

1 μl (0.1 mM final<br />

concentration)<br />

T4 DNA Polymerase (#EP0061) 0.2 μl (1 u)<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

2. Mix thoroughly, spin briefly and incubate at 11°C<br />

for 20 min or at room temperature for 5 min.<br />

3. Stop the reaction by heating at 75°C for 10 min.<br />

3.2.2. Fill-in of 5’-overhangs with<br />

Klenow Fragment, exo –<br />

1. Prepare the following reaction mixture:<br />

Linear DNA 10-15 μl (0.1-4 μg)<br />

10X reaction buffer for Klenow Fragment 2 μl<br />

dNTP Mix, 2 mM each (#R0241) 0.5 μl (0.05 mM<br />

final concentration)<br />

Klenow Fragment, exo – (#EP0421) 0.1-0.5 μl (1-5 u)<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

2. Mix thoroughly, spin briefly and incubate at<br />

37°C for 10 min.<br />

3. Stop the reaction by heating at 75°C for 10 min.<br />

3.2.3. Removal of 3’- and 5’-overhangs<br />

with S1 Nuclease<br />

S1 Nuclease removes 3’ and 5’ single-stranded<br />

DNA overhangs and hairpin loops. The activity<br />

of S1 Nuclease is substrate-dependent and the<br />

optimal enzyme and DNA amounts for successful<br />

blunting should be determined experimentally.<br />

1. Prepare the following reaction mixture:<br />

DNA ~1 μg<br />

5X reaction buffer for S1 Nuclease 6 μl<br />

S1 Nuclease (#EN0321) 0.1 μl (10 u)<br />

Water, nuclease-free (#R0581) to 30 μl<br />

Total volume 30 μl<br />

2. Incubate the mixture at room temperature<br />

for 30 min.<br />

3. Stop the reaction by adding 2 μl of 0.5 M<br />

EDTA and heating at 70°C for 10 min.<br />

Note<br />

The S1 Nuclease can be diluted with 1X reaction buffer<br />

immediately prior to use.<br />

3.3. Phosphorylation of DNA<br />

1. Prepare the following reaction mixture:<br />

Linear dsDNA or<br />

Oligonucleotide<br />

10X reaction buffer A for<br />

T4 Polynucleotide Kinase<br />

1-20 pmol of 5’-termini<br />

10-50 pmol<br />

2 μl<br />

ATP, 10 mM* 2 μl<br />

T4 Polynucleotide Kinase (#EK0031) 1 μl (10 u)<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

* Prepare 10 mM ATP solution by combining 10 μl of 100 mM ATP<br />

solution (#R0441) and 90 μl of Water, nuclease-free.<br />

2. Mix thoroughly, spin briefly and incubate at<br />

37°C for 20 min.<br />

3. Heat at 75°C for 10 min.<br />

Note<br />

See Appendix on p.428 or visit<br />

www.thermoscientific.com/reviewer for molar calculations.<br />

3.4. Dephosphorylation of DNA<br />

and RNA<br />

3.4.1. Dephosphorylation of<br />

DNA and RNA<br />

This protocol is suitable for removal of<br />

3’- and 5’-phosphate groups from DNA and<br />

RNA. The protocol below is an example for<br />

dephosphorylation of ~3 kb linear vector DNA.<br />

1. Prepare the following reaction mixture:<br />

Linear DNA (~3 kb plasmid)<br />

1 μg<br />

(~1 pmol termini)<br />

10X reaction buffer 2 μl<br />

FastAP <strong>Thermo</strong>sensitive Alkaline<br />

Phosphatase (#EF0651)<br />

1 μl (1 u)<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

2. Mix thoroughly, spin briefly and incubate at<br />

37°C 10 min.<br />

3. Stop reaction by heating: 75°C for 5 min.<br />

Note<br />

For efficient dephosphorylation, plasmid DNA should be free<br />

of RNA and genomic DNA.<br />

3.4.2. Fast simultaneous plasmid vector<br />

linearization and dephosphorylation<br />

1. Prepare the following reaction mixture containing:<br />

Plasmid DNA 1 μg<br />

10X FastDigest Buffer 2 μl<br />

FastDigest Restriction Enzyme 1 μl<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase<br />

(#EF0651)<br />

1 μl<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

2. Mix thoroughly, spin briefly and incubate at<br />

37°C for 10 min.<br />

3. Stop the reaction by heating at 65°C for<br />

15 min or at 80°C for 20 min (if restriction<br />

enzyme is not inactivated at 65°C).<br />

Note<br />

For FastDigest SphI (PaeI) (#FD0601), simultaneous digestion<br />

and dephosphorylation is not recommended. Perform digestion,<br />

spin column purification and then dephosphorylation.<br />

3.5. Removal of tags from<br />

recombinant proteins using<br />

WELQut Protease<br />

3.5.1. Optimization of WELQut Protease<br />

cleavage<br />

Accessibility of the cleavage site, the adjacent<br />

amino acid sequence, and the degree of protein<br />

aggregation-all affect the cleavage efficiency.<br />

Optimal cleavage conditions must be determined<br />

individually for each protein to be cleaved. We<br />

recommend testing several enzyme/protein of<br />

interest ratios, concentrations, temperatures<br />

(4° to 30°C) or incubation time (1 to 16 h) to<br />

optimize the efficiency of cleavage.<br />

Optimization of the cleavage conditions should<br />

be performed in small-scale reactions using the<br />

following protocol as a starting point.<br />

1. Prepare samples:<br />

Component Amount<br />

Target protein 50 μg<br />

WELQut Protease* 0.5 u, 1 u, 2 u,10 u<br />

1x Reaction Buffer** Adjust to 50 μl<br />

Total 50 μl<br />

* Enzyme/protein amount ratios are 1:100, 1:50, 1:25, 1:5 (u/μg).<br />

For all recommended enzyme/protein ratios except 1:5 (u/μg), use<br />

10x diluted WELQut Protease. Dilute protease in the reaction buffer to<br />

the final concentration of 0.5 u/μl.<br />

** We recommend using 10-100mM Tris-HCl, pH 8.0 as the reaction<br />

buffer.<br />

2. Incubate at 15-30°C temperature. Take 8 μl<br />

aliquot from each reaction after 1, 3, 6, and<br />

16 h (or overnight). Follow standard protocol<br />

for preparation of protein samples prior<br />

SDS-PAGE analysis.<br />

Note<br />

For cleavage reactions longer than 16 h, incubation<br />

temperatures higher than 20°C are not recommended.<br />

3. Analyze the efficiency of cleavage in each<br />

sample by SDS-PAGE.<br />

Once optimal cleavage conditions have<br />

been found, the reaction can be scaled up<br />

proportionally for cleavage of fusion proteins<br />

in solution, in batch or on-column formats.<br />

www.thermoscientific.com/onebio 295


296<br />

3.5.2. Cleavage of fusion proteins in<br />

solution<br />

1. We recommend using 10-100 mM Tris-HCl<br />

(pH 8.0), 10-100 mM Na3PO4 (pH 7.4) or<br />

10-20 mM K3PO4 (pH 7.4) as 1x buffer for the<br />

cleavage reaction.<br />

Note<br />

If target protein will be downstream purified using affinity<br />

chromatography, add NaCl and Imidazole to the reaction buffer<br />

at 50 mM and 5-20 mM final concentration, respectively.<br />

2. Add WELQut Protease to the fusion protein at<br />

an optimized protease/protein ratio.<br />

3. Incubate at 15-30°C temperature for the<br />

optimal time.<br />

Note<br />

If target protein is labile or cleavage reaction lasts longer than<br />

16 h, it should be performed in lower temperatures (4-20°C).<br />

4. Optional: removal of WELQut protease.<br />

Use the IMAC resins for post-cleavage<br />

purification of target protein according to<br />

the manufacturer’s instructions. In the IMAC<br />

column purification format, the protein of<br />

interest is eluted with the flow-through, while<br />

WELQut protease and the cleaved affinity tag<br />

remain bound to the resin.<br />

3.5.3. Cleavage of fusion proteins<br />

during affinity purification<br />

WELQut Protease can be used for hydrolysis of fusion<br />

proteins during affinity purification procedures. The<br />

protein of interest will be cleaved while it is still bound<br />

to the resin and further eluted while leaving the affinity<br />

tag and WELQut Protease, which contains built-in 6x<br />

His-tag, bound to the resin.<br />

On-column cleavage needs to be optimized for each<br />

fusion protein with respect to the amount of protease<br />

used and time required for cleavage (see protocol A).<br />

1. Evaluate the amount of target protein to be<br />

cleaved by SDS-PAGE.<br />

2. Bind the fusion protein to the metal-affinity<br />

resin of choice and wash according to the<br />

manufacturer’s instructions.<br />

3. Equilibrate the resin/column 2 times with 2-4<br />

resin volume of 50-100 mM Tris-HCl, 50 mM<br />

NaCl, 5-20 mM imidazole (pH 8.0), or buffer<br />

with 50-100 mM Na3PO4, 50 mM NaCl and<br />

5-20 mM imidazole (pH 7.4) or buffer with<br />

10-20 mM K3PO4, 50 mM NaCl, 5-20 mM<br />

imidazole (pH 7.4).<br />

4. Prepare mix of WELQut protease and the buffer<br />

used for resin/column equilibration in previous<br />

step. Use a protease/recombinant protein ratio<br />

determined in cleavage optimization experiment.<br />

Load the prepared WELQut protease mix<br />

on the column.<br />

Note<br />

If optimal protease/protein ratio was not determined, we<br />

recommend using 1:20 or 1:10 u/μg of WELQut to target<br />

protein ratio.<br />

5. Incubate at 15-30°C temperature for the<br />

optimal time.<br />

Note<br />

If optimal cleavage reaction time was not determined, we<br />

recommend 16 h (or overnight) incubation at 4-20°C.<br />

6. Collect eluate containing the protein of interest.<br />

WELQut Protease remains bound to the resin.<br />

www.thermoscientific.com/onebio<br />

7. Optional: Additional amount of equilibration buffer<br />

(0.5-1.0 settled resin volume) containing 0.2-0.5 M<br />

NaCl and 5-20 mM imidazole, may be used to wash<br />

the residual amount of protein of interest from the<br />

resin/column. Collect this diluted sample separately.<br />

8. Recommended: Remove the residual WELQut<br />

protease by running the eluate containing protein<br />

of interest through the fresh IMAC sorbent. Collect<br />

the flow-through.<br />

3.6. Transformation<br />

The number of transformants on the plates directly<br />

depends on the transformation efficiency of the<br />

competent cells. For successful cloning, competent<br />

E.coli cells should have an efficiency of at least 1x10 6<br />

transformants per μg supercoiled plasmid DNA. To<br />

check the efficiency, prepare a control transformation<br />

with 0.1 ng of a supercoiled vector DNA; e.g., pUC19<br />

DNA (#SD0061).<br />

Calculation of transformation efficiency<br />

For 500 colonies (cfu) on a control plate, the<br />

transformation efficiency is calculated as follows:<br />

500 cfu/0.1 ng of control DNA plated X 1000 =<br />

5x10 6 cfu/μg DNA.<br />

Transformation tips<br />

When using commercial competent cells, follow the<br />

recommendations from the supplier.<br />

Use up to 5 μl of the ligation mixture per 50 μl of<br />

chemically competent cells.<br />

For transformation by electroporation, extract<br />

the ligation reaction mixture with chloroform or a<br />

commercial spin column. Use 1 μl of purified ligation<br />

mixture to transform 50 μl of electrocompetent cells.<br />

Ligation efficiency often decreases as the insert<br />

size increases. Therefore, for vector containing large<br />

inserts (>5 kb) we recommend transformation by<br />

electroporation as it yields the highest transformation<br />

efficiencies (10 9 cfu/μg supercoiled DNA).<br />

3.7. Cultivation of E.coli<br />

3.7.1. Preparation of E.coli culture<br />

glycerol stocks<br />

Transformation efficiency and subsequent analysis of<br />

recombinant plasmids depends on the quality of the<br />

E.coli strains used in laboratory. Proper storage is vital<br />

to ensure competent cells retain high transformation<br />

efficiency.<br />

Agar plates are only suitable for short term 4°C<br />

storage. A glycerol stock kept at -70°C is the ideal<br />

way to store bacterial strains.<br />

1. When a lyophilized bacterial strain is purchased,<br />

a small portion of the powder is transferred with<br />

a sterile pipette tip or inoculating loop to liquid LB<br />

medium and incubated for 2-8 hours in a shaker.<br />

2. A drop of liquid culture is spread on a selective plate<br />

and propagated overnight at 37°C to check for<br />

presence of selective markers.<br />

3. Select a single colony and grow overnight.<br />

4. Add 180 μl of 87% sterile glycerol to a 2 ml<br />

screw-cap culture vial.<br />

5. Add 820 μl of liquid E.coli culture to vial, mix well,<br />

freeze in liquid nitrogen and store at -70°C.<br />

When recovering bacteria from a glycerol stock, it<br />

is recommended to check for selective markers by<br />

streaking an aliquot on a selective plate.<br />

3.7.2. Preparation of X-Gal/IPTG LB agar<br />

plates for blue/white colony screening<br />

For individual LB (Luria Broth) agar plates:<br />

1. Pour sterile warm LB agar (about 25 ml) into a<br />

Petri dish dry opened and at room temperature<br />

under UV light for about 30 min.<br />

2. Add 40 μl of X-Gal Solution (20 mg/ml), ready-touse<br />

and 40 μl of 100 mM IPTG Solution, ready-touse<br />

(#R1171).<br />

3. Spread evenly on the plate with a sterile spatula.<br />

For batch use, add the following directly per 1 ml of<br />

the liquid LB agar (kept at about 50°C):<br />

1. 1 μl of X-Gal Solution, ready-to-use (20 mg/ml),<br />

(#R0941).<br />

2. 1μl of 100 mM IPTG Solution, ready-to-use (#R1171).<br />

3. Mix well and pour 25 ml of prepared LB agar into<br />

each Petri dish.<br />

4. Dry opened LB plates at room temperature under UV<br />

light for about 30 min.<br />

3.8. Analysis of recombinant clones<br />

Analyze 3-5 white colonies for the presence and<br />

orientation of the DNA insert using one of the following<br />

methods.<br />

Restriction analysis. Isolate plasmid DNA from<br />

an overnight bacterial culture using a convenient<br />

plasmid miniprep method such as the GeneJET<br />

Plasmid miniprep Kit (#K0502). Use FastDigest<br />

restriction enzymes (see p.2) to digest DNA from<br />

recombinant clones in just 5 min.<br />

Sequencing. Isolate plasmid DNA from an overnight<br />

bacterial culture using a reliable plasmid miniprep<br />

method such as GeneJET Plasmid Miniprep Kit<br />

(#K0502). Sequence the insert using appropriate<br />

sequencing primers.<br />

Colony PCR. Use the following protocol for colony<br />

screening by PCR.<br />

1. Prepare enough PCR master mix for the number of<br />

colonies analyzed plus one extra. For each 20 μl of<br />

reaction, mix the following reagents:<br />

Component<br />

Taq DNA<br />

Polymerase or<br />

Dreamtaq DNA<br />

Polymerase<br />

PCR Master<br />

Mix (2X) or<br />

Dreamtaq PCR<br />

Master Mix<br />

(2X)<br />

10X Taq Buffer 2 μl –<br />

dNTP Mix, 2mM each 2 μl –<br />

25 mM MgCl2 1.2 μl –<br />

M13/pUC Reverse Sequencing<br />

Primer (#SO101)<br />

0.6 μl (10 μM) 0.6 μl (10 μM)<br />

M13/pUC Forward Sequencing<br />

Primer (#SO100)<br />

0.6 μl (10 μM) 0.6 μl (10 μM)<br />

Taq DNA Polymerase (#EP0402) 0.1 μl (0.5 u) –<br />

PCR Master Mix (2X) (#K0171) – 10 μl<br />

Water, nuclease-free (#R0581) to 20 μl to 20 μl<br />

Total volume 20 μl 20 μl<br />

2. Mix thoroughly, spin briefly and aliquot 20 μl of the<br />

mix into the PCR tubes on ice.<br />

3. Pick up an individual colony with a sterile pipette<br />

tip and resuspend it in 20 μl of the PCR master<br />

mix. Make a short streak with the same tip over a<br />

culture plate to save the clone for repropagation.<br />

4. Perform PCR: 95ºC, 3 min; 94ºC, 30 s; 56°C*, 30<br />

s; 72°C 1 min/kb; 30 cycles.<br />

5. Analyze on a gel for the presence of a PCR product<br />

of the expected length.<br />

* For recommended primer pair only. Annealing temperature<br />

might vary depending on primer pair used.


Troubleshooting Guide<br />

1<br />

Low yield or no<br />

transformants<br />

Assess ligation<br />

reaction<br />

efficiency<br />

Successful<br />

ligation<br />

1.1<br />

Transformation<br />

problem<br />

2.1<br />

Vector<br />

recircularization<br />

Assess ligase<br />

activity<br />

2<br />

Empty vector<br />

(no insert)<br />

Unsuccessful<br />

ligation<br />

2.2<br />

Incomplete<br />

cleavage of vector<br />

Inactive Ligase Active Ligase<br />

1.3.1<br />

Incorrect RE<br />

chosen for cloning<br />

1.3.3<br />

Inefficient<br />

blunting<br />

1.3.5<br />

Enzyme<br />

contamination<br />

Cloning problem<br />

3<br />

Incorrect<br />

construct<br />

1.2<br />

Low DNA<br />

quality<br />

1.3<br />

Incompatible<br />

DNA ends<br />

3.1<br />

Non-specific PCR<br />

product cloned<br />

3.2<br />

Enzyme<br />

contamination<br />

1.3.2<br />

Vector and insert<br />

are<br />

unphosphorylated<br />

1.3.4<br />

Inefficient<br />

cleavage of PCR<br />

product<br />

4<br />

Sequence errors<br />

in insert<br />

4.1<br />

Low fidelity<br />

PCR<br />

4.2<br />

UV damage to<br />

DNA fragment<br />

4.3<br />

Errors in PCR<br />

primer sequence<br />

5<br />

Colonies w/o<br />

plasmid<br />

5.1<br />

Low antibiotic<br />

concentration<br />

5.2<br />

Satellite<br />

colonies<br />

www.thermoscientific.com/onebio 297


298<br />

Table 3.3. Troubleshooting guide for molecular cloning.<br />

Problem Possible cause and recommended solution<br />

1. Low yield or no<br />

transformants<br />

www.thermoscientific.com/onebio<br />

1.1. Inefficient transformation.<br />

1.1.1. Low transformation efficiency of competent E. coli cells.<br />

Check transformation efficiency with 0.1 ng of a supercoiled vector DNA; e.g., pUC19 (#SD0061). The competent<br />

cells should yield at least 1x10 6 transformants per μg of supercoiled DNA, which corresponds to 100 colonies, when<br />

0.1 ng of plasmid had been used for transformation.<br />

1.1.2. T4 DNA Ligase reduces transformation efficiency.<br />

Prior to transformation it is recommended to inactivate T4 DNA ligase by chloroform extraction or spin column<br />

purification. For commercial competent cells follow suppliers recommendation.<br />

1.1.3. Excessive amount of ligation mixture used for transformation.<br />

Do not use more than 5 μl of ligation mixture for 50 μl of chemically competent cells and 1 μl for electrocompetent cells.<br />

1.1.4. Cloned sequence is not tolerated by E.coli.<br />

Check the target sequence for strong E.coli promoters or other potentially toxic elements, as well as inverted<br />

repeats. In cases where the product of a cloned gene is toxic to the host, use promoters with a very low expression<br />

background or choose a low copy plasmid as cloning vehicle.<br />

1.1.5. Excessive amount of ligase used for ligation.<br />

Do not use more ligase than is recommended in the protocol (see p.294) relative to the vector and insert<br />

concentration. For easier manipulation, we provide T4 DNA Ligase at 1 u/μl (#EL0016).<br />

1.2. Low DNA quality.<br />

1.2.1. DNA contains reaction inhibitors (check according to p.294).<br />

Ensure DNA is free of contaminants (e.g., excess salts, EDTA, proteins, phenol, etc.) that may inhibit ligation.<br />

Gel purify and/or phenol/chloroform extract the vector and insert prior to ligation.<br />

1.2.2. DNA was damaged by UV light during excision from the agarose gel.<br />

Use a long wavelength UV (360 nm) light-box when excising DNA from the agarose gel. When using a shortwavelength<br />

(254-312 nm) light-box, limit DNA exposure to UV to a few seconds. Keep the gel on a glass or plastic<br />

plate during UV illumination. Alternatively, use dyes visible in ambient light to visualize DNA in standard<br />

agarose gels (1, 2).<br />

Another method to avoid exposure to UV is to load your sample in two or more lanes and then cut and stain only<br />

one lane with ethidium bromide after electrophoresis. Use this stained lane as a reference for excising the DNA from<br />

thunstained lane that is not exposed to UV light.<br />

1.3. Incompatible DNA ends.<br />

1.3.1. Incorrect restriction enzyme chosen for DNA digestion.<br />

Incompatible vector and insert ends. Recheck the cloning strategy and choose restriction enzymes generating<br />

compatible overhangs for ligation.<br />

1.3.2. Vector and insert are nonphosphorylated.<br />

If using dephosphorylated vectors, make sure the insert possesses phosphates. PCR products generally lack<br />

phosphate groups and need to be phosphorylated with T4 Polynucleotide Kinase (#EK0031) prior to ligation. The<br />

CloneJET PCR Cloning Kit (#K1231) is compatible with both phosphorylated and dephosphorylated DNA fragments.<br />

1.3.3. Inefficient blunting of DNA ends.<br />

Use the appropriate DNA blunting method for the DNA fragment ends. See p.295 for DNA blunting protocols and<br />

recommendations.<br />

1.3.4. Inefficient cleavage of PCR product.<br />

When introducing restriction enzyme sites into primers for subsequent digestion and cloning, refer to the Table 1.10.<br />

on p.169 to define the number of extra bases required for efficient cleavage.<br />

Prior to digestion remove the active thermophilic DNA polymerase from the PCR mixture. DNA polymerases may alter<br />

the ends of the cleaved DNA and reduce the ligation yield.<br />

After digestion, gel-purify the PCR product to remove short DNA fragments, which compete with the insert in the<br />

ligation reaction.<br />

1.3.5. Contaminated enzymes used for cloning.<br />

Use only the highest quality enzymes for cloning; e.g., LO-tested enzymes (see p.4) and exclude any possibility of<br />

endo-, exo-nuclease and phosphatase contamination in enzyme preparations.<br />

(continued on next page)


Table 3.3. Troubleshooting guide for molecular cloning.<br />

Problem Possible cause and recommended solution<br />

2. Empty vector<br />

(no insert)<br />

3. Incorrect constructs<br />

4. Sequence errors in<br />

insert<br />

5. Colonies without<br />

plasmid<br />

References<br />

1. Rand, K.N., Crystal Violet can be used to Visualize DNA<br />

Bands during Gel Electrophoresis and to Improve Cloning<br />

Efficiency, Elsevier Trends Journals Technical Tips Online,<br />

T40022, 1996.<br />

2. Adkins, S., Burmeister,M., Visualization of DNA in agarose<br />

gels and educational demonstrations, Anal. Biochem.,<br />

240 (1), 17-23, 1996.<br />

2.1. Vector recircularization.<br />

Dephosphorylate the vector with FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase (#EF0651) prior to ligation (see<br />

protocol on p.295). Vector dephosphorylation is recommended in all cases, including cloning strategies where the<br />

vector ends are incompatible for recircularization. Ensure the phosphatase is completely inactivated or removed after<br />

dephosphorylation.<br />

2.2. Incomplete cleavage of the vector.<br />

Check the cleavage efficiency on an agarose gel. If it is difficult to achieve complete cleavage, gel-purify the linear<br />

form of the vector using the GeneJET Gel Extraction Kit (#K0691).<br />

3.1. Non-specific PCR product cloned.<br />

Gel-analyze the PCR product prior to ligation. If non-specific PCR products or primer-dimers were generated during<br />

the PCR reaction, gel-purify the target PCR product. Smaller DNA fragments present in the PCR mixture are ligated<br />

more efficiently with the cloning vector and outcompete the target PCR products.<br />

Gel-purify the PCR product if the PCR template encodes ß-lactamase to avoid background colonies on LB-ampicillin<br />

agar. If the template and expected PCR product are of similar size, digest the template within the ampicillin<br />

resistance gene following the PCR reaction; e.g., with PdmI.<br />

3.2. Truncated insert due to contaminating endo- or exonucleases.<br />

Use only the highest quality enzymes for cloning; e.g., LO-tested enzymes (see p.4) and exclude any possibility of<br />

endo- and exonuclease contamination in enzyme preparations.<br />

4.1. Low fidelity DNA polymerase was used in PCR.<br />

If the PCR product will be used for cloning, it is always recommended to use a high fidelity DNA polymerase with<br />

proofreading activity such as Phusion High Fidelity DNA Polymerase.<br />

4.2. DNA was damaged by UV light during the excision from agarose gel.<br />

Use a long wavelength UV (360 nm) light-box when excising DNA from the agarose gel. When a short-wavelength<br />

(254-312 nm) light-box is used, limit DNA exposure to UV to a few seconds. Keep the gel on a glass or on plastic plate<br />

during UV illumination. Alternatively, use dyes visible in ambient light to visualize DNA in standard agarose gels (1, 2).<br />

4.3. Errors in PCR primers.<br />

If the cloned PCR product contains sequence errors or is missing 5’ bases and the same error persists in more than<br />

one clone, re-order the PCR primers from a reliable supplier and repeat the procedure starting from the PCR step.<br />

5.1. Insufficient amount of antibiotic in agar medium.<br />

Use 100 μg/ml of ampicillin in LB-ampicillin agar plates. Allow the LB medium to cool to 55°C before adding the<br />

antibiotic. Ampicillin is sensitive to light – long-term exposure to light can lead to low ampicillin concentration in<br />

plates.<br />

5.2. Satellite colonies.<br />

Some fast growing E.coli strains (e.g., C600) degrade ampicillin quickly, which leads to formation of smaller satellite<br />

colonies around transformants after >16 hours of incubation. Use shorter incubation times and do not use small<br />

satellite colonies for clone analysis.<br />

5.3. E.coli strain is resistant to the same antibiotic as the plasmid vector.<br />

Check genotype of E.coli strain used. For example XL-1 Blue is resistant to Tc, ER2267 is resistant to Km.<br />

www.thermoscientific.com/onebio 299


300<br />

www.thermoscientific.com/onebio


<strong>Thermo</strong> <strong>Scientific</strong> Nucleic Acid<br />

Purification Products<br />

Selection Guide ................................................................................................... 303<br />

Products .............................................................................................................. 304<br />

GeneJET Plasmid Miniprep Kit ....................................................................................304<br />

GeneJET Plasmid Midiprep Kit ....................................................................................305<br />

GeneJET Plasmid Maxiprep Kit ...................................................................................306<br />

GeneJET RNA Purification Kit ..................................................................................... 307<br />

GeneJET Whole Blood RNA Purification Mini Kit .......................................................308<br />

GeneJET Plant RNA Purification Mini Kit ...................................................................309<br />

GeneJET Genomic DNA Purification Kit ..................................................................... 310<br />

Genomic DNA Purification Kit ..................................................................................... 311<br />

GeneJET Whole Blood Genomic DNA Purification Mini Kit ....................................... 312<br />

GeneJET Plant Genomic DNA Purification Mini Kit.................................................... 313<br />

GeneJET Viral DNA and RNA Purification Kit ............................................................. 314<br />

Viral DNA/RNA Purification Kit (IVD) .......................................................................... 315<br />

GeneJET PCR Purification Kit ...................................................................................... 316<br />

GeneJET Gel Extraction Kit ......................................................................................... 317<br />

Silica Bead DNA Gel Extraction Kit ............................................................................. 318<br />

Agarase ......................................................................................................................... 319<br />

Related Products by Application ........................................................................ 320<br />

Protocols and Recommendations ...................................................................... 322<br />

4.1. Purification of genomic DNA from mouse tails with Proteinase K .................................322<br />

4.2. Purification of DNA from cultured eukaryotic cells with Proteinase K ...........................322<br />

4.3. Casting high quality agarose gels ..............................................................................322<br />

4.4. Recovery of DNA from LM agarose gels with Agarase ................................................322<br />

4.5. Nucleic acid precipitation from diluted solutions with Glycogen ................................... 323<br />

4.6. Removal of template DNA after in vitro transcription ................................................... 323<br />

4.7. Removal of genomic DNA from RNA preparations ....................................................... 323<br />

4.8. PCR product clean-up prior to sequencing ................................................................. 323<br />

4.9. Phenol/chloroform extraction and ethanol precipitation .............................................. 323<br />

<strong>Solutions</strong> for High Yield<br />

Nucleic Acid Purification:<br />

www.thermoscientific.com/nap<br />

www.thermoscientific.com/onebio 301


302<br />

Reliable DNA and RNA Purification<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET product line<br />

contains essential nucleic acid purification<br />

tools to support and facilitate your experimental<br />

workflow. With more than 30 years of<br />

experience in developing and manufacturing<br />

molecular biology products, we see a growing<br />

demand for simple and reliable tools for DNA<br />

and RNA sample preparation. The GeneJET<br />

DNA and RNA purification kits address the<br />

need for high-purity nucleic acids ready to use<br />

in downstream applications and offer detailed<br />

protocols for routine and difficult sample types.<br />

Miniprep<br />

Plasmid<br />

DNA<br />

Midiprep<br />

www.thermoscientific.com/onebio<br />

Maxiprep<br />

Cells &<br />

Tissues<br />

RNA<br />

Features<br />

Trusted silica membrane technology in<br />

the form of a convenient spin column for<br />

purification of DNA and RNA.<br />

Isolate nucleic acids with superior purity and<br />

yields compared to other kits on the market.<br />

Purified nucleic acids are ready to use in<br />

common downstream applications.<br />

GeneJET kits have been extensively tested on<br />

a wide variety of sample types and include<br />

specialized protocols.<br />

Total RNA<br />

Blood<br />

RNA<br />

Plant<br />

RNA<br />

Nucleic Acid<br />

Purification<br />

Cells &<br />

Tissues<br />

DNA<br />

Genomic<br />

DNA<br />

Blood<br />

DNA<br />

Plant<br />

DNA<br />

Viral DNA<br />

and RNA<br />

Serum &<br />

Plasma<br />

From<br />

PCR<br />

DNA<br />

Fragments<br />

From<br />

Gels


Selection Guide<br />

Applications Products to use Cat. # Page<br />

Isolation of plasmid DNA<br />

Isolation of RNA<br />

Isolation of genomic DNA<br />

Isolation of viral DNA and RNA<br />

PCR clean-up<br />

Extraction of DNA from<br />

agarose gel<br />

Removal of RNA from DNA preparations<br />

Removal of nucleotides<br />

Removal of primers<br />

Standard agarose gel<br />

Low melting point agarose gel<br />

GeneJET Plasmid Miniprep Kit K0502/3 304<br />

GeneJET Plasmid Midiprep Kit K0481/2 305<br />

GeneJET Plasmid Maxiprep Kit K0491/2 306<br />

GeneJET RNA Purification Kit K0731/2 307<br />

GeneJET Whole Blood RNA Purification Mini Kit K0761 308<br />

GeneJET Plant RNA Purification Mini Kit K0801/2 309<br />

GeneJET Genomic DNA Purification Kit K0721/2 310<br />

Genomic DNA Purification Kit K0512 311<br />

GeneJET Whole Blood Genomic DNA Purification Mini Kit K0781/2 312<br />

GeneJET Plant Genomic DNA Purification Mini Kit K0791/2 313<br />

Proteinase K (recombinant), PCR grade EO0491/2 270<br />

GeneJET Viral DNA and RNA Purification Kit K0821 314<br />

Viral DNA/RNA Purification Kit, (IVD)* DK0011 315<br />

GeneJET PCR Purification Kit K0701/2 316<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase EF0651/2/4 242<br />

GeneJET PCR Purification Kit K0701/2 316<br />

Exonuclease I EN0581/2 258<br />

Silica Bead DNA Gel Extraction Kit K0513 318<br />

GeneJET Gel Extraction Kit K0691/2 317<br />

Silica Bead DNA Gel Extraction Kit K0513 318<br />

TopVision Agarose R0491/2 427<br />

Silica Bead DNA Gel Extraction Kit K0513 318<br />

GeneJET Gel Extraction Kit K0691/2 317<br />

Agarase EO0461 319<br />

TopVision Low Melting Point Agarose R0801 427<br />

RNase A, DNase and protease-free EN0531 262<br />

RNase T1 EN0541/2 263<br />

RNase A/T1 Mix EN0551 264<br />

RNase I EN0601/2 265<br />

Removal of DNA from RNA preparations DNase I, RNase-free EN0521/3/5 255<br />

Removal of proteins from DNA and RNA preparations Proteinase K (recombinant), PCR grade EO0491/2 270<br />

DNA and RNA precipitation<br />

* available in EU countries only<br />

Glycogen, RNA grade R0551 423<br />

Glycogen, molecular biology grade R0561 423<br />

3 M Sodium Acetate Solution, pH 5.2 R1181 421<br />

www.thermoscientific.com/onebio 303


304<br />

Products<br />

GeneJET Plasmid Miniprep Kit<br />

#K0502 for 50 preps<br />

#K0503 for 250 preps<br />

Related Products<br />

GeneJET Plasmid Midiprep Kit p.305<br />

GeneJET Plasmid Maxiprep Kit p.306<br />

CloneJET PCR Cloning Kit p.279<br />

InsTAclone PCR Cloning Kit p.281<br />

Rapid DNA Ligation Kit p.288<br />

TransformAid Bacterial Transformation Kit p.289<br />

FastDigest Restriction Enzymes p.2<br />

TranscriptAid T7 High Yield Transcription Kit p.328<br />

Water, nuclease-free p.420<br />

Resuspend Cells<br />

www.thermoscientific.com/onebio<br />

Lyse and Neutralize<br />

Bind<br />

Wash x 2<br />

Elute<br />

Overview of purification procedure.<br />

M 1 M 2 C 1 2 3 4 5 6 M1 M2<br />

Fast clone analysis.<br />

A 2.3 kb PCR fragment was cloned into the pUC19 vector. Plasmid<br />

DNA from overnight bacterial cultures of recombinant clones was<br />

purified using the GeneJET Plasmid Miniprep Kit (#K0502) and<br />

analyzed by double digestion with FastDigest EcoRI and FastDigest<br />

HindIII in 5 min at 37°C.<br />

M 1, M 2 – ZipRuler Express DNA Ladder Set (#SM1373)<br />

C – control pUC19 DNA digested with FastDigest EcoRI and HindIII<br />

1-6 – Miniprep DNA from recombinant clones, double<br />

digested with FastDigest EcoRI and HindIII<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Plasmid Miniprep<br />

Kit is a simple, rapid and cost-effective system<br />

for the isolation of high quality plasmid DNA<br />

from recombinant E.coli cultures. The kit utilizes<br />

an exclusive silica-based membrane technology<br />

in the form of a convenient spin column. Each<br />

prep recovers up to 20 μg of high copy plasmid<br />

DNA. The purified DNA is ready for immediate<br />

use in all molecular biology procedures such<br />

as digestion with FastDigest and conventional<br />

restriction enzymes, PCR, in vitro transcription,<br />

transformation, and automated sequencing.<br />

Features<br />

Efficient – high yields of up to 20 μg of high<br />

quality plasmid DNA.<br />

Fast – procedure takes less than 14 min.<br />

Convenient – no phenol/chloroform<br />

extraction or alcohol precipitation required.<br />

Pure – purified DNA is immediately<br />

ready-to-use.<br />

Applications<br />

Fast isolation of high purity plasmid DNA<br />

suitable for all conventional molecular biology<br />

procedures, including:<br />

– FastDigest or conventional restriction<br />

digestion<br />

– automated fluorescent and radioactive<br />

sequencing<br />

– PCR<br />

– in vitro transcription<br />

– transformation<br />

– transfection of robust cell lines<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Electropherogram demonstrates the high quality sequencing<br />

data of plasmid DNA purified with the <strong>Thermo</strong> <strong>Scientific</strong> GeneJET<br />

Plasmid Miniprep Kit.<br />

Plasmid DNA was purified from E.coli using the GeneJET Plasmid Miniprep Kit and<br />

sequenced with a T7 sequencing primer. The sequencing reaction was analyzed on<br />

an ABI 3730 DNA Analyzer. More than 750 nucleotides can be read.


GeneJET Plasmid Midiprep Kit<br />

#K0481 for 25 preps<br />

#K0482 for 100 preps<br />

Related Products<br />

GeneJET Plasmid Maxiprep Kit p.306<br />

GeneJET Plasmid Miniprep Kit p.304<br />

CloneJET PCR Cloning Kit p.279<br />

InsTAclone PCR Cloning Kit p.281<br />

Rapid DNA Ligation Kit p.288<br />

TransformAid Bacterial Transformation Kit p.289<br />

FastDigest Restriction Enzymes p.2<br />

TranscriptAid T7 High Yield Transcription Kit p.328<br />

Water, nuclease-free p.420<br />

DNA, μg<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Resuspend Cells<br />

Lyse and Neutralize<br />

Clear lysate by centrifugation<br />

Bind<br />

Wash x 3<br />

Elute<br />

Overview of purification procedure.<br />

<strong>Thermo</strong><br />

<strong>Scientific</strong><br />

vendor<br />

A<br />

vendor<br />

B<br />

High yields of plasmid purified with the <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Plasmid<br />

Midiprep Kit. Yields of high-copy plasmid DNA obtained using the GeneJET Plasmid<br />

Midiprep Kit and kits from other vendors for mid-scale plasmid DNA purification at<br />

maximum recommended bacterial culture volumes.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Plasmid Midiprep<br />

Kit is designed for medium scale isolation of<br />

high quality plasmid DNA from recombinant<br />

E.coli cultures. The kit utilizes silica-based<br />

membrane technology in the form of a<br />

convenient spin column. Each prep recovers<br />

up to 200 μg of high copy number plasmid<br />

DNA. The purified plasmid DNA can be used in<br />

a wide variety of molecular biology procedures<br />

such as restriction digestion, PCR, cloning,<br />

transformation, automated sequencing, in vitro<br />

transcription and transfection of robust cell<br />

lines.<br />

Features<br />

Efficient – high yields up to 200 μg of high<br />

quality plasmid DNA from 50 ml of bacterial<br />

culture.<br />

High concentration of DNA purified –<br />

>400 ng/μl.<br />

Convenient – spin column format, centrifuge<br />

and vacuum protocols.<br />

Fast – procedure takes 60 min, considerably<br />

faster than using gravity flow columns.<br />

vendor<br />

C<br />

vendor<br />

D<br />

DNA, ng/μl<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

<strong>Thermo</strong><br />

<strong>Scientific</strong><br />

Applications<br />

Isolated plasmid DNA is ideal for all<br />

conventional molecular biology procedures,<br />

including:<br />

– FastDigest restriction enzyme digestion<br />

– automated fluorescent sequencing<br />

– PCR<br />

– cloning<br />

– transformation<br />

– in vitro transcription<br />

– transfection of robust cell lines<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

pre-assembled with collection tubes (15 ml)<br />

<br />

<br />

vendor<br />

A<br />

vendor<br />

B<br />

vendor<br />

C<br />

1st elution<br />

2nd elution<br />

vendor<br />

D<br />

High concentration of plasmid purified with the <strong>Thermo</strong> <strong>Scientific</strong> GeneJET<br />

Plasmid Midiprep Kit. Concentration of eluted DNA obtained after purification of<br />

high-copy plasmid DNA using different kits for mid-scale plasmid DNA purification at<br />

maximum recommended bacterial cell culture volumes.<br />

www.thermoscientific.com/onebio 305


306<br />

GeneJET Plasmid Maxiprep Kit<br />

#K0491 for 10 preps<br />

#K0492 for 25 preps<br />

Related Products<br />

GeneJET Plasmid Midiprep Kit p.305<br />

GeneJET Plasmid Miniprep Kit p.304<br />

CloneJET PCR Cloning Kit p.279<br />

InsTAclone PCR Cloning Kit p.281<br />

Rapid DNA Ligation Kit p.288<br />

TransformAid Bacterial Transformation Kit p.289<br />

FastDigest Restriction Enzymes p.2<br />

TranscriptAid T7 High Yield Transcription Kit p.328<br />

Water, nuclease-free p.420<br />

Transfection efficiency, %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

www.thermoscientific.com/onebio<br />

cos-7 HeLa NIH 3T3 HEK 293 CHO<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Plasmid Maxiprep<br />

Kit is designed for large scale isolation of high<br />

quality plasmid DNA from recombinant E.coli<br />

cultures. The kit utilizes silica-based membrane<br />

technology in the form of a convenient spin<br />

column. Each prep recovers up to 750 μg of<br />

high copy plasmid DNA that can be used in a<br />

wide variety of molecular biology procedures<br />

such as restriction digestion, PCR, cloning,<br />

transformation, automated sequencing, in vitro<br />

transcription and transfection of robust cell lines.<br />

Features<br />

Efficient – high yields up to 750 μg of high<br />

quality plasmid DNA from 250 ml of bacterial<br />

culture.<br />

High concentration of DNA purified –<br />

>400 ng/μl.<br />

Convenient – spin column format, centrifuge<br />

and vacuum protocols.<br />

Fast – procedure takes 60 min, considerably<br />

faster than using gravity flow columns.<br />

Applications<br />

Isolated plasmid DNA is ideal for all<br />

conventional molecular biology procedures,<br />

including:<br />

– transfection of robust cell lines<br />

– FastDigest restriction enzyme digestion<br />

– automated fluorescent sequencing<br />

– PCR<br />

– cloning<br />

– transformation<br />

– in vitro transcription<br />

CHR<br />

GeneJET<br />

Efficient transfection of robust cell lines with plasmid DNA purified using the <strong>Thermo</strong><br />

<strong>Scientific</strong> GeneJET Plasmid Maxiprep Kit. Plasmid DNA, purified from E.coli cells using the<br />

GeneJET Plasmid Maxiprep Kit, gives transfection efficiencies comparable to chromatography<br />

purified, endotoxin-free plasmid DNA. 1 μg of the high-copy plasmid was transfected into<br />

various cell lines using the TurboFect Transfection Reagent (R0531).<br />

CHR – chromatography purified, endotoxin-free plasmid, GeneJET – plasmid purified using the<br />

GeneJET Plasmid Maxiprep Kit.<br />

DNA, μg<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

<strong>Thermo</strong><br />

<strong>Scientific</strong><br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

pre-assembled with collection tubes (50 ml)<br />

<br />

<br />

vendor<br />

A<br />

Resuspend Cells<br />

Lyse and Neutralize<br />

Clear lysate by centrifugation<br />

Bind<br />

Wash x 3<br />

Elute<br />

Overview of purification procedure.<br />

vendor<br />

B<br />

vendor<br />

C<br />

vendor<br />

D<br />

High yields of plasmid purified DNA with the <strong>Thermo</strong> <strong>Scientific</strong><br />

GeneJET Plasmid Maxiprep Kit.<br />

Plasmid DNA was purified from E.coli cells using the GeneJET Plasmid<br />

Maxiprep Kit and kits of various vendors using recommended culture volumes<br />

and purification protocols.


GeneJET RNA Purification Kit<br />

#K0731 for 50 preps<br />

#K0732 for 250 preps<br />

Related Products<br />

DNase I, RNase-free p.255<br />

RiboLock RNase Inhibitor p.271<br />

RiboRuler Low Range RNA Ladder,<br />

ready-to-use p.386<br />

RiboRuler High Range RNA Ladder,<br />

ready-to-use p.386<br />

Maxima H Minus Double-Stranded<br />

cDNA Synthesis Kit p.286<br />

Collect sample<br />

Lyse<br />

Bind<br />

Wash x 3<br />

Elute<br />

Overview of purification procedure.<br />

References<br />

1. Chomczynski, P. and Sacchi. N. Single-step method of<br />

RNA isolation by acid guanidinium thiocyanate-phenolchloroform<br />

extraction. Anal. Biochem. 162:156-159,1987.<br />

2. Boom, R., Sol C.J.A., Salimans, M.M.M. Jansen, C.L.<br />

Dillen, P.M.E.W. and van der Noordaa J. Rapid and simple<br />

method for purification of nucleic acids. J. Clin. Microbiol.<br />

28:495-503, 1990.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET RNA Purification<br />

Kit is a simple and efficient system for<br />

purification of RNA from a wide variety of<br />

samples including mammalian cell culture and<br />

tissues, blood, bacteria, and yeast.<br />

The kit utilizes a proprietary silica-based<br />

membrane technology in the form of a<br />

convenient spin column, eliminating the need<br />

for tedious cesium chloride gradients, alcohol<br />

precipitation or toxic phenol-chloroform<br />

extractions.<br />

All RNA molecules longer than 200 nucleotides<br />

can be isolated with the GeneJET RNA<br />

Purification Kit in less than 15 min. The purified<br />

high quality RNA can be used in a wide range<br />

of downstream applications such as RT-PCR,<br />

RT-qPCR, Northern blotting and other RNA-based<br />

analysis.<br />

Features<br />

Universal – can be used for both cell and<br />

tissue samples from a wide range of sources.<br />

Fast – procedure takes less than 15 min.<br />

Yields high quality total RNA ideal for most<br />

downstream applications.<br />

M 1 2 3 4 5 6<br />

Total RNA from various sources purified using<br />

the <strong>Thermo</strong> <strong>Scientific</strong> GeneJET RNA<br />

Purification Kit.<br />

1 μg of isolated total RNA was fractionated by agarose<br />

gel (1%) electrophoresis.<br />

M – RiboRuler High Range RNA Ladder (#SM1821)<br />

1 – mouse liver<br />

2 – mouse spleen<br />

3 – HeLa cells<br />

4 – Cos-7 cells<br />

5 – Saccharomyces cerevisiae<br />

6 – E.coli DH5cells<br />

Applications<br />

Fast and efficient purification of high quality<br />

RNA from:<br />

– whole blood<br />

– mammalian cell cultures<br />

– mammalian tissues<br />

– yeast<br />

– bacteria<br />

Components of the Kit<br />

<br />

Wash Buffer 1 (concentrated)<br />

Wash Buffer 2 (concentrated)<br />

Proteinase K<br />

<br />

<br />

assembled with collection tubes<br />

<br />

<br />

[FU]<br />

300<br />

200<br />

100<br />

0<br />

RIN:10<br />

25 200 1000 4000<br />

Lenght, nt<br />

High integrity of total RNA isolated from HeLa<br />

cells using the GeneJET RNA Purification kit.<br />

RNA was analyzed on an A<br />

rRNA ratio [28S/18S] = 2/1<br />

RIN – RNA integrity number<br />

www.thermoscientific.com/onebio 307


308<br />

GeneJET Whole Blood RNA Purification Mini Kit<br />

#K0761 for 50 preps<br />

Related Products<br />

DNase I, RNase-free p.255<br />

RiboLock RNase Inhibitor p.271<br />

RiboRuler Low Range RNA Ladder,<br />

ready-to-use p.386<br />

RiboRuler High Range RNA Ladder,<br />

ready-to-use p.386<br />

Maxima H Minus Double-Stranded<br />

cDNA Synthesis Kit p.286<br />

www.thermoscientific.com/onebio<br />

Collect cells<br />

Lyse<br />

Bind<br />

Wash x 3<br />

Elute<br />

Overview of purification procedure.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Whole Blood<br />

RNA Purification Mini Kit is designed for rapid<br />

and efficient purification of high quality total<br />

RNA from whole blood and related body fluids.<br />

The kit utilizes a proprietary silica-based<br />

membrane technology in the form of a<br />

convenient spin column, eliminating the need<br />

for expensive resins, toxic phenol-chloroform<br />

extractions, or time-consuming alcohol<br />

precipitation.<br />

The standard procedure takes less than 15 min.<br />

The purified high quality RNA can be used in a<br />

wide range of downstream applications such as<br />

RT-PCR, RT-qPCR, Northern blotting and other<br />

RNA-based analysis.<br />

Features<br />

Efficient – purification of up to 5 μg total RNA<br />

from 500 μl of human blood.<br />

Convenient – spin columns are capped and<br />

assembled with collection tubes.<br />

Pure – isolated RNA is free of enzyme<br />

inhibitors and proteins, is ready to use in all<br />

demanding applications, and is validated in<br />

cDNA synthesis and RT-qPCR.<br />

Fast and simple – procedure takes less<br />

than 15 min and does not involve organic<br />

extraction or differential RBC lysis.<br />

Compatible – ideal for a wide variety of<br />

samples including human and animal blood<br />

treated with EDTA, citrate or heparin; buffy<br />

coat; bone marrow, and related body fluids.<br />

RIN 8.4 8.3 9.7 8.3 8.3 8.0 8.9 8.6 8.1 8.0 8.3 8.2<br />

fresh blood 24 h at 4°C 7 d at -20°C<br />

M 1 2 3 4 5 6 7 8 9 10 11 12<br />

Stabilization of blood samples by Lysis Buffer.<br />

RNA purified from blood samples was stored at various<br />

temperatures in Lysis Buffer. 500 μl of whole blood<br />

was centrifuged, cells were resuspended in 600 μl of<br />

Lysis Buffer and either used immediately (lanes 1-4)<br />

or stored for 24 h at 4°C (lanes 5-8), or for 7 days<br />

at -20°C (lanes 9-12) before processing with the<br />

GeneJET Whole Blood RNA Purification Mini Kit. RNA<br />

integrity was analyzed using Agilent 2100 Bioanalyzer.<br />

Applications<br />

Fast extraction of high purity RNA suitable<br />

for all conventional molecular biology<br />

procedures, including:<br />

– RT-PCR<br />

– RT-qPCR<br />

– Northern blotting<br />

– nuclease protection assay<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

(pre-assembled with collection tubes)<br />

<br />

<br />

<br />

M 1 2 3 4 5<br />

Total RNA purified from human blood using<br />

the <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Whole Blood<br />

RNA Purification Mini Kit and kits from other<br />

vendors.<br />

5 μl (10%) of RNA isolated from 500 μl of human blood<br />

was fractionated by agarose gel (1 %) electrophoresis.<br />

1 – <strong>Thermo</strong> <strong>Scientific</strong><br />

2-4 – Various vendors<br />

Reproducible RNA yields and purity.<br />

RNA purified from 6 human blood samples using the GeneJET<br />

Whole Blood RNA Purification Mini Kit. 1.5 μl of isolated RNA<br />

was analyzed on NanoDrop spectrophotometer.


GeneJET Plant RNA Purification Mini Kit<br />

#K0801 for 50 preps<br />

#K0802 for 250 preps<br />

Related Products<br />

DNase I, RNase-free p.255<br />

RiboLock RNase Inhibitor p.271<br />

RiboRuler Low Range RNA Ladder,<br />

ready-to-use p.386<br />

RiboRuler High Range RNA Ladder,<br />

ready-to-use p.386<br />

Maxima H Minus Double-Stranded<br />

cDNA Synthesis Kit p.286<br />

Prepare sample<br />

Lyse<br />

Bind<br />

Wash x 3<br />

Elute<br />

Overview of purification procedure.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Plant RNA<br />

Purification Mini Kit is designed for rapid and<br />

efficient purification of high quality total RNA<br />

from a wide variety of plant species and<br />

tissue types.<br />

The kit utilizes a proprietary silica-based<br />

membrane technology in the form of a<br />

convenient spin column, eliminating the need<br />

for expensive resins, toxic phenol-chloroform<br />

extractions, or time-consuming alcohol<br />

precipitation.<br />

The standard procedure takes less than 20 min<br />

following cell lysis. Purified high quality RNA<br />

can be used in a wide range of downstream<br />

applications such as RT-PCR, RT-qPCR,<br />

Northern blotting and other RNA-based analysis.<br />

RNA yields vary between different species,<br />

tissues and age of tissue sample.<br />

Features<br />

Fast – procedure completed in 20 min<br />

following cell lysis.<br />

Convenient – protocol does not include<br />

clogging-prone lysate filtration step.<br />

High yields – up to 65 μg of high purity and<br />

high integrity RNA from 50 mg plant sample.<br />

Compatible with a wide variety of samples<br />

(leaves, roots, sprouts and other<br />

plant tissues).<br />

RNA purified from tomato leaves using<br />

different kits.<br />

1 μl (2% of eluate) of RNA isolated using the GeneJET<br />

Plant RNA Purification Mini Kit and kits from other<br />

vendors were fractionated on a 1% agarose gel.<br />

M – RiboRuler High Range RNA Ladder (#SM1821)<br />

1 – <strong>Thermo</strong> <strong>Scientific</strong><br />

2-5 – Various vendors<br />

Applications<br />

Fast extraction of high purity RNA suitable<br />

for all conventional molecular biology<br />

procedures, including:<br />

– RT-PCR<br />

– RT-qPCR<br />

– Northern blotting<br />

– nuclease protection assay<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

pre-assembled with collection tubes<br />

<br />

<br />

<br />

High integrity RNA isolated from difficult to<br />

process samples using the <strong>Thermo</strong> <strong>Scientific</strong><br />

GeneJET Plant RNA Purification Mini Kit.<br />

1 μl of total RNA isolated from 50 mg of various<br />

plants and plant tissues was analyzed with the Agilent<br />

2100 Bioanalyzer.<br />

1 – Corn roots, 2 – Canola roots, 3 – Sunflower stalk,<br />

4 – Canola stalk, 5 – Cucumber fruit, 6 – Tomato<br />

fruit, 7 – Sunflower seeds, 8 – Canola seeds,<br />

9 – Corn seeds<br />

www.thermoscientific.com/onebio 309


310<br />

GeneJET Genomic DNA Purification Kit<br />

#K0721 for 50 preps<br />

#K0722 for 250 preps<br />

Related Products<br />

GeneRuler 1 kb Plus DNA Ladder,<br />

ready-to-use p.359<br />

GeneRuler High Range DNA Ladder p.359<br />

FastDigest Restriction Enzymes p.2<br />

www.thermoscientific.com/onebio<br />

Collect sample<br />

Lyse<br />

Bind<br />

Wash x 2<br />

Elute<br />

Overview of purification procedure.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Genomic<br />

DNA Purification Kit is designed for rapid and<br />

efficient purification of high quality genomic<br />

DNA from whole blood, various mammalian<br />

tissues and cell culture samples and bacteria.<br />

The kit utilizes a proprietary silica-based<br />

membrane technology in the form of a<br />

convenient spin column, eliminating the need<br />

for expensive resins, toxic phenol-chloroform<br />

extractions, or time-consuming alcohol<br />

precipitation.<br />

The standard procedure takes less than 20 min<br />

after cell lysis. The purified genomic DNA is up<br />

to 50 kb in size with dominating fragments of<br />

20-30 kb. Isolated DNA can be used directly for<br />

PCR, Southern blotting and enzymatic reactions.<br />

M 1 2 3 4 5 6 7 8 M<br />

Genomic DNA from various sources purified<br />

using the <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Genomic<br />

DNA Purification Kit.<br />

150 ng of isolated genomic DNA from each source was<br />

fractionated by agarose gel (0.5%) electrophoresis.<br />

M – Lambda DNA/HindIII Marker (#SM0101)<br />

1 – human bone marrow<br />

2 – human blood<br />

3 – rat spleen<br />

4 – mouse heart<br />

5 – mouse liver<br />

6 – HeLa cells<br />

7 – Jurkat cells<br />

8 – E.coli DH5cells<br />

Features<br />

Universal – can be used for both cell and<br />

tissue samples from a wide range of sources.<br />

Fast – procedure completed 20 min after<br />

lysis step.<br />

Efficient – yields high quality genomic<br />

DNA of high molecular weight and minimal<br />

degradation suitable for most downstream<br />

applications.<br />

Applications<br />

Fast isolation of genomic DNA from:<br />

– whole blood<br />

– mammalian cell cultures<br />

– mammalian tissues<br />

– bacteria<br />

Components of the Kit<br />

<br />

<br />

Digestion Solution<br />

<br />

Wash Buffer I (concentrated)<br />

Wash Buffer II (concentrated)<br />

Elution Buffer<br />

GeneJET Genomic DNA Purification Columns<br />

pre-assembled with collection tubes<br />

<br />

<br />

Reference<br />

1. Boom, R., Sol C.J.A., Salimans M.M.M., Jansen C.L.,<br />

P.M.E.W. Dillen, and van der Noordaa J. Rapid and simple<br />

method for purification of nucleic acids. J. Clin. Microbiol.<br />

28:495-503, 1990.


Genomic DNA Purification Kit<br />

#K0512 for 100 preps<br />

one preparation is sufficient for:<br />

200 μl of whole blood,<br />

25-30 mg of mammalian tissue,<br />

50-100 mg of plant tissue,<br />

0.4-0.6x10 6 of cultured cells or<br />

10-20 mg of bacteria.<br />

Related Products<br />

RNase A, DNase and protease-free p.262<br />

Proteinase K (recombinant), PCR grade p.270<br />

Glycogen, molecular biology grade p.423<br />

FastDigest Restriction Enzymes p.2<br />

Add Lysis Solution to blood<br />

Incubate 5 min at 65°C<br />

Add chloroform<br />

Invert 3-5 times<br />

Centrifuge 2 min<br />

Transfer the upper phase to a<br />

new tube<br />

Add Precipitation Solution<br />

mix gently<br />

Centrifuge 2 min<br />

Discard supernatant<br />

Dissolve in NaCl Solution<br />

Precipitate with 96% ethanol<br />

Centrifuge 4 min<br />

Discard supernatant<br />

Wash pellet with 70% cold ethanol<br />

Disolve in water or TE<br />

Total time: 20 min<br />

DNA purification from whole blood.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Genomic DNA Purification<br />

Kit is a simple and rapid system for high<br />

quality genomic DNA purification from various<br />

sources including whole blood, serum, cell lines,<br />

bacterial cells, plant and mammalian tissues.<br />

The kit is based on selective detergentmediated<br />

DNA precipitation from crude<br />

lysate. The entire procedure is rapid – only<br />

20-25 min – with a typical yield of 2-10 μg<br />

genomic DNA from 0.2 ml of blood. High<br />

molecular weight genomic DNA purified with<br />

the kit is ideal for direct use in all common<br />

molecular biology applications: PCR, FastDigest<br />

and conventional restriction digestion, cloning,<br />

DNA sequencing, and Southern blot analysis.<br />

Features<br />

Efficient – 2-10 μg of genomic DNA from<br />

0.2 ml of blood.<br />

Fast – procedure takes approximately<br />

20 min.<br />

Universal – purifies genomic DNA from<br />

various sources.<br />

Flexible – easy to scale up and down.<br />

Safe – does not involve phenol extraction.<br />

Applications<br />

Purification of high-quality genomic DNA from:<br />

– whole blood or serum<br />

– cell culture<br />

– plant tissues<br />

– mammalian tissues<br />

– epithelium samples<br />

– bacteria<br />

Components of the Kit<br />

Lysis Solution<br />

Precipitation Solution<br />

NaCl Solution<br />

<br />

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 M<br />

Genomic DNA from various sources purified with the <strong>Thermo</strong> <strong>Scientific</strong> Genomic<br />

DNA Purification Kit.<br />

Agarose gel (0.7%) electrophoresis analysis of undigested (odd lane numbers) and EcoRI<br />

(#ER0271) digested (even lane numbers) DNA samples.<br />

M – Lambda DNA/HindIII Marker (#SM0101)<br />

1, 2 – human blood<br />

3, 4 – human lymphocytes<br />

5, 6 – human placenta<br />

7, 8 – mouse liver<br />

9, 10 – Hedera helix<br />

11, 12 – Haemophilus influenzae<br />

13, 14 – E.coli ER2267<br />

15, 16 – Bacillus subtilis<br />

www.thermoscientific.com/onebio 311


312<br />

GeneJET Whole Blood Genomic DNA Purification Mini Kit<br />

#K0781 for 50 preps<br />

#K0782 for 250 preps<br />

Related Products<br />

GeneRuler 1 kb Plus DNA Ladder,<br />

ready-to-use p.359<br />

GeneRuler High Range DNA Ladder p.359<br />

FastDigest Restriction Enzymes p.2<br />

www.thermoscientific.com/onebio<br />

Collect sample<br />

Lyse<br />

Bind<br />

Wash x 2<br />

Elute<br />

Overview of purification procedure.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Whole Blood<br />

Genomic DNA Purification Mini Kit is designed<br />

for rapid and efficient purification of high quality<br />

genomic DNA from whole blood and related<br />

body fluids.<br />

The kit utilizes a proprietary silica-based<br />

membrane technology in the form of a<br />

convenient spin column, eliminating the need<br />

for expensive resins, toxic phenol-chloroform<br />

extractions, or time-consuming alcohol<br />

precipitation.<br />

The standard procedure takes less than 20<br />

min following cell lysis and yields purified DNA<br />

greater than 30 kb in size. Isolated DNA can<br />

be used directly in PCR, Southern blotting and<br />

enzymatic reactions.<br />

Features<br />

Efficient – high yields of high molecular<br />

weight genomic DNA.<br />

Fast – 20 min procedure following cell lysis.<br />

Convenient – spin columns are capped and<br />

assembled with collection tubes.<br />

Pure – isolated DNA is free of enzyme<br />

inhibitors, RNA and proteins, and is ready<br />

to use in common downstream applications<br />

such as qPCR, endpoint PCR, multiplex PCR,<br />

and restriction enzyme digests.<br />

Compatible – ideal for wide variety<br />

of samples including fresh or frozen<br />

anticoagulated mammalian blood (treated<br />

with EDTA, citrate or heparine), aged blood,<br />

buffy coat, bone marrow, body fluids.<br />

Mean Yield (pg)<br />

Accurate evaluation of genomic DNA yields.<br />

Genomic DNA was purified from human blood using the GeneJET<br />

Whole Blood Genomic DNA Purification Mini Kit and kits from other<br />

vendors. DNA concentration was estimated using a NanoDrop<br />

spectrophotometer (<strong>Thermo</strong> <strong>Scientific</strong>). 200 pg was used as<br />

a template in qPCR with primers against a single copy gene.<br />

Matching yields obtained by qPCR-based absolute quantification<br />

and spectrophotometrical evaluation indicate the absence of<br />

reaction inhibitors and contaminating RNA.<br />

Applications<br />

Isolated genomic DNA is ideal for use in<br />

common molecular biology procedures,<br />

including:<br />

– PCR and qPCR<br />

– FastDigest and conventional restriction<br />

digestion<br />

– Southern blotting<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

pre-assembled with collection tubes<br />

<br />

<br />

M 1 2 3 4 M<br />

Genomic DNA purified from various sources<br />

using the <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Whole<br />

Blood Genomic DNA Purification Mini Kit.<br />

200 ng of isolated genomic DNA from each<br />

source was fractionated by agarose gel (0.5%)<br />

electrophoresis.<br />

M – Lambda DNA/HindIII Marker (#SM0101)<br />

1 – Human whole blood<br />

2 – Human buffy coat<br />

3 – Human bone marrow<br />

4 – Avian whole blood


GeneJET Plant Genomic DNA Purification Mini Kit<br />

#K0791 for 50 preps<br />

#K0792 for 250 preps<br />

Related Products<br />

GeneRuler 1 kb Plus DNA Ladder,<br />

ready-to-use p.359<br />

GeneRuler High Range DNA Ladder p.359<br />

FastDigest Restriction Enzymes p.2<br />

Prepare sample<br />

Lyse<br />

Precipitate<br />

Bind<br />

Wash x 2<br />

Elute<br />

Overview of purification procedure.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Plant Genomic<br />

DNA Purification Mini Kit is designed for rapid<br />

and efficient purification of high quality genomic<br />

DNA from a wide variety of plant species and<br />

tissue types.<br />

The kit utilizes a proprietary silica-based<br />

membrane technology in the form of a<br />

convenient spin column, eliminating the need<br />

for expensive resins, toxic phenol-chloroform<br />

extractions or time-consuming alcohol<br />

precipitation. The standard procedure takes<br />

less than 30 min following cell lysis and yields<br />

purified DNA greater than 30 kb in size. DNA<br />

yields vary between different species and<br />

tissues depending on genome size, ploidy, cell<br />

number and the age of the tissue sample. The<br />

typical yield from a standard tissue source (e.g.,<br />

young wheat leaves) is 30-32 μg from<br />

100 mg of tissue. Isolated DNA can be used<br />

directly for PCR, qPCR, Southern blotting and<br />

enzymatic reactions.<br />

Features<br />

Fast – procedure completed in 30 min<br />

following cell lysis.<br />

Convenient – protocol without clogging-prone<br />

lysate filtration step.<br />

High yield – up to 32 μg of high quality DNA<br />

from 100 mg sample, including nuclear,<br />

mitochondrial and chloroplast DNA.<br />

Compatible with a wide variety of sample<br />

types (leaves, roots, sprouts and other parts<br />

of various plants).<br />

Applications<br />

Isolated genomic DNA is ideal for use in<br />

common molecular biology procedures,<br />

including:<br />

– PCR and qPCR<br />

– FastDigest and conventional restriction<br />

digestion<br />

– Southern blotting<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

pre-assembled with collection tubes<br />

<br />

<br />

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 M<br />

Genomic DNA purified from various sources using the <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Plant Genomic<br />

DNA Purification Mini Kit.<br />

200 ng of isolated genomic DNA from each source was fractionated by agarose gel (0.5%) electrophoresis.<br />

M – Lambda DNA/HindIII Marker (#SM0101), 1 – Arabidopsis, 2 – Tobacco leaves, 3 – Tomato leaves,<br />

4 – Spinach leaves, 5 – Wheat leaves, 6 – Canola leaves, 7 – Onion leaves, 8 – Rice leaves, 9 – Corn seeds,<br />

10 – Sunflower stalk, 11 – Corn roots, 12 – Beet roots, 13 – Cucumber fruit, 14 – Sugar cane.<br />

www.thermoscientific.com/onebio 313


314<br />

GeneJET Viral DNA and RNA Purification Kit<br />

#K0821 for 50 preps<br />

Related Products<br />

Viral DNA/RNA Purification Kit (IVD) p.315<br />

www.thermoscientific.com/onebio<br />

Collect sample<br />

Lyse<br />

Bind<br />

Wash x 3<br />

Elute<br />

Overview of purification procedure.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Viral DNA and<br />

RNA Purification Kit is designed for rapid and<br />

efficient purification of high quality viral nucleic<br />

acids from a variety of human and mammalian<br />

fluid samples such as plasma, serum, whole<br />

blood, saliva, nasal and buccal swabs,<br />

urine, urogenital swabs, and milk. The kit is<br />

compatible with common sample preservatives<br />

such as EDTA, citrate and heparin.<br />

Purified viral nucleic acids are free of proteins,<br />

nucleases and other contaminants or inhibitors<br />

of downstream applications. Isolated DNA and<br />

RNA can be directly used in PCR, qPCR or other<br />

nucleic acid based assays.<br />

Principle<br />

The kit utilizes a proprietary silica-based<br />

membrane technology in the form of a<br />

convenient spin column. Viral nucleic acids from<br />

lysed samples bind to the column membrane<br />

while impurities are effectively removed during<br />

subsequent washing and centrifugation steps.<br />

Ready-to-use nucleic acids then are eluted from<br />

the column.<br />

Features<br />

Efficient purification of viral DNA and RNA<br />

from human and mammalian plasma, serum,<br />

blood, and cell-free samples.<br />

Linear yields from a wide range of viral titers.<br />

Tested with a variety of DNA and RNA viruses<br />

(HIV, HBV, HCV, HPV, CMV, EBV).<br />

Downstream compatibility with (RT)-PCR,<br />

(RT)-qPCR and other nucleic acid based<br />

assays.<br />

Log 10 copies/ml<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

HBV HCV CMV EBV<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

vendor A<br />

vendor B<br />

vendor C<br />

Highly efficient purification of viral nucleic<br />

acids from various sample types.<br />

Different amounts of HBV, HCV, CMV and EBV infected<br />

human plasma or blood samples were purified using the<br />

GeneJET Viral DNA and RNA Purification kit or kits from<br />

other suppliers. Isolated viral nucleic acids were quantified<br />

using a real-time PCR detection assay.<br />

Applications<br />

Downstream use in qualitative and<br />

quantitative nucleic acid based assays, e.g.,<br />

(RT)-PCR, (RT)-qPCR.<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Tubes<br />

<br />

<br />

Result HCV, log IU/ml<br />

A<br />

Result HBV, log IU/ml<br />

B<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

R<br />

0 1 2 3 4 5 6 7 8<br />

2 = 0.9983<br />

Input HCV, log IU/ml<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

R<br />

0 1 2 3 4 5 6 7 8<br />

2 = 0.9985<br />

Input HBV, log IU/ml<br />

Linear performance across a wide range of viral<br />

nucleic acid concentrations.<br />

Real-time PCR detection of Viral RNA (A) and DNA (B)<br />

purified with the GeneJET Viral DNA and RNA Purification<br />

Kit. Samples of various HBV and HCV titers were produced<br />

by diluting infected plasma of known viral titer with noninfected<br />

plasma.<br />

A: Detection of RNA from various HCV sample titers.<br />

B: Detection of DNA from various HBV sample titers.<br />

Reference<br />

1. Boom, R., C.J.A. Sol, M.M.M. Salimans, C.L. Jansen, P.M.E.W.<br />

Dillen, and J. van der Noordaa. Rapid and simple method<br />

for purification of nucleic acids. J. Clin. Microbiol. Hazarddetermining<br />

component of labeling: Guanidinium chloride<br />

28:495-503, 1990.


Viral DNA/RNA Purification Kit (IVD)*<br />

*Available in EU countries only.<br />

#DK0011 for 50 preps<br />

Related Products<br />

GeneJET Viral DNA and RNA Purification Kit p.314<br />

Collect sample<br />

Lyse<br />

Bind<br />

Wash x 3<br />

Elute<br />

Overview of purification procedure.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Viral DNA/RNA<br />

Purification Kit is a simple and easy-to-use<br />

system for efficient purification of viral<br />

nucleic acids from human plasma or serum<br />

samples for in vitro diagnostic purposes.<br />

The purification system utilizes a proprietary<br />

silica-based membrane technology in the<br />

form of a convenient spin column. The entire<br />

purification procedure takes approximately<br />

30 min to process 1-4 samples. Purified viral<br />

DNA and RNA are compatible with downstream<br />

qualitative and quantitative in vitro diagnostic<br />

workflows such as PCR, qPCR, RT-PCR and<br />

RT-qPCR. The kit is compatible with citrateor<br />

EDTA-treated human plasma and serum<br />

samples. To avoid sample contamination and to<br />

ensure safe waste handling, fresh wash tubes<br />

are supplied for each wash step.<br />

Principle<br />

During the purification procedure, viral nucleic<br />

acids from lysed plasma or serum samples<br />

bind to the column membrane while impurities<br />

are effectively removed during subsequent<br />

wash steps. Ready-to-use nucleic acids are<br />

then eluted from the column. The purified viral<br />

nucleic acids are free of proteins, nucleases,<br />

and other contaminants or inhibitors of<br />

downstream applications.<br />

Result HCV, log IU/ml<br />

A<br />

Fluorescence (norm)<br />

A<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

R<br />

0 1 2 3 4 5 6 7 8<br />

2 = 0.9983<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

5 10<br />

Input HCV, log IU/ml<br />

15 20 25 30 35 40 45<br />

Cycle number<br />

Features<br />

Efficient purification of viral DNA and RNA<br />

from a wide range of virus concentrations.<br />

Compatible with fresh or frozen serum and<br />

plasma preserved with EDTA or citrate.<br />

Minimized risk of cross-contamination.<br />

CE-marked for compliance with EU Directive<br />

98/79/EC.<br />

Applications<br />

Isolation of viral nucleic acids from 200 μl<br />

of fresh or frozen human plasma and<br />

serum samples preserved with either<br />

EDTA or citrate.<br />

Downstream use in in vitro diagnostic<br />

qualitative and quantitative nucleic acid<br />

based assays (e.g., PCR, RT-PCR).<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Tubes<br />

<br />

<br />

<br />

Result HBV, log IU/ml<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

R<br />

0 1 2 3 4 5 6 7 8<br />

2 = 0.9985<br />

Input HBV, log IU/ml<br />

Linear performance across a wide range of viral nucleic acid concentrations.<br />

Real-time PCR detection of Viral RNA (A) and DNA (B) purified with the Viral DNA/RNA Purification Kit. Samples<br />

of various HBV and HCV titers were produced by diluting infected plasma of known viral titer with non-infected<br />

plasma. A: Detection of RNA from various HCV sample titers. B: Detection of DNA from various HBV sample titers.<br />

B<br />

Fluorescense (norm)<br />

B<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

5 10<br />

15 20 25 30 35 40 45<br />

Cycle number<br />

www.thermoscientific.com/onebio 315


316<br />

GeneJET PCR Purification Kit<br />

#K0701 for 50 preps<br />

#K0702 for 250 preps<br />

Related Products<br />

TopVision Agarose p.427<br />

TopVision Low Melting Point Agarose p.427<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

0.5 M EDTA, pH 8.0 p.421<br />

DNA Ladders & Markers pp.364-370<br />

FastDigest Restriction Enzymes p.2<br />

CloneJET PCR Cloning Kit p.279<br />

Rapid DNA Ligation Kit p.288<br />

TransformAid Bacterial Transformation Kit p.289<br />

www.thermoscientific.com/onebio<br />

Load PCR product<br />

Prepare for binding<br />

Bind<br />

Wash<br />

Elute<br />

Overview of purification procedure.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET PCR Purification<br />

Kit is designed for rapid and efficient purification<br />

of DNA from PCR and other enzymatic<br />

reaction mixtures.<br />

The kit utilizes a proprietary silica-based<br />

membrane technology in the form of a<br />

convenient spin column, eliminating the<br />

need for tedious resin manipulations or toxic<br />

phenol-chloroform extractions. The GeneJET<br />

PCR Purification Kit effectively removes primers,<br />

dNTPs, unincorporated labeled nucleotides,<br />

enzymes and salts from PCR and other reaction<br />

mixtures. The kit can be used for purification<br />

of DNA fragments from 25 bp to 20 kb with<br />

recovery rates up to 100%. Each GeneJET<br />

purification column has a total binding capacity<br />

of up to 25 μg of DNA and the entire procedure<br />

takes just 5 min. The purified DNA can be used<br />

in common downstream applications such<br />

as sequencing, restriction digestion, labeling,<br />

ligation, cloning, in vitro transcription, blotting or<br />

in situ hybridization.<br />

Label<br />

ROX-NHS<br />

Recovery rate, %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

before after<br />

Efficient removal of<br />

unincorporated label.<br />

100 bp<br />

500 bp<br />

400 bp<br />

1 kb<br />

Size<br />

Features<br />

Highly efficient – 90-100% recoveries in the<br />

range of 100 bp-10 kb.<br />

Convenient – spin columns are capped and<br />

assembled with collection tubes.<br />

Fast – procedure takes 5 min.<br />

Pure DNA – A 260/A 280 > 1.8.<br />

Applications<br />

Fast and efficient purification of DNA fragments<br />

ideal for use in all conventional molecular<br />

biology procedures including:<br />

– FastDigest or conventional restriction<br />

digestion<br />

– automated fluorescent or radioactive<br />

sequencing<br />

– PCR<br />

– in vitro transcription<br />

– in situ hybridization<br />

– labeling<br />

– cloning<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

(preassembled with collection tubes)<br />

<br />

5.5 kb 10 kb<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

vendor A<br />

vendor B<br />

Superior purification of large and small DNA fragments from PCR reaction mixtures<br />

using the <strong>Thermo</strong> <strong>Scientific</strong> GeneJET PCR Purification Kit.


GeneJET Gel Extraction Kit<br />

#K0691 for 50 preps<br />

#K0692 for 250 preps<br />

Related Products<br />

TopVision Agarose p.427<br />

TopVision Low Melting Point Agarose p.427<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

DNA Ladders & Markers pp.364-370<br />

FastDigest Restriction Enzymes p.2<br />

CloneJET PCR Cloning Kit p.279<br />

Rapid DNA Ligation Kit p.288<br />

TransformAid Bacterial Transformation Kit p.289<br />

Excise gel slice with DNA<br />

fragment<br />

Lyse<br />

Bind<br />

Wash<br />

Elute<br />

Overview of purification procedure.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> GeneJET Gel Extraction<br />

Kit is designed for rapid and efficient<br />

purification of DNA fragments from standard or<br />

low-melting point agarose gels run in either TAE<br />

or TBE buffer.<br />

The kit utilizes a proprietary silica-based<br />

membrane technology in the form of a<br />

convenient spin column. The kit can be used<br />

to purify DNA fragments from 25 bp to 20 kb<br />

in size with recovery rates up to 95%. Each<br />

GeneJET purification column has a binding<br />

capacity of up to 25 μg of DNA and can process<br />

up to 1 g of agarose gel. The entire procedure<br />

takes just 15 min and the isolated DNA is ready<br />

to use in all common downstream applications<br />

including ligation, restriction digestion, PCR,<br />

sequencing and labeling.<br />

Features<br />

Highly efficient – 80-95% recoveries in the<br />

range of 100 bp – 10 kb.<br />

Convenient – spin columns are capped and<br />

assembled with collection tubes.<br />

Fast – procedure takes 15 min.<br />

Pure DNA – A260/A280 > 1.8.<br />

Recovery rate, %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100 bp 500 bp 1 kb<br />

Size<br />

5.5 kb 10 kb<br />

Superior extraction of large and small DNA fragments from agarose gels.<br />

Applications<br />

Fast and efficient extraction of high purity DNA<br />

fragments ideal for use in all conventional<br />

molecular biology procedures including:<br />

– FastDigest or conventional restriction<br />

digestion<br />

– automated fluorescent or radioactive<br />

sequencing<br />

– PCR<br />

– in situ hybridization<br />

– labeling<br />

– cloning<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

with collection tubes)<br />

<br />

Note<br />

<br />

with UV light when the gel-purified DNA<br />

fragment will be used in downstream<br />

cloning reactions. Use a long wavelength<br />

(360 nm) UV light-box during excision<br />

of the gel slice, minimize the UV exposure to<br />

a few seconds or keep the gel on a glass or<br />

plastic plate.<br />

<strong>Thermo</strong> <strong>Scientific</strong><br />

vendor A<br />

vendor B<br />

www.thermoscientific.com/onebio 317


318<br />

Silica Bead DNA Gel Extraction Kit<br />

#K0513 for 100 preps<br />

(up to 5 μg of DNA per prep)<br />

Related Products<br />

TopVision Agarose p.427<br />

TopVision Low Melting Point Agarose p.427<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

CloneJET PCR Cloning Kit p.279<br />

Rapid DNA Ligation Kit p.288<br />

T4 DNA Ligase<br />

FastAP <strong>Thermo</strong>sensitive Alkaline<br />

p.239<br />

Phosphatase p.242<br />

www.thermoscientific.com/onebio<br />

Excise gel slice with DNA<br />

fragment<br />

Add Binding Solution to the gel slice<br />

Incubate 5 min at 55°C<br />

Add Silica Suspension<br />

Incubate 5 min at 55°C<br />

Centrifuge<br />

Discard supernatant<br />

Resuspend in wash buffer<br />

Centrifuge<br />

Discard wash buffer<br />

Repeat 3X<br />

Resuspend in TE buffer<br />

Incubate 5 min at 55°C<br />

Centrifuge<br />

Transfer purified DNA to a<br />

fresh tube<br />

Total time: 20 min<br />

Overview of purification procedure.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Silica Bead DNA Gel<br />

Extraction Kit is a simple and efficient system for<br />

DNA extraction from agarose gels and reaction<br />

mixtures. The kit utilizes the modified protocol<br />

of Vogelstein and Gillespie (1). The extraction<br />

is based on the solubilization of the agarose<br />

gel and selective adsorption of nucleic acids<br />

on specially prepared silica particles at high<br />

salt concentration. Silica particles bound with<br />

DNA are washed to remove contaminants and<br />

pure DNA is eluted with TE buffer or water. This<br />

method requires few manipulations, and is both<br />

faster and easier to perform than organic-based<br />

extraction methods. Compared to column based<br />

gel-extraction kits, the Silica Bead DNA Gel<br />

Extraction Kit offers flexibility for scaling up or<br />

down reaction and elution volumes. The purified<br />

DNA is ideal for all common molecular biology<br />

procedures, including restriction digestion,<br />

cloning, and sequencing.<br />

Features<br />

Flexible – easy to scale up or down both<br />

reaction and elution volumes.<br />

Efficient – greater than 80% DNA recovery.<br />

Fast – purification takes only 15-20 min.<br />

Versatile – suitable for DNA fragments as<br />

short as 100 bp.<br />

Safe – does not involve phenol extraction.<br />

M Extracted and Purified DNA Fragments M<br />

Efficient recovery of individual 100-3000 bp DNA fragments from the<br />

<strong>Thermo</strong> <strong>Scientific</strong> GeneRuler 100 bp Plus DNA Ladder from a 1.7%<br />

agarose gel using the Silica Bead DNA Gel Extraction Kit.<br />

M – GeneRuler 100 bp Plus DNA Ladder (#SM0321).<br />

Applications<br />

Purification of DNA fragments from agarose<br />

gels prepared with TAE or TBE buffers.<br />

Concentration of DNA samples for desalting<br />

or buffer change.<br />

Removal of enzymes after PCR, restriction<br />

digestion, dephosphorylation or labeling<br />

reactions.<br />

Removal of unincorporated nucleotides,<br />

primers and primer-dimers.<br />

Removal of linkers following ligation.<br />

Removal of residual salts, phenol, chloroform<br />

or ethidium bromide.<br />

Purification of RNA-free plasmid DNA.<br />

Components of the Kit<br />

Silica Powder Suspension<br />

Binding Solution<br />

Concentrated Wash Buffer<br />

TBE Conversion Buffer<br />

<br />

Note<br />

<br />

with UV light when the gel-purified DNA<br />

fragment will be used in downstream<br />

cloning reactions. Use a long wavelength<br />

(360 nm) UV light-box during excision of the<br />

gel slice, minimize the UV exposure to a few<br />

seconds or keep the gel on a glass<br />

or plastic plate.<br />

References<br />

1. Vogelstein, B., Gillespie, D., Preparative and analytical<br />

purification of DNA from agarose, Proc. Natl. Acad. Sci.<br />

USA, 615-619, 1979.<br />

2. Rand, K.N., Crystal Violet can be used to Visualize DNA<br />

Bands during Gel Electrophoresis and to Improve Cloning<br />

Efficiency, Elsevier Trends Journals Technical Tips, Online,<br />

T40022, 1996.<br />

3. Adkins, S., Burmeister, M., Visualization of DNA in agarose<br />

gels and educational demonstrations, Anal Biochem.,<br />

240 (1), 17-23, 1996.


Agarase<br />

#EO0461 100 u (0.5 u/μl)<br />

Related Products<br />

TopVision Low Melting Point Agarose p.427<br />

GeneJET Gel Extraction Kit p.317<br />

CloneJET PCR Cloning Kit p.279<br />

Rapid DNA Ligation Kit p.288<br />

T4 DNA Ligase p.239<br />

T4 RNA Ligase p.240<br />

Glycogen p.423<br />

Water, nuclease-free p.420<br />

Cut out gel slice containing DNA<br />

or<br />

RNA fragment<br />

Melt agarose 10 min at 70°C<br />

Equilibrate to 42°C<br />

Add Agarase<br />

Incubate 30 min at 42°C<br />

Add ammonium acetate<br />

Chill on ice for 5 min<br />

Centrifuge 10 min<br />

Add ethanol or isopropanol to<br />

supernatant<br />

Incubate 1 h at room temperature;<br />

Centrifuge 15 min<br />

Remove supernatant<br />

Dissolve in TE buffer<br />

Overview of purification procedure.<br />

Reference<br />

1. Yaphe, W., The use of agarase from Pseudomonas<br />

atlantica in the identification of agar in marine algae<br />

(Rhodophyceae), Can. J. Microbiol., 3, 987-993, 1957.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Agarase allows for<br />

gentle yet efficient recovery of DNA or RNA<br />

fragments from low melting point agarose by<br />

digesting the agarose polysaccharide core into<br />

oligosaccharides (1). The recovered nucleic<br />

acids can be directly used for amplification,<br />

cloning, sequencing, etc.<br />

Features<br />

Gentle – recovers intact DNA and RNA.<br />

High recovery yields – >90% of the starting<br />

DNA is recovered.<br />

Efficient – ideal for both long (>30 kb) and<br />

short (


320<br />

Related Products by Application<br />

DNA isolation Cat. # Size Applications Page<br />

Proteinase K (recombinant), PCR grade,<br />

~600 u/ml<br />

Removal of DNA Cat. # Size Supplied with Applications Page<br />

DNase I, RNase-free, 1 u/μl<br />

www.thermoscientific.com/onebio<br />

EN0521 1000 u<br />

EN0525 1000 u<br />

DNase I, RNase-free, 50 u/μl EN0523 HC, 1000 u<br />

Exonuclease I, 20 u/μl<br />

10X Reaction buffer with MgCl 2 1 ml<br />

25 mM EDTA 1 ml<br />

10X Reaction buffer with MgCl 2 1 ml<br />

10X Reaction buffer w/o MnCl 2 1 ml<br />

100 mM MnCl 2 1 ml<br />

25 mM EDTA 1 ml<br />

10X Reaction buffer with MgCl 2 1 ml<br />

25 mM EDTA 1 ml<br />

EN0581 4000 u 10X Reaction buffer 1 ml<br />

EN0582 20000 u 10X Reaction buffer 5x1 ml<br />

Protocols and Recommendations<br />

» 4.6. Removal of template DNA after in vitro transcription<br />

» 4.7. Removal of genomic DNA from RNA preparations<br />

» 4.8. PCR product clean-up prior to sequencing<br />

<br />

<br />

in vitro transcription.<br />

<br />

RT-PCR.<br />

<br />

removal from PCR mixture for direct<br />

sequencing.<br />

<br />

containing a 3’-hydroxyl terminus<br />

from nucleic acid mixtures.<br />

Removal of RNA Cat.# Size Applications Page<br />

RNase A, DNase and protease-free,<br />

10 mg/ml<br />

EN0531 10 mg<br />

262<br />

RNase T1, 1000 u/μl<br />

RNase A/T1 Mix, 2 mg/ml of RNase A,<br />

5000 u/ml of RNase T1<br />

RNase I, (10 u/μl)<br />

EO0491<br />

EO0492<br />

1 ml<br />

20 mg/ml<br />

5X1 ml<br />

20 mg/ml<br />

EN0541<br />

EN0542<br />

10,0000 u<br />

50,0000 u <br />

263<br />

EN0551 1 ml<br />

<br />

264<br />

EN0601 1000 u<br />

EN0602 5000 u<br />

<br />

<br />

<br />

or cell lines.<br />

Protocols and Recommendations<br />

» 4.1. Purification of genomic DNA from mouse tail with Proteinase K<br />

» 4.2. Purification of DNA from cultured eukaryotic cells with Proteinase K<br />

270<br />

p.322<br />

p.322<br />

255<br />

255<br />

258<br />

p.323<br />

p.323<br />

p.323<br />

265


PCR clean-up Cat. # Size Supplied with Applications Page<br />

FastAP <strong>Thermo</strong>sensitive<br />

Alkaline Phosphatase, 1 u/μl<br />

Exonuclease I, 20 u/μl<br />

Nucleic acid precipitation Cat. # Size Applications Page<br />

Glycogen, molecular biology grade, 20 mg/ml<br />

Glycogen, RNA grade, 20 mg/ml<br />

R0561<br />

R0551<br />

2X 0.25 ml<br />

2X 0.1 ml <br />

423<br />

3 M Sodium Acetate Solution, pH 5.2,<br />

molecular biology grade<br />

R1181 5X 1 ml<br />

<br />

421<br />

Protocols and Recommendations<br />

» 4.5. Nucleic acid precipitation from diluted solutions with Glycogen p.323<br />

Nucleic acid separation Cat. # Size Applications Page<br />

TopVision Agarose<br />

TopVision Low Melting Point Agarose R0801 25 g<br />

EF0651 1000 u 10X FastAP buffer 2x1.5 ml <br />

EF0652 5X 1000 u 10X FastAP buffer 10x1.5 ml mixture prior to sequencing of PCR<br />

EF0654 300 u 10X FastAP buffer 1.5 ml products.<br />

EN0581 4000 u 10X Reaction buffer 1 ml<br />

EN0582 20000 u 10X Reaction buffer 5x1 ml<br />

R0491 100 g <br />

<br />

R0492 500 g <br />

<br />

<br />

<br />

<br />

removal from PCR mixture for direct<br />

sequencing.<br />

<br />

containing a 3’-hydroxyl terminus<br />

from nucleic acid mixtures.<br />

Protocols and Recommendations<br />

» 4.8. PCR product clean-up prior to sequencing p.323<br />

Protocols and Recommendations<br />

» 4.3. Casting high quality agarose gels p.322<br />

» 4.4. Recovery of DNA from LM agarose gels with Agarase p.322<br />

242<br />

258<br />

427<br />

www.thermoscientific.com/onebio 321


322<br />

Protocols and Recommendations<br />

4.1. Purification of genomic DNA<br />

from mouse tails with Proteinase K<br />

1. Place a 0.5-1 cm sample of mouse tail into<br />

a 1.5 ml microcentrifuge tube.<br />

2. Add 500 μl of lysis buffer (50 mM KCl,<br />

50 mM Tris-HCl (pH 8.0), 2.5 mM EDTA,<br />

0.45% NP-40, 0.45% Tween-20).<br />

3. Add 2.5 μl of Proteinase K, 20 mg/ml<br />

(#EO0491) and mix briefly.<br />

4. Incubate overnight at 55°C.<br />

Optional. Incubate for an additional 1 h<br />

at 65°C.<br />

5. Vortex and spin 10 seconds at 13,000 rpm<br />

to collect cell debris.<br />

6. Use 1 μl from the upper part of the<br />

supernatant per 50 μl of PCR mix.<br />

4.2. Purification of DNA from<br />

cultured eukaryotic cells with<br />

Proteinase K<br />

The following protocol is used for for 1-2X 10 6<br />

cells and typically generates 7-15 μg DNA.<br />

1. Centrifuge for 5 min at 3000 rpm in a<br />

microcentrifuge to collect the cells.<br />

2. Wash the pellet twice with PBS<br />

(137 mM NaCl, 27 mM KCl, 100 mM<br />

Na 2HPO 4, 2 mM K 2HPO 4, pH 7.4).<br />

3. Resuspend the pellet in 0.5 ml of lysis buffer<br />

(10 mM Tris-HCl, (pH 8.5), 5 mM EDTA,<br />

200 mM NaCl, 0.2% SDS).<br />

Incubate at 60°C for 5 min.<br />

4. Add 2.5 μl of Proteinase K (#E00491) and<br />

5 μl of RNase A/T1 Mix (#EN0551), mix.<br />

Incubate at 60°C for 1 h.<br />

5. Add 250 μl of 5 M NaCl, mix and incubate<br />

on ice for 5 min to precipitate protein.<br />

6. Centrifuge for 15 min at 10,000 rpm in a<br />

microcentrifuge.<br />

7. Transfer supernatant to a fresh tube. Add<br />

an equal volume of isopropanol and mix to<br />

precipitate the DNA.<br />

Optional. Incubate at -20°C for up to 60 min<br />

to increase the DNA yield.<br />

8. Centrifuge for 10 min at 10,000 rpm in a<br />

microcentrifuge.<br />

9. Discard the supernatant and wash the pellet<br />

with 1.2 ml of 70% cold ethanol.<br />

10. Air-dry the pellet*. Dissolve the pellet in<br />

Water, nuclease-free (#R0581) or TE buffer.<br />

* Do not use a vacuum dryer or let the pellet dry<br />

completely. Overdried genomic DNA has low solubility.<br />

www.thermoscientific.com/onebio<br />

4.3. Casting high quality<br />

agarose gels<br />

<br />

prepare the gel and to run electrophoresis.<br />

<br />

ethidium bromide (0.5 μg/ml) to both the<br />

electrophoresis buffer and gel. Wear gloves<br />

when handling ethidium bromide.<br />

<br />

supercoiled or relaxed plasmid DNA,<br />

do not include ethidium bromide in the<br />

electrophoresis buffer or gel. The gel should<br />

be stained only after electrophoresis.<br />

<br />

use a flask of a volume at least three times<br />

larger than that of the solution to avoid<br />

solution loss due to boiling.<br />

Procedure:<br />

1. Weigh out the required amount (depending<br />

on the gel percentage) of agarose into an<br />

Erlenmeyer flask and add the appropriate<br />

volume of either 1X TBE or 1X TAE buffer,<br />

swirl to mix.<br />

2. Weigh the flask with the solution.<br />

3. For high percentage (3-5%) agarose gels:<br />

add a 10-20% excess amount of<br />

distilled water.<br />

4. Boil the mixture in a microwave oven<br />

at medium power until the agarose is<br />

completely molten, swirl several times while<br />

solution is still boiling.<br />

To prepare the highest quality agarose gels<br />

of any percentage, an additional 3-5 min<br />

boiling after complete melting of the<br />

agarose is recommended.<br />

5. Weigh the flask again and, if necessary, add<br />

hot distilled water to restore the evaporated<br />

water (or continue boiling) to obtain the<br />

correct percentage agarose gel.<br />

Optional. Add ethidium bromide to a final<br />

concentration of 0.5 μg/ml, mix well and<br />

heat the mixture for an additional minute<br />

without boiling.<br />

6. Cool the solution to 65-70°C. Pour carefully<br />

on a clean casting plate with an appropriate<br />

comb. If bubbles appear, push them carefully<br />

away to the sides with a pipette tip.<br />

7. Allow the gel to solidify for about 30 min<br />

before using. Low percentage low-melting<br />

point agarose gels can only be<br />

solidified at 4°C.<br />

8. Immerse the gel into the desired<br />

electrophoresis buffer and load samples.<br />

9. After electrophoresis the gel can be stained<br />

with ethidium bromide, SYBR Green I or by<br />

any other staining technique.<br />

Warning: hot agarose solution should be<br />

handled very carefully.<br />

4.4. Recovery of DNA from LM<br />

agarose gels with Agarase<br />

1. Perform electrophoresis of DNA in a low<br />

melting point (LM) agarose (#R0801) gel<br />

prepared in TAE (#B49), 0.5X TBE,<br />

TBE (#B52) or TPE buffer. Stain the gel<br />

with ethidium bromide.<br />

2. Cut out the desired DNA band from the<br />

agarose gel with a clean scalpel under<br />

UV light*. Cut out only as much agarose<br />

as necessary. (The bottom of the excised<br />

agarose slice is free of DNA and should be<br />

removed).<br />

3. Determine the weight of the slice. To<br />

facilitate melting, cut gel slices larger than<br />

200 mg into smaller pieces.<br />

4. Incubate the tube at 70°C for approx. 10 min.<br />

Ensure that the agarose is completely molten.<br />

5. Transfer the tube to a 42°C water bath and<br />

equilibrate for 5 min.<br />

6. Add 1 u of Agarase (#EO0461) per<br />

100 mg (approx. 100 μl) of molten 1% LM<br />

agarose. Increase the amount of enzyme<br />

proportionally for higher percentage agarose,<br />

gently mix and incubate at 42°C for 30 min.<br />

7. Add ammonium acetate** to a 2.5 M final<br />

concentration, chill on ice for 5 min.<br />

8. Centrifuge at 10,000 rpm for 10 min to<br />

pellet undigested carbohydrates. Transfer<br />

the supernatant to a clean tube.<br />

9. Add 2.5 volumes of ethanol or 0.8 volume<br />

of isopropanol, mix gently and incubate at<br />

room temperature for 1 h. If DNA fragments<br />

are smaller than 500 bp or if the DNA<br />

concentration is lower than 0.05 μg/ml,<br />

incubate at room temperature for 2 h.<br />

10. Centrifuge at 10,000 rpm for 15 min,<br />

remove supernatant and dry the pellet.<br />

Resuspend the pellet in TE or another<br />

appropriate buffer for subsequent<br />

manipulation.<br />

Note<br />

* For subcloning of gel-purified DNA fragments, care should<br />

be taken to avoid DNA damage with UV light. Minimize the<br />

UV exposure to a few seconds or keep the gel on a glass<br />

or plastic plate during UV illumination. Alternatively, visible<br />

dyes can be included in standard agarose gels to visualize<br />

DNA bands in ambient light (1, 2).<br />

** Ammonium acetate is recommended rather than other<br />

salts to avoid co-precipitation of oligosaccharides with<br />

DNA.<br />

<br />

<br />

therefore use 3 M Sodium Acetate, #R1181, (0.3 M final<br />

concentration) if T4 Polynucleotide Kinase will be used in<br />

downstream applications.<br />

<br />

to avoid mechanical shearing. After digestion with Agarase<br />

(step 6), centrifuge at maximum speed for 10 min to pellet<br />

undigested carbohydrates. Remove oligosaccharides and<br />

agarase by dialysis or carry out subsequent manipulations<br />

with DNA in the digested agarose solution.


4.5. Nucleic acid precipitation<br />

from diluted solutions with<br />

Glycogen<br />

1. Add 1/10 volume of 3 M Sodium Acetate<br />

(#R1181), 2 M sodium chloride or 5 M<br />

ammonium acetate to DNA solution.<br />

2. Add Glycogen (#R0561 for DNA or<br />

#R0551 for RNA) to a final concentration<br />

of 0.05-1 μg/μl. Use up to 1 μl of Glycogen<br />

per 20 μl of solution.<br />

3. Add 2.5 volumes of ethanol. Mix gently but<br />

thoroughly.<br />

4. Incubate for 5 min at room temperature.<br />

5. Centrifuge the mixture for 10-15 min at<br />

10,000 rpm. Discard the supernatant.<br />

6. Rinse the pellet with cold 70% ethanol. Airdry<br />

the pellet.<br />

7. DNA: Dissolve the pellet in Water, nucleasefree<br />

(#R0581) or TE buffer.<br />

RNA: Dissolve pellet in DEPC-treated Water<br />

(#R0601).<br />

4.6. Removal of template DNA<br />

after in vitro transcription<br />

1. Add 2 u of DNase I, RNase-free (#EN0521)<br />

per 1 μg of template DNA directly to the<br />

transcription reaction mixture. In some<br />

cases, the amount of enzyme should be<br />

determined empirically.<br />

2. Incubate at 37°C for 15 min.<br />

3. Inactivate DNase I by phenol/chloroform<br />

extraction.<br />

References<br />

1. Rand, K.N., Crystal Violet can be used to Visualize DNA<br />

Bands during Gel Electrophoresis and to Improve Cloning<br />

Efficiency, Elsevier Trends Journals Technical Tips Online,<br />

T40022, 1996.<br />

2. Adkins, S., Burmeister, M., Visualization of DNA in agarose<br />

gels and educational demonstrations, Anal. Biochem.,<br />

240 (1), 17-23, 1996.<br />

3. Wiame, I., et al., Irreversible heat inactivation of DNase<br />

I without RNA degradation, BioTechniques, 29,<br />

252-256, 2000.<br />

4. Wiame, I., et al., Irreversible heat inactivation of DNase<br />

I without RNA degradation, BioTechniques, 29,<br />

252-256, 2000.<br />

5. Werle, E., et al., Convenient single-step, one tube<br />

purification of PCR products for direct sequencing, Nucleic<br />

Acids Res., 22, 4354-4355, 1994.<br />

4.7. Removal of genomic DNA<br />

from RNA preparations<br />

1. Add to an RNase-free tube:<br />

RNA 1 μg<br />

10X reaction buffer with MgCl2 1 μl<br />

DNase I, RNase-free (#EN0521) 1 μl (1 u)<br />

DEPC-treated Water (#R0601) to 10 μl<br />

Total volume 10 μl<br />

2. Incubate at 37°C for 30 min.<br />

3. Add 1 μl of 50 mM EDTA and incubate at<br />

65°C for 10 min. RNA hydrolyzes when<br />

heated in the absence of a chelating agent (4).<br />

4. Use the prepared RNA as a template for<br />

reverse transcription.<br />

Note<br />

<br />

of RNA.<br />

RNase Inhibitor (#EO0381), typically at 1 u/μl,<br />

can also be included into the reaction mixture to prevent<br />

RNA degradation.<br />

<br />

RNase-free.<br />

4.8. PCR product clean-up prior<br />

to sequencing<br />

The clean-up reaction degrades unincorporated<br />

primers and nucleotides. The resulting PCR<br />

product is ready to use for sequencing without<br />

additional purification; e.g., using column<br />

purification kits.<br />

1. Prepare the following reaction mixture:<br />

PCR mixture (directly after completion of PCR) 5 μl<br />

Exonuclease I (#EN0581) 0.5 μl (10 u)<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase<br />

(#EF0651)<br />

1 μl (1 u)<br />

2. Mix well and incubate at 37°C for 15 min.<br />

3. Stop the reaction by heating the mixture at<br />

85°C for 15 min.<br />

Note<br />

<br />

DNA sequencing without further purification.<br />

<br />

specific PCR products present.<br />

<br />

generated by any thermophilic DNA polymerase or<br />

polymerase mix.<br />

<br />

cloning applications.<br />

4.9. Phenol/chloroform<br />

extraction and ethanol<br />

precipitation<br />

1. Mix sample with 0.5 volume of Trissaturated<br />

phenol and 0.5 volume of<br />

chloroform. Sample to phenol/chloroform<br />

ratio must be 1:1. Centrifuge at 10,000 rpm<br />

for 5 min at room temperature.<br />

2. Transfer the upper aqueous phase to a fresh<br />

tube. Add an equal volume of chloroform<br />

and mix. Centrifuge at 10,000 rpm for<br />

5 min at room temperature. Repeat.<br />

3. Transfer the upper aqueous phase to<br />

a fresh tube. Add 1/10 the volume of<br />

3 M Sodium Acetate Solution (#R1181)<br />

or 2 M sodium chloride.<br />

4. Add 2.5 volumes of ethanol or an equal<br />

volume of isopropanol to precipitate DNA.<br />

5. Incubate the mixture for 30 min at -20°C.<br />

6. Centrifuge for 10 min at 10,000 rpm. Then<br />

discard the supernatant and rinse the pellet<br />

with 70% cold ethanol.<br />

7. Air-dry the pellet. Dissolve in Water,<br />

nuclease-free (#R0581) or TE buffer.<br />

Note<br />

Use Glycogen (#R0561) to maximize the yield of DNA during<br />

precipitation (see protocol above).<br />

www.thermoscientific.com/onebio 323


324<br />

The PyMOL <strong>Molecular</strong> Graphics System, Version 1.5.0.4 Schrödinger, LLC.<br />

www.thermoscientific.com/onebio


<strong>Thermo</strong> <strong>Scientific</strong> in vitro<br />

Transcription Products<br />

Selection Guide ................................................................................................... 326<br />

Products .............................................................................................................. 328<br />

TranscriptAid T7 High Yield Transcription Kit ........................................................... 328<br />

Replicator RNAi Kit ......................................................................................................329<br />

T7 RNA Polymerase .....................................................................................................330<br />

T3 RNA Polymerase and SP6 RNA Polymerase .......................................................... 331<br />

Phi6 RNA Replicase......................................................................................................332<br />

Related Products by Application ........................................................................ 333<br />

Protocols and Recommendations ...................................................................... 335<br />

5.1. DNA template preparation for in vitro transcription ......................................................335<br />

5.2. Avoiding RNase contamination ..................................................................................335<br />

5.3. In vitro transcription ..................................................................................................335<br />

5.4. Synthesis of radiolabeled RNA probes of high specific activity .....................................335<br />

5.5. Purification of RNA transcripts ..................................................................................336<br />

5.6. Evaluation of transcription reaction products ..............................................................336<br />

Troubleshooting Guide ........................................................................................ 337<br />

www.thermoscientific.com/onebio 325


326<br />

Selection Guide<br />

Applications Procedures Products to use Cat. # Page<br />

Generation of template<br />

DNA for in vitro transcription<br />

High yield in vitro<br />

transcription up to 200 μg<br />

RNA per 20 μl reaction<br />

Conventional<br />

in vitro transcription<br />

>10 μg RNA<br />

per 20 μl reaction<br />

RNA amplification<br />

www.thermoscientific.com/onebio<br />

Cloning into vectors containing<br />

an RNA polymerase promoter<br />

Generation of PCR products<br />

Plasmid purification<br />

Linearization of plasmid DNA<br />

Blunting of 3’-overhangs<br />

Unlabeled RNA and<br />

high specificity non-radiolabeled<br />

RNA probes<br />

Unlabeled RNA and<br />

high specificity radiolabeled RNA probes<br />

First strand cDNA synthesis<br />

CloneJET PCR Cloning Kit (T7 promoter) K1231/2 279<br />

InsTAclone PCR Cloning Kit* (T7 promoter) K1213/4 281<br />

pTZ19R (T7 promoter) SD0141 445<br />

FastDigest Restriction Enzymes FDXXXX 2<br />

Conventional Restriction Enzymes ERXXXX 77<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase EF0651/2/4 242<br />

Rapid DNA Ligation Kit K1422/3 288<br />

T4 DNA Ligase EL0014 239<br />

See complete portfolio for <strong>Thermo</strong> <strong>Scientific</strong> PCR and RT-PCR products<br />

at www.thermoscientific.com/pcr<br />

GeneJET Plasmid Miniprep Kit K0502/3 304<br />

GeneJET Plasmid Midiprep Kit K0481/2 305<br />

GeneJET Plasmid Maxiprep Kit K0491/2 306<br />

FastDigest Restriction Enzymes FDXXXX 2<br />

Conventional Restriction Enzymes ERXXXX 77<br />

T4 DNA Polymerase EP0061/2 249<br />

dNTP Mix, 2 mM each R0241/2 408<br />

TranscriptAid T7 High Yield Transcription Kit K0441 328<br />

Aminoallyl-UTP, 50 mM R1091 414<br />

Pyrophosphatase, Inorganic EF0221 272<br />

T7 RNA Polymerase EP0111/2/3 330<br />

T3 RNA Polymerase EP0101/2/3 331<br />

SP6 RNA Polymerase EP0131/3 331<br />

Pyrophosphatase, Inorganic EF0221 272<br />

RiboLock RNase Inhibitor EO0381/2/4 271<br />

NTP Set, 100 mM R0481 411<br />

ATP, 100 mM R0441 411<br />

GTP, 100 mM R0461 412<br />

CTP, 100 mM R0451 412<br />

UTP, 100 mM R0471 412<br />

DEPC-treated Water R0601/3 420<br />

See complete portfolio for <strong>Thermo</strong> <strong>Scientific</strong> PCR and RT-PCR products<br />

at www.thermoscientific.com/pcr<br />

RiboLock RNase Inhibitor EO0381/2 271<br />

dNTP Mix, 10 mM each R0191/2/3 408<br />

DEPC-treated Water R0601/3 420<br />

Second strand cDNA synthesis<br />

DNA Polymerase I<br />

RNase H<br />

EP0041/2<br />

EN0201/2<br />

246<br />

266<br />

High yield in vitro transcription TranscriptAid T7 High Yield Transcription Kit K0441 328<br />

* not available in USA. (continued on next page)


Applications Products to use Cat. # Page<br />

Complete kit for production of dsRNA from<br />

any target DNA template<br />

Replicator RNAi Kit F-610 329<br />

Generation of ssRNA from DNA template<br />

See complete portfolio for <strong>Thermo</strong> <strong>Scientific</strong> PCR and RT-PCR products<br />

at www.thermoscientific.com/pcr<br />

ds RNA Synthesis<br />

T7 RNA Polymerase EP0111/2/3 330<br />

Synthesis of complementary RNA strand<br />

from the 3’ terminus of a ssRNA<br />

Phi6 RNA Replicase F-611S/L 332<br />

Cleavage of dsRNA to small interfering<br />

RNA (siRNA)<br />

PowerCut Dicer F-602S/L 267<br />

Labeling of RNA See chapter <strong>Molecular</strong> Labeling & Detection<br />

Removal of template DNA<br />

Precipitation of RNA<br />

Analysis of RNA<br />

RNA standards<br />

Agarose<br />

Blotting and detection Biotin detection<br />

DNase I, RNase-free EN0521/3/5 255<br />

0.5 M EDTA, pH 8.0 R1021 421<br />

3 M Sodium Acetate Solution, pH 5.2 R1181 421<br />

Glycogen, RNA grade R0551 423<br />

RiboRuler Low Range RNA Ladder SM1831<br />

RiboRuler Low Range RNA Ladder, ready-to-use<br />

RiboRuler High Range RNA Ladder<br />

SM1833<br />

SM1821<br />

386<br />

RiboRuler High Range RNA Ladder, ready-to-use SM1823<br />

Phi6 dsRNA F-630 387<br />

TopVision Agarose R0491/2<br />

TopVision Low Melting Point Agarose R0801<br />

Electrophoresis buffers<br />

10X TBE Buffer<br />

50X TAE Buffer<br />

B52<br />

B49<br />

371<br />

Loading dye solution 2X RNA Loading Dye R0641 388<br />

Biotin Chromogenic Detection Kit K0661 345<br />

BCIP-T<br />

NBT<br />

R0821/2<br />

R0841/2<br />

426<br />

427<br />

www.thermoscientific.com/onebio 327


328<br />

Products<br />

TranscriptAid T7 High Yield Transcription Kit<br />

#K0441 for 50 rxns (of 20 μl)<br />

Related Products<br />

CloneJET PCR Cloning Kit p.279<br />

PCR Cloning Kit p.281<br />

pTZ19R DNA p.292<br />

Rapid DNA Ligation Kit p.288<br />

Aminoallyl-UTP p.414<br />

NTP Set p.411<br />

RiboLock <br />

<br />

<br />

RiboRuler RNA Ladders p.386<br />

2X RNA Loading Dye p.388<br />

TopVision Agarose p.427<br />

T4 RNA Ligase p.240<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

FastAP <strong>Thermo</strong>sensitive<br />

Alkaline Phosphatase p.242<br />

Water, nuclease-free p.420<br />

μg of RNA<br />

250<br />

200<br />

150<br />

100<br />

6000 b<br />

1000 b<br />

50<br />

500 b<br />

0<br />

0 30 min 1 h 2 h 4 h<br />

Time course of RNA synthesis.<br />

500 b, 1000 b and 6000 b RNA transcripts<br />

were generated with TranscriptAid T7 High Yield<br />

Transcription Kit. 1 μg of DNA template was used in<br />

20 μl reactions. Yields of RNA were determined at<br />

different transcription reaction time points using an<br />

Agilent 2100 Bioanalyzer.<br />

www.thermoscientific.com/onebio<br />

Time<br />

Protocols and Recommendations<br />

» 5.1. DNA template preparation for in vitro<br />

transcription p.335<br />

» 5.2. Avoiding RNase contamination p.335<br />

» 5.5. Purification of RNA transcripts p.336<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> TranscriptAid T7 High<br />

Yield Transcription Kit is designed for high<br />

yield in vitro transcription from DNA templates<br />

containing a T7 RNA Polymerase promoter,<br />

including linearized plasmids or PCR products.<br />

The kit contains reagents for 50 reactions of<br />

20 μl. Each reaction yields up to 200 μg RNA<br />

from 1 μg of template in 2 hours. The reaction<br />

can be scaled up to produce milligram amounts<br />

of full-length RNA.<br />

The kit can be used to produce both long and<br />

short transcripts for applications that require<br />

large yields of RNA. All necessary reagents<br />

for transcription are included, as well as the<br />

<strong>Thermo</strong> <strong>Scientific</strong> RiboRuler High Range RNA<br />

Ladder for sizing and quantification.<br />

Features<br />

Exceptionally high yields – up to 200 μg<br />

in 2 hours.<br />

Versatile – ideal for both short and long RNA<br />

transcripts.<br />

Milligram amounts of RNA in a single,<br />

scaled-up reaction.<br />

Flexible – generates unlabeled, labeled or<br />

capped RNA.<br />

RiboRuler RNA Ladder supplied with kit for<br />

sizing and quantification.<br />

μg of RNA<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100 b<br />

50 b<br />

0 2 4<br />

Time, hours<br />

6<br />

Time course of short RNA synthesis.<br />

50 b and 100 b RNA transcripts were generated with<br />

TranscriptAid T7 High Yield Transcription Kit in 0-8<br />

hour reaction times. RNA yield was evaluated with the<br />

Agilent 2100 Bioanalyzer.<br />

8<br />

Applications<br />

In vitro transcription.<br />

In vitro translation.<br />

Generation of hybridization probes for:<br />

– microarrays,<br />

– in situ hybridization,<br />

– blotting.<br />

RNase protection assays.<br />

RNA binding protein assays.<br />

Antisense RNA and RNAi.<br />

RNA amplification.<br />

Microinjection studies.<br />

Components of the Kit<br />

Enzyme Mix<br />

Reaction Buffer<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

DEPC-treated Water<br />

<br />

High Range RNA Ladder,<br />

ready-to-use<br />

<br />

<br />

<strong>Thermo</strong> <strong>Scientific</strong> vendor A vendor B<br />

M 1 2 3 4 5 6 7 8 9 M<br />

High yield of full length RNA transcripts.<br />

500 b, 1000 b and 6000 b RNA transcripts were<br />

generated using high yield in vitro transcription<br />

reactions containing 1 μg of DNA template. Each<br />

20 μl reaction was incubated for 2 hours at 37°C. The<br />

transcription products were diluted 80-fold and 6 μl<br />

was run on a 1% agarose/TAE gel supplemented with<br />

0.5 μg/ml ethidium bromide.<br />

M – RiboRuler High Range RNA Ladder,<br />

ready-to-use (#SM1823).<br />

1, 4, 7 – 500 b RNA transcripts.<br />

2, 5, 8 – 1000 b RNA transcripts.<br />

3, 6, 9 – 6000 b RNA transcripts.


Replicator RNAi Kit<br />

#F-610 for 40 rxns (of 50 μl)<br />

Related Products<br />

<br />

NTP Set p.411<br />

dNTPs p.408<br />

DEPC-treated Water p.420<br />

T7 RNA Polymerase p.330<br />

<br />

<br />

TopVision Agarose p.427<br />

PowerCut Dicer p.267<br />

References<br />

1. Makeyev, E.V., Bamford, D.H., Replicase activity of<br />

purified recombinant protein P2 of double-stranded RNA<br />

bacteriophage 6, EMBO J., 19, 124-133, 2000.<br />

2. Makeyev, E.V., Bamford, D.H., The polymerase subunit of<br />

a dsRNA virus plays a central role in the regulation of viral<br />

RNA metabolism, EMBO J., 19, 6275-6284, 2000.<br />

3. Laurila, M.R.L. et al., Bacteriophage 6 RNA-dependent<br />

RNA Polymerase, J. Biol. Chem., 277,<br />

17117-17124, 2002.<br />

4. Calegari, F. et al., Tissue-specific RNA interference in<br />

postimplantation mouse embryos with endoribonucleaseprepared<br />

short interfering RNA, Proc. Natl. Acad. Sci. USA,<br />

99, 14236-14240, 2002.<br />

5. Myers, J.W. et al., Recombinant dicer efficiently converts<br />

large dsRNAs into siRNAs suitable for gene silencing, Nat.<br />

Biotechnol., 21, 324-328, 2003.<br />

6. Yang D. et al., Short RNA duplexes produced by hydrolysis<br />

<br />

interference in mammalian cells, Proc. Natl. Acad. Sci.<br />

USA, 99, 9942-9947, 2002.<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Replicator RNAi Kit<br />

is a complete kit for producing milligram<br />

quantities of double-stranded RNA. Perfectly<br />

duplexed RNA produced with this kit can be<br />

further processed into siRNA which is the key<br />

component in RNAi-mediated gene silencing<br />

experiments. The DNA template is created by<br />

PCR amplification using Phusion High-Fidelity<br />

DNA Polymerase to ensure the highest possible<br />

<br />

DNA-dependent RNA Polymerase transcribes<br />

single-stranded RNA copies from the DNA<br />

template molecule. Subsequently, the ssRNA<br />

molecules are directly converted to dsRNA<br />

by Phi6 RNA-dependent RNA polymerase in<br />

the same reaction mixture. One kit contains<br />

materials for producing up to 2.5 mg of pure<br />

double-stranded RNA in a<br />

2 ml reaction volume. The high yield of doublestranded<br />

RNA obtained with the system is due<br />

to a unique combination of the complementary<br />

polymerase activities in carefully optimized<br />

reaction conditions.<br />

Applications<br />

Production of double-stranded RNA in<br />

milligram quantities for gene silencing<br />

experiments based on the RNAi mechanism.<br />

Production of a dsRNA marker fragment with<br />

a specific size.<br />

Features<br />

Convenient – no RNA hybridization step in<br />

the reaction protocol.<br />

Efficient – high yields of perfectly duplexed<br />

RNA are produced.<br />

No smeared product resulting from<br />

RNA secondary structure formation or<br />

misannealing on agarose gels.<br />

dsRNA fragments up to 20 kb can be<br />

amplified.<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2 Solution<br />

<br />

<br />

M 1 2 3 4 5 M<br />

Various gene-specific dsRNA fragments generated using<br />

the <strong>Thermo</strong> <strong>Scientific</strong> Replicator RNAi Kit.<br />

PCR-amplified fragments of various sizes were used as template<br />

DNA. 0.1 μl from each reaction mixture was loaded<br />

on an agarose gel.<br />

M <br />

1 - dsRNA specific to 150bp sequence of lambda DNA<br />

2 - dsRNA specific to 210 bp sequence of Furin gene<br />

3 - dsRNA specific to 281 bp sequence of Erk1/2 kinase gene<br />

4 - dsRNA specific to 430 bp sequence of Caspase-3 gene<br />

5 - dsRNA specific to 864 bp sequence of lambda DNA<br />

www.thermoscientific.com/onebio 329


330<br />

T7 RNA Polymerase<br />

#EP0111 5000 u (20 u/μl)<br />

Supplied with:<br />

5X Transcription Buffer 1.25 ml<br />

#EP0112 5x5000 u (20 u/μl)<br />

#EP0113 HC, 25000 u (>100 u/μl)<br />

Both Supplied with:<br />

5X Transcription Buffer 5x1.25 ml<br />

Related Products<br />

TranscriptAid T7 High Yield Transcription Kit p.328<br />

RiboLock <br />

<br />

RiboRuler RNA Ladders p.386<br />

NTP Set p.411<br />

Aminoallyl-UTP p.414<br />

<br />

Glycogen, RNA grade p.423<br />

Agarase p.319<br />

0.5 M EDTA, pH 8.0 p.421<br />

DEPC-treated Water p.420<br />

Protocols and Recommendations<br />

» 5.1. DNA template preparation for in vitro<br />

transcription p.335<br />

» 5.3. In vitro transcription p.335<br />

» 5.4. Synthesis of radiolabeled RNA probes<br />

of high specific activity p.335<br />

www.thermoscientific.com/onebio<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> T7 RNA Polymerase is<br />

a DNA-dependent RNA polymerase with strict<br />

specificity for its respective double-stranded<br />

promoter. The enzyme catalyzes the 5’3’<br />

synthesis of RNA on either single-stranded DNA<br />

or double-stranded DNA downstream from the<br />

promoter.<br />

Feature<br />

modified nucleotides (e.g.,<br />

aminoallyl-, biotin-, fluorescein-, digoxigeninlabeled<br />

nucleotides).<br />

Applications<br />

Synthesis of unlabeled and labeled RNA that<br />

can be used:<br />

– for hybridization (1), in vitro RNA<br />

translation (2);<br />

– as antisense RNA (3), siRNA (4), substrate<br />

in RNase protection assays (5) and<br />

template for genomic DNA sequencing (6);<br />

– in studies of RNA secondary structure<br />

and RNA-protein interactions (7),<br />

RNA splicing (8).<br />

Source<br />

E.coli cells with a cloned gene encoding the<br />

T7 RNA Polymerase.<br />

<strong>Molecular</strong> Weight<br />

99 kDa monomer.<br />

Concentration<br />

20 u/μl<br />

>100 u/μl, HC<br />

Definition of Activity Unit<br />

One unit of the enzyme incorporates 1 nmol of<br />

AMP into a polynucleotide fraction (adsorbed on<br />

DE-81) in 60 minutes at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 40 mM Tris-HCl (pH 8.0), 6 mM MgCl2, 10 mM DTT, 2 mM spermidine, 0.5 mM of each<br />

NTP, 0.6 MBq/ml [ 3H]-ATP, 20 μg/ml plasmid<br />

DNA containing the T7 promoter sequence.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

50 mM Tris-HCl (pH 8.0), 150 mM NaCl,<br />

5 mM DTT, 0.1 mg/ml BSA,<br />

0.03% (v/v) ELUGENT Detergent, 50% (v/v)<br />

glycerol.<br />

5X Transcription Buffer<br />

200 mM Tris-HCl (pH 7.9 at 25°C), 30 mM MgCl2, 50 mM DTT, 50 mM NaCl, 10 mM spermidine.<br />

Inhibition and Inactivation<br />

<br />

reduced by 50% at NaCl or KCl concentration<br />

above 150 mM.<br />

y heating at 70°C for 10 min or<br />

by addition of EDTA.<br />

Note<br />

<br />

-15 -10 -5 +1 +5<br />

T7 TAATACGACTCACTATAGGGAGA<br />

Position +1 indicates the first nucleotide<br />

incorporated into RNA during transcription.<br />

Only bases at positions +1 through +3 are<br />

critical for transcription, and they must be<br />

a G and 2 purine bases, respectively (9).<br />

References<br />

1. Melton, D.A., et al., Efficient in vitro synthesis of biologically<br />

active RNA and RNA hybridization probes from plasmids<br />

containing a bacteriophage SP6 promoter, Nucleic<br />

Acids Res.,12, 7035-7056, 1984.<br />

2. Krieg, P.A., Melton, D.A., Functional messenger RNAs are<br />

produced by SP6 in vitro transcription of cloned cDNAs,<br />

Nucleic Acids Res., 12, 7057-7070, 1984.<br />

<br />

messenger RNA translation in vivo, Proc. Natl. Acad. Sci.<br />

USA, 82, 144-148, 1985.<br />

4. Bernstein, E., et al., Role for bidentate ribonuclease in the<br />

initiation step of RNA interference, Nature, 409,<br />

363-366, 2001.<br />

5. Peebles, C.L., et al., A self-splicing RNA excises an intron<br />

lariat, Cell, 44, 213-223, 1986.<br />

6. Church, G.M., Gilbert, W., Genomic sequencing, Proc. Natl.<br />

Acad. Sci. USA, 81, 1991-1995, 1984.<br />

7. Witherell, G.W., et al., Cooperative binding of R17 coat<br />

protein to RNA, Biochemistry, 29, 11051-11057, 1990.<br />

8. Krainer, A.R., et al., Normal and mutant human -globin<br />

pre-mRNAs are faithfully and efficiently spliced in vitro,<br />

Cell, 36, 993-1005, 1984.<br />

9. Jorgensen, E.D., et al., Specific contacts between the<br />

bacteriophage T3, T7, and SP6 RNA polymerases and<br />

their promoters, J. Biol. Chem., 266, 645-651, 1991.


T3 RNA Polymerase and SP6 RNA Polymerase<br />

T3 RNA Polymerase<br />

#EP0101 2000 u (20 u/μl)<br />

Supplied with:<br />

5X Transcription Buffer 0.5 ml<br />

#EP0102 10000 u (20 u/μl)<br />

#EP0103 HC, 10000 u (>100 u/μl)<br />

Both supplied with:<br />

5X Transcription Buffer 2x1.25 ml<br />

SP6 RNA Polymerase<br />

#EP0131 2000 u (20 u/μl)<br />

Supplied with:<br />

5X Transcription Buffer 0.5 ml<br />

#EP0133 HC, 5000 u (>100 u/μl)<br />

Supplied with:<br />

5X Transcription Buffer 1.25 ml<br />

Related Products<br />

RiboLock <br />

<br />

RiboRuler RNA Ladders p.386<br />

NTP Set p.411<br />

Aminoallyl-UTP p.414<br />

<br />

Glycogen, RNA grade p.423<br />

Agarase p.319<br />

0.5 M EDTA, pH 8.0 p.421<br />

DEPC-treated Water p.420<br />

References<br />

1. Melton, D.A., et al., Efficient in vitro synthesis of<br />

biologically active RNA and RNA hybridization probes<br />

from plasmids containing a bacteriophage SP6 promoter,<br />

Nucleic Acids Res.,12, 7035-7056, 1984.<br />

2. Krieg, P.A., Melton, D.A., Functional messenger RNAs are<br />

produced by SP6 in vitro transcription of cloned cDNAs,<br />

Nucleic Acids Res., 12, 7057-7070, 1984.<br />

<br />

messenger RNA translation in vivo, Proc. Natl. Acad. Sci.<br />

USA, 82, 144-148, 1985.<br />

4. Bernstein, E., et al., Role for bidentate ribonuclease in the<br />

initiation step of RNA interference, Nature, 409,<br />

363-366, 2001.<br />

5. Peebles, C.L., et al., A self-splicing RNA excises an intron<br />

lariat, Cell, 44, 213-223, 1986.<br />

6. Church, G.M., Gilbert, W., Genomic sequencing, Proc. Natl.<br />

Acad. Sci. USA, 81, 1991-1995, 1984.<br />

7. Witherell, G.W., et al., Cooperative binding of R17 coat<br />

protein to RNA, Biochemistry, 29, 11051-11057, 1990.<br />

8. Krainer, A.R., et al., Normal and mutant human -globin<br />

pre-mRNAs are faithfully and efficiently spliced in vitro,<br />

Cell, 36, 993-1005, 1984.<br />

9. Jorgensen, E.D., et al., Specific contacts between the<br />

bacteriophage T3, T7, and SP6 RNA polymerases and<br />

their promoters, J. Biol. Chem., 266, 645-651, 1991.<br />

Description<br />

<strong>Thermo</strong> <strong>Scientific</strong> T3 RNA and SP6 RNA<br />

Polymerases are DNA dependent RNA<br />

polymerases with strict specificity for their<br />

respective double-stranded promoters.The<br />

enzymes catalyze the 5’3’ synthesis of RNA<br />

on either single-stranded DNA or doublestranded<br />

DNA downstream from the promoter.<br />

Features<br />

<br />

(e.g., minoallyl-, biotin-, fluorescein-,<br />

digoxigeninlabeled nucleotides).<br />

Applications<br />

Synthesis of unlabeled and labeled RNA that<br />

can be used:<br />

– for hybridization (1), in vitro RNA<br />

translation (2);<br />

– as aRNA (3), siRNA (4), substrate in RNase<br />

protection assays (5) and template for<br />

genomic DNA sequencing (6);<br />

– in studies of RNA secondary structure<br />

and RNA-protein interactions (7), RNA<br />

splicing (8).<br />

Source<br />

E.coli cells with a cloned gene encoding the<br />

T3 RNA Polymerase or SP6 RNA Polymerase.<br />

<strong>Molecular</strong> Weight<br />

T3 RNA Polymerase – 99 kDa monomer.<br />

SP6 RNA Polymerase – 99 kDa monomer.<br />

Concentration<br />

20 u/μl<br />

>100 u/μl, HC<br />

Definition of Activity Unit<br />

One unit of the enzyme incorporates 1 nmol of<br />

AMP into a polynucleotide fraction (adsorbed on<br />

DE-81) in 60 minutes at 37°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 40 mM Tris-HCl (pH 8.0), 6 mM MgCl2, 10 mM DTT, 2 mM spermidine, 0.5 mM<br />

of each NTP, 0.6 MBq/ml [ 3H]-ATP, 20 μg/ml<br />

plasmid DNA containing the T3 or SP6<br />

promoter sequence.<br />

Storage Buffer<br />

The enzymes are supplied in:<br />

50 mM Tris-HCl (pH 8.0), 150 mM NaCl,<br />

5 mM DTT, 0.1 mg/ml BSA,<br />

0.03% (v/v) ELUGENT Detergent,<br />

50% (v/v) glycerol.<br />

5X Transcription Buffer<br />

200 mM Tris-HCl (pH 7.9 at 25°C),<br />

30 mM MgCl2, 50 mM DTT, 50 mM NaCl,<br />

10 mM spermidine.<br />

Inhibition and Inactivation<br />

<br />

reduced by 50% at NaCl or KCl concentration<br />

above 250 mM (for T3 RNA Polymerase) or<br />

above 150 mM (for SP6 RNA Polymerase).<br />

<br />

by addition of EDTA.<br />

Note<br />

<br />

-15 -10 -5 +1 +5<br />

T3 AATTAACCCTCACTAAAGGGAGA<br />

SP6 ATTTAGGTGACACTATAGAAGNG<br />

Position +1 indicates the first nucleotide<br />

incorporated into RNA during transcription.<br />

Only bases at positions +1 through +3 are<br />

critical for transcription, and they must be<br />

a G and 2 purine bases, respectively (9).<br />

Protocols and Recommendations<br />

» 5.1. DNA template preparation for in vitro<br />

transcription p.335<br />

» 5.3. In vitro transcription p.335<br />

» 5.4. Synthesis of radiolabeled RNA probes<br />

of high specific activity p.335<br />

www.thermoscientific.com/onebio 331


332<br />

Phi6 RNA Replicase<br />

#F-611S<br />

Supplied with:<br />

60 u (1 u/μl)<br />

10x Reaction Buffer 1.5 ml<br />

50 mM MnCl2 500 μl<br />

#F-611L<br />

Supplied with:<br />

300 u (1 u/μl)<br />

10x Reaction Buffer 1.5 ml<br />

50 mM MnCl2 500 μl<br />

Related Products<br />

<br />

NTP Set p.411<br />

DEPC-treated Water p.420<br />

T7 RNA Polymerase p.330<br />

<br />

<br />

Replicator RNAi Kit p.329<br />

www.thermoscientific.com/onebio<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Phi6 RNA Replicase<br />

is a modified version of the protein P2 from<br />

bacteriophage Phi6. This RNA-dependent<br />

RNA polymerase catalyzes the synthesis of a<br />

full-length complementary RNA strand initiating<br />

from the 3’ terminus of a single-stranded<br />

RNA. The polymerase does not require any<br />

oligonucleotide primer for the initiation. Due to<br />

a unique modification, the Phi6 RNA Replicase<br />

displays relatively low template specificity and<br />

is therefore capable of replicating a wide variety<br />

of RNA templates, as well as denatured DNA<br />

which contains a recognition sequence for the<br />

Phi6 RNA Replicase at its 3’ terminus.<br />

Applications<br />

Replication of ssRNA to dsRNA form.<br />

Source<br />

E.coli cells with a cloned gene of modified<br />

version of protein P2 from bacteriophage6.<br />

<strong>Molecular</strong> Weight<br />

75 kDa<br />

Concentration<br />

1 u/μl<br />

Definition of Activity Unit<br />

One unit of the enzyme catalyzes the<br />

incorporation of 1 nmole of UTP into<br />

an acid-insoluble polynucleotide fraction in<br />

20 minutes at 32°C.<br />

Enzyme activity is assayed in the following<br />

mixture: 50 mM Tris-acetate (pH 8.75 at 21°C),<br />

50 mM NH4-acetate, 1.5 mM MnCl2, 10 % DMSO, 1 mM UTP; 1 μg poly (rA) and<br />

1 μCi 3H-UTP per 30 μl reaction volume.<br />

Storage Buffer<br />

The enzyme is supplied in:<br />

50 mM Tris-HCl (pH 8.0 at 25°C),<br />

0.1 mM EDTA, 100 mM NaCl,<br />

0.1 % Triton X-100 and 50 % glycerol.<br />

10X Reaction Buffer<br />

500 mM Tris-acetate (pH 8.75 at 21°C),<br />

500 mM NH4-acetate. Inhibition and Activation<br />

<br />

References<br />

1. Makeyev, E.V., Bamford, D.H., Replicase activity of<br />

purified recombinant protein P2 of double-stranded RNA<br />

bacteriophage 6, EMBO J., 19, 124-133, 2000.<br />

2. Makeyev, E.V., Bamford, D.H., The polymerase subunit of<br />

a dsRNA virus plays a central role in the regulation of viral<br />

RNA metabolism, EMBO J., 19, 6275-6284, 2000.<br />

3. Laurila, M.R.L. et al., Bacteriophage 6 RNA-dependent<br />

RNA polymerase, J. Biol. Chem., 277,<br />

17117-17124, 2002.


Related Products by Application<br />

Ribonuclease inhibition Cat. # Size Applications Page<br />

RiboLock RNase Inhibitor, 40 u/μl<br />

Transcription enhancement Cat. # Size Supplied with Applications Page<br />

Pyrophosphatase, Inorganic*,<br />

(from yeast), 0.1 u/μl<br />

EO0381 2500 u<br />

EO0382 4x2500 u<br />

EO0384 24x2500 u<br />

EF0221 10 u Storage (Dilution) buffer 1 ml<br />

* Use of this product in certain applications may be covered by patents and may require a license.<br />

in vitro<br />

transcription reactions by<br />

reducing the inhibitory effect of<br />

pyrophosphates.<br />

RNA ligation Cat. # Size Supplied with Applications Page<br />

T4 RNA Ligase, 10 u/μl EL0021 1000 u<br />

<br />

to 55°C under a wide range of reaction conditions.<br />

Protocols and Recommendations<br />

» 5.3. In vitro transcription<br />

» 5.4. Synthesis of radiolabeled RNA probes of high specific activity<br />

RNA transcript clean-up Cat. # Size Supplied with Applications Page<br />

DNase I, RNase-free, 1 u/μl EN0521 1000 u<br />

DNase I, RNase-free, 1 u/μl EN0525 1000 u<br />

DNase I, RNase-free, 50 u/μl EN0523 HC, 1000 u<br />

Agarase, 0.5 u/μl EO0461 100 u –<br />

RNA transcript sizing<br />

and quantification<br />

RiboRuler Low Range RNA Ladder SM1831 5x20 μl<br />

RiboRuler Low Range RNA Ladder,<br />

ready-to-use<br />

SM1833 5x40 μl<br />

RiboRuler High Range RNA Ladder SM1821 5x20 μl<br />

RiboRuler High Range RNA Ladder,<br />

ready-to-use<br />

SM1823 5x40 μl<br />

10X Reaction buffer with MgCl 2 1 ml<br />

25 mM EDTA 1 ml<br />

10X Reaction buffer with MgCl2 1 ml<br />

10X Reaction buffer w/o MnCl2 1 ml<br />

100 mM MnCl 2<br />

1 ml<br />

25 mM EDTA 1 ml<br />

10X Reaction buffer with MgCl 2 1 ml<br />

25 mM EDTA 1 ml<br />

10X Reaction buffer 0.2 ml<br />

10 mM ATP solution 0.2 ml<br />

1 mg/ml BSA solution 0.2 ml<br />

in<br />

vitro transcription reactions.<br />

<br />

low melting point (LM) agarose gels.<br />

<br />

RNA 3’-end labeling with cytidine<br />

3’, 5’-bis [- 32 P] phosphate.<br />

271<br />

p.335<br />

p.335<br />

Protocols and Recommendations<br />

» 4.6. Removal of template DNA after in vitro transcription p.323<br />

Cat. # Size Supplied with Applications Page<br />

2X RNA Loading Dye 1 ml<br />

<br />

native or denaturing gels.<br />

<br />

Protocols and Recommendations<br />

» 8.1. General recommendations for RNA electrophoresis p.390<br />

» 8.2. Preparation of RNA ladders for electrophoresis p.390<br />

272<br />

255<br />

319<br />

240<br />

386<br />

www.thermoscientific.com/onebio 333


334<br />

Nucleotides Cat. # Size Applications Page<br />

NTP Set, 100 mM R0481 4x25 μmol<br />

411<br />

ATP, 100 mM<br />

CTP, 100 mM<br />

GTP, 100 mM<br />

R0441<br />

R0451<br />

R0461<br />

25 μmol<br />

25 μmol<br />

25 μmol<br />

In vitro transcription.<br />

<br />

<br />

<br />

411<br />

412<br />

412<br />

UTP, 100 mM R0471 25 μmol 412<br />

Aminoallyl-UTP, 50 mM R1091 2.5 μmol<br />

Reaction setup and termination Cat. # Size Applications Page<br />

Water, nuclease-free<br />

DEPC-treated Water<br />

R0581<br />

R0582<br />

R0603<br />

R0601<br />

5x1 ml<br />

30 ml<br />

5x1 ml<br />

30 ml<br />

<br />

420<br />

420<br />

0.5 M EDTA, pH 8.0 R1021 5x1 ml 421<br />

RNA electrophoresis Cat. # Size Applications Page<br />

2X RNA Loading Dye R0641 1 ml 388<br />

50X TAE Buffer B49 1 litre <br />

10X TBE Buffer B52 1 litre<br />

<br />

<br />

371<br />

TopVision Agarose<br />

TopVision Low Melting Point Agarose R0801 25 g<br />

www.thermoscientific.com/onebio<br />

in vitro<br />

transcription.<br />

RNA precipitation Cat. # Size Applications Page<br />

Glycogen, RNA grade R0551 2x0.1 ml 423<br />

3 M Sodium Acetate Solution, pH 5.2 R1181 1 ml 421<br />

Protocols and Recommendations<br />

» 5.5. Purification of RNA transcripts p.336<br />

R0491 100 g <br />

<br />

R0492 500 g <br />

<br />

<br />

<br />

Protocols and Recommendations<br />

» 8.1. General recommendations for RNA electrophoresis p.390<br />

» 5.6. Evaluation of transcription reaction products p.336<br />

414<br />

427


Protocols and Recommendations<br />

5.1. DNA template preparation<br />

for in vitro transcription<br />

Double-stranded linear DNA with blunt or<br />

5’-protruding ends can be used as template<br />

for in vitro transcription. Linearized plasmid<br />

DNA, PCR products or cDNA can be used as<br />

templates for transcription if they contain a<br />

double-stranded RNA polymerase promoter<br />

region in the correct orientation.<br />

Consensus promoter sequences of different<br />

RNA Polymerases:<br />

-15 -10 -5 +1<br />

T7 TAATACGACTCACTATAGGG<br />

T3 AATTAACCCTCACTAAAGGG<br />

SP6 ATTTAGGTGACACTATAGAA<br />

G will be the first base (+1) of the RNA transcript<br />

The synthesis of sense or antisense RNA<br />

transcripts depends on the orientation of<br />

the promoter with respect to the target<br />

sequence. The target sequence must be<br />

placed downstream of the promoter for sense<br />

RNA and must be inverted for antisense RNA<br />

transcription.<br />

Plasmid Templates<br />

Quality<br />

Plasmid DNA quality affects transcription<br />

yield and the integrity of synthesized RNA.<br />

The greatest transcription yields are achieved<br />

with high purity plasmid templates. Plasmids<br />

purified by common laboratory methods can<br />

be used if the DNA is free of contaminating<br />

RNases, SDS, EDTA, proteins, salts* and RNA.<br />

DNA should have a A260/A280 ratio of 1.8-2.0.<br />

The GeneJET Plasmid Miniprep Kit (#K0502)<br />

generates high purity plasmid DNA suitable for<br />

transcription.<br />

* T7 and SP6 RNA Polymerases are inhibited by ~50% at<br />

NaCl or KCl concentrations above 150 mM and T3 RNA<br />

Polymerase – at above 250 mM.<br />

Linearization<br />

To produce RNA transcripts of a defined<br />

length, plasmid DNA is linearized by restriction<br />

digestion downstream of the insert. Restriction<br />

enzymes which generate blunt ends or<br />

5’-overhangs are preferred. 3’-overhangs<br />

have been reported to generate spurious<br />

transcripts (1) and should therefore be avoided.<br />

3’-overhangs can be blunted by T4 DNA<br />

Polymerase (#EP0061) prior to transcription.<br />

Due to the high processivity of RNA<br />

polymerases, circular plasmid templates<br />

generate long heterogeneous RNA transcripts<br />

in higher quantities than linear templates.<br />

Therefore, it is important to completely linearize<br />

plasmid DNA to ensure efficient synthesis<br />

of defined length transcripts. See also<br />

“Troubleshooting Guide for DNA Digestion” on<br />

<br />

gel purify the linearized DNA template prior to<br />

transcription reactions. After linearization, it is<br />

recommended to purify the DNA template using<br />

GeneJET PCR Purification Kit (#K0701) or by<br />

phenol/chloroform extraction:<br />

1. Add 1/10 volume of 3 M Sodium Acetate<br />

Solution (#R1181) to the DNA.<br />

2. Mix thoroughly.<br />

3. Extract with an equal volume of a 1:1<br />

phenol/chloroform mixture, and then twice<br />

with an equal volume of chloroform. Collect<br />

the aqueous phase and transfer to a new<br />

tube.<br />

4. Precipitate the DNA by adding 2 volumes<br />

<br />

least 30 min and collect the pellet by<br />

centrifugation.<br />

5. Remove the supernatant and rinse the pellet<br />

with 500 μl of cold 70% ethanol.<br />

6. Resuspend the DNA in 20 μl of DEPCtreated<br />

water (#R0601).<br />

PCR Templates<br />

PCR products can serve as templates for<br />

in vitro transcription. The RNA polymerase<br />

promoter must be located upstream of the<br />

sequence to be transcribed.<br />

5.2. Avoiding RNase<br />

contamination<br />

Our reagents have been tested to ensure they<br />

are endo-, exodeoxyribonuclease, ribonuclease,<br />

and phosphatase free. However, an RNasefree<br />

working environment and RNase-free<br />

solutions are also critical factors for performing<br />

successful in vitro transcription.<br />

General recommendations to avoid RNase<br />

contamination:<br />

<br />

and reagents when working with RNA.<br />

<br />

reagents to avoid contact with skin, which<br />

is a source of RNases. Change gloves<br />

frequently.<br />

<br />

<br />

purification and handling with DEPC. Add<br />

DEPC to 0.1% (v/v) final concentration;<br />

incubate overnight at room temperature and<br />

autoclave.<br />

<br />

buffer solutions. Buffers containing Tris<br />

should be prepared by dissolving Tris base<br />

in DEPC-treated water. <strong>Solutions</strong> containing<br />

DTT or nucleotides should be prepared using<br />

DEPC-treated water and be passed through a<br />

0.2 μm filter for sterilization.<br />

<br />

use and all tubes tightly closed during the<br />

transcription reaction.<br />

5.3. In vitro transcription<br />

More than 10 μg of RNA transcript can be<br />

generated per 1 μg template DNA using the<br />

following protocol. The reaction can be scaled<br />

up or down. For high yield transcription,<br />

generating up to 200 μg RNA, use the<br />

TranscriptAid T7 High Yield Transcription Kit<br />

(#K0441).<br />

<br />

briefly.<br />

<br />

<br />

temperature.<br />

1. Prepare the following reaction mixture at<br />

room temperature in the order given:<br />

5X Transcription buffer 10 μl<br />

ATP/GTP/CTP/UTP Mix, 10 mM each<br />

10 μl<br />

(2 mM final<br />

concentration)<br />

Linearized template DNA 1 μg<br />

RiboLock RNase Inhibitor (#EO0381) 1.25 μl (50 u)<br />

T7/T3/SP6 RNA Polymerase<br />

(#EP0111, #EP0101, #EP0131)<br />

1.5 μl (30 u)<br />

DEPC-treated Water (#R0601) to 50 μl<br />

Total volume 50 μl<br />

2. <br />

3. Optional: To remove template DNA add 2 μl<br />

<br />

mix and incubate at 37°C for 15 min.<br />

4. <br />

extraction.<br />

Note<br />

RNA hydrolyzes if heated in the absence of a chelating<br />

agent.<br />

5.4. Synthesis of radiolabeled<br />

RNA probes of high specific<br />

activity<br />

1. Linearize template DNA with a restriction<br />

enzyme. Extract DNA with phenol/chloroform,<br />

then with chloroform/isoamyl alcohol, and<br />

precipitate with ethanol. Dissolve DNA in<br />

DEPC-treated Water (#R0601).<br />

www.thermoscientific.com/onebio 335


336<br />

2. Combine the following reaction components<br />

at room temperature in the order given:<br />

5X Transcription buffer 4 μl<br />

3 NTP Mix, 10 mM each* (without labeled<br />

NTP)<br />

100 μM CTP (#R0451)<br />

www.thermoscientific.com/onebio<br />

1 μl<br />

(0.5 mM final<br />

concentration)<br />

2.4 μl<br />

(12 μM final<br />

concentration)<br />

[-32P]-CTP, ~30 TBq/mmol (800 Ci/mmol)<br />

1.85 MBq<br />

(50 μCi)<br />

Linear template DNA 0.2-1.0 μg<br />

RiboLock RNase Inhibitor (#EO0381) 0.4 μl (20 u)<br />

T7/T3/SP6 RNA Polymerase (#EP0111,<br />

#EP0101, #EP0131)<br />

1 μl (20 u)<br />

DEPC-treated Water (#R0601) to 20 μl<br />

Total volume 20 μl<br />

3. <br />

4. Stop the reaction by cooling at -20°C.<br />

5. Determine the percentage of the label<br />

incorporated into RNA.<br />

Note<br />

* To prepare a mix of the three non-labeled NTPs (10 mM)<br />

each, combine 1 μl of all three NTPs, 100 mM, from the set<br />

(#R0481) with 7 μl of DEPC-treated Water (#R0601). Store<br />

the mix at -20°C for further use.<br />

<br />

3-5 x108 dpm/μg RNA.<br />

32P], [ 35S] or<br />

[ 3H]-ribonucleotides. Recommended amounts<br />

of radiolabeled nucleotides in a 20 μl of<br />

reaction mixture are as follows:<br />

Radiolabeled<br />

nucleotides<br />

Amounts for 20 μl of<br />

reaction mixture<br />

5’-[- 35 S]-UTP 11.1 MBq (300 μCi)<br />

5,6-[ 3 H]-UTP 0.925 MBq (25 μCi)<br />

5’-[- 32 P]-CTP 1.85 MBq (50 μCi)<br />

5.5. Purification of RNA<br />

transcripts<br />

Specific<br />

activity<br />

>37 TBq/mmol<br />

(1000 Ci/ mmol)<br />

1.1-2.2 TBq/mmol<br />

(30-60 Ci/mmol)<br />

~30 TBq/mmol<br />

(800 Ci/mmol)<br />

Template DNA<br />

Template DNA may interfere with downstream<br />

applications of the RNA transcript. Template<br />

<br />

directly after the transcription reaction. Add 2 u<br />

<br />

incubate at 37°C for 15 min, then add 2 μl of<br />

0.5 M EDTA, pH 8.0 (#R1021) and incubate at<br />

65°C for 10 min to stop the reaction.<br />

Proteins and nucleotides<br />

Phenol/chloroform extraction and ethanol<br />

precipitation of RNA transcripts is<br />

recommended.<br />

1. To a 50 μl reaction mixture, add 85 μl of<br />

DEPC-treated water (#R0601) and 15 μl<br />

of 3 M Sodium Acetate (#R1181). Mix<br />

thoroughly.<br />

2. Extract with an equal volume of 1:1 phenol/<br />

chloroform mixture, and then twice with<br />

an equal volume of chloroform. Collect the<br />

aqueous phase and transfer to a new tube.<br />

3. Precipitate the RNA by adding 2 volumes<br />

<br />

least 30 min and collect the pellet by<br />

centrifugation.<br />

4. Remove the supernatant and rinse the pellet<br />

with 500 μl of cold 70% ethanol.<br />

5. Resuspend the RNA in 20 μl of DEPCtreated<br />

water (#R0601).<br />

6. Store the RNA at -20°C or -70°C.<br />

5.6. Evaluation of transcription<br />

reaction products<br />

Quantification by UV Light Absorbance<br />

The easiest way to determine RNA<br />

concentration is to measure UV absorbance at<br />

260 nm. Dilute an aliquot of the conventional<br />

transcription reaction 1:20 (1:300 for high yield<br />

transcription) to obtain an absorbance reading<br />

in the linear range of a spectrophotometer.<br />

For single-stranded RNA, when A260 = 1, RNA<br />

concentration is 40 μg/ml. The RNA yield can<br />

be calculated as follows:<br />

A260 x (dilution factor) x 40 = μg/ml RNA.<br />

Note<br />

Unincorporated nucleotides and template DNA in the<br />

mixture will interfere with quantification. Therefore, it<br />

is advisable to remove template and nucleotides from<br />

transcription mixture (see “Purification of RNA Transcripts”<br />

above).<br />

Sizing and Quantification by Gel<br />

Electrophoresis<br />

To evaluate transcript length, integrity and<br />

quantity, an aliquot of the transcription reaction<br />

should be run on a native or denaturing agarose<br />

gel or polyacrylamide gel along with the<br />

appropriate RNA ladder; e.g., RiboRuler High<br />

Range (#SM1821) or RiboRuler Low Range<br />

RNA Ladder (#SM1831).<br />

Transcript length Recommended gel<br />

>500 bases 1% agarose gel<br />

100-500 bases<br />

50-100 bases<br />


Troubleshooting Guide<br />

1.1<br />

Non-optimal<br />

reaction conditions<br />

1.3<br />

Insufficient yield<br />

of short transcript<br />

1.5<br />

Incorrect reaction<br />

preparation<br />

1<br />

Low yield or no<br />

RNA transcript<br />

Evaluate<br />

inhibition by<br />

template DNA<br />

1.2<br />

RNase<br />

contamination<br />

2<br />

Transcript is larger<br />

than expected<br />

Inhibition No inhibition<br />

1.4.1<br />

Reaction inhibitors<br />

in template DNA<br />

solution<br />

1.4<br />

DNA template of<br />

low purity or<br />

concentration<br />

1.4.2<br />

Insufficient<br />

amount of<br />

template<br />

Transcription problem<br />

2.1<br />

Incomplete<br />

cleavage of<br />

template DNA<br />

2.2<br />

3’-overhangs at<br />

DNA template<br />

ends<br />

2.3<br />

Aberrant<br />

migration of<br />

transcript<br />

3<br />

Transcript smearing<br />

on denaturing<br />

agarose gel<br />

3.1<br />

RNase<br />

contamination in<br />

template DNA<br />

3.2<br />

RNase<br />

contamination in<br />

environment<br />

4<br />

Truncated<br />

transcript<br />

4.1<br />

Termination<br />

signal in<br />

template DNA<br />

4.2<br />

GC-rich DNA<br />

template<br />

www.thermoscientific.com/onebio 337


338<br />

Table 5.1. Troubleshooting guide for in vitro transcription.<br />

Problem Possible cause and recommended solution<br />

1. Low yield or no RNA transcript<br />

www.thermoscientific.com/onebio<br />

1.1. Non-optimal reaction conditions.<br />

A conventional in vitro transcription reaction using stand alone RNA polymerases should produce at least<br />

10 μg of RNA transcript from 1 μg of template. For higher RNA yields (up to 200 μg), the TranscriptAid T7<br />

High Yield Transcription Kit (#K0441) should be used.<br />

<br />

increase the yield of RNA by reducing the effect of reaction inhibition by pyrophosphates.<br />

1.2. RNase contamination.<br />

Working environment, DNA template, reagents or electrophoresis systems may be contaminated with<br />

RNases.<br />

<br />

<br />

<br />

Note<br />

RiboLock <br />

Do not use electrophoresis tanks which have been previously used for plasmid DNA miniprep analysis as they may be contaminated with<br />

RNases A or T1.<br />

1.3. Insufficient yield of short transcript.<br />

High yields of short transcripts (


Table 5.1. Troubleshooting guide for in vitro transcription.<br />

Problem Possible cause and recommended solution<br />

2. Transcript is larger than<br />

expected<br />

3. Transcript smearing<br />

on denaturing agarose gel<br />

4. Truncated transcript<br />

References<br />

1. Schenborn, E.T and Mierendorf, R.C., Nucl. Acids<br />

Res.,13, 6223-6236, 1985.<br />

2. Aziz, R.B. and Soreq, H., Nucl. Acids Res., 18,<br />

3418, 1990.<br />

2.1. Incomplete cleavage of template plasmid DNA.<br />

Even small amounts of undigested circular DNA can produce large amounts of long transcripts. Check the<br />

template for complete digestion and, if required, additionally digest with the appropriate restriction enzyme<br />

(see Troubleshooting Guide for DNA Digestion on p.229). For faster and more efficient plasmid cleavage,<br />

use FastDigest <br />

2.2. 3’-overhangs at DNA template ends.<br />

Avoid plasmid linearization with restriction enzymes that generate 3’-overhangs. Alternatively, blunt<br />

3’-overhangs with T4 DNA Polymerase (#EP0061) before use in transcription. See protocol on p.295.<br />

2.3. Aberrant migration of transcript.<br />

Due to secondary structures, RNA may run aberrantly on a native gel. On a denaturing gel, these transcripts<br />

normally migrate as single bands at the expected size.<br />

3.1. RNase contamination in template DNA.<br />

During preparation, plasmid DNA templates are often contaminated with RNases. This can affect the length<br />

and yield of synthesized RNA, and is seen as a smear below the expected transcript length<br />

Plasmid Miniprep Kit (#K0502), omit the RNase A from<br />

<br />

premixed in the purification buffers, perform phenol/chloroform extraction after plasmid DNA linearization,<br />

then ethanol precipitate the DNA and dissolve in DEPC-treated water (#R0601)<br />

(see Plasmid Templates on p.335).<br />

3.2. RNase contamination in working environment.<br />

<br />

<br />

*.<br />

<br />

they may be contaminated with RNases A or T1.<br />

* RiboLock <br />

4.1. RNA polymerase recognizes a termination signal in template DNA sequence.<br />

Try another RNA polymerase system or perform the transcription reaction at a lower temperature<br />

(e.g., 30°C). This may increase the length of transcript. However, RNA yield may be decreased<br />

at lower temperatures.<br />

4.2. GC-rich DNA template (or template with high secondary structure).<br />

For templates with secondary structure, incubating at 42°C or using a single-stranded binding (SSB) protein<br />

has been reported to improve yield and transcript length (2).<br />

www.thermoscientific.com/onebio 339


340<br />

www.thermoscientific.com/onebio


<strong>Thermo</strong> <strong>Scientific</strong> <strong>Molecular</strong> Labeling &<br />

Detection Products<br />

Selection Guide ................................................................................................... 342<br />

Products .............................................................................................................. 343<br />

Biotin DecaLabel DNA Labeling Kit.............................................................................343<br />

DecaLabel DNA Labeling Kit .......................................................................................344<br />

Biotin Chromogenic Detection Kit ..............................................................................345<br />

Related Products by Application ........................................................................ 346<br />

Protocols and Recommendations ...................................................................... 349<br />

6.1. DNA/RNA end labeling ..............................................................................................349<br />

6.2. Random-primed labeling ...........................................................................................350<br />

6.3. DNA labeling by nick-translation ................................................................................350<br />

6.4. RNA labeling by in vitro transcription .........................................................................350<br />

6.5. Synthesis of labeled cDNA ........................................................................................350<br />

6.6. Southern Blotting ..................................................................................................... 351<br />

www.thermoscientific.com/onebio 341


342<br />

Selection Guide<br />

Probe type Labeling strategy Radioactive<br />

DNA<br />

RNA<br />

Oligonucleotide<br />

Product group Radioactive<br />

Modified nucleotides<br />

dNTP<br />

www.thermoscientific.com/onebio<br />

Random primed labeling<br />

Nick-translation<br />

3’-end labeling<br />

Non-<br />

Radioactive<br />

Non-<br />

Radioactive<br />

Product Cat. # Page<br />

DecaLabel DNA Labeling Kit K0621/2 344<br />

Biotin DecaLabel DNA Labeling Kit K0651/2 343<br />

Klenow Fragment, exo – EP051/2/4 248<br />

DNA Polymerase I EP0041/2 246<br />

DNase I, RNase-free EN0521/3/5 255<br />

Klenow Fragment EP0051/2/4 247<br />

T4 DNA Polymerase EP0061/2 249<br />

T7 DNA Polymerase EP0081 250<br />

Terminal Deoxynucleotidyl Transferase (TdT) EP0161/2 251<br />

5’-end labeling T4 Polynucleotide Kinase (T4 PNK) EK0031/2 243<br />

In vitro transcription<br />

TranscriptAid T7 High Yield Transcription Kit K0441 328<br />

T7 RNA Polymerase EP0111/2/3 250<br />

SP6 RNA Polymerase EP0131/3 331<br />

T3 RNA Polymerase EP0101/2/3 331<br />

3’-end labeling T4 RNA Ligase EL0021 240<br />

3’-end labeling Terminal Deoxynucleotidyl Transferase (TdT) EP0161/2 251<br />

5’-end labeling T4 Polynucleotide Kinase (T4 PNK) EK0031/2 243<br />

Product Cat. # Page<br />

Biotin-11-dUTP R0081 414<br />

Fluorescein-12-dUTP R0101 413<br />

Aminoallyl-dUTP R0091/1101 414<br />

Aminoallyl-UTP R1091 414<br />

dNTP Set R0181/2/6 408<br />

dNTP Mix, 2 mM each R0241/2 408<br />

dNTP Mix, 10 mM each R0191/2 408<br />

dNTP Mix, 25 mM each R1121/2 408<br />

NTP NTP Set R0481 411<br />

Oligo(dT) 18 Primer SO131/2 417<br />

Primers<br />

Random Hexamer Primer SO142 417<br />

Exo-Resistant Random Primer SO181 417<br />

Water<br />

<br />

<br />

<br />

<br />

Water, nuclease-free<br />

DEPC-treated Water<br />

R0581/2<br />

R0601/3<br />

420<br />

420<br />

Detection kit Biotin Chromogenic Detection Kit K0661/2 345<br />

Chromogenic substrates<br />

<br />

<br />

BCIP-T<br />

NBT<br />

R0821/2<br />

R0841/2<br />

426<br />

426


Products<br />

Biotin DecaLabel DNA Labeling Kit<br />

#K0651 for 10 rxns<br />

#K0652 for 30 rxns<br />

Related Products<br />

Biotin Chromogenic Detection Kit p.345<br />

BCIP-T p.426<br />

NBT p.426<br />

GeneJET Genomic DNA Purification Kit p.310<br />

GeneJET PCR Purification Kit p.316<br />

GeneJET Gel Extraction Kit p.317<br />

GeneJET <br />

<br />

<br />

GeneJET Plant Genomic DNA<br />

Purification Kit p.313<br />

Agarase p.319<br />

5’<br />

3’<br />

5’<br />

3’<br />

5’<br />

3’<br />

denaturation and<br />

annealing with<br />

random primers<br />

Principle of DNA labeling by the random primed<br />

method.<br />

* [-32P]-dNTP, [-33P]-dNTP, biotin-dUTP,<br />

fluorescein-, aminoallyl- or DIG-dUTP can be u sed.<br />

5’ 3’<br />

DNA template<br />

random primer<br />

labeled probe<br />

References<br />

1. Feinberg, A.P., Vogelstein, B., A technique for<br />

radiolabeling DNA restriction endonuclease fragments to<br />

high specific activity, Biochem., 132, 6-13, 1983.<br />

2. Feinberg, A.P., Vogelstein, B., A technique for<br />

radiolabeling DNA restriction endonuclease fragments to<br />

high specific activity, Addendum, Biochem., 137,<br />

266-267, 1984.<br />

3’<br />

5’<br />

3’<br />

5’<br />

Klenow Fragment, exo<br />

3’<br />

–<br />

dNTP<br />

labeled dNTP*<br />

denaturation<br />

5’<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Biotin DecaLabel DNA<br />

Labeling Kit is an advanced system for efficient<br />

synthesis of biotin-labeled DNA probes, based<br />

on an improved random-primed labeling method<br />

originally developed by Feinberg and Vogelstein<br />

(1, 2). The primary improvement over the<br />

traditional random-primed method involves the<br />

use of random decamers instead of hexamers<br />

to ensure more efficient annealing with DNA at<br />

37°C. Klenow Fragment, exo – is also included in<br />

the kit; this genetically engineered enzyme has<br />

no detectable exonuclease activity. Therefore,<br />

the enzyme does not degrade the labeled probe<br />

during the reaction, which results in a high<br />

labeling yield even with low amounts of template.<br />

As a result, DNA fragments of any length can<br />

be uniformly labeled. Biotin-labeled DNA can be<br />

detected with the Biotin Chromogenic Detection<br />

Kit (#K0661) or with conventional biotin-avidin or<br />

biotin-streptavidin detection systems.<br />

Features<br />

Non-radioactive labeling of DNA.<br />

Efficient priming of labeling reactions with<br />

random decamers.<br />

High yields with Klenow Fragment, exo – : no<br />

degradation of the labeled probe during reaction.<br />

Application<br />

Generation of biotin-labeled DNA probes<br />

for a variety of non-radioactive hybridization<br />

experiments, including Southern and Northern<br />

blots, colony/plaque hybridizations, dot/slot blots<br />

and in situ hybridizations.<br />

Principle<br />

Random decamers are annealed to a denatured<br />

template DNA molecule and new strands are<br />

synthesized by Klenow Fragment, exo – in the<br />

presence of biotin-dUTP. During this reaction,<br />

the biotinylated nucleotides are incorporated<br />

into the newly synthesized complementary DNA<br />

strand.<br />

Components of the Kit<br />

–<br />

<br />

<br />

<br />

<br />

<br />

<br />

300pg 100pg 30pg 10pg 3pg 1pg 0.3pg 0.1pg 0.03pg 0.01pg<br />

Dot-blot hybridization with a biotin-labeled probe.<br />

Lambda DNA/HindIII was biotin-labeled with the Biotin DecaLabel DNA Labeling<br />

Kit and used as a hybridization probe in a dot-blot of homologous DNA on<br />

a nylon membrane. The blot was developed using the Biotin Chromogenic<br />

Detection Kit (#K0661).<br />

Protocols and Recommendations<br />

» 6.6. Southern Blotting p.351<br />

www.thermoscientific.com/onebio 343


344<br />

DecaLabel DNA Labeling Kit<br />

#K0621 for 10 rxns<br />

#K0622 for 30 rxns<br />

Related Products<br />

Genomic DNA Purification Kit p.311<br />

GeneJET PCR Purification Kit p.316<br />

GeneJET Gel Extraction Kit p.317<br />

GeneJET <br />

<br />

<br />

GeneJET Plant Genomic DNA<br />

Purification Kit p.313<br />

GeneJET Genomic DNA Purification Kit p.310<br />

Silica Bead DNA Gel Extraction Kit p.318<br />

Agarase p.319<br />

Protocols and Recommendations<br />

» 6.6. Southern Blotting p.351<br />

www.thermoscientific.com/onebio<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> DecaLabel DNA Labeling<br />

Kit is an advanced system for fast synthesis<br />

of radiolabeled DNA probes of high specific<br />

activity. The kit is based on the improved<br />

random-primed method developed by Feinberg<br />

and Vogelstein (1, 2).<br />

The primary improvement over traditional<br />

random-primer kits involves the use of random<br />

decamers instead of hexamers to ensure<br />

more efficient annealing with DNA at 37°C.<br />

Klenow Fragment, exo – is also included in the<br />

kit; this genetically engineered enzyme has<br />

no detectable exonuclease activity. Therefore,<br />

the enzyme does not degrade the labeled<br />

probe during the reaction, which results in<br />

a high labeling yield even with low amounts<br />

of template. DNA fragments of any length<br />

can be uniformly labeled. Two labeling mixes<br />

are provided for flexibility in using either<br />

radiolabeled dATP or dCTP.<br />

Features<br />

High specific radioactivity of probes –<br />

>1x10 9 dpm/μg DNA.<br />

Fast – 5 minutes at 37°C.<br />

High yields with Klenow Fragment, exo – :<br />

no degradation of the labeled probe during<br />

reaction.<br />

Flexible – suitable for either radiolabeled<br />

dATP or dCTP.<br />

Specific radioactivity (x10 9 dpm/μg DNA)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0<br />

5<br />

10<br />

Time (min)<br />

Application<br />

Generation of radiolabeled DNA probes for use<br />

in a variety of hybridization experiments:<br />

Southern and Northern blots, colony/plaque<br />

hybridizations, dot/slot blots and in situ<br />

hybridizations.<br />

Principle<br />

Random decamers are annealed to a denatured<br />

template DNA, and radiolabeled dNTPs are then<br />

incorporated into new DNA strands by Klenow<br />

Fragment, exo – .<br />

Components of the Kit<br />

–<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

12.5 ng<br />

25 ng<br />

50 ng<br />

100 ng<br />

200 ng<br />

Effect of reaction time and amount of template on the specific radioactivity of a DNA probe.<br />

Varying amounts of DNA/HindIII fragments were labeled with 50 μCi [- 33 P]-dCTP (2500 Ci/mmol)<br />

according to the protocol supplied with the kit.<br />

15<br />

20<br />

References<br />

1. Feinberg, A.P., Vogelstein, B., A technique for<br />

radiolabeling DNA restriction endonuclease fragments<br />

to high specific activity, Biochem., 132, 6-13, 1983.<br />

2. Feinberg, A.P., Vogelstein, B., A technique for<br />

radiolabeling DNA restriction endonuclease fragments<br />

to high specific activity, Addendum, Biochem.,<br />

137, 266-267, 1984.


Biotin Chromogenic Detection Kit<br />

#K0661 for 10 rxns<br />

#K0662 for 30 rxns<br />

Related Products<br />

Biotin DecaLabel DNA Labeling Kit p.343<br />

Biotin-11-dUTP p.414<br />

NBT p.426<br />

BCIP-T p.426<br />

Color<br />

precipitate<br />

Chromogenic detection of<br />

a biotin-labeled probe.<br />

Alkaline Phosphatase<br />

Streptavidin<br />

Biotin<br />

Probe<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Biotin Chromogenic<br />

Detection Kit is a convenient tool for<br />

chromogenic detection of biotinylated nucleic<br />

acid probes. The kit is optimized to reproducibly<br />

provide high sensitivity with low background in<br />

applications such as Southern, Northern, dot<br />

and slot blotting, as well as screening of viral<br />

plaques and bacterial colonies. Biotinylation<br />

of DNA and RNA probes is widely used as a<br />

safe and convenient alternative to radioactive<br />

labeling. Biotin can be incorporated into nucleic<br />

acids using various enzymatic or non-enzymatic<br />

methods including the Biotin DecaLabel DNA<br />

Labeling Kit (#K0651). Biotinylated probes are<br />

detected with streptavidin coupled to alkaline<br />

phosphatase (AP). Streptavidin-AP conjugates<br />

bind specifically and irreversibly to the biotinlabeled<br />

probes. The probes are then visualized<br />

using a chromogenic substrate for alkaline<br />

phosphatase -BCIP/NBT, which produces a<br />

blue-purple precipitate. Therefore, visualization<br />

does not require X-ray film or other specific<br />

equipment.<br />

The Biotin Chromogenic Detection Kit includes<br />

<br />

which are specifically designed to minimize<br />

the background often associated with biotin<br />

detection in conventional systems.<br />

Target<br />

300pg 100pg 30pg 10pg 3pg 1pg 0.3pg 0.1pg 0.03pg 0.01pg<br />

Dot-blot hybridization with a biotin-labeled probe.<br />

Lambda DNA/HindIII was biotin-labeled with the Biotin DecaLabel DNA<br />

Labeling Kit (#K0651) and used as a hybridization probe in a dot-blot of the<br />

homologous DNA on the nylon membrane. The blot was developed with the Biotin<br />

Chromogenic Detection Kit.<br />

Features<br />

Highly sensitive detection – 0.03 pg of<br />

homologous DNA in dot blot hybridization<br />

with a biotin-labeled probe.<br />

Low background due to optimized washing<br />

and blocking procedures.<br />

Visualization of non-radioactive detection<br />

does not require X-ray film or other<br />

specific equipment.<br />

Fast and convenient – ready-to-use<br />

components.<br />

Applications<br />

Southern blots.<br />

Northern blots.<br />

Dot/slot blots.<br />

Plaque or colony screening.<br />

Components of the Kit<br />

<br />

<br />

<br />

<br />

<br />

<br />

Protocols and Recommendations<br />

» 6.6. Southern Blotting p.351<br />

www.thermoscientific.com/onebio 345


346<br />

Related Products by Application<br />

DNA/RNA 5’-end labeling Cat. # Size Supplied with Applications Page<br />

T4 Polynucleotide Kinase (T4 PNK),<br />

10 u/μl<br />

www.thermoscientific.com/onebio<br />

EK0031 500 u<br />

EK0032 2500 u<br />

10X Reaction Buffer A 0.4 ml<br />

10X Reaction Buffer B 0.2 ml<br />

24% PEG Solution 0.2 ml<br />

10X Reaction Buffer A 2 ml<br />

10X Reaction Buffer B 1 ml<br />

24% PEG Solution 1 ml<br />

Protocols and Recommendations<br />

» 6.1.1. DNA 5’-end labeling by T4 PNK in the exchange reaction<br />

» 6.1.2. DNA/RNA 5’-end labeling by T4 PNK in the forward reaction<br />

» 6.1.3. Radiolabeling of RNA Ladders by T4 PNK<br />

Radioactive labeling of 5’-termini of<br />

single and double-stranded DNA and<br />

RNA, such as:<br />

– DNA and RNA molecular weight<br />

markers,<br />

– sequencing primers,<br />

– PCR primers,<br />

– DNA and RNA oligonucleotides or<br />

linkers,<br />

– hybridization probes,<br />

– probes for transcript mapping.<br />

DNA 3’-end labeling by fill-in Cat. # Size Supplied with Applications Page<br />

Klenow Fragment, 10 u/μl<br />

EP0051<br />

EP0052<br />

300 u<br />

1500 u<br />

10X Reaction Buffer<br />

10X Reaction Buffer<br />

1 ml<br />

5x1 ml<br />

247<br />

Klenow Fragment, 2 u/μl EP0054 LC, 300 u 10X Reaction Buffer 1 ml DNA 3’-end labeling by fill-in of<br />

T4 DNA Polymerase, 5 u/μl<br />

EP0061<br />

EP0062<br />

100 u<br />

500 u<br />

5X Reaction Buffer<br />

5X Reaction Buffer<br />

0.35 ml<br />

2x1 ml<br />

5’-overhangs.<br />

249<br />

T7 DNA Polymerase, 10 u/μl EP0081 300 u 10X Reaction Buffer 0.4 ml 250<br />

243<br />

p.349<br />

p.349<br />

p.349<br />

Protocols and Recommendations<br />

» 6.1.4. DNA 3’-end labeling by fill-in of 5’-overhangs p.349<br />

3’-end labeling by tailing Cat. # Size Supplied with Applications Page<br />

Terminal Deoxynucleotidyl<br />

Transferase (TdT), 20 u/μl<br />

EP0161 500 u 5X Reaction Buffer 0.4 ml Oligodeoxyribonucleotide and DNA<br />

EP0162 2500 u 5X Reaction Buffer 2x1 ml 3’-termini labeling by tailing.<br />

Protocols and Recommendations<br />

» 6.1.5. DNA and oligonucleotide 3’-end labeling by tailing p.349<br />

3’-end labeling by ligation Cat. # Size Supplied with Applications Page<br />

T4 RNA Ligase, 10 u/μl EL0021 1000 u<br />

5X Reaction Buffer 0.2 ml<br />

<br />

1 mg/ml BSA Solution 0.2 ml<br />

RNA and double-stranded<br />

DNA 3’-end labeling by ligation.<br />

Protocols and Recommendations<br />

» 6.1.6. RNA 3’-end labeling by ligation p.350<br />

251<br />

240


Random-primed labeling Cat. # Size Supplied with Applications Page<br />

Klenow Fragment, 10 u/μl<br />

EP0051 300 u 10X Reaction Buffer 1 ml<br />

EP0052 1500 u 10X Reaction Buffer 5x1 ml<br />

Klenow Fragment, 2 u/μl EP0054 LC, 300 u 10X Reaction Buffer 1 ml<br />

Klenow Fragment, exo – , 5 u/μl<br />

EP0421 300 u 10X Reaction Buffer 1 ml<br />

EP0422 1500 u 10X Reaction Buffer 5x1 ml<br />

Random-primed DNA labeling.<br />

Protocols and Recommendations<br />

» 6.2. Random-primed labeling p.350<br />

Chromogenic substrates Cat. # Size Applications Page<br />

BCIP-T<br />

NBT<br />

R0821 1 g<br />

R0822 5 g<br />

R0841 1 g<br />

R0842 5 g<br />

Detection of alkaline phosphatase on Southern, Northern,<br />

dot/slot blots, plaque or colony screening.<br />

Protocols and Recommendations<br />

» 6.6. Southern Blotting p.351<br />

Nick-translation Cat. # Size Supplied with Applications Page<br />

DNA Polymerase I, 10 u/μl<br />

DNase I, RNase-free, 1 u/μl EN0521 1000 u<br />

DNase I, RNase-free, 50 u/μl EN0523 HC,1000 u<br />

DNase I, RNase-free, 1 u/μl<br />

2)<br />

EP0041 500 u 10X Reaction Buffer 1 ml<br />

EP0042 2500 u 10X Reaction Buffer 5x1 ml<br />

EN0525 1000 u<br />

2 1 ml<br />

<br />

2 1 ml<br />

2 1 ml<br />

2 1 ml<br />

<br />

DNA labeling by<br />

nick-translation.<br />

Protocols and Recommendations<br />

» 6.3. DNA labeling by nick-translation p.350<br />

247<br />

248<br />

426<br />

426<br />

246<br />

255<br />

255<br />

www.thermoscientific.com/onebio 347


348<br />

RNA labeling<br />

by in vitro transcription<br />

T7 RNA Polymerase, 20 u/μl<br />

T7 RNA Polymerase, >100 u/μl EP0113<br />

Nucleotides for labeling Cat. # Size Applications Page<br />

Biotin-11-dUTP, R0081 50 nmol (50 μl)<br />

Fluorescein-12-dUTP, R0101 25 nmol (25 μl) 413<br />

Aminoallyl-dUTP, R0091 1 μmol (100 μl)<br />

Aminoallyl-dUTP, R1101 2.5 μmol (50 μl)<br />

Aminoallyl-UTP, R1091 2.5 μmol (50 μl)<br />

dNTP Set, <br />

www.thermoscientific.com/onebio<br />

Cat. # Size Supplied with Applications Page<br />

EP0111 5000 u 5X Transcription Buffer 1.25 ml<br />

EP0112 5x5000 u<br />

HC,<br />

25000 u<br />

5X Transcription Buffer 5x1.25 ml<br />

SP6 RNA Polymerase, 20 u/μl EP0131 2000 u 5X Transcription Buffer 0.5 ml<br />

SP6 RNA Polymerase, >100 u/μl EP0133 HC, 5000 u 5X Transcription Buffer 1.25 ml<br />

T3 RNA Polymerase, 20 u/μl<br />

T3 RNA Polymerase, >100 u/μl EP0103<br />

TranscriptAid T7 High Yield<br />

Transcription Kit<br />

EP0101 2000 u 5X Transcription Buffer 0.5 ml<br />

EP0102 10000 u<br />

HC,<br />

10000 u<br />

5X Transcription Buffer 2x1.25 ml<br />

K0441 50 reactions –<br />

R0181 (4x25 μmol) 4x0.25 ml<br />

R0182 (4x100 μmol) 4x1 ml<br />

R0186 (4x500 μmol) 4x5 ml<br />

Synthesis of labeled RNA probes for:<br />

– blotting,<br />

– in situ hybridization,<br />

– microarray hybridization.<br />

Generation of non-radioactively<br />

labeled RNA probes.<br />

Protocols and Recommendations<br />

» 5.4. Synthesis of radiolabeled RNA probes of high specific activity p.335<br />

All types of enzymatic labeling.<br />

330<br />

331<br />

331<br />

328<br />

414<br />

414<br />

408


Protocols and Recommendations<br />

6.1. DNA/RNA end labeling<br />

6.1.1. DNA 5’-end labeling by T4 PNK in<br />

the exchange reaction<br />

All types of DNA ends can be successfully<br />

labeled with T4 Polynucleotide Kinase.<br />

However, the labeling efficiency is greatest for<br />

the 5’-protruding DNA ends, lower for blunt<br />

ends, and is the lowest for 5’-recessed DNA<br />

ends.<br />

This protocol is recommended for radiolabeling<br />

of DNA markers and ladders (ready-to-use<br />

versions with the loading dye pre-mixed are not<br />

suitable for labeling).<br />

1. Prepare the following reaction mixture:<br />

1-20 pmol of<br />

Linear DNA<br />

5’-termini<br />

10X reaction buffer B for T4 PNK 2 μl<br />

[-32P or -33P]-ATP 40 pmol<br />

24% (w/v) PEG 6000 solution 4 μl<br />

T4 Polynucleotide Kinase (#EK0031) 1 μl (10 u)<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

2. Incubate at 37°C for 30 min.<br />

3. <br />

incubate at 75°C for 10 min.<br />

4. Separate labeled DNA from unincorporated<br />

label by gel filtration on Sephadex G-50.<br />

Note<br />

-32P or -33P]-ATP is used,<br />

<br />

nuclease-free (#R0581).<br />

<br />

see Appendix<br />

p.465 or www.thermoscientific.com/reviewer.<br />

6.1.2. DNA/RNA 5’-end labeling by<br />

T4 PNK in the forward reaction<br />

1. Prepare the following reaction mixture:<br />

Dephospharylated DNA or<br />

Oligonucleotide<br />

10X reaction buffer A for T4<br />

Polynucleotide Kinase<br />

1-20 pmol of 5’-termini<br />

10-50 pmol<br />

2 μl<br />

[-32P or -33P]-ATP 20 pmol<br />

T4 Polynucleotide Kinase (#EK0031) 1 μl (10 u)<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

2. Incubate at 37°C for 30 min.<br />

3. <br />

incubate at 75°C for 10 min.<br />

4. Separate labeled DNA from unincorporated<br />

label by gel filtration on Sephadex G-50.<br />

Note<br />

-32P or -33P]-ATP is used,<br />

<br />

nuclease-free (#R0581).<br />

<br />

see Appendix<br />

p.465 or www.thermoscientific.com/reviewer.<br />

6.1.3. Radiolabeling of RNA Ladders<br />

by T4 PNK<br />

The ready-to-use versions of the RiboRuler<br />

RNA ladders can not be radiolabeled with T4<br />

PNK.<br />

For efficient labeling of RNA ladders it is<br />

recommended to remove the 5’-phosphate<br />

groups from the RNA and then phosphorylate<br />

in the forward reaction using T4 Polynucleotide<br />

Kinase.<br />

I. Dephosphorylation.<br />

1. Prepare the following reaction mixture:<br />

RiboRuler Low Range RNA Ladder or<br />

RiboRuler High Range RNA Ladder <br />

8 μl<br />

RiboLock RNase Inhibitor (#EO0381) 0.5 μl (20 u)<br />

10X reaction buffer for alkaline phosphatase 2 μl<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase<br />

(#EF0651)<br />

2 μl (2 u)<br />

DEPC-treated Water (#R0603) to 20 μl<br />

Total volume 20 μl<br />

2. Incubate at 37°C for 30 min.<br />

3. Remove the enzymes from the mixture with<br />

20 μl of Tris-saturated ( pH 8.0) phenol<br />

chloroform mixture. Save the upper aqueous<br />

phase and extract it twice with 20 μl of<br />

chloroform.<br />

4. <br />

Sodium Acetate Solution (#R1181) and 55 μl<br />

of 96% ethanol. Store at -20°C for 15-30<br />

min. Centrifuge the mixture at 10000-<br />

15000 rpm and 4°C for 20 min.<br />

5. Rinse the pellet with 20 μl of cold 75%<br />

ethanol. Centrifuge 10 min at 10000-<br />

15000 rpm, 4°C for 10 min.<br />

6. Discard the supernatant and dissolve the<br />

air-dried pellet in 10 μl of DEPC-treated<br />

<br />

II. Labeling<br />

1. Prepare the following reaction mixture:<br />

Dephosphorylated RNA Ladder 1 μl 2.5 μl<br />

[-32P]-ATP (5000 Ci/mmol,10 μCi/μl)* 5 μl<br />

(10 pmol)<br />

RiboLock RNase Inhibitor (#EO0381) 0.25 μl (10 u)<br />

10X buffer A for forward reaction<br />

(supplied with T4 PNK)<br />

1 μl<br />

T4 Polynucleotide Kinase (#EK0031) 1 μl (10 u)<br />

DEPC-treated Water (#R0603) to 10 μl<br />

Total volume 10 μl<br />

* If [- 32 P]-ATP with a high specific activity (higher than 5000<br />

Ci/mmol) is used, the label can be diluted with cold ATP<br />

(#R0441). Total <br />

2. Incubate at 37°C for 30 min.<br />

3. <br />

EDTA, pH 8.0 (#R1021) and extract the<br />

mixture with an equal volume of chloroform.<br />

4. Determine the efficiency of label<br />

incorporation.<br />

6.1.4. DNA 3’-end labeling by fill-in of<br />

5’-overhangs<br />

1. Prepare the following reaction mixture:<br />

Linear DNA 0.1-4 μg<br />

10X reaction buffer for Klenow Fragment 2 μl<br />

[-32P]-dNTP, ~15-30 TBq/mmol (400-800 Ci/mmol)<br />

or<br />

[-32 <br />

(20 μCi) 2.96<br />

P]-dNTP, ~110 TBq/mmol (3000 Ci/mmol) <br />

3 dNTP Mix, 2 mM each<br />

(without a labeled dNTP)<br />

2.5 μl<br />

<br />

final concentration)<br />

Klenow Fragment (#EP0051) 0.1 μl (1 u)<br />

Water, nuclease-free (#R0581) to 20 μl<br />

Total volume 20 μl<br />

2. Incubate at 37°C for 15 min.<br />

3. Stop the reaction by heating at 75°C for<br />

10 min.<br />

Note<br />

This protocol is suitable for labeling of the following <strong>Thermo</strong><br />

<strong>Scientific</strong> DNA markers, composed of DNA fragments with<br />

5’-overhangs:<br />

Lambda DNA EcoRI Marker <br />

Lambda DNA HindIII Marker <br />

Lambda DNA EcoRI/HindIII Marker <br />

The modified version of this protocol can be used for nonradioactive<br />

labeling of DNA markers. Substitute a part of<br />

dTTP with a modified nucleotide (e.g., Biotin-11-dUTP or<br />

Fluorescein-12-dUTP) at a molar ratio of 1:2.<br />

6.1.5. DNA and oligonucleotide 3’-end<br />

labeling by tailing<br />

1. Prepare the following reaction mixture:<br />

5X reaction buffer for TDT 10 μl<br />

Linear DNA 10 pmol<br />

[-32P]-ddATP, ~110 TBq/mmol (3000 Ci/mmol)<br />

<br />

(50 μCi)<br />

Terminal Deoxynucleotidyl Transferase (#EP0161) 2 μl (40 u)<br />

Water, nuclease-free (#R0581) to 50 μl<br />

Total volume 50 μl<br />

2. Incubate at 37°C for 15 min.<br />

3. Stop the reaction by heating at 70°C for<br />

<br />

(#R1021).<br />

Note<br />

The efficiency of the reaction depends upon the type of<br />

3’-OH termini of the DNA fragments. 3’-protruding ends are<br />

labeled with higher efficiency than recessed or blunt ends.<br />

References<br />

<br />

<br />

Laboratory Press, Cold Spring Harbor, New York, 2001.<br />

<br />

<br />

York, 3.10.2-3.10.5, 1994-2004.<br />

www.thermoscientific.com/onebio 349


350<br />

6.1.6. RNA 3’-end labeling by ligation<br />

1. Prepare the following reaction mixture in a<br />

RNase-free microfuge tube:<br />

10X ligation buffer for T4 RNA Ligase 2 μl<br />

10 mM ATP 1 μl<br />

RNA 50-100 pmol<br />

[ 32P]-pCp 50-100 pmol<br />

(equimolar amount)<br />

T4 RNA Ligase (#EL0021) 1 μl (10 u)<br />

DEPC-treated Water (#R0601) to 20 μl<br />

Total volume 20 μl<br />

2. Incubate at 4°C for 10-12 hours (overnight).<br />

3. Separate labeled RNA from unincorporated<br />

label by gel filtration on Sephadex G-50.<br />

6.2. Random-primed labeling<br />

6.2.1. Radioactive random-primed<br />

DNA labeling<br />

1. Prepare the following reaction mixture:<br />

DNA template 10 μl (100 ng)<br />

10X reaction buffer for Klenow Fragment, exo – 5 μl<br />

6.0 A260units/ml (100 μM) Random Hexamer<br />

Primer (#SO142)<br />

12.5 μl<br />

Water, nuclease-free (#R0581) to 40 μl<br />

Total volume 40 μl<br />

2. Incubate the mixture in a boiling water bath<br />

for 5-10 min and then chill on ice.<br />

3. Add:<br />

3 dNTP Mix, 0.33 mM each (without a<br />

labeled dNTP)<br />

[-32P]-dNTP, ~110 TBq/mmol (3000 Ci/<br />

mmol)<br />

www.thermoscientific.com/onebio<br />

<br />

concentration)<br />

<br />

Klenow Fragment, exo – (#EP0421) 1 μl (5 u)<br />

Water, nuclease-free (#R0581) to 50 μl<br />

Total volume 50 μl<br />

4. Incubate the reaction mixture at 37°C for<br />

10 min.<br />

5. <br />

at 37°C for 5 min.<br />

6. <br />

stop the reaction.<br />

7. Remove 1 μl of the reaction mixture and<br />

determine the percentage of incorporated<br />

label.<br />

8. Purify by using Sephadex G-50 or Bio-Gel<br />

P-60.<br />

6.2.2. Non-radioactive randomprimed<br />

DNA labeling<br />

1. Prepare the following reaction mixture:<br />

DNA template<br />

10 μl (100 –<br />

1 μg)<br />

10X reaction buffer for Klenow Fragment, exo – 5 μl<br />

6.0 A260units/ml (100 μM) Random Hexamer<br />

Primer (#SO142)<br />

12.5 μl<br />

Water, nuclease-free (#R0581) to 39 μl<br />

Total volume 39 μl<br />

2. Incubate the mixture in a boiling water bath<br />

for 5-10 min and then chill on ice.<br />

3. Add:<br />

3 dNTP Mix, 1 mM each<br />

(without the dTTP)<br />

<br />

concentration)<br />

dTTP, 1 mM*<br />

<br />

conc.)<br />

Biotin-11-dUTP**, 1 mM (#R0081) 1.75 μl<br />

Klenow Fragment, exo – (#EP0421) 1 μl (5 u)<br />

Total volume 50 μl<br />

* <br />

ATP solution (#R0441) and 99 μl of water, nuclease-free.<br />

** Fluorescein-12-dUTP (#R0101), DIG-dUTP or AminoallyldUTP<br />

(#R0091) can also be used with the same protocol.<br />

4. Incubate the reaction mixture at 37°C for<br />

1 h.<br />

5. <br />

stop the reaction.<br />

6. Remove 1 μl of the reaction mixture and<br />

determine the percentage of incorporated<br />

label.<br />

7. Optional: purify by using Sephadex G-50 or<br />

Bio-Gel P-60.<br />

6.3. DNA labeling by nicktranslation<br />

6.3.1. Radioactive DNA labeling by<br />

nick-translation<br />

1. <br />

10X reaction buffer for DNA Polymerase I 2.5 μl<br />

Mixture of 3 dNTPs, 1mM* (without the labeled dNTP) 1.25 μl<br />

[-32P]-dNTP ~110 TBq/mmol (3000 Ci/mmol)<br />

DNase I, RNase-free (#EN0521)<br />

freshly diluted to 0.002 u/μl**<br />

DNA Polymerase I, E.coli (#EP0041)<br />

<br />

(50-100 μCi)<br />

1 μl<br />

0.5-1.5 μl<br />

(5-15 u)<br />

Template DNA 0.25 μg<br />

Water, nuclease-free (#R0581) to 25 μl<br />

Total volume 25 μl<br />

2. Immediately incubate at 15°C for<br />

15-60 min.<br />

3. <br />

EDTA, pH 8.0 (#R1021).<br />

4. Take an aliquot (1 μl) to determine the<br />

efficiency of the label incorporation. A<br />

specific activity of at least 10 8 cpm/μg DNA<br />

is expected.<br />

5. If needed, the labeled DNA may be<br />

separated from the unincorporated<br />

radioactive precursors on Sephadex G-50 or<br />

Bio-Gel P-60 column.<br />

Note<br />

* <br />

of each), mix 1 μl aliquots of stock solutions of each dNTP<br />

<br />

(#R0581). These dNTP mixes can be stored at -20°C for<br />

further use.<br />

** DNase I, RNase-free (#EN0521) can be diluted with 1X<br />

reaction buffer for DNA Polymerase I (#EP0041).<br />

<br />

can be prepared using two radioactively labeled dNTPs<br />

simultaneously. In this case, the composition of the<br />

unlabeled dNTP mix should be adjusted accordingly.<br />

6.3.2. Non-radioactive DNA labeling<br />

by nick-translation<br />

The protocol 6.3.1. can be used for nonradioactive<br />

labeling by Nick-translation using<br />

biotin-11-dUTP, fluorescein-12-dUTP, DIG-dUTP<br />

or aminoallyl-dUTP:<br />

<br />

a molar ratio of 1:3-1:5,<br />

<br />

6.4. RNA labeling by in vitro<br />

transcription<br />

6.4.1. Synthesis of radiolabeled RNA<br />

probes of high specific activity<br />

1. Linearize template DNA with a restriction<br />

enzyme. Extract DNA with phenol/<br />

chloroform, then with chloroform/isoamyl<br />

alcohol, and precipitate with ethanol.<br />

<br />

(#R0601).<br />

2. Combine the following reaction components<br />

at room temperature in the order given:<br />

DEPC-treated Water (#R0601) to 20 μl<br />

5X transcription buffer 4 μl<br />

3 NTP Mix, 10 mM each* (without labeled NTP)<br />

<br />

concentration)<br />

<br />

100 μM CTP (#R0451)<br />

concentration)<br />

[-32P]-CTP, ~30 TBq/mmol (800 Ci/mmol) <br />

Linearized template DNA 0.2-1.0 μg<br />

RiboLock RNase Inhibitor (#EO0381) 0.5 μl (20 u)<br />

T7 RNA Polymerase (#EP0111) or<br />

SP6 RNA Polymerase (#EP0131) or<br />

1 μl (20 u)<br />

T3 RNA Polymerase (#EP0101)<br />

Total volume 20 μl<br />

3. Incubate at 37°C for 2 hours.<br />

4. Stop the reaction by cooling to -20°C.<br />

5. Determine the percentage of label<br />

incorporated into RNA.<br />

Note<br />

* <br />

<br />

<br />

the mix at -20°C for further use.<br />

8 dpm/μg.<br />

32P], [ 35S] or<br />

[ 3H]-ribonucleotides. Recommended amounts of<br />

radiolabeled nucleotides in a 20 μl of reaction mixture are<br />

as follows:<br />

Radiolabeled<br />

nucleoside<br />

Amounts for 20 μl of<br />

reaction mixture<br />

5’-[- 32 P]-CTP <br />

5’-[- 35 S]-UTP <br />

5,6-[ 3 H]-UTP <br />

Specific<br />

activity<br />

~30 TBq/mmol<br />

(800 Ci/mmol)<br />

>37 TBq/mmol<br />

(1000 Ci/mmol)<br />

1.1-2.2 TBq/mmol<br />

(30-60 Ci/mmol)<br />

6.5. Synthesis of labeled cDNA<br />

6.5.1. Synthesis of cDNA probes with<br />

high specific radioactivity<br />

This protocol is provided for first strand cDNA<br />

synthesis using RevertAid


iefly centrifuge all components after thawing,<br />

keep on ice.<br />

1. Add into a sterile, nuclease-free tube on ice<br />

in the order given:<br />

Template Total RNA or up to 5 μg<br />

RNA<br />

Poly(A) RNA or up to 500 ng<br />

Specific RNA or up to 500 ng<br />

Primers Oligo(dT) 18 (#SO131) or 0.5 μg (100 pmol)<br />

Random Hexamer (#SO141) or 0.2 μg (100 pmol)<br />

Gene-specific 15-20 pmol<br />

DEPC-treated Water (#R0601) to 8.5 μl<br />

Total volume 8.5 μl<br />

2. <br />

Optional. Incubate at 65°C for 5 min, chill<br />

on ice and briefly centrifuge. Perform this<br />

step if RNA template is GC-rich or is known<br />

to contain secondary structures.<br />

3. Place the tube with the primer/template mix<br />

on ice and add the following components in<br />

the indicated order:<br />

5X reaction buffer 4 μl<br />

RiboLock RNase Inhibitor (#EO0381) 0.5 μl (20 u)<br />

dGTP, dCTP, dTTP mix, 10 mM each 1 μl<br />

0.1 mM dATP 4 μl<br />

[-32P]-dATP, 3000 Ci/mmol 1 μl<br />

RevertAid H Minus Reverse<br />

Transcriptase (<strong>Thermo</strong> <strong>Scientific</strong>)<br />

1 μl (200 u)<br />

Total volume: 20 μl<br />

4. <br />

5. If oligo(dT) 18 primer or a gene-specific<br />

primer is used, incubate at 42°C for 60 min.<br />

If random hexamers are used, incubate<br />

at 25°C for 10 min followed by 60 min at<br />

42°C. For transcription of GC-rich RNA the<br />

reaction temperature can be increased to<br />

45°C.<br />

6. <br />

EDTA, pH 8.0 (#R1021).<br />

Optional. Hydrolyze the RNA by the<br />

<br />

NaOH and incubation at 70°C for 30 min.<br />

7. Remove unincorporated dNTPs by<br />

chromatography on a Sephadex G-50<br />

column.Expect specific radioactivity of >10 7<br />

dpm/μg.<br />

Note<br />

To achieve higher specific activities (over 10 8 dpm/μg), use<br />

up to 100 μCi of [- 32 P]-dATP in the labeling mixture. To<br />

keep the total reaction volume at 20 μl, vacuum-dry 10 μl of<br />

[- 32 P]-dATP (10 mCi/ml) to 1 μl in a separate tube.<br />

6.5.2. Synthesis of non-radioactively<br />

labeled cDNA<br />

The protocol 6.5.1. can be used for synthesis<br />

of non-radioactive labeled cDNA using biotin-<br />

11-dUTP, fluorescein-12-dUTP, DIG-dUTP or<br />

aminoallyl-dUTP:<br />

– unlabeled dTTP is subsituted for<br />

labeled-dUTP at a molar ratio of 1:3-1:4,<br />

– reaction time is prolonged to 2-6 hours.<br />

6.6. Southern Blotting<br />

Required solutions (for preparation,<br />

see Appendix, p.467)<br />

1. Denaturation Solution: <br />

NaOH.<br />

2. Neutralization Solution: <br />

<br />

3. 20X SSC, pH 7.0 (blotting buffer): <br />

<br />

4. 100X Denhardt’s solution: 2% (w/v) BSA, 2%<br />

(w/v) Ficoll , 2% (w/v) PVP (polyvinylpyrrolidone).<br />

5. Pre-hybridization Solution: 6X SSC, 5X<br />

Denhardt’s solution, 50% formamide, 0.5% SDS.<br />

Electrophoresis<br />

Load genomic DNA probes along with a<br />

DNA marker on a 0.7% agarose gel (20 cm<br />

length). Run for 18 hours at 3 V/cm in 1X<br />

TAE buffer.<br />

Southern Blotting<br />

1. Rinse the gel in deionized water, add<br />

Denaturation Solution and gently shake at<br />

room temperature for 30 min. Rinse the gel<br />

in deionized water and add Neutralization<br />

Solution. Shake at room temperature for<br />

15 min. Repeat neutralization procedure.<br />

<br />

a platform and cover it with a sheet of<br />

<br />

20X SSC buffer.<br />

2. Place the gel upside down on the filter and<br />

avoid trapping air bubbles beneath it.<br />

3. Cut a sheet of membrane to match the size<br />

of the gel and place it on the top of the<br />

gel. Avoid trapping air bubbles beneath the<br />

membrane.<br />

4. <br />

paper to the size of the gel, wet with<br />

blotting buffer and place on the top of the<br />

membrane.<br />

5. Place a stack of absorbent paper towels on<br />

<br />

the top of the paper towels and put a 0.5 kg<br />

weight on top.<br />

6. Allow upward capillary transfer of DNA at<br />

room temperature for 18 hours.<br />

7. <br />

to remove any residual agarose, dry at<br />

room temperature and fix for 2 min under<br />

UV-light.<br />

Generation of Labeled Probes<br />

The labeled probes are prepared using Biotin<br />

DecaLabel DNA Labeling Kit (#K0651),<br />

DecaLabel DNA Labeling Kit (#K0621) or using<br />

the protocol on p.350 for random-primed<br />

labeling.<br />

Hybridization<br />

1. Prepare 30 ml of the pre-hybridization<br />

solution.<br />

2. Denature sonicated salmon sperm DNA<br />

solution (10 mg/ml) by heating at 100°C<br />

for 5 min. Chill on ice and add to the<br />

pre-hybridization solution with a final<br />

concentration of 50-100 μg/ml.<br />

3. Place the membrane into the hybridization<br />

container, add pre-hybridization solution with<br />

the denatured salmon sperm DNA<br />

(0.2 ml/cm2 of membrane) and pre-hybridize<br />

at 42°C with shaking for 2 hours.<br />

4. Prepare the hybridization solution:<br />

<br />

at 100°C for 5 min and chill immediately<br />

on ice.<br />

Add the following amounts of the probe<br />

mixture to the pre-hybridization solution:<br />

10 ng/ml (1/5 of probe mix) if specific<br />

activity is 108 dpm/μg,<br />

<br />

activity is 109 dpm/μg,<br />

<br />

probes.<br />

5. Discard the pre-hybridization solution (from<br />

step 3) and add the prepared hybridization<br />

solution to the hybridization container (60 μl/<br />

cm2 ). Incubate for at least 12 hours at 42°C.<br />

6. Carry out the following washes of the<br />

membrane:<br />

<br />

temperature for 10 min,<br />

<br />

for 10 min (for high stringency).<br />

7. <br />

<br />

Autoradiography<br />

and<br />

expose to a phosphoimager or a film with an<br />

intensifying screen.<br />

Upward capillary transfer of DNA from<br />

agarose gels.<br />

www.thermoscientific.com/onebio 351


352<br />

www.thermoscientific.com/onebio


<strong>Thermo</strong> <strong>Scientific</strong><br />

DNA Electrophoresis Products<br />

Selection Guide ................................................................................................................354<br />

Products ............................................................................................................................358<br />

GeneRuler and O’GeneRuler DNA Ladders (10-20000 bp) .........................................358<br />

GeneRuler 1 kb DNA Ladder ......................................................................................359<br />

GeneRuler 1 kb Plus DNA Ladder ..............................................................................359<br />

GeneRuler DNA Ladder Mix .......................................................................................359<br />

GeneRuler 100 bp DNA Ladder..................................................................................359<br />

GeneRuler 100 bp Plus DNA Ladder ..........................................................................359<br />

GeneRuler 50 bp DNA Ladder ...................................................................................359<br />

GeneRuler Ultra Low Range DNA Ladder ....................................................................359<br />

GeneRuler Low Range DNA Ladder ............................................................................359<br />

GeneRuler High Range DNA Ladder ...........................................................................359<br />

GeneRuler Express DNA Ladder ................................................................................359<br />

MassRuler DNA Ladders, ready-to-use (80-10000 bp) .............................................362<br />

MassRuler Low Range DNA Ladder ...........................................................................362<br />

MassRuler Express LR Forward DNA Ladder ..............................................................362<br />

MassRuler Express LR Reverse DNA Ladder ..............................................................362<br />

MassRuler High Range DNA Ladder ...........................................................................362<br />

MassRuler Express HR Forward DNA Ladder .............................................................362<br />

MassRuler Express HR Reverse DNA Ladder ..............................................................362<br />

MassRuler DNA Ladder Mix .......................................................................................362<br />

MassRuler Express Forward DNA Ladder Mix.............................................................362<br />

MassRuler Express Reverse DNA Ladder Mix .............................................................362<br />

FastRuler DNA Ladders, ready-to-use (10-10000 bp)................................................364<br />

FastRuler Ultra Low Range DNA Ladder .....................................................................364<br />

FastRuler Low Range DNA Ladder .............................................................................364<br />

FastRuler Middle Range DNA Ladder .........................................................................364<br />

FastRuler High Range DNA Ladder ............................................................................364<br />

ZipRuler Express DNA Ladder Set, ready-to-use (100-20000 bp) ............................365<br />

O’RangeRuler DNA Ladders, ready-to-use (10-6000 bp) ..........................................366<br />

O’RangeRuler 5 bp DNA Ladder ................................................................................366<br />

O’RangeRuler 10 bp DNA Ladder...............................................................................366<br />

O’RangeRuler 20 bp DNA Ladder ..............................................................................366<br />

O’RangeRuler 50 bp DNA Ladder ..............................................................................366<br />

O’RangeRuler 100 bp DNA Ladder ............................................................................366<br />

O’RangeRuler 200 bp DNA Ladder ............................................................................366<br />

O’RangeRuler 500 bp DNA Ladder ............................................................................366<br />

O’RangeRuler 100+500 bp DNA Ladder ...................................................................366<br />

Conventional DNA Markers (8-23130 bp) ....................................................................368<br />

Lambda DNA/EcoRI Marker, 1 ...................................................................................368<br />

Lambda DNA/HindIII Marker, 2 ..................................................................................368<br />

Lambda DNA/EcoRI+HindIII Marker, 3 .......................................................................368<br />

pBR322 DNA/BsuRI (HaeIII) Marker, 5 .......................................................................368<br />

X174 DNA /BsuRI (HaeIII) Marker, 9 ........................................................................368<br />

pUC19 DNA/MspI (HpaII) Marker, 23 .........................................................................368<br />

NoLimits Individual DNA Fragments and Custom DNA Ladders .............................. 370<br />

TopVision Agarose ....................................................................................................... 371<br />

Electrophoresis Buffers .............................................................................................. 371<br />

Loading Dyes ................................................................................................................ 372<br />

Protocols and Recommendations ............................................................................... 374<br />

7.1. General recommendations for DNA electrophoresis .................................................... 374<br />

7.2. Preparation of agarose gels for DNA electrophoresis .................................................. 374<br />

7.3. Preparation of gels for PAGE ..................................................................................... 375<br />

7.4. Preparation of DNA samples for electrophoresis ......................................................... 376<br />

7.5. Preparation of DNA ladders/markers for electrophoresis ............................................ 376<br />

7.6. Labeling of DNA ladders/markers .............................................................................. 376<br />

7.7. Separation of Express DNA ladders in different electrophoresis conditions .................. 377<br />

Troubleshooting Guide ................................................................................................... 378<br />

Find out more about<br />

DNA Electrophoresis<br />

products online:<br />

www.thermoscientific.com/ladders<br />

www.thermoscientific.com/onebio 353


354<br />

Selection Guide<br />

Product lines of DNA ladders and markers<br />

DNA ladder/marker<br />

group<br />

NoLimits Custom<br />

DNA Ladders<br />

GeneRuler and<br />

O’GeneRuler<br />

DNA Ladders<br />

MassRuler<br />

DNA Ladders<br />

FastRuler<br />

DNA Ladders<br />

O’RangeRuler<br />

DNA Ladders<br />

ZipRuler Express<br />

DNA Ladders<br />

Conventional<br />

DNA Markers<br />

Range, bp<br />

10-20000<br />

10-48502<br />

www.thermoscientific.com/onebio<br />

Agarose gel<br />

resolution<br />

time<br />

Composition<br />

dependent<br />

10 min-<br />

1.5 h<br />

80-10000 10-45 min<br />

10-10000 8-14 min<br />

10-6000<br />

45 min-<br />

1.5 h<br />

100-20000 10-20 min<br />

Features Applications<br />

Loading Electrophoresis Quantifi- Labeling* with<br />

Main feature Origin Formulation dyes<br />

supplied<br />

Agarose PAGE Fast<br />

cation<br />

T4 PNK Klenow<br />

Formulated<br />

according<br />

to customer<br />

specifications.<br />

Bulk quantities.<br />

Sizing and<br />

approximate<br />

quantification of<br />

a wide range of<br />

double-stranded<br />

DNA<br />

Accurate DNA<br />

quantification<br />

Fast DNA<br />

fragment<br />

separation in<br />

short run times<br />

Individual,<br />

chromatography-purified<br />

DNA fragments<br />

Mixtures of<br />

individual,<br />

chromatography-purified<br />

DNA fragments<br />

Mixtures of<br />

individual,<br />

chromatography-purified<br />

DNA fragments<br />

Mixtures of<br />

5 individual,<br />

chromatography-purified<br />

DNA fragments<br />

Ligation<br />

Step ladders<br />

products 10,<br />

composed of 5,<br />

15, 20, 50,<br />

10, 20, 50, 100,<br />

100, 200,<br />

200, 500 bp DNA<br />

500 bp DNA<br />

fragments<br />

fragments<br />

Fast and accurate<br />

sizing of a broad<br />

range DNA<br />

fragments<br />

8-23130 bp 45 min-18 h Traditional<br />

markers<br />

Mixtures of<br />

individual,<br />

chromatography-purified<br />

DNA fragments<br />

Digested<br />

Lambda, Phage<br />

and plasmid<br />

DNA<br />

Note<br />

Not all the DNA ladders/markers of the group are suitable for the indicated application.<br />

* Only DNA ladders/markers supplied in TE buffer can be labeled.<br />

** Excluding Lambda markers.<br />

In TE buffer or<br />

ready-to-use<br />

In TE buffer or<br />

ready-to-use<br />

Ready-to-use<br />

Ready-to-use<br />

Ready-to-use<br />

Ready-to-use<br />

In TE buffer or<br />

ready-to-use<br />

Any <strong>Thermo</strong><br />

<strong>Scientific</strong><br />

Loading Dye<br />

upon request<br />

6X DNA<br />

Loading<br />

Dye or<br />

6X Orange<br />

Loading Dye<br />

6X MassRuler<br />

Loading Dye<br />

6X MassRuler<br />

Loading Dye,<br />

6X Orange<br />

Loading Dye<br />

6X Orange<br />

Loading Dye<br />

6X Orange<br />

Loading Dye,<br />

6X MassRuler<br />

Loading Dye<br />

6X DNA<br />

Loading Dye<br />

Page<br />

– 370<br />

– – 358<br />

– – – 362<br />

– 364<br />

– – – – 366<br />

– – – 365<br />

** – 368


Range selection for DNA Ladders and Markers<br />

10-300 bp<br />

10-200 bp<br />

10 bp 100 bp 1 kb 10 kb 50 kb<br />

25-700 bp<br />

50-1000 bp<br />

75-20000 bp<br />

100-1000 bp<br />

100-3000 bp<br />

100-5000 bp<br />

100-10000 bp<br />

80-1031 bp<br />

100-1000 bp<br />

100-1000 bp<br />

80-10000 bp<br />

100-10000 bp<br />

100-10000 bp<br />

50-1500 bp<br />

100-5000 bp<br />

8-587 bp<br />

26-501 bp<br />

72-1353 bp<br />

125-23130 bp<br />

125-21226 bp<br />

250-10000 bp<br />

500-10000 bp<br />

10-100 bp<br />

10-150 bp<br />

20-300 bp<br />

50-1000 bp<br />

100-1500 bp<br />

100-6000 bp<br />

200-3000 bp<br />

500-6000 bp<br />

100-10000 bp<br />

200-20000 bp<br />

1500-10000 bp<br />

1500-10000 bp<br />

1500-10000 bp<br />

3530-21226 bp<br />

10171-48502 bp<br />

10bp 100bp 1kb 10kb 50kb<br />

GeneRuler Ultra Low Range DNA Ladder, #SM1211/2/3, p.361<br />

O’GeneRuler Ultra Low Range DNA Ladder, #SM1223, p.361<br />

GeneRuler Low Range DNA Ladder, #SM1191/2/3, p.361<br />

O’GeneRuler Low Range DNA Ladder, #SM1203, p.361<br />

GeneRuler 50 bp DNA Ladder, #SM0371/2/3, p.360<br />

O’GeneRuler 50 bp DNA Ladder, #SM1133, p.360<br />

GeneRuler 1 kb Plus DNA Ladder, #SM1331/2/3/4, p.360<br />

O’GeneRuler 1 kb Plus DNA Ladder, #SM1343, p.360<br />

GeneRuler 100 bp DNA Ladder, #SM0241/2/3/4, p.360<br />

O’GeneRuler 100 bp DNA Ladder, #SM1143, p.360<br />

GeneRuler 100 bp Plus DNA Ladder, #SM0321/2/3/4, p.360<br />

O’GeneRuler 100 bp Plus DNA Ladder, #SM1153, p.360<br />

GeneRuler Express DNA Ladder, #SM1551/2/3, p.361<br />

O’GeneRuler Express DNA Ladder, #SM1563, p.361<br />

GeneRuler DNA Ladder Mix, #SM0331/2/3/4, p.360<br />

O’GeneRuler DNA Ladder Mix, #SM1173, p.360<br />

GeneRuler 1 kb DNA Ladder, #SM0311/2/3/4, p.360<br />

O’GeneRuler 1kb DNA Ladder, #SM1163, p.360<br />

GeneRuler High Range DNA Ladder, #SM1351/2/3, p.361<br />

MassRuler Low Range DNA Ladder, #SM0383, p.363<br />

MassRuler Express LR Forward DNA Ladder, #SM1263, p.363<br />

MassRuler Express LR Reverse DNA Ladder, #SM1273, p.363<br />

MassRuler DNA Ladder Mix, #SM0403, p.363<br />

MassRuler Express Forward DNA Ladder Mix, #SM1283, p.363<br />

MassRuler Express Reverse DNA Ladder Mix, #SM1293, p.363<br />

MassRuler High Range DNA Ladder, #SM0393, p.363<br />

MassRuler Express HR Forward DNA Ladder, #SM1243, p.363<br />

MassRuler Express HR Reverse DNA Ladder, #SM1253, p.363<br />

FastRuler Ultra Low Range DNA Ladder, #SM1233, p.364<br />

FastRuler Low Range DNA Ladder, #SM1103, p.364<br />

FastRuler Middle Range DNA Ladder, #SM1113, p.364<br />

FastRuler High Range DNA Ladder, #SM1123, p.364<br />

O’RangeRuler 5 bp DNA Ladder, #SM1303, p.367<br />

O’RangeRuler 10 bp DNA Ladder, #SM1313, p.367<br />

O’RangeRuler 20 bp DNA Ladder, #SM1323, p.367<br />

O’RangeRuler 50 bp DNA Ladder, #SM0613, p.367<br />

O’RangeRuler 100 bp DNA Ladder, #SM0623, p.367<br />

O’RangeRuler 100+500 bp DNA Ladder, #SM0653, p.367<br />

O’RangeRuler 200 bp DNA Ladder, #SM0633, p.367<br />

O’RangeRuler 500bp DNA Ladder, #SM0643, p.367<br />

ZipRuler Express DNA Ladder 1, #SM1373, p.365<br />

ZipRuler Express DNA Ladder 2, #SM1373, p.365<br />

pBR322 DNA/BsuRI Marker, 5, #SM0271, p.369<br />

pUC19 DNA/MspI Marker, 23, #SM0221/2/3, p.369<br />

X174 DNA/BsuRI Marker, 9, #SM0251/2/3, p.369<br />

Lambda DNA/HindIII Marker, 2, #SM0101/2/3, p.369<br />

Lambda DNA/EcoRI+HindIII Marker, 3, #SM0191/2/3, p.369<br />

Lambda DNA/EcoRI Marker, 1, #SM0281, p.369<br />

www.thermoscientific.com/onebio 355


356<br />

Reference for DNA Ladders and Markers<br />

50 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

50 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

10 bp<br />

GeneRuler Ultra Low Range<br />

DNA Ladder #SM1211/2/3, p.361<br />

O’GeneRuler Ultra Low Range<br />

DNA Ladder #SM1223, p.361<br />

MassRuler Low Range<br />

DNA Ladder<br />

#SM0383, p.363<br />

www.thermoscientific.com/onebio<br />

GeneRuler Low Range DNA Ladder<br />

#SM1191/2/3, p.361<br />

O’GeneRuler Low Range DNA Ladder<br />

#SM1203, p.361<br />

MassRuler Express LR Forward<br />

DNA Ladder #SM1263, p.363<br />

MassRuler Express LR Reverse<br />

DNA Ladder #SM1273, p.363<br />

GeneRuler 50 bp DNA Ladder<br />

#SM0371/2/3, p.360<br />

O’GeneRuler 50 bp DNA Ladder<br />

#SM133, p.360<br />

MassRuler DNA<br />

Ladder Mix<br />

#SM0403, p.363<br />

GeneRuler 1 kb Plus DNA Ladder<br />

#SM1331/2/3, p.360<br />

O’GeneRuler 1 kb Plus DNA Ladder<br />

#SM1343, p.360<br />

MassRuler Express Forward<br />

DNA Ladder Mix #SM1283, p.363<br />

MassRuler Express Reverse<br />

DNA Ladder Mix #SM1293, p.363<br />

GeneRuler 100 bp DNA Ladder<br />

#SM0241/2/3 p.360<br />

O’GeneRuler 100 bp DNA Ladder<br />

#SM1143 p.360<br />

MassRuler High Range<br />

DNA Ladder<br />

#SM0393, p.363<br />

GeneRuler 100 bp Plus DNA Ladder<br />

#SM0321/2/3, p.360<br />

O’GeneRuler 100 bp Plus DNA Ladder<br />

#SM1153 p.360<br />

MassRuler Express HR Forward<br />

DNA Ladder #SM1243, p.363<br />

MassRuler Express HR Reverse<br />

DNA Ladder #SM1253, p.363<br />

GeneRuler Express DNA Ladder<br />

#SM1551/2/3, p.361<br />

O’GeneRuler Express DNA Ladder<br />

#SM1563 p.361<br />

FastRuler Ultra Low Range<br />

DNA Ladder<br />

#SM1233, p.364<br />

GeneRuler DNA Ladder Mix<br />

#SM0331/2/3, p.360<br />

O’GeneRuler DNA Ladder Mix<br />

#SM1173, p.360<br />

FastRuler Low Range<br />

DNA Ladder<br />

#SM1103, p.364<br />

GeneRuler 1 kb DNA Ladder<br />

#SM0311/2/3,<br />

p.360O’GeneRuler 1 kb DNA<br />

Ladder<br />

#SM1163, p.360<br />

10 bp 10 bp<br />

FastRuler Middle Range<br />

DNA Ladder<br />

#SM1113, p.364<br />

GeneRuler High Range<br />

DNA Ladder<br />

#SM1351/2/3, p.361<br />

FastRuler High Range<br />

DNA Ladder<br />

#SM1123, p.364<br />

50 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

50 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

10 bp


50 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

10 bp<br />

50 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

10 bp<br />

O’RangeRuler 5 bp<br />

DNA Ladder<br />

#SM1303, p.367<br />

pBR322 DNA/BsuRI, 5<br />

#SM0271, p.369<br />

O’RangeRuler 10 bp<br />

DNA Ladder<br />

#SM1313, p.367<br />

pUC19 DNA/MspI, 23<br />

#SM0221/2/3, p.369<br />

O’RangeRuler 20 bp<br />

DNA Ladder<br />

#SM1323, p.367<br />

X174 DNA/BsuRI, 9<br />

#SM0251/2/3, p.369<br />

O’RangeRuler 50 bp<br />

DNA Ladder<br />

#SM0613, p.367<br />

50 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

10 bp<br />

O’RangeRuler 100 bp<br />

DNA Ladder<br />

#SM0623, p.367<br />

* Indicates fragments with cohesive ends of the 12 nt cos sites of DNA that may anneal and form an additional band. These fragments (shown in italic) can be separated by h eating at 65°C<br />

for 5 min and then cooling on ice for 3 min.<br />

Indicates a possible additional band due to annealing of cohesive ends from 12 nt cos sites of DNA. Reference bands appear in red.<br />

O’RangeRuler 100+500 bp<br />

DNA Ladder<br />

#SM0653, p.367<br />

O’RangeRuler 200 bp<br />

DNA Ladder<br />

#SM0633, p.367<br />

50 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

10 bp<br />

O’RangeRuler 500 bp<br />

DNA Ladder<br />

#SM0643, p.367<br />

Lambda DNA/HindIII, 2<br />

#SM0101/2/3, p.369<br />

ZipRuler Express DNA<br />

Ladder 1<br />

#SM1373, p.365<br />

Lambda DNA/EcoRI+HindIII, 3<br />

#SM0191/2/3, p.369<br />

ZipRuler Express DNA<br />

Ladder 2<br />

#SM1373, p.365<br />

Lambda DNA/EcoRI, 1<br />

#SM0281, p.369<br />

50 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

10 bp<br />

50 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

10 bp<br />

www.thermoscientific.com/onebio 357


358<br />

Products<br />

GeneRuler and O’GeneRuler DNA Ladders (10-20000 bp)<br />

Related Products<br />

TopVision Agaroses p.427<br />

Loading Dyes p.372<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

ATP p.411<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

Protocols and Recommendations<br />

» 7.1. General recommendations for DNA<br />

electrophoresis p.374<br />

» 7.2. Preparation of agarose gels for DNA<br />

electrophoresis p.374<br />

» 7.3. Preparation of gels for PAGE p.375<br />

» 7.4. Preparation of DNA samples for<br />

electrophoresis p.376<br />

» 7.5. Preparation of DNA ladders/markers<br />

for electrophoresis p.376<br />

» 7.7. Separation of Express DNA ladders in<br />

different electrophoresis conditions p.377<br />

» 6.1. DNA/RNA end labeling p.349<br />

www.thermoscientific.com/onebio<br />

Description<br />

<strong>Thermo</strong> <strong>Scientific</strong> GeneRuler DNA ladders are<br />

mixtures of chromatography-purified individual<br />

DNA fragments.<br />

The GeneRuler line includes the most popular<br />

ladders such as the 100 bp and 1 kb DNA<br />

Ladder.<br />

GeneRuler DNA ladders are available in<br />

two formats: conventional (TE buffer) and a<br />

ready-to-use format (premixed with 6X DNA<br />

Loading Dye which contains bromophenol blue<br />

and xylene cyanol FF).<br />

Conventional versions can be labeled<br />

radioactively with T4 Polynucleotide<br />

Kinase (#EK0031).<br />

O’GeneRuler DNA ladders are another<br />

ready-to-use version of GeneRuler DNA ladders.<br />

O’GeneRuler DNA ladders are premixed with<br />

6X Orange DNA Loading Dye, which contains<br />

xylene cyanol FF and orange G. In a 1% agarose<br />

gel orange G dye migrates at 50 bp. Therefore<br />

O’GeneRuler DNA ladders are ideal to use<br />

when visualization of small DNA fragments is<br />

important.<br />

GeneRuler Ultra Low Range and Low<br />

Range DNA ladders are ideal for approximate<br />

quantification and sizing of small molecular<br />

weight DNA fragments. The ladders can<br />

be used in agarose and nondenaturing<br />

polyacrylamide gel electrophoresis<br />

(see Figure p.375).<br />

GeneRuler and O’GeneRuler Ultra Low<br />

Range DNA ladders can also be used for<br />

analysis of siRNA.<br />

The GeneRuler High Range DNA Ladder<br />

is designed for fast sizing of h igh<br />

molecular weight DNA fragments<br />

(1.5 h in 0.4% agarose gel).<br />

GeneRuler and O’GeneRuler Express DNA<br />

ladders are designed for fast separation (in<br />

5-15 min at 23 V/cm) under a wide range of<br />

electrophoresis conditions, in different buffers,<br />

voltages or gel percentages.<br />

The ladders are supplied (depending on the<br />

version) either with 6X DNA Loading Dye or with<br />

6X Orange DNA Loading Dye for sample DNA.<br />

Features<br />

Ideal for both DNA sizing and approximate<br />

quantification.<br />

Sharp bands.<br />

Composed of chromatography purified<br />

individual DNA fragments.<br />

Bright reference bands.<br />

Ready-to-use ladders can be direct loaded<br />

on gels and are stable at room temperature<br />

for 6 months.<br />

Supplied with loading dye for sample DNA.<br />

Storage Buffer (TE buffer)<br />

10 mM Tris-HCl (pH 7.6) and 1 mM EDTA.<br />

GeneRuler Storage and Loading Buffer<br />

(for ready-to-use ladders)<br />

10 mM Tris-HCl (pH 7.6), 10 mM EDTA,<br />

0.005% bromophenol blue, 0.005% xylene<br />

cyanol FF and 10% glycerol.<br />

6X DNA Loading Dye<br />

10 mM Tris-HCl (pH 7.6), 0.03% bromophenol<br />

blue, 0.03% xylene cyanol FF, 60% glycerol and<br />

60 mM EDTA.<br />

O’GeneRuler Storage and Loading Buffer<br />

10 mM Tris-HCl (pH 7.6), 10 mM EDTA,<br />

0.025% orange G, 0.005% xylene cyanol FF<br />

and 10% glycerol.<br />

6X Orange DNA Loading Dye<br />

10 mM Tris-HCl (pH 7.6), 0.15% orange G,<br />

0.03% xylene cyanol FF, 60% glycerol and<br />

60 mM EDTA.<br />

Storage<br />

Store at -20°C.<br />

Ready-to-use versions can be stored at room<br />

temperature or at 4°C for 6 months.


DNA ladder Cat. #<br />

Concentration,<br />

μg/μl<br />

Amount,<br />

μg<br />

Applications,<br />

0.5 μg/lane<br />

Loading,<br />

μg(μl)/lane<br />

GeneRuler 1 kb DNA Ladder<br />

SM0311<br />

SM0312<br />

0.5<br />

250 (5x50)<br />

1250 (25x50)<br />

500<br />

2500<br />

0.5 (1)<br />

GeneRuler 1 kb DNA Ladder, SM0313<br />

250 (5x50) 500<br />

ready-to-use<br />

O’GeneRuler 1 kb DNA Ladder,<br />

ready-to-use<br />

SM0314<br />

SM1163<br />

0.1<br />

50<br />

250 (5x50)<br />

100<br />

500<br />

0.5 (5)<br />

GeneRuler 1 kb Plus DNA Ladder<br />

SM1331<br />

SM1332<br />

0.5<br />

250 (5x50)<br />

1250 (25x50)<br />

500<br />

2500<br />

0.5 (1)<br />

GeneRuler 1 kb Plus DNA Ladder, SM1333<br />

250 (5x50) 500<br />

ready-to-use<br />

O’GeneRuler 1 kb Plus DNA Ladder,<br />

ready-to-use<br />

SM1334<br />

SM1343<br />

0.1<br />

50<br />

250 (5x50)<br />

100<br />

500<br />

0.5 (5)<br />

GeneRuler DNA Ladder Mix<br />

SM0331<br />

SM0332<br />

0.5<br />

250 (5x50)<br />

1250 (25x50)<br />

500<br />

2500<br />

0.5 (1)<br />

GeneRuler DNA Ladder Mix, SM0333<br />

250 (5x50) 500<br />

ready-to-use<br />

O’GeneRuler DNA Ladder Mix,<br />

ready-to-use<br />

SM0334<br />

SM1173<br />

0.1<br />

50<br />

250 (5x50)<br />

100<br />

500<br />

0.5 (5)<br />

GeneRuler 100 bp DNA Ladder<br />

SM0241<br />

SM0242<br />

0.5<br />

50<br />

250 (5x50)<br />

100<br />

500<br />

0.5 (1)<br />

GeneRuler 100 bp DNA Ladder, SM0243<br />

50 100<br />

ready-to-use<br />

O’GeneRuler 100 bp DNA Ladder,<br />

ready-to-use<br />

SM0244<br />

SM1143<br />

0.1<br />

250 (5x50<br />

50<br />

500<br />

100<br />

0.5 (5)<br />

GeneRuler 100 bp Plus DNA Ladder SM0321<br />

SM0322<br />

0.5<br />

50<br />

250 (5x50)<br />

100<br />

500<br />

0.5 (1)<br />

GeneRuler 100 bp Plus DNA Ladder, SM0323<br />

50 100<br />

ready-to-use<br />

O’GeneRuler 100 bp Plus DNA<br />

Ladder, ready-to-use<br />

SM0324<br />

SM1153<br />

0.1<br />

250 (5x50)<br />

50<br />

500<br />

100<br />

0.5 (5)<br />

GeneRuler 50 bp DNA Ladder<br />

SM0371<br />

SM0372<br />

0.5<br />

50<br />

250 (5x50)<br />

100<br />

500<br />

0.5 (1)<br />

GeneRuler 50 bp DNA Ladder,<br />

ready-to-use<br />

O’GeneRuler 50 bp DNA Ladder,<br />

ready-to-use<br />

SM0373<br />

SM1133<br />

0.1 50 100 0.5 (5)<br />

GeneRuler Ultra Low Range DNA<br />

Ladder<br />

SM1211<br />

SM1212<br />

0.5<br />

50<br />

250 (5x50)<br />

50-100<br />

250-500<br />

0.5-1 (1-2)<br />

GeneRuler Ultra Low Range DNA<br />

Ladder, ready-to-use<br />

O’GeneRuler Ultra Low Range DNA<br />

Ladder, ready-to-use<br />

SM1213<br />

SM1223<br />

0.1 50 100 0.5-1 (5-10)<br />

GeneRuler Low Range DNA Ladder SM1191<br />

SM1192<br />

0.5<br />

50<br />

250 (5x50)<br />

50-100<br />

250-500<br />

0.5-1 (1-2)<br />

GeneRuler Low Range DNA Ladder,<br />

ready-to-use<br />

O’GeneRuler Low Range DNA<br />

Ladder, ready-to-use<br />

SM1193<br />

SM1203<br />

0.1 50 100 0.5-1 (5-10)<br />

GeneRuler High Range DNA Ladder SM1351<br />

SM1352<br />

0.5<br />

50<br />

250 (5x50)<br />

100<br />

500<br />

0.5 (1)<br />

GeneRuler High Range DNA Ladder,<br />

ready-to-use<br />

SM1353 0.1 50 100 0.5 (5)<br />

GeneRuler Express DNA Ladder<br />

SM1551<br />

SM1552<br />

0.5<br />

50<br />

250 (5x50)<br />

100<br />

500<br />

0.5 (1)<br />

GeneRuler Express DNA Ladder,<br />

ready-to-use<br />

O’GeneRuler Express DNA Ladder,<br />

ready-to-use<br />

SM1553<br />

SM1563<br />

0.1 50 100 0.5 (5)<br />

Supplied with:<br />

6X DNA Loading Dye 1 ml/2 ml/10 ml<br />

6X Orange DNA Loading Dye 1 ml/2 ml/10 ml<br />

Range,<br />

bp<br />

Number of<br />

fragments<br />

Agarose,<br />

%<br />

PAGE,<br />

%<br />

250-10000 14 0.7-1.2 –<br />

75-20000 15 0.7-1.2 –<br />

100-10000 21 0.7-1.2 –<br />

100-1000 10 1.7-2.5 4-8<br />

100-3000 14 1.7-2.5 –<br />

50-1000 13 1.7-2.5 4-8<br />

10-300 11 4.5-5.0 8-10<br />

25-700 10 2.5-3.0 8-10<br />

10171-<br />

48502<br />

8 0.3-0.5 –<br />

100-5000 9 1.7-2.5 –<br />

www.thermoscientific.com/onebio 359


360<br />

GeneRuler 1 kb DNA Ladder<br />

#SM0311/2/3<br />

O’GeneRuler 1 kb DNA Ladder,<br />

ready-to-use<br />

#SM1163<br />

1% TopVision Agarose (#R0491)<br />

GeneRuler 100 bp DNA Ladder<br />

#SM0241/2/3<br />

O’GeneRuler 100 bp DNA Ladder,<br />

ready-to-use<br />

#SM1143<br />

1.7% TopVision Agarose (#R0491)<br />

bp ng/0.5 μg %<br />

10000 30.0 6.0<br />

8000 30.0 6.0<br />

6000 70.0 14.0<br />

5000 30.0 6.0<br />

4000 30.0 6.0<br />

3500 30.0 6.0<br />

3000 70.0 14.0<br />

2500 25.0 5.0<br />

2000 25.0 5.0<br />

1500 25.0 5.0<br />

1000 60.0 12.0<br />

750 25.0 5.0<br />

500 25.0 5.0<br />

250 25.0 5.0<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TAE, 7 V/cm, 45 min<br />

bp ng/0.5 μg %<br />

1000<br />

900<br />

800<br />

45.0<br />

45.0<br />

45.0<br />

9.0<br />

9.0<br />

9.0<br />

700 45.0 9.0<br />

600<br />

500<br />

45.0<br />

115.0<br />

9.0<br />

23.0<br />

400 40.0 8.0<br />

300 40.0 8.0<br />

200 40.0 8.0<br />

100 40.0 8.0<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TBE, 5 V/cm, 1 h<br />

www.thermoscientific.com/onebio<br />

5% polyacrylamide<br />

bp<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0.5 μg/lane, 20 cm length gel,<br />

1X TAE, 8 V/cm, 3 h<br />

GeneRuler 1 kb Plus DNA Ladder<br />

#SM1331/2/3<br />

O’GeneRuler 1 kb Plus DNA Ladder,<br />

ready-to-use<br />

#SM1343<br />

1% TopVision Agarose (#R0491)<br />

GeneRuler 100 bp Plus DNA Ladder<br />

#SM0321/2/3<br />

O’GeneRuler 100 bp Plus DNA Ladder,<br />

ready-to-use<br />

#SM1153<br />

1.7% TopVision Agarose (#R0491)<br />

bp ng/0.5 μg %<br />

20000 20.0 4.0<br />

10000 20.0 4.0<br />

7000<br />

5000<br />

4000<br />

3000<br />

20.0<br />

75.0<br />

20.0<br />

20.0<br />

4.0<br />

15.0<br />

4.0<br />

4.0<br />

2000 20.0 4.0<br />

1500 80.0 16.0<br />

1000 25.0 5.0<br />

700 25.0 5.0<br />

500<br />

400<br />

75.0<br />

25.0<br />

15.0<br />

5.0<br />

300<br />

200<br />

25.0<br />

25.0<br />

5.0<br />

5.0<br />

75 25.0 5.0<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TAE, 7 V/cm, 45 min<br />

bp ng/0.5 μg %<br />

3000 28.0 5.6<br />

2000 28.0 5.6<br />

1500<br />

1200<br />

28.0<br />

28.0<br />

5.6<br />

5.6<br />

1000<br />

900<br />

80.0<br />

27.0<br />

16.0<br />

5.4<br />

800 27.0 5.4<br />

700 27.0 5.4<br />

600<br />

500<br />

27.0<br />

80.0<br />

5.4<br />

16.0<br />

400 30.0 6.0<br />

300 30.0 6.0<br />

200 30.0 6.0<br />

100 30.0 6.0<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TBE, 5 V/cm, 1 h<br />

5% polyacrylamide<br />

bp<br />

3000<br />

2000<br />

1500<br />

1200<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0.5 μg/lane, 20 cm length gel,<br />

1X TAE, 8 V/cm, 3 h<br />

GeneRuler DNA Ladder Mix<br />

#SM0331/2/3<br />

O’GeneRuler DNA Ladder Mix,<br />

ready-to-use<br />

#SM1173<br />

1% TopVision Agarose (#R0491)<br />

bp ng/0.5 μg %<br />

10000 18.0 3.6<br />

8000 18.0 3.6<br />

6000 18.0 3.6<br />

5000 18.0 3.6<br />

4000 18.0 3.6<br />

3500 18.0 3.6<br />

3000 60.0 12.0<br />

2500 16.0 3.2<br />

2000 16.0 3.2<br />

1500 16.0 3.2<br />

1200 16.0 3.2<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

60.0<br />

17.0<br />

17.0<br />

17.0<br />

17.0<br />

60.0<br />

20.0<br />

12.0<br />

3.4<br />

3.4<br />

3.4<br />

3.4<br />

12.0<br />

4.0<br />

300 20.0 4.0<br />

200<br />

100<br />

20.0<br />

20.0<br />

4.0<br />

4.0<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TAE, 7 V/cm, 45 min<br />

GeneRuler 50bp DNA Ladder<br />

#SM0371/2/3<br />

O’GeneRuler 50bp DNA Ladder,<br />

ready-to-use<br />

#SM1133<br />

2.5% TopVision Agarose (#R0491)<br />

bp ng/0.5μg %<br />

1000<br />

900<br />

30.0<br />

30.0<br />

6.0<br />

6.0<br />

800<br />

700<br />

600<br />

500<br />

30.0<br />

30.0<br />

30.0<br />

75.0<br />

6.0<br />

6.0<br />

6.0<br />

15.0<br />

400 30.0 6.0<br />

300 30.0 6.0<br />

250 75.0 15.0<br />

200 35.0 7.0<br />

150 35.0 7.0<br />

100 35.0 7.0<br />

50 35.0 7.0<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TBE, 5 V/cm, 1 h<br />

5% polyacrylamide<br />

bp<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0.5 μg/lane, 20 cm length gel,<br />

1X TAE, 8 V/cm, 3 h


GeneRuler Ultra Low Range DNA Ladder<br />

#SM1211/2/3<br />

O’GeneRuler Ultra Low Range DNA Ladder,<br />

ready-to-use<br />

#SM1223<br />

5% TopVision Agarose (#R0491)<br />

GeneRuler Express DNA Ladder<br />

#SM1551/2/3<br />

O’GeneRuler Express DNA Ladder,<br />

ready-to-use<br />

#SM1563<br />

1% TopVision Agarose (#R0491)<br />

bp ng/0.5 μg %<br />

300 30.0 6.0<br />

200 32.5 6.5<br />

150 35.0 7.0<br />

100 37.5 7.5<br />

75 37.5 7.5<br />

50 105.0 21.0<br />

35 37.5 7.5<br />

25 37.5 7.5<br />

20 40.0 8.0<br />

15 47.5 9.5<br />

10 60.0 12.0<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TBE, 5 V/cm, 1 h<br />

bp ng/0.5 μg %<br />

5000 40.0 8.0<br />

3000 40.0 8.0<br />

2000 40.0 8.0<br />

1500 100.0 20.0<br />

1000 40.0 8.0<br />

750 40.0 8.0<br />

500 100.0 20.0<br />

300 50.0 10.0<br />

100 50.0 10.0<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TAE, 7 V/cm, 40 min<br />

10% polyacrylamide<br />

bp<br />

300<br />

200<br />

150<br />

100<br />

75<br />

50<br />

35<br />

25<br />

20<br />

15<br />

10<br />

0.5 μg/lane, 20c m length gel,<br />

1X TBE, 8 V/cm, 3 h<br />

GeneRuler Low Range DNA Ladder<br />

#SM1191/2/3<br />

O’GeneRuler Low Range DNA Ladder,<br />

ready-to-use<br />

#SM1203<br />

3% TopVision Agarose (#R0491)<br />

5 min<br />

bp ng/0.5 μg %<br />

700 30.0 6.0<br />

500 32.5 6.5<br />

400 35.0 7.0<br />

300 90.0 18.0<br />

200 35.0 7.0<br />

150 35.0 7.0<br />

100 90.0 18.0<br />

75 37.5 7.5<br />

50 40.0 8.0<br />

25 75.0 15.0<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TBE, 5 V/cm, 1 h<br />

10 min<br />

15 min<br />

10% polyacrylamide<br />

bp<br />

700<br />

500<br />

400<br />

300<br />

200<br />

150<br />

100<br />

75<br />

Fast separation of <strong>Thermo</strong> <strong>Scientific</strong> GeneRuler<br />

Express DNA Ladder at h igh voltage (23 V/cm).<br />

Electrophoresis conditions: 0.5 μg/lane, 1% TopVision<br />

Agarose (#R0491), 1X TAE, 23 V/cm, 5-15 min.<br />

50<br />

25<br />

0.5 μg/lane, 2 0 cm length gel,<br />

1X TBE, 8 V/cm, 3 h<br />

GeneRuler High Range DNA Ladder<br />

#SM1351/2/3<br />

0.4% TopVision Agarose (#R0491)<br />

bp ng/0.5 μg %<br />

48502 80.0 16.0<br />

24508 88.0 17.7<br />

20555 80.0 15.9<br />

17000 59.0 11.8<br />

15258 59.0 11.8<br />

13825 50.0 10.0<br />

12119 47.0 9.4<br />

10171 37.0 7.3<br />

0.4 μg/lane, 8 cm length gel,<br />

1X TAE, 3 V/cm, 1.5 h<br />

www.thermoscientific.com/onebio 361


362<br />

MassRuler DNA Ladders, ready-to-use (80-10000 bp)<br />

DNA ladder, ready-to-use Cat. #<br />

Concentration,<br />

ng/μl<br />

MassRuler Low Range DNA Ladder SM0383 60.8<br />

MassRuler Express LR Forward DNA Ladder SM1263<br />

MassRuler Express LR Reverse DNA Ladder SM1273<br />

MassRuler High Range DNA Ladder SM0393 42.2<br />

MassRuler Express HR Forward DNA Ladder SM1243<br />

MassRuler Express HR Reverse DNA Ladder SM1253<br />

MassRuler DNA Ladder Mix SM0403 103<br />

MassRuler Express Forward DNA Ladder Mix SM1283<br />

MassRuler Express Reverse DNA Ladder Mix SM1293<br />

Supplied with:<br />

6X MassRuler DNA Loading Dye 1 ml Description<br />

Related Products<br />

TopVision Agaroses p.427<br />

Loading Dyes p.372<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

Water, nuclease-free p.420<br />

Protocols and Recommendations<br />

» 7.1. General recommendations for DNA<br />

electrophortesis p.374<br />

» 7.1.1. Recommendations for accurate in-gel<br />

quantification p.374<br />

» 7.2. Preparation of agarose gels for DNA<br />

electrophoresis p.374<br />

» 7.4. Preparation of DNA samples for<br />

electrophoresis p.376<br />

» 7.7. Separation of Express DNA ladders<br />

in different electrophoresis conditions p.377<br />

www.thermoscientific.com/onebio<br />

Volume,<br />

μl<br />

Applications<br />

Loading,<br />

μl/lane<br />

Range,<br />

bp<br />

Number of<br />

fragments<br />

Agarose,<br />

%<br />

80-1031 11 1.7-2.5<br />

28<br />

2x500 50-200 5-20<br />

100-1000 6 0.7-2.0<br />

9 0.7-1.2<br />

28.5<br />

2x500 50-200 5-20 1500-10000<br />

6 0.7-1.5<br />

80-10000 20 1.0-1.2<br />

56.5<br />

2x500 50-200 5-20<br />

100-10000 12 0.7-1.5<br />

<strong>Thermo</strong> <strong>Scientific</strong> MassRuler DNA ladders are<br />

specially designed for accurate quantification<br />

and sizing of DNA fragments by agarose gel<br />

electrophoresis. The intensity of the fragment in<br />

each ladder is calibrated against a standard that<br />

guarantees the precise quantity of each band.<br />

The ladders are mixtures of chromatographypurified,<br />

individual DNA fragments.<br />

MassRuler Express Forward and Reverse<br />

DNA Ladders allow fast and reliable DNA<br />

quantification in short separation distances<br />

under various electrophoresis conditions. In<br />

the forward versions, the mass of each DNA<br />

fragment is directly proportional to the fragment<br />

size, whereas in the reverse versions, the mass<br />

is inversely proportional to the fragment’s size.<br />

Features<br />

Accurate DNA sizing and quantification.<br />

Sharp bands.<br />

Assembled of chromatography purified<br />

individual DNA fragments.<br />

Easy-to-remember fragment sizes and<br />

quantities.<br />

Ready-to-use – premixed with Loading Dye.<br />

Supplied with loading dye for sample DNA.<br />

Storage and Loading Buffer<br />

10 mM Tris-HCl (pH 7.6), 10 mM EDTA,<br />

0.005% bromophenol blue, 10% glycerol.<br />

6X MassRuler DNA Loading Dye<br />

10 mM Tris-HCl (pH 7.6), 0.03% bromophenol<br />

blue, 60% glycerol and 60 mM EDTA.<br />

Storage<br />

Store at -20°C (or at 4°C or room temperature<br />

for 6 months).<br />

A. MassRuler Express LR Forward DNA Ladder B. MassRuler Express LR Reverse DNA Ladder<br />

[FU]<br />

[FU]<br />

5000<br />

5000<br />

4000<br />

4000<br />

3000<br />

3000<br />

2000<br />

2000<br />

1000<br />

1000<br />

0<br />

0<br />

40 60 80 100<br />

40 60 80 100<br />

Analysis of the <strong>Thermo</strong> <strong>Scientific</strong> MassRuler Express LR Forward and Reverse DNA Ladders<br />

(#SM1263 and #SM1273) using the Agilent 2100 Bioanalyzer DNA 1000 LabChip Kit.<br />

A – analysis of MassRuler Express LR Forward DNA Ladder<br />

B – analysis of MassRuler Express LR Reverse DNA Ladder


MassRuler Low Range DNA Ladder,<br />

ready-to-use<br />

#SM0383<br />

1.7% TopVision Agarose (#R0491)<br />

10 μl/lane, 8 cm length gel,<br />

1X TBE, 5 V/cm, 1.5 h<br />

bp ng/20 μl ng/15 μl ng/10 μl ng/5 μl<br />

1031<br />

900<br />

800<br />

700<br />

600<br />

200<br />

180<br />

160<br />

140<br />

120<br />

150<br />

135<br />

120<br />

105<br />

90<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

45<br />

40<br />

35<br />

30<br />

500 200 150 100 50<br />

400 80 60 40 20<br />

300 60 45 30 15<br />

200 40 30 20 10<br />

100 20 15 10 5<br />

80 16 2 8 4<br />

MassRuler High Range DNA Ladder,<br />

ready-to-use<br />

#SM0393<br />

1% TopVision Agarose (#R0491)<br />

10 μl/lane, 8 cm length gel,<br />

1X TAE, 7 V/cm, 45 min<br />

bp ng/20 μl ng/15 μl ng/10 μl ng/5 μl<br />

10000 200 150 100 50<br />

8000 160 120 80 40<br />

6000 120 90 60 30<br />

5000 100 75 50 25<br />

4000 80 60 40 20<br />

3000 60 45 30 15<br />

2500 52 39 26 13<br />

2000 40 30 20 10<br />

1500 32 24 16 8<br />

MassRuler DNA Ladder Mix,<br />

ready-to-use<br />

#SM0403<br />

1% TopVision Agarose (#R0491)<br />

bp ng/20 μl ng/15 μl ng/10 μl ng/5 μl<br />

10000 200<br />

8000 160<br />

6000 120<br />

5000 100<br />

4000 80<br />

3000 60<br />

2500 52<br />

2000 40<br />

1500 32<br />

150<br />

120<br />

90<br />

75<br />

60<br />

45<br />

39<br />

30<br />

24<br />

100<br />

80<br />

60<br />

50<br />

40<br />

30<br />

26<br />

20<br />

16<br />

50<br />

40<br />

30<br />

25<br />

20<br />

15<br />

13<br />

10<br />

8<br />

1031<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

200<br />

180<br />

160<br />

140<br />

120<br />

200<br />

80<br />

150<br />

135<br />

120<br />

105<br />

90<br />

150<br />

60<br />

100<br />

90<br />

80<br />

70<br />

60<br />

100<br />

40<br />

50<br />

45<br />

40<br />

35<br />

30<br />

50<br />

20<br />

300 60 45 30 15<br />

200 40 30 20 10<br />

100<br />

80<br />

20<br />

16<br />

15<br />

12<br />

10<br />

8<br />

5<br />

4<br />

10 μl/lane, 8 cm length gel,<br />

1X TAE, 7 V/cm, 45 min<br />

MassRuler Express LR Forward DNA Ladder, ready-to-use<br />

#SM1263<br />

MassRuler Express LR Reverse DNA Ladder, ready-to-use<br />

#SM1273<br />

ng/20 μl ng/15 μl ng/10 μl ng/5 μl bp<br />

200 150 100 50 1000<br />

140 105 70 35 700<br />

100 75 50 25 500<br />

60 45 30 15 300<br />

40 30 20 10 200<br />

20 15 10 5 100<br />

MassRuler Express HR Forward DNA Ladder, ready-to-use<br />

#SM1243<br />

MassRuler Express HR Reverse DNA Ladder, ready-to-use<br />

#SM1253<br />

ng/20 μl ng/15 μl ng/10 μl ng/5 μl bp<br />

200 150 100 50 10000<br />

140<br />

100<br />

105<br />

75<br />

70<br />

50<br />

35<br />

25<br />

7000<br />

5000<br />

60 45 30 15 3000<br />

40 30 20 10 2000<br />

30 22.5 15 7.5 1500<br />

MassRuler Express Forward DNA Ladder Mix, ready-to-use<br />

#SM1283<br />

MassRuler Express Reverse DNA Ladder Mix, ready-to-use<br />

#SM1293<br />

ng/20 μl ng/15 μl ng/10 μl ng/5 μl bp<br />

200 150 100 50 10000<br />

140<br />

100<br />

105<br />

75<br />

70<br />

50<br />

35<br />

25<br />

7000<br />

5000<br />

60 45 30 15 3000<br />

40 30 20 10 2000<br />

30 22.5 15 7.5 1500<br />

200 150 100 50 1000<br />

140 105 70 35 700<br />

100 75 50 25 500<br />

60 45 30 15 300<br />

40 30 20 10 200<br />

20 15 10 5 100<br />

Forward Reverse<br />

Forward Reverse<br />

Forward Reverse<br />

bp ng/20 μl ng/15 μl ng/10 μl ng/5 μl<br />

1000 20 15 10 5<br />

700 40 30 20 10<br />

500 60 45 30 15<br />

300 100 75 50 25<br />

200 140 105 70 35<br />

100 200 150 100 50<br />

1% TopVision Agarose (#R0491)<br />

10 μl/lane, 8 cm length gel, 1X TAE, 7 V/cm, 30 min<br />

bp ng/20 μl ng/15 μl ng/10 μl ng/5 μl<br />

10000<br />

7000<br />

5000<br />

30<br />

40<br />

60<br />

22.5<br />

30<br />

45<br />

15<br />

20<br />

30<br />

7.5<br />

10<br />

15<br />

3000 100 75 50 25<br />

2000 140 105 70 35<br />

1500 200 150 100 50<br />

1% TopVision Agarose (#R0491)<br />

10 μl/lane, 8 cm length gel, 1X TAE, 7 V/cm, 30 min<br />

bp ng/20 μl ng/15 μl ng/10 μl ng/5 μl<br />

10000<br />

7000<br />

5000<br />

30<br />

40<br />

60<br />

22.5<br />

30<br />

45<br />

15<br />

20<br />

30<br />

7.5<br />

10<br />

15<br />

3000 100 75 50 25<br />

2000 140 105 70 35<br />

1500 200 150 100 50<br />

1000 20 15 10 5<br />

700 40 30 20 10<br />

500 60 45 30 15<br />

300 100 75 50 25<br />

200 140 105 70 35<br />

100 200 150 100 50<br />

1% TopVision Agarose (#R0491)<br />

10 μl/lane, 8 cm length gel, 1X TAE, 7 V/cm, 30 min<br />

www.thermoscientific.com/onebio 363


364<br />

FastRuler DNA Ladders, ready-to-use (10-10000 bp)<br />

DNA ladder, ready-to-use Cat. #<br />

Concentration,<br />

ng/μl<br />

FastRuler Ultra Low Range DNA Ladder SM1233 22.2<br />

www.thermoscientific.com/onebio<br />

Volume,<br />

μl<br />

Description<br />

<strong>Thermo</strong> <strong>Scientific</strong> FastRuler DNA ladders<br />

are specifically designed for fast sizing and<br />

quantification of double-stranded DNA in<br />

48-well (or 96-well) h igh throughput gels,<br />

as well as in conventional agarose gels.<br />

These ladders are mixtures of five blunt-end<br />

chromatography-purified individual DNA<br />

fragments that are easily resolved in a short<br />

separation distance (10-20 mm) after an<br />

8-14 min run. The ladders are especially<br />

useful for electrophoresis of PCR products.<br />

The FastRuler Ultra Low Range DNA Ladder<br />

contains dephosphorylated DNA fragments<br />

and is ideal for 5’-end labeling with T4<br />

Polynucleotide Kinase (#EK0031)<br />

in the forward reaction.<br />

Features<br />

Fast separation (8-14 min).<br />

Short separation distance (10-20 mm).<br />

Ideal for PCR products.<br />

Sharp bands.<br />

Easy-to-remember fragment sizes and<br />

quantities.<br />

Ready-to-use – premixed with loading dye.<br />

Supplied with loading dye solution<br />

for sample DNA.<br />

FastRuler Ultra Low Range DNA Ladder,<br />

ready-to-use<br />

#SM1233<br />

bp ng/20 μl ng/15 μl ng/10 μl ng/5 μl ng/3 μl<br />

200 80 60 40 20 12<br />

100<br />

50<br />

80<br />

80<br />

60<br />

60<br />

40<br />

40<br />

20<br />

20<br />

12<br />

12<br />

20 80 60 40 20 12<br />

10 124 93 62 31 19<br />

4% TopVision Agarose (#R0491)<br />

20 μl/lane, 1X TBE, 7 V/cm, 14 min<br />

Applications<br />

FastRuler Middle Range DNA Ladder,<br />

ready-to-use<br />

#SM1113<br />

bp ng/20 μl ng/15μl ng/10 μl ng/5 μl ng/3 μl<br />

5000 80 60 40 20 12<br />

2000 80 60 40 20 12<br />

850 80 60 40 20 12<br />

400 80 60 40 20 12<br />

100 80 60 40 20 12<br />

1% TopVision Agarose (#R0491)<br />

20 μl/lane, 1X TAE, 7 V/cm, 14 min<br />

Loading,<br />

μl/lane<br />

Range,<br />

bp<br />

Number of<br />

fragments<br />

10-200<br />

4.0<br />

FastRuler Low Range DNA Ladder<br />

FastRuler Middle Range DNA Ladder<br />

SM1103<br />

SM1113<br />

20<br />

20<br />

2x500 50-333 3-20<br />

50-1500<br />

100-5000<br />

5<br />

2.0<br />

1.0<br />

FastRuler High Range DNA Ladder SM1123 20 500-10000 1.0<br />

Supplied with:<br />

6X MassRuler DNA Loading Dye 1 ml<br />

or<br />

6X Orange DNA Loading Dye 1 ml<br />

Related Products<br />

TopVision Agaroses p.427<br />

Loading Dyes p.372<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

ATP p.411<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

Protocols and Recommendations<br />

» 6.1.2. DNA/RNA 5’-end labeling by<br />

T4 PNK in the forward reaction p. 349<br />

» 7.1. General recommendations for DNA<br />

electrophoresis p.374<br />

» 7.2. Preparation of agarose gels for DNA<br />

electrophoresis p.374<br />

» 7.4. Preparation of DNA samples for<br />

electrophoresis p.376<br />

» 7.5. Preparation of DNA ladders/markers<br />

for electrophoresis p.376<br />

Storage and Loading Buffer<br />

10 mM Tris-HCl (pH 7.6), 10 mM EDTA,<br />

0.005% bromophenol blue, 10% glycerol.<br />

Storage and Loading Buffer<br />

(for FastRuler Ultra Low Range)<br />

10 mM Tris-HCl (pH 7.6), 10 mM EDTA,<br />

0.025% orange G, 0.005% xylene cyanol FF,<br />

10% glycerol.<br />

6X MassRuler DNA Loading Dye<br />

10 mM Tris-HCl (pH 7.6), 0.03% bromophenol<br />

blue, 60% glycerol and 60 mM EDTA.<br />

6X Orange DNA Loading Dye<br />

10 mM Tris-HCl (pH 7.6), 0.15% orange G,<br />

0.03% xylene cyanol FF, 60% glycerol and<br />

60 mM EDTA.<br />

Storage<br />

Store at -20°C (or at 4°C or room temperature<br />

for 6 months).<br />

FastRuler Low Range DNA Ladder,<br />

ready-to-use<br />

#SM1103<br />

bp ng/20 μl ng/15 μl ng/10 μl ng/5 μl ng/3 μl<br />

1500<br />

850<br />

80<br />

80<br />

60<br />

60<br />

40<br />

40<br />

20<br />

20<br />

12<br />

12<br />

400 80 60 40 20 12<br />

200 80 60 40 20 12<br />

50 80 60 40 20 12<br />

2% TopVision Agarose (#R0491)<br />

20 μl/lane, 1X TBE, 7 V/cm, 14 min<br />

FastRuler High Range DNA Ladder,<br />

ready-to-use<br />

#SM1123<br />

bp ng/20 μl ng/15 μl ng/10 μl ng/5 μl ng/3 μl<br />

10000 80 60 40 20 12<br />

4000 80 60 40 20 12<br />

2000 80 60 40 20 12<br />

1000 80 60 40 20 12<br />

500 80 60 40 20 12<br />

1% TopVision Agarose (#R0491)<br />

20 μl/lane, 1X TAE, 7 V/cm, 14 min<br />

Agarose,<br />

%


ZipRuler Express DNA Ladder Set, ready-to-use (100-20000 bp)<br />

DNA ladder, ready-to-use Cat. #<br />

ZipRuler Express DNA Ladder Set<br />

ZipRuler Express DNA Ladder 1<br />

ZipRuler Express DNA Ladder 2<br />

Supplied with:<br />

6X Orange DNA Loading Dye 1 ml<br />

Related Products<br />

TopVision Agaroses p.427<br />

Loading Dyes p.372<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

Water, nuclease-free p.420<br />

% ng/0.5 μg bp<br />

8.8 44 10000<br />

25.6 128 5000<br />

8.8 44 3000<br />

8.8 44 2000<br />

8.0 40 1200<br />

8.0 40 850<br />

16.0 80 500<br />

8.0 40 300<br />

8.0 40 100<br />

1 2<br />

20 min<br />

Concentration,<br />

μg/μl<br />

Amount,<br />

μg<br />

Applications<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> ZipRuler Express<br />

DNA Ladder Set contains two ladders:<br />

ZipRuler Express DNA Ladder 1 and ZipRuler<br />

Express DNA Ladder 2. Both are mixtures<br />

of chromatography-purified individual DNA<br />

fragments. The set is designed for fast and<br />

accurate sizing of a broad range of DNA<br />

fragments and is compatible with various<br />

electrophoresis conditions.<br />

For fast separation, the two ladders are loaded<br />

into two different wells of the same gel. For<br />

longer runs, equal amounts of both ladders are<br />

loaded into the same gel well.<br />

ZipRuler Express DNA Ladder 1 is premixed<br />

with the 6X Orange DNA Loading Dye<br />

(orange G and xylene cyanol), whereas<br />

ZipRuler Express DNA Ladder 2 is premixed<br />

with the 6X MassRuler DNA Loading Dye<br />

(bromophenol blue). When both ladders are<br />

loaded in the same gel lane, the migration of<br />

DNA is monitored by three electrophoresis<br />

tracking dyes; bromophenol blue, xylene cyanol<br />

FF and orange G.<br />

Features<br />

Flexible – can be run in two lanes or<br />

combined in one lane.<br />

Composed of chromatography purified<br />

individual DNA fragments.<br />

Ready-to-use – premixed with loading dye for<br />

direct loading on gels.<br />

Supplied with loading dye for sample DNA.<br />

Loading,<br />

μg(μl)/lane<br />

Range,<br />

bp<br />

SM1373 0.1 2X50 100-200 0.25-0.5 (2.5-5) 100-10000<br />

200-20000<br />

ZipRuler Express DNA Ladder Set, ready-to-use,<br />

#SM1373<br />

bp ng/0.5 μg %<br />

20000 48 9.6<br />

7000 48 9.6<br />

4000 46 9.2<br />

2500 46 9.2<br />

1500 152 30.4<br />

1000 40 8.0<br />

700 40 8.0<br />

400 40 8.0<br />

200 40 8.0<br />

1% TopVision Agarose (#R0491)<br />

5 μl/lane, 8 cm length gel, 1X TAE, 7 V/cm, 20 min<br />

Mix<br />

20 min<br />

% ng/0.5 μg bp<br />

8.8 44 10000<br />

25.6 128 5000<br />

8.8 44 3000<br />

8.8 44 2000<br />

8.0 40 1200<br />

8.0 40 850<br />

16.0 80 500<br />

8.0 40 300<br />

8.0 40 100<br />

1 2<br />

40 min<br />

bp ng/0.5 μg %<br />

20000 48 9.6<br />

7000 48 9.6<br />

4000 46 9.2<br />

2500 46 9.2<br />

1500 152 30.4<br />

1000 40 8.0<br />

700 40 8.0<br />

400 40 8.0<br />

200 40 8.0<br />

1% TopVision Agarose (#R0491)<br />

5 μl/lane, 8 cm length gel, 1X TAE, 7 V/cm, 40 min<br />

Number of<br />

fragments<br />

Agarose,<br />

%<br />

9 5.0<br />

Storage and Loading Buffer<br />

(for ZipRuler Express DNA Ladder 1)<br />

10 mM Tris-HCl (pH 7.6), 10 mM EDTA,<br />

0.025% orange G, 0.005% xylene cyanol FF,<br />

10% glycerol.<br />

Storage and Loading Buffer<br />

(for ZipRuler Express DNA Ladder 2)<br />

10 mM Tris-HCl (pH 7.6), 10 mM EDTA,<br />

0.005% bromophenol blue, 10% glycerol.<br />

6X Orange DNA Loading Dye<br />

10 mM Tris-HCl (pH 7.6), 0.15% orange G,<br />

0.03% xylene cyanol FF, 60% glycerol and<br />

60 mM EDTA.<br />

Storage<br />

Store -20°C (or at 4°C or at room temperature<br />

for up to 6 months).<br />

Protocols and Recommendations<br />

» 7.1. General recommendations for DNA<br />

electrophoresis p.374<br />

» 7.2. Preparation of agarose gels for<br />

DNA electrophoresis p.374<br />

» 7.4. Preparation of DNA samples for<br />

electrophoresis p.376<br />

» 7.7. Separation of Express DNA ladders<br />

in different electrophoresis conditions p.377<br />

Mix<br />

40 min<br />

bp<br />

20000<br />

10000<br />

7000<br />

5000<br />

4000<br />

3000<br />

2500<br />

2000<br />

1500<br />

1200<br />

1000<br />

850<br />

700<br />

500<br />

400<br />

300<br />

200<br />

100<br />

1 – ZipRuler Express<br />

DNA Ladder 1<br />

2 – ZipRuler Express<br />

DNA Ladder 2<br />

Mix – Ladder 1 and<br />

Ladder 2 mixed in<br />

equal volumes<br />

www.thermoscientific.com/onebio 365


366<br />

O’RangeRuler DNA Ladders, ready-to-use (10-6000 bp)<br />

DNA ladder, ready-to-use Cat. #<br />

Supplied with:<br />

6X Orange DNA Loading Dye 1 ml Description<br />

Related Products<br />

TopVision Agaroses p.427<br />

Loading Dyes p.372<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

Water, nuclease-free p.420<br />

www.thermoscientific.com/onebio<br />

Concentration,<br />

μg/μl<br />

Amount,<br />

μg<br />

Applications<br />

Loading,<br />

μg(μl)/lane<br />

<strong>Thermo</strong> <strong>Scientific</strong> O’RangeRuler DNA ladders<br />

are designed for precise sizing of PCR products<br />

and other double-stranded DNA fragments in<br />

agarose or non-denaturing polyacrylamide gels.<br />

These step ladders consist of ligated blunt end<br />

basic unit repeats of 5, 10, 20, 50, 100, 200<br />

or 500 bp. They are not recommended for DNA<br />

quantification.<br />

O’RangeRuler DNA ladders are supplied with<br />

6X Orange DNA Loading Dye for sample DNA.<br />

The Orange G dye migrates at 50 bp in a<br />

1% agarose gel and can be used to monitor<br />

DNA migration in agarose or polyacrylamide<br />

gels. Orange G is the recommended dye<br />

to use when visualization of small DNA<br />

fragments is important.<br />

Recommended<br />

Range, bp<br />

Number of<br />

fragments<br />

Agarose,<br />

%<br />

O’RangeRuler 5 bp DNA Ladder SM1303<br />

10-100 19 5.0<br />

O’RangeRuler 10 bp DNA Ladder SM1313 0.1 50 50-100 0.5-1 (5-10) 10-150 15 4.5-5.0 8-10<br />

O’RangeRuler 20 bp DNA Ladder SM1323 20-300 15 3.5-4.0<br />

O’RangeRuler 50 bp DNA Ladder SM0613<br />

50-1000 20 1.7-2.5 4-8<br />

O’RangeRuler 100 bp DNA Ladder SM0623 100-1500 15 1.7-2.5 4-8<br />

O’RangeRuler 200 bp DNA Ladder<br />

O’RangeRuler 500 bp DNA Ladder<br />

O’RangeRuler 100+500 bp DNA<br />

Ladder<br />

SM0633<br />

SM0643<br />

SM0653<br />

0.05 25 100 0.25 (5)<br />

200-3000<br />

500-6000<br />

100-6000<br />

15<br />

12<br />

32<br />

0.8-1.2<br />

0.8-1.2<br />

1.0-1.2<br />

–<br />

Protocols and Recommendations<br />

» 7.1. General recommendations for DNA<br />

electrophoresis p.374<br />

» 7.2. Preparation of agarose gels for DNA<br />

electrophoresis p.374<br />

» 7.3. Preparation of gels for PAGE p.375<br />

» 7.4. Preparation of DNA samples for<br />

electrophoresis p.376<br />

» 7.5. Preparation of DNA ladders/markers<br />

for electrophoresis p.376<br />

PAGE,<br />

%<br />

Features<br />

Step ladders of 5, 10, 20, 50, 100, 200 or<br />

500 bp increments.<br />

Sharp bands.<br />

Easy-to-remember fragment sizes.<br />

Evenly spaced reference bands.<br />

Ready-to-use – premixed with 6X Orange<br />

Loading Dye.<br />

Supplied with loading dye for sample DNA.<br />

Storage and Loading Buffer<br />

10 mM Tris-HCl (pH 7.6), 10 mM EDTA,<br />

0.025% orange G, 0.005% xylene cyanol FF,<br />

10% glycerol.<br />

6X Orange DNA Loading Dye<br />

10 mM Tris-HCl (pH 7.6), 0.15% orange G,<br />

0.03% xylene cyanol FF, 60% glycerol and<br />

60 mM EDTA.<br />

Storage<br />

Store at -20°C (or at 4°C or room temperature<br />

for 6 months).


O’RangeRuler 5 bp<br />

DNA Ladder, ready-to-use<br />

#SM1303<br />

5% TopVision Agarose (#R0491)<br />

bp<br />

100<br />

35<br />

30<br />

25<br />

20<br />

15<br />

40<br />

50<br />

45<br />

10<br />

1 μg/lane,<br />

10 cm length gel,<br />

1X TBE, 5 V/cm, 1 h<br />

2.5% TopVision Agarose (#R0491)<br />

bp<br />

1500<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0.25 μg/lane,<br />

20 cm length gel,<br />

1X TBE, 5 V/cm, 1.5 h<br />

10% polyacrylamide<br />

bp<br />

100<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

0.5 μg/lane,<br />

20 cm length gel,<br />

1X TBE, 8 V/cm, 3 h<br />

O’RangeRuler 100 bp<br />

DNA Ladder, ready-to-use<br />

#SM0623<br />

5% polyacrylamide<br />

bp<br />

1500<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0.25 μg/lane,<br />

20 cm length gel,<br />

1X TAE, 8 V/cm, 3 h<br />

O’RangeRuler 10 bp<br />

DNA Ladder, ready-to-use<br />

#SM1313<br />

5% TopVision Agarose (#R0491)<br />

bp<br />

150<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

1 μg/lane,<br />

10 cm length gel,<br />

1X TBE, 5 V/cm, 1 h<br />

1% TopVision Agarose (#R0491)<br />

bp<br />

10% polyacrylamide<br />

bp<br />

150<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0.5 μg/lane,<br />

20 cm length gel,<br />

1X TBE, 8 V/cm, 3 h<br />

O’RangeRuler 200 bp<br />

DNA Ladder, ready-to-use<br />

#SM0633<br />

3000<br />

2800<br />

2600<br />

2400<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0.25 μg/lane,<br />

20 cm length gel,<br />

1X TAE, 7 V/cm, 1 h<br />

O’RangeRuler 20 bp<br />

DNA Ladder, ready-to-use<br />

#SM1323<br />

4% TopVision Agarose (#R0491)<br />

O’RangeRuler 500 bp<br />

DNA Ladder, ready-to-use<br />

#SM0643<br />

1% TopVision Agarose (#R0491)<br />

bp<br />

300<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

1 μg/lane,<br />

10 cm length gel,<br />

1X TBE, 5 V/cm, 1 h<br />

10% polyacrylamide<br />

bp<br />

6000<br />

5500<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0.25 μg/lane,<br />

20 cm length gel,<br />

1X TAE, 7 V/cm, 1 h<br />

bp<br />

300<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0.5 μg/lane,<br />

20 cm length gel,<br />

1X TBE, 8 V/cm, 3 h<br />

O’RangeRuler 50 bp<br />

DNA Ladder, ready-to-use<br />

#SM0613<br />

2.5% TopVision Agarose (#R0491)<br />

O’RangeRuler 100+500 bp<br />

DNA Ladder, ready-to-use<br />

#SM0653<br />

1% TopVision Agarose (#R0491)<br />

bp<br />

1000<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0.25 μg/lane,<br />

20 cm length gel,<br />

1X TBE, 5 V/cm, 1.5 h<br />

5% polyacrylamide<br />

bp<br />

6000<br />

5500<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0.25 μg/lane,<br />

20 cm length gel,<br />

1X TAE, 7 V/cm,1 h<br />

bp<br />

1000<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

www.thermoscientific.com/onebio 367<br />

50<br />

0.25 μg/lane,<br />

20 cm length gel,<br />

1X TAE, 8 V/cm, 3 h


368<br />

Conventional DNA Markers (8-23130 bp)<br />

DNA marker, marker # Cat. #<br />

Supplied with:<br />

6X DNA Loading Dye 2 ml / 10 ml Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> Conventional DNA<br />

Related Products<br />

TopVision Agaroses p.427<br />

Loading Dyes p.372<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

Klenow Fragment p.247<br />

Klenow Fragment, exo – p.248<br />

dNTP Set p.408<br />

Modified dNTPs p.413<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

ATP p.411<br />

0.5 M EDTA, pH 8.0 p.421<br />

Water, nuclease-free p.420<br />

Protocols and Recommendations<br />

» 6.1. DNA/RNA end labeling p.349<br />

» 6.1.4. DNA 3’-end labeling by fill-in of<br />

5’-overhangs p.349<br />

» 7.1. General recommendations for DNA<br />

electrophoresis p.374<br />

» 7.2. Preparation of agarose gels for DNA<br />

electrophoresis p.374<br />

» 7.3. Preparation of gels for PAGE p.375<br />

» 7.4. Preparation of DNA samples for<br />

electrophoresis p.376<br />

» 7.5. Preparation of DNA ladders/markers<br />

for electrophoresis p.376<br />

www.thermoscientific.com/onebio<br />

Concentration,<br />

μg/μl<br />

Amount,<br />

μg<br />

Applications,<br />

0.5 g/lane<br />

markers are traditional molecular weight<br />

standards used for sizing and approximate<br />

quantification of linear double-stranded DNA<br />

fragments in agarose and non-denaturing<br />

polyacrylamide gels. The markers are composed<br />

of lambda, phage or plasmid DNA digested<br />

to completion with the appropriate restriction<br />

enzyme(s), purified and dissolved in storage<br />

buffer. The DNA fragments contain blunt or<br />

sticky ends depending<br />

on the restriction enzyme used for the<br />

marker’s preparation.<br />

Lambda DNA/HindIII, Lambda DNA/EcoRI+HindIII,<br />

PhiX174 DNA/BsuRI and pUC19 DNA/MspI<br />

markers are available in ready-to-use versions –<br />

premixed with 6X DNA Loading Dye for direct<br />

loading on agarose gels.<br />

Markers supplied in TE storage buffer can be<br />

labeled radioactively with T4 Polynucleotide<br />

Kinase (#EK0031). Alternatively Lambda and<br />

pUC19 DNA/MspI markers can be labeled<br />

radioactively or non-radioactively with Klenow<br />

Fragment (#EP0051) or Klenow Fragment,<br />

exo – (#EP0421) using the fill-in reaction.<br />

Features<br />

Sizing and approximate quantification of<br />

DNA fragments.<br />

Sharp bands.<br />

Ready-to-use versions are premixed with 6X<br />

DNA Loading Dye.<br />

Supplied with loading dye for sample DNA.<br />

Loading,<br />

μg(μl)/lane<br />

Range,<br />

bp<br />

Number of<br />

fragments<br />

Agarose,<br />

%<br />

Lambda DNA/EcoRI Marker, 1 SM0281 0.5 250 (5x50) 500 0.5 (1) 3530-21226 6 0.7 -<br />

Lambda DNA/HindIII Marker, 2<br />

Lambda DNA/HindIII Marker, 2,<br />

ready-to-use<br />

SM0101<br />

SM0102<br />

SM0103<br />

0.5<br />

0.1<br />

250 (5x50)<br />

1250 (25x50)<br />

250 (5x50)<br />

500<br />

2500<br />

500<br />

0.5 (1)<br />

0.5 (5)<br />

125-23130 8 1.0 -<br />

Lambda DNA/EcoRI+HindIII Marker, 3<br />

Lambda DNA/EcoRI+HindIII Marker, 3,<br />

ready-to-use<br />

SM0191<br />

SM0192<br />

SM0193<br />

0.5<br />

0.1<br />

250 (5x50)<br />

1250 (25x50)<br />

250 (5x50)<br />

500<br />

2500<br />

500<br />

0.5 (1)<br />

0.5 (5)<br />

125-21226 13 1.0 -<br />

pBR322 DNA/BsuRI (HaeIII) Marker, 5 SM0271 0.5 50 100 0.5 (1) 8-587 22 2.5<br />

X174 DNA /BsuRI (HaeIII) Marker, 9<br />

X174 DNA /BsuRI (HaeIII) Marker, 9,<br />

ready-to-use<br />

SM0251<br />

SM0252<br />

SM0253<br />

0.5<br />

0.1<br />

50<br />

250 (5x50)<br />

50<br />

100<br />

500<br />

100<br />

0.5 (1)<br />

0.5 (5)<br />

72-1353 11 1.7<br />

5.0<br />

pUC19 DNA/MspI (HpaII) Marker, 23<br />

pUC19 DNA/MspI (HpaII) Marker, 23,<br />

ready-to-use<br />

SM0221<br />

SM0222<br />

SM0223<br />

0.5<br />

0.1<br />

50<br />

250 (5x50)<br />

50<br />

100<br />

500<br />

100<br />

0.5 (1)<br />

0.5 (5)<br />

26-501 13 1.7 5.0<br />

PAGE,<br />

%<br />

Storage Buffer (TE buffer)<br />

10 mM Tris-HCl (pH 7.6) and 1 mM EDTA.<br />

Storage and Loading Buffer<br />

(for ready-to-use markers)<br />

10 mM Tris-HCl (pH 7.6), 10 mM EDTA,<br />

0.005% bromophenol blue, 0.005% xylene<br />

cyanol FF and 10% glycerol.<br />

6X DNA Loading Dye<br />

10 mM Tris-HCl (pH 7.6), 0.03% bromophenol<br />

blue, 0.03% xylene cyanol FF, 60% glycerol and<br />

60 mM EDTA.<br />

Storage<br />

Store at -20°C.<br />

Ready-to-use versions can be stored at room<br />

temperature or at 4°C for 6 months.


Lambda DNA/EcoRI Marker, 1<br />

#SM0281<br />

0.7% TopVision Agarose (#R0491)<br />

bp ng/0.5 μg %<br />

21226* 218.8 43.8<br />

7421 76.5 15.3<br />

5804 59.8 12.0<br />

5643 58.2 11.6<br />

4878 50.3 10.1<br />

3530* 36.4 7.3<br />

0.5 μg/lane, 20 cm length gel, 1X TAE buffer, 3 V/cm,<br />

18 h (until bromophenol blue dye reached the bottom<br />

of the gel)<br />

Lambda DNA/HindIII Marker, 2<br />

#SM0101/2/3<br />

1% TopVision Agarose (#R0491)<br />

bp ng/0.5 μg %<br />

23130* 238.4 47.7<br />

9416 97.1 19.4<br />

6557 67.6 13.5<br />

4361* 45.0 9.0<br />

2322 23.9 4.8<br />

2027 20.9 4.2<br />

564 5.8 1.2<br />

125 1.3 0.3<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TAE, 7 V/cm, 45 min<br />

Lambda DNA/EcoRI+HindIII Marker, 3<br />

#SM0191/2/3<br />

1% TopVision Agarose (#R0491)<br />

bp ng/0.5 μg %<br />

21226* 218.8 43.8<br />

5148 53.1 10.6<br />

4973 51.3 10.3<br />

4268 44.0 8.8<br />

3530* 36.4 7.3<br />

2027<br />

1904<br />

20.9<br />

19.6<br />

4.2<br />

3.9<br />

1584 16.3 3.3<br />

1375 14.2 2.8<br />

947 9.8 1.95<br />

831 8.6 1.7<br />

564 5.8 1.2<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TAE, 7 V/cm, 45 min<br />

125 bp fragment is not visible and it comprises 0.3%.**<br />

* cohesive ends (the 12 nt cos site of lambda DNA) may anneal and form additional bands. These fragments can be separated by h eating at 65°C for 5 min and then cooling on ice for 3 min.<br />

** the shortest fragments (oblique) are not visible with standard electrophoresis methods. Fragment lengths are calculated using the respective DNA sequence (see p.357).<br />

pBR322 DNA/BsuRI (HaeIII) Marker, 5<br />

#SM0271<br />

2.5% TopVision Agarose (#R0491)<br />

bp ng/0.5 μg %<br />

587 67.3 13.5<br />

540 61.9 12.4<br />

502 57.6 11.5<br />

458 52.5 10.5<br />

434 49.8 10.0<br />

267<br />

234<br />

213<br />

192<br />

184<br />

124<br />

123<br />

104<br />

89<br />

30.6<br />

26.8<br />

24.4<br />

22.0<br />

21.1<br />

14.2<br />

14.1<br />

11.9<br />

10.2<br />

6.1<br />

5.4<br />

4.9<br />

4.4<br />

4.2<br />

2.8<br />

2.8<br />

2.4<br />

2.0<br />

80 9.2 1.8<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TBE, 5 V/cm, 1.5 h<br />

5% polyacrylamide<br />

bp<br />

587*<br />

540*<br />

502<br />

458*<br />

434<br />

267<br />

234<br />

213<br />

192<br />

184<br />

124<br />

123<br />

104<br />

89<br />

80<br />

64<br />

57<br />

51<br />

0.5 μg/lane, 20 cm length gel,<br />

1X TAE, 8 V/cm, 3 h<br />

X174 DNA/BsuRI (HaeIII) Marker, 9<br />

#SM0251/2/3<br />

1.7% TopVision Agarose (#R0491)<br />

bp ng/0.5 μg %<br />

1353 125.6 25.1<br />

1078 100.1 20.0<br />

872 81.0 16.2<br />

603 56.0 11.2<br />

310<br />

281<br />

271<br />

234<br />

194<br />

28.8<br />

26.1<br />

25.2<br />

21.7<br />

18.0<br />

5.8<br />

5.2<br />

5.0<br />

4.3<br />

3.6<br />

118 11.0 2.2<br />

72 6.7 1.3<br />

0.5 μg/lane, 8 cm length gel,<br />

1X TBE, 5 V/cm, 1.5 h<br />

5% polyacrylamide<br />

bp<br />

1353<br />

1078<br />

872<br />

603<br />

310*<br />

281*<br />

271*<br />

234<br />

194<br />

118<br />

72<br />

0.5 μg/lane, 20 cm length gel,<br />

1X TAE, 8 V/cm, 3 h<br />

pUC19 DNA/MspI (HpaII) Marker, 23<br />

#SM0221/2/3<br />

21, 18, 11, 8 bp fragments are not visible and comprise 5.4%.**<br />

26 bp fragment is not visible and comprises 1.0%.**<br />

* bands form an anomalous pattern on polyacrylamide gels.<br />

** the shortest fragments (oblique) are not visible using standard electrophoresis methods. Fragment lengths are calculated using the respective DNA sequence (see p.357).<br />

1.7% TopVision Agarose (#R0491)<br />

bp ng/0.5μg %<br />

501 93.3 18.7<br />

489<br />

404<br />

91.0<br />

75.2<br />

18.2<br />

15.0<br />

331 61.6 12.3<br />

242 45.0 9.0<br />

190<br />

147<br />

111<br />

110<br />

67<br />

35.4<br />

27.4<br />

20.7<br />

20.5<br />

12.5<br />

7.1<br />

5.5<br />

4.1<br />

4.1<br />

2.5<br />

34 6.5 6.3<br />

34 6.5 6.3<br />

0.5μg/lane, 8cm length gel,<br />

1X TBE, 5V/cm, 1.5h<br />

5% polyacrylamide<br />

b p<br />

501*<br />

489*<br />

404<br />

331<br />

242<br />

190<br />

147<br />

111<br />

110<br />

67<br />

34, 34<br />

0.5μg/lane, 20cm length gel,<br />

1X TAE, 8V/cm, 3h<br />

www.thermoscientific.com/onebio 369


370<br />

NoLimits Individual DNA Fragments and Custom DNA Ladders<br />

DNA fragment<br />

size<br />

Cat. #<br />

Amount,<br />

μg<br />

10 bp SM1391 10<br />

15 bp SM1381 10<br />

20 bp SM1401 10<br />

25 bp SM1761 10<br />

35 bp SM1411 10<br />

50 bp SM1421 10<br />

75 bp SM1431 10<br />

100 bp SM1441 10<br />

150 bp SM1601 10<br />

200 bp SM1611 10<br />

250 bp SM1451 10<br />

300 bp SM1621 10<br />

400 bp SM1631 10<br />

500 bp SM1641 10<br />

600 bp SM1461 10<br />

700 bp SM1651 10<br />

750 bp SM1471 10<br />

800 bp SM1481 10<br />

850 bp SM1661 10<br />

900 bp SM1491 10<br />

1000 bp SM1671 10<br />

1200 bp SM1681 10<br />

1500 bp SM1691 10<br />

2000 bp SM1701 10<br />

2500 bp SM1571 10<br />

3000 bp SM1711 10<br />

3500 bp SM1501 10<br />

4000 bp SM1721 10<br />

5000 bp SM1731 10<br />

6000 bp SM1511 10<br />

7000 bp SM1741 10<br />

8000 bp SM1521 10<br />

10000 bp SM1751 10<br />

15000 bp SM1531 10<br />

17000 bp SM1771 10<br />

20000 bp SM1541 10<br />

www.thermoscientific.com/onebio<br />

Collection of Individual DNA Fragments<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> NoLimits Collection<br />

includes 36 h ighly purified individual DNA<br />

fragments ranging from 10 to 20,000 bp.<br />

NoLimits DNA fragments are produced using<br />

specifically designed plasmids purified through<br />

a proprietary technology. Plasmid DNA is<br />

digested with <strong>Thermo</strong> <strong>Scientific</strong> restriction<br />

enzymes and the individual DNA fragments are<br />

chromatography-purified from the digestion<br />

mixture. As a result, NoLimits fragments are<br />

exceptionally pure and free of any truncated<br />

or degraded molecules. These custom DNA<br />

fragments are the best choice for applications<br />

ranging from electrophoresis (both gel and<br />

capillary) to HPLC and beyond.<br />

1.1% TopVision Agarose (#R0491), 1X TAE, 7 V/cm, 30 min.<br />

NoLimits DNA fragments from 300 bp to 10 kb.<br />

NoLimits Custom DNA Ladders Service<br />

Custom DNA ladder formulations supplied in<br />

bulk quantities to fit your needs:<br />

Individual DNA fragments or mixtures.<br />

Custom ladders of any combination and<br />

concentration.<br />

Reference bands can be designed-in.<br />

Flexible formulations.<br />

Ready-to-use versions premixed with any<br />

loading dye (see p.372).<br />

From microgram to gram quantities.<br />

Features<br />

Chromatography-purified individual DNA<br />

fragments.<br />

Broad range – 10-20,000 bp.<br />

Sharp peaks during capillary electrophoresis;<br />

sharp bands after gel electrophoresis.<br />

Precise DNA concentration.<br />

Applications<br />

Gel electrophoresis.<br />

Capillary electrophoresis.<br />

DNA quantification.<br />

HPLC analysis.<br />

Applications where a custom DNA size<br />

standard is required.<br />

Concentration<br />

0.5 μg/μl<br />

Storage Buffer (TE buffer)<br />

10 mM Tris-HCl (pH 7.6) with 1 mM EDTA.<br />

Storage<br />

Store at -20°C.<br />

How to Order?<br />

Contact our local representative:<br />

see Contacts on<br />

www.thermoscientific.com/onebio


TopVision Agarose<br />

Agarose Cat. # Size Applications Page<br />

TopVision Agarose<br />

TopVision Low Melting Point Agarose R0801 25 g<br />

Related Products<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

Agarase p.319<br />

DNA Markers/Ladders pp.358-370<br />

Loading Dyes p.372<br />

GeneJET Gel Extraction Kit p.317<br />

Silica Bead DNA Gel Extraction Kit p.318<br />

Electrophoresis Buffers<br />

R0491 100 g <br />

<br />

R0492 500 g <br />

<br />

<br />

<br />

427<br />

427<br />

Protocols and Recommendations<br />

» 7.1. General recommendations for DNA<br />

electrophoresis p.374<br />

» 7.2. Preparation of agarose gels for DNA<br />

electrophoresis p.374<br />

Buffer Cat. # Size 1X composition Application and features Usage recommendations<br />

50X TAE Buffer<br />

(Tris-acetate-EDTA)<br />

10X TBE Buffer<br />

(Tris-borate-EDTA)<br />

Related Products<br />

B49 1 L<br />

B52 1 L<br />

TopVision Agaroses p.427<br />

DNA Markers/Ladders pp.358-370<br />

Loading Dyes p.372<br />

40 mM Tris<br />

20 mM acetic acid<br />

1 mM EDTA<br />

pH of 50X TAE: 8.4<br />

89 mM Tris<br />

89 mM boric acid<br />

2 mM EDTA<br />

pH of 10X TBE: 8.3<br />

Electrophoresis of nucleic acids in agarose and<br />

polyacrylamide gels.<br />

Used both as a running buffer and as a gel<br />

preparation buffer.<br />

Recommended for resolution of RNA and DNA<br />

fragments larger than 1500 b(p), for genomic<br />

DNA and for large supercoiled DNA.<br />

Filtered through a 0.22 μm membrane.<br />

Electrophoresis of nucleic acids in agarose and<br />

polyacrylamide gels.<br />

Used both as a running buffer and as a gel<br />

preparation buffer.<br />

Recommended for electrophoresis of RNA and<br />

DNA fragments smaller than 1500 b(p).<br />

Filtered through a 0.22 μm membrane.<br />

Storage<br />

There are no time limitations for storage of the<br />

electrophoresis buffers at room temperature.<br />

If the buffer is stored at lower temperatures, a<br />

precipitate may form, which is easily dissolved<br />

by gentle h eating.<br />

<br />

the electrophoresis run.<br />

<br />

50X TAE buffer to 980 ml of deionized<br />

water and mix well.<br />

<br />

capacity, therefore periodic replacement<br />

of the buffer during prolonged<br />

electrophoresis is recommended.<br />

<br />

the electrophoresis run.<br />

<br />

10X TBE buffer to 900 ml of deionized<br />

water and mix well.<br />

<br />

molecules migrate about 10% slower in<br />

TBE buffer than in TAE buffer.<br />

Protocols and Recommendations<br />

» 7.1. General recommendations for DNA<br />

electrophoresis p.374<br />

» 7.2. Preparation of agarose gels for DNA<br />

electrophoresis p.374<br />

» 7.3. Preparation of gels for PAGE p.375<br />

www.thermoscientific.com/onebio 371


372<br />

Loading Dyes<br />

Related Products<br />

TopVision Agaroses p.427<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

DNA Markers/Ladders pp.358-370<br />

Protocols and Recommendations<br />

» 7.4. Preparation of DNA samples for<br />

electrophoresis p.376<br />

» 7.5. Preparation of DNA ladders/markers<br />

for electrophoresis p.376<br />

www.thermoscientific.com/onebio<br />

Description<br />

<strong>Thermo</strong> <strong>Scientific</strong> DNA Loading dye solutions<br />

are used to prepare DNA markers and<br />

DNA samples for loading on agarose or<br />

polyacrylamide gels. The optimized solutions<br />

contain different dyes (bromophenol blue,<br />

xylene cyanol FF or orange G) for visual tracking<br />

of DNA migration during electrophoresis. The<br />

presence of glycerol ensures that the DNA<br />

forms a layer at the bottom of the well. EDTA<br />

included in the solutions binds divalent metal<br />

ions and inhibits metal-dependent nucleases.<br />

6X DNA Loading Dye & SDS Solution is<br />

recommended for agarose gel analysis of DNA<br />

samples that contain h igh amounts of DNA<br />

binding proteins. The presence of SDS eliminates<br />

DNA-protein interactions and prevents gel-shifts.<br />

2X RNA Loading Dye is mainly used for<br />

preparation of RNA samples for electrophoresis,<br />

but is also used for denaturing DNA<br />

electrophoresis since it contains the denaturing<br />

agent formamide.<br />

100 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

10 bp<br />

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5<br />

Agarose, %<br />

Tracking dye migration in agarose gels.<br />

Storage<br />

Store at -20°C (or at 4°C or room temperature<br />

for 12 months).<br />

Bromphenol blue in TBE buffer<br />

Bromphenol blue in TAE buffer<br />

Xylene cyanol FF in TBE buffer<br />

Xylene cyanol FF in TAE buffer


Loading dye Cat. # Size,<br />

ml<br />

6X DNA<br />

Loading Dye<br />

6X MassRuler<br />

DNA Loading<br />

Dye<br />

6X Orange<br />

DNA Loading<br />

Dye<br />

6X TriTrack<br />

DNA Loading<br />

Dye<br />

6X DNA<br />

Loading Dye &<br />

SDS Solution<br />

2X RNA<br />

Loading Dye<br />

R0611 5x1<br />

R0621 5x1<br />

R0631 5x1<br />

R1161 5x1<br />

R1151 5x1<br />

R0641 1<br />

Composition Features Applications<br />

6X Solution<br />

<br />

bromophenol blue<br />

xylene cyanol FF<br />

<br />

<br />

adjusted with NaOH)<br />

6X Solution<br />

<br />

bromophenol blue<br />

<br />

<br />

adjusted with NaOH)<br />

6X Solution<br />

<br />

orange G<br />

xylene cyanol FF<br />

<br />

<br />

adjusted with NaOH)<br />

6X Solution<br />

<br />

bromophenol blue<br />

xylene cyanol FF<br />

orange G<br />

<br />

<br />

adjusted with NaOH)<br />

6X Solution<br />

bromophenol blue<br />

xylene cyanol FF<br />

<br />

<br />

<br />

adjusted with Tris)<br />

2X Solution<br />

<br />

<br />

bromophenol blue<br />

xylene cyanol FF<br />

<br />

<br />

<br />

DNA migration during<br />

electrophoresis.<br />

<br />

with UV visualization of<br />

DNA fragments.<br />

<br />

dependent nucleases.<br />

<br />

DNA migration during<br />

electrophoresis.<br />

<br />

with UV visualization of<br />

DNA fragments.<br />

<br />

dependent nucleases.<br />

<br />

DNA migration during<br />

electrophoresis.<br />

<br />

with UV visualization of<br />

DNA fragments.<br />

<br />

dependent nucleases.<br />

<br />

DNA migration during<br />

electrophoresis.<br />

<br />

with UV visualization of<br />

DNA fragments.<br />

<br />

dependent nucleases.<br />

<br />

DNA-protein interactions,<br />

prevents appearance<br />

of additional bands due<br />

to annealing of DNA<br />

molecules with cohesive<br />

ends.<br />

<br />

dependent nucleases.<br />

<br />

DNA and RNA fragment<br />

migration during<br />

electrophoresis.<br />

<br />

with UV visualization of<br />

DNA or RNA fragments.<br />

<br />

denaturation DNA and<br />

RNA fragments.<br />

<br />

DNA for loading<br />

on agarose or<br />

polyacrylamide gels.<br />

<br />

DNA molecules.<br />

<br />

DNA for loading<br />

on agarose or<br />

polyacrylamide gels.<br />

<br />

DNA molecules.<br />

<br />

DNA for loading<br />

on agarose or<br />

polyacrylamide gels.<br />

<br />

DNA for loading<br />

on agarose or<br />

polyacrylamide gels.<br />

<br />

DNA samples<br />

containing h igh<br />

amounts of DNA<br />

binding proteins.<br />

<br />

<br />

gel analysis<br />

following restriction<br />

digestion, ligation or<br />

dephosphorylation<br />

reactions.<br />

<br />

DNA for loading on<br />

denaturing gels<br />

<br />

RNA for loading<br />

on agarose or<br />

polyacrylamide gels.<br />

* for more detailed information regarding the migration rates of dyes in agarose and polyacrylamide gels see Table 7.1 and Table 7.2 on p.374.<br />

Migration of dyes<br />

(1% agarose,<br />

TAE or TBE buffers)<br />

Xylene cyanol FF:<br />

TAE: 4160 bp<br />

TBE: 3030 bp<br />

Bromophenol blue:<br />

TAE: 370 bp<br />

TBE: 220 bp<br />

Bromophenol blue:<br />

TAE: 370 bp<br />

TBE: 220 bp<br />

Xylene cyanol FF:<br />

TAE: 4160 bp<br />

TBE: 3030 bp<br />

Orange G:<br />

TAE/TBE:


374<br />

Protocols and Recommendations<br />

7.1. General recommendations<br />

for DNA electrophoresis<br />

<br />

according to the tables below:<br />

Table 7.1. Recommended agarose gel percentages<br />

for electrophoretic separation of DNA fragments.<br />

Agarose<br />

gel,<br />

%<br />

Range of<br />

efficient<br />

separation, bp<br />

www.thermoscientific.com/onebio<br />

Approximate positions of tracking<br />

dyes, bp*<br />

Bromophenol blue Xylene cyanol FF<br />

TBE<br />

buffer<br />

TAE<br />

buffer<br />

TBE<br />

buffer<br />

TAE<br />

buffer<br />

0.5 2000-50000 750 1150 13000 16700<br />

0.6 1000-20000 540 850 8820 11600<br />

0.7 800-12000 410 660 6400 8500<br />

0.8 800-10000 320 530 4830 6500<br />

0.9 600-10000 260 440 3770 5140<br />

1.0 400-8000 220 370 3030 4160<br />

1.2 300-7000 160 275 2070 2890<br />

1.5 200-3000 110 190 1300 1840<br />

2.0 100-2000 65 120 710 1040<br />

3.0 25-1000 30 60 300 460<br />

4.0 10-500 18 40 170 260<br />

5.0 10-300 12 27 105 165<br />

* Positions of the tracking dyes can only be estimated approximately<br />

because the dye front migrates as wide band.<br />

Table 7.2. Recommended polyacrylamide gel<br />

percentages for electrophoretic separation of DNA<br />

fragments (1).<br />

Polyacrylamide gel<br />

(with BIS at 1:20),<br />

% (w/v)<br />

Range of<br />

efficient<br />

separation<br />

Approximate positions of<br />

tracking dyes*<br />

Bromophenol<br />

blue<br />

Xylene<br />

cyanol FF<br />

4.0<br />

Denaturing gels<br />

100-500 b 50 b 230 b<br />

5.0 70-400 b 35 b 130 b<br />

6.0 40-300 b 26 b 105 b<br />

8.0 30-200 b 19 b 75 b<br />

10.0 20-100 b 12 b 55 b<br />

15.0 10-50 b 10 b 40 b<br />

20.0 5-30 b 8 b 28 b<br />

30.0 1-10 b 6 b 20 b<br />

Non-denaturing gels<br />

3.5 100-1000 bp 100 bp 460 bp<br />

5.0 80-500 bp 65 bp 260 bp<br />

8.0 60-400 bp 45 bp 160 bp<br />

12.0 50-200 bp 20 bp 70 bp<br />

15.0 25-150 bp 15 bp 60 bp<br />

20.0 5-100 bp 12 bp 45 bp<br />

* Tracking dye positions can only be estimated as the dye front<br />

migrates as wide band.<br />

<br />

DNA fragments of various sizes:<br />

Size of the DNA Voltage Buffer<br />

< 1 kb 5-10 V/cm TBE<br />

1-5 kb 4-10 V/cm TAE or TBE<br />

> 5 kb<br />

Up to 10 kb, fast<br />

1-3 V/cm TAE<br />

electrophoresis with<br />

Express DNA ladders<br />

up to 23 V/cm TAE<br />

<br />

the DNA ladder/marker) for both sample DNA<br />

and ladder/marker DNA.<br />

<br />

DNA and the ladder/marker DNA. The sample<br />

can be diluted with 1X DNA loading dye.<br />

<br />

samples as this may cause band shift during<br />

electrophoresis.<br />

<br />

gel staining in 0.5 μg/ml ethidium bromide<br />

solution, SYBR Green I or GelRed.<br />

7.1.1. Recommendations for accurate<br />

in-gel DNA quantification<br />

<br />

NTPs or buffer components can interfere with<br />

spectrophotometrical measurements and may<br />

lead to inaccurate quantification of sample<br />

DNA. In these cases, it is best to rely on gel<br />

quantification data.<br />

<br />

video-densitometry analysis.<br />

<br />

(supplied with the DNA ladder/marker) for<br />

both the sample DNA and the<br />

ladder/marker DNA.<br />

<br />

ladder band of the closest size.<br />

<br />

sample to approximately equalize it with the<br />

amount of DNA in the nearest band.<br />

7.2. Preparation of agarose gels<br />

for DNA electrophoresis<br />

7.2.1. Non-denaturing agarose gel<br />

electrophoresis<br />

Use a flask of at least three times greater<br />

volume than that of the solution to avoid<br />

boiling over.<br />

<br />

prepare the gel and to run electrophoresis.<br />

<br />

TBE Buffer (#B52) to a 1X concentration<br />

immediately before use.<br />

<br />

smaller than 1500 bp. For larger DNA, use<br />

TAE buffer.<br />

<br />

bromide to both the gel and the<br />

electrophoresis buffer at a final 0.5 μg/ml<br />

concentration. Alternatively, stain the gel<br />

after electrophoresis.<br />

Wear gloves when h andling ethidium bromide.<br />

<br />

plasmid DNA, ethidium bromide should not<br />

be included in the electrophoresis buffer<br />

or gel. The gel should be stained only after<br />

electrophoresis is complete.<br />

<br />

to UV light may cause DNA alterations.<br />

Therefore, minimize UV exposure to a few<br />

seconds if the purified DNA fragments will be<br />

used for cloning.<br />

Staining before electrophoresis with such<br />

intercalating dyes as SYBR GreenI, GelRed<br />

and others dyes may cause abberant<br />

migration of DNA bands and DNA Ladder,<br />

that may cause mistakes in sizing of DNA.<br />

Perform DNA staining step only after gel<br />

electrophoresis.<br />

Preparation:<br />

1. Weigh out the required amount of agarose<br />

(#R0491 or #R0801) (depending on the gel<br />

percentage) into an Erlenmeyer flask.<br />

2. Add the appropriate volume of either 1X TBE<br />

or 1X TAE buffer and swirl to mix.<br />

3. Weigh the flask with the solution.<br />

For h igh percentage gels (3-5%): Add an<br />

excess amount of distilled water to increase the<br />

weight by 10-20%.<br />

4. Boil the mixture in a microwave oven (at<br />

medium power) until the agarose melts<br />

completely; swirl the flask several times<br />

while boiling. To prepare the h ighest<br />

quality agarose gels of any percentage,<br />

an additional 3-5 min of boiling after<br />

completely melting the agarose is<br />

recommended. A significant amount of<br />

water evaporates during this procedure<br />

and therefore restoring of the initial weight<br />

(in step 5) is required to obtain the desired<br />

percentage gel.<br />

5. Weigh the flask again and if necessary, add h<br />

ot distilled water to restore the initial weight.<br />

For h igh percentage gels (3-5%): Check (by<br />

weighing) that the excess 10-20% of water h as<br />

evaporated and, if needed, continue boiling to<br />

remove any excess, or add h ot distilled water to<br />

restore the initial weight.<br />

Optional: Add ethidium bromide to a final<br />

concentration of 0.5 μg/ml. Mix well and h eat for<br />

1 min without boiling.<br />

6. Cool the solution to 65-70°C. Pour carefully<br />

on a clean casting plate with an appropriate<br />

comb. If bubbles appear, push them<br />

carefully away to the sides with a pipette tip.<br />

7. Solidify the gel for approximately 30 min<br />

before use. Low percentage low melting point<br />

agarose gels need to be solidified at 4°C.<br />

8. Immerse the gel into the desired<br />

electrophoresis buffer. Load the samples<br />

onto the gel.<br />

9. Run electrophoresis at 5-7 V/cm until the<br />

bromophenol blue runs approximately 2/3 of<br />

the way down the gel.<br />

10. After electrophoresis the gel can be stained<br />

by immersing it into a 0.5 μg/ml ethidium<br />

bromide solution for 15-20 min, stained<br />

with GelRed, SYBR Green I or any other DNA<br />

staining technique.<br />

Warning. Flasks containing h ot agarose<br />

solution should be h andled with caution.


7.2.2. Alkaline agarose gel<br />

electrophoresis<br />

Double stranded DNA ladders are not<br />

recommended for denaturing gel analysis<br />

as they may form an atypical pattern<br />

during electrophoresis. However, these<br />

discrepancies are normally acceptable for<br />

analysis of cDNA or other ssDNA in alkaline<br />

gels.<br />

<br />

volume than that of the solution to avoid a<br />

boil over event.<br />

<br />

1. Weigh out the required amount of agarose<br />

(depending on the gel percentage) into an<br />

Erlenmeyer flask.<br />

2. Add the appropriate volume of the buffer<br />

(30 mM NaCl, 2 mM EDTA, pH 7.5) and<br />

swirl to mix.<br />

3-7. Follow steps from protocol 9.2.1.<br />

8. Immerse the gel for at least one h our<br />

into the alkaline electrophoresis buffer<br />

(30 mM NaOH, 2 mM EDTA).<br />

9. Load the samples.<br />

10. Run electrophoresis at 3 V/cm in alkaline<br />

electrophoresis buffer (30 mM NaOH, 2 mM<br />

EDTA) until the dye runs approximately 2/3<br />

of the way down the gel.<br />

After electrophoresis the gel should be<br />

immersed for 30 min in 100-300 ml of<br />

0.5 M Tris-HCl buffer, pH 7.5 and then<br />

stained in a 0.5 μg/ml ethidium bromide<br />

solution for 30 min. If staining is not<br />

sufficient, the whole procedure can be<br />

repeated.<br />

Warning. Hot agarose solution should be h<br />

andled very carefully.<br />

7.3. Preparation of gels for PAGE<br />

7.3.1. Non-denaturing PAGE<br />

Reagents:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

sample and ladder DNA<br />

1. For a nondenaturing 5% polyacrylamide gel<br />

solution of 40 ml, mix the following:<br />

10X TBE Buffer (#B52) 4 ml<br />

20% acrylamide/bisacrylamide 10 ml<br />

deionized water 26 ml<br />

Caution: Acrylamide is a neurotoxin; always<br />

wear gloves, safety glasses, and a surgical<br />

mask when working with acrylamide powder.<br />

2. Vigorously agitate the solution for 1 min by<br />

magnetic stirring to ensure complete mixing.<br />

3. Add 48 μl of TEMED and swirl the flask to<br />

ensure that the solution is thoroughly mixed.<br />

4. Immediately add 240 μl of fresh 10% (w/v)<br />

APS and mix thoroughly.<br />

5. Pour the acrylamide between the gel plates<br />

and insert the comb.<br />

Clamp the comb in place at the top of the<br />

gel to avoid separation of the gel from the<br />

plates as the acrylamide polymerizes. Allow<br />

the gel to polymerize for 30 min.<br />

Note<br />

Polymerization begins as soon as APS is added to the mixture,<br />

so all subsequent steps must be performed quickly.<br />

6. Remove the comb and any bottom spacers<br />

from the gel. Wash the gel plates to clean<br />

any spilled acrylamide and be sure that the<br />

spacers are properly seated and clean. Fill the<br />

lower reservoir of the electrophoresis tank with<br />

1X TBE buffer. Initially, place the gel into the<br />

lower tank at an angle to avoid the formation<br />

of air bubbles between the plates and the gel<br />

bottom. Clamp the gel plates to the top of the<br />

electrophoresis tank and fill the upper reservoir<br />

with 1X TBE so that the wells are covered.<br />

7. Pre-run and warm the gel for at least<br />

30 min at 5 V/cm (constant voltage).<br />

8. Prepare the ladders for electrophoresis as<br />

recommended in the product insert or in<br />

Table 7.3 on p.377.<br />

Load the recommended volume of the<br />

ladder, premixed with the appropriate<br />

loading dye solution. Use the same loading<br />

dye for the sample DNA.<br />

9. Run the gel at 5 V/cm, taking care to avoid<br />

excessive h eating. Run the gel for the time<br />

indicated in the certificate of analysis of the<br />

ladder.<br />

10. Stain the gel in a 0.5 μg/ml ethidium<br />

bromide aqueous solution for about 30 min.<br />

Examine the gel under the UV light.<br />

7.3.2. Denaturing polyacrylamide/<br />

urea gel electrophoresis<br />

Reagents:<br />

<br />

<br />

<br />

<br />

<br />

water<br />

<br />

<br />

1. Prepare denaturing 10% polyacrylamide gel<br />

solution of 40 ml, mix the following:<br />

10X TBE Buffer (#B52) 4 ml<br />

20% acrylamide/bisacrylamide 10 ml<br />

UREA<br />

19.2 g (to 8 M final<br />

concentration)<br />

deionized water to 40 ml<br />

Caution: Acrylamide is a neurotoxin; always<br />

wear gloves, safety glasses, and a surgical<br />

mask when working with acrylamide powder.<br />

2. Vigorously agitate the solution by magnetic<br />

stirring to ensure complete mixing and<br />

solving of UREA powder.<br />

3. Add 40 μl TEMED and swirl the flask to<br />

ensure thorough mixing.<br />

4. Immediately add 400 μl of fresh 10% (w/v)<br />

APS and mix thoroughly.<br />

5. Pour the acrylamide between the gel plates<br />

and insert the comb.<br />

6. Clamp the comb in place at the top of the<br />

gel to avoid separation of the gel from the<br />

plates as the acrylamide polymerizes. Allow<br />

the gel to polymerize for 30 min.<br />

Note<br />

Polymerization begins as soon as APS is added to the mixture,<br />

so all succeeding actions must be performed promptly.<br />

Run the gel:<br />

1. After polymerization is complete, remove the<br />

comb and any bottom spacers from the gel.<br />

Fill the lower reservoir of the electrophoresis<br />

tank with 1X TBE buffer. Initially, place the<br />

gel into the lower tank at an angle to avoid<br />

the formation of air bubbles between the<br />

plates and the gel bottom. Clamp the gel<br />

plates to the top of the electrophoresis tank<br />

and fill the upper reservoir with 1X TBE so<br />

that the wells are covered.<br />

2. Pre-run and warm the gel for at least<br />

30 min at 5 V/cm (constant voltage).<br />

Note<br />

During the gel run h eat the gel buffer to 60-70ºC.<br />

3. Wash the wells with 1X TBE buffer to<br />

remove UREA and gel debris.<br />

4. Load the samples.<br />

5. Run the gel at 6 V/cm until the lower dye<br />

front migrates 80% through the gel.<br />

bp<br />

300<br />

200<br />

150<br />

100<br />

75<br />

50<br />

35<br />

25<br />

20<br />

15<br />

bp<br />

300<br />

200<br />

150<br />

100<br />

Migration of <strong>Thermo</strong> <strong>Scientific</strong> GeneRuler Ultra<br />

Low Range and Low Range DNA ladders under<br />

denaturing conditions.<br />

Ladders are prepared for electrophoresis using<br />

formamide containing 2X RNA Loading Dye (#R0641)<br />

and separated on 10% denaturing PAGE with 8 M urea.<br />

1 – GeneRuler Ultra Low Range DNA Ladder (#SM1211)<br />

2 – GeneRuler Low Range DNA Ladder (#SM1191)<br />

75<br />

50<br />

25<br />

www.thermoscientific.com/onebio 375


376<br />

6. Soak the gel for about 15 min in 1X TBE to<br />

remove the urea prior to staining.<br />

7. Stain the gel in a 0.5 μg/ml ethidium<br />

bromide aqueous solution for about 30 min.<br />

8. Examine the gel under the UV light.<br />

Note<br />

<br />

pattern in denaturing electrophoresis. However, GeneRuler<br />

Ultra Low Range and Low Range DNA Ladders can be<br />

successfully used for sizing ssDNA (see Figure on p.375).<br />

Ultra Low Range DNA Ladder: 10 bp band is not<br />

visible, 15 bp is the first one seen.<br />

Low Range DNA Ladder: upper bands<br />

(400, 500, 700 bp) are not separated well under denaturing<br />

conditions.<br />

7.4. Preparation of DNA samples<br />

for electrophoresis<br />

7.4.1. Preparation of DNA samples for<br />

conventional DNA electrophoresis<br />

6X DNA Loading Dye (#R0611), 6X MassRuler<br />

DNA Loading Dye (#R0621), 6X Orange DNA<br />

Loading Dye (#R0631), 6X TriTrack DNA<br />

Loading Dye (#R1161) are all used according to<br />

below protocol:<br />

1. Add 1 volume of 6X DNA loading dye to<br />

5 volumes of DNA sample.<br />

2. Mix well, spin down and load.<br />

7.4.2. Preparation of DNA samples for<br />

denaturing polyacrylamide/urea gel<br />

electrophoresis<br />

Note<br />

Use the same loading dye solution for the sample and the<br />

ladder DNA.<br />

1. Mix the DNA sample with an equal volume<br />

of 2X RNA Loading Dye (#R0641).<br />

2. Heat at 95ºC for 5 min.<br />

3. Chill the sample on ice for 3 min.<br />

4. Keep samples on ice while loading.<br />

7.4.3. Preparation of DNA samples<br />

for denaturing alkaline agarose gel<br />

electrophoresis<br />

1. Mix 5 volumes of the DNA sample or ladder<br />

with one volume of 6X alkaline electrophoresis<br />

loading buffer (180 mM NaOH, 6 mM EDTA,<br />

18% Ficoll 400, 0,05% bromcresol green).<br />

2. Heat samples and ladder at 70°C for 5 min,<br />

then chill on ice for 3 min. Load onto the gel.<br />

7.4.4. Preparation of DNA samples<br />

containing DNA binding proteins<br />

Use 6X DNA Loading Dye & SDS Solution<br />

(#R1151) to prevent the appearance of<br />

additional bands or gel shifts when analyzing:<br />

– probes after DNA restriction digestions,<br />

ligation or dephosphorylation reactions,<br />

– DNA samples with h igh amounts of DNA<br />

binding proteins,<br />

– DNA molecules with cohesive ends,<br />

– or to stop an enzymatic reaction during<br />

kinetic experiments.<br />

www.thermoscientific.com/onebio<br />

1. Add 1 volume of 6X DNA Loading Dye &<br />

SDS Solution to 5 volumes of DNA sample.<br />

2. Mix well and h eat at 65°C for 10 minutes.<br />

3. Chill on ice, spin down and load.<br />

Note<br />

The prepared sample can be stored at -20ºC and reused for<br />

electrophoresis after several freeze-thaw cycles.<br />

M 1 2 3 4 5 6 7<br />

The effect of SDS on electrophoresis on resolving<br />

band shifts.<br />

M – GeneRuler DNA Ladder Mix (#SM0331)<br />

1 – 0.5 μg DNA prepared for loading with 6X DNA<br />

Loading Dye (#R0611)<br />

2 – 0.5 μg DNA prepared for loading with 6X DNA<br />

Loading Dye & SDS Solution (#R1151)<br />

3 – 0.5 μg DNA digested with FastDigest FokI<br />

(#FD2144), prepared for loading with 6X DNA<br />

Loading Dye<br />

4 – 0.5 μg DNA digested with FastDigest FokI, prepared<br />

for loading with 6X DNA Loading Dye & SDS Solution<br />

5 – 0.4 μg of the 2 DNA fragment ligation mixture<br />

prior to ligation<br />

6 – 0.4 μg of the 2 DNA fragment ligation mixture<br />

after the ligation, prepared for loading with<br />

6X DNA Loading Dye<br />

7 – 0.4 μg of the 2 DNA fragment ligation mixture<br />

after the ligation, prepared for loading with<br />

6X DNA Loading Dye & SDS Solution<br />

7.5. Preparation of DNA ladders/markers for electrophoresis<br />

Recommendations for loading of DNA ladders/markers supplied in TE buffer.<br />

Technical specifications<br />

Amount used per 1 mm width of a<br />

gel lane<br />

Conventional formulation (supplied in TE buffer) DNA ladders/markers<br />

GeneRuler DNA ladders<br />

0.1 μg (0.2 μl) for agarose gel<br />

0.2 μg (0.4 μl) for PAGE<br />

Heating Do not h eat<br />

I. Loading on agarose gel:<br />

DNA ladder/marker<br />

loading dye<br />

Water, nuclease-free (#R0581)<br />

II. Loading on polyacrylamide gel:<br />

DNA ladder/marker<br />

loading dye<br />

Water, nuclease-free (#R0581)<br />

1 μl (0.5 μg)<br />

2 μl<br />

9 μl<br />

Mix gently and load on gel<br />

Conventional Lambda DNA<br />

markers<br />

0.1 μg (0.2 μl) for agarose gel<br />

Heat at 65°C for 5 min;<br />

chill on ice for 3 min before use<br />

1 μl (0.5 μg)<br />

2 μl<br />

9 μl<br />

2 μl (1 μg)<br />

0.5 μl<br />

Not recommended for PAGE<br />

0.5 μl<br />

Mix gently and load on gel<br />

Conventional Phage &<br />

Plasmid DNA markers<br />

0.1 μg (0.2 μl) for agarose gel<br />

0.2 μg (0.4 μl) for PAGE<br />

Do not h eat<br />

1 μl (0.5 μg)<br />

2 μl<br />

9 μl<br />

2 μl (1 μg)<br />

0.5 μl<br />

0.5 μl<br />

7.6. Labeling of DNA ladders/markers<br />

For protocols see chapter 6 <strong>Thermo</strong> <strong>Scientific</strong> <strong>Molecular</strong> Labeling & Detection Products on p.349.


7.7. Separation of Express DNA ladders in different electrophoresis conditions<br />

Table 7.3. <strong>Thermo</strong> <strong>Scientific</strong> GeneRuler Express DNA<br />

Ladder (#SM1551) fragment separation under various<br />

electrophoresis conditions.<br />

Duration of 0.8% 1% 1.2% 1.5% 2% 2.5%<br />

electropho- agarose agarose agarose agarose agarose agarose<br />

resis<br />

23 V/cm<br />

5 min<br />

10 min<br />

15 min<br />

20 min<br />

TAE TBE TAE TBE TAE TBE TAE TBE TAE TBE TAE TBE<br />

Table 7.4. <strong>Thermo</strong> <strong>Scientific</strong> MassRuler Express<br />

HR Forward and Reverse DNA Ladder (#SM1243<br />

and #SM1253) fragment separation under various<br />

electrophoresis conditions.<br />

Duration of<br />

electrophoresis<br />

7V/cm<br />

10 min<br />

20 min<br />

30 min<br />

40 min<br />

50 min<br />

0.7%<br />

agarose<br />

1%<br />

agarose<br />

1.3%<br />

agarose<br />

1.5%<br />

agarose<br />

TAE TBE TAE TBE TAE TBE TAE TBE<br />

Table 7.5. <strong>Thermo</strong> <strong>Scientific</strong> MassRuler Express<br />

LR Forward and Reverse DNA Ladder (#SM1283<br />

and #SM1293) fragment separation under various<br />

electrophoresis conditions.<br />

Duration of<br />

electropho-<br />

0.7%<br />

agarose<br />

1%<br />

agarose<br />

1.3%<br />

agarose<br />

1.5%<br />

agarose<br />

Reference<br />

1. Sambrook, J., et al., <strong>Molecular</strong> Cloning. A Laboratory<br />

Manual, Cold Spring Harbor Laboratory, Cold Spring<br />

Harbor, N.Y., 12.89, 5.42, 2001.<br />

2%<br />

agarose<br />

resis<br />

TAE TBE TAE TBE TAE TBE TAE TBE TAE TBE<br />

7 V/cm<br />

10 min<br />

20 min<br />

30 min<br />

40 min<br />

50 min<br />

Table 7.6. <strong>Thermo</strong> <strong>Scientific</strong> MassRuler Express<br />

Forward and Reverse DNA Ladder Mix (#SM1263<br />

and #SM1273) fragment separation under various<br />

electrophoresis conditions.<br />

Duration of<br />

electrophoresis<br />

7 V/cm<br />

10 min<br />

20 min<br />

30 min<br />

40 min<br />

50 min<br />

0.7%<br />

agarose<br />

1%<br />

agarose<br />

1.3%<br />

agarose<br />

1.5%<br />

agarose<br />

TAE TBE TAE TBE TAE TBE TAE TBE<br />

Table 7.7. <strong>Thermo</strong> <strong>Scientific</strong> ZipRuler Express DNA Ladder (#SM1373) fragment separation under various<br />

electrophoresis conditions.<br />

Duration<br />

0.8% agarose 1% agarose 1.2% agarose 1.5% agarose 1.7% agarose 2% agarose<br />

of electro- TAE TBE TAE TBE TAE TBE TAE TBE TAE TBE TAE TBE<br />

phoresis<br />

10 V/cm<br />

1<br />

5 min<br />

10 min<br />

15 min<br />

20 min<br />

25 min<br />

Ladder<br />

2 Mix 1 2 Mix 1<br />

Ladder<br />

2 Mix 1 2 Mix 1<br />

Ladder<br />

2 Mix 1 2 Mix 1<br />

Ladder<br />

2 Mix 1 2 Mix 1<br />

Ladder<br />

2 Mix 1 2 Mix 1<br />

Ladder<br />

2 Mix 1 2 Mix<br />

1 – ZipRuler Express DNA Ladder 1.<br />

2 – ZipRuler Express DNA Ladder 2.<br />

Mix – Ladder 1 and Ladder 2 mixed at equal volumes.<br />

Excellent separation of all bands.<br />

Incomplete separation of the two closest bands.<br />

No separation.<br />

Lowest bands run off of gel (8 cm).<br />

www.thermoscientific.com/onebio 377


378<br />

Troubleshooting Guide<br />

1<br />

Low intensity<br />

of all or some<br />

DNA bands<br />

1.1<br />

Insufficient<br />

amount of<br />

DNA loaded<br />

1.2<br />

Insufficient<br />

or uneven<br />

staining<br />

1.3<br />

DNA<br />

run off of<br />

the gel<br />

1.4<br />

DNA<br />

diffusion in<br />

the gel<br />

1.5<br />

DNA masking<br />

by tracking<br />

dyes<br />

www.thermoscientific.com/onebio<br />

2<br />

Smeared DNA<br />

bands<br />

2.1<br />

DNA<br />

degradation<br />

by nucleases<br />

2.2<br />

Incorrect electrophoresis<br />

conditions<br />

2.3<br />

Gel shift<br />

effect<br />

2.4<br />

Excess<br />

DNA loaded<br />

2.5<br />

High salt<br />

concentration<br />

in samples<br />

2.6<br />

Poorly<br />

formed gel<br />

wells<br />

DNA electrophoresis<br />

problem<br />

3<br />

Atypical<br />

banding<br />

pattern<br />

3.1<br />

marker not h<br />

eated prior to<br />

loading<br />

3.2<br />

Denatured<br />

DNA<br />

3.3<br />

Different<br />

loading conditions<br />

for ladder<br />

& sample<br />

3.4<br />

Incorrect electrophoresis<br />

conditions<br />

3.5<br />

DNA<br />

staining before<br />

electrophoresis<br />

3.6<br />

Atypical migration<br />

due to<br />

DNA sequence<br />

or structure<br />

3.7<br />

Gel shift<br />

effect<br />

3.8<br />

High salt<br />

concentration<br />

in samples<br />

4<br />

Curved DNA<br />

bands<br />

4.1<br />

Gel<br />

incompletely<br />

immersed in<br />

buffer<br />

4.2<br />

Low sample<br />

volume<br />

4.3<br />

Incorrect electrophoresis<br />

conditions<br />

4.4<br />

Bubbles or<br />

physical particles<br />

in wells<br />

or in the gel<br />

5<br />

DNA remains<br />

in the gel well<br />

5.1<br />

Poorlyformed<br />

gel wells<br />

5.2<br />

Excess DNA<br />

loaded<br />

5.3<br />

Contamination<br />

of the DNA<br />

sample<br />

5.4<br />

Gel shift<br />

effect<br />

6<br />

Incorrect<br />

quantification<br />

data<br />

6.1<br />

Different<br />

loading conditions<br />

for ladder<br />

& sample<br />

6.2<br />

Incorrect<br />

ladder band<br />

chosen for<br />

quantification<br />

6.3<br />

Improper<br />

quantification<br />

method<br />

6.4<br />

Uneven or h<br />

igh backgroundstaining<br />

of the gel<br />

6.5<br />

DNA masking<br />

by tracking<br />

dyes


Table 7.8. Troubleshooting guide for DNA electrophoresis.<br />

Problem Possible cause and recommended solution<br />

1.1. Insufficient amount of ladder was loaded.<br />

Follow the recommendations for loading described in the certificate of analysis of the DNA ladders/markers<br />

(~0.1-0.2 μg per 1 mm gel lane width).<br />

1.2. Insufficient or uneven staining.<br />

Following electrophoresis, visualize DNA by staining in ethidium bromide solution (final concentration<br />

0.5 μg/ml) or SYBR Green I.<br />

Alternatively, if the DNA will not be used for cloning, add ethidium bromide to both the gel and<br />

electrophoresis buffer at a final 0.5 μg/ml concentration.<br />

After alkaline agarose gel electrophoresis the gel should be immersed for 30 min in 300 ml 0.5 M Tris-HCl<br />

buffer, pH 7.5 and only later stained in a 0.5 μg/ml ethidium bromide solution for 30 min.<br />

After denaturing polyacrylamide gel electrophoresis with urea, soak the gel for about 15 min in 1X TBE to<br />

remove the urea prior to staining. Stain the gel in 0.5 μg/ml ethidium bromide in 1X TBE solution for 15 min.<br />

Make sure that the gel is immersed completely in the staining solution.<br />

1. Low intensity of all or some of<br />

the DNA bands<br />

2. Smeared DNA bands<br />

1.3. DNA run off the gel.<br />

Perform electrophoresis until the bromophenol blue dye passes 2/3 (orange G, 4/5) of the gel. Refer to the<br />

table on p.374 for migration of tracking dyes in different gels.<br />

Make sure that the entire gel is immersed completely in the electrophoresis buffer during the run. Make sure<br />

that the gel and apparatus are positioned h orizontally during the run.<br />

1.4. DNA diffusion.<br />

Avoid prolonged electrophoresis or excessive staining and destaining procedures as this may cause diffusion<br />

of smaller DNA fragments in the gel.<br />

Avoid long term storage of the gel before taking a picture, as this may cause diffusion of DNA fragments and<br />

low band intensity.<br />

1.5. DNA masking by electrophoresis tracking dyes.<br />

Do not exceed the amount of electrophoresis tracking dyes used for sample/ladder preparation. Use the<br />

loading dye solutions supplied with every <strong>Thermo</strong> <strong>Scientific</strong> DNA ladder/marker, as these solutions contain<br />

amount of tracking dyes that will not mask DNA under UV light.<br />

Prepare DNA ladders and probes according to recommendations on p.376.<br />

2.1. DNA degradation by nucleases.<br />

Use fresh electrophoresis buffers, freshly poured gels, nuclease-free vials and tips to minimize nuclease<br />

contamination of DNA solutions.<br />

2.2. Incorrect electrophoresis conditions.<br />

Prepare gels according to the recommendations on p.374, always use the same electrophoresis buffer for<br />

both the gel and running buffer.<br />

Ensure that the whole gel is immersed completely in the electrophoresis buffer during the run.<br />

Do not use an excessively h igh voltage for electrophoresis. Run the gels at 5-8 V/cm. To increase the band<br />

sharpness, use a lower voltage for several minutes at the beginning of electrophoresis.<br />

Excessively h igh voltage may result in gel h eating and DNA denaturation.<br />

For fast electrophoresis under h igh voltage (up to 23 V/cm) use GeneRuler or O’GeneRuler Express DNA<br />

ladders (#SM1551/2/3 or #SM1563, p.361).<br />

An excessively low voltage during the entire run may result in diffusion of bands during electrophoresis.<br />

To calculate the optimal electrophoresis conditions (voltage) and to use the recommended V/cm value<br />

(usually 5-8 V/cm, depending on the ladder) one h as to:<br />

– measure the distance between electrodes (cathode and anode) – X, cm<br />

– and multiply that X, cm value by the recommended voltage (Y, V/cm)<br />

– the result (X, cm x recommended Y, V/cm) is Z – recommended voltage to be applied.<br />

2.3. Gel shift effect.<br />

DNA binding proteins, such as ligases, phosphatases or restriction enzymes may alter DNA migration on gels<br />

and cause the DNA to remain in the gel well or gel shifting.<br />

Lambda DNA or other DNA with long complementary overhangs may anneal and migrate atypically (see p.369).<br />

To correct for the above mentioned effects, use 6X DNA Loading Dye & SDS Solution (#R1151, p.373)<br />

which is supplemented with 1% SDS to eliminate DNA-protein interactions and to prevent annealing of DNA<br />

molecules via long cohesive ends.<br />

Always h eat these samples with SDS at 65°C for 10 min, chill on ice, spin down and load.<br />

(continued on next page)<br />

www.thermoscientific.com/onebio 379


380<br />

Table 7.9. Troubleshooting guide for DNA electrophoresis.<br />

Problem Possible cause and recommended solution<br />

2. Smeared DNA bands<br />

3. Atypical banding pattern<br />

www.thermoscientific.com/onebio<br />

2.4. Excess DNA loaded.<br />

Follow the recommendations for loading described in the certificate of analysis of the DNA ladders/markers<br />

(~0.1-0.2 μg per 1 mm gel lane width) or in the Table on p.376. Use similar DNA quantities for the samples.<br />

2.5. High salt concentration in the sample.<br />

Samples containing h igh concentrations of salts may result in smeared or shifted band patterns.<br />

Ethanol precipitation and washing the pellet with ice cold 75% ethanol or spin column purification prior to<br />

resuspending the sample in water or TE buffer h elps to eliminate salts present in the sample.<br />

2.6. Poorly formed (slanted) gel wells.<br />

When inserting the comb into the gel, make sure that it is vertical to the gel surface and stable during gel<br />

casting and solidification.<br />

3.1. Lambda DNA marker was not h eated prior to loading.<br />

All DNA markers generated from Lambda DNA, as well as lambda DNA digestion products, should be h<br />

eated at 65°C for 5 min and chilled on ice before loading on the gel in order to completely denature the<br />

cohesive ends (the 12 nt cos site of lambda DNA) that may anneal and form additional bands. See p.376<br />

for preparation of lambda markers for electrophoresis.<br />

3.2. Denatured DNA.<br />

Excessively h igh voltage may result in gel h eating and DNA denaturation.<br />

To calculate the optimal electrophoresis conditions (voltage) and to use the recommended V/cm value (often<br />

5-8 V/cm, depending on the ladder) one h as to:<br />

– measure the distance between electrodes (cathode and anode) – X, cm<br />

– and multiply that X, cm value by the recommended voltage (Y, V/cm)<br />

– the result (X, cm x recommended Y, V/cm) is Z – recommended voltage to be applied.<br />

For non-denaturing electrophoresis use the loading dye solutions supplied with every <strong>Thermo</strong> <strong>Scientific</strong> DNA<br />

ladder/marker, as these solutions do not contain denaturing agents.<br />

Prepare DNA ladders and probes according to recommendations on p.376.<br />

Do not h eat them before loading. Heating is required only for lambda DNA markers.<br />

3.3. Different loading conditions for sample and ladder DNA.<br />

Always use the same loading dye solution (supplied with the DNA ladder/marker) for both the sample DNA<br />

and the ladder/marker DNA.<br />

If possible, always load equal or very similar volumes of the sample DNA and the ladder/marker DNA. The<br />

sample can be diluted with 1X loading dye.<br />

3.4. Incorrect electrophoresis conditions.<br />

Excessive electrophoresis run times or voltage may result in migration of small DNA fragments off of the gel.<br />

Very short or slow electrophoresis may result in incompletely resolved bands.<br />

Run gels at 5-8 V/cm until the bromophenol blue passes 2/3 (orange G, 4/5) of the gel. Refer to the Table<br />

7.1 on p.374 for migration of tracking dyes in different gels.<br />

For fast electrophoresis under h igh voltage (up to 23 V/cm) use GeneRuler or O’GeneRuler Express DNA<br />

ladders (#SM1551/2/3 or #SM1563, p.361).<br />

TAE buffer is recommended for analysis of DNA fragments larger than 1500 bp and for supercoiled<br />

DNA. TBE buffer is used for DNA fragments smaller than 1500 bp and for denaturing polyacrylamide gel<br />

electrophoresis. Large DNA fragments will not separate well in TBE buffer.<br />

The correct gel percentage is important for optimal separation of the ladder DNA; prepare gels according<br />

to recommendations on p.374. When preparing agarose gels always adjust the volume of water to<br />

accommodate for evaporation during boiling. Otherwise, the gel percentage will be too h igh and result in<br />

bad separation of larger DNA bands.<br />

Refer to the Table 7.1 on p.374 for the range of effective separation of DNA in different gels.<br />

(continued on next page)


Table 7.9. Troubleshooting guide for DNA electrophoresis.<br />

Problem Possible cause and recommended solution<br />

3. Atypical banding pattern<br />

3.5. DNA staining before electrophoresis using fluorescent dyes.<br />

Ethidium bromide interferes with separation of large DNA fragments. Do not include ethidium bromide in the<br />

gel and run buffer when large DNA (more than 20 kb) or supercoiled DNA is analyzed. Stain the gel following<br />

electrophoresis in a 0.5 μg/ml ethidium bromide solution for 30 min.<br />

Staining before electrophoresis with intercalating dyes such as SYBR Green I, GelRed and others may cause<br />

abberant migration of DNA bands leading to errors in fragment size determination. Perform DNA staining<br />

following gel electrophoresis.<br />

3.6. Atypical migration due to differences in DNA sequence or structure.<br />

During h igh resolution electrophoresis, DNA fragments of equal size can migrate differently due to variations<br />

in DNA sequences. AT rich DNA may migrate slower than an equivalent size GC rich DNA fragment. The<br />

sequences of <strong>Thermo</strong> <strong>Scientific</strong> DNA ladders are chosen to allow for h ighly accurate DNA migration<br />

according to size, h owever, due to differences in nucleotide sequence or the overall DNA structure, sample<br />

migration can sometimes slightly differ from ladder band migration.<br />

DNA structures such as nicked, supercoiled or dimeric molecules will always show different mobility on gels<br />

compared to an equivalent DNA size standard. See the picture below for migration of plasmid DNA forms:<br />

bp<br />

10000<br />

8000<br />

6000<br />

5000<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

750<br />

500<br />

250<br />

1 2 3<br />

1 GeneRuler 1 kb DNA Ladder (#SM0311)<br />

2 Undigested plasmid pUC19 2,7 kb DNA, forms:<br />

– upper band (~4 kb) – dimeric plasmid<br />

– below, less visible (~3.5 kb) – nicked plasmid<br />

– lowest band (~1.9 kb) – supercoiled plasmid.<br />

3 Linearized plasmid pUC19 (2,7 kb) – migrates according to its size<br />

High level DNA modifications such as methylation, labeling with biotin or large fluorescent molecules also<br />

result in slower migration compared to unmodified DNA of the same size.<br />

3.7. Gel shift effect.<br />

The presence of DNA binding proteins in the sample, such as ligases, phosphatases or restriction enzymes<br />

may alter DNA migration in the gel or cause the DNA to remain in the gel wells.<br />

Lambda DNA or other DNA with long complementary overhangs may anneal resulting in an atypical<br />

migration pattern.<br />

To eliminate these effects, use 6X DNA Loading Dye & SDS Solution (#R1151) that is supplemented with 1% SDS<br />

to eliminate DNA-protein interactions and to prevent annealing of DNA molecules via long cohesive ends.<br />

Always h eat these samples with SDS at 65°C for 10 min, chill on ice, spin down and load.<br />

High salt concentration in the sample may also cause gel shift effects, see below (3.8).<br />

3.8. High salt concentration in the sample.<br />

Samples with a h igh salt concentration may give smeared or shifted band patterns.<br />

Ethanol precipitation and washing the pellet with ice cold 75% ethanol or spin column purification prior<br />

resuspending DNA in water or TE buffer h elps eliminate salt from the sample.<br />

(continued on next page)<br />

www.thermoscientific.com/onebio 381


382<br />

Table 7.9. Troubleshooting guide for DNA electrophoresis.<br />

Problem Possible cause and recommended solution<br />

4. Curved DNA bands<br />

5. DNA remains in the gel well<br />

6. Incorrect quantification data<br />

www.thermoscientific.com/onebio<br />

4.1. Gel incompletely immersed in electrophoresis buffer.<br />

Electrophoresis buffer should completely cover the entire gel during sample loading and run.<br />

4.2. Low sample volume.<br />

The sample or the ladder volume should be large enough to fill 1/3 of the total capacity of the well. Large<br />

wells should not be used with small sample volumes. If needed the sample volume can be adjusted with<br />

1X loading dye.<br />

4.3. Incorrect electrophoresis conditions.<br />

Do not use an excessively h igh voltage for electrophoresis. Run the gels at 5-8 V/cm. To minimize band<br />

curving, use a lower voltage for several minutes at the beginning of electrophoresis.<br />

For fast electrophoresis under h igh voltage (up to 23 V/cm) use GeneRuler or O’GeneRuler Express DNA<br />

ladders (#SM1551/2/3 or #SM1563, p.361).<br />

To calculate the optimal electrophoresis conditions (voltage) and to use the recommended V/cm value (which<br />

is in many cases 5-8 V/cm, depending on the ladder) one h as to:<br />

– measure the distance between electrodes (cathode and anode) – X, cm<br />

– and multiply the X value by the recommended voltage (Y, V/cm)<br />

– the result (X x Y) is the recommended voltage to be applied.<br />

4.4. Bubbles or physical particles in the gel wells or in the gel.<br />

Use pure water, clean flasks and clean equipment to prepare gels.<br />

Pour the gel slowly to avoid bubble. Bubbles can be removed with a pipette tip prior to gel solidification.<br />

5.1. Poorly formed gel wells.<br />

Remove the gel comb only after complete polymerization of the gel. Pour the buffer onto the gel immediately.<br />

Rinse the wells with electrophoresis buffer to remove urea from denaturing polyacrylamide gels prior to<br />

loading the sample.<br />

5.2. Excess DNA loaded.<br />

Follow the recommendations for loading described in the certificate of analysis supplied with the DNA ladders/<br />

markers (~0.1-0.2 μg per 1 mm gel lane width) or in the Table 7.3 on p.377. If possible load the same quantity of<br />

the sample.<br />

5.3. Contamination of the DNA sample.<br />

Ensure that your sample DNA solution does not contain any precipitate.<br />

5.4. Gel shift effect.<br />

The presence of DNA binding proteins in the sample, such as ligases, phosphatases or restriction enzymes<br />

may alter DNA migration in the gel and cause the DNA to remain in the gel wells.<br />

Lambda DNA or other DNA with long complementary overhangs may anneal resulting in an atypical band<br />

migration pattern.<br />

To eliminate these effects, use 6X DNA Loading Dye & SDS Solution that is supplemented with 1% SDS to<br />

eliminate DNA-protein interactions and to prevent annealing of DNA molecules via long cohesive ends.<br />

Always h eat these samples with SDS at 65°C for 10 min, chill on ice, spin down and load.<br />

6.1. Different loading conditions for sample and ladder DNA.<br />

Always use the same loading dye solution (supplied with the DNA ladder/marker) for both the sample DNA<br />

and the ladder/marker DNA.<br />

If necessary, adjust the concentration of the sample to approximately equalize it with the amount of DNA in<br />

the nearest band.<br />

Use equal or very similar volumes of the sample DNA and the ladder/marker DNA. The sample can be diluted<br />

with 1X loading dye solution.<br />

6.2. Incorrect ladder band chosen for sample quantification.<br />

Always compare the sample band with a ladder band of similar size.<br />

6.3. Improper quantification method used.<br />

If possible, quantify by video-densitometry while subtracting the gel background as this method is more<br />

precise than a visual comparison of the bands.<br />

(continued on next page)


Table 7.9. Troubleshooting guide for DNA electrophoresis.<br />

Problem Possible cause and recommended solution<br />

6.4. Uneven staining of the gel or h igh background staining.<br />

Ensure that the gel is immersed completely in the staining solution.<br />

Following electrophoresis, visualize DNA by staining in ethidium bromide solution (final concentration<br />

0.5 μg/ml) or SYBR Green I. Do not exceed the recommended concentration of the dye for staining.<br />

Avoid prolonged staining for more than 30 min as this may result in h igh background.<br />

If the gel is to be stained during the run, ensure that the ethidium bromide is included in both the gel and<br />

running buffer, otherwise the staining will be uneven.<br />

After alkaline agarose gel electrophoresis the gel should be immersed for 30 min in 300 ml of<br />

6. Incorrect quantification data<br />

0.5 M Tris-HCl buffer, pH 7.5 and only later stained in a 0.5 μg/ml ethidium bromide solution for 30 min.<br />

After denaturing polyacrylamide gel electrophoresis with urea, soak the gel for about 15 min in 1X TBE to<br />

remove the urea prior to staining. Stain the gel in 0.5 μg/ml ethidium bromide in 1X TBE solution for 15 min.<br />

6.5. DNA masking by electrophoresis tracking dyes.<br />

Do not exceed the recommended amount of electrophoresis tracking dyes used for sample/ladder<br />

preparation. Use the loading dye solutions supplied with every <strong>Thermo</strong> <strong>Scientific</strong> DNA ladder/marker, as<br />

these solutions contain equilibrated amount of tracking dyes that will not mask DNA under UV light.<br />

Prepare DNA ladders and probes according to the recommendations on p.376.<br />

www.thermoscientific.com/onebio 383


384<br />

www.thermoscientific.com/onebio


<strong>Thermo</strong> <strong>Scientific</strong><br />

RNA Electrophoresis Products<br />

RNA Ladders .....................................................................................................................386<br />

RiboRuler RNA Ladders (100-6000 bases) ..................................................................386<br />

RiboRuler Low Range RNA Ladder .............................................................................386<br />

RiboRuler High Range RNA Ladder .............................................................................386<br />

Double-stranded RNA Analysis .................................................................................... 387<br />

GeneRuler Ultra Low Range DNA Ladders.................................................................. 387<br />

Phi6 dsRNA ...................................................................................................................387<br />

Reagents for RNA Electrophoresis ..............................................................................388<br />

2X RNA Loading Dye ....................................................................................................388<br />

Electrophoresis Buffers ..............................................................................................389<br />

Agarose .........................................................................................................................389<br />

Protocols and Recommendations ...............................................................................390<br />

8.1. General recommendations for RNA electrophoresis ....................................................390<br />

8.2. Preparation of RNA ladders for electrophoresis ..........................................................390<br />

8.3. Preparation of RNA samples for electrophoresis ........................................................390<br />

8.4. Preparation of gels for RNA electrophoresis ...............................................................390<br />

Troubleshooting Guide ...................................................................................................392<br />

Find out more about<br />

RNA Electrophoresis<br />

products online:<br />

www.thermoscientific.com/ladders<br />

www.thermoscientific.com/onebio 385


386<br />

RNA Ladders<br />

RiboRuler RNA Ladders (100-6000 bases)<br />

RNA ladder Cat. #<br />

Supplied with:<br />

2X RNA Loading Dye 1 ml<br />

Related Products<br />

GeneJET RNA Purification Kit p.307<br />

GeneJET Plant RNA Purification Kit<br />

GeneJET Whole Blood RNA Purification<br />

p.309<br />

Mini Kit p.308<br />

TopVision Agaroses p.427<br />

2X RNA Loading Dye p.388<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

Agarase p.319<br />

T4 Polynucleotide Kinase (T4 PNK) p.243<br />

Products for RNA Synthesis in vitro<br />

TranscriptAid T7 High Yield in vitro<br />

p.325<br />

Transcription Kit p.328<br />

RiboRuler High Range RNA Ladder,<br />

#SM1821<br />

1.0% native TopVision Agarose (#R0491)<br />

2 μl of SM1821/lane,<br />

8 cm length gel,<br />

1X TAE, 5 V/cm<br />

bases ng/2 μl<br />

6000 120<br />

4000 120<br />

3000 120<br />

2000 120<br />

1500 120<br />

1000 120<br />

500 120<br />

200 120<br />

Protocols and Recommendations<br />

» 6.1.3. Radiolabeling of RNA ladders<br />

by T4 PNK p.349<br />

» 8.1. General recommendations for<br />

RNA electrophoresis p.390<br />

» 8.2-8.3. Preparation of RNA<br />

ladders/samples for electrophoresis p.390<br />

» 8.4. Preparation of gels for RNA<br />

electrophoresis p.390<br />

www.thermoscientific.com/onebio<br />

1.0% formaldehyde agarose<br />

bases<br />

6000<br />

4000<br />

3000<br />

2000<br />

1500<br />

1000<br />

500<br />

200<br />

2 μl of #SM1821/lane,<br />

8 cm length gel,<br />

1X MOPS, 5 V/cm<br />

Description<br />

<strong>Thermo</strong> <strong>Scientific</strong> RiboRuler RNA ladders are<br />

composed of chromatography-purified singlestranded<br />

RNA transcripts and are free from<br />

NTPs and RNA degradation products.<br />

The RiboRuler High Range RNA Ladder is a<br />

mixture of 8 single-stranded RNA transcripts<br />

ranging in size from 200 to 6000 b.<br />

The RiboRuler Low Range RNA Ladder is a<br />

mixture of 7 single-stranded RNA transcripts<br />

ranging in size from 100 to 1000 b. The ladders<br />

are supplied in conventional format premixed<br />

with 1 mM EDTA, pH 6.0 or in a ready-to-use<br />

format, premixed with RNA loading dye.<br />

RiboRuler RNA ladders supplied in<br />

conventional format can be end-labeled using<br />

T4 Polynucleotide Kinase (#EK0031), and are<br />

ideal for use in Northern blot applications.<br />

RiboRuler Low Range RNA Ladder,<br />

#SM1831<br />

2% native TopVision Agarose (#R0491)<br />

Volume,<br />

μl<br />

bases ng/2 μl<br />

1000<br />

800<br />

140<br />

140<br />

600 140<br />

400 140<br />

300 140<br />

200 140<br />

100 140<br />

2 μl of #SM1831/lane,<br />

8 cm length gel,<br />

1X TAE, 5 V/cm<br />

Applications<br />

5.0% polyacrylamide-urea<br />

bases<br />

1000<br />

800<br />

600<br />

400<br />

300<br />

200<br />

100<br />

2 μl of #SM1831/lane,<br />

20 cm length gel,<br />

1X TBE, 8 V/cm<br />

Loading,<br />

μl/4-8 mm<br />

lane<br />

RiboRuler Low Range RNA Ladder<br />

RiboRuler Low Range RNA Ladder, ready-to-use<br />

SM1831<br />

SM1833<br />

100 (5x20)<br />

200 (5x40)<br />

50-100<br />

1-2<br />

2-4<br />

RiboRuler High Range RNA Ladder<br />

RiboRuler High Range RNA Ladder, ready-to-use<br />

SM1821<br />

SM1823<br />

100 (5x20)<br />

200 (5x40)<br />

50-100<br />

1-2<br />

2-4<br />

Range,<br />

bases<br />

Number of<br />

fragments<br />

Agarose,<br />

%<br />

PAGE,<br />

%<br />

100-1000 7 1.7-2.5 4.0-8.0<br />

200-6000 8 0.8-1.5 –<br />

Features<br />

Sharp bands of uniform intensity.<br />

Easy-to-remember band sizes and quantities.<br />

Ideal for in-gel RNA quantification.<br />

Convenient – available in both conventional<br />

and ready-to-use formats.<br />

Supplied with 2X RNA Loading Dye.<br />

Stable for 6 months at -20°C.<br />

Applications<br />

RNA sizing and quantification on native or<br />

denaturing gels.<br />

Northern blotting.<br />

Storage Buffer<br />

1 mM EDTA (pH 6.0).<br />

Storage and Loading Buffer<br />

(for ready-to-use ladders)<br />

47.5% formamide, 0.0125% SDS,<br />

0.0125% bromophenol blue,<br />

0.0125% xylene cyanol FF,<br />

0.0125% ethidium bromide and<br />

0.75 mM EDTA.<br />

2X RNA Loading Dye<br />

95% formamide, 0.025% SDS,<br />

0.025% bromophenol blue,<br />

0.025% xylene cyanol FF,<br />

0.025% ethidium bromide and 0.5 mM EDTA.<br />

Storage<br />

Store at -70°C (or at -20°C for 6 months).<br />

Fluorescence<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1500 b<br />

20 25 30 35 40 45 50 55 60 65<br />

Time (seconds)<br />

Analysis of <strong>Thermo</strong> <strong>Scientific</strong> RiboRuler<br />

High Range RNA Ladder (#SM1821) using an<br />

Agilent 2100 bioanalyzer.


Double-stranded RNA Analysis<br />

GeneRuler Ultra Low Range DNA Ladders<br />

DNA ladders for<br />

small RNA analysis<br />

GeneRuler Ultra Low Range<br />

DNA Ladder<br />

GeneRuler Ultra Low Range<br />

DNA Ladder, ready-to-use<br />

O’GeneRuler Ultra Low Range<br />

DNA Ladder, ready-to-use<br />

bp<br />

300<br />

200<br />

150<br />

100<br />

75<br />

50<br />

35<br />

25<br />

20<br />

15<br />

10<br />

Cat. #<br />

Concentration,<br />

μg/μl<br />

Amount,<br />

μg<br />

Applications,<br />

0.5 g/lane<br />

SM1211<br />

50 50-100<br />

0.5<br />

SM1212 250 (5x50) 250-500<br />

1 2<br />

siRNA gel analysis using <strong>Thermo</strong> <strong>Scientific</strong> GeneRuler or<br />

O’GeneRuler Ultra Low Range DNA ladders.<br />

Electrophoresis conditions: 5% agarose gel, 1X TBE buffer, 7 V/cm, 45 min.<br />

1 – GeneRuler Ultra Low Range DNA Ladder.<br />

2 – 21 bp siRNA (0.5 μg), premixed with 6X DNA Loading Dye (#R0611).<br />

Phi6 dsRNA<br />

21 bp siRNA<br />

#F-630 20 μg (0.5 μg/μl)<br />

Related Products<br />

Phi6 RNA Replicase p.332<br />

Replicator RNAi Kit p.329<br />

NTP Set p.411<br />

M – HindIII Digest.<br />

1 – The Phi6 RNA fragments<br />

2948 bp, 4063 bp and 6374 bp.<br />

Loading,<br />

μg(μl)/<br />

lane<br />

0.5-1 (1-2)<br />

SM1213 0.1 50 100 0.5-1 (5-10)<br />

SM1223 0.1 50 100 0.5-1 (5-10)<br />

Description<br />

<strong>Thermo</strong> <strong>Scientific</strong> GeneRuler Ultra Low<br />

Range DNA Ladders are composed of 11<br />

chromatography-purified individual fragments.<br />

The ladders are available in TE buffer or in two<br />

ready-to-use formats, premixed with different<br />

loading dyes.<br />

The presence of very small DNA fragments in<br />

the GeneRuler Ultra Low Range DNA ladder<br />

allow for siRNA gel analysis.<br />

Description<br />

<strong>Thermo</strong> <strong>Scientific</strong> Phi6 dsRNA ladder is an<br />

equimolar mixture of three linear doublestranded<br />

RNA fragments segments that<br />

constitute the bacteriophage Phi6 genome.<br />

The RNA fragments are 2948 bp, 4063 bp<br />

and 6374 bp in length. The relative fragment<br />

concentrations are approximately 110, 150<br />

and 240 ng/μl, respectively.<br />

Range,<br />

bp<br />

Number of<br />

fragments<br />

Application<br />

small dsRNA analysis.<br />

Agarose,<br />

%<br />

PAGE,<br />

%<br />

Page<br />

10-300 11 4.5-5.0 8-10 359<br />

Applications<br />

dsRNA size standard for agarose gel<br />

electrophoresis.<br />

Control RNA for dsRNA-specific enzymatic<br />

reactions; e.g., Dicer, RNaseIII or<br />

RNA helicases.<br />

Source<br />

The dsRNA is isolated from the wild-type<br />

bacteriophage Phi6 propagated in<br />

P. syringae pv. phaseolicola HB10Y.<br />

Storage Buffer<br />

dsRNA mixture is supplied in:<br />

10 mM Tris-HCl (pH 8.0), 1 mM EDTA.<br />

Unit definition<br />

1.0 A260 unit dsRNA = 40 μg/ml.<br />

www.thermoscientific.com/onebio 387


388<br />

Reagents for RNA Electrophoresis<br />

2X RNA Loading Dye<br />

#R0641 1 ml<br />

Related Products<br />

TopVision Agaroses p.427<br />

RiboRuler RNA Ladders p.386<br />

50X TAE Buffer p.371<br />

10X TBE Buffer p.371<br />

Agarase p.319<br />

Products for RNA synthesis in vitro p.325<br />

DEPC-treated Water p.420<br />

Protocols and Recommendations<br />

» 8.1. General recommendations for<br />

RNA electrophoresis p.390<br />

» 8.2-8.3. Preparation of RNA<br />

ladders/samples for electrophoresis p.390<br />

» 8.4. Preparation of gels for RNA<br />

electrophoresis p.390<br />

www.thermoscientific.com/onebio<br />

Description<br />

2X RNA Loading Dye is recommended for<br />

preparation of RiboRuler RNA ladders and<br />

RNA samples for electrophoresis on agarose<br />

or polyacrylamide gels. It contains the tracking<br />

dyes bromophenol blue and xylene cyanol FF, as<br />

well as the intercalating dye ethidium bromide.<br />

In most denaturing agarose gel systems<br />

bromophenol blue migrates slightly faster than<br />

human 5S rRNA, whereas xylene cyanol FF<br />

migrates slightly slower than 18S rRNA.<br />

The 2X RNA Loading Dye contains the<br />

denaturing agent formamide which allows RNA<br />

fragments to separate according to size even<br />

during non-denaturing electrophoresis and acts<br />

as an RNA stabilizer.<br />

xylene<br />

cyanol FF<br />

bromophenol<br />

blue<br />

Migration of tracking dyes.<br />

Application<br />

Preparation of RNA for loading on agarose or<br />

polyacrylamide gels.<br />

Composition of 2X Solution<br />

<br />

<br />

<br />

<br />

<br />

<br />

Storage<br />

Store at -20°C (or at 4°C for up to 12 months).


Electrophoresis Buffers<br />

Buffer Cat. # Size 1X composition Application and features Usage recommendations<br />

50X TAE Buffer<br />

(Tris-acetate-EDTA)<br />

10X TBE Buffer<br />

(Tris-borate-EDTA)<br />

Related Products<br />

TopVision Agaroses p.427<br />

RiboRuler RNA Ladders p.386<br />

2X RNA Loading Dye p.388<br />

Agarase p.319<br />

Agarose<br />

Storage<br />

The electrophoresis buffers can be stored<br />

indefinitely at room temperature. If the buffer<br />

is stored at lower temperatures, a precipitate<br />

may form, which is easily dissolved by gentle<br />

heating.<br />

Agarose Cat. # Size Applications Page<br />

TopVision Agarose<br />

B49 1 L<br />

B52 1 L<br />

40 mM Tris<br />

20 mM acetic acid<br />

1 mM EDTA<br />

pH of 50X TAE: 8.4<br />

89 mM Tris<br />

89 mM boric acid<br />

2 mM EDTA<br />

pH of 10X TBE: 8.3<br />

TopVision Low Melting Point Agarose R0801 25 g<br />

Electrophoresis of nucleic acids in agarose<br />

and polyacrylamide gels.<br />

Used both as a running buffer and as a gel<br />

preparation buffer.<br />

Recommended for resolution of RNA and DNA<br />

fragments larger than 1500 b(p), for genomic<br />

DNA and for large supercoiled DNA.<br />

Filtered through a 0.22 μm membrane.<br />

<br />

polyacrylamide gels.<br />

<br />

preparation buffer.<br />

<br />

DNA fragments smaller than 1500 b(p).<br />

<br />

R0491 100 g <br />

<br />

R0492 500 g <br />

<br />

<br />

<br />

<br />

electrophoresis run.<br />

<br />

buffer to 980 ml of deionized water and mix well.<br />

<br />

capacity; therefore, periodic replacement of<br />

the buffer during prolonged electrophoresis is<br />

recommended.<br />

<br />

electrophoresis run.<br />

<br />

buffer to 900 ml of deionized water and mix well.<br />

<br />

migrate about 10% slower in TBE buffer than in<br />

TAE buffer.<br />

427<br />

427<br />

Protocols and Recommendations<br />

» 8.1. General recommendations for<br />

RNA electrophoresis p.390<br />

» 8.2-8.3. Preparation of RNA<br />

ladders/samples for RNA electrophoresis p.390<br />

» 8.4. Preparation of gels for RNA<br />

electrophoresis p.390<br />

www.thermoscientific.com/onebio 389


390<br />

Protocols and Recommendations<br />

8.1. General recommendations<br />

for RNA electrophoresis<br />

RNA is extremely sensitive to degradation<br />

by ribonucleases. Therefore, use only fresh<br />

electrophoresis buffers and freshly<br />

poured gels.<br />

<br />

RNA gel analysis avoid electrophoresis tanks<br />

used for DNA miniprep analysis since DNA<br />

minipreps may contain RNase A or T1.<br />

<br />

samples and for RNA markers. 2X RNA<br />

Loading Dye is provided with all RiboRuler<br />

RNA ladders and 2X RNA Loading Dye is<br />

available separately (#R0641). It contains<br />

ethidium bromide for RNA visualization<br />

on denaturing formaldehyde gels. If RNA<br />

is separated on native agarose gels or on<br />

polyacrylamide/urea gels, additional staining<br />

with ethidium bromide is recommended.<br />

<br />

bromide to both the agarose gel and running<br />

buffer.<br />

8.2. Preparation of RNA ladders<br />

for electrophoresis<br />

For RiboRuler RNA ladders (#SM1831 and<br />

#SM1821):<br />

1. Mix 1 volume of RNA ladder and 1 volume of<br />

the supplied 2X RNA Loading Dye (#R0641).<br />

2. Heat at 70°C for 10 min.<br />

3. Chill on ice for 3 min and spin down prior to<br />

loading on a gel.<br />

4. Load 0.5 μl of the prepared ladder for<br />

every mm of gel lane width (4 μl / 8 mm lane).<br />

For RiboRuler RNA ladders, ready-touse<br />

(#SM1833 and #SM1823):<br />

1. Heat RNA ladders at 70°C for 10 min.<br />

2. Chill on ice for 3 minutes and spin down<br />

prior to loading on a gel.<br />

3. Load 0.5 μl of the ladder for every mm of<br />

gel lane width (4 μl / 8 mm lane).<br />

Note<br />

Ladders prepared as described above are not suitable for<br />

glyoxal/DMSO agarose gel electrophoresis. To prepare ladders<br />

for glyoxal/DMSO agarose gels, refer to the protocol 10.4.3.<br />

8.3. Preparation of RNA samples<br />

for electrophoresis<br />

1. Mix 1 volume of the 2X RNA Loading<br />

Dye (#R0641) and 1 volume of the RNA<br />

sample.<br />

2. Heat at 70ºC for 10 min.<br />

3. Chill on ice for 3 minutes and spin down<br />

prior to loading on a gel.<br />

www.thermoscientific.com/onebio<br />

Note<br />

RNA samples prepared as described above are not suitable<br />

for glyoxal/DMSO agarose gel electrophoresis. To prepare<br />

RNA samples for glyoxal/DMSO agarose gels, refer to the<br />

protocol 10.4.3.<br />

8.4. Preparation of gels for RNA<br />

electrophoresis<br />

8.4.1. Non-denaturing agarose gels<br />

<br />

times greater volume than that of the<br />

solution to avoid boiling over.<br />

<br />

prepare the gel and to run electrophoresis.<br />

<br />

buffers to a 1X concentration immediately<br />

before use.<br />

<br />

smaller than 1500 b. For larger RNA<br />

fragments, use TAE buffer.<br />

1. Weigh out the required amount of agarose<br />

(depending on the gel %) into an Erlenmeyer<br />

<br />

2. Add the appropriate volume of either 1X TBE<br />

or 1X TAE buffer and swirl to mix.<br />

3. <br />

For high percentage gels (3-5%): add an<br />

excess amount of distilled water to increase the<br />

weight by 10-20%.<br />

4. Boil the mixture in a microwave oven (at<br />

middle power) until the agarose melts<br />

<br />

while boiling. To prepare the highest<br />

quality agarose gels of any percentage,<br />

an additional 3-5 min of boiling after<br />

completely melting the agarose is<br />

recommended. A significant amount of<br />

water evaporates during this procedure<br />

and, therefore, restoring the initial weight<br />

(in step 5) is required to obtain the desired<br />

percentage gel.<br />

5. <br />

hot distilled water to restore the initial weight.<br />

For high percentage gels (3-5%): check (by<br />

weighing) that the excess 10-20% of water has<br />

evaporated and, if needed, continue boiling to<br />

remove any excess, or add hot distilled water to<br />

restore the initial weight.<br />

Optional. Add ethidium bromide to a final<br />

concentration of 0.5 μg/ml. Mix well and heat<br />

for 1 minute without boiling.<br />

6. Cool the solution to 65-70°C. Pour carefully<br />

into a clean casting tray. Remove bubbles<br />

with a pipette tip.<br />

7. Allow the gel to solidify for approximately<br />

30 min before use. Low percentage low<br />

melting point agarose gels can be solidified<br />

at 4°C.<br />

8. Immerse the gel into the desired<br />

electrophoresis buffer.<br />

9. Heat the RNA samples and ladder at 70°C<br />

for 10 min, then chill on ice for 3 min. Load<br />

onto the gel.<br />

10. Perform electrophoresis at 5 V/cm until the<br />

bromophenol blue runs approximately 2/3 of<br />

the way down the gel.<br />

After electrophoresis, the gel can be stained by<br />

immersing it into a 0.5 μg/ml ethidium bromide<br />

solution for 20 min, stained with SYBR Green II<br />

or any other RNA staining technique.<br />

Warning. Hot agarose solution should be<br />

handled very carefully.<br />

8.4.2. Denaturing formaldehyde gels in<br />

MOPS buffer<br />

1. Prepare fresh 10X MOPS buffer:<br />

– 0.4 M MOPS (pH 7.0),<br />

– 0.1 M sodium acetate,<br />

– 0.01 M EDTA (pH 8.0).<br />

2. Prepare 1% TopVision Agarose (#R0491) gel:<br />

– stir 1g of agarose powder in 72 ml of<br />

deionized water,<br />

– melt the agarose, and then add 10 ml of<br />

10X MOPS buffer and mix,<br />

– cool to 60°C and add 18 ml of fresh<br />

37% formaldehyde (in a fume hood) and<br />

mix thoroughly,<br />

– pour the gel.<br />

3. Place the gel into an electrophoresis<br />

apparatus containing 1X MOPS buffer.<br />

4. Heat the RNA samples and ladder at 70°C<br />

for 10 min, and then chill on ice for 3 min.<br />

5. Load onto the gel.<br />

Note<br />

There is no need to stain the gel as the ethidium bromide<br />

present in 2X RNA Loading Dye is sufficient for visualization<br />

under UV light.<br />

8.4.3. Denaturing glyoxal/DMSO gels<br />

in sodium phosphate buffer<br />

1. Prepare a thick 1% TopVision<br />

Agarose (#R0491) gel in 0.01 M sodium<br />

phosphate buffer, pH 7.0.<br />

2. Place the gel into an electrophoresis<br />

apparatus with 0.01 M sodium phosphate<br />

buffer, pH 7.0.<br />

3. For loading prepare 25 μl aliquots of the<br />

ladder/samples by adding:<br />

Glyoxal (40% solution) 4.5 μl<br />

DMSO 12.5 μl<br />

0.1 M sodium phosphate buffer, pH 7.0 2.5 μl<br />

4. Mix and add:<br />

RiboRuler RNA Ladder or RNA sample 3 μl<br />

2X RNA Loading Dye 1 μl<br />

DEPC-treated Water (#R0603) to 25 μl<br />

5. Incubate for 1 hour at 50°C and then cool<br />

down to room temperature.


6. Load the samples on a gel.<br />

7. Run electrophoresis at 5 V/cm until the<br />

bromophenol blue runs approximately 2/3 of<br />

the way down the gel.<br />

8. Stain the gel in 0.5 μg/ml ethidium bromide<br />

solution in 0.5 M ammonium acetate for<br />

15-30 min.<br />

9. Wash the gel in fresh 0.5 M ammonium<br />

acetate solution for 15-30 min.<br />

8.4.4. Denaturing polyacrylamide/<br />

urea gels in TBE buffer<br />

Prepare 20 ml of a 5% polyacrylamide gel<br />

containing 7 M urea by adding:<br />

47.5% acrylamide: 2.5% bis-acrylamide<br />

solution<br />

2 ml<br />

10 M urea 14 ml<br />

10X TBE Buffer (#B52) 2 ml<br />

10% freshly prepared ammonium persulfate 0.2 ml<br />

Deionized water 1.8 ml<br />

1. Mix and add 10 μl of TEMED. Mix again and<br />

pour the gel carefully avoiding formation of<br />

air bubbles.<br />

2. Insert the comb into the acrylamide and allow<br />

the gel to polymerize for at least 1 hour.<br />

3. Fill the electrophoresis apparatus with<br />

1X TBE buffer.<br />

4. Heat RNA samples and ladder at 70°C for<br />

10 min and chill on ice for 3 min.<br />

5. Load the samples on a gel.<br />

6. Run electrophoresis at 8 V/cm for about<br />

1 hour.<br />

7. Soak the gel for about 15 minutes in 1X TBE<br />

to remove urea prior to staining.<br />

8. Stain the gel in 0.5 μg/ml ethidium bromide<br />

in 1X TBE solution for 15 min.<br />

www.thermoscientific.com/onebio 391


392<br />

Troubleshooting Guide<br />

1<br />

RNA bands<br />

not visible<br />

1.1<br />

Insufficient<br />

staining<br />

1.2<br />

No staining<br />

1.3<br />

Insufficient<br />

amount of<br />

ladder loaded<br />

1.4<br />

RNA<br />

degradation<br />

1.5<br />

RNA<br />

diffusion<br />

1.6<br />

RNA<br />

run off<br />

the gel<br />

www.thermoscientific.com/onebio<br />

2<br />

Smeared RNA<br />

bands<br />

2.1<br />

RNA<br />

degradation<br />

2.2<br />

Improper<br />

ladder storage<br />

or usage<br />

2.3<br />

Gel depth<br />

inhibits RNA<br />

mobility<br />

2.4<br />

Improper electrophoresis<br />

conditions<br />

2.5<br />

Excess ladder<br />

loaded<br />

2.6<br />

Incompletely<br />

immersed<br />

gel<br />

3<br />

Atypical RNA<br />

ladder<br />

banding pattern<br />

RNA electrophoresis<br />

problem<br />

3.1<br />

Inefficient denaturation<br />

of<br />

the ladder<br />

3.2<br />

Sub-optimal<br />

gel<br />

preparation<br />

3.3<br />

Different<br />

loading conditions<br />

for ladder<br />

& sample<br />

3.4<br />

Improper electrophoresis<br />

conditions<br />

3.5<br />

Sub-optimal<br />

ethidium bromide<br />

conc.<br />

3.6<br />

Incompletely<br />

immersed<br />

gel<br />

4<br />

High<br />

background<br />

staining<br />

4.1<br />

Excess ethidium<br />

bromide/<br />

excess<br />

staining<br />

4.2<br />

Insufficient<br />

destaining<br />

5<br />

Uneven<br />

staining of<br />

the gel<br />

5.1<br />

Improper gel<br />

staining<br />

conditions<br />

5.2<br />

Incompletely<br />

immersed<br />

gel<br />

6<br />

RNA remains<br />

in the gel well<br />

6.1<br />

Poorly formed<br />

gel wells<br />

6.2<br />

Large quantity<br />

RNA loaded on<br />

the gel<br />

6.3<br />

Contamination<br />

of the RNA<br />

sample<br />

7<br />

Incorrect<br />

quantification<br />

data<br />

7.1<br />

Impure RNA<br />

7.2<br />

Incorrect<br />

ladder band<br />

chosen<br />

7.3<br />

Different<br />

loading conditions<br />

for ladder<br />

and sample<br />

7.4<br />

Improper<br />

quantification<br />

method<br />

7.5<br />

Uneven or high<br />

background<br />

staining of the<br />

gel


Table 8.1. Troubleshooting guide for RNA electrophoresis.<br />

Problem Possible cause and recommended solution<br />

1. RNA bands are not visible<br />

2. Smeared RNA bands<br />

1.1. Insufficient staining.<br />

Use the 2X RNA Loading Dye to prepare the conventional RiboRuler RNA ladder and RNA sample prior to<br />

electrophoresis. The loading dye solution includes ethidium bromide at a concentration sufficient to stain<br />

RNA on denaturing formaldehyde agarose gels. Ready-to-use RiboRuler RNA ladders are premixed with<br />

2X RNA Loading Dye.<br />

If RNA fragments will be separated on native agarose gels, additional staining of the gel with ethidium<br />

bromide (final concentration 0.5 μg/ml) is recommended.<br />

If RNA is separated on a denaturing glyoxal/DMSO agarose gel, stain the gel in ethidium bromide solution<br />

(final concentration 0.5 μg/ml) in 0.5 M ammonium acetate for 15-30 min after electrophoresis. Wash the<br />

gel in a fresh 0.5 M ammonium acetate solution for 15-30 min.<br />

If RNA is separated on a denaturing polyacrylamide gel with urea, soak the gel for about 15 min in 1X TBE to<br />

remove the urea prior to staining. Stain the gel in 0.5 μg/ml ethidium bromide in 1X TBE solution for 15 min.<br />

1.2. No staining.<br />

If you are using a loading dye which does not contain ethidium bromide, add ethidium bromide to both the<br />

agarose gel and electrophoresis buffer at a final concentration of 0.5 μg/ml.<br />

Alternatively, stain the gel after electrophoresis with ethidium bromide (0.5 μg/ml ethidium bromide) for<br />

20 min, or SYBR Green II (follow supplier recommendations).<br />

1.3. Insufficient amount of ladder was loaded.<br />

Follow the recommendations for loading described in the certificate of analysis supplied with each of the<br />

RiboRuler RNA ladders (0.25 μl per mm gel lane for conventional ladders; 0.5 μl per mm gel lane for readyto-use<br />

ladders).<br />

1.4. RNA degradation.<br />

Minimize exposure to UV light as this may cause RNA degradation/fading.<br />

RNA is extremely sensitive to degradation by ribonucleases. The use of fresh electrophoresis buffers, freshly<br />

poured gels, DEPC-treated solutions and protective gloves is recommended.<br />

1.5. RNA diffusion.<br />

Avoid prolonged electrophoresis or excessive staining and destaining procedures as this may cause diffusion<br />

of smaller RNA fragments from the gel.<br />

Avoid long term storage of the gel prior to photo documentation, as this may cause diffusion of RNA<br />

fragments and band fading.<br />

1.6. RNA run off the gel.<br />

Stop electrophoresis after the bromophenol blue passes 2/3 of the length of the gel. In most denaturing<br />

agarose gel systems, bromophenol blue migrates slightly faster than 5S rRNA and xylene cyanol FF migrates<br />

slightly slower than 18S rRNA.<br />

Make sure that the electrophoresis tank is in a completely vertical position.<br />

2.1. RNA degradation.<br />

RNA is extremely sensitive to degradation by ribonucleases. The use of fresh electrophoresis buffers, freshly<br />

poured gels, DEPC-treated solutions and protective gloves is recommended.<br />

2.2. Improper storage or use of RNA ladders.<br />

Store RiboRuler RNA ladders at -20°C for 6 months or at -70°C for 24 months. Thaw the ladders on ice.<br />

2.3. Excessive gel depth or sample volume.<br />

Use thin (~0.5 cm) gels and avoid loading of large volumes in the gel lane.<br />

2.4. Improper electrophoresis conditions.<br />

Ensure that there is enough electrophoresis buffer in the electrophoresis apparatus and that the gel is<br />

immersed completely.<br />

Do not use an excessively high voltage for electrophoresis. Run agarose gels at 5 V/cm (polyacrylamide/urea<br />

gels at 8 V/cm). To increase the band sharpness, use a lower voltage for several minutes at the beginning of<br />

electrophoresis.<br />

However, very low voltage during the entire run may result in band diffusion.<br />

2.5. Excessive RNA ladder loaded onto the gel.<br />

Follow the recommendations for loading described in the certificate of analysis of the RiboRuler RNA ladders<br />

(0.25 μl per mm gel lane for conventional ladders; 0.5 μl per mm gel lane for ready-to-use ladders).<br />

2.6. Incompletely immersed gel.<br />

Always ensure that there is enough electrophoresis buffer in the electrophoresis apparatus.<br />

(continued on next page)<br />

www.thermoscientific.com/onebio 393


394<br />

Table 8.1. Troubleshooting guide for RNA electrophoresis.<br />

Problem Possible cause and recommended solution<br />

3. Atypical banding pattern<br />

4. High background staining<br />

www.thermoscientific.com/onebio<br />

3.1. In-sufficient ladder denaturation.<br />

All RiboRuler <br />

centrifuged before loading on the gel in order to completely denature the RNA. Sample RNA should be<br />

prepared the same way.<br />

3.2. Sub-optimal gel preparation.<br />

Older formaldehyde has an acidic pH which may cause extra RNA bands to form on the gel. Use only fresh<br />

formaldehyde for optimal results.<br />

3.3. Different loading conditions for the sample and the ladder.<br />

Both ladder and sample RNA should be prepared with the same loading dye solution and loaded under the<br />

same conditions.<br />

After electrophoresis of total RNA samples in the presence of ethidium bromide, the 28S and 18S human<br />

rRNA should be clearly visible under UV illumination. Fast-migrating bands composed of 5.8S RNA and 5S<br />

RNA may also be visible depending on the RNA purification procedure. The intensity of the 28S RNA should<br />

be approximately twice the intensity of the 18S RNA.<br />

The 28S human rRNA band migrates at approximately 5000 b and the 18S human rRNA band migrates at<br />

approximately 1900 b.<br />

3.4. Improper electrophoresis conditions.<br />

Excessively long electrophoresis runs may result in migration of small RNA fragments off the gel.<br />

Very short electrophoresis runs may result in incompletely resolved bands.<br />

Run agarose gels at 5 V/cm (polyacrylamide/urea gels at 8 V/cm) until the bromophenol blue passes 2/3 of<br />

the gel length.<br />

TAE buffer is recommended for analysis of larger RNA, and TBE buffer is used to resolve RNA fragments<br />

smaller than 1500 b and for denaturing polyacrylamide gel electrophoresis.<br />

The correct gel percentage is important for optimal separation of the ladder RNA.<br />

Optimal conditions for RiboRuler High Range RNA Ladder (#SM1821/3):<br />

– native 0.8-1.5% agarose gel with TAE buffer,<br />

– denaturing formaldehyde 0.8-1.5% agarose gel with MOPS buffer,<br />

– denaturing glyoxal/DMSO 0.8-1.5% agarose gel with sodium phosphate buffer.<br />

Optimal conditions for RiboRuler Low Range RNA Ladder (#SM1831/3):<br />

– native 1.7-2.5% agarose gel with TBE buffer,<br />

– denaturing formaldehyde 1.7-2.5% agarose gel with MOPS buffer,<br />

– denaturing glyoxal/DMSO 1.7-2.5% agarose gel with sodium phosphate buffer,<br />

– denaturing 4-8% polyacrylamide gel with TBE buffer.<br />

3.5. Sub-optimal ethidium bromide concentration in sample and ladder.<br />

The 2X RNA Loading Dye allows for RNA visualization without the need for additional staining of denaturing<br />

agarose gels. Adding extra ethidium bromide to the ladder or sample is not recommended and may result in<br />

RNA migration toward the cathode.<br />

If RNA fragments are separated on native agarose gels or on polyacrylamide/urea gels, additional staining<br />

with ethidium bromide after electrophoresis is recommended.<br />

3.6. Incompletely immersed gel.<br />

Always ensure that there is enough electrophoresis buffer in the electrophoresis apparatus.<br />

4.1. Excessively high ethidium bromide concentration or prolonged staining.<br />

Use ethidium bromide at a final concentration of 0.5 μg/ml.<br />

Avoid prolonged gel staining.<br />

4.2. Insufficient gel destaining.<br />

If the gel is extensively stained with ethidium bromide, additional destaining in water is needed to<br />

remove the background staining.<br />

Wash glyoxal/DMSO agarose gels after staining in a fresh 0.5 M ammonium acetate solution for 15-30 min.<br />

(continued on next page)


Table 8.1. Troubleshooting guide for RNA electrophoresis.<br />

Problem Possible cause and recommended solution<br />

5. Uneven gel staining<br />

6. RNA remains in the gel well<br />

7. Incorrect quantification data<br />

5.1. Improper gel staining conditions.<br />

Ethidium bromide migrates in the opposite direction of the RNA during electrophoresis. Therefore, if ethidium<br />

bromide is only added to the agarose gel and not to the electrophoresis buffer, it may result in uneven RNA<br />

fragment staining.<br />

When 2X RNA Loading Dye is used for both conventional RiboRuler RNA ladders and RNA sample<br />

preparation prior to electrophoresis, additional staining is not required as the loading dye includes sufficient<br />

ethidium bromide to stain RNA on denaturing formaldehyde agarose gels.<br />

For native agarose gels, ethidium bromide (0.5 μg/ml) should be added to both the electrophoresis buffer<br />

and the agarose. This ensures an even distribution of ethidium bromide during electrophoresis so that the<br />

intensity of the bands upon exposure to UV light will be proportional to the quantity of RNA present.<br />

5.2. Incompletely immersed gel.<br />

Always ensure that there is enough electrophoresis buffer in the electrophoresis apparatus or enough of the<br />

staining solution during the staining so that the gel is always immersed completely.<br />

6.1. Poorly formed gel wells.<br />

Remove the gel comb only after complete polymerization of the gel. Pour the buffer onto the gel immediately.<br />

Rinse the wells with electrophoresis buffer to remove urea from denaturing polyacrylamide gels prior to<br />

loading the sample.<br />

6.2. Large quantity of RNA loaded on the gel.<br />

Follow the recommendations for loading described in the certificate of analysis of the RiboRuler RNA ladders<br />

(0.25 μl per mm gel lane for conventional ladders; 0.5 μl per mm gel lane for ready-to-use ladders).<br />

6.3. Contamination of the RNA sample.<br />

Ensure that your sample RNA solution does not contain any precipitate.<br />

7.1. Impure RNA.<br />

Free NTPs and truncated transcripts remaining in the sample after in vitro transcription can interfere with<br />

spectrophotometrical measurements and lead to inaccurate quantification of sample RNA.<br />

RiboRuler RNA ladders are produced from chromatography-purified RNA transcripts and are free<br />

of any NTPs and truncated transcripts. Therefore, the gel quantification data is compatible with the<br />

spectrophotometrical measurements of RiboRuler RNA ladders.<br />

7.2. Incorrect RiboRuler band chosen for quantification of the sample.<br />

Always compare the sample band to a ladder band of similar size.<br />

7.3. Different loading conditions for the ladder and samples.<br />

Both sample and ladder RNA should be loaded under the same conditions.<br />

Use the supplied 2X RNA Loading Dye for the sample and ladder.<br />

Load equal volumes of sample RNA and ladder RNA. The required volume of sample RNA can be obtained by<br />

dilution with a mixture (1:1) of DEPC-treated Water (#R0603) and 2X RNA Loading Dye.<br />

7.4. Improper quantification method used.<br />

If possible, quantify by video-densitometry measurements while subtracting the gel background as this<br />

method is more precise than a visual comparison of the bands.<br />

7.5. Uneven staining of the gel and high background staining can also interfere with gel quantification<br />

results (see Problem 4 and 5 above).<br />

www.thermoscientific.com/onebio 395


396<br />

www.thermoscientific.com/onebio


<strong>Thermo</strong> <strong>Scientific</strong><br />

Epigenetics Products<br />

Practical <strong>Solutions</strong> for Epigenetics .............................................................................398<br />

EpiJET DNA Methylation Analysis Kit (MspI/HpaII) .....................................................399<br />

EpiJET DNA Methylation Analysis Kit (TaqI/HpyF30I) .................................................399<br />

EpiJET 5-hmC Analysis Kit ..........................................................................................400<br />

CpG Methyltransferase (M.SssI) ..................................................................................401<br />

SgeI ...............................................................................................................................402<br />

CpG Methylated Human Genomic DNA .......................................................................403<br />

CpG Methylated Jurkat Genomic DNA ........................................................................403<br />

Jurkat Genomic DNA ....................................................................................................403<br />

www.thermoscientific.com/onebio 397


398<br />

Practical <strong>Solutions</strong> for Epigenetics<br />

Discover new <strong>Thermo</strong> <strong>Scientific</strong> tools designed<br />

for fast, efficient and robust epigenetic<br />

analysis. Our product line contains kits that<br />

utilize methylation-discriminating restriction<br />

enzymes as well as other modifying enzymes<br />

that aid in the analysis of 5-methylcytosine and<br />

5-hydroxymethylcytosine modifications.<br />

5-mC analysis<br />

5-mC<br />

EpiJET DNA Methylation Detection Analysis Kit<br />

(MspI/HpaII).<br />

EpiJET DNA Methylation Analysis Kit<br />

(TaqI/HpyF30I).<br />

CpG Methyltransferase (M.SssI).<br />

SgeI Restriction Enzyme.<br />

www.thermoscientific.com/onebio<br />

Fast epigenetic analysis.<br />

Reduced overall reaction times without<br />

compromising reaction efficiency.<br />

Specially formulated, highly stable enzymes<br />

and reagents for epigenetics.<br />

Tools for Epigenetic<br />

Analysis<br />

Controls<br />

CpG Methylated Human Genomic DNA.<br />

CpG Methylated Jurkat Genomic DNA.<br />

Jurkat Genomic DNA.<br />

5-hmC analysis<br />

EpiJET 5-hmC Analysis Kit.


EpiJET DNA Methylation Analysis Kit (MspI/HpaII)<br />

#K1441 for 200 rxns<br />

Related Products<br />

GeneJET Genomic DNA Purification Kit p.310<br />

GeneJET Whole Blood DNA Purification Kit p.312<br />

CpG Methylated Human Genomic DNA p.403<br />

CpG Methylated Jurkat Genomic DNA p.403<br />

Jurkat Genomic DNA p.403<br />

EpiJET DNA Methylation Analysis Kit<br />

(TaqI/HpyF30I) p.399<br />

Description<br />

5-Methylcytosine is a prominent epigenetic DNA<br />

modification which plays an important role in<br />

the regulation of gene expression.<br />

The <strong>Thermo</strong> <strong>Scientific</strong> EpiJET DNA Methylation<br />

Analysis Kit (MspI/HpaII) uses Epi MspI and<br />

Epi HpaII restriction enzymes to analyze DNA<br />

methylation status at a specific locus. Epi MspI<br />

and Epi HpaII are isoschizomers with different<br />

sensitivities to CpG methylation. When the CpG<br />

in the 5’-CCGG-3’ tetranucleotide sequence is<br />

EpiJET DNA Methylation Analysis Kit (TaqI/HpyF30I)<br />

#K1451 for 200 rxns<br />

Related Products<br />

GeneJET Genomic DNA Purification Kit p.310<br />

GeneJET Whole Blood DNA Purification Kit p.312<br />

CpG Methylated Human Genomic DNA p.403<br />

CpG Methylated Jurkat Genomic DNA p.403<br />

Jurkat Genomic DNA p.403<br />

<br />

(MspI/HpaII) p.399<br />

Description<br />

5-Methylcytosine is a prominent epigenetic<br />

DNA modification which plays an important role<br />

in up- and down-regulation of gene expression.<br />

In mammalian cells 5-methylcytosines are<br />

mainly found in 5’-CpG-3’ dinucleotides and<br />

are enriched in CpG islands, the GC-rich regions<br />

most often located in gene promoters.<br />

MspI/HpaII enzyme pair with 5’-CCGG-3’<br />

recognition sequence has multiple targets in<br />

such regions and is routinely used for cytosine<br />

methylation analysis. Outside the CpG islands the<br />

CCGG motives are much less abundant and limit<br />

the usability of the aforementioned enzyme pair.<br />

The <strong>Thermo</strong> <strong>Scientific</strong> EpiJET DNA Methylation<br />

methylated, cleavage with Epi HpaII is blocked,<br />

but cleavage with Epi MspI is not affected.<br />

The Epi MspI and Epi HpaII enzymes are<br />

specially formulated for epigenetics studies to<br />

complete genomic DNA digestion in 1 hour.<br />

Features<br />

Fast – complete digestion of genomic DNA<br />

in 1 hour at 37°C.<br />

Efficient – specially formulated enzymes for<br />

epigenetic studies of DNA methylation status.<br />

Applications<br />

CpG methylation analysis at 5’-CCGG-3’ loci.<br />

Components of the Kit<br />

<br />

<br />

<br />

Control pUC19/SmaI DNA Unmethylated<br />

(0.5 μg/μl)<br />

Control pUC19/SmaI DNA CpG Methylated<br />

(0.5 μg/μl)<br />

Storage<br />

Store at -20°C.<br />

Analysis Kit (TaqI/HpyF30I) uses another pair<br />

of restriction enzymes to analyze the DNA<br />

methylation status in gene bodies and other<br />

low-GC content genomic regions. HpyF30I and<br />

TaqI are isoschizomers with TCGA specificity;<br />

when cytosine in the 5’-TCGA-3’ tetranucleotide<br />

is methylated, the cleavage with Epi HpyF30I is<br />

blocked, but cleavage with Epi TaqI is not affected.<br />

The Epi HpyF30I and Epi TaqI enzymes are<br />

specially formulated for the epigenetic studies<br />

to complete genomic DNA digestion in 1 hour.<br />

Features<br />

Unique – novel tool for DNA methylation<br />

analysis in 5’ TCGA 3’ sequences.<br />

Efficient – enzymes specifically formulated<br />

for genomic DNA methylation analysis.<br />

Robust – reproducible data, correlating with<br />

other analysis methods.<br />

Fast procedure – Complete digestion of<br />

genomic DNA in 1h.<br />

Applications<br />

CpG methylation analysis at the 5’-TCGA-3’<br />

loci.<br />

Components of the Kit<br />

<br />

<br />

<br />

1 2 3 4 5 6<br />

Parallel digestion of methylated<br />

and unmethylated DNA.<br />

Methylated and unmethylated linearized plasmid DNA<br />

(pUC19/SmaI) were mixed with human blood genomic<br />

DNA and digested in parallel with methylation-sensitive<br />

Epi HpaII restriction enzyme and methylation insensitive<br />

isoschizomer Epi MspI for 1 hour at 37°C. Methylated<br />

plasmid DNA and naturally methylated gDNA were<br />

protected from cleavage with Epi HpaII but were cleaved<br />

with methylation-insensitive Epi MspI. Unmethylated<br />

plasmid DNA was cleaved with both enzymes.<br />

1, 4 – undigested DNA (control)<br />

2, 5 – DNA following digestion with Epi HpaII<br />

3, 6 – DNA following digestion with Epi MspI<br />

<br />

(0.5 μg/μl)<br />

<br />

(0.5 μg/μl)<br />

Storage<br />

Store at -20°C.<br />

pUC19 DNA / SmaI mpUC19 DNA / SmaI<br />

genomic DNA<br />

plasmid DNA<br />

1 2 3 4 5 6<br />

Digestion of methylated and unmethylated DNA<br />

by Epi HpyF30I and Epi TaqI.<br />

1, 4 – undigested DNA,<br />

2, 5 – digested with Epi TaqI,<br />

3, 6 – digested with Epi HpyF30I.<br />

1-3 contain unmethylated pUC19/SmaI plasmid.<br />

4-6 methylated with CpG Methyltransferase (M.SssI).<br />

Genomic DNA in all lanes is human blood gDNA.<br />

www.thermoscientific.com/onebio 399


400<br />

EpiJET 5-hmC Analysis Kit<br />

#K1481 for 25 rxns<br />

Related Products<br />

GeneJET Genomic DNA Purification Kit p.310<br />

GeneJET Whole Blood DNA Purification Kit p.312<br />

CpG Methylated Human Genomic DNA p.403<br />

CpG Methylated Jurkat Genomic DNA p.403<br />

Jurkat Genomic DNA p.403<br />

Glucosylation<br />

Restriction digestion<br />

qPCR<br />

15 min.<br />

4 hours<br />

~ 2 hours<br />

5-hmC detection workflow. m-C methylcytosine, hm-C<br />

hydroxymethylcytosine, ghm-C glucosylated hydroxymethylcytosine.<br />

www.thermoscientific.com/onebio<br />

Genomic DNA<br />

m hm<br />

<br />

5'....CCGG....3' 5'....CCGG....3' 5'....CCGG....3'<br />

3'....GGCC....5' 3'....GGCC....5' 3'....GGCC....5'<br />

<br />

m hm<br />

+ T4 – glucosyltransferase + UDP-glucose<br />

m ghm<br />

<br />

5'....CCGG....3' 5'....CCGG....3' 5'....CCGG....3'<br />

3'....GGCC....5' 3'....GGCC....5' 3'....GGCC....5'<br />

<br />

m ghm<br />

+ Epi MspI<br />

m ghm<br />

<br />

5'' 5'' 5'....CCGG....3'<br />

3'' 3'' 3'....GGCC....5'<br />

<br />

m ghm<br />

m ghm<br />

<br />

5'' 5'' 5'....CCGG....3'<br />

3'' 3'' 3'....GGCC....5'<br />

<br />

m ghm<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> EpiJET 5-hmC Analysis<br />

Kit is an efficient system for detection of<br />

5-hydroxymethylcytosine (5-hmC) within specific<br />

DNA loci. The kit takes advantage of the ability<br />

of the T4 phage -glucosyltransferase (T4 BGT)<br />

to add a glucose moiety to 5-hmC residues,<br />

as well as the sensitivity of restriction enzyme<br />

MspI to glucosylated 5-hmC. The EpiJET<br />

5-hmC Analysis Kit includes two advanced<br />

enzymes: T4 BGT and Epi MspI. The T4 BGT<br />

is formulated for highly specific, complete and<br />

fast glucosylation of 5-hmC in 15 min. The Epi<br />

MspI is an MspI restriction enzyme specially<br />

formulated for efficient use in epigenetic studies.<br />

It completely digests genomic DNA in 4 hours<br />

when cytosine, 5-methylcytosine, or 5-hmC is<br />

within its recognition sequence, but its activity is<br />

completely blocked when 5-hmC is glucosylated.<br />

The assay involves DNA sample glucosylation<br />

and subsequent Epi MspI digestion. Restriction<br />

digestion products are then analyzed by<br />

qPCR with a primer pair flanking the CCGG<br />

site of interest. Results are compared against<br />

non-gluosylated and non-digested controls.<br />

A<br />

B<br />

C<br />

D<br />

Cq1 < Cq2 < Cq3<br />

Features<br />

Complete and specific 5-hmC conversion to<br />

glucosylated 5-hmC in 15 min.<br />

Discrimination of internal 5-hmC in CCGG<br />

sequences by Epi MspI digestion in 4 hours.<br />

Quantification of internal 5-hmC content in<br />

CCGG sequences by qPCR.<br />

Applications<br />

Internal 5-hmC analysis and quantification in<br />

CCGG sequences.<br />

Components of the Kit<br />

T4 – glucosyltransferase<br />

Epi Buffer<br />

UDP–glucose<br />

Epi MspI<br />

5-hmC Control DNA<br />

Control primer 1<br />

Control primer 2<br />

Water, nuclease-free.<br />

Note<br />

Modification of the external C in CCGG<br />

sequences blocks the activity of Epi MspI.<br />

This may affect the digestion efficiency of<br />

non-glucosylated DNA. Levels of external C<br />

methylation vary depending on sample type<br />

and origin.<br />

Cq1 Cq2*<br />

Cq3 - Cq1 > 7 cycles<br />

Full hydroxymethylation.<br />

Glucosylation blocks cleavage by Epi<br />

MspI. CCGG site is fully 5-hydroxymethylated.<br />

Cq1 < Cq2 < Cq3<br />

Partial hydroxymethylation.<br />

Cleavage level represents the hydroxymethylation<br />

level in the CCGG site of<br />

interest.<br />

Cq3 Cq2*<br />

Cq2 - Cq1> 7 cycles<br />

No hydroxymethylation. CCGG<br />

site does not contain 5-hmC bases.<br />

Glucosylation does not affect cleavage<br />

by Epi MspI.<br />

Cq1 Cq2 Cq3*<br />

No cleavage. No Epi MspI recognition<br />

site or CCGG sequence modified<br />

at external C (Epi MspI cleavage is<br />

blocked).<br />

Interpretation of results.<br />

Cq1 – threshold cycle of “-T4 BGT-Epi MspI” sample. Cq2 – threshold cycle of<br />

“+T4 BGT+Epi MspI” sample. Cq3 – threshold cycle of “-T4 BGT+Epi MspI” sample<br />

* stands for Cq 0.5


CpG Methyltransferase (M.SssI)<br />

#EM0821 25 μl<br />

Supplied with:<br />

<br />

<br />

Related Products<br />

GeneJET Genomic DNA Purification Kit p.310<br />

GeneJET Whole Blood DNA Purification Kit<br />

EpiJET DNA Methylation<br />

p.312<br />

Analysis Kit (MspI/HpaII)<br />

EpiJET DNA Methylation Analysis Kit<br />

p.399<br />

(TaqI/HpyF30I) p.399<br />

CpG Methylated Human Genomic DNA p.403<br />

CpG Methylated Jurkat Genomic DNA p.403<br />

Jurkat Genomic DNA p.403<br />

<strong>Thermo</strong><br />

<strong>Scientific</strong><br />

vendor A vendor B<br />

15 min at 37°C 2 h at 30°C 1 h at 37°C<br />

1 2 3 1 2 3 1 2 3<br />

Plasmid DNA methylated for 15 min using <strong>Thermo</strong> <strong>Scientific</strong> M.SssI is<br />

protected from HpaII cleavage. 0.5 μg of linearized plasmid DNA (pUC19/<br />

SmaI) was methylated using M.SssI from different suppliers according to vendor<br />

recommendations. The methylated plasmid DNA was mixed with 0.5 μg of human<br />

blood genomic DNA and digested in parallel with the methylation-sensitive HpaII<br />

restriction enzyme and methylation insensitive isoschizomer MspI. Methylated<br />

plasmid DNA and naturally methylated gDNA were protected from cleavage by HpaII<br />

and cleaved by MspI.<br />

1 – undigested DNA (control)<br />

2 – after digestion with HpaII<br />

3 – after digestion with MspI<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> CpG Methyltransferase<br />

(M.SssI) is one of the basic tools used in<br />

epigenetic studies. The enzyme methylates the<br />

C 5 position on the base moiety of all cytosine<br />

nucleotides contained in unmethylated or<br />

hemimethylated double stranded DNA in a<br />

5’-CpG-3’ context.<br />

<strong>Thermo</strong> <strong>Scientific</strong> M.SssI is specifically<br />

formulated for fast methylation times without<br />

compromising reaction efficiency. The enzyme<br />

completes modification of all CpGs in 15 min<br />

at 37°C. In addition, the enzyme has been<br />

specifically validated for use with genomic<br />

DNA – the primary substrate in epigenetic<br />

studies.<br />

<br />

<br />

(SAM) as a cofactor.<br />

genomic DNA<br />

plasmid DNA<br />

Features<br />

High efficiency – complete in vitro<br />

methylation of all CpG dinucleotides in<br />

non-methylated and hemi-methylated DNA.<br />

Fast – reaction is completed in 15 min at<br />

37°C.<br />

Stable – at -20°C for 2 years.<br />

Applications<br />

Epigenetics studies.<br />

In vitro methylation of DNA for methylation<br />

analysis.<br />

Inhibition of endonucleases with overlapping<br />

CpG sequence recognition.<br />

[ 3H]-labeling of DNA.<br />

Storage Buffer<br />

CpG Methyltransferase (M.SssI) is supplied in:<br />

10 mM potassium phosphate (pH 7.0 at 25°C),<br />

400 mM KCl, 1 mM DTT, 0.1 mM EDTA, 0.2<br />

mg/ml BSA and 50% glycerol.<br />

Formulation<br />

1 μl of M.SssI protects 1 μg of genomic DNA<br />

from digestion with HpaII in 15 min at 37°C in<br />

50 μl of recommended reaction buffer.<br />

Storage<br />

Store at -20°C.<br />

www.thermoscientific.com/onebio 401


402<br />

SgeI<br />

* SgeI cleaves DNA targets containing 5-methylcytosine on<br />

one or both DNA strands<br />

#ER2211 250 u<br />

Supplied with:<br />

<br />

www.thermoscientific.com/onebio<br />

Description<br />

The <strong>Thermo</strong> <strong>Scientific</strong> SgeI is a methylationdependent<br />

restriction enzyme which recognizes<br />

5-methylcytosine and cleaves modified site<br />

on one or both DNA strands at a N9/N13<br />

downstream the modified cytosine.<br />

Concentration<br />

3 u/μl<br />

Conditions for 100% Activity<br />

Buffer SgeI at 37°C.<br />

Inactivation<br />

The SgeI is heat-inactivated at 65°C in 20 min.<br />

Storage Buffer<br />

SgeI is supplied in:<br />

10 mM Tris-HCl (pH 7.4 at 25°C), 100 mM<br />

NaCl, 1 mM DTT, 1 mM EDTA and 50% glycerol.<br />

Methylation Effects<br />

Dam, EcoKI, EcoBI – no effect.<br />

Dcm: always cleaves DNA methylated by Dcm<br />

methyltransferase (p.175).<br />

CpG: cleaves targets overlapping with CpG<br />

methylated sequences (p.177).<br />

Digestion of Agarose-embedded DNA<br />

A minimum of 3 units of the enzyme is required<br />

for complete digestion of 1 μg of agaroseembedded<br />

lambda DNA in 16 hours.<br />

Applications<br />

Enrichment of undermethylated DNA.<br />

DNA Methylation analysis.<br />

Note<br />

<br />

methyltransferases will be a substrate<br />

for SgeI.<br />

<br />

may result in nonspecific cleavage.<br />

<br />

site are required for an efficient cleavage.<br />

<br />

complete digestion of methylated DNA<br />

depends on the number of SgeI recognition<br />

sites. Digestion products generated by<br />

target site cleavage may cause nonspecific<br />

cleavage by SgeI. Therefore, the amount<br />

of SgeI used in the reaction may require<br />

optimization.<br />

E.coli<br />

strain (#SD0041) can be used as a DNA<br />

cleavage efficiency control. SgeI cleaves<br />

all six dcm-methylated targets<br />

on pBR322 DNA.


CpG Methylated Human Genomic DNA<br />

#SD1131 15 μg<br />

Related Products<br />

EpiJET DNA Methylation<br />

Analysis Kit (MspI/HpaII) p.399<br />

EpiJET DNA Methylation Analysis Kit<br />

(TaqI/HpyF30I) p.399<br />

EpiJET 5-hmC Analysis Kit p.400<br />

CpG Methylated Jurkat Genomic DNA<br />

#SD1121 15 μg<br />

Related Products<br />

EpiJET DNA Methylation<br />

Analysis Kit (MspI/HpaII) p.399<br />

EpiJET DNA Methylation Analysis Kit<br />

(TaqI/HpyF30I) p.399<br />

EpiJET 5-hmC Analysis Kit p.400<br />

Jurkat Genomic DNA<br />

#SD1111 15 μg<br />

Related Products<br />

EpiJET DNA Methylation<br />

Analysis Kit (MspI/HpaII) p.399<br />

EpiJET DNA Methylation Analysis Kit<br />

(TaqI/HpyF30I) p.399<br />

EpiJET 5-hmC Analysis Kit p.400<br />

Description<br />

Human genomic DNA enzymatically methylated<br />

with CpG Methyltransferase (M.SssI). Genomic<br />

DNA was isolated from blood samples from<br />

healthy male (HIV, HBV and HCV negative)<br />

individuals. Isolated genomic DNA was treated<br />

with CpG Methyltransferase, repurified and<br />

dissolved in TE buffer. 98% CpG methylation<br />

level confirmed by bisulfite sequencing.<br />

Description<br />

Human male genomic DNA from Jurkat<br />

cells enzymatically methylated with CpG<br />

Methyltransferase (M.SssI). Genomic DNA<br />

was isolated from Jurkat E6.1 cells (human<br />

acute T-cell leukemia, clone E6.1) grown to<br />

confluency in RPMI media supplemented with<br />

10% fetal bovine serum. Isolated genomic<br />

DNA was treated with CpG Methyltransferase,<br />

repurified and dissolved in TE buffer. 98%<br />

CpG methylation level confirmed by bisulfite<br />

sequencing.<br />

Description<br />

Human male genomic DNA purified from Jurkat<br />

cells. Genomic DNA was isolated from Jurkat<br />

E6.1 cells (human acute T-cell leukemia, clone<br />

E6.1) grown to confluency in RPMI media<br />

supplemented with 10% fetal bovine serum.<br />

Isolated genomic DNA is dissolved in TE buffer.<br />

Features<br />

Pure – DNA is free of inhibitors, proteins<br />

and RNA.<br />

Convenient – ready to use 100 ng/μl<br />

concentration.<br />

Compatible with downstream applications.<br />

Features<br />

Pure – DNA is free of inhibitors, proteins<br />

and RNA.<br />

Convenient – ready to use 100 ng/μl<br />

concentration.<br />

Compatible with downstream applications.<br />

Complete methylation of cytosines in CpG<br />

dinucleotides.<br />

Applications<br />

As a control in the following:<br />

– Bisulfite sequencing,<br />

– Combined Bisulfite Restriction Analysis<br />

(COBRA),<br />

– Methylation-sensitive Single-Nucleotide<br />

Primer Extension (Ms-SNuPE).<br />

Features<br />

Pure – DNA is free of inhibitors, proteins<br />

and RNA.<br />

Convenient – ready to use 100 ng/μl<br />

concentration.<br />

Compatible with downstream applications.<br />

Complete methylation of cytosines in CpG<br />

dinucleotides.<br />

Applications<br />

As a control in the following:<br />

– Bisulfite sequencing,<br />

– Combined Bisulfite Restriction Analysis<br />

(COBRA),<br />

– Methylation-sensitive Single-Nucleotide<br />

Primer Extension (Ms-SNuPE).<br />

Applications<br />

As a control in the following:<br />

– Bisulfite sequencing,<br />

– Combined Bisulfite Restriction Analysis<br />

(COBRA),<br />

– Methylation-sensitive Single-Nucleotide<br />

Primer Extension (Ms-SNuPE).<br />

Genomic DNA library construction.<br />

PCR, Southern blotting.<br />

www.thermoscientific.com/onebio 403


404<br />

www.thermoscientific.com/onebio


<strong>Thermo</strong> <strong>Scientific</strong><br />

Nucleotides & Primers<br />

Deoxyribonucleoside Triphosphates (dNTPs), molecular biology grade .................406<br />

dNTP Sets and Mixes .....................................................................................................408<br />

dATP................................................................................................................................408<br />

dCTP ...............................................................................................................................408<br />

dGTP ...............................................................................................................................409<br />

dTTP ................................................................................................................................409<br />

dUTP ...............................................................................................................................409<br />

dITP ................................................................................................................................. 410<br />

Ribonucleoside Triphosphates (NTPs), molecular biology grade ...............................411<br />

NTP Set ............................................................................................................................411<br />

ATP ...................................................................................................................................411<br />

CTP .................................................................................................................................. 412<br />

GTP ................................................................................................................................. 412<br />

UTP.................................................................................................................................. 412<br />

Modified Nucleotides, molecular biology grade ............................................................ 413<br />

Fluorescein-12-dUTP ..................................................................................................... 413<br />

Biotin-11-dUTP ............................................................................................................... 414<br />

Aminoallyl-dUTP ............................................................................................................ 414<br />

Aminoallyl-UTP .............................................................................................................. 414<br />

dm6ATP ........................................................................................................................... 415<br />

dm4CTP ........................................................................................................................... 415<br />

dm5 Deoxyribonucleoside Triphosphates (dNTPs), molecular biology grade .................406<br />

dNTP Sets and Mixes .....................................................................................................408<br />

dATP................................................................................................................................408<br />

dCTP ...............................................................................................................................408<br />

dGTP ...............................................................................................................................409<br />

dTTP ................................................................................................................................409<br />

dUTP ...............................................................................................................................409<br />

dITP ................................................................................................................................. 410<br />

Ribonucleoside Triphosphates (NTPs), molecular biology grade ...............................411<br />

NTP Set ............................................................................................................................411<br />

ATP ...................................................................................................................................411<br />

CTP .................................................................................................................................. 412<br />

GTP ................................................................................................................................. 412<br />

UTP.................................................................................................................................. 412<br />

Modified Nucleotides, molecular biology grade ............................................................ 413<br />

Fluorescein-12-dUTP ..................................................................................................... 413<br />

Biotin-11-dUTP ............................................................................................................... 414<br />

Aminoallyl-dUTP ............................................................................................................ 414<br />

Aminoallyl-UTP .............................................................................................................. 414<br />

dm<br />

CTP ........................................................................................................................... 415<br />

Primers .............................................................................................................................. 416<br />

Primers for Sequencing ................................................................................................ 416<br />

M13/pUC Sequencing Primers ....................................................................................... 416<br />

pJET1.2 Sequencing Primers ......................................................................................... 416<br />

Transcription Promoter Primers ...................................................................................... 416<br />

Oligo(dT) 18 Primer .......................................................................................................... 417<br />

Random Hexamer Primer .............................................................................................. 417<br />

Exo-Resistant Random Primer ..................................................................................... 417<br />

6ATP ........................................................................................................................... 415<br />

dm4CTP ........................................................................................................................... 415<br />

dm5CTP ........................................................................................................................... 415<br />

Primers .............................................................................................................................. 416<br />

Primers for Sequencing ................................................................................................ 416<br />

M13/pUC Sequencing Primers ....................................................................................... 416<br />

pJET1.2 Sequencing Primers ......................................................................................... 416<br />

Transcription Promoter Primers ...................................................................................... 416<br />

Oligo(dT) 18 Primer .......................................................................................................... 417<br />

Random Hexamer Primer .............................................................................................. 417<br />

Exo-Resistant Random Primer ..................................................................................... 417<br />

www.thermoscientific.com/onebio 405


406<br />

Deoxyribonucleoside Triphosphates (dNTPs), molecular biology grade<br />

<strong>Thermo</strong> Fisher <strong>Scientific</strong> is one of the few<br />

primary manufactures of nucleotides in the<br />

industry. Our dNTPs are supplied in aqueous<br />

solutions titrated to pH 7.0 with NaOH and<br />

are available individually, as a set of four<br />

separate nucleotides, or as nucleotide mixes<br />

at convenient concentrations for direct use in<br />

PCR, reverse transcription, labeling and other<br />

molecular biology applications.<br />

<strong>Thermo</strong> <strong>Scientific</strong> dNTP purity is greater than 99% confirmed by HPLC.<br />

Column – TOSOH TSK gel ODS – 100 V, 150 x 4.6 mm.<br />

Buffer A – 100 mM triethylamonium acetate, pH 7.0<br />

Buffer B – 60% acetonitrile/A<br />

Gradient – 0-25% B<br />

Flow rate – 1 ml/min<br />

www.thermoscientific.com/onebio<br />

Features<br />

Greater than 99% purity confirmed by HPLC.<br />

Free of trace contaminating nucleotides.<br />

Free of endo- and exodeoxyribonuclease,<br />

ribonuclease and nicking activities.<br />

Free of human and E.coli DNA.<br />

Highly stable – the neutral pH of the<br />

nucleotide solutions ensures stability during<br />

long-term storage:<br />

– stable for 3 years at -20°C,<br />

– stable after multiple freeze-thaw cycles,<br />

– 90-95% of dNTPs remain in triphosphate<br />

form after 7 weeks at room temperature,<br />

– 85-90% of dNTPs remain in triphosphate<br />

form after 30 cycles of PCR<br />

(1 min at 94°C; 3 min at 72°C).<br />

Application tested in:<br />

– long range PCR (40 kb),<br />

– cDNA synthesis and RT-PCR,<br />

– real-time PCR,<br />

– standard PCR,<br />

– high fidelity PCR.<br />

Application<br />

<strong>Thermo</strong> <strong>Scientific</strong> dNTPs can be used in<br />

most common molecular biology applications<br />

including PCR, real-time PCR, high fidelity and<br />

long PCR, LAMP-PCR, cDNA synthesis, RT-PCR,<br />

RDA, MDA, DNA labeling and DNA sequencing.<br />

Quality Control<br />

Functionally tested in PCR with proofreading<br />

Pfu DNA Polymerase, exept dUTP, dITP and<br />

dNTP/dUTP Mix, which were tested with<br />

Taq DNA Polymerase. Greater than 99% purity<br />

of each component confirmed by HPLC.<br />

The absence of of endo-, exodeoxyribonuclease,<br />

ribonuclease and nicking activities confirmed by<br />

appropriate tests. Tested for absence of human<br />

and E.coli DNA.<br />

Storage<br />

Store at -20°C.


Fluorescence (norm)<br />

Cycle<br />

10 4<br />

10 3<br />

30<br />

20<br />

10<br />

0 4<br />

10 -5<br />

NTC<br />

8 12 16 20<br />

Cycle<br />

24 28 32 36 40<br />

1 10 10<br />

Amount, pg<br />

2<br />

10-4 10-3 10-2 10-1 103 104 Uniform and reproducible results in qPCR.<br />

Amplification of 10-fold serial dilutions of supercoiled plasmid DNA,<br />

(10 ng-0.1 fg), using the Maxima SYBR Green/ROX qPCR Master Mix<br />

(2X) (includes <strong>Thermo</strong> <strong>Scientific</strong> dNTPs) in duplicate reactions. Reactions<br />

were performed on the Eppendorf Mastercycler ep realplex instrument.<br />

The amplification plot and standard curve show the linearity across 9<br />

orders of magnitude. NTC is the non-template control.<br />

1μg 400ng 200ng 40ng 8ng 1.6ng 0.3ng 0.1ng 50pg<br />

M 1 2 3 4 5 6 7 8 9 M<br />

dNTP performance in two-step RT-PCR.<br />

Decreasing amounts of total mouse liver RNA were used for first-strand<br />

cDNA synthesis with RevertAid H Minus Reverse Transcriptase (<strong>Thermo</strong><br />

<strong>Scientific</strong>), oligo(dT) 18 (#SO131) and dNTP Mix, 10 mM each (#R0191/2/3).<br />

After completion of the reaction, 2 μl of the mixture was used in<br />

subsequent PCR with Taq DNA Polymerase (<strong>Thermo</strong> <strong>Scientific</strong>) and PCR<br />

primers specific to the GAPDH gene.<br />

M – GeneRuler 100 bp Plus DNA Ladder (#SM0321).<br />

1-9 – RT-PCR products.<br />

M 1 2 3 4 5 M<br />

dNTP performance in amplification of long DNA<br />

fragments.<br />

Long DNA fragments were amplified in a 50 μl reaction<br />

mixture containing 2.5 u of the <strong>Thermo</strong> <strong>Scientific</strong> Long<br />

PCR Enzyme Mix, 1.25 ng of lambda DNA (#SD0011),<br />

0.2 mM of each dNTP (#R0241) and 1.5 mM of MgCl 2.<br />

M – DNA Ladder.<br />

1-5 – Long PCR products.<br />

1 kb RNA transcript 200 b RNA transcript<br />

M K1 A B C M K2 A B C M<br />

Evaluation of ribonuclease-free <strong>Thermo</strong> <strong>Scientific</strong> dNTPs.<br />

Three <strong>Thermo</strong> <strong>Scientific</strong> dNTP formulations (all at 1 mM concentration)<br />

were incubated with 1 μg of RNA transcript (200 b and 1 kb) for 4 hours<br />

at 37°C in 20 μl volume. The dNTP preparations are determined to be<br />

RNase free if there is no visible trace of RNA transcript degradation.<br />

M – RiboRuler Low Range RNA Ladder, ready-to-use (#SM1833).<br />

K1 – control RNA transcript 1 kb long.<br />

K2 – control RNA transcript 200 b long.<br />

A – with dNTP Mix, 2 mM each (#R0241).<br />

B – with dNTP Mix, 10 mM each (#R0191).<br />

C – with dNTP Set (#R0181).<br />

www.thermoscientific.com/onebio 407


408<br />

dNTP Sets and Mixes<br />

Product Cat. # Concentration Amount<br />

dNTP Set<br />

dNTP Mix, 25 mM each<br />

dNTP Mix, 10 mM each<br />

dNTP Mix, 2 mM each<br />

dNTP/dUTP Mix* R0251<br />

dATP<br />

#R0141 25 μmol<br />

(0.25 ml of 100 mM solution)<br />

Formula<br />

C 10H 13N 5O 12P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

557.2 (acid form: 491.2)<br />

dCTP<br />

#R0151 25 μmol<br />

(0.25 ml of 100 mM solution)<br />

Formula<br />

C 9H 13N 3O 13P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

533.1 (acid form: 467.1)<br />

www.thermoscientific.com/onebio<br />

Description<br />

dATP (2’-deoxyadenosine 5’-triphosphate) is<br />

supplied as a 100 mM aqueous solution titrated<br />

to pH 7.0 with NaOH.<br />

Application<br />

For use in most common molecular biology<br />

applications including PCR, real-time PCR,<br />

high fidelity and long PCR, LAMP-PCR, cDNA<br />

synthesis, RT-PCR, RDA, MDA, DNA labeling<br />

and DNA sequencing.<br />

Description<br />

dCTP (2’-deoxycytidine 5’-triphosphate) is<br />

supplied as a 100 mM aqueous solution titrated<br />

to pH 7.0 with NaOH.<br />

Application<br />

For use in most common molecular biology<br />

applications including PCR, real-time PCR,<br />

high fidelity and long PCR, LAMP-PCR, cDNA<br />

synthesis, RT-PCR, RDA, MDA, DNA labeling<br />

and DNA sequencing.<br />

General Characteristics<br />

max = 259 nm,<br />

= 15.4x10 3 M -1 x cm -1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

General Characteristics<br />

max= 271 nm,<br />

= 9.1x10 3 M -1 x cm -1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

Number of<br />

PCR applications<br />

(50 μl at 0.2 mM each)<br />

R0181 100 mM solutions of<br />

4x0.25 ml (4x25 μmol) 2500<br />

R0182 dATP, dTTP, dCTP and dGTP 4x1 ml (4x100 μmol) 10000<br />

R0186<br />

in separate tubes<br />

4x5 ml (4x500 μmol) 50000<br />

R1121<br />

1.0 ml (100 μmol total) 2500<br />

25 mM of each<br />

R1122 5x1.0 ml (500 μmol total) 12500<br />

R0191<br />

0.2 ml (8 μmol total) 200<br />

R0192 10 mM of each<br />

1.0 ml (40 μmol total) 1000<br />

R0193 5x1.0 ml (200 μmol total) 5000<br />

R0241<br />

1.0 ml (8 μmol total) 200<br />

2 mM of each<br />

R0242 5x1.0 ml (40 μmol total) 1000<br />

2 mM of each dATP, dCTP and dGTP<br />

4 mM of dUTP<br />

* not suitable for PCR with proofreading enzymes, enzyme mixes containing proofreading enzymes and for DreamTaq DNA Polymerase.<br />

1.0 ml (10 μmol total) 200


dGTP<br />

#R0161 25 μmol<br />

(0.25 ml of 100 mM solution)<br />

Formula<br />

C 10H 13N 5O 13P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

573.2 (acid form: 507.2)<br />

dTTP<br />

#R0171 25 μmol<br />

(0.25 ml of 100 mM solution)<br />

Formula<br />

C 10H 14N 2O 14P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

548.1 (acid form: 482.1)<br />

dUTP<br />

#R0133 25 μmol<br />

(0.25 ml of 100 mM solution)<br />

Formula<br />

C 9H 12N 2O 14P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

534.1 (acid form: 468.1)<br />

Description<br />

dGTP (2’-deoxyguanosine 5’-triphosphate) is<br />

supplied as a 100 mM aqueous solution titrated<br />

to pH 7.0 with NaOH.<br />

Application<br />

For use in most common molecular biology<br />

applications including PCR, real-time PCR,<br />

high fidelity and long PCR, LAMP-PCR,<br />

cDNA synthesis, RT-PCR, RDA, MDA, DNA<br />

labeling and DNA sequencing.<br />

Description<br />

dTTP (2’-deoxythymidine 5’-triphosphate) is<br />

supplied as a 100 mM aqueous solution titrated<br />

to pH 7.0 with NaOH.<br />

Application<br />

For use in most common molecular biology<br />

applications including PCR, real-time PCR,<br />

high fidelity and long PCR, LAMP-PCR,<br />

cDNA synthesis, RT-PCR, RDA, MDA, DNA<br />

labeling and DNA sequencing.<br />

Description<br />

dUTP (2’-deoxyuridine 5’-triphosphate) is<br />

supplied as a 100 mM aqueous solution titrated<br />

to pH 7.0 with NaOH.<br />

Application<br />

For use in most common molecular biology<br />

applications including PCR, real-time<br />

PCR & RT-PCR with Taq DNA Polymerase,<br />

cDNA synthesis and primer extension.<br />

General Characteristics<br />

max= 253 nm,<br />

= 13.7x10 3 M -1 x cm -1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

General Characteristics<br />

max= 267 nm,<br />

= 9.6x10 3 M -1 x cm -1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

General Characteristics<br />

max= 262 nm,<br />

= 10.0x10 3 M -1 x cm -1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

Note<br />

<br />

proofreading enzymes or enzyme mixes<br />

containing proofreading enzymes.<br />

www.thermoscientific.com/onebio 409


410<br />

dITP<br />

#R1191 25 μmol<br />

(0.25 ml of 100 mM solution)<br />

Formula<br />

C 10H 12N 4O 13P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

558.1 (acid form: 492.1)<br />

www.thermoscientific.com/onebio<br />

Description<br />

dITP (2’-deoxyinosine 5’-triphosphate) is<br />

supplied as a 100 mM aqueous solution<br />

titrated to pH 7.0 with NaOH.<br />

Application<br />

For use in most common molecular biology<br />

applications including PCR & RT-PCR with<br />

Taq DNA Polymerase, cDNA synthesis,<br />

SNP genotyping and primer extension.<br />

General Characteristics<br />

max= 249 nm,<br />

= 12.2x10 3 M -1 x cm -1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

Note<br />

<br />

proofreading enzymes or enzyme mixes<br />

containing proofreading enzymes.


Ribonucleoside Triphosphates (NTPs), molecular biology grade<br />

NTPs are manufactured at <strong>Thermo</strong> Fisher<br />

<strong>Scientific</strong>, one of a few primary manufacturers<br />

of nucleotides in the industry. They are provided<br />

individually or in a convenient set of ATP, CTP,<br />

GTP and UTP 100 mM solutions titrated to<br />

pH 7.0 with NaOH.<br />

Features<br />

Greater than 99% purity confirmed by HPLC.<br />

Free of trace contaminating nucleotides.<br />

Free of endo-, exodeoxyribonuclease,<br />

ribonuclease and nicking activities.<br />

Functionally tested in in vitro transcription.<br />

Highly stable – the neutral pH of nucleotide<br />

solutions ensures stability during long-term<br />

storage:<br />

– stable for 3 years at -20°C,<br />

– stable after multiple freeze-thaw cycles.<br />

NTP Set<br />

#R0481 4x25 μmol<br />

(4x0.25 ml of 100 mM solution)<br />

ATP<br />

#R0441 25 μmol<br />

(0.25 ml of 100 mM solution)<br />

Formula<br />

C 10H 13N 5O 13P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

573.1 (acid form: 507.2)<br />

<strong>Thermo</strong> <strong>Scientific</strong> vendor A vendor B<br />

M 1 2 3 4 5 6 7 8 9 M<br />

NTP performance in high yield in vitro trancription.<br />

RNA transcripts were generated using <strong>Thermo</strong> <strong>Scientific</strong> NTPs and<br />

NTPs from two other vendors in high yield in vitro transcription reactions<br />

containing 1 μg of DNA template.<br />

M – RiboRuler High Range RNA Ladder, ready-to-use (#SM1823).<br />

1, 4, 7 – 500 b RNA transcripts.<br />

2, 5, 8 – 1000 b RNA transcripts.<br />

3, 6, 9 – 6000 b RNA transcripts.<br />

Description<br />

A convenient set of 100 mM solutions of each<br />

ATP, CTP, GTP and UTP.<br />

Applications<br />

In vitro transcription<br />

RNA amplification<br />

siRNA synthesis<br />

aRNA synthesis<br />

Description<br />

ATP (adenosine 5’-triphosphate) is supplied as<br />

a 100 mM aqueous solution titrated to<br />

pH 7.0 with NaOH.<br />

Applications<br />

In vitro transcription<br />

RNA amplification<br />

siRNA synthesis<br />

aRNA synthesis<br />

Ligation<br />

Phosphorylation<br />

Storage<br />

Store at -20°C.<br />

General Characteristics<br />

max= 259 nm,<br />

= 15.4x10 3 M -1 x cm -1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

www.thermoscientific.com/onebio 411


412<br />

CTP<br />

#R0451 25 μmol<br />

(0.25 ml of 100 mM solution)<br />

Formula<br />

C 9H 13N 3O 14P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

549.1 (acid form: 483.1)<br />

GTP<br />

#R0461 25 μmol<br />

(0.25 ml of 100 mM solution)<br />

Formula<br />

C 10H 13N 5O 14P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

589.2 (acid form: 523.2)<br />

UTP<br />

#R0471 25 μmol<br />

(0.25 ml of 100 mM solution)<br />

Formula<br />

C 9H 12N 2O 15P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

550.1 (acid form: 484.1)<br />

www.thermoscientific.com/onebio<br />

Description<br />

CTP (cytidine 5’-triphosphate) is supplied as<br />

a 100 mM aqueous solution titrated to<br />

pH 7.0 with NaOH.<br />

Applications<br />

In vitro transcription<br />

RNA amplification<br />

siRNA synthesis<br />

aRNA synthesis<br />

Description<br />

GTP (guanosine 5’-triphosphate) is supplied as<br />

a 100 mM aqueous solution titrated to<br />

pH 7.0 with NaOH.<br />

Applications<br />

In vitro transcription<br />

RNA amplification<br />

siRNA synthesis<br />

aRNA synthesis<br />

Description<br />

UTP (uridine 5’-triphosphate) is supplied as<br />

a 100 mM aqueous solution titrated to<br />

pH 7.0 with NaOH.<br />

Applications<br />

In vitro transcription<br />

RNA amplification<br />

siRNA synthesis<br />

aRNA synthesis<br />

General Characteristics<br />

max= 271 nm,<br />

= 9.0x10 3 M -1 x cm -1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

General Characteristics<br />

max= 253 nm,<br />

= 13.7x10 3 M -1 x cm -1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

General Characteristics<br />

max= 262 nm,<br />

= 10.0x10 3 M -1 x cm -1 (pH 7.0).<br />

Storage<br />

Store at -20°C.


Modified Nucleotides, molecular biology grade<br />

Fluorescein-12-dUTP<br />

#R0101 25 nmol<br />

(25 μl of 1 mM solution)<br />

Formula<br />

C 39H 41N 4O 21P 3<br />

<strong>Molecular</strong> Weight<br />

994.7<br />

Description<br />

Fluorescein-12-dUTP (fluorescein-5(6)carboxaminocaproyl-[5-{3-aminoallyl}-2’deoxyuridine-5’-triphosphate])<br />

is supplied as<br />

a 1 mM aqueous solution.<br />

Fluorescein-12-dUTP can be enzymatically<br />

incorporated into DNA with Reverse<br />

Transcriptases, Taq DNA Polymerase,<br />

phi29 DNA Polymerase, Klenow Fragment, exo – ,<br />

Klenow Fragment and DNA Polymerase I.<br />

Fluorescence excitation<br />

excitation<br />

emission<br />

Normalized excitation-emission spectra of<br />

Fluorescein-12-dUTP.<br />

Fluorescence excitation<br />

400 450 500 550 600 650 700<br />

Wavelength, nm<br />

Application<br />

Enzymatic non-radioactive labeling of DNA<br />

during cDNA synthesis, PCR, nick-translation,<br />

random primed labeling or primer extension.<br />

General Characteristics<br />

Ex max= 495 nm; Em max= 520 nm (pH 9.0).<br />

max= 495 nm,= 70.0x10 3 M -1 x cm -1 (pH 9.0).<br />

Storage<br />

Store at -20°C in the dark.<br />

Ex max – excitation maximum; Em max – emission maximum.<br />

Protocols and Recommendations<br />

» 6.2.2. Non-radioactive random-primed DNA<br />

labeling p.350<br />

» 6.3.2. Non-radioactive DNA labeling by<br />

nick-translation p.350<br />

» 6.5.2. Synthesis of non-radioactively<br />

labeled cDNA p.351<br />

www.thermoscientific.com/onebio 413


414<br />

Biotin-11-dUTP<br />

#R0081 50 nmol<br />

(50 μl of 1 mM solution)<br />

Formula<br />

C 28H 41N 6O 17P 3SNa 3<br />

<strong>Molecular</strong> Weight<br />

927.6 (acid form: 861.6)<br />

Aminoallyl-dUTP<br />

#R0091 1 μmol<br />

(0.1 ml of 10 mM solution)<br />

#R1101 2.5 μmol<br />

(0.05 ml of 50 mM solution)<br />

Formula<br />

C 12H 17N 3O 14P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

589.2 (acid form: 523.2)<br />

Aminoallyl-UTP<br />

#R1091 2.5 μmol<br />

(0.05 ml of 50 mM solution)<br />

Formula<br />

C 12H 17N 3O 15P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

605.2 (acid form: 539.2)<br />

www.thermoscientific.com/onebio<br />

Description<br />

Biotin-11-dUTP (biotin--aminocaproyl-[5-<br />

{3-aminoallyl}-2’-deoxyuridine-5’-triphosphate])<br />

is supplied as a 1 mM aqueous solution titrated<br />

to pH 7.0 with NaOH.<br />

Biotin-11-dUTP can be enzymatically<br />

incorporated into DNA with Reverse<br />

Transcriptases, Taq DNA Polymerase,<br />

phi29 DNA Polymerase, Klenow Fragment, exo – ,<br />

Klenow Fragment and DNA Polymerase I.<br />

Description<br />

Aminoallyl-dUTP (5-[3-aminoallyl]-2’deoxyuridine-5’-triphosphate)<br />

is supplied as<br />

10 mM and 50 mM aqueous solutions titrated<br />

to pH 7.0 with NaOH.<br />

Aminoallyl-dUTP can be enzymatically<br />

incorporated into DNA with Reverse<br />

Transcriptases, Taq DNA Polymerase, phi29<br />

DNA Polymerase, Klenow Fragment, Klenow<br />

Fragment, exo – and DNA Polymerase I. The<br />

resulting amine-containing DNA can be<br />

subsequently labeled with any amine-reactive<br />

fluorescent dye, biotin or hapten.<br />

Description<br />

Aminoallyl-UTP (5-[3-aminoallyl]-2’-uridine-5’triphosphate)<br />

is supplied as a 50 mM aqueous<br />

solution titrated to pH 7.0 with NaOH.<br />

Aminoallyl-UTP can be enzymatically<br />

incorporated into RNA with T7, T3 and SP6 RNA<br />

polymerases. The resulting amine-containing<br />

RNA can be subsequently labeled with any<br />

amine-reactive fluorescent dye, biotin or<br />

hapten.<br />

Application<br />

Enzymatic non-radioactive labeling of DNA<br />

during PCR, nick-translation, cDNA synthesis,<br />

random primed labeling or primer extension.<br />

General Characteristics<br />

max= 240 nm, =10.7x103 M-1 x cm-1 (pH 7.0)<br />

max= 289 nm,= 7.1x103 M-1 x cm-1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

Application<br />

Enzymatic indirect non-radioactive labeling<br />

of DNA during cDNA synthesis, PCR, nicktranslation,<br />

random primed labeling or primer<br />

extension.<br />

General Characteristics<br />

max = 240 nm, =11.9x103 M-1 x cm-1 (pH 7.0)<br />

max = 290 nm, = 7.8x103 M-1 x cm-1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

Application<br />

Enzymatic indirect non-radioactive labeling of<br />

RNA during in vitro transcription.<br />

General Characteristics<br />

max = 240 nm, =11.9x10 3 M -1 x cm -1 (pH 7.0)<br />

max = 290 nm, = 7.8x10 3 M -1 x cm -1 (pH 7.0).<br />

Storage<br />

Store at -20°C.


dm 6 ATP<br />

#R0501 1 μmol<br />

(0.1 ml of 10 mM solution)<br />

Formula<br />

C 11H 15N 5O 12P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

573.2 (acid form: 507.2)<br />

dm 4 CTP<br />

#R0421 1 μmol<br />

(0.1 ml of 10 mM solution)<br />

Formula<br />

C 10H 15N 3O 13P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

547.1 (acid form: 481.1)<br />

dm 5 CTP<br />

#R0431 1μmol<br />

(0.1ml of 10 mM solution)<br />

Formula<br />

C 10H 15N 3O 13P 3Na 3<br />

<strong>Molecular</strong> Weight<br />

547.1 (acid form: 481.1)<br />

Description<br />

dm 6 ATP (2’-deoxy-N6-methyladenosine<br />

5’-triphosphate) is supplied as a 10 mM<br />

aqueous solution titrated to pH 7.0 with NaOH.<br />

dm 6 ATP can be enzymatically incorporated<br />

into DNA with Taq DNA Polymerase or Klenow<br />

Fragment.<br />

Description<br />

dm 4 CTP (2’-deoxy-N4-methylcytidine<br />

5’-triphosphate) is supplied as a 10 mM<br />

aqueous titrated to pH 7.0 with NaOH.<br />

dm 4 CTP can be enzymatically incorporated<br />

into DNA with Taq DNA Polymerase or Klenow<br />

Fragment.<br />

Description<br />

dm 5 CTP (2’-deoxy-5-methylcytidine<br />

5’-triphosphate) is supplied as a 10 mM<br />

aqueous solution titrated to pH 7.0 with NaOH.<br />

dm 5 CTP can be enzymatically incorporated<br />

into DNA with Taq DNA Polymerase or Klenow<br />

Fragment.<br />

Application<br />

Synthesis of methylated DNA.<br />

General Characteristics<br />

max = 265 nm,<br />

= 15.4x103 M-1 x cm-1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

Application<br />

Synthesis of methylated DNA.<br />

General Characteristics<br />

max = 274 nm,<br />

= 13.6x103 M-1 x cm-1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

Application<br />

Synthesis of methylated DNA.<br />

General Characteristics<br />

max = 279 nm,<br />

= 8.77x103 M-1 x cm-1 (pH 7.0).<br />

Storage<br />

Store at -20°C.<br />

www.thermoscientific.com/onebio 415


416<br />

Primers<br />

Primers for Sequencing<br />

M13/pUC Sequencing Primers Cat. #<br />

A260 units<br />

Amount<br />

μg μl pmol<br />

Concentration<br />

μg/ml μM<br />

M13/pUC sequencing primer (-20), 17-mer<br />

5’-d(GTAAAACGACGGCCAGT)-3’<br />

SO100 0.1 3.3 60 600 56.6 10<br />

M13/pUC reverse sequencing primer (-26), 17-mer<br />

5’-d(CAGGAAACAGCTATGAC)-3’<br />

SO101 0.1 3.3 60 600 56.6 10<br />

M13/pUC sequencing primer (-40), 17-mer<br />

5’-d(GTTTTCCCAGTCACGAC)-3’<br />

SO113 0.1 3.3 60 600 56.6 10<br />

M13/pUC sequencing primer (-46), 22-mer<br />

5’-d(GCCAGGGTTTTCCCAGTCACGA)-3’<br />

SO114 0.1 3.3 45 450 73.2 10<br />

M13/pUC reverse sequencing primer (-46), 24-mer<br />

5’-d(GAGCGGATAACAATTTCACACAGG)-3’<br />

SO115 0.1 3.3 42 420 79.9 10<br />

pJET1.2 Sequencing primers Cat. # A260 units g l pmol g/ml m<br />

pJET1.2 forward sequencing primer, 23-mer<br />

5’-d(CGACTCACTATAGGGAGAGCGGC)-3’<br />

SO501 0.2 6.7 87 870 76.6 10<br />

pJET1.2 reverse sequencing primer, 24-mer<br />

5’-d(AAGAACATCGATTTTCCATGGCAG)-3’<br />

SO511 0.2 6.7 84 840 79.9 10<br />

Description<br />

Sequencing primers are single-stranded<br />

oligonucleotides with 5’-hydroxyl and<br />

3’-hydroxyl ends. The M13/pUC sequencing<br />

primers anneal to the region in the 5’-terminus<br />

of the lacZ gene. All primers are supplied as<br />

10 μM aqueous solutions.<br />

Transcription Promoter Primers Cat. #<br />

SP6 promoter sequencing primer, 18-mer<br />

5’-d(ATTTAGGTGACACTATAG)-3’<br />

SP6 promoter sequencing primer, 24-mer<br />

5’-d(CATACGATTTAGGTGACACTATAG)-3’<br />

T7 promoter sequencing primer, 20-mer<br />

5’-d(TAATACGACTCACTATAGGG)-3’<br />

T3 promoter sequencing primer, 17-mer<br />

5’-d(ATTAACCCTCACTAAAG)-3’<br />

T3 promoter sequencing primer, 24-mer<br />

5’-d(GCGCGAAATTAACCCTCACTAAAG)-3’<br />

Description<br />

Sequencing primers are single-stranded<br />

oligonucleotides with 5’- and 3’-hydroxyl ends.<br />

The primers are complementary to the SP6,<br />

T3 or T7 RNA polymerase promoter regions<br />

respectively. Primers are supplied as 10 μM<br />

aqueous solutions.<br />

www.thermoscientific.com/onebio<br />

Applications<br />

M13/pUC Sequencing primers<br />

– Sequencing of DNA fragments inserted<br />

into the MCS within the lacZ gene of<br />

various cloning vectors, such as pUC19,<br />

pTZ19R, pTZ57R, M13mp18,<br />

pBluescript II (see Appendix for vector<br />

description).<br />

– Colony screening by PCR.<br />

pJET1.2 Sequencing primers<br />

– Sequencing of DNA fragments inserted<br />

into Eco32I site within the eco47IR gene<br />

of pJET1.2.<br />

– Colony screening by PCR.<br />

Amount Concentration<br />

A 260 units μg μl pmol μg/ml μM<br />

SO116 0.1 3.3 56 560 59.9 10<br />

SO117 0.1 3.3 42 420 79.9 10<br />

SO118 0.1 3.3 50 500 66.6 10<br />

SO119 0.1 3.3 60 600 56.6 10<br />

SO120 0.1 3.3 42 420 79.9 10<br />

Application<br />

Sequencing of DNA fragments located<br />

downstream from the corresponding RNA<br />

polymerase promoter sequences in common<br />

cloning vectors, such as pTZ19R, pTZ57R,<br />

pBluescript II (see Appendix for vector<br />

description).<br />

Storage<br />

Store at -20°C.<br />

Storage<br />

Store at -20°C.<br />

Note<br />

<br />

that contain truncated, but still fully<br />

functional promoters.


Oligo(dT) 18 Primer<br />

#SO131 60 μl (30 μg)<br />

#SO132 120 μl (60 μg)<br />

Random Hexamer Primer<br />

Description<br />

The Oligo(dT) 18 Primer is a synthetic singlestranded<br />

18-mer oligonucleotide with 5’- and<br />

3’-hydroxyl ends.<br />

The primer is supplied as a ready-to-use,<br />

20X concentrated aqueous solution.<br />

#SO142 120 μl (24 μg) Description<br />

The Random Hexamer Primer is a mixture of<br />

single-stranded random hexanucleotides with<br />

5’- and 3’-hydroxyl ends.<br />

The primer is supplied as a ready-to-use,<br />

20X concentrated aqueous solution.<br />

Exo-Resistant Random Primer<br />

5’-NpNpNpNpNp S Np S N-3’<br />

N=G, A, T or C<br />

#SO181 100 μl<br />

References<br />

1. Skerra, A., Phosphorothioate primers improve the<br />

amplification of DNA sequences by DNA polymerases<br />

with proofreading activity, Nucleic Acids Res., 20,<br />

3551-3554, 1992.<br />

2. Dean, F.B., et al., Comprehensive human genome<br />

amplification using multiple displacement amplification,<br />

Proc. Natl. Acad. Sci., 99, 5261-5266, 2002.<br />

3. Dean, F.B., et al., Rapid amplification of plasmid and<br />

phage DNA using phi29 DNA polymerase and multiplyprimed<br />

rolling circle amplification, Genome Res., 11,<br />

1095-1099, 2001.<br />

4. Feinberg, A.P., Vogelstein, B., A technique for radiolabeling<br />

DNA restriction endonuclease fragments to high specific<br />

activity, Anal. Biochem., 132, 6-13, 1983.<br />

5. Feinberg, A.P., Vogelstein, B., A technique for radiolabeling<br />

DNA restriction endonuclease fragments to high specific<br />

activity, Addendum, Anal. Biochem., 137, 266-267, 1984.<br />

6. Mackey, J., et al., Use of random primer extension for<br />

concurrent amplification and nonradioactive labeling of<br />

nucleic acids, Anal. Biochem., 212, 428-435, 1993.<br />

Description<br />

The Exonuclease-Resistant Random Primer<br />

is a mixture of single-stranded random<br />

oligonucleotides used for highly efficient random<br />

priming of various DNA synthesis reactions. This<br />

primer has two 3’-terminal phosphorothioate<br />

(PTO) modifications that are resistant to the<br />

3’5’ exonuclease activity of proofreading<br />

DNA polymerases (1), such as Klenow Fragment<br />

and phi29 DNA Polymerase. It also has<br />

5’- and 3’-hydroxyl ends. The Exo-Resistant<br />

Random Primer is supplied as a ready-to-use,<br />

20X concentrated aqueous solution.<br />

Application<br />

First strand cDNA synthesis.<br />

Concentration<br />

100 μM (0.5 μg/μl)<br />

Storage<br />

Store at -20°C.<br />

Application<br />

First strand cDNA synthesis.<br />

Concentration<br />

100 μM (0.2 μg/μl)<br />

Storage<br />

Store at -20°C.<br />

Features<br />

3’-terminal PTO modifications protect the<br />

primer from 3’5’ exonuclease degradation<br />

and ensure efficient priming of DNA synthesis.<br />

Applications<br />

Strand displacement amplification of genomic<br />

DNA (2), plasmids and phage DNA (3).<br />

DNA labeling by random priming (4-6).<br />

Concentration<br />

500 μM (1.1 μg/μl)<br />

Storage<br />

Store at -20°C.<br />

www.thermoscientific.com/onebio 417


418<br />

www.thermoscientific.com/onebio


<strong>Thermo</strong> <strong>Scientific</strong> Reagents<br />

Water .................................................................................................................................. 420<br />

Water, nuclease-free ..................................................................................................... 420<br />

DEPC-treated Water ...................................................................................................... 420<br />

Reducing Agent ............................................................................................................... 420<br />

DTT.................................................................................................................................. 420<br />

Aqueous Salt <strong>Solutions</strong> .................................................................................................. 421<br />

0.5 M EDTA, pH 8.0......................................................................................................... 421<br />

25 mM MgCl 2 .................................................................................................................. 421<br />

3 M Sodium Acetate Solution, pH 5.2, molecular biology grade ..................................... 421<br />

BSA Solution..................................................................................................................... 422<br />

Bovine Serum Albumin (BSA), molecular biology grade ................................................. 422<br />

Carriers for Precipitation of Nucleic Acids ................................................................ 423<br />

Glycogen......................................................................................................................... 423<br />

Glycogen, molecular biology grade ................................................................................. 423<br />

Glycogen, RNA grade .................................................................................................... 423<br />

Enzyme Substrates and Associated Reagents ......................................................... 424<br />

IPTG ................................................................................................................................ 424<br />

X-Gal ...............................................................................................................................424<br />

X-Gluc ............................................................................................................................. 425<br />

5-Fluoroorotic Acid ....................................................................................................... 425<br />

BCIP-T ............................................................................................................................. 426<br />

NBT ................................................................................................................................. 426<br />

Agarose ............................................................................................................................. 427<br />

TopVision Agarose ......................................................................................................... 427<br />

TopVision Agarose ......................................................................................................... 427<br />

TopVision Low Melting Point Agarose ............................................................................. 427<br />

www.thermoscientific.com/onebio 419


420<br />

Water<br />

Water, nuclease-free<br />

#R0581 4x1.25 ml<br />

#R0582 30 ml<br />

DEPC-treated Water<br />

#R0603 5x1 ml<br />

#R0601 30 ml<br />

Reducing Agent<br />

DTT<br />

#R0861 5 g<br />

#R0862 25 g<br />

Formula<br />

C 4H 10O 2S 2<br />

<strong>Molecular</strong> Weight<br />

154.25<br />

www.thermoscientific.com/onebio<br />

Description<br />

Deionized and 0.22 μm membrane-filtered<br />

nuclease-free water. Ideal for all molecular<br />

biology applications.<br />

Description<br />

<br />

and 0.22 μm membrane-filtered water. Ideal for<br />

applications involving RNA.<br />

Feature<br />

Free of endo-, exodeoxyribonucleases and<br />

ribonucleases.<br />

Description<br />

DTT (DL-Dithiothreitol; Cleland’s reagent) is<br />

used to stabilize enzymes and other proteins<br />

which possess free sulfhydryl groups and has<br />

been shown to restore activity lost by oxidation<br />

of these groups in vitro. DTT quantitatively<br />

reduces disulfide bonds and maintains<br />

monothiols in a reduced state (1).<br />

At a 0.1 M final concentration DTT is also widely<br />

used for disruption of protein disulfide bonds in<br />

SDS-polyacrylamide gel electrophoresis.<br />

Feature<br />

Free of endo-, exodeoxyribonucleases,<br />

ribonucleases and proteases.<br />

Features<br />

Free of endo-, exodeoxyribonucleases and<br />

ribonucleases.<br />

Human and E.coli DNA free.<br />

Storage<br />

Store at -20°C or at room temperature.<br />

Storage<br />

Store at -20°C.<br />

Note<br />

<br />

PCR or in vivo experiments (1).<br />

Reference<br />

<br />

A Laboratory Manual, the Third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York,<br />

7.84, 2001.<br />

Applications<br />

<br />

<br />

Protein electrophoresis.<br />

Storage<br />

Store at 4°C or at room temperature.<br />

Note<br />

<br />

not stable in solution. To prepare a 1 M DTT<br />

solution, dissolve 1.55 g of DTT powder in<br />

<br />

nuclease-free, #R0581).<br />

Reference<br />

<br />

SH groups, Biochemistry, 3, 480-2, 1964.


Aqueous Salt <strong>Solutions</strong><br />

0.5 M EDTA, pH 8.0<br />

#R1021 5x1 ml<br />

25 mM MgCl 2<br />

Description<br />

An aqueous solution of 0.22 μm membrane-<br />

<br />

sodium salt. Ideal for biochemistry or molecular<br />

biology applications that require a chelator for<br />

<br />

enzymatic reactions by forming complexes with<br />

<br />

<br />

<br />

degradation of nucleic acids by metal<br />

dependent nucleases.<br />

Usage recommendations<br />

<br />

<br />

– mix well.<br />

<br />

PCR Purification Kit (#K0701) or phenol/chloroform extraction with subsequent alcohol precipitation.<br />

Note<br />

<br />

thermally inactivated, if possible.<br />

Applications<br />

Termination of metal dependent enzymatic<br />

reactions.<br />

Protection of DNA against metal dependent<br />

nucleases.<br />

Storage<br />

Store at 4°C.<br />

#R0971 4x1.25 ml Description<br />

Applications<br />

An aqueous solution of 0.22 μm<br />

PCR.<br />

membrane-filtered magnesium chloride, used <br />

for optimization of magnesium ion concentration<br />

in PCR reactions.<br />

Feature<br />

Free of endo-, exodeoxyribonucleases<br />

and ribonuclease.<br />

Storage<br />

Store at -20°C.<br />

3 M Sodium Acetate Solution, pH 5.2, molecular biology grade<br />

#R1181 5x1 ml Description<br />

Storage<br />

3 M Sodium Acetate Solution, pH 5.2 is 0.22 μm<br />

membrane filtered, sterile and nuclease free.<br />

Applications<br />

DNA precipitation.<br />

RNA precipitation.<br />

Store at 4°C.<br />

www.thermoscientific.com/onebio 421


422<br />

BSA Solution<br />

Bovine Serum Albumin (BSA), molecular biology grade<br />

#B14 5 mg (20 mg/ml) Description<br />

Concentration<br />

Bovine Serum Albumin (BSA) is used for 20 mg/ml<br />

stabilization of enzymes during storage and<br />

for enzymatic reactions where the absence<br />

of nucleases is essential. BSA increases PCR<br />

yields from low purity templates. It also prevents<br />

adhesion of enzymes to reaction tubes and tip<br />

surfaces.<br />

Features<br />

Non-modified (non-acetylated).<br />

V-fraction.<br />

Applications<br />

<br />

PCR with low purity templates, e.g., mouse<br />

tail DNA.<br />

Restriction enzyme digestion.<br />

<strong>Molecular</strong> Weight<br />

Approximately 66 kDa.<br />

Storage Buffer<br />

<br />

10 mM Tris-HCl (pH 7.4 at 25°C), 100 mM KCl,<br />

<br />

Storage<br />

Store at -20°C.<br />

www.thermoscientific.com/onebio


Carriers for Nucleic Acid Precipitation<br />

Glycogen<br />

Glycogen, molecular biology grade<br />

#R0561 2x0.25 ml<br />

(20 mg/ml aqueous solution)<br />

Glycogen, RNA grade<br />

#R0551 2x0.1 ml<br />

(20 mg/ml aqueous solution)<br />

Precipitation yield, %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Glycogen-free Glycogen<br />

1 μg/μl<br />

17 nt DNA oligonucleotide<br />

Glycogen-free Glycogen<br />

0.05 μg/μl<br />

200 bp DNA fragment<br />

References<br />

1. Tracy, S., Improved rapid methodology for the isolation<br />

of nucleic acids from agarose gels, Prep. Biochem., 11,<br />

251-268, 1981.<br />

2. Helms, C., A new method for puryfying lambda DNA from<br />

phage lysates, DNA, 4, 39-49, 1985.<br />

3. Hengen, P. N., Methods and reagents – Carriers for<br />

precipitating nucleic acids, TIBS, 21, 224-225, 1996.<br />

4. <br />

Laboratory Manual, the Third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York, A8.<br />

12-8.13, 2001.<br />

Description<br />

Glycogen is a highly purified polysaccharide<br />

derived from oysters that acts as an inert<br />

carrier to significantly increase the recovery of<br />

nucleic acids by alcohol precipitation. Glycogen<br />

is insoluble in ethanol and forms a precipitate<br />

that traps nucleic acids. During centrifugation a<br />

visible pellet is formed which greatly facilitates<br />

handling of the precipitated nucleic acids.<br />

Glycogen quantitatively precipitates nucleic<br />

acids from diluted solutions with a higher<br />

efficiency than tRNA, linear polyacrylamide or<br />

sonicated DNA (1-4).<br />

<br />

solutions that allow for fast and efficient DNA or<br />

RNA recovery.<br />

Glycogen, molecular biology grade (#R0561),<br />

recommended for DNA precipitation.<br />

Glycogen, RNA grade (#R0551), can be used<br />

for both RNA and DNA precipitation.<br />

Glycogen-free Glycogen<br />

0.05 μg/μl<br />

100 nt RNA transcript<br />

Effect of glycogen on precipitation of nucleic acids.<br />

A 17 nt DNA oligonucleotide was precipitated from 2 pg/μl solution without glycogen and with 1 μg/μl final<br />

concentration of Glycogen, molecular biology grade (#R0561). A 200 bp DNA fragment was precipitated from<br />

50 pg/μl solution without glycogen and with 0.05 μg/μl final concentration of Glycogen, molecular biology grade<br />

(#R0561). 100 nt RNA transcript was precipitated from 50 pg/μl solution, without Glycogen and with<br />

0.05 μg/μl final concentration of Glycogen, RNA grade (#R0551). All precipitations were performed with 2.5X<br />

volumes of ethanol and 0.3 M sodium acetate at room temperature for 5 minutes. The concentration of the<br />

nucleic acids was measured spectrophotometrically.<br />

Features<br />

Ideal for highly efficient recovery of<br />

oligonucleotides (>8 bases) and low amounts<br />

of DNA/RNA (>20 pg) from diluted solutions.<br />

Forms clearly visible pellets.<br />

Does not interfere with enzymatic reactions*.<br />

Does not interfere with gel electrophoresis of<br />

nucleic acids.<br />

Does not interfere with spectrophotometrical<br />

determination of DNA/RNA concentration,<br />

(A 260/A 280 measurements).<br />

Compatible with DNA transformation and<br />

in vitro transfection.<br />

Source<br />

Oysters.<br />

<strong>Molecular</strong> Weight<br />

Glycogen molecules are highly branched<br />

structures which are composed of thousands of<br />

glucose molecules bonded to each other.<br />

The molecular weight of the largest individual<br />

glycogen molecule appears to be 8 million<br />

containing about 50000 glucose molecules.<br />

Storage<br />

Store at -20°C.<br />

* At a final concentration up to 8 μg/μl, Glycogen does not<br />

interfere with PCR, DNA sequencing, DNA digestion by<br />

endonucleases, ligation, cDNA synthesis, DNA labeling,<br />

in vitro transcription or bacterial transformation. At a final<br />

concentration up to 0.4 μg/μl, Glycogen does not affect in<br />

vitro in vitro<br />

Transfection Reagent.<br />

Protocols and Recommendations<br />

» 4.5. Nucleic acid precipitation from diluted<br />

solutions with glycogen p.323<br />

www.thermoscientific.com/onebio 423


424<br />

Enzyme Substrates and Associated Reagents<br />

IPTG<br />

IPTG Solution, ready-to-use<br />

#R1171 10x1.5 ml<br />

(100mM aqueous solution)<br />

IPTG, dioxane-free<br />

#R0391 1 g<br />

#R0392 5 g<br />

#R0393 25 g<br />

Formula<br />

C 9H 18O 5S<br />

<strong>Molecular</strong> Weight<br />

238.3<br />

X-Gal<br />

X-Gal Solution, ready-to-use<br />

#R0941 10 ml (20 mg/ml)<br />

X-Gal<br />

#R0401 0.5 g<br />

#R0402 2x1 g<br />

#R0404 1 g<br />

Formula<br />

C 14H 15BrClNO 6<br />

<strong>Molecular</strong> Weight<br />

408.6<br />

Protocols and Recommendations<br />

» 3.7.2. Preparation of X-Gal/IPTG LB agar<br />

plates for blue/white colony screening p.296<br />

www.thermoscientific.com/onebio<br />

Description<br />

IPTG (isopropyl--D-thiogalactopyranoside)<br />

is a highly stable synthetic analog of lactose<br />

that inactivates the lac repressor and induces<br />

synthesis of -galactosidase, an enzyme that<br />

promotes lactose utilization. IPTG is used to<br />

induce expression of cloned genes under<br />

control of the lac operon (1). It is used in<br />

conjunction with X-Gal (#R0941) to determine<br />

the lac phenotype in blue/white colony assay.<br />

Ready-to-use IPTG is a 100mM non-toxic,<br />

stable, 0.22 μm membrane-filtered aqueous<br />

solution specially formulated for direct use in<br />

blue/white colony screening.<br />

Applications<br />

Blue/white colony screening to distinguish<br />

recombinant (white) from non-recombinant<br />

(blue) colonies (1).<br />

Induction of gene expression under control of<br />

the lac promoter.<br />

Description<br />

X-Gal (5-bromo-4-chloro-3-indolyl--Dgalacto-pyranoside)<br />

is an inert chromogenic<br />

substrate for -galactosidase which hydrolyzes<br />

X-Gal into colorless galactose and 4-chloro-<br />

3-brom-indigo, forming an intense blue<br />

precipitate. Induction of the lacZ gene with<br />

IPTG leads to the hydrolysis of X-Gal and to the<br />

development of blue colonies<br />

(see the scheme below).<br />

Ready-to-use X-Gal Solution is a stable<br />

0.22 μm membrane filtered aqueous<br />

solution specially formulated for direct use in<br />

conjunction with IPTG (#R1171) for blue/white<br />

colony screening.<br />

Applications<br />

Blue/white colony screening to distinguish<br />

recombinant (white) from non-recombinant<br />

(blue) colonies (1).<br />

Visualization of -galactosidase reporter<br />

gene expression in transfected<br />

eukaryotic cells.<br />

X-Gal<br />

(colorless)<br />

-gal<br />

galactose<br />

(colorless) +<br />

4-Cl-3-Br-indigo<br />

(deep blue)<br />

Storage<br />

IPTG Solution, ready-to-use (#R1171)<br />

store at -20°C.<br />

IPTG, dioxane-free (#R0391/2/3) store at 4°C.<br />

Note<br />

<br />

stock solution in water is recommended.<br />

<br />

final IPTG concentration in LB (Luria Broth)<br />

media.<br />

Reference<br />

<br />

Laboratory Manual, the Third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York,<br />

1.124-1.125, A1.27, 2001.<br />

Detection of-galactosidase activity<br />

in immunological and histochemical<br />

procedures.<br />

Storage<br />

X-Gal Solution, ready-to-use (#R0941) is<br />

stable for at least 12 months at 4°C or at room<br />

temperature in the original vial.<br />

X-Gal (#R0401, #R0402, #R0404) should be<br />

stored at -20°C in the dark.<br />

Note<br />

<br />

stock solution in dimethylformamide (DMF)<br />

<br />

DMF dissolves some plastic materials. Avoid<br />

adding DMF containing solutions to plastic<br />

Petri dishes.<br />

<br />

containing DMF to completely dry before<br />

plating bacteria on agar plates.<br />

Reference<br />

<br />

Manual, the Third edition, Cold Spring Harbor Laboratory Press,<br />

Cold Spring Harbor, New York, 1.124-1.125, A1.27, 2001.


X-Gluc<br />

#R0851 0.1 g<br />

#R0852 0.5 g<br />

Formula<br />

C 14H 13BrClNO 7 x C 6H 13N<br />

<strong>Molecular</strong> Weight<br />

521.8<br />

References<br />

1. <br />

A Laboratory Manual, the Third edition, Cold Spring Harbor<br />

Laboratory Press, Cold Spring Harbor, New York,<br />

16.42, 2001.<br />

2. <br />

the GUS gene fusion system, plant Mol Biol Rep,<br />

5, 387-405, 1987.<br />

5-Fluoroorotic Acid<br />

#R0811 1 g<br />

#R0812 5 g<br />

Formula<br />

C 5H 3FN 2O 4 x H 2O<br />

<strong>Molecular</strong> Weight<br />

192.1<br />

orotine-5’-monophosphate<br />

dicarboxylase (OMP)<br />

5’-Fluoroorotic<br />

Acid<br />

fluorouracil<br />

(toxic)<br />

References<br />

1. Bartel, P.L. and Fields, S., Yeast 2-Hybrid System, Oxford<br />

University Press, New York, 7, 109-147, 1997.<br />

2. Kaiser, C., et al., Methods in Yeast Genetics, Cold spring<br />

Harbor Laboratory Press, Cold Spring Harbor, NY, 1994.<br />

Description<br />

X-Gluc (5-bromo-4-chloro-3-indolyl--D-glucu<br />

ronic acid, cyclohexylammonium salt) is a<br />

substrate for -glucuronidase (GUS) which<br />

is encoded by gusA, a widely used reporter<br />

gene. Glucuronidase cleaves X-Gluc to produce<br />

colorless glucuronic acid and an intense blue<br />

precipitate of chloro-bromoindigo (see the<br />

scheme below).<br />

X-Gluc<br />

(colorless)<br />

GUS<br />

glucuronic acid<br />

(colorless)<br />

4-Cl-3-Br-indigo<br />

(deep blue)<br />

Histochemical Detection of GUS (-glucoronidase) (2)<br />

Staining buffer <br />

+<br />

Applications<br />

Detection of GUS expression in plant cells<br />

and tissues (1) (see protocol below).<br />

Detection of infections caused by E.coli.<br />

Detection of bacterial contamination in food<br />

and water samples.<br />

Storage<br />

Store in the dark at -20°C.<br />

Note<br />

<br />

stock solution in dimethylformamide or<br />

dimethylsulfoxide.<br />

Stock solutions Volume per 1 ml staining buffer Final concentration<br />

830 μl<br />

1 M sodium phosphate (pH 7.0) 100 μl 0.1 M<br />

20 μl 10 mM<br />

10 μl <br />

50 mM K3Fe(CN)6 20 μl 1 mM<br />

0.1 M X-Gluc (50 mg/ml) in dimethylformamide 20 μl 2 mM<br />

Staining procedure for cells and tissues:<br />

Remove media from the cells or tissue and add fresh staining buffer.<br />

1. Incubate for 12-24 hours at 37°C, remove the staining buffer.<br />

2. <br />

3. Count dark blue cells.<br />

Description<br />

5-Fluoroorotic Acid (5-fluorouracil-6carboxylic<br />

acid monohydrate; 5-FOA) is<br />

used in yeast molecular genetics to detect<br />

expression of the URA3 gene, which encodes<br />

orotine-5’-monophosphate (OMP) dicarboxylase.<br />

Yeast with an active URA3 gene (Ura+) converts<br />

5-FOA to fluorodeoxyuracil, which is toxic to<br />

cells (see the scheme below). Yeast strains<br />

carrying a mutation in the URA3 gene grow<br />

in the presence of 5-FOA if the media is<br />

supplemented with uracil. 5-FOA is frequently<br />

used in experiments with Saccharomyces<br />

cerevisiae (URA3), Schizosaccharomyces pombe<br />

(URA4 and URA5), Candida albicans (URA3) and<br />

E.coli (pyrF).<br />

Applications<br />

Detection of URA3 gene expression in yeast.<br />

Construction of yeast 2-hybrid libraries (1).<br />

Other areas of yeast genetics including<br />

gene replacement, analysis of transposable<br />

genetic elements and identification of gene<br />

mutations (2).<br />

Storage<br />

Store at -20°C in the dark.<br />

Note<br />

<br />

<br />

150 mg/ml.<br />

<br />

solution in dimethylsulfoxide.<br />

Usage recommendations<br />

For selection of Ura-minus cells, add 5-FOA powder or sterile 100 mg/ml 5-FOA stock solution to the yeast<br />

growth media at final concentration of 1 mg/ml. The reagent can be added to the media prior to or after<br />

sterilization. Ura-plus cells will not grow in media supplemented with 1 mg/ml of 5-FOA and 20 μg/ml uracil.<br />

www.thermoscientific.com/onebio 425


426<br />

BCIP-T<br />

#R0821 1 g<br />

#R0822 5 g<br />

Formula<br />

C 8H 6NO 4BrClP x C 7H 9N<br />

<strong>Molecular</strong> Weight<br />

433.6<br />

Reference<br />

<br />

Manual, the Third edition, Cold Spring Harbor Laboratory<br />

Press, Cold Spring Harbor, New York, 16.42, 2001.<br />

NBT<br />

#R0841 1 g<br />

#R0842 5 g<br />

Formula<br />

C 40H 30N 10O 6Cl 2<br />

<strong>Molecular</strong> Weight<br />

817.7<br />

Protocols and Recommendations<br />

» 6.6. Southern Blotting p.351<br />

www.thermoscientific.com/onebio<br />

Description<br />

BCIP-T (5-bromo-4-chloro-3-indolyl phosphate,<br />

p-toluidine salt) is a chromogenic substrate for<br />

alkaline phosphatase used in conjunction with<br />

the oxidant NBT (nitro blue tetrazolium, #R0841)<br />

to enhance blue color development.<br />

Alkaline phosphatase catalyses the removal<br />

of a phosphate group from BCIP-T, generating<br />

a product that oxidizes and dimerizes<br />

to dibromodichloro indigo. The reducing<br />

equivalents produced during the dimerization<br />

reaction reduce NBT to an insoluble purple dye,<br />

diformazan (1).<br />

BCIP-T + NBT<br />

(colorless)<br />

alkaline<br />

phosphatase<br />

dibromodichloro<br />

indigo<br />

Description<br />

NBT (nitro blue tetrazolium) is an oxidant used in<br />

conjunction with BCIP or BCIP derivatives (BCIP<br />

T, #R0821), to enhance blue color development<br />

during detection of alkaline phosphatase<br />

activity. It is suitable for immunohistochemistry<br />

and cytochemistry. NBT is also a substrate for<br />

oxidases and dehydrogenases.<br />

+<br />

Applications<br />

<br />

– Southern blotting,<br />

– <br />

– Northern blotting,<br />

– dot/slot blots,<br />

– plaque and colony screening.<br />

Storage<br />

Store at -20°C in the dark.<br />

Note<br />

<br />

solution in dimethylformamide.<br />

diformazan<br />

(deep purple)<br />

Applications<br />

<br />

– Southern blotting,<br />

– <br />

– Northern blotting,<br />

– dot/slot blots,<br />

– plaque and colony screening.<br />

Storage<br />

Store at 4°C or at -20°C in the dark.<br />

Note<br />

<br />

<br />

Preparation of BCIP-T/NBT substrate solution<br />

Add the following components to 10 ml of the Alkaline Phosphatase (AP) buffer (100 mM Tris-HCl (pH 9.5),<br />

100 mM NaCl and 10 mM MgCl 2<br />

BCIP-T (50 mg/ml in dimethylformamide) 33 μl<br />

NBT 44 μl<br />

Note<br />

<br />

Prepare fresh developing solution and use within an hour.<br />

<br />

2 years when stored in the dark at -20°C.


Agarose<br />

TopVision Agarose<br />

TopVision Agarose<br />

#R0491 100 g<br />

#R0492 500 g<br />

TopVision Low Melting Point<br />

Agarose<br />

#R0801 25 g<br />

Related Products<br />

Agarase p.319<br />

<br />

<br />

<br />

DNA Markers/Ladders pp.358-370<br />

Loading Dyes p.372<br />

RiboRuler RNA Ladders p.386<br />

TopVision Agarose<br />

A B<br />

1 2 3 4 5 6<br />

Description<br />

TopVision Agarose is highly purified and suitable<br />

for analytical and preparative electrophoresis<br />

of nucleic acids. TopVision Low Melting Point<br />

Agarose is used for in-gel enzymatic processing<br />

experiments and for nucleic acid recovery from<br />

<br />

Features<br />

Can be used at concentrations between<br />

Agarose) and<br />

Low Melting Point<br />

Agarose) in all typical buffer systems.<br />

DNA recovered from preparative gels can be<br />

used for different applications (restriction,<br />

ligation, etc.).<br />

Low DNA/RNA binding.<br />

<br />

DNase, RNase free.<br />

Suitable for RNA analysis.<br />

A. Separation of <strong>Thermo</strong> <strong>Scientific</strong> DNA Ladders in TopVision Agarose and TopVision Low Melting Point Agarose.<br />

Electrophoresis conditions: 1% gel, 0.5 μg/lane, 1X TAE, 7 V/cm, 40 min.<br />

1 – GeneRuler DNA Ladder Mix, ready-to-use (#SM0333).<br />

2 – GeneRuler 1kb DNA Ladder, ready-to-use (#SM0313).<br />

3 – GeneRuler 1kb Plus DNA Ladder, ready-to-use (#SM1333).<br />

4 – ZipRuler <br />

5 – ZipRuler <br />

6 – GeneRuler <br />

B. Separation of <strong>Thermo</strong> <strong>Scientific</strong> RiboRuler RNA Ladders in TopVision Agarose and<br />

TopVision Low Melting Point Agarose.<br />

<br />

1 – RiboRuler <br />

2 – RiboRuler <br />

bases<br />

1000<br />

800<br />

600<br />

400<br />

300<br />

200<br />

100<br />

1 2<br />

bases<br />

6000<br />

4000<br />

3000<br />

2000<br />

1500<br />

1000<br />

500<br />

200<br />

A<br />

1 2 3 4 5 6<br />

Applications<br />

Analytical electrophoresis of nucleic acids.<br />

Preparative electrophoresis.<br />

Blotting assays.<br />

Properties for TopVision Agarose<br />

<br />

2 2 <br />

<br />

<br />

Properties for TopVision Low<br />

Melting Point Agarose<br />

<br />

>250g/cm2 <br />

<br />

<br />

TopVision Low Melting Point Agarose<br />

B<br />

bases<br />

1000<br />

800<br />

600<br />

400<br />

300<br />

200<br />

100<br />

1 2<br />

bases<br />

6000<br />

4000<br />

3000<br />

2000<br />

1500<br />

1000<br />

500<br />

200<br />

Protocols and Recommendations<br />

» 7.2. Preparation of agarose gels for<br />

DNA electrophoresis p.374<br />

» 7.1. General recommendations for<br />

DNA electrophoresis p.374<br />

» 8.1. General recommendations for<br />

RNA electrophoresis p.390<br />

www.thermoscientific.com/onebio 427


428<br />

Appendix<br />

Bacterial Strain Genotypes ................................................................................. 429<br />

Genetic Markers ................................................................................................. 430<br />

E.coli Host Restriction and Modification Systems ............................................ 431<br />

Phage and Plasmid DNA Maps ........................................................................... 432<br />

pJET1.2 ...........................................................................................................................432<br />

Phage Lambda ...............................................................................................................434<br />

X174 .............................................................................................................................435<br />

M13mp18, M13mp19 ......................................................................................................437<br />

pBR322 ...........................................................................................................................439<br />

pUC18, pUC19 ................................................................................................................. 441<br />

pUC57 .............................................................................................................................443<br />

pTZ19R, pTZ19U .............................................................................................................445<br />

pTZ57R ............................................................................................................................ 447<br />

pBluescript II KS(+/-), pBluescript II SK(+/-) .............................................................449<br />

pACYC177 .......................................................................................................................453<br />

pACYC184 .......................................................................................................................455<br />

Number of Recognition Sites in DNA Molecules ..................................................................457<br />

Technical Data .................................................................................................... 461<br />

Genome Sizes ...................................................................................................................461<br />

DNA Migration in Agarose and Polyacrylamide Gels ............................................................462<br />

DNA Base Pairs ................................................................................................................462<br />

Codons and Assigned Amino Acids ....................................................................................462<br />

Physical Properties of Some Common Radioisotopes ..........................................................462<br />

Amino Acids .....................................................................................................................463<br />

Concentrations of Acids and Bases ....................................................................................464<br />

Physical Constants of the Nucleoside Triphosphates and Related Compounds .....................464<br />

SI Unit Prefixes .................................................................................................................464<br />

Common Conversions of Nucleic Acids ..............................................................................465<br />

Common Conversions of Oligonucleotides ..........................................................................465<br />

Melting Temperature of Duplex DNA and Oligonucleotides ..................................................465<br />

Temperature Dependence of the pH of 50 mM Tris-HCl <strong>Solutions</strong> .......................................465<br />

General Physical Constants ...............................................................................................465<br />

Temperature Dependence of the pH for Commonly Used Buffers ........................................466<br />

Decay Factors for Calculating the Amount of Radioactivity ..................................................466<br />

Commonly Used Media, Stock <strong>Solutions</strong> and Buffers ..........................................................467<br />

Periodic Table of the Elements ........................................................................................... 470<br />

Commonly Used Abbreviations .......................................................................................... 471<br />

www.thermoscientific.com/onebio


Bacterial Strain Genotypes<br />

C600 (6) ATCC 23724 F – e14 – (McrA – ) thi-1 thr-1 leuB6 lacY1 fhuA21 glnV44 rfbD1<br />

C600hfl (1) F – e14 – (McrA – ) thi-1 thr-1 leuB6 lacY1 fhuA21 glnV44 rfbD1 hflA150::Tn10 (Tet r ) hsdR? mcrB?<br />

DH1 (6) ATCC 33849 F – gyrA96 (Nal r ) recA1 relA1 endA1 thi-1 hsdR17 (r k – mk + ) glnV44<br />

DH5 (5) F – gyrA96 (Nal r ) recA1 relA1 endA1 thi-1 hsdR17 (r k – mk + ) glnV44 deoR (lacZYA-argF)U169 [80d(lacZ)M15]<br />

DH5F’ (5) F’/ gyrA96 (Nal r ) recA1 relA1 endA1 thi-1 hsdR17 (r k – mk + ) glnV44 deoR (lacZYA-argF)U169 [80d(lacZ)M15]<br />

ER1727 (8) F’ proA + B + lacI q (lacZ)M15 / fhuA2 (lacZ)r1 glnV44 trp-31 mcrA1272::Tn10 (Tet r ) his-1 rpsL104 (Str r ) xyl-7 mtl-2<br />

metB1 (mcrC-mrr)102::Tn10 (Tet r )<br />

GM31 (7) F – dcm-6 thr-1 araC14 leuB6 fhuA31 lacY1 tsx-78 glnV44 galK2 galT22 hisG4 rpsL136 (Str r ) xylA5 mtl-1 thi-1<br />

GM119 (7) ATCC 53339 F – dam-3 dcm-6 lacY1 galK2 galT22 tsx-78 glnV44 metB1 thi? fhuA? mtl?<br />

GM2163 (7) F – dam-13::Tn9 (Cam r ) dcm-6 hsdR2 (r k – mk + ) leuB6 hisG4 thi-1 araC14 lacY1 galK2 galT22 xylA5 mtl-1 rpsL136 (Str r )<br />

fhuA31 tsx-78 glnV44 mcrA mcrB1<br />

HB101 (6) ATCC 33694 F – leuB6 proA2 recA13 thi-1 araC14 lacY1 galK2 xyl-5 mtl-1 rpsL20 (Str r ) glnV44 (mcrC-mrr)<br />

JM83 (6) ATCC 35607 F – ara (lac-proAB) rpsL (Str r ) thi [80d(lacZ)M15]<br />

JM101 (6) ATCC 33876 F’ traD36 proA + B + lacI q (lacZ)M15 / (lac-proAB) thi-1 supE<br />

JM103 (2) ATCC 39403 F’ traD36 proA + B + lacI q (lacZ)M15 / (lac-pro) thi-1 supE endA1 sbcB15 rpsL (Str r ) hsdR (r k – mk + )<br />

JM105 (6) ATCC 47016 F’ traD36 proA + B + lacI q (lacZ)M15 / (lac-pro) thi-1 endA1 sbcB15 rpsL (Str r ) hsdR4 (r k – mk + )<br />

JM107 (6) ATCC 47014 F’ traD36 proA + B + lacI q (lacZ)M15 / e14 – (McrA – ) (lac-pro) endA1 gyrA96 (Nal r ) thi-1 hsdR17 (r k – mk + ) glnV44 relA1<br />

JM108 (3) F – e14 – (McrA – ) (lac-pro) endA1 gyrA96 (Nal r ) thi-1 hsdR17 (r k – mk + ) glnV44 relA1 recA1<br />

JM109 (6) ATCC 53323 F’ traD36 proA + B + lacI q (lacZ)M15 / e14 – (McrA – ) (lac-proAB) endA1 gyrA96 (Nal r ) thi-1 hsdR17 (r k – mk + ) glnV44<br />

relA1 recA1<br />

JM110 (6) ATCC 47013 F’ traD36 proA + B + lacI q (lacZ)M15 / rpsL (Str r ) thr leu thi lacY galK galT ara fhuA tsx dam dcm glnV44<br />

(lac-proAB) hsdR17<br />

LE392 (6) ATCC 33572 F – e14 – (McrA – ) hsdR514 (r k – mk + ) glnV44 supF58 lacY1 or lac(I-Y)6 galK2 galT22 metB1 trpR55<br />

K802 (6) ATCC 33526 F – e14 – (McrA – ) metB1 lacY1 or lac(I-Y)6 galK2 galT22 glnV44 hsdR2 (r k – mk + ) mcrB<br />

MB408 (3) F – thr-44 araC14 leuB6 (gpt-proA)62 recF143 recB21 recC22 sbcB15 hflA hflB0 hsdR (r k – mk + ) lacY1 sbcC201 tsx-33<br />

qsr’-0 glnV44 galK2 hisG4 rfbD1 mgl-51 rpsL31 (Str r ) kdgK51 xylA5 mtl-1 tna300::Tn10 (Tet r ) argE3 thi-1<br />

NM522 (6) ATCC 47000 F’ proA + B + lacI q (lacZ)M15 / (hsdMS-mcrB)5 (r k – mk – ) (lac-proAB) supE thi-1<br />

NM538 (6) ATCC 35638 F – supF hsdR (r k – mk – ) mcrB<br />

NM539 (6) ATCC 35639 F – supF hsdR (r k – mk – ) mcrB [P2cox3]<br />

RR1 (6) ATCC 31343 F – leuB6 proA2 thi-1 araC14 lacY1 galK2 xyl-5 mtl-1 rpsL20 (Str r ) glnV44 (mcrC-mrr)<br />

1776 (6) ATCC 31244 F – fhuA53 dapD8 minA1 glnV42 (gal-uvrB)40 minB2 rfb-2 gyrA25 (Nal r ) thyA142 oms-2 oms-1 (bioH-asd)29 cycB2<br />

cycA1 hsdR2 (r k – mk – ) metC65?<br />

XL1-Blue (4) F’::Tn10 (Tet r ) proA + B + lacI q (lacZ)M15 / recA1 endA1 gyrA96 (Nal r ) thi-1 hsdR17 (r k – mk – ) glnV44 relA1 lac<br />

Y1088 (6) ATCC 37195 F – (lacZYA-argF)U169 proC::Tn5 (Kan r ) supE supF metB trpR hsdR (r k – mk – ) mcrA rpsL (Str r ) fhuA21 [pMC9 lacI q<br />

(Tet r Amp r )]<br />

Y1089 (6) ATCC 37196 F – (Ion) (lacZYA-argF)U169 araD139 rpsL (Str r ) hflA150::Tn10 (Tet r ) [pMC9 lacI q (Tet r Amp r )]<br />

Y1090 (6) ATCC 37197 F – (Ion) trpC22::Tn10 (Tet r ) supF (lacZYA-argF)U169 araD139 mcrA rpsL (Str r ) [pMC9 lacI q (Tet r Amp r )]<br />

References<br />

1. Jendrisak, J., et al., Guide to <strong>Molecular</strong> Cloning Techniques, Academic Press, 359-371, 1987.<br />

2. Hanahan, D., J. Mol. Biol., 166, 557-580, 1983.<br />

3. Schatz, D., et al., Cell, 59, 1035, 1989.<br />

4. Bullock, W.O., et al., BioTechniques, 5, 376-378, 1987.<br />

5. Woodcock, D.M., et al., Nucleic Acids Res., 17, 3469-3478, 1989.<br />

6. ATCC Bacteria and Bacteriophages, 19th edition, 1996.<br />

7. Palmer, B.R., Marinus, M.G., The dam and dcm strains of Escherichia coli – a review, Gene, 143, 7-8, 1994.<br />

8. Dila, D., et al., J. Bacteriol, 172, 4888-4900, 1990.<br />

www.thermoscientific.com/onebio 429


430<br />

Genetic Markers<br />

araC14 Mutation in a regulatory gene of the ara operon. Blocks arabinose catabolism.<br />

deoR Regulatory gene for the deo operon. Allows uptake of large plasmids.<br />

endA1 Mutation in the endonuclease I gene. Improves the quality of isolated plasmid DNA.<br />

F – Strain does not contain an F episome.<br />

F’ Strain contains an F episome.<br />

galK Mutation in the galactokinase gene. Blocks catabolism of galactose.<br />

glnV see supE<br />

gyrA96 Mutation in the DNA gyrase gene. Confers resistance to nalidixic acid.<br />

hflA150 Mutation leads to greatly enhanced frequency of lysogenization with phages containing a wild type repressor (cl) gene.<br />

lacI q Mutation leads to high levels of the lac repressor protein, thus inhibiting transcription from the lac promoter.<br />

lacY Mutation in the galactoside permease gene. Blocks lactose utilization.<br />

lacZM15, (lacZ)M15 Partial deletion of -galactosidase gene. Allows blue/white selection for recombinant colonies when plated on X-Gal/IPTG.<br />

leuB Mutation in -isopropyl malate dehydrogenase gene. Strains require leucine for growth on minimal media.<br />

(lon) Deletion of lon protease gene. Reduces proteolysis of expressed fusion proteins.<br />

metB Mutation in cystathionine -synthase gene. Strains require methionine for growth on minimal media.<br />

mtl1 Mutation in mannitol metabolism genes. Blocks catabolism of mannitol.<br />

P1 P1 bacteriophage<br />

proAB Mutation in proline metabolism genes. Strains require proline for growth on minimal media.<br />

recA1, recA13 Mutation in general recombination gene.<br />

recB, recC Mutation in exonuclease V gene. Reduces general recombination and affects repair of radiation damage.<br />

relA Relaxed phenotype, mutation eliminating stringent factor. Allows RNA synthesis in the absence of protein synthesis.<br />

rpsL Mutation in subunit S12 of 30S ribosome gene. Confers resistance to streptomycin.<br />

sbcB Mutation in exonuclease I gene. Allows general recombination in recBC mutant strains.<br />

supE Suppressor of amber (UAG) mutation. Now called glnV.<br />

supF Suppressor of amber (UAG) mutation. Now called tyrT.<br />

thi1 Mutation in thiamine metabolism gene. Strains require thiamine for growth on minimal media.<br />

Tn5 Transposon conferring resistance to kanamycin.<br />

Tn10 Transposon conferring resistance to tetracycline.<br />

tonA Mutation in outer membrane protein gene. Confers resistance to bacteriophage T1. Now called fhuA.<br />

traD36 Mutation in transfer factor gene. Prevents transfer of F episome.<br />

tyrT see supF<br />

xyl5 Mutation in xylose metabolism gene. Blocks catabolism of xylose.<br />

www.thermoscientific.com/onebio<br />

For less common genetic markers, see Bachmann, B.J., Microbiological Reviews, 54, 130-197, 1990.


E.coli Host Restriction and Modification Systems<br />

Table 12.1. E.coli Host restriction and modification systems<br />

System Description Effects on cloning experiments<br />

EcoKI, EcoBI<br />

Dam<br />

Dcm<br />

McrA<br />

McrBC<br />

Mrr<br />

Type I restriction-modification systems are encoded by host hsdR,<br />

hsdM and hsdS genes (1). Products of all three genes form a multisubunit<br />

enzyme possessing both endonucleolytic and methylation<br />

activities (1). The enzyme methylates the unmodified DNA strand<br />

when the recognition sequence is hemimethylated. When the<br />

recognition site is completely unmodified, the enzyme hydrolyzes<br />

DNA as an endonuclease. In addition, products of hsdM and hsdS<br />

form a complex capable of modifying specific DNA targets. EcoKI<br />

recognizes the sequence 5’...AAC(N) 6GTGC (2), EcoBI recognizes<br />

the sequence 5’...TGA(N) 8TGCT (3).<br />

DNA adenine methylase is encoded by the dam gene of E.coli. It<br />

modifies the adenine residue at the N6-position on both strands<br />

within the sequence 5’...GATC (4, 5).<br />

DNA cytosine methylase is encoded by the dcm gene of E.coli. It<br />

modifies the internal cytosine residue at the C5-position on both<br />

strands within the sequence 5’...CC(A/T)GG (9, 10).<br />

The E.coli chromosome-encoded restriction system named McrA<br />

(for Modified cytosine restriction) is directed against DNA containing<br />

either 5-hydroxymethylcytosine or 5-methylcytosine. At present,<br />

only the T-even phages and DNA modified at HpaII sites 5’...<br />

Cm5CGG are known targets for McrA (11, 12).<br />

McrBC is the other chromosome-encoded E.coli restriction system,<br />

which, like McrA, is specific for modified cytosine. It is encoded<br />

by two neighbor genes, mcrB and mcrC (14). McrBC requires<br />

the presence of two (G/A)mC recognition elements (where mC is<br />

5-hydroxymethylcytosine, N4-methylcytosine or 5-methylcytosine<br />

(14)) appropriately spaced in the substrate DNA (15). DNA cleavage<br />

occurs in the region between two recognition elements (15). The<br />

optimal separation between elements is 55-103 base pairs (15).<br />

The E.coli chromosome-encoded restriction system named Mrr<br />

(for Methylated adenine recognition and restriction) targets DNA<br />

containing both N6-methyladenine and 5-methylcytosine (16-18).<br />

No simple consensus sequence causing Mrr-associated restriction<br />

has been determined.<br />

References<br />

1. Yuan, R., , et al. (eds.), DNA methylation, Biochemistry and Biological Significance,<br />

Springer-Verlag, New York, 11-38, 1984.<br />

2. Kan, N.C., et al., J. Mol. Biol., 130, 191-209, 1979.<br />

3. Lautenberger, J.A., et al., Proc. Natl. Acad. Sci. USA, 75, 2271-2275, 1978.<br />

4. Hattman, S., et al., J. Mol. Biol., 126, 367-380, 1978.<br />

5. Geier, G.E., Modrich, P., J. Biol. Chem., 254, 1408-1413, 1979.<br />

6. Messer, W., et al., EMBO J., 4, 1327-1332, 1985.<br />

7. Smith, D.W., et al., EMBO J., 4, 1319-1326, 1985.<br />

8. Russell, D.W., Zinder, N.D., Cell, 50, 1071-1079, 1987.<br />

The majority of laboratory strains of Escherichia coli have<br />

been derived from wild-type strains K-12 and B, which<br />

possess the EcoKI and EcoBI restriction-modification<br />

systems, respectively. hsdS mutations abolish both DNA<br />

modification and restriction; hsdR mutants are modificationproficient,<br />

but they are restriction-deficient. Therefore, it is<br />

difficult to transform wild-type E.coli (hsdR + M + S + ) using a<br />

plasmid containing EcoKI and EcoBI recognition sites isolated<br />

from the hsdM, hsdS mutants of E.coli. These sites remain<br />

unprotected by methylation in such a plasmid. This results<br />

in plasmid destruction in wild-type cells. Modification of the<br />

EcoKI site or the EcoBI site may reduce DNA cleavage by<br />

restriction endonucleases whose targets overlap<br />

with these sites.<br />

E.coli<br />

chromosomal replication origin or the pMB1 plasmid<br />

origin transform poorly the dam mutants of E.coli (6,<br />

7). But these mutants are transformed efficiently with<br />

unmethylated DNA (8), while both methylated and<br />

unmethylated plasmids transform wild-type dam + strains<br />

efficiently.<br />

E.coli dam + strains can be difficult to<br />

hydrolyze by restriction endonucleases whose targets<br />

overlap (partially or completely) with the Dam recognition<br />

site (see p.174).<br />

DNA isolated from E.coli dcm + strain can be difficult to<br />

hydrolyze by restriction endonucleases whose targets overlap<br />

(partially or completely) with the Dcm recognition site (see<br />

p.175).<br />

The McrA + phenotype of the host can interfere with the<br />

cloning of appropriately modified DNA (or genes coding for<br />

DNA modification enzymes of either CCGG or overlapping<br />

specificities). McrA phenotypes of some laboratory E.coli<br />

strains are presented in reference 13.<br />

The McrBC + phenotype of the host can interfere with the<br />

cloning of appropriately modified DNA or genes coding for<br />

DNA modification enzymes with overlapping specificity.<br />

McrBC phenotypes of some laboratory E.coli strains are<br />

presented in reference 13.<br />

The precise specificity of Mrr is uncertain, but it requires<br />

the presence of either modified adenine or cytosine. Thus,<br />

the Mrr + phenotype of the host can interfere with cloning of<br />

appropriately modified DNA, as well as genes coding for DNA<br />

modification enzymes with overlapping specificity.<br />

9. Buryanov, Y.I., et al., FEBS Lett., 88, 251-254, 1978.<br />

10. May, M.S., Hattman, S., J. Bacteriol., 123, 768-770, 1975.<br />

11. Raleigh, E., Wilson, G., Proc. Natl. Acad. Sci. USA, 83, 9070-9074, 1986.<br />

12. Raleigh, E., et al. J. Bacteriol., 173, 2707-2709, 1991.<br />

13. Raleigh, E., et al., Nucleic Acids Res., 16, 1563-1575, 1988.<br />

14. Dila, D., et al., J. Bacteriol., 172, 4888-4900, 1990.<br />

15.Stewart, F.J., Raleigh, E.A., Biol. Chem., 379, 611-616, 1998.<br />

16. Heitman, J., Model, P., J. Bacteriol., 169, 3243-3250, 1987.<br />

17. Kelleher, J.E., Raleigh, E.A., J. Bacteriol., 173, 5220-5223, 1991.<br />

18. Waite-Rees, P.A., et al., J. Bacteriol., 173, 5207-5219, 1991.<br />

www.thermoscientific.com/onebio 431


432<br />

Phage and Plasmid DNA Maps<br />

pJET1.2<br />

Available with the CloneJET PCR Cloning Kit, see p.279<br />

The positive selection vector pJET1.2 is a small, high<br />

copy number E.coli plasmid, 2974 bp in length. It was<br />

derived from pUC19 by replacing the 5’-terminal part<br />

of the lacZ gene encoding the N-terminal fragment<br />

of -galactosidase with the gene coding for the<br />

Eco47I restriction endonuclease. In the absence of<br />

cognate methylation, the endonuclease is lethal to<br />

E.coli host cells. Positive selection with the pJET1.2<br />

plasmid is mediated by insertional inactivation of the<br />

eco47I gene. For convenience, the multiple cloning<br />

site (MCS) used for positive selection, as well as the<br />

T7 polymerase promoter, were incorporated into<br />

eco47IR by silent mutagenesis. The pJET1.2 plasmid<br />

contains: (1) the pMB1 replicon rep responsible for<br />

the replication of plasmid (source – plasmid pUC19).<br />

The high copy number of pJET1.2 is a result of the<br />

lack of the rop gene and a single point mutation in<br />

the replicon rep of pMB1; (2) the bla gene, coding<br />

for -lactamase, that confers resistance to ampicillin<br />

(source – plasmid pUC19); (3) the region of E.coli<br />

lac operon containing a CAP protein binding site,<br />

Multiple Cloning Site<br />

www.thermoscientific.com/onebio<br />

promoter P lacUV5 which differs from the wild-type<br />

promoter P lac by two point mutations in -10 region,<br />

and lac repressor binding site which contains<br />

two mutations resulting in reduced binding of the<br />

repressor (source – plasmid pUC19; mutations were<br />

introduced by site-specific mutagenesis); (4) the<br />

modified eco47IR gene, coding for Eco47I restriction<br />

endonuclease. The gene is toxic for all E.coli strains<br />

that are not protected by cognate methylation. The<br />

background transcription from P lacUV5 ensures the<br />

efficient killing of recipient cells even in cases where<br />

the stain contains the lacI q mutation which ensures<br />

elevated intracellular concentration of LacI repressor.<br />

Therefore, the induction of Eco47I synthesis by IPTG<br />

is not required for positive selection purposes. After<br />

the cloning of DNA into eco47IR the integrity of this<br />

gene is disrupted. Therefore, only those cells that<br />

contain the recombinant plasmid are able to survive<br />

and form a colony in presence of ampicillin.<br />

The plasmid map provided below lists enzymes which<br />

have unique targets within pJET1.2. The coordinates<br />

refer to the position of the first nucleotide in each<br />

recognition sequence.<br />

The exact positions of the genetic elements are shown<br />

on the map (termination codons included). The bla<br />

gene nucleotides 2782-2714 (complementary strand)<br />

code for a signal peptide. The indicated rep region<br />

is sufficient to promote replication. DNA replication<br />

initiates at position 1162 (+/-1) and proceeds in the<br />

direction indicated. Plasmids carrying the pMB1 and<br />

ColE1 replicons are incompatible, but they are fully<br />

compatible with those carrying the p15A replicon<br />

(pACYC177, pACYC184). pMB1-derived plasmids can<br />

be amplified using chloramphenicol.<br />

GenBank/EMBL Accession Number<br />

EF694056<br />

Additional Information<br />

<br />

strand).<br />

Enzymes which cut pJET1.2 DNA once:<br />

DrdI 1204<br />

AdeI 120<br />

AloI 284<br />

BbvCI 717<br />

BceAI 1588<br />

BcgI 2511<br />

BmrI 2040<br />

BglI 2109<br />

BpiI 58<br />

Bpu10I 717<br />

BsaXI 955<br />

Bsu15I* 417<br />

BtgI* 408<br />

BveI 219<br />

CaiI 1513<br />

Cfr10I 2075<br />

Csp6I 2474<br />

Eam1105I 1990<br />

Eco130I* 408<br />

Eco31I 2062<br />

Eco32I* 369<br />

Eco52I* 329<br />

Eco88I* 352<br />

Esp3I 739<br />

FaqI 103<br />

GsuI 2080<br />

HindIII 624<br />

Kpn2I* 343<br />

LguI 979<br />

MssI 761<br />

MunI 892<br />

Mva1269I 722<br />

NcoI* 408<br />

NmeAIII 2118<br />

NotI* 328<br />

NsbI 2215<br />

PdmI 2590<br />

PspFI 1406<br />

PspXI* 351<br />

PstI 5<br />

PvuI 2362<br />

RsaI 2474<br />

ScaI 2473<br />

FauI 951<br />

TatI 2473<br />

XbaI* 377<br />

XhoI*<br />

* – MCS<br />

352<br />

pJET1.2 forward sequencing primer, 23-mer Eco88I<br />

Eco52I XhoI<br />

T7 promoter T7 transcription start 328 NotI BglII Kpn2I PspXI<br />

5’ - GGC GTA ATA CGA CTC ACT ATA GGG AGA GCG GCC GCC AGA TCT TCC GGA TGG CTC GAG TTT TTC AGC<br />

3’ - CCG CAT TAT GCT GAG TGA TAT CCC TCT CGC CGG CGG TCT AGA AGG CCT ACC GAG CTC AAA AAG TCG<br />

Ala Tyr Tyr Ser Glu Ser Tyr Pro Ser Arg Gly Gly Ser Arg Gly Ser Pro Glu Leu Lys Glu Ala<br />

BtgI<br />

Eco130I<br />

Eco32I XbaI BglII NcoI Bsu15I 422<br />

AAG ATA TCT TTC TAG AAG ATG TCC TAC AAT ATT CTC AGC TGC CAT GGA AAA TCG ATG TTC TTC T - 3’<br />

TTC TAT AGA AAG ATC TTC TAG AGG ATG TTA TAA GAG TCG ACG GTA CCT TTT AGC TAC AAG AAG A - 5’<br />

Leu Tyr Arg Glu Leu Leu Asp Gly Val Ile Asn Glu Ala Ala Met Ser Phe Arg His Glu Glu<br />

pJET1.2 reverse sequencing primer, 24-mer


Table 12.2. pJET1.2 DNA Restriction Sites<br />

Enzyme<br />

1 2 3<br />

Number of recognition sites<br />

4 5 6 7 8 9 10 11 12<br />

DrdI 1204<br />

AatII 737 2913<br />

AdeI 120<br />

AflIII 750 1102<br />

AloI 284<br />

Alw21I 1416 2577 2662<br />

Alw26I 639 740 2062 2827<br />

Alw44I 1416 2662<br />

BauI 1275 2659 2966<br />

BbvCI 717<br />

BccI 295 347 2031 2155 2442<br />

BceAI 1588<br />

BcgI 2511<br />

BcnI 1481 2177 2528<br />

BmrI 2040<br />

BfmI 5 317 1367 1558 2236<br />

BfuI 1311 2838<br />

BglI 2109<br />

BglII 337 383<br />

Bme1390I 838 1129 1250 1263 1481 2177 2528<br />

BpiI 58<br />

Bpu10I 717<br />

BpuEI 439 1208 1470 1747 2615<br />

BsaWI 343 1308 1455 2286<br />

BsaXI 955<br />

BseDI 408 838 1262<br />

BseLI 944 1118 1136 1302 1581<br />

BseMI 2049 2231<br />

BseMII 400 637 718 1377 1786 1952 2492<br />

BseNI 902 1505 1518 1635 2041 2159 2202 2466 2641<br />

BseSI 1416 2662<br />

BseXI 7 404 926 1007 1025 1444 1509 1512 1718 2046 2412<br />

Bsh1236I 948 950 1148 1729 2059 2552 2884<br />

Bsh1285I 329 1015 1439 2362 2511<br />

BshNI 843 1943<br />

BspLI 222 500 843 1132 1171 1943 2037 2078 2289 2879<br />

BspPI 1669 1743 1755 1840 1853 2317 2620 2638<br />

Bsu15I 417<br />

BsuRI 330 942 1116 1127 1145 1579 2037 2117 2384 2971<br />

BtgI 408<br />

BtsI 886 2388 2416<br />

BveI 219<br />

Cac8I 622 922 1031 1117 1154 1714 2105<br />

CaiI 1513<br />

EaeI 329 941 2383<br />

Cfr10I 2075<br />

Cfr13I 2037 2116 2133 2355<br />

CseI 1204 1782 2532<br />

Csp6I 2474<br />

DraI 68 661 755 762 1859 1878 2570<br />

Eam1104I 980 2784<br />

Eam1105I 1990<br />

EciI 1174 1320 2148<br />

Eco31I 2062<br />

Eco32I 369<br />

Eco47I 2133 2355<br />

Eco52I 329<br />

Eco57I 53 627 1629 2677<br />

Eco88I 352<br />

Eco130I 408<br />

EcoP15I 1510 1626 1719<br />

EcoRII 838 1129 1250 1263<br />

Esp3I 739<br />

FaqI 103<br />

FokI 296 346 693 1975 2156 2443<br />

FspBI 378 1597 1850 2185<br />

GsuI 2080<br />

There are no restriction sites in pJET1.2 DNA for the following enzymes:<br />

AanI, AarI, AbsI, Acc65I, AjiI, AjuI, AlfI, ApaI, BaeI, BamHI, BclI, BcuI, BoxI,<br />

BplI, Bpu1102I, BseJI, BseRI, BsgI, BshTI, Bsp119I, Bsp120I, Bsp1407I,<br />

Bsp68I, BspOI, BspTI, Bst1107I, BstAPI, BstXI, BtgZI, Cfr42I, Cfr9I, CpoI,<br />

CspCI, Ecl136II, Eco105I, Eco147I, Eco24I, Eco47III, Eco72I, Eco81I, Eco91I,<br />

EcoO109I, EcoRI, EheI, FalI, FseI, FspAI, HincII, KpnI, KspAI, MauBI, MlsI,<br />

MluI, Mph1103I, MreI, NdeI, NheI, OliI, PacI, PaeI, PasI, PauI, PdiI, Pfl23II,<br />

PfoI, Ppu21I, Psp5II, PsrI, PsyI, SacI, SalI, SanDI, SdaI, SexAI, SfaAI, SfiI,<br />

SgrAI, SgrDI, SgsI, SmaI, SrfI, SspDI, Van91I, XagI, XcmI, XmaJI, XmiI.<br />

Enzyme<br />

1 2 3<br />

Number of recognition sites<br />

4 5 6 7 8 9 10 11 12<br />

HaeII 976 1346<br />

Hin1I 737 2531 2913<br />

Hin1II 409 543 751 1103 1823 2314 2324 2402 2438 2831 2936<br />

HindIII 624<br />

HinfI 311 537 937 1002 1077 1473 1990<br />

HpaII 299 344 817 1309 1456 1482 1672 2076 2110 2177 2287 2529<br />

HphI 1846 2073 2469 2695 2710<br />

Hpy8I 1416 1904 2662<br />

Hpy99I 1203 1997 2260<br />

Hpy188I 52 1214 1292 1645 1779 1914 2360 2371 2491<br />

HpyAV 1332 1600 1642 2113 2350 2725<br />

HpyCH4V 6 596 709 928 1417 1713 2048 2138 2331 2419 2663<br />

HpyF3I 76 400 637 718 1377 1786 1952 2492 2918<br />

HpyF10VI 1 837 881 968 1035 1149 1721 2109 2972<br />

Kpn2I 343<br />

LguI 979<br />

Lsp1109I 7 404 926 1007 1025 1444 1509 1512 1718 2046 2412<br />

LweI 116 692 1190 2242 2452 2682<br />

MaeIII 1459 1522 1638 1921 2252 2310 2463 2651<br />

MbiI 326 789 1033 2834<br />

MboII 59 62 340 381 425 671 981 1752 1843 2598 2676 2785<br />

MmeI 1292 1476<br />

MspA1I 402 924 1442 1687 2628<br />

MspI 299 344 817 1309 1456 1482 1672 2076 2110 2177 2287 2529<br />

MssI 761<br />

MunI 892<br />

MvaI 838 1129 1250 1263<br />

Mva1269I 722<br />

NcoI 408<br />

NmeAIII 2118<br />

NmuCI 2252 2463<br />

NotI 328<br />

NsbI 2215<br />

PagI 542 1822 2830 2935<br />

PdmI 2590<br />

PfeI 937 1077<br />

PscI 750 1102<br />

Psp1406I 2220 2593<br />

PspFI 1406<br />

PspXI 351<br />

PstI 5<br />

PsuI 337 383 1743 1754 1840 1852 2620 2637<br />

PvuI 2362<br />

PvuII 402 924<br />

RsaI 2474<br />

RseI 243 2243 2402 2761<br />

ScaI 2473<br />

SchI 311 537 1002 1473 1990<br />

SduI 1416 2577 2662<br />

SmiI 67 660<br />

SmoI 352 439 1208 1470 1747 2615<br />

FauI 951<br />

SspI 394 561 2797<br />

TaaI 503 1064 1135 1605 1918 2433<br />

TaiI 738 1805 2221 2594 2914<br />

TaqI 180 353 418 535 1202 2646<br />

TatI 2473<br />

TauI 328 331 1028 1146 1301 2385 2507 2736 2972<br />

TscAI 886 998 1504 1517 1788 1937 2042 2389 2416<br />

TseI 7 404 926 1007 1025 1444 1509 1512 1718 2046 2412<br />

TspDTI 64 88 229 241 544 935 1871 1973 2276<br />

TspGWI 2445 2762<br />

VspI 869 931 2166<br />

XapI 71 646 658 664<br />

XbaI 377<br />

XceI 750 1102<br />

XhoI 352<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.<br />

www.thermoscientific.com/onebio 433


434<br />

Phage Lambda<br />

see p.291 for ordering information.<br />

is a temperate Escherichia coli bacteriophage.<br />

The virion DNA is linear and double-stranded<br />

(48502 nt) with 12 bp single-stranded<br />

complementary 5’-ends. After the phage<br />

particle injects its chromosome into the cell,<br />

the chromosome circularizes by end joining.<br />

In the lytic pathway, phage genes encoding<br />

replication, lysis and virion proteins are<br />

expressed. The chromosome replicates and the<br />

replicas are cleaved and packaged into progeny<br />

phage particles. In the lysogenic pathway,<br />

ApaI<br />

Bsp120I<br />

www.thermoscientific.com/onebio<br />

Eco105I<br />

Pfl23II PdiI<br />

phage gene expression is repressed, and the<br />

circular chromosome inserts into the bacterial<br />

chromosome by recombination.<br />

Phage DNA is a common substrate for<br />

restriction endonucleases and for generating DNA<br />

size marker fragments. For large scale isolation<br />

of phage DNA, cI857Sam7, a mutant carrying<br />

four known mutations, is often used. The DNA<br />

sequence used to construct a phage restriction<br />

map includes these mutations. The map shows<br />

enzymes that cut DNA once. <strong>Thermo</strong> <strong>Scientific</strong><br />

enzymes are shown in orange.<br />

SanDI<br />

PspXI BspOI<br />

XhoI NheI<br />

0 10,000 20,000 30,000 SgrDI 40,000<br />

Table 12.3. DNA Restriction Sites<br />

XbaI<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

AanI 2285 9011 18941 19573 22014 24667 25472 27746 29498 29656 33236 37756<br />

AarI 554 10835 13941 14383 16164 16194 16233 21242 29897 36293 37003 38481<br />

DrdI 5116 9104 11090<br />

AatII 5105 9394 11243 14974 29036 40806 41113 42247 45563 45592<br />

Acc65I 17053 18556<br />

AdeI 2954 5613 6635 8999 14477 30365 31909 41479 47312 48434<br />

AjuI 37231 40534 43659<br />

AloI 266 7286 12056 21639 24654 36718 42867<br />

Alw44I 5619 21798 27173 40216<br />

ApaI 10086<br />

BaeI 694 7665 13267 15775 16271 18732 19109 21779 43976 48385<br />

BamHI 5505 22346 27972 34499 41732<br />

BauI 20356 25572 27956 29425 34430 35219 42416 42737<br />

BbvCI 8012 18147 18465 30916 31222 31836 35813<br />

BclI 8844 9361 13820 32729 37352 43682 46366 47942<br />

BmrI 7054 11608 25691 30332<br />

BglII 415 22425 35711 38103 38754 38814<br />

BoxI 8920 9394 13512 15412 36925 37889 48152<br />

BplI 41036<br />

Bpu1102I 10297 10682 11661 16518 20744 39450<br />

BseSI 5619 5664 10086 11414 13039 14897 21798 27173 32330 40216<br />

Bsp119I 18048 25884 27980 29150 30396 34331 42637<br />

Bsp120I 10086<br />

Bsp1407I 5220 6142 15855 29392 32496<br />

Bsp68I 4590 28050 31703 32407 41808<br />

BspOI 34679<br />

BspTI 6540 12618 42630<br />

Bst1107I 15260 18834 19473<br />

Cfr9I 19397 31617 39888<br />

Cfr42I 20320 20530 21606 40386<br />

CpoI 3800 6041 13983 19288 22242<br />

CspCI 10780 10800 15063 33276 41481 46577 48429<br />

Eam1105I 6398 11238 12477 12915 16588 18544 23460 30467 44669<br />

Ecl136II 24772 25877<br />

Eco24I 581 10086 19763 21570 24772 25877 39453<br />

Eco31I 11424 42715<br />

Eco47III 20995 37057<br />

Eco52I 19944 36654<br />

Eco72I 26529 41482 42362<br />

Eco81I 26717 34318<br />

Eco88I 4720 19397 20999 27887 31617 33498 38214 39888<br />

Eco105I 12188<br />

Eco130I 19329 21211 23901 24322 24396 27868 28793 35016 36505 44248<br />

Eco147I 12434 31478 32997 39992 40596 40614<br />

EcoO109I 2815 28797 48473<br />

EcoRI 21226 26104 31747 39168 44972<br />

EheI 45679<br />

FspAI 21804 21825<br />

HindIII 23130 25157 27479 36895 37459 44141<br />

KpnI 17053 18556<br />

LguI 2397 6489 8702 10370 13286 24769 27234 34327 34800 47712<br />

MluI 458 5548 15372 17791 19996 20952 22220<br />

MssI 8459 16293<br />

MunI 22687 22715 23054 25863 35764 37186 38332 47880<br />

NcoI 19329 23901 27868 44248<br />

BplI<br />

SspDI<br />

EheI<br />

GenBank/EMBL Accession Numbers<br />

J02459, M17233, M24325, V00636, X00906.<br />

Enzymes which cut DNA once:<br />

ApaI 10086<br />

BplI 41036<br />

Bsp120I 10086<br />

BspOI 34679<br />

Eco105I 12188<br />

EheI 45679<br />

NheI 34679<br />

PdiI 20040<br />

Pfl23II 19323<br />

PspXI 33497<br />

SanDI 28797<br />

SgrDI 33243<br />

XbaI 24508<br />

XhoI 33498<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

NdeI 27630 29883 33679 36112 36668 38357 40131<br />

NheI 34679<br />

NmeAIII 1041 3190 16533 17983 20435 31939 32283 38107<br />

PaeI 2212 12002 23942 24371 27374 39418<br />

PagI 889 4650 4989 10249 18275 28860 31608 40642<br />

PasI 15323 19188<br />

PauI 3522 4126 5627 14815 16649 28008<br />

PdiI 20040<br />

Pfl23II 19323<br />

PscI 628 39395<br />

Psp1406I 13529 16290 22580 22595 24642 43392 43488<br />

Psp5II 2815 28797 48473<br />

PspXI 33497<br />

PsrI 1697 20889 33098<br />

PsyI 11202 36120<br />

PvuI 11933 26254 35787<br />

SacI 24772 25877<br />

SalI 32745 33244<br />

SanDI 28797<br />

ScaI 16421 18684 25685 27263 32802<br />

SdaI 2555 2819 11834 19832 37000<br />

SexAI 22264 31009 32838 40497 44408<br />

SgrAI 7064 8680 12878 15653 16974 31824<br />

SgrDI 33243<br />

SgsI 3521 16648<br />

SmaI 19397 31617 39888<br />

SspDI 45679<br />

XagI 13509 21292 22377 25174 25223 35521 38268 41842 47213<br />

XbaI 24508<br />

XcmI 958 4770 5065 5874 9193 9460 9490 14891 19329 23685 32530 36165<br />

XhoI 33498<br />

XmaJI 24322 24396<br />

XmiI 2190 15260 18834 19473 31301 32745 33244 40201 42921<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely blocked<br />

or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA substrates<br />

isolated from dam – or dcm – hosts.<br />

There are no restriction sites in DNA for the following enzymes:<br />

AbsI, BcuI, FseI, MauBI, MreI, NotI, PacI, SfaAI, SfiI, SmiI, SrfI.<br />

References<br />

1. Daniels, D.L., et al., Appendix I: A molecular map of coliphage lambda. (in) Hendrix,R.W.,<br />

Roberts,J.W., Stahl,F.W. and Weisberg,R.A. (Eds.), LAMBDA II: 469-517, Cold Spring Harbor<br />

Laboratory, Cold Spring Harbor, 1983.<br />

2. Daniels, D.L., et al., Appendix II: Complete annotated lambda sequence. (in) Hendrix, R.W.,<br />

Roberts, J.W., Stahl, F.W. and Weisberg, R.A. (Eds.), LAMBDA II: 519-674, Cold Spring Harbor<br />

Laboratory, Cold Spring Harbor, 1983.<br />

3. Sanger, F., et al., Nucleotide sequence of bacteriophage lambda DNA, J. Mol. Biol. ,162,<br />

729-773, 1982.


X174<br />

see p.291 for ordering information.<br />

X174 was the first DNA virus discovered<br />

to have a single-stranded, circular genome.<br />

X174 DNA is 5386 nt in length. The DNA<br />

strand packaged into the virion is termed the<br />

“plus” strand. After entering the cell, X174<br />

DNA is used as a template for minus-strand<br />

synthesis, producing double-stranded DNA. The<br />

conversion of plus DNA strands to doublestranded<br />

DNA does not require any of the phage<br />

genes to function. The double-stranded DNA<br />

can then be transcribed, resulting in synthesis<br />

of phage-encoded proteins. Synthesis of single-<br />

Coordinates of X174 genes<br />

(termination codons included):<br />

A 3981-136<br />

A* 4497-136<br />

B 5075-51<br />

C 133-393<br />

D 390-848<br />

E 568-843<br />

F 1001-2284<br />

G 2395-2922<br />

H 2931-3917<br />

J 848-964<br />

K 51-221<br />

References<br />

1. Air, G.M., et al., Nucleotide sequence of the F protein<br />

coding region of bacteriophage X174 and the amino acid<br />

sequence of its product, J. Mol. Biol., 125, 247-254, 1978.<br />

2. Sanger, F., et al., Nucleotide sequence of bacteriophage<br />

X174 DNA, Nature, 265, 687-695, 1977.<br />

3. Sanger, F., et al., The nucleotide sequence of bacteriophage<br />

X174, J. Mol. Biol., 125, 225-246, 1978.<br />

stranded (plus) DNA requires phage-encoded<br />

gene A protein. DNA synthesis is initiated at<br />

ori (+) and proceeds in the direction indicated.<br />

Late in infection, the single-stranded circles<br />

are encapsidated into new virions. The cycle<br />

terminates by cellular lysis, mediated by phage<br />

gene E encoded protein.<br />

The genes identified in phage X174 are<br />

shown on the map. All genes are transcribed<br />

clockwise. Enumeration of phage DNA begins<br />

with the last nucleotide of the unique PstI site<br />

and continues clockwise around the viral (+)<br />

strand in the 5’3’ direction. The map shows<br />

enzymes that cut X174 DNA once. <strong>Thermo</strong><br />

<strong>Scientific</strong> enzymes are shown in orange. The<br />

coordinates refer to the position of the first<br />

nucleotide in each recognition sequence.<br />

GenBank/EMBL Accession Numbers<br />

V01128, J02482, M10348, M10379, M10714,<br />

M10749, M10750, M10866, M10867,<br />

M24859.<br />

Enzymes which cut X174 DNA once:<br />

AanI 2304<br />

DrdI 5171<br />

AatII 2782<br />

AdeI 5183<br />

AjuI 5113<br />

Alw44I 4779<br />

BaeI 2581<br />

BcnI 2800<br />

BoxI 1694<br />

BseSI 4779<br />

Bsh1285I 4601<br />

BtsI 2203<br />

Cfr42I 2859<br />

Eam1105I 1760<br />

Eco47I 5042<br />

Eco88I 162<br />

Eco147I 4486<br />

FalI 3172<br />

LguI 3745<br />

MbiI 530<br />

MunI 3939<br />

NsbI 155<br />

OliI 2912<br />

PauI 5348<br />

PstI 5382<br />

SexAI 3499<br />

SspI 1007<br />

XhoI 162<br />

www.thermoscientific.com/onebio 435


436<br />

Table 12.4.X174 DNA Restriction Sites<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

AanI 2304<br />

DrdI 5171<br />

AatII 2782<br />

AdeI 5183<br />

AflIII 221 2146<br />

AjuI 5113<br />

Alw21I 538 4290 4779<br />

Alw26I 673 1529 2903 3441<br />

Alw44I 4779<br />

BaeI 2581<br />

BauI 535 3280<br />

BbvCI 2039 2341 3699<br />

BccI 192 1048 1129 1262 1492 1751 2577 2743 3885 4118 4560 4897<br />

BceAI 462 627 666 895 1136 1414 3210 3642 4204 4759 5228<br />

BcgI 967 5326<br />

BcnI 2800<br />

BfmI 1191 3061 4318 4801 5293 5382<br />

BfuI 588 2580 3275 5373<br />

Bme1390I 881 2800 3500<br />

BoxI 1694<br />

BpiI 2679 4367 4762<br />

Bpu10I 1361 1835 2039 2341 2379 3306 3699<br />

BpuEI 987 3631<br />

BsaWI 728 1102 3018<br />

BseDI 880 1415 1434 2859 4681 5182<br />

BseGI 228 648 1261 1419 1996 4265 4463 5152<br />

BseJI 341 2716<br />

BseMI 632 1161 2566 4539<br />

BseMII 350 1527 1533 1836 2040 2342 3307 3700 4252 4738<br />

BseNI 272 1016 1301 1777 2176 2185 3404 4850 4984<br />

BseRI 232 1278<br />

BseSI 4779<br />

Bsh1285I 4601<br />

BshNI 1019 2478 2976<br />

Bsp68I 2260 4424<br />

BspLI 978 1019 2119 2478 2688 2976<br />

BspTI 2914 4413<br />

BstAPI 892 4781<br />

BstXI 1777 2739 4984<br />

BsuRI 434 668 978 1172 1775 3128 4206 4487 4758 4876 4948<br />

BtgI 1415 2859 5182<br />

BtgZI 4426 4898<br />

BtsI 2203<br />

BveI 3599 4052 5380<br />

EaeI 4205 4757<br />

Cfr13I 978 5042<br />

Cfr42I 2859<br />

Csp6I 414 571 768 906 1431 1903 2150 2795 3187 4747 4836<br />

CspCI 1563 4866<br />

DraI 327 1406<br />

Eam1104I 3746 4143<br />

Eam1105I 1760<br />

EciI 125 1876<br />

Eco47I 5042<br />

Eco88I 162<br />

Eco147I 4486<br />

There are no restriction sites in X174 DNA for the following enzymes:<br />

AarI, AbsI, Acc65I, AjiI, AlfI, AloI, ApaI, BamHI, BclI, BcuI, BmrI, BglI, BglII,<br />

BplI, Bpu1102I, BsaXI, BsgI, BshTI, Bsp119I, Bsp120I, Bsp143I, Bsp1407I,<br />

BspOI, BspPI, Bst1107I, Bsu15I, CaiI, Cfr9I, Cfr10I, CpoI, DpnI, Ecl136II,<br />

Eco24I, Eco31I, Eco32I, Eco47III, Eco52I, Eco57I, Eco72I, Eco81I, Eco91I,<br />

Eco105I, Eco130I, EcoO109I, EcoRI, Esp3I, FseI, FspAI, HindIII, Kpn2I,<br />

KpnI, MauBI, MboI, MlsI, Mph1103I, MreI, MssI, NcoI, NdeI, NheI, NotI,<br />

PacI, PaeI, PasI, PdiI, PfoI, PscI, Psp5II, PspXI, PsuI, PsyI, PvuI, PvuII,<br />

SacI, SalI, SanDI, ScaI, SdaI, SfaAI, SfiI, SgfI, SgrAI, SgsI, SmaI, SmiI, FauI,<br />

SrfI, TatI, XagI, XbaI, XceI, XcmI, XmaJI.<br />

www.thermoscientific.com/onebio<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

EcoP15I 120 3295 3349 3597 4399<br />

EcoRII 881 3500<br />

EheI 1019 2976<br />

FalI 3172<br />

FaqI 1214 4339<br />

FokI 228 648 1261 1419 1996 4265 4463 5152<br />

FspBI 3136 3907 5061<br />

GsuI 2465 2905 4482<br />

HaeII 687 872 926 1019 1142 1411 2976 3759<br />

Hin1I 717 1019 1133 2782 2976 3363 5225<br />

HpaII 729 1103 2800 3019 3367<br />

HphI 1235 <strong>2012</strong> 2089 2132 2923 3033 3072 4188 4965<br />

Hpy99I 543 719 1166 1767 4830 5219 5224 5300<br />

KspAI 28 1292 5022<br />

LguI 3745<br />

LweI 358 1420 1466 1733 2638 3075 3339 3431 3521 3795 4129 4956<br />

MbiI 530<br />

MboII 480 804 1661 2473 2562 2680 2683 3747 4143 4367 4763<br />

MluI 221 2146<br />

MmeI 225 2691 3237 5197 5376<br />

MspA1I 739 2339 2859 3259 3735<br />

MspI 729 1103 2800 3019 3367<br />

MunI 3939<br />

MvaI 881 3500<br />

Mva1269I 2570 3025 3463 4535<br />

NmeAIII 1022 3426 4680<br />

NmuCI 288 1224 2231 2773 3789 4009 4642 5322<br />

NsbI 155<br />

OliI 2912<br />

PagI 388 1254 2271<br />

PauI 5348<br />

PdmI 3857 4143 5117<br />

PfeI 204 310 1897 2015 2264 2877 3377 3731 4148 4701 5128<br />

Pfl23II 413 2794<br />

Ppu21I 826 4871<br />

Psp1406I 864 2514 2809<br />

PspFI 5210 5279<br />

PsrI 405 858<br />

PstI 5382<br />

RsaI 414 571 768 906 1431 1903 2150 2795 3187 4747 4836<br />

RseI 1226 2165 2571 2740 2912 4554 4767<br />

SchI 53 286 352 392 1118 1184 2677 3443 3543 3683<br />

SduI 538 4290 4779<br />

SexAI 3499<br />

SmoI 162 987 2914 3631 4413<br />

SspI 1007<br />

SspDI 1019 2976<br />

TaqI 56 110 143 163 490 721 1125 4039 4180 5355<br />

TscAI 782 1241 2048 2177 2204 3791<br />

TspGWI 411 699 1149 1482 2004 2189 5184<br />

Van91I 3960 4095<br />

VspI 711 4308<br />

XapI 139 693 1983 2222 2324 2650 5340<br />

XhoI 162<br />

XmiI 1193 3545<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.


M13mp18, M13mp19<br />

Not available from us<br />

M13mp18 and M13mp19 vectors are derivatives of<br />

the single-stranded, male-specific filamentous DNA<br />

bacteriophage M13. Both vectors are 7250 bp in<br />

length and have the same MCS inserted in opposing<br />

orientations. The vector DNAs contain a region of<br />

E.coli operon lac containing a CAP protein binding<br />

site, promoter Plac, a lac repressor binding site and<br />

the 5’-terminal part of the lacZ gene encoding the<br />

N-terminal fragment of -galactosidase (codons 6-7<br />

of lacZ are replaced by MCS). This fragment, whose<br />

synthesis can be induced by IPTG, is capable of<br />

intra-allelic () complementation with a defective form<br />

of -galactosidase encoded by the host (mutation<br />

(lacZ)M15). This results in the appearance of<br />

blue plaques on media containing IPTG and X-Gal.<br />

Recombinant phages containing inserts that destroy<br />

the reading frame of lacZ are revealed as colorless<br />

plaques. Synthesis of viral (plus) single-stranded DNA<br />

Multiple Cloning Site of M13mp18<br />

M13/pUC reverse sequencing primer, 17-mer, (-26) (#S0101)<br />

CAG GAA ACA GCT ATG ACC ATG ATT<br />

Met Thr Met Ile<br />

requires phage-encoded gene II, X and V proteins.<br />

It is initiated at ori (+) and proceeds in the direction<br />

indicated. The conversion of plus DNA strands<br />

to double-stranded DNA does not require any of<br />

the phage genes. DNA synthesis is initiated by a<br />

30-nucleotide RNA primer synthesized by the host’s<br />

RNA polymerase and starts at ori (-). Double-stranded<br />

circular DNA (replicative form, or RF) can be isolated<br />

from cells by standard plasmid preparation techniques<br />

and used for cloning experiments, while the singlestranded<br />

viral DNA (+ strand) can be isolated from<br />

phage particles collected from culture medium.<br />

M13mp18/19 genes are shown on the map (M13<br />

genes are transcribed clockwise). The map shows<br />

enzymes that cut M13mp18/19 DNA once. <strong>Thermo</strong><br />

<strong>Scientific</strong> enzymes are shown in orange. The<br />

coordinates refer to the position of the first nucleotide<br />

in each recognition sequence.<br />

GenBank/EMBL Accession Numbers<br />

For M13mp18 – M77815;<br />

for M13mp19 – L08821.<br />

Additional Information<br />

E.coli lac operon extends from nt 5869 to nt 6711.<br />

<br />

<br />

lac repressor binding site – 6179-6199.<br />

Coordinates of M13mp18/19 genes<br />

(termination codons included):<br />

I 3196-4242<br />

II 6849-831<br />

III 1579-2853<br />

IV 4220-5500<br />

V 843-1106<br />

VI 2856-3194<br />

VII 1108-1209<br />

VIII 1301-1522<br />

IX 1206-1304<br />

X 496-831<br />

Enzymes which cut M13mp18 DNA once:<br />

DrdI 5759<br />

Acc65I** 6243<br />

AdeI 5716<br />

AlfI 4843<br />

AloI 5765<br />

Alw44I* 4743<br />

BamHI** 6252<br />

BmrI 6317<br />

BglI 6431<br />

BglII 6935<br />

BseRI 2008<br />

Bsp1407I 1021<br />

BtsI 6088<br />

CaiI 2187<br />

Cfr9I** 6247<br />

Cfr10I 5613<br />

CspCI 3010<br />

Ecl136II** 6237<br />

Eco47I 5914<br />

Eco81I 6508<br />

Eco105I 1268<br />

EcoRI** 6231<br />

EheI 6001<br />

Ala Leu Ala Val Val Leu Gln LacZ<br />

GCA CTG GCC GTC GTT TTA CAA<br />

M13/pUC reverse sequencing primer, 17-mer, (-20) (#S0100)<br />

Cfr9I HincII PstI<br />

Ecl136II Acc65I SmaI SalI SdaI<br />

6231 EcoRI SacI KpnI BamHI XbaI XmiI PaeI HindIII 6287<br />

ACG AAT TCG AGC TCG GTA CCC GGG GAT CCT CTA GAG TCG ACC TGC AGG CAT GCA AGC TTG<br />

Thr Asn Ser Ser Ser Val Pro Gly Asp Pro Leu Glu Ser Thr Cys Arg His Ala Ser Leu<br />

Multiple Cloning Site of M13mp19<br />

M13/pUC reverse sequencing primer, 17-mer, (-26) (#S0101)<br />

Leu Ala Val Val Leu Gln LacZ<br />

CTG GCC GTC GTT TTA CAA<br />

CAG GAA ACA GCT ATG ACC ATG ATT ACG<br />

Met Thr Met Ile Thr<br />

M13/pUC reverse sequencing primer, 17-mer, (-20) (#S0100)<br />

PstI HincII<br />

SdaI SalI SmaI Acc65I Ecl136II<br />

6234 HindIII PaeI XmiI XbaI BamHI KpnI SacI EcoRI 6290<br />

CCA AGC TTG CAT GCC TGC AGG TCG ACT CTA GAG GAT CCC CGG GTA CCG AGC TCG AAT TCA<br />

Pro Ser Leu His Ala Cys Arg Ser Thr Leu Glu Asp Pro Arg Val Pro Ser Ser Asn Ser<br />

Esp3I 5971<br />

FalI 2486<br />

Hin1I 6001<br />

HincII** 6264<br />

HindIII** 6282<br />

KpnI** 6243<br />

MlsI 5080<br />

Mva1269I 1746<br />

NsbI 6425<br />

PacI 4132<br />

PaeI** 6276<br />

PagI 1299<br />

PdiI 5613<br />

PstI** 6270<br />

PvuI 6405<br />

SacI** 6237<br />

SalI** 6264<br />

SdaI** 6269<br />

SmaI** 6247<br />

SmiI 6783<br />

SspDI 6001<br />

XbaI** 6258<br />

XmiI**<br />

* see p.438.<br />

** MCS<br />

6264<br />

References<br />

1. Norrander, J., et<br />

al., Construction of<br />

improved M13 vectors<br />

using oligodeoxynucleotide-directed<br />

mutagenesis, Gene, 26,<br />

101-106, 1983.<br />

2. Yanisch-Perron, C.,<br />

et al., Improved M13<br />

phage cloning vectors<br />

and host strains:<br />

nucleotide sequences<br />

of the M13mp18 and<br />

pUC19 vectors, Gene,<br />

33, 103-119, 1985.<br />

www.thermoscientific.com/onebio 437


438<br />

Table 12.5. M13mp18 DNA Restriction Sites<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

AanI 5356 5844<br />

DrdI 5759<br />

Acc65I 6243<br />

AdeI 5716<br />

AflIII 195 3618 3717<br />

AlfI 4843<br />

AloI 5765<br />

Alw21I 4743 5465 6237<br />

Alw26I <strong>2013</strong> 2189 4036 5972 7017<br />

Alw44I 4743<br />

BaeI 1795 2137 6517<br />

BamHI 6252<br />

BbvCI 1370 1416<br />

BceAI 1334 1952 3440 4719 5675 6295 6606<br />

BcnI 1924 6247 6248 6838<br />

BmrI 6317<br />

BfmI 205 1329 1751 2470 5495 6270 6673<br />

BglI 6431<br />

BglII 6935<br />

Bme1390I 1014 1924 1966 5941 5998 6137 6247 6248 6328 6455 6838<br />

Bpu10I 1370 1416 4012 4280<br />

BpuEI 868 2005 2099 2612 5370<br />

BsaWI 313 965 2377 2395 3369 3841<br />

BsaXI 1891 2667 5765 6017<br />

BseDI 2763 2894 5997 6136 6247 6248 6327 6617 6838<br />

BseGI 239 3547 6361 7244<br />

BseJI 1149 3974<br />

BseMI 5198 6913 7067<br />

BseRI 2008<br />

BseSI 2088 4743<br />

BseXI 932 1367 2521 3132 4871 5536 5923 6052 6355 6428<br />

Bsh1285I 1422 3879 6405 6521<br />

BshNI 1249 5677 6001 6131 6243 6465 6477<br />

Bsp143I 1382 1714 2221 6253 6406 6502 6936<br />

Bsp1407I 1021<br />

BspPI 1382 2221 6252 6253<br />

Bsu15I 2527 6882<br />

BtgI 2763 6617<br />

BtgZI 1144 1448 4971 5728<br />

BtsI 6088<br />

BveI 1113 2258 6268<br />

CaiI 2187<br />

EaeI 5080 6036 6293<br />

Cfr9I 6247<br />

Cfr10I 5613<br />

Cfr13I 5724 5914 5938 6396<br />

CseI 526 2164 2479 3237 4083 5158 6687<br />

CspCI 3010<br />

DpnI 1382 1714 2221 6253 6406 6502 6936<br />

DraI 189 472 4622 6784 7074<br />

Eam1104I 4074 6391<br />

EciI 1962 6603<br />

Ecl136II 6237<br />

Eco24I 5643 6237<br />

Eco47I 5914<br />

Eco47III 2710 3039<br />

Eco81I 6508<br />

Eco88I 5825 6247<br />

Eco105I 1268<br />

EcoP15I 1368 4872 4941 5894<br />

EcoRI 6231<br />

EcoRII 1014 1966 5941 5998 6137 6328 6455<br />

EheI 6001<br />

There are no restriction sites in M13mp18 DNA for the following enzymes:<br />

AarI, AatII, AbsI, AjiI, AjuI, ApaI, BauI, BcgI, BclI, BcuI, BfuI, BoxI, BpiI, BplI, Bpu1102I,<br />

BsgI, BshTI, Bsp68I, Bsp119I, Bsp120I, BspOI, BspTI, Bst1107I, BstAPI, BstXI, Cfr42I,<br />

CpoI, Eam1105I, Eco31I, Eco32I, Eco52I, Eco57I, Eco72I, Eco91I, Eco130I, Eco147I,<br />

EcoO109I, FseI, FspAI, Kpn2I, KspAI, LguI, MluI, Mph1103I, MreI, MssI, MunI, NcoI,<br />

NheI, NmeAIII, NotI, OliI*, PasI, PauI, Pfl23II, PfoI, Psp5II, PspXI, PsrI, PsyI, SanDI, ScaI,<br />

SexAI, SfaAI, SfiI, SgfI, SgrAI, SgsI, SrfI, Van91I, XagI, XcmI, XhoI, XmaJI.<br />

www.thermoscientific.com/onebio<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Esp3I 5971<br />

FalI 2486<br />

FaqI 5090 6529<br />

FokI 239 3547 6361 7244<br />

FspBI 3827 5565 6259 6861 6979<br />

GsuI 6493 6899<br />

HaeII 2710 3039 5559 5567 6001 6446<br />

Hin1I 6001<br />

HincII 6264<br />

HindIII 6282<br />

Hpy8I 619 1022 2133 2717 4743 5713 5768 5785 5912 6264 6776<br />

Hpy99I 610 1950 3634 4143 6297 6310 6525 6629<br />

KpnI 6243<br />

Lsp1109I 932 1367 2521 3132 4871 5536 5923 6052 6355 6428<br />

LweI 25 388 1354 3979 4850 6546 6559<br />

MbiI 4569 5431 5572 6185<br />

MboI 1382 1714 2221 6253 6406 6502 6936<br />

MboII 781 2218 3912 4075 4271 4937 5255 5587 6391 6504 6805<br />

MlsI 5080<br />

MmeI 300 5441 5762 6627<br />

MspA1I 1631 5960 6053 6375<br />

MvaI 1014 1966 5941 5998 6137 6328 6455<br />

Mva1269I 1746<br />

NdeI 2723 3803 6846<br />

NmuCI 1377 1775 2543 2621 2744 5111 5541 6314<br />

NsbI 6425<br />

PacI 4132<br />

PaeI 6276<br />

PagI 1299<br />

PdiI 5613<br />

PdmI 357 2646<br />

Ppu21I 1268 4446 5037 5462 5716<br />

PscI 195 3618 3717<br />

Psp1406I 4634 6773<br />

PspFI 1192 3277 5896<br />

PstI 6270<br />

PsuI 2220 6252 6935<br />

PvuI 6405<br />

PvuII 5960 6053 6375<br />

RseI 2796 6996<br />

SacI 6237<br />

SalI 6264<br />

SchI 2011 2845 4072 5329 5766 5788 6262 6904<br />

SdaI 6269<br />

SduI 2088 4743 5465 5643 6237<br />

SmaI 6247<br />

SmiI 6783<br />

SmoI 868 2005 2099 2612 5370<br />

FauI 1385 1984 3324 5430 5517 5571 6027 6084 6398 7131<br />

SspI 499 2660 5023 5213 6767 6788<br />

SspDI 6001<br />

TaqI 336 1127 1508 1949 2528 3455 3694 4665 5683 6235 6265 6883<br />

TatI 1021 1164 1768 2132 4189<br />

TauI 1394 2285 2288 2312 2357 5500 5514<br />

TscAI 922 1786 2091 2106 4891 5350 6089 6290<br />

TseI 932 1367 2521 3132 4871 5536 5923 6052 6355 6428<br />

TspGWI 750 1159 2654 2762 2876 4352 6619<br />

VspI 4131 4135 4238 4628 6046 6105 6966<br />

XapI 1499 1674 2182 2728 3789 3900 4060 6231 6744 6755 7097<br />

XbaI 6258<br />

XceI 195 3531 3618 3717 6276 6856<br />

XmiI 6264<br />

* According to our experimental data Alw44I does not cut M13mp18/19 DNA, BseSI has only one recognition<br />

site in M13mp18/19 DNA, Eco47III has only one recognition site in M13mp18/19 DNA and OliI has<br />

one recognition site in M13mp18/19 DNA.<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.


pBR322<br />

see p.291 for ordering information.<br />

pBR322 is one of the most commonly used E.coli cloning<br />

vectors. pBR322 is 4361 bp in length and contains:<br />

(1) the replicon rep responsible for the replication of the<br />

plasmid (source – plasmid pMB1); (2) the rop gene,<br />

coding for the Rop protein, which promotes conversion of<br />

the unstable RNA I – RNA II complex to a stable complex<br />

and serves to decrease copy number (source – plasmid<br />

pMB1); (3) the bla gene, coding for -lactamase, that<br />

confers resistance to ampicillin (source – transposon<br />

Tn3); (4) the tet gene, encoding tetracycline resistance<br />

protein (source – plasmid pSC101).<br />

The circular sequence is numbered such that 1<br />

References<br />

1. Bolivar, F., et al., Construction and characterization of new<br />

cloning vehicles. II. A multipurpose cloning system, Gene,<br />

2, 95-113, 1977.<br />

2. Covarrubias, L., et al., Construction and characterization of<br />

new cloning vehicles. V. Mobilization and coding properties<br />

of pBR322 and several deletion derivatives including<br />

pBR327 and pBR328, Gene, 13, 25-35, 1981.<br />

3. Peden, K.W., Revised sequence of the tetracyclineresistance<br />

gene of pBR322, Gene, 22, 277-280, 1983.<br />

4. Sutcliffe, J.G., Nucleotide sequence of the ampicillin<br />

resistance gene of Escherichia coli plasmid pBR322, Proc.<br />

Natl. Acad. Sci. U.S.A., 75, 3737-3741, 1978.<br />

5. Sutcliffe, J.G., Complete nucleotide sequence of the<br />

Escherichia coli plasmid pBR322, Cold Spring Harb. Symp.<br />

Quant. Biol., 43, Pt 1, 77-90,1979.<br />

6. Watson, N., A new revision of the sequence of plasmid<br />

pBR322, Gene, 70, 399-403, 1988.<br />

is the first T of the unique EcoRI site GAATTC and<br />

numbering increases through the tet gene, the pMB1<br />

material and finally through the Tn3 region.<br />

The plasmid map provided below lists enzymes that cut<br />

pBR322 DNA once. <strong>Thermo</strong> <strong>Scientific</strong> enzymes are shown<br />

in orange. The coordinates refer to the position of the first<br />

nucleotide in each recognition sequence.<br />

The exact positions of the genetic elements are<br />

shown on the map (termination codons included).<br />

The bla gene nucleotides 4153-4085 (complementary<br />

strand) code for a signal peptide. The indicated rep<br />

region is sufficient to promote replication.<br />

DNA replication initiates at position 2533 (+/- 1) and<br />

proceeds in the direction indicated. Plasmids carrying<br />

the pMB1 and ColE1 replicons are incompatible, but<br />

they are fully compatible with those carrying the p15A<br />

replicon (pACYC177, pACYC184).<br />

pMB1-derived plasmids can be amplified using<br />

chloramphenicol.<br />

GenBank/EMBL Accession Numbers<br />

J01749, K00005, L08654, M10282, M10283,<br />

M10286, M10356, M10784, M10785, M10786,<br />

M33694, V01119.<br />

Enzymes which cut pBR322 DNA once:<br />

AatII 4284<br />

AflIII 2473<br />

BamHI 375<br />

BoxI 712<br />

Bpu10I 1580<br />

BseJI 1668<br />

BsgI 1650<br />

Bsp68I 972<br />

BspOI 229<br />

Bst1107I 2244<br />

Bsu15I 23<br />

BveI 1063<br />

CaiI 2884<br />

Eam1105I 3361<br />

Eco31I 3433<br />

Eco32I 185<br />

Eco52I 939<br />

Eco88I 1425<br />

Eco130I 1369<br />

EcoRI 4359<br />

Esp3I 2122<br />

HindIII 29<br />

Kpn2I 1664<br />

LguI 2350<br />

MlsI 1444<br />

Mva1269I 1353<br />

NdeI 2295<br />

NheI 229<br />

PaeI 562<br />

PfoI 2117<br />

Ppu21I 2225<br />

PscI 2473<br />

PstI 3607<br />

PsyI 2217<br />

PvuI 3733<br />

PvuII 2064<br />

SalI 651<br />

ScaI 3844<br />

SgrAI 409<br />

SspI 4168<br />

VspI 3537<br />

XagI 622<br />

XapI 4359<br />

www.thermoscientific.com/onebio 439


440<br />

Table 12.6. pBR322 DNA Restriction Sites<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

DrdI 2162 2575<br />

AatII 4284<br />

AflIII 2473<br />

AlfI 1026 1457 1678<br />

Alw21I 276 587 1174 1465 2289 2787 3948 4033<br />

Alw26I 2122 3433 4198<br />

Alw44I 2289 2787 4033<br />

BamHI 375<br />

BauI 2646 4030 4337<br />

BccI 458 552 988 1078 1385 1397 3402 3526 3813<br />

BceAI 594 1151 2959<br />

BcgI 708 2063 3882<br />

BcnI 170 534 1258 1484 1812 2118 2153 2852 3548 3899<br />

BmrI 304 610 679 2219 3411<br />

BfmI 138 2738 2929 3607<br />

BfuI 2682 4209<br />

BglI 929 1163 3480<br />

BoxI 712<br />

BpiI 737 1600 4351<br />

Bpu10I 1580<br />

BpuEI 664 870 2579 2841 3118 3986<br />

BsaWI 693 1664 2679 2826 3657<br />

BseDI 115 129 528 534 1167 1369 1447 2633<br />

BseGI 112 133 987 1032 1681 1770 1848 2007 2148 3346 3527 3814<br />

BseJI 1668<br />

BseMI 3420 3602<br />

BseMII 1581 1743 2283 2748 3157 3323 3863<br />

BseSI 2289 2787 4033<br />

BsgI 1650<br />

Bsh1285I 286 653 939 2386 2810 3733 3882<br />

BshNI 76 119 413 434 548 766 1205 1289 3314<br />

Bsp68I 972<br />

BspOI 229<br />

BspPI 375 376 1097 1667 3040 3114 3126 3211 3224 3688 3991 4009<br />

Bst1107I 2244<br />

BstAPI 1045 2291<br />

Bsu15I 23<br />

BtgI 528 1447<br />

BtgZI 205 1386 1674<br />

BtsI 3759 3787<br />

BveI 1063<br />

CaiI 2884<br />

EaeI 295 399 531 939 1444 3754<br />

Cfr10I 160 401 410 769 929 1283 3446<br />

CseI 390 649 944 976 1240 1390 2002 2179 2575 3153 3903<br />

Csp6I 164 2280 3845<br />

DraI 3230 3249 3941<br />

Eam1104I 2351 4155<br />

Eam1105I 3361<br />

EciI 1393 2545 2691 3519<br />

Eco24I 471 485<br />

Eco31I 3433<br />

Eco32I 185<br />

Eco47I 799 887 1136 1439 1481 1760 3504 3726<br />

Eco47III 232 494 775 1727<br />

Eco52I 939<br />

Eco57I 3000 4048<br />

Eco88I 1425<br />

Eco130I 1369<br />

EcoO109I 523 1438 1480 4341<br />

EcoP15I 1404 1557 1560 1686 2881 2997 3090<br />

EcoRI 4359<br />

EcoRII 130 1059 1442 2500 2621 2634<br />

EheI 413 434 548 1205<br />

Esp3I 2122<br />

FaqI 538 888 1084 1761<br />

FokI 112 133 987 1032 1681 1770 1848 2007 2148 3346 3527 3814<br />

There are no restriction sites in pBR322 DNA for the following enzymes:<br />

AanI, AarI, AbsI, Acc65I, AdeI, AjiI, AjuI, AloI, ApaI, BaeI, BbvCI, BclI, BcuI,<br />

BglII, BplI, Bpu1102I, BsaXI, BseRI, BshTI, Bsp119I, Bsp120I, Bsp1407I,<br />

BspTI, BstXI, Cfr9I, Cfr42I, CpoI, CspCI, Ecl136II, Eco105I, Eco147I, Eco72I,<br />

Eco81I, Eco91I, FalI, FseI, KpnI, KspAI, MauBI, MluI, Mph1103I, MreI, MssI,<br />

MunI, NcoI, NotI, OliI, PacI, PasI, PauI, Pfl23II, PspXI, PsrI, SacI, SanDI, SdaI,<br />

SexAI, SfaAI, SfiI, SgfI, SgsI, SmaI, SmiI, SrfI, XbaI, XcmI, XhoI, XmaJI.<br />

www.thermoscientific.com/onebio<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

FspAI 259 1453<br />

FspBI 230 1489 2968 3221 3556<br />

GsuI 811 1401 1981 3451<br />

HaeII 232 413 434 494 548 775 1205 1644 1727 2347 2717<br />

Hin1I 413 434 548 1205 3902 4284<br />

HincII 651 3905<br />

HindIII 29<br />

HinfI 632 852 1006 1304 1525 2029 2373 2448 2844 3361<br />

HphI 126 408 453 1307 1528 2083 2092 3217 3444 3840 4066 4081<br />

Hpy8I 651 1787 2244 2289 2787 3275 3905 4033<br />

Hpy99I 650 718 819 943 975 1241 2574 3368 3631<br />

HpyAV 672 690 876 993 2703 2971 3013 3484 3721 4096<br />

HpyF3I 1581 1743 2283 2748 3157 3323 3863 4289<br />

Kpn2I 1664<br />

LguI 2350<br />

MbiI 2404 4205<br />

MboII 464 738 1009 1601 2352 3123 3214 3969 4047 4156 4352<br />

MlsI 1444<br />

MmeI 197 284 2663 2847<br />

MspA1I 1139 2064 2183 2813 3058 3999<br />

MvaI 130 1059 1442 2500 2621 2634<br />

Mva1269I 1353<br />

NdeI 2295<br />

NheI 229<br />

NmeAIII 116 1168 3489<br />

NmuCI 125 213 881 1148 1915 2128 2223 3623 3834<br />

NsbI 260 1356 1454 3586<br />

PaeI 562<br />

PagI 489 3193 4201 4306<br />

PdiI 401 769 929 1283<br />

PdmI 2029 3961<br />

PfeI 852 1006 1304 1525 2029 2448<br />

PfoI 2117<br />

Ppu21I 2225<br />

PscI 2473<br />

Psp5II 1438 1480<br />

Psp1406I 900 1799 3591 3964<br />

PspFI 949 2777<br />

PstI 3607<br />

PsuI 375 1667 3114 3125 3211 3223 3991 4008<br />

PsyI 2217<br />

PvuI 3733<br />

PvuII 2064<br />

RsaI 164 2280 3845<br />

RseI 1027 1458 1653 2044 3614 3773 4132<br />

SalI 651<br />

ScaI 3844<br />

SchI 632 2373 2844 3361<br />

SduI 276 471 485 587 1174 1465 2289 2787 3948 4033<br />

SgrAI 409<br />

SmoI 664 870 2579 2841 3118 3986<br />

FauI 181 703 890 1037 1232 1497 1763 1949 2185 2195<br />

SspI 4168<br />

SspDI 413 434 548 1205<br />

TaiI 901 957 1546 1570 1800 2226 3176 3592 3965 4285<br />

TaqI 24 339 652 1127 1268 2573 4017<br />

TasI 59 252 1320 1334 3234 3540 3795 4360<br />

TatI 2279 3844<br />

TscAI 279 883 1132 1913 2369 2875 2888 3159 3308 3413 3760 3787<br />

TspDTI 86 1523 1593 1821 1861 1882 2009 3242 3344 3647<br />

TspGWI 1301 1610 1903 3816 4133<br />

Van91I 1315 1364<br />

VspI 3537<br />

XagI 622<br />

XapI 4359<br />

XceI 562 1816 2108 2473<br />

XmiI 651 2244<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.


pUC18, pUC19<br />

see p.292 for ordering information.<br />

pUC18 and pUC19 vectors are small, high copy<br />

number, E.coli plasmids, 2686 bp in length. They are<br />

identical except that they contain multiple cloning sites<br />

(MCS) arranged in opposite orientations. pUC18/19<br />

plasmids contain: (1) the pMB1 replicon rep responsible<br />

for the replication of the plasmid (source – plasmid<br />

pBR322). The high copy number of pUC plasmids is<br />

a result of the lack of the rop gene and a single point<br />

mutation in the replicon rep of pMB1; (2) the bla<br />

gene, coding for -lactamase, that confers resistance<br />

to ampicillin (source – plasmid pBR322). It differs<br />

from that of pBR322 by two point mutations; (3) the<br />

region of E.coli lac operon containing a CAP protein<br />

binding site, promoter Plac, lac repressor binding site<br />

and the 5’-terminal part of the lacZ gene encoding<br />

the N-terminal fragment of -galactosidase (source –<br />

M13mp18/19). This fragment, whose synthesis<br />

can be induced by IPTG, is capable of intra-allelic<br />

Multiple Cloning Site of pUC18<br />

Reference<br />

1. Yanisch-Perron, C., et al., Improved M13 phage cloning<br />

vectors and host strains: nucleotide sequences of the<br />

M13mp18 and pUC19 vectors, Gene, 33, 103-119, 1985.<br />

() complementation with a defective form of<br />

-galactosidase encoded by the host (mutation (lacZ)<br />

M15). In the presence of IPTG, bacteria synthesize<br />

both fragments of the enzyme and form blue colonies<br />

on media with X-Gal. Insertion of DNA into the MCS<br />

located within the lacZ gene (codons 6-7 of lacZ are<br />

replaced by MCS) inactivates the N-terminal fragment<br />

of -galactosidase and abolishes -complementation.<br />

Bacteria carrying recombinant plasmids therefore give<br />

rise to white colonies.<br />

The map shows enzymes that cut pUC18/19 DNA<br />

once. <strong>Thermo</strong> <strong>Scientific</strong> enzymes are shown in orange.<br />

The coordinates refer to the position of the first<br />

nucleotide in each recognition sequence.<br />

The exact positions of the genetic elements are shown<br />

on the map (termination codons included). The bla<br />

gene nucleotides 2486-2418 (complementary strand)<br />

code for a signal peptide. The LacZ polypeptide<br />

corresponding to wt -galactosidase and essential for<br />

blue/white screening ends at nt position 236 (compl.<br />

strand); another 30 codons in the same reading frame<br />

are derived from pBR322. The indicated rep region<br />

is sufficient to promote replication. DNA replication<br />

initiates at position 866 (+/- 1) and proceeds in the<br />

direction indicated. Plasmids carrying the pMB1 and<br />

ColE1 replicons are incompatible, but they are fully<br />

compatible with those carrying the p15A replicon<br />

(pACYC177, pACYC184). pMB1-derived plasmids can<br />

be amplified using chloramphenicol.<br />

GenBank/EMBL Accession Numbers<br />

For pUC18 – L09136;<br />

for pUC19 – L09137.<br />

Additional Information<br />

<br />

<br />

lac repressor binding site – 507-487 (compl. strand).<br />

Enzymes which cut pUC18 DNA once:<br />

AatII 2617<br />

Acc65I* 438<br />

AflIII 806<br />

BamHI* 429<br />

BcgI 2215<br />

BsaXI 659<br />

BstAPI 179<br />

BveI* 413<br />

CaiI 1217<br />

Cfr9I* 434<br />

Cfr10I 1779<br />

Eam1105I 1694<br />

Ecl136II* 444<br />

Eco24I* 444<br />

Eco31I 1766<br />

Eco88I* 434<br />

EcoO109I 2674<br />

EcoRI* 450<br />

EheI 235<br />

GsuI 1784<br />

HincII* 417<br />

HindIII* 399<br />

KpnI* 438<br />

LguI 683<br />

NdeI 183<br />

NmeAIII 1822<br />

PaeI* 405<br />

PdmI 2294<br />

PfoI 46<br />

PscI 806<br />

PspFI 1110<br />

PstI* 411<br />

SacI* 444<br />

SalI* 417<br />

ScaI 2177<br />

SdaI* 410<br />

SmaI* 434<br />

SspI 2501<br />

SspDI 235<br />

XapI* 450<br />

XbaI* 423<br />

XmiI*<br />

* MCS<br />

417<br />

M13/pUC sequencing primer, 17-mer (-20), (#S0100) PstI HincII Cfr9I Ecl136II<br />

SdaI SalI Eco88I Acc65I Eco24I EcoRI<br />

399 HindIII PaeI BveI XmiI XbaI BamHI SmaI KpnI SacI XapI 455<br />

5’ - G TAA AAC GAC GGC CAG TGC CAA GCT TGC ATG CCT GCA GGT CGA CTC TAG AGG ATC CCC GGG TAC CGA GCT CGA ATT CGT AAT CAT GGT CAT AGC TGT TTC CTG - 3’<br />

3’ - C ATT TTG CTG CCG GTC ACG GTT CGA ACG TAC GGA CGT CCA GCT GAG ATC TCC TAG GGG CCC ATG GCT CGA GCT TAA GCA TTA GTA CCA GTA TCG ACA AAG GAC - 5’<br />

Val Val Ala Leu Ala Leu Ser Ala His Arg Cys Thr Ser Glu Leu Pro Asp Gly Pro Val Ser Ser Ser Asn Thr Ile Met Thr Met<br />

Multiple Cloning Site of pUC19<br />

M13/pUC reverce sequencing primer, 17-mer (-26), (#S0101)<br />

M13/pUC sequencing primer, 17-mer (-20), (#S0100) Ecl136II Cfr9I HincII PstI<br />

EcoRI Eco24I Acc65I Eco88I SalI BveI<br />

396 XapI SacI KpnI SmaI BamHI XbaI XmiI SdaI PaeI HindIII 452<br />

5’ - G TAA AAC GAC GGC CAG TGA ATT CGA GCT CGG TAC CCG GGG ATC CTC TAG AGT CGA CCT GCA GGC ATG CAA GCT TGG CGT AAT CAT GGT CAT AGC TGT TTC CTG - 3’<br />

3’ - C ATT TTG CTG CCG GTC ACT TAA GCT CGA GCC ATG GGC CCC TAG GAG ATC TCA GCT GGA CGT CCG TAC GTT CGA ACC CGA TTA GTA CCA GTA TCG ACA AAG GAC - 5’<br />

Val Val Ala Leu Ala Leu Ser Ala His Arg Cys Thr Ser Glu Leu Pro Asp Gly Pro Val Ser Ser Ser Asn Thr Ile Met Thr Met<br />

M13/pUC reverce sequencing primer, 17-mer (-26), (#S0101)<br />

www.thermoscientific.com/onebio 441


442<br />

Table 12.7. pUC18 DNA Restriction Sites<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

DrdI 91 908<br />

AatII 2617<br />

Acc65I 438<br />

AflIII 806<br />

Alw21I 177 444 1120 2281 2366<br />

Alw26I 51 1766 2531 2684<br />

Alw44I 177 1120 2366<br />

BamHI 429<br />

BauI 979 2363 2670<br />

BccI 1735 1859 2146<br />

BceAI 387 1292<br />

BcgI 2215<br />

BcnI 47 82 434 435 1185 1881 2232<br />

BmrI 364 1744<br />

BfmI 411 1071 1262 1940<br />

BfuI 1015 2542<br />

BglI 245 1813<br />

Bme1390I 47 82 354 434 435 545 833 954 967 1185 1881 2232<br />

BpuEI 912 1174 1451 2319<br />

BsaWI 1012 1159 1990<br />

BsaXI 659<br />

BseDI 354 433 434 545 966<br />

BseGI 77 321 1679 1860 2147<br />

BseLI 47 648 822 840 1006 1285<br />

BseMI 1753 1935<br />

BseMII 171 1081 1490 1656 2196<br />

BseNI 365 391 606 1209 1222 1339 1745 1863 1906 2170 2345<br />

BseSI 177 1120 2366<br />

BseXI 41 254 327 630 711 729 1148 1213 1216 1422 1750 2116<br />

Bsh1236I 2 4 107 652 654 852 1433 1763 2256 2588<br />

Bsh1285I 276 719 1143 2066 2215<br />

BshNI 235 438 550 1647<br />

BspLI 235 429 438 550 836 875 1647 1741 1782 1993 2583<br />

BspPI 429 430 1373 1447 1459 1544 1557 2021 2324 2342<br />

BstAPI 179<br />

BsuRI 287 389 646 820 831 849 1283 1741 1821 2088 2675<br />

BtsI 593 2092 2120<br />

BveI 413<br />

CaiI 1217<br />

EaeI 388 645 2087<br />

Cfr9I 434<br />

Cfr10I 1779<br />

Cfr13I 286 1741 1820 1837 2059 2675<br />

CseI 108 908 1486 2236<br />

Csp6I 168 439 2178<br />

DraI 1563 1582 2274<br />

Eam1104I 290 684 2488<br />

Eam1105I 1694<br />

EciI 878 1024 1852<br />

Ecl136II 444<br />

Eco24I 444<br />

Eco31I 1766<br />

Eco47I 1837 2059<br />

Eco57I 1333 2381<br />

Eco88I 434<br />

EcoO109I 2674<br />

EcoP15I 1214 1330 1423<br />

EcoRI 450<br />

EcoRII 354 545 833 954 967<br />

EheI 235<br />

Esp3I 51 2683<br />

FokI 77 321 1679 1860 2147<br />

FspBI 424 1301 1554 1889<br />

GsuI 1784<br />

HaeII 235 680 1050<br />

There are no restriction sites in pUC18 DNA for the following enzymes:<br />

AanI, AarI, AbsI, AdeI, AjiI, AjuI, AlfI, AloI, ApaI, BaeI, BbvCI, BclI, BcuI,<br />

BglII, BoxI, BpiI, BplI, Bpu10I, Bpu1102I, BseJI, BseRI, BsgI, BshTI, Bsp68I,<br />

Bsp119I, Bsp120I, Bsp1407I, BspOI, BspTI, Bst1107I, BstXI, Bsu15I, BtgI,<br />

BtgZI, Cfr42I, CpoI, CspCI, Eco32I, Eco47III, Eco52I, Eco72I, Eco81I, Eco91I,<br />

Eco105I, Eco130I, Eco147I, FalI, FaqI, FseI, FspAI, Kpn2I, KspAI, MlsI, MluI,<br />

Mph1103I, MreI, MssI, MunI, Mva1269I, NcoI, NheI, NotI, OliI, PacI, PasI,<br />

PauI, PdiI, Pfl23II, Ppu21I, Psp5II, PspXI, PsrI, PsyI, SanDI, SexAI, SfaAI, SfiI,<br />

SgfI, SgrAI, SgrDI, SgsI, SmiI, SrfI, Van91I, XagI, XcmI, XhoI, XmaJI.<br />

www.thermoscientific.com/onebio<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Hin1I 235 2235 2617<br />

Hin1II 38 406 461 807 1527 2018 2028 2106 2142 2535 2640<br />

HincII 417<br />

HindIII 399<br />

HinfI 420 641 706 781 1177 1694<br />

HphI 12 21 1550 1777 2173 2399 2414<br />

Hpy8I 177 417 1120 1608 2366<br />

Hpy99I 372 385 907 1701 1964<br />

Hpy188I 31 156 918 996 1349 1483 1618 2064 2075 2195<br />

HpyAV 270 1036 1304 1346 1817 2054 2429<br />

HpyF3I 171 1081 1490 1656 2196 2622<br />

KpnI 438<br />

LguI 683<br />

Lsp1109I 41 254 327 630 711 729 1148 1213 1216 1422 1750 2116<br />

LweI 78 153 208 229 894 1946 2156 2386<br />

MaeIII 57 348 368 1163 1226 1342 1625 1956 2014 2167 2355<br />

MbiI 496 737 2538<br />

MboII 291 685 1456 1547 2302 2380 2489<br />

MmeI 996 1180<br />

MspA1I 112 306 628 1146 1391 2332<br />

MvaI 354 545 833 954 967<br />

NdeI 183<br />

NmeAIII 1822<br />

NmuCI 57 368 1956 2167<br />

NsbI 256 1919<br />

PaeI 405<br />

PagI 1526 2534 2639<br />

PdmI 2294<br />

PfeI 641 781<br />

PfoI 46<br />

PscI 806<br />

Psp1406I 1924 2297<br />

PspFI 1110<br />

PstI 411<br />

PsuI 429 1447 1458 1544 1556 2324 2341<br />

PvuI 276 2066<br />

PvuII 306 628<br />

RsaI 168 439 2178<br />

RseI 1947 2106 2465<br />

SacI 444<br />

SalI 417<br />

ScaI 2177<br />

SchI 420 706 1177 1694<br />

SdaI 410<br />

SduI 177 444 1120 2281 2366<br />

SmaI 434<br />

SmoI 912 1174 1451 2319<br />

FauI 114 124 284 598 655<br />

SspI 2501<br />

SspDI 235<br />

TaaI 19 54 262 768 839 1309 1622 2137<br />

TaiI 374 1509 1925 2298 2618<br />

TaqI 418 448 906 2350<br />

TasI 451 487 504 579 1567 1873 2128<br />

TatI 167 2177<br />

TauI 150 732 850 1005 2089 2211 2440<br />

TscAI 392 593 702 1208 1221 1492 1641 1746 2093 2120<br />

TseI 41 254 327 630 711 729 1148 1213 1216 1422 1750 2116<br />

TspDTI 639 1575 1677 1980<br />

TspGWI 2149 2466<br />

VspI 576 635 1870<br />

XapI 450<br />

XbaI 423<br />

XceI 37 405 806<br />

XmiI 417<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.


pUC57<br />

see p.292 for ordering information.<br />

The 2710 bp pUC57 plasmid is a derivative of<br />

pUC19. The pUC57 MCS contains 6 restriction<br />

sites with protruding 3’-ends, that are resistant<br />

to E.coli exonuclease III. This vector is designed<br />

for cloning and generation of ExoIII deletions.<br />

The exact positions of the genetic elements<br />

are shown on the map (termination codons<br />

Multiple Cloning Site<br />

included). DNA replication initiates at position<br />

890 (+/- 1) and proceeds in the direction<br />

indicated. The bla gene nucleotides 2510-2442<br />

(compl. strand) code for a signal peptide.<br />

GenBank/EMBL Accession Number<br />

Y14837<br />

Additional Information<br />

<br />

<br />

lac repressor binding site – 531-511 (compl. strand).<br />

Enzymes which cut pUC57 DNA once:<br />

AatII 2641<br />

Acc65I* 408<br />

AflIII 830<br />

AlfI* 455<br />

ApaI* 442<br />

BamHI* 435<br />

BcgI 2239<br />

BsaXI 683<br />

Bsp68I* 414<br />

Bsp120I* 442<br />

BstAPI 179<br />

CaiI 1241<br />

Cfr9I* 439<br />

Cfr10I 1803<br />

Eam1105I 1718<br />

Ecl136II* 402<br />

Eco31I 1790<br />

Eco32I* 429<br />

Eco88I* 439<br />

Eco147I* 459<br />

EcoO109I 2698<br />

EcoRI* 396<br />

EheI 235<br />

GsuI 1808<br />

HincII* 448<br />

HindIII* 471<br />

KpnI* 408<br />

LguI 707<br />

Mph1103I* 420<br />

Mva1269I* 418<br />

NdeI 183<br />

NmeAIII 1846<br />

PaeI* 465<br />

PdmI 2318<br />

PfoI 46<br />

PscI 830<br />

PspFI 1134<br />

PstI* 453<br />

SacI* 402<br />

SalI* 448<br />

ScaI 2201<br />

SmaI* 439<br />

SspI 2525<br />

SspDI 235<br />

XapI* 396<br />

XbaI* 425<br />

XmiI* 448<br />

M13/pUC reverse sequencing primer, 17-mer, (-20) (#S0100)<br />

Eco88I ApaI<br />

EcoRI Ecl136II Acc65I MvaI269I Eco32I Cfr9I Bsp120I<br />

396 XapI SacI KpnI Bsp68I Mph1103I XbaI BamHI SmaI<br />

5’ - G TAA AAC GAC GGC CAG TGA ATT CGA GCT CGG TAC CTC GCG AAT GCA TCT AGA TAT CGG ATC CCG GGC CC<br />

3’ - C ATT TTG CTG CCG GTC ACT TAA GCT CGA GCC ATG GAG CGC TTA GCT AGA TCT ATA GCC TAG GGC CCG GG<br />

LacZ Val Val Ala Leu Ser Asn Ser Ser Pro Val Glu Arg Ile Cys Arg Ser Ile Pro Asp Arg Ala Arg<br />

HincII<br />

SalI AlfI<br />

XmiI PstI Eco174I PaeI HindIII 476<br />

G TCG ACT GCA GAG GCC TGC ATG CAA GCT TGG CGT AAT CAT GGT CAT AGC TGT TTC CTG - 3’<br />

C AGC TGA CGT CTC CGG ACG TAC GTT CGA ACC GCA TTA GTA CCA GTA TCG ACA AAG GAC - 5’<br />

Arg Ser Cys Leu Gly Ala His Leu Ser Pro Thr Ile Met Thr Met<br />

M13/pUC reverse sequencing primer, 17-mer, (-26) (#S0101)<br />

* MCS<br />

www.thermoscientific.com/onebio 443


444<br />

Table 12.8. pUC57 DNA Restriction Sites<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

DrdI 91 932<br />

AatII 2641<br />

Acc65I 408<br />

AflIII 830<br />

AlfI 455<br />

Alw21I 177 402 1144 2305 2390<br />

Alw26I 51 1790 2555 2708<br />

Alw44I 177 1144 2390<br />

ApaI 442<br />

BamHI 435<br />

BauI 1003 2387 2694<br />

BccI 1759 1883 2170<br />

BceAI 387 1316<br />

BcgI 2239<br />

BcnI 47 82 439 440 1209 1905 2256<br />

BmrI 364 1768<br />

BfmI 453 1095 1286 1964<br />

BfuI 1039 2566<br />

BglI 245 1837<br />

Bme1390I 47 82 354 439 440 569 857 978 991 1209 1905 2256<br />

BpuEI 936 1198 1475 2343<br />

BsaWI 1036 1183 2014<br />

BsaXI 683<br />

BseDI 354 439 569 990<br />

BseGI 77 321 1703 1884 2171<br />

BseLI 47 672 846 864 1030 1309<br />

BseMI 1777 1959<br />

BseMII 171 1105 1514 1680 2220<br />

BseNI 365 391 630 1233 1246 1363 1769 1887 1930 2194 2369<br />

BseSI 177 442 1144 2390<br />

BseXI 41 254 327 654 735 753 1172 1237 1240 1446 1774 2140<br />

Bsh1236I 2 4 107 415 676 678 876 1457 1787 2280 2612<br />

Bsh1285I 276 743 1167 2090 2239<br />

BshNI 235 408 574 1671<br />

Bsp68I 414<br />

Bsp120I 442<br />

BspLI 235 408 435 442 574 860 899 1671 1765 1806 2017 2607<br />

BspPI 435 436 1397 1471 1483 1568 1581 2045 2348 2366<br />

BstAPI 179<br />

BtsI 617 2116 2144<br />

CaiI 1241<br />

EaeI 388 669 2111<br />

Cfr9I 439<br />

Cfr10I 1803<br />

Cfr13I 286 442 443 1765 1844 1861 2083 2699<br />

CseI 108 932 1510 2260<br />

Csp6I 168 409 2202<br />

DraI 1587 1606 2298<br />

Eam1104I 290 708 2512<br />

Eam1105I 1718<br />

EciI 902 1048 1876<br />

Ecl136II 402<br />

Eco24I 402 442<br />

Eco31I 1790<br />

Eco32I 429<br />

Eco47I 1861 2083<br />

Eco57I 1357 2405<br />

Eco88I 439<br />

Eco147I 459<br />

EcoO109I 2698<br />

EcoP15I 1238 1354 1447<br />

EcoRI 396<br />

EcoRII 354 569 857 978 991<br />

EheI 235<br />

Esp3I 51 2707<br />

FokI 77 321 1703 1884 2171<br />

FspBI 426 1325 1578 1913<br />

GsuI 1808<br />

There are no restriction sites in pUC57 DNA for the following enzymes:<br />

AanI, AarI, AbsI, AdeI, AjiI, AjuI, AloI, BaeI, BbvCI, BclI, BcuI, BglII, BoxI,<br />

BpiI, BplI, Bpu10I, Bpu1102I, BseJI, BseRI, BsgI, BshTI, Bsp119I, Bsp1407I,<br />

BspOI, BspTI, Bst1107I, BstXI, Bsu15I, BtgI, BtgZI, BveI, Cfr42I, CpoI, CspCI,<br />

Eco47III, Eco52I, Eco72I, Eco81I, Eco91I, Eco105I, Eco130I, FalI, FaqI, FseI,<br />

FspAI, Kpn2I, KspAI, MauBI, MlsI, MluI, MreI, MssI, MunI, NcoI, NheI, NotI,<br />

OliI, PacI, PasI, PauI, PdiI, Pfl23II, Ppu21I, Psp5II, PspXI, PsrI, PsyI, SanDI,<br />

SdaI, SexAI, SfaAI, SfiI, SgfI, SgrAI, SgrDI, SgsI, SmiI, SrfI, Van91I, XagI,<br />

XcmI, XhoI, XmaJI.<br />

www.thermoscientific.com/onebio<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

HaeII 235 704 1074<br />

Hin1I 235 2259 2641<br />

Hin1II 38 466 485 831 1551 2042 2052 2130 2166 2559 2664<br />

HincII 448<br />

HindIII 471<br />

HinfI 665 730 805 1201 1718<br />

HphI 12 21 1574 1801 2197 2423 2438<br />

Hpy8I 177 448 1144 1632 2390<br />

Hpy99I 372 385 447 931 1725 1988<br />

Hpy188I 31 156 433 942 1020 1373 1507 1642 2088 2099 2219<br />

HpyAV 270 1060 1370 1841 2078 2453<br />

HpyF3I 171 1105 1514 1680 2220 2646<br />

KpnI 408<br />

LguI 707<br />

Lsp1109I 41 254 327 654 735 753 1172 1237 1240 1446 1774 2140<br />

LweI 78 153 208 229 422 918 1970 2180 2410<br />

MaeIII 57 348 368 1187 1250 1366 1649 1980 2038 2191 2379<br />

MbiI 520 761 2562<br />

MboII 291 709 1328 1480 1571 2326 2404 2513<br />

MmeI 1020 1204<br />

Mph1103I 420<br />

MspA1I 112 306 652 1170 1415 2356<br />

MvaI 354 569 857 978 991<br />

Mva1269I 418<br />

NdeI 183<br />

NmeAIII 1846<br />

NmuCI 57 368 1980 2191<br />

NsbI 256 1943<br />

PaeI 465<br />

PagI 1550 2558 2663<br />

PdmI 2318<br />

PfeI 665 805<br />

PfoI 46<br />

PscI 830<br />

Psp1406I 1948 2321<br />

PspFI 1134<br />

PstI 453<br />

PsuI 435 1471 1482 1568 1580 2348 2365<br />

PvuI 276 2090<br />

PvuII 306 652<br />

RsaI 168 409 2202<br />

RseI 1971 2130 2489<br />

SacI 402<br />

SalI 448<br />

ScaI 2201<br />

SchI 730 1201 1718<br />

SduI 177 402 442 1144 2305 2390<br />

SmaI 439<br />

SmoI 936 1198 1475 2343<br />

FauI 114 124 284 622 679<br />

SspI 2525<br />

SspDI 235<br />

TaaI 19 54 262 792 863 1333 1646 2161<br />

TaiI 374 1533 1949 2322 2642<br />

TaqI 400 449 930 2374<br />

TasI 397 511 528 603 1591 1897 2152<br />

TatI 167 2201<br />

TauI 150 756 874 1029 2113 2235 2464<br />

TscAI 392 617 726 1232 1245 1516 1665 1770 2117 2144<br />

TseI 41 254 327 654 735 753 1172 1237 1240 1446 1774 2140<br />

TspDTI 663 1599 1701 2004<br />

TspGWI 2173 2490<br />

VspI 600 659 1894<br />

XapI 396<br />

XbaI 425<br />

XceI 37 465 830<br />

XmiI 448<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.


pTZ19R, pTZ19U<br />

see p.292 for pTZ19R DNA ordering information.<br />

pTZ19R/U are small phagemids 2862 bp in<br />

length, constructed by inserting the DNA of phage<br />

f1 intergenic region (IG) into pUC19 and the T7<br />

promoter sequence near to the pUC19 MCS. The<br />

phagemids differ in the orientation of the cloned f1 IG<br />

region. They are designed for DNA cloning, dideoxy<br />

DNA sequencing, in vitro mutagenesis and in vitro<br />

transcription in one system. A host strain harboring<br />

these phagemids will produce single-stranded DNA<br />

if superinfected with the helper phage M13K07.<br />

pTZ19R/U phagemids contain: (1) the pMB1 replicon<br />

rep responsible for the replication of the phagemid<br />

(source – plasmid pUC19); (2) the bla gene, coding<br />

for -lactamase, that confers resistance to ampicillin<br />

(source – plasmid pUC19); (3) the region of E.coli<br />

operon lac containing a CAP protein binding site,<br />

promoter Plac, lac repressor binding site and the<br />

5’-terminal part of lacZ gene encoding the N-terminal<br />

fragment of -galactosidase (source – pUC19). This<br />

fragment allows blue/white screening of recombinant<br />

phagemids in the same way as described in the<br />

pUC18/19 section; (4) a T7 promoter inserted near<br />

Multiple Cloning Site<br />

Reference<br />

1. Mead, D.A., et al., Single-stranded DNA ‘blue’ T7 promoter<br />

plasmids: a versatile tandem promoter system for cloning<br />

and protein engineering, Protein Eng., 1, 67-74, 1986.<br />

to the MCS of pUC19 allowing in vitro synthesis of<br />

large amounts of specific RNA; (5) the phage f1<br />

intergenic region carrying the sequences required<br />

in cis for initiation and termination of phage f1 DNA<br />

synthesis (+ and - strands) and for packaging DNA<br />

into bacteriophage particles. Synthesis of singlestranded<br />

(plus) DNA requires phage-encoded gene II,<br />

X and V proteins. It is initiated at ori (+) and proceeds<br />

in the direction indicated. The conversion of plus DNA<br />

strands to double-stranded DNA does not require any<br />

of the phage genes. DNA synthesis is initiated by a<br />

30-nucleotide RNA primer synthesized by the host’s<br />

RNA polymerase and starts at ori (-).<br />

The plasmid map provided below lists enzymes that cut<br />

pTZ19R DNA once. <strong>Thermo</strong> <strong>Scientific</strong> enzymes are shown<br />

in orange. The coordinates refer to the position of the first<br />

nucleotide in each recognition sequence.<br />

The exact positions of the genetic elements are<br />

shown on the map (termination codons included). The<br />

bla gene nucleotides 2732-2664 (complementary<br />

strand) code for a signal peptide. The LacZ<br />

polypeptide corresponding to wt -galactosidase<br />

and essential for blue/white screening ends at nt<br />

position 458 (complementary strand). The remaining<br />

amino acids in the LacZ reading frame are encoded<br />

by f1 DNA. The indicated rep region is sufficient to<br />

promote replication. DNA replication initiates in the<br />

complementary DNA strand at position 1112 (+/-1)<br />

and proceeds in the direction indicated. Phagemids<br />

and plasmids carrying the pMB1 and ColE1 replicons<br />

are incompatible with one another, but are fully<br />

compatible with those carrying p15A replicon<br />

(pACYC177, pACYC184). pMB1-derived plasmids can<br />

be amplified using chloramphenicol.<br />

GenBank/EMBL Accession Numbers<br />

For pTZ19R – Y14835;<br />

for pTZ19U – Y14836.<br />

Additional Information<br />

<br />

<br />

lac repressor binding site – 753-733 (compl. strand).<br />

<br />

455 (pTZ19U).<br />

Enzymes which cut pTZ19R DNA once:<br />

AanI 358<br />

Acc65I* 627<br />

AdeI 230<br />

AflIII 1052<br />

AloI 279<br />

BamHI* 636<br />

BcgI 2461<br />

BtgZI 242<br />

BveI* 652<br />

CaiI 1463<br />

Cfr9I* 631<br />

Eam1105I 1940<br />

Ecl136II* 621<br />

Eco31I <strong>2012</strong><br />

Eco88I* 631<br />

EcoRI* 615<br />

GsuI 2030<br />

Hin1I 2481<br />

HincII* 648<br />

HindIII* 666<br />

KpnI* 627<br />

LguI 929<br />

NmeAIII 2068<br />

PaeI* 660<br />

PdiI 127<br />

PdmI 2540<br />

Ppu21I 230<br />

PscI 1052<br />

PspFI 1356<br />

PstI* 654<br />

SacI* 621<br />

SalI* 648<br />

ScaI 2423<br />

SdaI* 653<br />

SmaI* 631<br />

TatI 2423<br />

XbaI* 642<br />

XmiI* 648<br />

M13/pUC sequencing primer, 17-mer, (-20) (#S0100)<br />

Cfr9I HincII PstII<br />

Ecl136II Acc65I Eco88I SalI BveI PaeI<br />

615 EcoRI SacI KpnI SmaI BamHI XbaI XmiI SdaI<br />

5’ - G TAA AAC GAC GGC CAG TGA ATT CGA GCT CGG TAC CCG GGG ATC CTC TAG AGT CGA CCT GCA GGC ATG C<br />

3’ - C ATT TTG CTG CCG GTC ACT TAA GCT CGA GCC ATG GGC CCC TAG CAG ATC TCA GCT GGA CGT CCG TAC G<br />

LacZ Val Val Ala Leu Ser Asn Ser Ser Pro Val Arg Pro Asp Glu Leu Thr Ser Arg Cys Ala His<br />

HindIII 671<br />

AA GCT TTC CCT ATA GTG AGT CGT ATT AGA GCT TGG CGT AAT CAT GGT CAT AGC TGT TTC CTG - 3’<br />

TT CGA AAG GGA TAT CAC TCA GCA TAA TCT CGA ACC GCA TTA GTA CCA GTA TCG ACA AAG GAC - 5’<br />

Leu Ser Glu Arg Tyr His Thr Thr Asn Ser Ser Pro Thr Ile Met Thr Met<br />

T7 transcription start<br />

T7 promoter<br />

M13/pUC reverse sequencing primer, 17-mer, (-26) (#S0101)<br />

* MCS<br />

www.thermoscientific.com/onebio 445


446<br />

Table 12.9. pTZ19R DNA Restriction Sites<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

AanI 358<br />

DrdI 273 1154<br />

Acc65I 627<br />

AdeI 230<br />

AflIII 1052<br />

AloI 279<br />

Alw21I 621 1366 2527 2612<br />

Alw26I <strong>2012</strong> 2777<br />

Alw44I 1366 2612<br />

BamHI 636<br />

BauI 1225 2609<br />

BccI 223 241 1981 2105 2392<br />

BceAI 189 606 1538<br />

BcgI 2461<br />

BcnI 631 632 1431 2127 2478<br />

BmrI 583 1990<br />

BfmI 9 654 675 1317 1508 2186<br />

BfuI 1261 2788<br />

BglI 464 2059<br />

Bme1390I 573 631 632 791 1079 1200 1213 1431 2127 2478<br />

BpuEI 1158 1420 1697 2565<br />

BsaWI 1258 1405 2236<br />

BsaXI 279 905<br />

BseDI 573 631 632 791 1212<br />

BseGI 540 1925 2106 2393<br />

BseLI 7 333 894 1068 1086 1252 1531<br />

BseMI 1999 2181<br />

BseMII 1327 1736 1902 2442<br />

BseNI 316 584 610 852 1455 1468 1585 1991 2109 2152 2416 2591<br />

BseSI 1366 2612<br />

BseXI 50 473 546 876 957 975 1394 1459 1462 1668 1996 2362<br />

Bsh1236I 3 27 47 423 898 900 1098 1679 2009 2502 2834<br />

Bsh1285I 495 965 1389 2312 2461<br />

BshNI 191 627 796 1893<br />

BspPI 636 637 1619 1693 1705 1790 1803 2267 2570 2588<br />

BsuRI 239 381 506 608 892 1066 1077 1095 1529 1987 2067 2334<br />

BtgZI 242<br />

BtsI 839 2338 2366<br />

BveI 652<br />

CaiI 1463<br />

EaeI 607 891 2333<br />

Cfr9I 631<br />

Cfr10I 127 2025<br />

Cfr13I 238 505 1987 2066 2083 2305<br />

CseI 1 1154 1732 2482<br />

Csp6I 628 2424<br />

DraI 1809 1828 2520<br />

Eam1104I 509 930 2734<br />

Eam1105I 1940<br />

EciI 1124 1270 2098<br />

Ecl136II 621<br />

Eco24I 157 621<br />

Eco31I <strong>2012</strong><br />

Eco47I 2083 2305<br />

Eco57I 1579 2627<br />

Eco88I 631<br />

EcoP15I 1460 1576 1669<br />

EcoRI 615<br />

EcoRII 573 791 1079 1200 1213<br />

FokI 540 1925 2106 2393<br />

FspBI 79 643 1547 1800 2135<br />

GsuI 2030<br />

HaeII 73 81 926 1296<br />

Hin1I 2481<br />

Hin1II 661 707 1053 1773 2264 2274 2352 2388 2781<br />

HincII 648<br />

There are no restriction sites in pTZ19R DNA for the following enzymes:<br />

AarI, AatII, AbsI, AjiI, AjuI, AlfI, ApaI, BaeI, BbvCI, BclI, BcuI, BglII, BoxI, BpiI,<br />

BplI, Bpu10I, Bpu1102I, BseJI, BseRI, BsgI, BshTI, Bsp68I, Bsp119I, Bsp120I,<br />

Bsp1407I, BspOI, BspTI, Bst1107I, BstAPI, BstXI, Bsu15I, BtgI, Cfr42I, CpoI,<br />

CspCI, Eco32I, Eco47III, Eco52I, Eco72I, Eco81I, Eco91I, Eco105I, Eco130I,<br />

Eco147I, EcoO109I, EheI, Esp3I, FalI, FaqI, FseI, FspAI, Kpn2I, KspAI, MauBI,<br />

MlsI, MluI, Mph1103I, MreI, MssI, MunI, Mva1269I, NcoI, NdeI, NheI, NotI, OliI,<br />

PacI, PasI, PauI, Pfl23II, PfoI, Psp5II, PspXI, PsrI, PsyI, SanDI, SexAI, SfaAI, SfiI,<br />

SgfI, SgrAI, SgrDI, SgsI, SmiI, SrfI, SspDI, Van91I, XagI, XcmI, XhoI, XmaJI.<br />

www.thermoscientific.com/onebio<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

HindIII 666<br />

HinfI 280 302 646 682 887 952 1027 1423 1940<br />

HpaII 128 632 770 1259 1406 1432 1622 2026 2060 2127 2237 2479<br />

HphI 220 1796 2023 2419 2645 2660<br />

Hpy8I 227 282 299 648 1366 1854 2612<br />

Hpy99I 591 604 1153 1947 2210<br />

Hpy188I 173 1164 1242 1595 1729 1864 2310 2321 2441<br />

Hpy188III 588 642 856 1285 1419 1517 1615 1698 1772 2031 2780<br />

HpyAV 106 489 1282 1592 2063 2300 2675<br />

HpyCH4V 548 655 663 878 1367 1663 1998 2088 2281 2369 2613<br />

HpyF3I 1327 1736 1902 2442<br />

KpnI 627<br />

LguI 929<br />

Lsp1109I 50 473 546 876 957 975 1394 1459 1462 1668 1996 2362<br />

LweI 1140 2192 2402 2632<br />

MaeIII 43 55 567 587 1409 1472 1588 1871 2202 2260 2413 2601<br />

MbiI 86 742 983 2784<br />

MboII 101 510 931 1550 1702 1793 2548 2626 2735<br />

MmeI 276 1242 1426<br />

MnlI 195 508 640 908 941 1167 1224 1491 1891 1972 2102 2308<br />

MspA1I 525 874 1392 1637 2578<br />

MspI 128 632 770 1259 1406 1432 1622 2026 2060 2127 2237 2479<br />

MvaI 573 791 1079 1200 1213<br />

NmeAIII 2068<br />

NmuCI 55 587 2202 2413<br />

NsbI 475 2165<br />

PaeI 660<br />

PagI 1772 2780<br />

PdiI 127<br />

PdmI 2540<br />

PfeI 887 1027<br />

Ppu21I 230<br />

PscI 1052<br />

Psp1406I 2170 2543<br />

PspFI 1356<br />

PstI 654<br />

PsuI 636 1693 1704 1790 1802 2570 2587<br />

PvuI 495 2312<br />

PvuII 525 874<br />

RsaI 628 2424<br />

RseI 2193 2352 2711<br />

SacI 621<br />

SalI 648<br />

ScaI 2423<br />

SchI 280 302 646 682 952 1423 1940<br />

SdaI 653<br />

SduI 157 621 1366 2527 2612<br />

SmaI 631<br />

SmoI 1158 1420 1697 2565<br />

FauI 31 85 503 844 901<br />

SspI 438 2747<br />

TaaI 256 481 1014 1085 1555 1868 2383<br />

TaiI 121 231 274 286 593 1755 2171 2544<br />

TaqI 197 619 649 1152 2596<br />

TasI 416 427 453 616 733 750 825 1813 2119 2374<br />

TatI 2423<br />

TauI 14 28 978 1096 1251 2335 2457 2686<br />

TscAI 611 839 948 1454 1467 1738 1887 1992 2339 2366<br />

TseI 50 473 546 876 957 975 1394 1459 1462 1668 1996 2362<br />

TspDTI 885 1821 1923 2226<br />

TspGWI 2395 2712<br />

VspI 822 881 2116<br />

XapI 415 426 615<br />

XbaI 642<br />

XceI 660 1052<br />

XmiI 648<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.


pTZ57R<br />

The 2886 bp pTZ57R plasmid is a derivative of<br />

pTZ19R. pTZ57R MCS contains 6 restriction sites<br />

with protruding 3’-ends, that are resistant to E.coli<br />

exonuclease III. This vector is designed for cloning<br />

and generation of ExoIII deletions. The exact position<br />

Multiple Cloning Site<br />

of genetic elements is shown on the map (termination<br />

codons included). DNA replication initiates at position<br />

1136 (+/- 1) and proceeds in the indicated direction.<br />

The bla gene nucleotides 2688-2756 (complementary<br />

strand) code for a signal peptide.<br />

Additional Information<br />

<br />

<br />

lac repressor binding site – 777-757 (compl. strand).<br />

<br />

Enzymes which cut pTZ57R DNA once:<br />

AanI 358<br />

Acc65I* 627<br />

AdeI 230<br />

AflIII 1076<br />

AlfI* 674<br />

AloI 279<br />

ApaI* 661<br />

BamHI* 654<br />

BcgI 2485<br />

Bsp68I* 633<br />

Bsp120I* 661<br />

BtgZI 242<br />

CaiI 1487<br />

Cfr9I* 658<br />

Eam1105I 1964<br />

Ecl136II* 621<br />

Eco31I 2036<br />

Eco32I* 648<br />

Eco88I* 658<br />

Eco147I* 678<br />

EcoRI* 615<br />

GsuI 2054<br />

Hin1I 2505<br />

HincII* 667<br />

HindIII* 690<br />

KpnI* 627<br />

LguI 953<br />

Mph1103I* 639<br />

Mva1269I* 637<br />

NmeAIII 2092<br />

PaeI* 684<br />

PdiI 127<br />

PdmI 2564<br />

Ppu21I 230<br />

PscI 1076<br />

PspFI 1380<br />

PstI* 672<br />

SacI* 621<br />

SalI* 667<br />

ScaI 2447<br />

SmaI* 658<br />

TatI 2447<br />

XbaI* 644<br />

XmiI* 667<br />

M13/pUC sequencing primer, 17-mer, (-20) (#S0100)<br />

Eco88I ApaI<br />

Ecl136II Acc65I MvaI269I Eco32I Cfr9I Bsp120I<br />

615 EcoRI SacI KpnI Bsp68I Mph1103I XbaI BamHI SmaI<br />

5’ - G TAA AAC GAC GGC CAG TGA ATT CGA GCT CGG TAC CTC GCG AAT GCA TCT AGA TAT CGG ATC CCG GGC CC<br />

3’ - C ATT TTG CTG CCG GTC ACT TAA GCT CGA GCC ATG GAG CGC TTA CGT AGA TCT ATA GCC TAG GGC CCG GG<br />

LacZ Val Val Ala Leu Ser Asn Ser Ser Pro Val Glu Arg Ile Cys Arg Ser Ile Pro Asp Arg Ala Arg<br />

HincII<br />

SalI AflI<br />

XmiI PstI Eco174I PaeI HindIII 695<br />

G TCG ACT GCA GAG GCC TGC ATG CAA GCT TTC CCT ATA GTG AGT CGT ATT AGA GCT TGG CGT AAT CAT<br />

C AGC TGA CGT CTC CGG ACG TAC GTT CGA AAG GGA TAT CAC TCA GCA TAA TCT CGA ACC GCA TTA GTA<br />

Arg Ser Cys Leu Gly Ala His Leu Ser Glu Arg Tyr His Thr Thr Asn Ser Ser Pro Thr Ile Met<br />

T7 transcription start T7 promoter<br />

GGT CAT AGC TGT TTC CTG - 3’<br />

CCA GTA TCG ACA AAG GAC - 5’<br />

Thr Met<br />

M13/pUC reverse sequencing primer, 17-mer, (-26) (#S0101)<br />

* MCS<br />

www.thermoscientific.com/onebio 447


448<br />

Table 12.10. pTZ57R DNA Restriction Sites<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

AanI 358<br />

DrdI 273 1178<br />

Acc65I 627<br />

AdeI 230<br />

AflIII 1076<br />

AlfI 674<br />

AloI 279<br />

Alw21I 621 1390 2551 2636<br />

Alw26I 2036 2801<br />

Alw44I 1390 2636<br />

ApaI 661<br />

BamHI 654<br />

BauI 1249 2633<br />

BccI 223 241 2005 2129 2416<br />

BceAI 189 606 1562<br />

BcgI 2485<br />

BcnI 658 659 1455 2151 2502<br />

BmrI 583 2014<br />

BfmI 9 672 699 1341 1532 2210<br />

BfuI 1285 2812<br />

BglI 464 2083<br />

Bme1390I 573 658 659 815 1103 1224 1237 1455 2151 2502<br />

BpuEI 1182 1444 1721 2589<br />

BsaWI 1282 1429 2260<br />

BsaXI 279 929<br />

BseDI 573 658 815 1236<br />

BseGI 540 1949 2130 2417<br />

BseLI 7 333 918 1092 1110 1276 1555<br />

BseMI 2023 2205<br />

BseMII 1351 1760 1926 2466<br />

BseNI 316 584 610 876 1479 1492 1609 2015 2133 2176 2440 2615<br />

BseSI 661 1390 2636<br />

BseXI 50 473 546 900 981 999 1418 1483 1486 1692 2020 2386<br />

Bsh1236I 3 27 47 423 634 922 924 1122 1703 2033 2526 2858<br />

Bsh1285I 495 989 1413 2336 2485<br />

BshNI 191 627 820 1917<br />

Bsp120I 661<br />

Bsp68I 633<br />

BspPI 654 655 1643 1717 1729 1814 1827 2291 2594 2612<br />

BtgZI 242<br />

BtsI 863 2362 2390<br />

CaiI 1487<br />

EaeI 607 915 2357<br />

Cfr9I 658<br />

Cfr10I 127 2049<br />

Cfr13I 238 505 661 662 2011 2090 2107 2329<br />

CseI 1 1178 1756 2506<br />

Csp6I 628 2448<br />

DraI 1833 1852 2544<br />

Eam1104I 509 954 2758<br />

Eam1105I 1964<br />

EciI 1148 1294 2122<br />

Ecl136II 621<br />

Eco24I 157 621 661<br />

Eco31I 2036<br />

Eco32I 648<br />

Eco47I 2107 2329<br />

Eco57I 1603 2651<br />

Eco88I 658<br />

Eco147I 678<br />

EcoP15I 1484 1600 1693<br />

EcoRI 615<br />

EcoRII 573 815 1103 1224 1237<br />

FokI 540 1949 2130 2417<br />

FspBI 79 645 1571 1824 2159<br />

GsuI 2054<br />

HaeII 73 81 950 1320<br />

Hin1I 2505<br />

There are no restriction sites in pTZ57R DNA for the following enzymes:<br />

AarI, AatII, AbsI, AjiI, AjuI, BaeI, BbvCI, BclI, BcuI, BglII, BoxI, BpiI, BplI,<br />

Bpu10I, Bpu1102I, BseJI, BseRI, BsgI, BshTI, Bsp119I, Bsp1407I, BspOI,<br />

BspTI, Bst1107I, BstAPI, BstXI, Bsu15I, BtgI, BveI, Cfr42I, CpoI, CspCI,<br />

Eco47III, Eco52I, Eco72I, Eco81I, Eco91I, Eco105I, Eco130I, EcoO109I, EheI,<br />

Esp3I, FalI, FaqI, FseI, FspAI, Kpn2I, KspAI, MauBI, MlsI, MluI, MreI, MssI,<br />

MunI, NcoI, NdeI, NheI, NotI, OliI, PacI, PasI, PauI, Pfl23II, PfoI, Psp5II,<br />

PspXI, PsrI, PsyI, SanDI, SdaI, SexAI, SfaAI, SfiI, SgfI, SgrAI, SgrDI, SgsI, SmiI,<br />

SrfI, SspDI, Van91I, XagI, XcmI, XhoI, XmaJI.<br />

www.thermoscientific.com/onebio<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Hin1II 685 731 1077 1797 2288 2298 2376 2412 2805<br />

HincII 667<br />

HindIII 690<br />

HinfI 280 302 706 911 976 1051 1447 1964<br />

HpaII 128 659 794 1283 1430 1456 1646 2050 2084 2151 2261 2503<br />

HphI 220 1820 2047 2443 2669 2684<br />

Hpy8I 227 282 299 667 1390 1878 2636<br />

Hpy99I 591 604 666 1177 1971 2234<br />

Hpy188I 173 652 1188 1266 1619 1753 1888 2334 2345 2465<br />

Hpy188III 588 633 644 880 1309 1443 1541 1639 1722 1796 2055 2804<br />

HpyAV 106 489 1306 1616 2087 2324 2699<br />

HpyF3I 1351 1760 1926 2466<br />

KpnI 627<br />

LguI 953<br />

Lsp1109I 50 473 546 900 981 999 1418 1483 1486 1692 2020 2386<br />

LweI 641 1164 2216 2426 2656<br />

MaeIII 43 55 567 587 1433 1496 1612 1895 2226 2284 2437 2625<br />

MbiI 86 766 1007 2808<br />

MboII 101 510 955 1574 1726 1817 2572 2650 2759<br />

MmeI 276 1266 1450<br />

Mph1103I 639<br />

MspA1I 525 898 1416 1661 2602<br />

MspI 128 659 794 1283 1430 1456 1646 2050 2084 2151 2261 2503<br />

MvaI 573 815 1103 1224 1237<br />

Mva1269I 637<br />

NmeAIII 2092<br />

NmuCI 55 587 2226 2437<br />

NsbI 475 2189<br />

PaeI 684<br />

PagI 1796 2804<br />

PdiI 127<br />

PdmI 2564<br />

PfeI 911 1051<br />

Ppu21I 230<br />

PscI 1076<br />

Psp1406I 2194 2567<br />

PspFI 1380<br />

PstI 672<br />

PsuI 654 1717 1728 1814 1826 2594 2611<br />

PvuI 495 2336<br />

PvuII 525 898<br />

RsaI 628 2448<br />

RseI 2217 2376 2735<br />

SacI 621<br />

SalI 667<br />

ScaI 2447<br />

SchI 280 302 706 976 1447 1964<br />

SduI 157 621 661 1390 2551 2636<br />

SmaI 658<br />

SmoI 1182 1444 1721 2589<br />

FauI 31 85 503 868 925<br />

SspI 438 2771<br />

TaaI 256 481 1038 1109 1579 1892 2407<br />

TaiI 121 231 274 286 593 1779 2195 2568<br />

TaqI 197 619 668 1176 2620<br />

TasI 416 427 453 616 757 774 849 1837 2143 2398<br />

TatI 2447<br />

TauI 14 28 1002 1120 1275 2359 2481 2710<br />

TscAI 611 863 972 1478 1491 1762 1911 2016 2363 2390<br />

TseI 50 473 546 900 981 999 1418 1483 1486 1692 2020 2386<br />

TspDTI 909 1845 1947 2250<br />

TspGWI 2419 2736<br />

VspI 846 905 2140<br />

XapI 415 426 615<br />

XbaI 644<br />

XceI 684 1076<br />

XmiI 667<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.


pBluescript II KS(+/-), pBluescript II SK(+/-)<br />

Not available from us<br />

All pBluescript II phagemids are 2961 bp in length. The<br />

structure of these phagemids is very similar to that of<br />

pTZ19R/U (see pTZ19R/U description for information)<br />

except for the MCSs and the promoters flanking the<br />

MCS. pBluescript II phagemids are designed for DNA<br />

cloning, dideoxy DNA sequencing, in vitro mutagenesis<br />

and in vitro transcription in a single system. The<br />

pBluescript II SK and KS vector series represent<br />

two orientations of the MCS within the lacZ gene<br />

encoding the N-terminal fragment of -galactosidase<br />

(KS represents the orientation of the MCS in which<br />

lacZ transcription proceeds from KpnI to SacI, while<br />

SK – from SacI to KpnI). (+) and (-) symbols on<br />

pBluescript II phagemids indicate the orientation of<br />

the cloned phage f1 intergenic (IG) region carrying the<br />

sequences required in cis for initiation and termination<br />

of phage f1 DNA synthesis and for packaging of DNA<br />

into bacteriophage particles. Synthesis of singlestranded<br />

DNA requires phage-encoded gene II, X and<br />

V proteins and is initiated at ori (+). It proceeds in<br />

the direction indicated. The conversion of singlestranded<br />

to double-stranded DNA does not require<br />

any of the phage genes to function. DNA synthesis is<br />

initiated by a 30-nucleotide RNA primer synthesized<br />

by the host’s RNA polymerase and starting at ori (-).<br />

pBluescript II phagemids contain: (1) f1 (IG) – the<br />

intergenic region of phage f1; (2) rep (pMB1) – the<br />

pMB1 replicon responsible for the replication of<br />

phagemid. The rep region is sufficient to promote<br />

replication. DNA replication initiates at position 1213<br />

(+/- 1) and proceeds in the direction indicated; (3) the<br />

bla (Ap R ) – gene, coding for -lactamase, that confers<br />

resistance to ampicillin. Nucleotides 2833-2765<br />

(complementary strand) code for a signal peptide; (4)<br />

lacZ – the 5’-terminal part of the lacZ gene encoding<br />

the N-terminal fragment of -galactosidase. This<br />

fragment allows blue/white screening of recombinant<br />

phagemids. The LacZ polypeptide corresponding to wt<br />

-galactosidase and essential for blue/white screening<br />

ends at nt position 460 (complementary strand). Other<br />

codons in the same reading frame come from f1 DNA.<br />

The plasmid maps provided below list enzymes that<br />

cut pBluescript II SK/KS(+) and pBluescript II SK/KS(-)<br />

DNA once. <strong>Thermo</strong> <strong>Scientific</strong> enzymes are shown in<br />

AanI 360<br />

Acc65I* 653<br />

AdeI 232<br />

AflIII 1153<br />

AloI 281<br />

ApaI* 659<br />

BamHI* 719<br />

BcgI 2562<br />

BcuI* 725<br />

Bsp120I* 659<br />

BstXI* 744<br />

Bsu15I* 683<br />

BtgI* 747<br />

BtgZI 244<br />

CaiI 1564<br />

Cfr9I* 713<br />

Cfr42I* 747<br />

Eam1105I 2041<br />

Ecl136II* 755<br />

Eco31I 2113<br />

Eco32I* 695<br />

Eco52I* 738<br />

EcoO109I* 659<br />

References<br />

1. Alting-Mees, M.A. and Short, J.M., pBluescript II: gene mapping vectors, Nucleic Acids Res., 17, 9494, 1989.<br />

2. Alting-Mees, et al., pBluescriptII: multifunctional cloning and mapping vectors, Meth. Enzymol., 216, 483-495, 1992.<br />

EcoRI*<br />

Hin1I<br />

701<br />

2582<br />

3. Short, J.M., et al., Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties, Nucleic Acids Res., 16, 7583-7600, 1988.<br />

orange. The coordinates refer to the position of the<br />

first nucleotide in each recognition sequence. The<br />

exact positions of the genetic elements are shown on<br />

the map (termination codons included).<br />

GenBank/EMBL Accession Numbers<br />

For pBluescript II KS(-) – X52329;<br />

for pBluescript II KS(+) – X52327;<br />

for pBluescript II SK(-) – X52330;<br />

for pBluescript II SK(+) – X52328.<br />

Additional Information<br />

<br />

<br />

lac repressor binding site – 854-834 (compl. strand).<br />

<br />

366-457.<br />

<br />

Enzymes which cut pBluescriptII KS(+) DNA once:<br />

AanI 97<br />

Acc65I* 755<br />

AdeI 222<br />

AflIII 1153<br />

AloI 169<br />

ApaI* 749<br />

BamHI* 689<br />

BcgI 2562<br />

BcuI* 683<br />

Bsp120I* 749<br />

BstXI* 658<br />

Bsu15I* 725<br />

BtgI* 661<br />

BtgZI 213<br />

CaiI 1564<br />

Cfr9I* 695<br />

Cfr42I* 661<br />

CspCI 2958<br />

Eam1105I 2041<br />

Ecl136II* 653<br />

Eco31I 2113<br />

Eco32I* 713<br />

Eco52I* 670<br />

EcoO109I* 748<br />

EcoRI* 707<br />

FaqI 457<br />

GsuI 2131<br />

Hin1I 2582<br />

HincII* 734<br />

HindIII* 719<br />

KpnI* 755<br />

LguI 1030<br />

NmeAIII 2169<br />

NotI* 669<br />

OliI* 659<br />

PdiI 328<br />

PdmI 2641<br />

Ppu21I 225<br />

PscI 1153<br />

PspXI* 739<br />

PstI* 701<br />

SacI* 653<br />

SalI* 734<br />

ScaI 2524<br />

SmaI* 695<br />

TatI 2524<br />

XbaI* 677<br />

XceI 1153<br />

XhoI* 740<br />

XmiI*<br />

* MCS<br />

734<br />

Enzymes which cut pBluescriptII SK(–) DNA once:<br />

HincII* 674<br />

HindIII* 689<br />

KpnI* 653<br />

LguI 1030<br />

NmeAIII 2169<br />

NotI* 737<br />

OliI* 745<br />

PdiI 129<br />

PdmI 2641<br />

Ppu21I 232<br />

PscI 1153<br />

PspXI* 667<br />

PspFI 1457<br />

PstI* 707<br />

SacI* 755<br />

SalI* 674<br />

ScaI 2524<br />

SmaI* 713<br />

TatI 2524<br />

XbaI* 731<br />

XceI 1153<br />

XhoI* 668<br />

XmiI*<br />

* MCS<br />

674<br />

www.thermoscientific.com/onebio 449


450<br />

Multiple Cloning Site of pBluescript II KS(-), pBluescript II KS(+)<br />

BstXI<br />

BtgI<br />

M13/pUC sequencing primer, 17-mer, (-20) (#S0100)<br />

Ecl136II Cfr42I<br />

T7 promoter<br />

T7 transcription start<br />

615 SacI OliI<br />

5’ - G TAA AAC GAC GGC CAG TGA GCG CGC GTA ATA CGA CTC ACT ATA GGG CGA ATT GGA GCT CCA CCG CGG TG<br />

3’ - C ATT TTG CTG CCG GTC ACT CGC GCG CAT TAT GCT GAG TGA TAT CCC GCT TAA CCT CGA GGT GGC GCC AC<br />

LacZ Val Val Ala Leu Ser Ala Arg Tyr Tyr Ser Glu Ser Tyr Pro Ser Asn Ser Ser Trp Arg Pro Pro<br />

Eco52I Cfr9I<br />

NotI XbaI BcuI BamHI SmaI PstI EcoRI Eco32I HindIII Bsu15I<br />

G CGG CCG CTC TAG AAC TAG TGG ATC CCC CGG GCT GCA GGA ATT CGA TAT CAA GCT TAT CGA TAC<br />

C GCC GGC GAG ATC TTG ATC ACC TAG GGG GCC CGA CGT CCT TAA GCT ATA GTT CGA ATA GCT ATG<br />

Thr Ser Arg Ser Pro Pro Gly Pro Val Trp Ser Lys Asn Gly Lys Thr Leu Thr Leu Glu Ser Ser Pro<br />

T3 transcription start T3 promoter<br />

M13/pUC reverse sequencing primer, 17-mer, (-26) (#S0101)<br />

Multiple Cloning Site of pBluescript II SK(-), pBluescript II SK(+)<br />

Eco0109I<br />

M13/pUC sequencing primer, 17-mer, (-20) (#S0100)<br />

Acc65I ApaI<br />

T7 promoter<br />

T7 transcription start 653 KpnI Bsp120I<br />

5’ - G TAA AAC GAC GGC CAG TGA GCG CGC GTA ATA CGA CTC ACT ATA GGG CGA ATT GGG TAC CGG GCC CCC<br />

3’ - C ATT TTG CTG CCG GTC ACT CGC GCG CAT TAT GCT GAG TGA TAT CCC GCT TAA CCC ATG GCC CGG GGG<br />

LacZ Val Val Ala Leu Ser Asn Tyr Tyr Ser Glu Ser Tyr Pro Ser Asn Pro Val Pro Gly Gly<br />

HincII<br />

PspXI SalI Cfr9I<br />

XhoI XmiI Bsu15I HindIII Eco32I EcoRI PstI SmaI BamHI BcuI<br />

CCT CGA GGT CGA CGG TAT CGA TAA GCT TGA TAT CGA ATT CCT GCA GCC CGG GGG ATC CAC TAG T<br />

GGA GCT CCA GCT GCC ATA GCT ATT CGA ACT ATA GCT TAA GGA CGT CGG GCC CCC TAG GTG ATC A<br />

Arg Ser Thr Ser Pro Ile Ser Leu Ser Ser Ile Ser Asn Arg Cys Gly Pro Pro Asp Val Leu<br />

BtgI<br />

Cfr42I<br />

Eco52I OliI Ecl136II<br />

XbaI NotI BstXI SacI 760<br />

TC TAG AGC GGC CGC CAC CGC GGT GGA GCT CCA GCT TTT GTT CCC TTT AGT GAG GGT TAA TTG CGC GCT<br />

AG ATC TCG CCG GCG GTG GCG CCA CCT CGA GGT CGA AAA CAA GGG AAA TCA CTC CCA ATT AAC GCG CGA<br />

Glu Leu Ala Ala Ala Val Ala Thr Ser Ser Trp Ser Lys Asn Gly Lys Thr Leu Thr Leu Glu Ser Ser<br />

T3 transcription start<br />

T3 promoter<br />

TGG CGT AAT CAT GGT CAT AGC TGT TTC CTG - 3’<br />

ACC GCA TTA GTA CCA GTA TCG ACA AAG GAC - 5’<br />

Pro Thr Ile Met Thr Met<br />

www.thermoscientific.com/onebio<br />

Pro Arg Glu Leu Val Leu Pro Asp Gly Pro Ser Cys Ser Asn Ser Ile Leu Ser Ile Ser Val<br />

HincII Eco0109I<br />

SalI PspXI ApaI Acc65I<br />

XmiI XhoI Bsp120I KpnI 760<br />

CGT CGA CCT CGA GGG GGG GCC CGG TAC CCA GCT TTT GTT CCC TTT AGT GAG GGT TAA TTG CGC GCT TGG<br />

GCA GCT GGA GCT CCC CCC CGG GCC ATG GGT CGA AAA CAA GGG AAA TCA CTC CCA ATT AAC GCG CGA ACC<br />

CGT AAT CAT GGT CAT AGC TGT TTC CTG - 3’<br />

GCA TTA GTA CCA GTA TCG ACA AAG GAC - 5’<br />

Thr Ile Met Thr Met<br />

M13/pUC reverse sequencing primer, 17-mer, (-26) (#S0101)


Table 12.11. pBluescript II KS(+) DNA Restriction Sites<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

AanI 97<br />

DrdI 176 1255<br />

AbsI 739<br />

Acc65I 755<br />

AdeI 222<br />

AflIII 1153<br />

AloI 169<br />

Alw21I 653 1467 2628 2713<br />

Alw26I 2113 2878<br />

Alw44I 1467 2713<br />

ApaI 749<br />

BamHI 689<br />

BauI 1326 2710<br />

BccI 215 233 2082 2206 2493<br />

BceAI 267 608 1639<br />

BcgI 2562<br />

BcnI 695 696 752 1532 2228 2579<br />

BcuI 683<br />

BmrI 585 2091<br />

BfmI 446 638 701 1418 1609 2287<br />

BfuI 1362 2889<br />

BglI 466 2160<br />

Bme1390I 575 695 696 752 892 1180 1301 1314 1532 2228 2579<br />

BpuEI 1259 1521 1798 2666<br />

BsaWI 1359 1506 2337<br />

BsaXI 171 1006<br />

BseDI 575 661 694 695 892 1313<br />

BseGI 542 2026 2207 2494<br />

BseLI 117 443 739 995 1169 1187 1353 1632<br />

BseMI 2100 2282<br />

BseMII 1428 1837 2003 2543<br />

BseNI 140 586 612 953 1556 1569 1686 2092 2210 2253 2517 2692<br />

BseSI 749 1467 2713<br />

Bsh1285I 497 670 1066 1490 2413 2562<br />

BshNI 264 755 897 1994<br />

Bsp120I 749<br />

BspPI 689 690 1720 1794 1806 1891 1904 2368 2671 2689<br />

BstXI 658<br />

Bsu15I 725<br />

BtgI 661<br />

BtgZI 213<br />

BtsI 940 2439 2467<br />

CaiI 1564<br />

EaeI 609 670 992 2434<br />

Cfr9I 695<br />

Cfr10I 328 2126<br />

Cfr13I 218 507 749 750 2088 2167 2184 2406<br />

Cfr42I 661<br />

CseI 455 1255 1833 2583<br />

Csp6I 756 2525<br />

CspCI 2958<br />

DraI 1910 1929 2621<br />

Eam1104I 511 1031 2835<br />

Eam1105I 2041<br />

EciI 1225 1371 2199<br />

Ecl136II 653<br />

Eco24I 298 653 749<br />

Eco31I 2113<br />

Eco32I 713<br />

Eco47I 2184 2406<br />

Eco52I 670<br />

Eco57I 1680 2728<br />

Eco88I 695 740<br />

EcoO109I 748<br />

EcoP15I 1561 1677 1770<br />

EcoRI 707<br />

EcoRII 575 892 1180 1301 1314<br />

FaqI 457<br />

FokI 542 2026 2207 2494<br />

FspBI 378 678 684 1648 1901 2236<br />

There are no restriction sites in pBluescript II KS(+) DNA for the following enzymes:<br />

AarI, AatII, AjiI, AjuI, AlfI, BaeI, BbvCI, BclI, BglII, BoxI, BpiI, BplI, Bpu10I,<br />

Bpu1102I, BseJI, BseRI, BsgI, BshTI, Bsp68I, Bsp119I, Bsp1407I, BspTI,<br />

Bst1107I, BstAPI, BveI, CpoI, Eco47III, Eco72I, Eco81I, Eco91I, Eco105I,<br />

Eco130I, Eco147I, EheI, Esp3I, FalI, FseI, FspAI, Kpn2I, KspAI, MlsI, MluI,<br />

Mph1103I, MssI, MunI, Mva1269I, NcoI, NdeI, NheI, PacI, PaeI, PasI,<br />

Pfl23II, PfoI, Psp5II, PsrI, PsyI, SanDI, SdaI, SexAI, SfiI, SgfI, SgrAI, SgsI,<br />

SmiI, SrfI, SspDI, Van91I, XagI, XcmI, XmaJI.<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

GsuI 2131<br />

HaeII 374 382 1027 1397<br />

Hin1I 2582<br />

Hin1II 808 1154 1874 2365 2375 2453 2489 2882<br />

HincII 734<br />

HindIII 719<br />

HinfI 154 176 632 988 1053 1128 1524 2041<br />

HphI 236 1897 2124 2520 2746 2761<br />

Hpy8I 156 173 228 734 1467 1955 2713<br />

Hpy99I 593 606 733 1254 2048 2311<br />

Hpy188I 283 1265 1343 1696 1830 1965 2411 2422 2542<br />

Hpy188III 590 677 957 1386 1520 1618 1716 1799 1873 2132 2881<br />

HpyAV 350 491 1383 1651 1693 2164 2401 2776<br />

HpyCH4V 550 702 979 1468 1764 2099 2189 2382 2470 2714<br />

HpyF3I 1428 1837 2003 2543<br />

KpnI 755<br />

LguI 1030<br />

LweI 1241 2293 2503 2733<br />

MaeIII 401 413 569 589 1510 1573 1689 1972 2303 2361 2514 2702<br />

MbiI 369 673 843 1084 2885<br />

MboII 355 512 1032 1803 1894 2649 2727 2836<br />

MmeI 179 1343 1527<br />

MspA1I 527 661 975 1493 1738 2679<br />

MvaI 575 892 1180 1301 1314<br />

NmeAIII 2169<br />

NmuCI 401 589 2303 2514<br />

NotI 669<br />

NsbI 477 2266<br />

OliI 659<br />

PagI 1873 2881<br />

PauI 619 792<br />

PdiI 328<br />

PdmI 2641<br />

PfeI 988 1128<br />

Ppu21I 225<br />

PscI 1153<br />

Psp1406I 2271 2644<br />

PspXI 739<br />

PspFI 759 1457<br />

PstI 701<br />

PsuI 689 1794 1805 1891 1903 2671 2688<br />

PvuI 497 2413<br />

PvuII 527 975<br />

RsaI 756 2525<br />

RseI 659 2294 2453 2812<br />

SacI 653<br />

SalI 734<br />

ScaI 2524<br />

SchI 154 176 632 1053 1524 2041<br />

SduI 298 653 749 1467 2628 2713<br />

SmaI 695<br />

SmoI 740 1259 1521 1798 2666<br />

FauI 371 425 505 945 1002<br />

SspI 17 2848<br />

TaaI 200 483 731 1115 1186 1656 1969 2484<br />

TaiI 171 183 226 336 595 1856 2272 2645<br />

TaqI 260 711 726 735 741 1253 2697<br />

TasI 4 30 41 648 708 788 834 851 926 1914 2220 2475<br />

TatI 2524<br />

TauI 428 442 669 672 1079 1197 1352 2436 2558 2787<br />

TscAI 613 940 1049 1555 1568 1839 1988 2093 2440 2467<br />

TspDTI 986 1922 2024 2327<br />

TspGWI 2496 2813<br />

VspI 923 982 2217<br />

XapI 29 40 707<br />

XbaI 677<br />

XceI 1153<br />

XhoI 740<br />

XmiI 734<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.<br />

www.thermoscientific.com/onebio 451


452<br />

Table 12.12. pBluescript II SK(-) DNA Restriction Sites<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

AanI 360<br />

DrdI 275 1255<br />

AbsI 667<br />

Acc65I 653<br />

AdeI 232<br />

AflIII 1153<br />

AloI 281<br />

Alw21I 755 1467 2628 2713<br />

Alw26I 2113 2878<br />

Alw44I 1467 2713<br />

ApaI 659<br />

BamHI 719<br />

BauI 1326 2710<br />

BccI 225 243 2082 2206 2493<br />

BceAI 191 608 1639<br />

BcgI 2562<br />

BcnI 657 713 714 1532 2228 2579<br />

BcuI 725<br />

BmrI 585 2091<br />

BfmI 11 638 707 1418 1609 2287<br />

BfuI 1362 2889<br />

BglI 466 2160<br />

Bme1390I 575 657 713 714 892 1180 1301 1314 1532 2228 2579<br />

BpuEI 1259 1521 1798 2666<br />

BsaWI 1359 1506 2337<br />

BsaXI 281 1006<br />

BseDI 575 713 714 747 892 1313<br />

BseGI 542 2026 2207 2494<br />

BseLI 9 335 664 995 1169 1187 1353 1632<br />

BseMI 2100 2282<br />

BseMII 1428 1837 2003 2543<br />

BseNI 318 586 612 953 1556 1569 1686 2092 2210 2253 2517 2692<br />

BseSI 659 1467 2713<br />

Bsh1285I 497 738 1066 1490 2413 2562<br />

BshNI 193 653 897 1994<br />

Bsp120I 659<br />

BspPI 719 720 1720 1794 1806 1891 1904 2368 2671 2689<br />

BstXI 744<br />

Bsu15I 683<br />

BtgI 747<br />

BtgZI 244<br />

BtsI 940 2439 2467<br />

CaiI 1564<br />

EaeI 609 738 992 2434<br />

Cfr9I 713<br />

Cfr10I 129 2126<br />

Cfr13I 240 507 659 660 2088 2167 2184 2406<br />

Cfr42I 747<br />

CseI 3 1255 1833 2583<br />

Csp6I 654 2525<br />

DraI 1910 1929 2621<br />

Eam1104I 511 1031 2835<br />

Eam1105I 2041<br />

EciI 1225 1371 2199<br />

Ecl136II 755<br />

Eco24I 159 659 755<br />

Eco31I 2113<br />

Eco32I 695<br />

Eco47I 2184 2406<br />

Eco52I 738<br />

Eco57I 1680 2728<br />

Eco88I 668 713<br />

EcoO109I 659<br />

EcoP15I 1561 1677 1770<br />

EcoRI 701<br />

EcoRII 575 892 1180 1301 1314<br />

FokI 542 2026 2207 2494<br />

FspBI 81 726 732 1648 1901 2236<br />

GsuI 758 2131<br />

There are no restriction sites in pBluescript II SK(-) DNA for the following enzymes:<br />

AarI, AatII, AjiI, AjuI, AlfI, BaeI, BbvCI, BclI, BglII, BoxI, BpiI, BplI, Bpu10I,<br />

Bpu1102I, BseJI, BseRI, BsgI, BshTI, Bsp68I, Bsp119I, Bsp1407I, BspTI,<br />

Bst1107I, BstAPI, BveI, CpoI, CspCI, Eco47III, Eco72I, Eco81I, Eco91I,<br />

Eco105I, Eco130I, Eco147I, EheI, Esp3I, FalI, FaqI, FseI, FspAI, Kpn2I, KspAI,<br />

MlsI, MluI, Mph1103I, MssI, MunI, Mva1269I, NcoI, NdeI, NheI, PacI, PaeI,<br />

PasI, Pfl23II, PfoI, Psp5II, PsrI, PsyI, SanDI, SdaI, SexAI, SfiI, SgfI, SgrAI,<br />

SgsI, SmiI, SrfI, Van91I, XagI, XcmI, XmaJI.<br />

www.thermoscientific.com/onebio<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

HaeII 75 83 1027 1397<br />

Hin1I 2582<br />

Hin1II 808 1154 1874 2365 2375 2453 2489 2882<br />

HincII 674<br />

HindIII 689<br />

HinfI 282 304 632 988 1053 1128 1524 2041<br />

HphI 222 1897 2124 2520 2746 2761<br />

Hpy8I 229 284 301 674 1467 1955 2713<br />

Hpy99I 593 606 676 1254 2048 2311<br />

Hpy188I 175 1265 1343 1696 1830 1965 2411 2422 2542<br />

Hpy188III 590 731 957 1386 1520 1618 1716 1799 1873 2132 2881<br />

HpyAV 108 491 1383 1651 1693 2164 2401 2776<br />

HpyCH4V 550 708 979 1468 1764 2099 2189 2382 2470 2714<br />

HpyF3I 1428 1837 2003 2543<br />

KpnI 653<br />

LguI 1030<br />

LweI 1241 2293 2503 2733<br />

MaeIII 45 57 569 589 1510 1573 1689 1972 2303 2361 2514 2702<br />

MbiI 88 735 843 1084 2885<br />

MboII 103 512 1032 1803 1894 2649 2727 2836<br />

MmeI 278 1343 1527<br />

MspA1I 527 747 975 1493 1738 2679<br />

MvaI 575 892 1180 1301 1314<br />

NmeAIII 2169<br />

NmuCI 57 589 2303 2514<br />

NotI 737<br />

NsbI 477 2266<br />

OliI 745<br />

PagI 1873 2881<br />

PauI 619 792<br />

PdiI 129<br />

PdmI 2641<br />

PfeI 988 1128<br />

Ppu21I 232<br />

PscI 1153<br />

Psp1406I 2271 2644<br />

PspFI 1457<br />

PspXI 667<br />

PstI 707<br />

PsuI 719 1794 1805 1891 1903 2671 2688<br />

PvuI 497 2413<br />

PvuII 527 975<br />

RsaI 654 2525<br />

RseI 745 2294 2453 2812<br />

SacI 755<br />

SalI 674<br />

ScaI 2524<br />

SchI 282 304 632 1053 1524 2041<br />

SduI 159 659 755 1467 2628 2713<br />

SmaI 713<br />

SmoI 668 1259 1521 1798 2666<br />

FauI 33 87 505 945 1002<br />

SspI 440 2848<br />

TaaI 258 483 678 1115 1186 1656 1969 2484<br />

TaiI 123 233 276 288 595 1856 2272 2645<br />

TaqI 199 669 675 684 699 1253 2697<br />

TasI 418 429 455 648 702 788 834 851 926 1914 2220 2475<br />

TatI 2524<br />

TauI 16 30 737 740 1079 1197 1352 2436 2558 2787<br />

TscAI 613 940 1049 1555 1568 1839 1988 2093 2440 2467<br />

TspDTI 986 1922 2024 2327<br />

TspGWI 2496 2813<br />

VspI 923 982 2217<br />

XapI 417 428 701<br />

XbaI 731<br />

XceI 1153<br />

XhoI 668<br />

XmiI 674<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.


pACYC177<br />

Not available from us<br />

The 3941 bp plasmid pACYC177 is compatible<br />

with pMB1- or ColE1-related plasmids and can<br />

therefore be used with a pMB1- or ColE1derivative<br />

within the same cell. pACYC177<br />

contains: (1) the replicon rep responsible for the<br />

replication of plasmid (source – plasmid p15A);<br />

(2) the kan gene, coding for aminoglycoside<br />

3’-phosphotransferase, that confers resistance<br />

to kanamycin (source – transposon Tn903);<br />

(3) the bla gene, coding for -lactamase, that<br />

confers resistance to ampicillin (source –<br />

transposon Tn3).<br />

The circular sequence is numbered such that 1<br />

is the first G of the unique HincII site GTTGAC<br />

References<br />

1. Chang, A.C.Y. and Cohen, S.N., Construction and<br />

characterization of amplifiable multicopy DNA cloning<br />

vehicles derived from the P15A cryptic miniplasmid,<br />

J. Bacteriol., 134, 1141-1156, 1978.<br />

2. Mok, Y.K., et al., BsiYI, a novel thermophilic restriction<br />

endonuclease that recognizes 5’ CCNNNNNNNGG 3’ and<br />

the discovery of a wrongly sequenced site in pACYC177,<br />

Nucleic Acids Res., 19, 2321-2323, 1991.<br />

3. Rose, R.E., The nucleotide sequence of pACYC177,<br />

Nucleic Acids Res., 16, 356, 1988.<br />

inside the bla gene and numbering increases<br />

through the 3’-terminal part of bla gene, the<br />

p15A material, the Tn903 material and finally<br />

through the 5’-terminal part of bla gene. The<br />

map shows enzymes that cut pACYC177 DNA<br />

once. <strong>Thermo</strong> <strong>Scientific</strong> enzymes are shown in<br />

orange. The coordinates refer to the position<br />

of the first nucleotide in each recognition<br />

sequence.<br />

The exact positions of the genetic elements<br />

are shown on the plasmid map provided below<br />

(termination codons included). In the bla gene,<br />

nucleotides 3699-3767 code for a signal<br />

peptide. The indicated rep region is sufficient<br />

to promote replication. DNA replication initiates<br />

at position 1330 (+/- 1) and proceeds in the<br />

direction indicated.<br />

Derivatives of p15A are normally present in<br />

a somewhat lower copy number than pMB1<br />

derivatives and cannot be amplified to the same<br />

extent as pMB1 derivatives. Plasmid pACYC177<br />

can be amplified using chloramphenicol or<br />

spectinomycin.<br />

GenBank/EMBL Accession Number<br />

X06402.<br />

Enzymes which cut pACYC177 DNA once:<br />

AanI 3483<br />

DrdI 3397<br />

AatII 3563<br />

AdeI 1818<br />

AjuI 2390<br />

AlfI 2024<br />

Alw44I 3814<br />

BamHI 3320<br />

BcgI 18<br />

BmrI 495<br />

BfmI 299<br />

BfuI 3638<br />

BglI 421<br />

BpiI 3496<br />

BsgI 1506<br />

BshNI 592<br />

Bsp119I 852<br />

Bsp68I 2009<br />

BspOI 1588<br />

Bst1107I 1577<br />

Bsu15I 2044<br />

CaiI 987<br />

Cfr9I 2226<br />

Cfr42I 1339<br />

Eam1105I 540<br />

Eco24I 2005<br />

Eco31I 473<br />

Eco57I 3799<br />

Eco91I 3279<br />

EcoO109I 3505<br />

Esp3I 2364<br />

FalI 771<br />

FaqI 2791<br />

GsuI 455<br />

HincII 1<br />

HindIII 2472<br />

NheI 1588<br />

NmeAIII 417<br />

NsbI 320<br />

PfoI 1382<br />

PspXI 1951<br />

PstI 299<br />

ScaI 62<br />

SfaAI 2350<br />

SgrAI 1501<br />

SmaI 2226<br />

FauI 3470<br />

TatI 62<br />

Van91I 2611<br />

XagI 2262<br />

XceI 1013<br />

XhoI 1952<br />

XmiI 1577<br />

www.thermoscientific.com/onebio 453


454<br />

Table 12.13. pACYC177 DNA Restriction Sites<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

AanI 3483<br />

DrdI 3397<br />

AatII 3563<br />

AdeI 1818<br />

AjuI 2390<br />

AlfI 2024<br />

AluI 191 254 354 867 1100 1691 2473 2923 3045 3152 3359 3458<br />

Alw21I 3814 3899<br />

Alw26I 474 1147 1826 2365 3650<br />

Alw44I 3814<br />

BamHI 3320<br />

BauI 1211 1606 3006 3510 3817<br />

BbvCI 1594 3017 3108<br />

BccI 94 381 505 1650 2126 2170 2611 2963 3284<br />

BceAI 1330 2657 2794<br />

BcgI 18<br />

BcnI 8 359 1023 1120 2226 2227<br />

BmrI 495<br />

BfmI 299<br />

BfuI 3638<br />

BglI 421<br />

BpiI 3496<br />

Bpu10I 1594 2370 3017 3108 3211<br />

BpuEI 782 1033 3861<br />

BsaWI 249 1048 1178 1502 2489<br />

BsaXI 1673 2934<br />

BseDI 885 1224 1339 1677 1738 2225 2226 2627 2874 2935 3392 3476<br />

BseGI 93 380 561 1654 1979 2612 2959 3071 3113 3285<br />

BseLI 1221 1738 2262 2594 2611 2869 3392 3471<br />

BseMI 304 486 1847<br />

BseRI 902 969<br />

BseSI 3429 3814<br />

BseXI 124 301 490 992 995 1060 1508<br />

BsgI 1506<br />

Bsh1236I 478 802 1155 1340 1960 2010 2355 3169 3594 3926<br />

Bsh1285I 24 173 1064 1434 2351 3156<br />

BshNI 592<br />

BshTI 1178 1502<br />

Bsp68I 2009<br />

Bsp119I 852<br />

BspLI 246 457 498 592 1217 1315 1673 2939 3320 3597<br />

BspOI 1588<br />

Bst1107I 1577<br />

Bsu15I 2044<br />

BtgI 1339 1677 1738 2874 2935 3392 3476<br />

BtsI 119 147 2216 2295<br />

Cac8I 297 430 1418 1588 2007 2291 2437 3383 3469<br />

CaiI 987<br />

EaeI 152 1157 3165 3378<br />

Cfr9I 2226<br />

Cfr10I 460 945 1178 1502 2308<br />

Cfr13I 181 403 420 499 1343 1706 2907 3342 3506<br />

Cfr42I 1339<br />

CseI 4 754 1283 1497 3414<br />

Csp6I 63 2188 3251 3389<br />

DraI 657 676 3906<br />

Eam1104I 2161 3692<br />

Eam1105I 540<br />

EciI 387 1312 1393<br />

Eco24I 2005<br />

Eco31I 473<br />

Eco47I 181 403 1706 2907<br />

Eco47III 1591 3021<br />

Eco57I 3799<br />

There are no restriction sites in pACYC177 DNA for the following enzymes:<br />

AarI, AbsI, Acc65I, AflIII, AjiI, AloI, ApaI, BaeI, BclI, BcuI, BglII, BoxI, BplI,<br />

Bpu1102I, BseJI, Bsp120I, Bsp1407I, BspTI, BstAPI, BstXI, BtgZI, BveI, CpoI,<br />

CspCI, Ecl136II, Eco32I, Eco52I, Eco72I, Eco81I, Eco105I, Eco130I, EcoRI,<br />

EheI, FseI, FspAI, KpnI, Kpn2I, KspAI, LguI, MauBI, MlsI, MluI, MreI, MssI,<br />

MunI, NcoI, NdeI, NotI, OliI, PacI, PaeI, PasI, PauI, PdiI, Pfl23II, Ppu21I,<br />

PscI, Psp5II, PspFI, PsrI, PsyI, PvuII, SacI, SalI, SanDI, SdaI, SexAI, SfiI,<br />

SgrDI, SgsI, SmiI, SrfI, SspDI, XbaI, XcmI, XmaJI.<br />

www.thermoscientific.com/onebio<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Eco88I 1952 2226<br />

Eco91I 3279<br />

Eco147I 1636 2976<br />

EcoO109I 3505<br />

EcoP15I 993 1492<br />

EcoRII 1224 1237 1372 1383 1634 2243 2600 2979<br />

Esp3I 2364<br />

FalI 771<br />

FaqI 2791<br />

FokI 93 380 561 1654 1979 2612 2959 3071 3113 3285<br />

FspBI 352 687 1589 3325<br />

GsuI 455<br />

HaeII 1591 3021<br />

Hin1I 4 3563<br />

HincII 1<br />

HindIII 2472<br />

Hpy8I 1 631 1182 1577 1704 2908 3394 3814<br />

Hpy99I 276 539 3240 3255 3405<br />

HpyF10VI 301 421 998 1159 1409 1638 2060 2092 2306 2969 3099<br />

Lsp1109I 124 301 490 992 995 1060 1508<br />

MbiI 1416 3471 3642<br />

MmeI 1027 1066 1971 2165 2571 2580 3188<br />

Mph1103I 2200 2466<br />

MspA1I 1061 1166 1339 3848<br />

MvaI 1224 1237 1372 1383 1634 2243 2600 2979<br />

Mva1269I 2238 2315<br />

NheI 1588<br />

NmeAIII 417<br />

NmuCI 73 284 912 2502 3280<br />

NsbI 320<br />

PagI 713 1872 3541 3646<br />

PdmI 1532 3882<br />

PfeI 1642 2265 2321 2493 2584 2971 3368<br />

PfoI 1382<br />

Psp1406I 315 3883<br />

PspXI 1951<br />

PstI 299<br />

PsuI 683 695 2603 3320 3839 3856<br />

PvuI 173 2351<br />

RsaI 63 2188 3251 3389<br />

RseI 129 288 3138 3711<br />

ScaI 62<br />

SchI 546 1031 1448 1626 2578 2987<br />

SduI 2005 3429 3814 3899<br />

SfaAI 2350<br />

SgrAI 1501<br />

SmaI 2226<br />

SmoI 782 1033 1952 3861<br />

FauI 3470<br />

SspI 2277 3679<br />

TaiI 316 732 1819 1944 3404 3564 3884<br />

TaqI 853 1429 1799 1953 2045 2319 2722 2815 3155 3832<br />

TatI 62<br />

TauI 29 151 1156 1220 1338 1341 1422 1958 2797 3167 3380 3741<br />

TseI 124 301 490 992 995 1060 1508<br />

TspDTI 260 563 665 1530 1874 2388 2645 2694 2710 3115 3419<br />

TspGWI 91 1740 2148 2185 2873 3442 3715<br />

Van91I 2611<br />

VspI 369 2552<br />

XagI 2262<br />

XapI 1967 2151 3373 3488<br />

XceI 1013<br />

XhoI 1952<br />

XmiI 1577<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.


pACYC184<br />

Not available from us<br />

The 4245 bp plasmid, pACYC184, is compatible<br />

with pMB1- or ColE1-related plasmids<br />

and can therefore be used together with a<br />

pMB1- or ColE1-derivative within the same<br />

cell. pACYC184 contains: (1) the replicon rep<br />

responsible for the replication of the plasmid<br />

(source – plasmid p15A); (2) the tet gene,<br />

encoding a tetracycline resistance protein<br />

(source – plasmid pSC101); (3) the cat gene,<br />

coding for chloramphenicol acetyl transferase,<br />

that confers resistance to chloramphenicol<br />

(source – transposon Tn9).<br />

The circular sequence is numbered such that 1<br />

is the first G of the unique EcoRI site GAATTC<br />

References<br />

1. Chang, A.C.Y. and Cohen, S.N., Construction and characterization<br />

of amplifiable multicopy DNA cloning vehicles<br />

derived from the P15A cryptic miniplasmid, J. Bacteriol.,<br />

134, 1141-1156, 1978.<br />

2. Rose, R.E., The nucleotide sequence of pACYC184,<br />

Nucleic Acids Res., 16, 355, 1988.<br />

inside the cat gene and numbering increases<br />

through the 5’-terminal part of cat gene, the<br />

p15A material, the tet gene and finally through<br />

the 3’-terminal part of cat gene. The map shows<br />

enzymes that cut pACYC184 DNA once. <strong>Thermo</strong><br />

<strong>Scientific</strong> enzymes are shown in orange. The<br />

coordinates refer to the position of the first<br />

nucleotide in each recognition sequence.<br />

The exact positions of the genetic elements<br />

are shown on the map (termination codons<br />

included). The indicated rep region is sufficient<br />

to promote replication. DNA replication initiates<br />

at position 846 (+/- 1) and proceeds in the<br />

direction indicated.<br />

Derivatives of p15A are normally present in<br />

a somewhat lower copy number than pMB1<br />

derivatives and cannot be amplified to the<br />

same extent as pMB1 derivatives. Due to<br />

the presence of the cat gene on pACYC184,<br />

amplification of this plasmid should be<br />

performed using spectinomycin.<br />

GenBank/EMBL Accession Number<br />

X06403<br />

Enzymes which cut pACYC184 DNA once:<br />

DrdI 3696<br />

BamHI 1870<br />

BauI 960<br />

BclI 3542<br />

BfmI 1633<br />

BseJI 3442<br />

BseMI 4234<br />

BseSI 3779<br />

Bsp68I 2467<br />

Bst1107I 594<br />

BstAPI 2540<br />

Bsu15I 1518<br />

BtsI 3620<br />

BveI 2558<br />

Cfr42I 832<br />

Eam1104I 1447<br />

Eam1105I 3204<br />

Eco32I 1680<br />

Eco52I 2434<br />

Eco81I 3592<br />

Eco88I 2920<br />

EcoRI 1<br />

FalI 1395<br />

HindIII 1524<br />

NcoI 3945<br />

PaeI 2057<br />

PagI 1984<br />

PdmI 635<br />

PfoI 788<br />

PspFI 2444<br />

PsyI 3699<br />

SalI 2146<br />

ScaI 3831<br />

TatI 3831<br />

VspI 1406<br />

XagI 2117<br />

XbaI 1425<br />

www.thermoscientific.com/onebio 455


456<br />

Table 12.14. pACYC184 DNA Restriction Sites<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

DrdI 3696<br />

AlfI 2521 2952 3452<br />

Alw21I 490 1771 2082 2669 2960<br />

Alw26I 325 1025 4028<br />

BamHI 1870<br />

BauI 960<br />

BccI 475 1953 2047 2483 2573 2880 2892 3872<br />

BceAI 92 556 842 2089 2646 3881<br />

BcgI 2203 3297<br />

BclI 3542<br />

BcnI 266 358 1052 1149 1665 2029 2753 2979 3379 3701<br />

BmrI 1799 2105 2174<br />

BfmI 1633<br />

BglI 2424 2658<br />

BoxI 2207 3301<br />

BpiI 2232 3095 3326<br />

Bpu10I 228 3075 3578<br />

BpuEI 1138 1389 2159 2365<br />

BsaWI 5 669 993 1123 2188 3182 3269 3282 3438 3627 3642<br />

BseGI 8 1607 1628 2482 2527 3455 3734<br />

BseMI 4234<br />

BseMII 1045 1308 3076 3206 3243 3579 3593 4026<br />

BseRI 1202 1269<br />

BseSI 3779<br />

BsgI 665 3424<br />

Bsh1285I 737 1107 1781 2148 2434 3698<br />

BshNI 1571 1614 1908 1929 2043 2261 2700 2784 3355 3780<br />

BshTI 669 993 3182 3642<br />

Bsp68I 2467<br />

Bsp119I 1319 3717<br />

BspOI 583 1724<br />

BspPI 1870 1871 2592 3441<br />

Bst1107I 594<br />

BstAPI 2540<br />

Bsu15I 1518<br />

BtgI 832 2023 2942 3384 3566 3945<br />

BtgZI 1700 2881 3448 3825 4152<br />

BtsI 3620<br />

BveI 2558<br />

CaiI 532 1181 3519<br />

EaeI 1014 1790 1894 2026 2434 2939 3381 3981<br />

Cfr10I 669 993 1226 1655 1896 1905 2264 2424 2778 3182 3358 3642<br />

Cfr13I 346 829 1667 2019 2294 2382 2631 2755 2934 2976 3389<br />

Cfr42I 832<br />

CseI 437 675 889 1885 2144 2439 2471 2735 2885<br />

Csp6I 125 1659 3832<br />

DraI 83 3989<br />

Eam1104I 1447<br />

Eam1105I 3204<br />

EciI 778 859 2888<br />

Eco24I 1966 1980<br />

Eco32I 1680<br />

Eco47I 2294 2382 2631 2934 2976<br />

Eco47III 580 1727 1989 2270 3501<br />

Eco52I 2434<br />

Eco57I 1464 3151<br />

Eco81I 3592<br />

Eco88I 2920<br />

Eco130I 2864 3945<br />

EcoO109I 2018 2933 2975 3388<br />

EcoP15I 679 1178 2899 3052 3055 3148 3460<br />

EcoRI 1<br />

EcoRII 349 377 789 800 935 948 1625 2554 2937 3767 4015 4071<br />

EheI 1908 1929 2043 2700<br />

Esp3I 324 4028<br />

FalI 1395<br />

There are no restriction sites in pACYC184 DNA for the following enzymes:<br />

AanI, AarI, AatII, AbsI, Acc65I, AdeI, AflIII, AjiI, AjuI, AloI, Alw44I, ApaI, BaeI,<br />

BbvCI, BcuI, BfuI, BglII, BplI, Bpu1102I, BsaXI, Bsp120I, Bsp1407I, BspTI,<br />

BstXI, Cfr9I, CpoI, CspCI, Ecl136II, Eco31I, Eco72I, Eco91I, Eco105I, Eco147I,<br />

FseI, KpnI, KspAI, LguI, MauBI, MluI, Mph1103I, MssI, MunI, NdeI, NotI,<br />

OliI, PacI, PauI, Pfl23II, PscI, PspXI, PsrI, PstI, PvuI, SacI, SanDI, SdaI, SexAI,<br />

SfaAI, SfiI, SgfI, SgrDI, SgsI, SmaI, SmiI, SrfI, XcmI, XhoI, XmaJI.<br />

www.thermoscientific.com/onebio<br />

Number of recognition sites<br />

Enzyme<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

FaqI 371 520 2033 2383 2579 3136 3375<br />

FokI 8 1607 1628 2482 2527 3455 3734<br />

FspAI 1754 2948<br />

FspBI 584 1426 1725 2984<br />

GsuI 493 2306 2896 4145<br />

HaeII 580 1727 1908 1929 1989 2043 2270 2700 3364 3418 3501<br />

Hin1I 1908 1929 2043 2700<br />

HincII 2146 3212<br />

HindIII 1524<br />

HinfI 724 1141 2127 2347 2501 2799 3020 3210 3897<br />

Hpy8I 594 989 2146 3212 3646 4198<br />

Hpy99I 438 2145 2213 2314 2438 2470 2736 3307 3695 4131<br />

Hpy188I 886 1105 1309 1355 1411 1692 1768 1779 2344 3242<br />

HpyAV 1317 2167 2185 2371 2488 3279<br />

HpyF3I 229 1045 1308 3076 3206 3243 3579 3593 4026<br />

Kpn2I 5 3438<br />

MbiI 755 3223<br />

MboII 404 793 804 1394 1448 1959 2233 2504 3096 3327 3964<br />

MlsI 2939 3981<br />

MmeI 298 1105 1144 1692 1779<br />

MseI 84 812 1231 1407 1529 1551 3494 3675 3775 3796 3848 3990<br />

MspA1I 103 515 832 1005 1110 2634 3263 3904<br />

MvaI 349 377 789 800 935 948 1625 2554 2937 3767 4015 4071<br />

Mva1269I 14 2848 3852<br />

NcoI 3945<br />

NheI 583 1724<br />

NmeAIII 1611 2663<br />

NmuCI 410 1260 1620 1708 2376 2643 3616<br />

NsbI 1755 2851 2949<br />

PaeI 2057<br />

PagI 1984<br />

PasI 348 4014<br />

PdiI 1896 2264 2424 2778 3358<br />

PdmI 635<br />

PfeI 2347 2501 2799 3020 3897<br />

PfoI 788<br />

Ppu21I 310 3142<br />

Psp5II 2933 2975<br />

Psp1406I 2395 4160<br />

PspFI 2444<br />

PsuI 1870 3441<br />

PsyI 3699<br />

PvuII 103 515<br />

RsaI 125 1659 3832<br />

RseI 285 2522 2953 3427<br />

SalI 2146<br />

ScaI 3831<br />

SchI 724 1141 2127 3210<br />

SduI 490 1771 1966 1980 2082 2669 2960 3779<br />

SgrAI 668 1904<br />

SmoI 1138 1389 2159 2365<br />

FauI 25 1676 2198 2385 2532 2727 2992 3160 3292 3811<br />

SspI 1419 3936<br />

SspDI 1908 1929 2043 2700<br />

TaiI 311 323 2396 2452 3041 3065 3143 3986 4161<br />

TaqI 246 744 1320 1519 1834 2147 2622 2763 3706 3718<br />

TatI 3831<br />

Tru1I 84 812 1231 1407 1529 1551 3494 3675 3775 3796 3848 3990<br />

TspDTI 17 283 642 1581 3018 3088 3732 3844 3889 4155 4232<br />

TspGWI 407 2796 3105 4243<br />

Van91I 337 2810 2859 4015<br />

VspI 1406<br />

XagI 2117<br />

XapI 1 3708 3720<br />

XbaI 1425<br />

XceI 1158 2057<br />

XmiI 594 2146<br />

Indicates restriction sites of <strong>Thermo</strong> <strong>Scientific</strong> enzymes that are sensitive (cleavage completely<br />

blocked or partially inhibited) to overlapping Dam/Dcm methylation. Complete cleavage is achieved with DNA<br />

substrates isolated from dam – or dcm – hosts.


Number of Recognition Sites in DNA Molecules<br />

Table 12.15. Number of recognition sites in DNA molecules.<br />

Enzyme Specificity<br />

pJET1.2<br />

Lambda DNA<br />

X174<br />

M13mp18<br />

M13mp19<br />

pBR322<br />

pUC18<br />

pUC19<br />

pUC57<br />

pTZ19R<br />

pTZ19U<br />

pTZ57R<br />

pBluescript II<br />

KS(-)<br />

pBluescript II<br />

KS(+)<br />

pBluescript II<br />

SK(-)<br />

pBluescript II<br />

SK(+)<br />

AanI TTATAA 0 12 1 2 2 0 0 0 0 1 1 1 1 1 1 1 1 0<br />

AarI CACCTGC(4/8) 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

DrdI GACNNNNNNGTC 1 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1<br />

AatII GACGTC 2 10 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0<br />

AbsI CCTCGAGG 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0<br />

Acc65I GGTACC 0 2 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0<br />

AdeI CACNNNGTG 1 10 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0<br />

AflIII ACRYGT 2 20 2 3 3 1 1 1 1 1 1 1 1 1 1 1 0 0<br />

AjiI CACGTC(-3/-3) 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

AjuI (7/12)GAA(N)7TTGG(11/6) 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0<br />

AlfI (10/12)GCA(N)6TGC(12/10) 0 22 0 1 1 3 0 0 1 0 0 1 0 0 0 0 1 3<br />

AloI (7/12)GAAC(N) 6TCC(12/7) 1 7 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0<br />

AluI AGCT 14 143 24 27 27 17 16 16 16 17 17 17 17 17 17 17 12 13<br />

Alw21I GWGCWC 3 28 3 3 3 8 5 5 5 4 4 4 4 4 4 4 2 5<br />

Alw26I GTCTC(1/5) 4 37 4 5 5 3 4 4 4 2 2 2 2 2 2 2 5 3<br />

Alw44I GTGCAC 2 4 1 1* 1* 3 3 3 3 2 2 2 2 2 2 2 1 0<br />

ApaI GGGCCC 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0<br />

BaeI (10/15)AC(N)4GTAYC(12/7) 0 10 1 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

BamHI GGATCC 0 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

BauI CACGAG(-5/-1) 3 8 2 0 0 3 3 3 3 2 2 2 2 2 2 2 5 1<br />

BbvCI CCTCAGC(-5/-2) 1 7 3 2 2 0 0 0 0 0 0 0 0 0 0 0 3 0<br />

BccI CCATC(4/5) 5 145 12 14 14 9 3 3 3 5 5 5 5 5 5 5 9 8<br />

BceAI ACGGC(12/14) 1 115 11 7 7 3 2 2 2 3 3 3 3 3 3 3 3 6<br />

BcgI (10/12)CGA(N)6TGC(12/10) 1 28 2 0 0 3 1 1 1 1 1 1 1 1 1 1 1 2<br />

BclI TGATCA 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1<br />

BcnI CCSGG 3 114 1 4 4 10 7 7 7 5 5 5 6 6 6 6 6 10<br />

BcuI ACTAGT 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0<br />

BmrI ACTGGG(5/4) 1 4 0 1 1 5 2 2 2 2 2 2 2 2 2 2 1 3<br />

BfmI CTRYAG 5 38 6 7 7 4 4 4 4 6 6 6 6 6 6 6 1 1<br />

BfuI GTATCC(6/5) 2 26 4 0 0 2 2 2 2 2 2 2 2 2 2 2 1 0<br />

BglI GCCNNNNNGGC 1 29 0 1 1 3 2 2 2 2 2 2 2 2 2 2 1 2<br />

BglII AGATCT 2 6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bme1390I CCNGG 7 185 3 11 11 16 12 12 12 10 10 10 11 11 11 11 14 22<br />

BoxI GACNNNNGTC 0 7 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2<br />

BpiI GAAGAC(2/6) 1 24 3 0 0 3 0 0 0 0 0 0 0 0 0 0 1 3<br />

BplI (8/13)GAG(N) 5CTC(13/8) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bpu10I CCTNAGC(-5/-2) 1 19 7 4 4 1 0 0 0 0 0 0 0 0 0 0 5 3<br />

Bpu1102I GCTNAGC 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

BpuEI CTTGAG(16/14) 5 13 2 5 5 6 4 4 4 4 4 4 4 4 4 4 3 4<br />

BsaWI WCCGGW 4 81 3 6 6 5 3 3 3 3 3 3 3 3 3 3 5 11<br />

BsaXI (9/12)AC(N) 5CTCC(10/7) 1 19 0 4 4 0 1 1 1 2 2 2 2 2 2 2 2 0<br />

BseDI CCNNGG 3 105 6 9 9 8 5 5 4 5 5 4 6 6 6 6 12 18<br />

BseGI GGATG(2/0) 6 150 8 4 4 12 5 5 5 4 4 4 4 4 4 4 10 7<br />

BseJI GATNNNNATC 0 21 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 1<br />

BseLI CCNNNNNNNGG 5 176 19 17 17 20 6 6 6 7 7 7 8 8 8 8 8 21<br />

BseMI GCAATG(2/0) 2 44 4 3 3 2 2 2 2 2 2 2 2 2 2 2 3 1<br />

BseMII CTCAG(10/8) 7 80 10 23 23 7 5 5 5 4 4 4 4 4 4 4 13 8<br />

BseNI ACTGG(1/-1) 9 110 9 18 18 19 11 11 11 12 12 12 12 12 12 12 14 15<br />

BseRI GAGGAG(10/8) 0 19 2 1 1 0 0 0 0 0 0 0 0 0 0 0 2 2<br />

BseSI GKGCMC 2 10 1 2* 2* 3 3 3 4 2 2 3 3 3 3 3 2 1<br />

BseXI GCAGC(8/12) 11 199 14 10 10 21 12 12 12 12 12 12 13 13 13 13 7 15<br />

BsgI GTGCAG(16/14) 0 41 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2<br />

Bsh1236I CGCG 7 157 14 18 18 23 10 10 11 11 11 12 15 15 15 15 10 18<br />

Bsh1285I CGRYCG 5 22 1 4 4 7 5 5 5 5 5 5 6 6 6 6 6 6<br />

BshNI GGYRCC 2 25 3 7 7 9 4 4 4 4 4 4 4 4 4 4 1 10<br />

BshTI ACCGGT 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4<br />

Bsp119I TTCGAA 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2<br />

Bsp120I GGGCCC 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0<br />

Bsp1407I TGTACA 0 5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bsp143I GATC 15 116 0 7 7 22 15 15 15 15 15 15 15 15 15 15 22 15<br />

(continued on next page)<br />

pACYC177<br />

pACYC184<br />

www.thermoscientific.com/onebio 457


458<br />

Table 12.15. Number of recognition sites in DNA molecules.<br />

Enzyme Specificity<br />

www.thermoscientific.com/onebio<br />

pJET1.2<br />

Lambda DNA<br />

X174<br />

M13mp18<br />

M13mp19<br />

pBR322<br />

pUC18<br />

pUC19<br />

pUC57<br />

pTZ19R<br />

pTZ19U<br />

pTZ57R<br />

pBluescript II<br />

KS(-)<br />

pBluescript II<br />

KS(+)<br />

pBluescript II<br />

SK(-)<br />

pBluescript II<br />

SK(+)<br />

Bsp68I TCGCGA 0 5 2 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1<br />

BspLI GGNNCC 10 82 6 18 18 24 11 11 12 13 13 14 15 15 15 15 10 23<br />

BspOI GCTAGC 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2<br />

BspPI GGATC(4/5) 8 58 0 4 4 12 10 10 10 10 10 10 10 10 10 10 13 4<br />

BspTI CTTAAG 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bst1107I GTATAC 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1<br />

BstAPI GCANNNNNTGC 0 34 2 0 0 2 1 1 1 0 0 0 0 0 0 0 0 1<br />

BstXI CCANNNNNNTGG 0 13 3 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0<br />

Bsu15I ATCGAT 1 15 0 2 2 1 0 0 0 0 0 0 1 1 1 1 1 1<br />

BsuRI GGCC 10 149 11 15 15 22 11 11 13 12 12 14 14 14 14 14 13 24<br />

BtgI CCRYGG 1 46 3 2 2 2 0 0 0 0 0 0 1 1 1 1 7 6<br />

BtgZI GCGATG(10/14) 0 45 2 4 4 3 0 0 0 1 1 1 1 1 1 1 0 5<br />

BtsI GCAGTG(2/0) 3 34 1 1 1 2 3 3 3 3 3 3 3 3 3 3 4 1<br />

BveI ACCTGC(4/8) 1 41 3 3 3 1 1 1 0 1 1 0 0 0 0 0 0 1<br />

Cac8I GCNNGC 7 238 19 28 28 31 14 14 14 16 16 16 15 15 15 15 9 30<br />

CaiI CAGNNNCTG 1 41 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3<br />

EaeI YGGCCR 3 39 2 3 3 6 3 3 3 3 3 3 4 4 4 4 4 8<br />

Cfr9I CCCGGG 0 3 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0<br />

Cfr10I RCCGGY 1 61 0 1 1 7 1 1 1 2 2 2 2 2 2 2 5 12<br />

Cfr13I GGNCC 4 74 2 4 4 15 6 6 8 6 6 8 8 8 8 8 9 11<br />

Cfr42I CCGCGG 0 4 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1<br />

CpoI CGGWCCG 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

CseI GACGC(5/10) 3 102 14 7 7 11 4 4 4 4 4 4 4 4 4 4 5 9<br />

Csp6I GTAC 1 113 11 19 19 3 3 3 3 2 2 2 2 2 2 2 4 3<br />

CspCI (11/13)CAA(N)5GTGG(12/10) 0 7 2 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0<br />

CviJI RGCY 41 692 69 102 102 73 45 45 47 46 46 48 49 49 49 49 54 72<br />

DpnI GATC 15 116 0 7 7 22 15 15 15 15 15 15 15 15 15 15 22 15<br />

DraI TTTAAA 7 13 2 5 5 3 3 3 3 3 3 3 3 3 3 3 3 2<br />

Eam1104I CTCTTC(1/4) 2 34 2 2 2 2 3 3 3 3 3 3 3 3 3 3 2 1<br />

Eam1105I GACNNNNNGTC 1 9 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

EciI GGCGGA(11/9) 3 32 2 2 2 4 3 3 3 3 3 3 3 3 3 3 3 3<br />

Ecl136II GAGCTC 0 2 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0<br />

Eco24I GRGCYC 0 7 0 2 2 2 1 1 2 2 2 3 3 3 3 3 1 2<br />

Eco31I GGTCTC(1/5) 1 2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0<br />

Eco32I GATATC 1 21 0 0 0 1 0 0 1 0 0 1 1 1 1 1 0 1<br />

Eco47I GGWCC 2 35 1 1 1 8 2 2 2 2 2 2 2 2 2 2 4 5<br />

Eco47III AGCGCT 0 2 0 2* 2* 4 0 0 0 0 0 0 0 0 0 0 2 5<br />

Eco52I CGGCCG 1 2 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1<br />

Eco57I CTGAAG(16/14) 4 40 0 0 0 2 2 2 2 2 2 2 2 2 2 2 1 2<br />

Eco72I CACGTG 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Eco81I CCTNAGG 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1<br />

Eco88I CYCGRG 1 8 1 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1<br />

Eco91I GGTNACC 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0<br />

Eco105I TACGTA 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Eco130I CCWWGG 1 10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2<br />

Eco147I AGGCCT 0 6 1 0 0 0 0 0 1 0 0 1 0 0 0 0 2 0<br />

EcoO109I RGGNCCY 0 3 0 0 0 4 1 1 1 0 0 0 1 1 1 1 1 4<br />

EcoP15I CAGCAG(25/27) 3 72 5 4 4 7 3 3 3 3 3 3 3 3 3 3 2 7<br />

EcoRI GAATTC 0 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1<br />

EcoRII CCWGG 4 71 2 7 7 6 5 5 5 5 5 5 5 5 5 5 8 12<br />

EheI GGCGCC 0 1 2 1 1 4 1 1 1 0 0 0 0 0 0 0 0 4<br />

Esp3I CGTCTC(1/5) 1 14 0 1 1 1 2 2 2 0 0 0 0 0 0 0 1 2<br />

FalI (8/13)AAG(N)5CTT(13/8) 0 15 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1<br />

FaqI GGGAC(10/14) 1 38 2 2 2 4 0 0 0 0 1 0 0 1 0 1 1 7<br />

FokI GGATG(9/13) 6 150 8 4 4 12 5 5 5 4 4 4 4 4 4 4 10 7<br />

FseI GGCCGGCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

FspAI RTGCGCAY 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2<br />

FspBI CTAG 4 13 3 5 5 5 4 4 4 5 5 5 6 6 6 6 4 4<br />

GsuI CTGGAG(16/14) 1 25 3 2 2 4 1 1 1 1 1 1 1 1 2 2 1 4<br />

HaeII RGCGCY 2 48 8 6 6 11 3 3 3 4 4 4 4 4 4 4 2 11<br />

HhaI GCGC 13 215 18 26 26 31 17 17 17 20 20 20 24 24 24 24 16 26<br />

Hin1I GRCGYC 3 40 7 1 1 6 3 3 3 1 1 1 1 1 1 1 2 4<br />

(continued on next page)<br />

pACYC177<br />

pACYC184


Table 12.15. Number of recognition sites in DNA molecules.<br />

Enzyme Specificity<br />

pJET1.2<br />

Lambda DNA<br />

X174<br />

M13mp18<br />

M13mp19<br />

pBR322<br />

pUC18<br />

pUC19<br />

pUC57<br />

pTZ19R<br />

pTZ19U<br />

pTZ57R<br />

pBluescript II<br />

KS(-)<br />

pBluescript II<br />

KS(+)<br />

pBluescript II<br />

SK(-)<br />

pBluescript II<br />

SK(+)<br />

Hin1II CATG 11 181 22 15 15 26 11 11 11 9 9 9 8 8 8 8 16 23<br />

Hin6I GCGC 13 215 18 26 26 31 17 17 17 20 20 20 24 24 24 24 16 26<br />

HincII GTYRAC 0 35 13 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2<br />

HindIII AAGCTT 1 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

HinfI GANTC 7 148 21 27 27 10 6 6 5 9 9 8 8 8 8 8 13 9<br />

HpaII CCGG 12 328 5 18 18 26 13 13 13 12 12 12 13 13 13 13 16 34<br />

HphI GGTGA(8/7) 5 168 9 18 18 12 7 7 7 6 6 6 6 6 6 6 17 16<br />

Hpy8I GTNNAC 3 125 23 11 11 8 5 5 5 7 7 7 7 7 7 7 8 6<br />

Hpy99I CGWCG 3 102 8 8 8 9 5 5 6 5 5 6 6 6 6 6 5 10<br />

Hpy188I TCNGA 9 170 18 31 31 15 10 10 11 9 9 10 9 9 9 9 18 10<br />

Hpy188III TCNNGA 19 185 26 28 28 19 13 13 14 11 11 12 11 11 11 11 22 14<br />

HpyAV CCTTC(6/5) 6 106 14 14 14 10 7 6 6 7 7 7 8 8 8 8 13 6<br />

HpyCH4V TGCA 11 273 18 18 18 21 13 13 15 11 11 13 10 10 10 10 17 17<br />

HpyF3I CTNAG 9 104 14 29 29 8 6 6 6 4 4 4 4 4 4 4 14 9<br />

HpyF10VI GCNNNNNNNGC 9 347 21 20 20 34 13 13 13 14 14 14 16 16 16 16 11 36<br />

KpnI GGTACC 0 2 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0<br />

Kpn2I TCCGGA 1 24 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2<br />

KspAI GTTAAC 0 14 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

LguI GCTCTTC(1/4) 1 10 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0<br />

Lsp1109I GCAGC(8/12) 11 199 14 10 10 21 12 12 12 12 12 12 13 13 13 13 7 15<br />

LweI GCATC(5/9) 6 169 12 7 7 22 8 8 9 4 4 5 4 4 4 4 17 16<br />

MaeIII GTNAC 8 156 17 24 24 17 11 11 11 12 12 12 12 12 12 12 14 13<br />

MauBI CGCGCGCG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

MbiI CCGCTC(-3/-3) 4 17 1 4 4 2 3 3 3 4 4 4 5 5 5 5 3 2<br />

MboI GATC 15 116 0 7 7 22 15 15 15 15 15 15 15 15 15 15 22 15<br />

MboII GAAGA(8/7) 12 130 11 11 11 11 7 8 8 9 9 9 8 8 8 8 15 11<br />

MlsI TGGCCA 0 18 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 2<br />

MluI ACGCGT 0 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

MmeI TCCRAC(20/18) 2 18 5 4 4 4 2 2 2 3 3 3 3 3 3 3 7 5<br />

MnlI CCTC(7/6) 15 262 34 61 61 26 13 13 14 12 12 13 14 14 14 14 26 27<br />

Mph1103I ATGCAT 0 14 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2 0<br />

MreI CGCCGGCG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

MseI TTAA 23 195 35 63 63 15 13 13 13 18 18 18 19 19 19 19 16 12<br />

MspA1I CMGCKG 5 75 5 4 4 6 6 6 6 5 5 5 6 6 6 6 4 8<br />

MspI CCGG 12 328 5 18 18 26 13 13 13 12 12 12 13 13 13 13 16 34<br />

MssI GTTTAAAC 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

MunI CAATTG 1 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

MvaI CCWGG 4 71 2 7 7 6 5 5 5 5 5 5 5 5 5 5 8 12<br />

Mva1269I GAATGC(1/-1) 1 46 4 1 1 1 0 0 1 0 0 1 0 0 0 0 2 3<br />

NcoI CCATGG 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1<br />

NdeI CATATG 0 7 0 3 3 1 1 1 1 0 0 0 0 0 0 0 0 0<br />

NheI GCTAGC 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2<br />

NmeAIII GCCGAG(21/19) 1 8 3 0 0 3 1 1 1 1 1 1 1 1 1 1 1 2<br />

NmuCI GTSAC 2 81 8 8 8 9 4 4 4 4 4 4 4 4 4 4 5 7<br />

NotI GCGGCCGC 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0<br />

NsbI TGCGCA 1 15 1 1 1 4 2 2 2 2 2 2 2 2 2 2 1 3<br />

OliI CACNNNNGTG 0 20 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0<br />

PacI TTAATTAA 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

PaeI GCATGC 0 6 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1<br />

PagI TCATGA 4 8 3 1 1 4 3 3 3 2 2 2 2 2 2 2 4 1<br />

PasI CCCWGGG 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2<br />

PauI GCGCGC 0 6 1 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0<br />

PdiI GCCGGC 0 1 0 1 1 4 0 0 0 1 1 1 1 1 1 1 0 5<br />

PdmI GAANNNNTTC 1 24 3 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1<br />

PfeI GAWTC 2 87 11 19 19 6 2 2 2 2 2 2 2 2 2 2 7 5<br />

Pfl23II CGTACG 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

PfoI TCCNGGA 0 15 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1<br />

Ppu21I YACGTR 0 14 2 5 5 1 0 0 0 1 1 1 1 1 1 1 0 2<br />

PscI ACATGT 2 2 0 3 3 1 1 1 1 1 1 1 1 1 1 1 0 0<br />

Psp5II RGGWCCY 0 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2<br />

Psp1406I AACGTT 2 7 3 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2<br />

PspFI CCCAGC(-1/-5) 1 32 2 3 3 2 1 1 1 1 1 1 2 2 1 1 0 1<br />

(continued on next page)<br />

pACYC177<br />

pACYC184<br />

www.thermoscientific.com/onebio 459


460<br />

Table 12.15. Number of recognition sites in DNA molecules.<br />

Enzyme Specificity<br />

Single letter code<br />

R = G or A; H = A, C or T; N = G, A, T or C.<br />

Y = C or T; V = A, C or G; K = G or T;<br />

W = A or T; B = C, G or T; D = A, G or T;<br />

M = A or C.<br />

www.thermoscientific.com/onebio<br />

pJET1.2<br />

Lambda DNA<br />

X174<br />

M13mp18<br />

M13mp19<br />

pBR322<br />

pUC18<br />

pUC19<br />

pUC57<br />

* According to our experimental data:<br />

Alw44I does not cut M13mp18/19 DNA.<br />

BseSI has only one recognition site in M13mp18/19 DNA.<br />

Eco47III has only one recognition site in M13mp18/19 DNA.<br />

pTZ19R<br />

pTZ19U<br />

pTZ57R<br />

pBluescript II<br />

KS(-)<br />

pBluescript II<br />

KS(+)<br />

pBluescript II<br />

SK(-)<br />

pBluescript II<br />

SK(+)<br />

PspXI VCTCGAGB 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0<br />

PsrI (7/12)GAAC(N)6TAC(12/7) 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

PstI CTGCAG 1 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0<br />

PsuI RGATCY 8 21 0 3 3 8 7 7 7 7 7 7 7 7 7 7 6 2<br />

PsyI GACNNNGTC 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1<br />

PvuI CGATCG 1 3 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 0<br />

PvuII CAGCTG 2 15 0 3 3 1 2 2 2 2 2 2 2 2 2 2 0 2<br />

RsaI GTAC 1 113 11 19 19 3 3 3 3 2 2 2 2 2 2 2 4 3<br />

RseI CAYNNNNRTG 4 62 7 2 2 7 3 3 3 3 3 3 4 4 4 4 4 4<br />

SacI GAGCTC 0 2 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0<br />

SalI GTCGAC 0 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1<br />

SanDI GGGWCCC 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SatI GCNGC 20 380 31 17 17 42 19 19 19 20 20 20 23 23 23 23 19 37<br />

ScaI AGTACT 1 5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

SchI GAGTC(5/5) 5 61 10 8 8 4 4 4 3 7 7 6 6 6 6 6 6 4<br />

SdaI CCTGCAGG 0 5 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0<br />

SduI GDGCHC 3 38 3 5 5 10 5 5 6 5 5 6 6 6 6 6 4 8<br />

SetI ASST 35 592 79 95 95 48 34 34 34 37 37 37 37 37 37 37 39 44<br />

SexAI ACCWGGT 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SfaAI GCGATCGC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0<br />

SfiI GGCCNNNNNGGCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SgrAI CRCCGGYG 0 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2<br />

SgrDI CGTCGACG 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SgsI GGCGCGCC 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SmaI CCCGGG 0 3 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0<br />

SmiI ATTTAAAT 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SmoI CTYRAG 6 17 5 5 5 6 4 4 4 4 4 4 5 5 5 5 4 4<br />

FauI CCCGC(4/6) 1 90 0 10 10 10 5 5 5 5 5 5 5 5 5 5 1 10<br />

SrfI GCCCGGGC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SsiI CCGC(-3/-1) 28 516 36 42 42 67 34 34 34 32 32 32 36 36 36 36 32 56<br />

SspI AATATT 3 20 1 6 6 1 1 1 1 2 2 2 2 2 2 2 2 2<br />

SspDI GGCGCC 0 1 2 1 1 4 1 1 1 0 0 0 0 0 0 0 0 4<br />

TaaI ACNGT 6 187 15 31 31 14 8 8 8 7 7 7 8 8 8 8 14 20<br />

TaiI ACGT 5 143 19 22 22 10 5 5 5 8 8 8 8 8 8 8 7 9<br />

TaqI TCGA 6 121 10 12 12 7 4 4 4 5 5 5 7 7 7 7 10 10<br />

TasI AATT 15 189 25 64 64 8 7 7 7 10 10 10 12 12 12 12 14 13<br />

TatI WGTACW 1 24 0 5 5 2 2 2 2 1 1 1 1 1 1 1 1 1<br />

TauI GCSGC 9 181 17 7 7 21 7 7 7 8 8 8 10 10 10 10 12 22<br />

Tru1I TTAA 23 195 35 63 63 15 13 13 13 18 18 18 19 19 19 19 16 12<br />

TscAI CASTG(2/-7) 9 119 6 8 8 12 10 10 10 10 10 10 10 10 10 10 15 13<br />

TseI GCWGC 11 199 14 10 10 21 12 12 12 12 12 12 13 13 13 13 7 15<br />

TspDTI ATGAA(11/9) 9 176 18 29 29 10 4 4 4 4 4 4 4 4 4 4 11 11<br />

TspGWI ACGGA(11/9) 2 107 7 7 7 5 2 2 2 2 2 2 2 2 2 2 7 4<br />

Van91I CCANNNNNTGG 0 14 2 0 0 2 0 0 0 0 0 0 0 0 0 0 1 4<br />

VspI ATTAAT 3 17 2 7 7 1 3 3 3 3 3 3 3 3 3 3 2 1<br />

XagI CCTNNNNNAGG 0 9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1<br />

XapI RAATTY 4 58 7 11 11 1 1 1 1 3 3 3 3 3 3 3 4 3<br />

XbaI TCTAGA 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1<br />

XceI RCATGY 2 32 0 6 6 4 3 3 3 2 2 2 1 1 1 1 1 2<br />

XcmI CCANNNNNNNNNTGG 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

XhoI CTCGAG 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0<br />

XmaJI CCTAGG 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

XmiI GTMKAC 0 9 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2<br />

pACYC177<br />

pACYC184


Technical Data<br />

Genome Sizes<br />

Virus Length, nt Approx. MW, Da<br />

Bacteriophage X174 5,380 3.5 x 10 6<br />

Bacteriophage Lambda 48,502 3.1 x 10 7<br />

Human Immunodeficiency Virus 1 9,181 3.1 x 10 6<br />

Rous Sarcoma Virus 9,392 3.2 x 10 6<br />

SARS Coronavirus 29,751 1.0 x 10 7<br />

Simian Virus 40 (SV 40) 5,224 3.4 x 10 6<br />

Vaccinia Virus 191,737 1.2 x 10 8<br />

Variolla (Small pox) Virus 185,578 1.2 x 10 8<br />

Bacteria<br />

Agrobacterium tumefaciens C58-<br />

Cereon<br />

Length of<br />

DNA, nt<br />

Approx. MW, Da<br />

4.9110 6 3.1910 9<br />

Aquifex aeolicus VF5 1.5510 6 1.0010 9<br />

Bacillus subtilis 168 4.2010 6 2.7310 9<br />

Bacillus halodurans 4.2010 6 2.7310 9<br />

Bordetella pertussis Tohama I<br />

NCTC-13251<br />

4.0710 6 2.6510 9<br />

Chlamydophila pneumoniae CWL029 1.2310 6 8.0010 8<br />

Deinococcus radiodurans R1 3.2810 6 2.1310 9<br />

Escherichia coli K12 4.6410 6 3.0210 9<br />

Escherichia coli 0157:H7 EDL933 4.1010 6 2.6610 9<br />

Haemophilus influenzae KW20 1.8310 6 1.1910 9<br />

Helicobacter pylori 26695 1.6610 6 1.0810 9<br />

Lactobacillus acidophilus NCFM 1.9910 6 1.2910 9<br />

Lactococcus lactis IL1403 2.3610 6 1.5310 9<br />

Mycobacterium leprae TN 3.2710 6 2.1210 9<br />

Mycobacterium tuberculosis H37Rv 4.4510 6 2.8910 9<br />

Mycoplasma genitalium G037 5.8010 5 3.7710 8<br />

Mycoplasma pneumoniae M129 8.1610 5 5.3010 8<br />

Neisseria meningitidis Z2491 2.1810 6 1.4210 9<br />

Salmonella typhimurium LT2 SGSC1412 4.8610 6 3.1610 9<br />

Staphylococcus aureus MW2 2.8210 6 1.8310 9<br />

Streptomyces coelicolor A3(2) 8.6710 6 5.6410 9<br />

Streptococcus pneumoniae R6 2.0410 6 1.3310 9<br />

Streptococcus pyogenes SF370 (M1) 1.8510 6 1.2010 9<br />

Pseudomonas aeruginosa 6.2610 6 4.0710 9<br />

Pseudomonas fluorescens Pt-5 7.0710 6 4.6010 9<br />

Thermus thermophilus HB8 2.1210 6 1.3810 9<br />

Vibrio cholerae N16961 4.0010 6 2.6010 9<br />

References<br />

1. GOLD Genomes online Database,<br />

for more complete data and updates, see http://www.genomesonline.org/.<br />

2. Genomes Atlas Database,<br />

for more complete data and updates, see http://www.cbs.dtu.dk/services/GenomeAtlas/.<br />

Eukaryotes<br />

Anopheles gambiae PEST<br />

(malaria mosquito)<br />

Archaea<br />

Length of<br />

DNA, nt<br />

Approx. MW, Da<br />

Halobacterium sp. NRC-1 2.0110 6 1.3110 9<br />

Methanosarcina acetivorans C2A 5.7510 6 3.7410 9<br />

Methanococcus jannaschii DSM2661 1.6610 6 1.0810 9<br />

Methanosarcina mazei Go1 4.1010 6 2.6610 9<br />

Methanobacterium<br />

thermoautotrophicum delta H<br />

Length of<br />

DNA, nt<br />

Approx. MW, Da<br />

2.7810 8 1.8010 11<br />

Arabidopsis thaliana (flowering plant) 1.1510 8 7.4710 10<br />

Caenorhabditis briggsae<br />

(soil-dwelling nematode)<br />

1.0410 8 6.7610 10<br />

Caenorhabditis elegans (round worm) 1.2110 7 7.8610 9<br />

Ciona intestinalis (ascidian tadpole) 1.1610 8 7.5410 10<br />

Drosophila melanogaster (fruit fly) 1.3710 8 8.9010 10<br />

Gallus gallus (chicken) 1.0510 9 6.8210 11<br />

Guillardia theta (chromophyte algae) 5.5110 5 3.5810 8<br />

Homo sapiens (human) 3.1510 9 2.0710 12<br />

Mus musculus (mouse) ~3.0010 9 ~1.9510 12<br />

Neurospora crassa OR74A<br />

(filamentous fungus)<br />

Saccharomyces cerevisiae S288C<br />

(budding yeast)<br />

Schizosaccharomyces pombe<br />

(fission yeast)<br />

4.3010 7 2.8010 10<br />

1.2110 7 7.8610 9<br />

1.4010 7 9.1010 9<br />

Pan troglodytes (chimpanzee) 3.0210 9 1.9610 12<br />

Plasmodium falciparum 3D7<br />

(human malaria parasite)<br />

2.2910 7 1.4910 10<br />

Oryza sativa japonica (rice) 4.2010 8 2.7310 11<br />

1.7510 6 1.1410 9<br />

Pyrococcus horikoshii OT3 1.7410 6 1.1310 9<br />

Pyrococcus abysii GE5 1.7610 6 1.1410 9<br />

Pyrococcus furiosus DSM3638 1.9110 6 1.2410 9<br />

Sulfolobus acidocaldarius DSM639 2.2310 6 1.4510 9<br />

Sulfolobus solfataricus P2 2.9910 6 1.9410 9<br />

<strong>Thermo</strong>plasma acidophilum 1.5610 6 1.0110 9<br />

Calculation the number of copies of a template<br />

amount of genome DNA (μg) Avogadro constant (mol-1 )<br />

Genome copy number =<br />

length of DNA (bp) 106 650<br />

This calculation is based on the assumption that the average weight of a base pair (bp) is 650 Daltons.<br />

Example: Human genome copy number in 1 μg of genome DNA.<br />

1 (μg) 6.022 10 23 (mol -1 )<br />

Genome copy number = = 2.94 10 5<br />

3.15 10 9 (bp) 10 6 650<br />

www.thermoscientific.com/onebio 461


462<br />

DNA Migration in Agarose and Polyacrylamide Gels<br />

Recommended agarose gels for electrophoretic separation of DNA fragments.<br />

Range of Approximate positions of tracking dyes, bp*<br />

Agarose<br />

effective Bromophenol blue Xylene cyanol FF<br />

gel, %<br />

separation, bp TBE buffer TAE buffer TBE buffer TAE buffer<br />

0.5 2000-50,000 750 1150 13,000 16,700<br />

0.6 1000-20,000 540 850 8820 11,600<br />

0.7 800-12,000 410 660 6400 8500<br />

0.8 800-10,000 320 530 4830 6500<br />

0.9 600-10,000 260 440 3770 5140<br />

1.0 400-8000 220 370 3030 4160<br />

1.2 300-7000 160 275 2070 2890<br />

1.5 200-3000 110 190 1300 1840<br />

2.0 100-2000 65 120 710 1040<br />

3.0 25-1000 30 60 300 460<br />

4.0 10-500 18 40 170 260<br />

5.0 10-300 12 27 105 165<br />

* Positions of the tracking dyes can be estimated only approximately because the dye front migrates as<br />

fuzzy band. To use the data above, the following guidelines are recommended:<br />

<br />

prepare the gels.<br />

<br />

supplied by us (50X TAE Buffer (#B49) and 10X TBE Buffer (#B52), respectively).<br />

Recommended polyacrylamide gels for electrophoretic separation of DNA fragments (1).<br />

Polyacrylamide Range of Approximate positions of tracking dyes*<br />

gel (with BIS at effective<br />

1:20), % (w/v) separation*<br />

Bromophenol blue Xylene cyanol FF<br />

Denaturing gels<br />

4.0 100-500 nt 50 nt 230 nt<br />

5.0 70-400 nt 35 nt 130 nt<br />

6.0 40-300 nt 26 nt 105 nt<br />

8.0 30-200 nt 19 nt 75 nt<br />

10.0 20-100 nt 12 nt 55 nt<br />

15.0 10-50 nt 10 nt 40 nt<br />

20.0 5-30 nt 8 nt 28 nt<br />

30.0 1-10 nt 6 nt 20 nt<br />

Non-denaturing gels<br />

3.5 100-1000 bp 100 bp 460 bp<br />

5.0 80-500 bp 65 bp 260 bp<br />

8.0 60-400 bp 45 bp 160 bp<br />

12.0 50-200 bp 20 bp 70 bp<br />

15.0 25-150 bp 15 bp 60 bp<br />

20.0 5-100 bp 12 bp 45 bp<br />

* Positions of the tracking dyes can be estimated only approximately because the dye front migrates as<br />

fuzzy band.<br />

Tracking dye migration in agarose gels.<br />

100 kb<br />

10 kb<br />

1 kb<br />

100 bp<br />

10 bp<br />

0.5<br />

Reference<br />

1. Sambrook, J., et al., <strong>Molecular</strong> Cloning. A Laboratory<br />

Manual, Cold Spring Harbor Laboratory, Cold Spring<br />

Harbor, N.Y., 12.89, 5.42, 2001.<br />

www.thermoscientific.com/onebio<br />

Bromphenol blue in TBE buffer<br />

Bromphenol blue in TAE buffer<br />

Xylene cyanol FF in TBE buffer<br />

Xylene cyanol FF in TAE buffer<br />

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5<br />

Agarose, %<br />

DNA Base Pairs<br />

Cytosine ------------------------------------ Guanine<br />

Thymine ------------------------------------- Adenine<br />

Codons and Assigned Amino Acids<br />

First (5’) Second Third (3’)<br />

U C A G<br />

U<br />

C<br />

A<br />

G<br />

Phe<br />

Phe<br />

Leu<br />

Leu<br />

Leu<br />

Leu<br />

Leu<br />

Leu<br />

Ile<br />

Ile<br />

Ile<br />

Met (fMet)<br />

Val<br />

Val<br />

Val<br />

Val**<br />

* Translation termination codon.<br />

** Codes for fMet if in the initiator position.<br />

Ser<br />

Ser<br />

Ser<br />

Ser<br />

Pro<br />

Pro<br />

Pro<br />

Pro<br />

Thr<br />

Thr<br />

Thr<br />

Thr<br />

Ala<br />

Ala<br />

Ala<br />

Ala<br />

Tyr<br />

Tyr<br />

Ter*<br />

Ter*<br />

His<br />

His<br />

Gln<br />

Gln<br />

Asn<br />

Asn<br />

Lys<br />

Lys<br />

Asp<br />

Asp<br />

Glu<br />

Glu<br />

Cys<br />

Cys<br />

Ter*<br />

Trp<br />

Arg<br />

Arg<br />

Arg<br />

Arg<br />

Ser<br />

Ser<br />

Arg<br />

Arg<br />

Gly<br />

Gly<br />

Gly<br />

Gly<br />

Summary of Useful Conversion<br />

1 Becquerel (Bq) = 1 disintegration per second = 2.7x10-11 Curies (Ci)<br />

1 Ci = 3.7x1010 Bq = 37 GBq = 2.22x1012 disintegrations per minute (dpm)<br />

1 mCi = 37 MBq = 2.22x109 dpm<br />

1 μCi = 37 kBq = 2.22x106 dpm<br />

1 GBq = 27 mCi<br />

1 MBq = 27 μCi<br />

1 kBq = 27 nCi<br />

U<br />

C<br />

A<br />

G<br />

U<br />

C<br />

A<br />

G<br />

U<br />

C<br />

A<br />

G<br />

U<br />

C<br />

A<br />

G<br />

Physical Properties of Some Common Radioisotopes<br />

Radioisotope Half-life Specific activity, MBq/mmol<br />

32P 14.3 days 7 up to 10<br />

33P 25.4 days 7 up to 10<br />

35S 87.4 days 7 up to 10<br />

131I 8.04 days 5 up to 10<br />

125I 60 days 7 up to 10<br />

14C 5730 years 3 up to 10<br />

3H 12.43 years 6<br />

up to 10


Amino Acids<br />

Nonpolar (hydrophobic)<br />

Amino acid Structure<br />

Alanine<br />

Proline<br />

Valine<br />

Leucine<br />

Isoleucine<br />

Methionine<br />

Phenylalanine<br />

Tryptophan<br />

Polar, uncharged<br />

Amino acid Structure<br />

Glycine<br />

Serine<br />

Threonine<br />

Cysteine<br />

Asparagine<br />

Glutamine<br />

Tyrosine<br />

Basic<br />

Amino acid Structure<br />

Lysine<br />

Histidine<br />

Arginine<br />

Amino acid<br />

Abbreviation<br />

3-letter 1-letter<br />

Acidic<br />

Amino acid Structure<br />

Aspartate<br />

Glutamate<br />

M r, Da<br />

pK 1<br />

(-COOH – )<br />

pKa values<br />

pK 2<br />

(-NH 3 + )<br />

pK R<br />

(R group)<br />

Nonpolar (hydrophobic)<br />

Alanine Ala A 89.09 2.34 9.69 6.01<br />

Proline Pro P 115.13 1.99 10.96 6.48<br />

Valine Val V 117.15 2.32 9.62 5.97<br />

Leucine Leu L 131.17 2.36 9.60 5.98<br />

Isoleucine Ile I 131.17 2.36 9.68 6.02<br />

Methionine Met M 149.21 2.28 9.21 5.74<br />

Phenylalanine Phe F 165.19 1.83 9.13 5.48<br />

Tryptophan Trp W 204.23 2.38 9.39 5.89<br />

Polar, uncharged<br />

Glycine Gly G 75.07 2.34 9.60 5.97<br />

Serine Ser S 105.09 2.21 9.15 5.68<br />

Threonine Thr T 119.12 2.11 9.62 5.87<br />

Cysteine Cys C 121.16 1.96 10.28 8.18 5.07<br />

Asparagine Asn N 132.12 2.02 8.80 5.41<br />

Glutamine Gln Q 146.15 2.17 9.13 5.65<br />

Tyrosine Tyr Y 181.19<br />

Basic<br />

2.20 9.11 10.07 5.66<br />

Lysine Lys K 146.19 2.18 8.95 10.53 9.74<br />

Histidine His H 155.16 1.82 9.17 6.00 7.59<br />

Arginine Arg R 174.20<br />

Acidic<br />

2.17 9.04 12.48 10.76<br />

Aspartate Asp D 133.10 1.88 9.60 3.65 2.77<br />

Glutamate Glu E 147.13 2.19 9.67 4.25 3.22<br />

pI<br />

www.thermoscientific.com/onebio 463


464<br />

Concentrations of Acids and Bases<br />

Substance Formula MW Moles/liter* Grams/liter<br />

* With some acids and bases, stock solutions of different molarity/normality are in common use.<br />

www.thermoscientific.com/onebio<br />

%<br />

by weight<br />

Specific<br />

gravity<br />

ml/liter to prepare<br />

1 M solution<br />

Acetic acid, glacial CH3COOH 60.05 17.4 1045 99.5 1.05 57.5<br />

Acetic acid CH3COOH 60.05 6.27 376 36 1.045 159.5<br />

Formic acid HCOOH 46.02 23.4 1080 90 1.20 42.7<br />

Hydrochloric acid HCl 36.5 11.6 424 36 1.18 86.2<br />

Nitric acid HNO3 63.02 15.99 1008 71 1.42 62.5<br />

Perchloric acid HClO4 100.5 11.65 1172 70 1.67 85.8<br />

Phosphoric acid H3PO4 97.9 14.8 1445 85 1.70 67.7<br />

Sulfuric acid H2SO4 98.1 18.0 1766 96 1.84 55.6<br />

Ammonium hydroxide NH4OH 35.0 14.8 251 28 0.898 67.6<br />

Potassium hydroxide KOH 56.1 13.5 757 50 1.52 74.1<br />

Sodium hydroxide NaOH 40.0 19.1 763 50 1.53 52.4<br />

Physical Constants of the Nucleoside<br />

Triphosphates and Related Compounds<br />

(see section “Nucleotides & Primers” for ordering information)<br />

Compound<br />

MW,<br />

Da (acid form)<br />

molar absorption coefficient (absorbance at max for 1M solution at pH 7.0)<br />

* determined at pH 7.0<br />

** determined at pH 10.0<br />

Conversion formula<br />

C = A / x 10 3<br />

C – mM concentration of compounds<br />

A – observed absorbance at max (nm)<br />

– molar absorption coefficient (M -1 x cm -1 )<br />

max*,<br />

nm<br />

,<br />

M -1 x cm -1<br />

ATP 507 259 15,400<br />

CTP 483 271 9000<br />

GTP 523 253 13,700<br />

UTP 484 262 10,000<br />

dATP 491 259 15,200<br />

dCTP 467 271 9300<br />

dGTP 507 253 13,700<br />

dTTP 482 267 9600<br />

ddATP 475 261 15,200<br />

ddCTP 451 271 9300<br />

ddGTP 491 253 13,600<br />

ddTTP 466 267 9600<br />

dm 6 ATP 507 265 15,400<br />

dm 4 CTP 481 274 13,600<br />

dm 5 CTP 481 279 8770<br />

Aminoallyl-dUTP 523<br />

Biotin-11-dUTP 862<br />

240<br />

290<br />

240<br />

289<br />

11,900<br />

7800<br />

10,700<br />

7100<br />

NAD 664 260 18,000<br />

NADH 665 338** 6200<br />

NADP 743 260 18,000<br />

NADPH 745 260 18,000<br />

SI Unit Prefixes<br />

Prefix Symbol Multiple<br />

yotta Y 10 24<br />

zetta Z 10 21<br />

exa E 10 18<br />

peta P 10 15<br />

tera T 10 12<br />

giga G 10 9<br />

mega M 10 6<br />

kilo k 10 3<br />

hecto h 10 2<br />

deka da 10 1<br />

deci d 10 -1<br />

centi c 10 -2<br />

milli m 10 -3<br />

micro μ 10 -6<br />

nano n 10 -9<br />

pico p 10 -12<br />

femto f 10 -15<br />

atto a 10 -18<br />

zepto z 10 -21<br />

yocto y 10 -24


Common Conversions of Nucleic Acids<br />

Estimation of ends (3’ or 5’) concentration<br />

Circular DNA<br />

pmol ends = pmol DNA x number of cuts x 2<br />

Linear DNA<br />

pmol ends = pmol DNA x (number of cuts x 2 + 2)<br />

Phage/Plasmid DNA pmol ends (1 μg)<br />

1000 bp DNA 3.04<br />

linear pUC18/19 DNA 1.14<br />

linear pBR322 DNA 0.7<br />

linear SV40 DNA 0.58<br />

linear X174 DNA 0.56<br />

linear M13mp18/19 DNA 0.42<br />

phage DNA 0.06<br />

Spectrophotometric Conversions<br />

NA A260 μg/ml mM (in nucleotides)<br />

dsDNA 1 50 0.15<br />

ssDNA 1 33 0.1<br />

ssRNA 1 40 0.12<br />

dsDNA 6.7 335 1<br />

ssDNA 10.0 330 1<br />

ssRNA 8.3 332 1<br />

The average MW of a deoxyribonucleotide base = 333 Da<br />

The average MW of a ribonucleotide base = 340 Da<br />

The average MW of a deoxyribonucleotide base pair = 650 Da<br />

Phage/Plasmid DNA<br />

Molar Conversions<br />

bp<br />

μg<br />

Quantity<br />

pmol<br />

DNA 1000<br />

1<br />

0.66<br />

1.52<br />

1<br />

pUC18/19 DNA 2686<br />

1<br />

1.77<br />

0.57<br />

1<br />

pBR322 DNA 4361<br />

1<br />

2.88<br />

0.35<br />

1<br />

SV40 DNA 5243<br />

1<br />

3.46<br />

0.29<br />

1<br />

X174 DNA 5386<br />

1<br />

3.54<br />

0.28<br />

1<br />

M13mp18/19 DNA 7250<br />

1<br />

4.78<br />

0.21<br />

1<br />

phage DNA 48502<br />

1<br />

32.01<br />

0.03<br />

11<br />

DNA/Protein Conversions<br />

1 kb of DNA = 333 amino acid 37 kDa<br />

10 kDa protein 0.27 kb DNA<br />

30 kDa protein 0.81 kb DNA<br />

50 kDa protein 1.32 kb DNA<br />

100 kDa protein 2.70 kb DNA<br />

Common Conversions of Oligonucleotides<br />

Common conversions of Oligonucleotides<br />

<strong>Molecular</strong> Weight<br />

MW = 333 x N<br />

Concentration of Oligonucleotides<br />

C (μM or pmol/μl) = A 260 / (0.01 x N)<br />

C (ng/ml) = (A 260 x MW) / (0.01 x N)<br />

MW – molecular weight<br />

A 260 – absorbance at 260 nm<br />

N – number of bases<br />

Melting Temperature of Duplex DNA<br />

and Oligonucleotides<br />

For Duplex Oligonucleotide shorter than 25 bp,<br />

“The Wallace Rule” (2)<br />

Tm (in °C) = 2(A+T) + 4(C+G), where<br />

(A+T) – the sum of the A and T residues in the oligonucleotide and<br />

(G+C) – the sum of G and C residues in the oligonucleotide.<br />

Presence of m5C in oligonucleotide increases melting temperature of<br />

duplex. Presence of m4C or m6A decreases melting temperature (3).<br />

For Duplex DNA,


466<br />

Temperature Dependence of the pH for Commonly Used Buffers<br />

Buffer System Chemical Name pKa/20°C pKa/10°C MES 4-morpholineethanesulfonic acid 6.15 -0.110<br />

ADA [(carbamoylmethyl)imino]diacetic acid 6.60 -0.110<br />

PIPES 1,4-piperazinediethanesulfonic acid 6.80 -0.085<br />

ACES 2-[(2-amino-2-oxoethyl)amino]ethanesulfonic acid 6.90 -0.200<br />

BES 2-[bis(2-hydroxyethyl)amino]ethanesulfonic acid 7.15 -0.160<br />

MOPS 4-morpholinepropanesulfonic acid 7.20 -0.013<br />

TES<br />

2-{[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]amino}-<br />

1-propanesulfonic acid<br />

7.50 -0.200<br />

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 7.55 -0.140<br />

TRICINE N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine 8.15 -0.210<br />

TRIS 2-amino-2-hydroxymethylpropane-1,3-diol 8.30 -0.310<br />

BICINE N,N-bis(2-hydroxyethyl)glycine 8.35 -0.180<br />

GLYCYLGLYCINE 2-(2-aminoacetyl)aminoacetic acid 8.40 -0.280<br />

Decay Factors for Calculating the Amount of Radioactivity<br />

32P, (half-life – 14.3 days)<br />

Days<br />

0 12 24 36<br />

Hours<br />

48 60 72 84<br />

0 1.000 0.976 0.953 0.930 0.908 0.886 0.865 0.844<br />

4 0.824 0.804 0.785 0.766 0.748 0.730 0.712 0.695<br />

8 0.679 0.662 0.646 0.631 0.616 0.601 0.587 0.573<br />

12 0.559 0.546 0.533 0.520 0.507 0.495 0.483 0.472<br />

16 0.460 0.449 0.439 0.428 0.418 0.408 0.398 0.389<br />

20 0.379 0.370 0.361 0.353 0.344 0.336 0.328 0.320<br />

24 0.312 0.305 0.298 0.291 0.284 0.277 0.270 0.264<br />

28 0.257 0.251 0.245 0.239 0.234 0.228 0.223 0.217<br />

32 0.212 0.207 0.202 0.197 0.192 0.188 0.183 0.179<br />

36 0.175 0.170 0.166 0.162 0.159 0.155 0.151 0.147<br />

40 0.144 0.140 0.137 0.134 0.131 0.127 0.124 0.121<br />

44 0.119 0.116 0.113 0.110 0.108 0.105 0.102 0.100<br />

48 0.098 0.095 0.093 0.091 0.089 0.086 0.084 0.082<br />

52 0.080 0.078 0.077 0.075 0.073 0.071 0.070 0.068<br />

35S, (half-life – 84.4 days)<br />

Weeks<br />

0 1 2<br />

Days<br />

3 4 5 6<br />

0 1.000 0.992 0.984 0.976 0.969 0.961 0.954<br />

1 0.946 0.939 0.931 0.924 0.916 0.909 0.902<br />

2 0.895 0.888 0.881 0.874 0.867 0.860 0.853<br />

3 0.847 0.840 0.833 0.827 0.820 0.814 0.807<br />

4 0.801 0.795 0.788 0.782 0.776 0.770 0.764<br />

5 0.758 0.752 0.746 0.740 0.734 0.728 0.722<br />

6 0.717 0.711 0.705 0.700 0.694 0.689 0.683<br />

7 0.678 0.673 0.667 0.662 0.657 0.652 0.646<br />

8 0.641 0.636 0.631 0.626 0.621 0.616 0.612<br />

9 0.607 0.602 0.597 0.592 0.588 0.583 0.579<br />

10 0.574 0.569 0.565 0.560 0.556 0.552 0.547<br />

11 0.543 0.539 0.534 0.530 0.526 0.522 0.518<br />

12 0.514 0.510 0.506 0.502 0.498 0.494 0.490<br />

33P, (half-life – 25.4 days)<br />

Days<br />

0 1 1 3 4<br />

Days<br />

5 6 7 8 8<br />

0 1.000 0.973 0.947 0.921 0.897 0.872 0.849 0.826 0.804 0.782<br />

10 0.761 0.741 0.721 0.701 0.683 0.664 0.646 0.629 0.612 0.595<br />

20 0.579 0.564 0.549 0.534 0.520 0.506 0.492 0.479 0.466 0.453<br />

30 0.441 0.429 0.418 0.406 0.395 0.385 0.374 0.364 0.355 0.345<br />

40 0.336 0.327 0.318 0.309 0.301 0.293 0.285 0.277 0.270 0.263<br />

50 0.256 0.249 0.242 0.236 0.229 0.223 0.217 0.211 0.205 0.200<br />

60 0.195 0.189 0.184 0.179 0.174 0.170 0.165 0.161 0.156 0.152<br />

70 0.148 0.144 0.140 0.136 0.133 0.129 0.126 0.122 0.119 0.116<br />

80 0.113 0.110 0.107 0.104 0.101 0.098 0.096 0.093 0.091 0.088<br />

90 0.086 0.084 0.081 0.079 0.077 0.075 0.073 0.071 0.069 0.067<br />

100 0.065 0.064 0.062 0.060 0.059 0.057 0.055 0.054 0.053 0.051<br />

110 0.050 0.048 0.047 0.046 0.045 0.043 0.042 0.041 0.040 0.039<br />

120 0.038 0.037 0.036 0.035 0.034 0.033 0.032 0.031 0.030 0.030<br />

www.thermoscientific.com/onebio


Commonly Used Media, Stock <strong>Solutions</strong> and Buffers<br />

Growth Media (1)<br />

LB Medium, per liter: Final 1X concentration:<br />

Tryptone 10 g 1.0% (w/v)<br />

Yeast extract 5 g 0.5% (w/v)<br />

NaCl 10 g 1.0% (w/v)<br />

H 2O to 1 liter<br />

Adjust pH to 7.0.<br />

Low Salt LB Medium, per liter: Final 1X concentration:<br />

Tryptone 10 g 1.0% (w/v)<br />

Yeast extract 5 g 0.5% (w/v)<br />

NaCl 5 g 0.5% (w/v)<br />

H 2O to 1 liter<br />

Adjust pH to 7.0.<br />

Terrific Broth Medium, per liter: Final 1X concentration:<br />

Tryptone 12 g 1.2% (w/v)<br />

Yeast extract 24 g 2.4% (w/v)<br />

Glycerol 4 ml 0.4% (w/v)<br />

H 2O to 900 ml<br />

Autoclave, cool to 60°C or less before adding 100 ml of filter sterilized 10X TB<br />

phosphate (0.17 M KH 2PO 4, 0.72 M K 2HPO 4).<br />

SOB Medium, per liter Final 1X concentration:<br />

Tryptone 20 g 2.0% (w/v)<br />

Yeast extract 5 g 0.5% (w/v)<br />

NaCl 0.5 g 0.05% (w/v)<br />

250 mM KCl 10 ml 2.5 mM<br />

H 2O to 900 ml<br />

Adjust pH to 7.0 and add H 2O to 990 ml.<br />

Autoclave, cool to room temperature and just prior to use add 10 ml<br />

1 M MgCl 2 (sterile solution). 10 mM<br />

SOC Medium, per liter:<br />

SOB Medium (1 liter) with the addition of 20 ml filter sterilized<br />

1 M glucose.<br />

M9 Minimal Medium, per liter: Final 1X concentration:<br />

5X M9 salts 200 ml<br />

1 M MgSO 4 1 ml 1 mM<br />

20% glucose 10 ml 0.2% (v/v)<br />

1M CaCl 2 0.1 ml 0.1 mM<br />

Sterile H 2O to 1 liter<br />

5X M9 Salts, per liter: Final 1X concentration:<br />

Na 2HPO 4x7H 2O 64 g 47.8 mM<br />

KH 2PO 4 15 g 22 mM<br />

NaCl 2.5 g 8.6 mM<br />

NH 4Cl 5 g 18.7 mM<br />

Additives Final 1X concentration:<br />

Antibiotics (if required):<br />

Ampicillin 50 μg/ml<br />

Chloramphenicol 20 μg/ml<br />

Kanamycin 30 μg/ml<br />

Tetracycline 12 μg/ml<br />

Galactosides (if required):<br />

X-Gal 20 μg/ml<br />

IPTG 0.1 mM<br />

Media containing agar or agarose, per liter:<br />

Agar (for plates) 15 g 1.5% (w/v)<br />

Agar (for top agar) 7 g 0.7% (w/v)<br />

Agarose (for plates) 15 g 1.5% (w/v)<br />

Agarose (for top agarose) 7 g 0.7% (w/v)<br />

Stock <strong>Solutions</strong><br />

10 M Ammonium Acetate:<br />

Ammonium acetate 385.4 g<br />

H2O to 500 ml<br />

1 M CaCl2: CaCl2x6H2O 219.1 g<br />

H2O to 1 liter<br />

(continued on next page)<br />

www.thermoscientific.com/onebio 467


468<br />

100X Denhardt Solution: Final concentration:<br />

Ficoll 400 10 g 0.02% (w/v)<br />

Polyvinylpyrrolidone 10 g 0.02% (w/v)<br />

Bovine serum albumin 10 g 0.02% (w/v)<br />

H 2O to 500 ml<br />

Filter sterilize and store at -20°C in 25 ml aliquots<br />

1 M Dithiothreitol (DTT):<br />

DTT 15.45 g<br />

H 2O to100 ml<br />

Store at -20°C<br />

0.5 M Ethylenediamine Tetraacetic Acid (EDTA) (pH 8.0):<br />

Na 2EDTAx2H 2O 186.1 g<br />

H 2O to 700 ml<br />

Adjust pH to 8.0 with 10 M NaOH (~50 ml)<br />

H 2O to 1 liter<br />

10 mg/ml Ethidium Bromide:<br />

Ethidium bromide 0.2 g<br />

H 2O to 20 ml<br />

Mix well and store at 4°C in dark.<br />

CAUTION: Ethidium bromide is a mutagen. Wear gloves when working with<br />

solutions and a mask when weighing the powder.<br />

1 M KCl:<br />

KCl 74.6 g<br />

H 2O to 1 liter<br />

1 M MgCl 2:<br />

MgCl 2x6H 2O 20.3 g<br />

H 2O to 100 ml<br />

1 M MgSO 4:<br />

MgSO 4x7H 2O 24.6g<br />

H 2O to 100ml<br />

5M NaCl:<br />

NaCl 292.2 g<br />

H 2O to 1 liter<br />

10 M NaOH:<br />

NaOH 400.0 g<br />

H 2O to 1 liter<br />

1 M Tris-HCl [tris(hydroxymethyl)aminomethane]:<br />

Tris base 121.1 g<br />

H 2O to 800 ml<br />

Adjust to desired pH with concentrated HCl.<br />

Mix and add H 2O to 1 liter<br />

3 M Sodium Acetate (pH 5.2 or 7.0) (2):<br />

Sodium acetate x 3H 2O 408.1 g<br />

H 2O to 800 ml<br />

Adjust the pH to 7.0 with acetic acid or adjust the pH to 5.2 with glacial acetic acid.<br />

H 2O to 1 liter<br />

Buffers (2)<br />

10X Stock Phosphate-buffered Saline (PBS), per liter: Final 1X concentration:<br />

NaCl 80.0 g 137 mM<br />

KCl 2.0 g 2.7 mM<br />

Na2HPO4 14.4 g 10 mM<br />

KH2PO4 2.7 g 2 mM<br />

H2O Adjust to pH 7.4 with concentrated HCl.<br />

to 800 ml<br />

H2O to 1 liter<br />

20X SSC, per liter: Final 1X concentration:<br />

NaCl 175.3 g 150 mM<br />

Na3citrate x 2H2O 88.2 g 15 mM<br />

H2O Adjust pH to 7.0 with 1M HCl<br />

to 800 ml<br />

H2O to 1 liter<br />

(continued on next page)<br />

www.thermoscientific.com/onebio


20X SSPE, per liter: Final 1X concentration:<br />

NaCl 175.3 g 150 mM<br />

NaH 2PO 4xH 2O 27.6 g 10 mM<br />

Na 2EDTA 7.4 g 1 mM<br />

H 2O to 800 ml<br />

Adjust pH to 7.4 with 10 M NaOH<br />

H 2O to 1 liter<br />

5X Tris-glycine, Native Electrophoresis Buffer, per liter: Final 1X concentration:<br />

Tris base 15.1 g 25 mM<br />

Glycine 72.0 g 192 mM<br />

H 2O to 1 liter<br />

The pH of diluted solution is pH 8.3.<br />

5X Tris-glycine-SDS Electrophoresis Buffer, per liter: Final 1X concentration:<br />

Tris base 15.1 g 25 mM<br />

Glycine 72.0 g 192 mM<br />

SDS 5.0 g 0.1% (w/v)<br />

H 2O to 1 liter<br />

The pH of diluted solution is pH 8.3.<br />

5X Tris-tricine-SDS Electrophoresis Buffer, per liter: Final 1X concentration:<br />

Tris base 60.6 g 0.1 M<br />

Tricine 89.6 g 0.1 M<br />

SDS 5.0 g 0.1% (w/v)<br />

H 2O to 1 liter<br />

The pH of diluted solution is pH 8.3.<br />

50X TAE (Tris-acetate-EDTA) Electrophoresis Buffer, per liter: Final 1X concentration:<br />

Tris base 242 g 40 mM<br />

Glacial acetic acid 57.1 ml 20 mM<br />

0.5 M EDTA (pH 8.0) 100 ml 1 mM<br />

H 2O to 1 liter<br />

The pH of diluted solution is ~8.5<br />

10X TBE (Tris-borate-EDTA) Electrophoresis Buffer, per liter: Final 1X concentration:<br />

Tris base 108 g 89 mM<br />

Boric acid 55 g 89 mM<br />

0.5 M EDTA (pH 8.0) 40 ml 2 mM<br />

H 2O to 1 liter<br />

10X TPE (Tris-phosphate-EDTA) Electrophoresis Buffer, per liter: Final 1X concentration:<br />

Tris base 108 g 89 mM<br />

Phosphoric acid (85%) 15.5 ml 27 mM<br />

0.5 M EDTA (pH 8.0) 40 ml 2 mM<br />

H 2O to 1 liter<br />

TE (Tris-EDTA) Buffer, pH 7.4, 7.6 or 8.0, per liter: Final 1X concentration:<br />

1 M Tris, pH 7.4, 7.6, 8.0 10 ml 10 mM<br />

0.5 M EDTA (pH 8.0) 2 ml 1 mM<br />

H 2O to 1 liter<br />

Molarity<br />

M (mol/l) =<br />

Expressing Concentrations of Reagents<br />

number of moles solute<br />

number of liters of solution<br />

Percent composition<br />

weight of solute (g)<br />

Concentration (%) = x 100<br />

total weight of solution (g)<br />

Percent composition (weight/volume)<br />

weight of solute (g)<br />

Concentration (% w/v) = x 100<br />

total weight of solution (ml)<br />

Percent composition (volume/volume)<br />

weight of solute (ml)<br />

Concentration (% v/v) = x 100<br />

total weight of solution (ml)<br />

References<br />

1. Atlas, R.M., Handbook of Microbiological Media, second edition, Ed. Parks, L.C., CRC<br />

Press, N.Y., 1997.<br />

2. Sambrook, J., et al., <strong>Molecular</strong> Cloning: A Laboratory Manual, second edition, Cold Spring<br />

Harbor Laboratory Press, Cold Spring Harbor, NY, A1.2-A2.12, 2001.<br />

www.thermoscientific.com/onebio 469


www.thermoscientific.com/onebio<br />

470<br />

Periodic Table of the Elements<br />

IA VIIIA<br />

1<br />

H<br />

Hydrogen<br />

1.0079 IIA IIIA IVA VA VIA VIIA<br />

2<br />

He<br />

Helium<br />

4.0026<br />

3<br />

Li<br />

Lithium<br />

6.941<br />

4<br />

Be<br />

Beryllium<br />

9.0122<br />

5<br />

B<br />

Boron<br />

10.811<br />

6<br />

C<br />

Carbon<br />

12.011<br />

7<br />

N<br />

Nitrogen<br />

14.007<br />

8<br />

O<br />

Oxygen<br />

15.999<br />

9<br />

F<br />

Fluorine<br />

18.998<br />

10<br />

Ne<br />

Neon<br />

20.180<br />

11<br />

Na<br />

Sodium<br />

22.990<br />

12<br />

Mg<br />

Magnesium<br />

24.305 IIIB IVB VB VIB VIIB VIIB VIIB VIII IB IIB<br />

13<br />

Al<br />

Aluminium<br />

26.982<br />

14<br />

Si<br />

Silicon<br />

28.086<br />

15<br />

P<br />

Phosphorus<br />

30.974<br />

16<br />

S<br />

Sulfur<br />

32.066<br />

17<br />

Cl<br />

Chlorine<br />

35.453<br />

18<br />

Ar<br />

Argon<br />

39.948<br />

19<br />

K<br />

Potassium<br />

39.098<br />

20<br />

Ca<br />

Calcium<br />

40.078<br />

21<br />

Sc<br />

Scandium<br />

44.956<br />

22<br />

Ti<br />

Titanium<br />

47.897<br />

23<br />

V<br />

Vanadium<br />

50.942<br />

24<br />

Cr<br />

Cromium<br />

51.996<br />

25<br />

Mn<br />

Manganese<br />

54.938<br />

26<br />

Fe<br />

Iron<br />

55.847<br />

27<br />

Co<br />

Cobalt<br />

58.933<br />

28<br />

Ni<br />

Nickel<br />

58.693<br />

29<br />

Cu<br />

Copper<br />

63.546<br />

30<br />

Zn<br />

Zinc<br />

65.39<br />

31<br />

Ga<br />

Gallium<br />

69.723<br />

32<br />

Ge<br />

Germanium<br />

72.61<br />

33<br />

As<br />

Arsenic<br />

74.922<br />

34<br />

Se<br />

Selenium<br />

78.96<br />

35<br />

Br<br />

Bromine<br />

79.904<br />

36<br />

Kr<br />

Krypton<br />

83.80<br />

37<br />

Rb<br />

Rubidium<br />

85.468<br />

38<br />

Sr<br />

Strontium<br />

87.62<br />

39<br />

Y<br />

Yttrium<br />

88.906<br />

40<br />

Zr<br />

Zirconium<br />

91.224<br />

41<br />

Nb<br />

Niobium<br />

92.906<br />

42<br />

Mo<br />

Molybdenum<br />

95.94<br />

43<br />

Tc<br />

Technetium<br />

[98]<br />

44<br />

Ru<br />

Ruthenium<br />

101.07<br />

45<br />

Rh<br />

Rhodium<br />

102.91<br />

46<br />

Pd<br />

Palladium<br />

105.42<br />

47<br />

Ag<br />

Silver<br />

107.87<br />

48<br />

Cd<br />

Cadmium<br />

112.41<br />

49<br />

In<br />

Indium<br />

114.82<br />

50<br />

Sn<br />

Tin<br />

118.71<br />

51<br />

Sb<br />

Antimony<br />

121.75<br />

52<br />

Te<br />

Tellurium<br />

127.60<br />

53<br />

I<br />

Iodine<br />

126.90<br />

54<br />

Xe<br />

Xenon<br />

131.29<br />

55<br />

Cs<br />

Cesium<br />

132.91<br />

56<br />

Ba<br />

Barium<br />

137.33<br />

57-71<br />

*<br />

72<br />

Hf<br />

Hafnium<br />

178.49<br />

73<br />

Ta<br />

Tantalum<br />

180.95<br />

74<br />

W<br />

Tungsten<br />

183.85<br />

75<br />

Re<br />

Rhenium<br />

186.21<br />

76<br />

Os<br />

Osmium<br />

190.23<br />

77<br />

Ir<br />

Iridium<br />

192.22<br />

78<br />

Pt<br />

Platinum<br />

195.08<br />

79<br />

Au<br />

Gold<br />

196.97<br />

80<br />

Hg<br />

Mercury<br />

200.59<br />

81<br />

Tl<br />

Thalium<br />

204.38<br />

82<br />

Pb<br />

Lead<br />

207.2<br />

83<br />

Bi<br />

Bismuth<br />

208.98<br />

84<br />

Po<br />

Polonium<br />

[209]<br />

85<br />

At<br />

Astatine<br />

[210]<br />

86<br />

Rn<br />

Radon<br />

[222]<br />

87<br />

Fr<br />

Francium<br />

[223]<br />

88<br />

Ra<br />

Radium<br />

[226.03]<br />

89-103<br />

* *<br />

104<br />

Rf<br />

Rutherfordium<br />

[261]<br />

105<br />

Db<br />

Dubnium<br />

[262]<br />

106<br />

Sg<br />

Seaborgium<br />

[263]<br />

107<br />

Bh<br />

Bohrium<br />

[264]<br />

108<br />

Hs<br />

Hassium<br />

[269]<br />

109<br />

Mt<br />

Meitnerium<br />

[268]<br />

110<br />

Uun<br />

Ununnilium<br />

[271]<br />

57<br />

La<br />

Lanthanum<br />

138.91<br />

58<br />

Ce<br />

Cerium<br />

140.12<br />

59<br />

Pr<br />

Praseodymium<br />

140.91<br />

60<br />

Nd<br />

Neodymium<br />

144.24<br />

61<br />

Pm<br />

Promethium<br />

[145]<br />

62<br />

Sm<br />

Samarium<br />

150.36<br />

63<br />

Eu<br />

Europium<br />

151.97<br />

64<br />

Gd<br />

Gadolinium<br />

157.25<br />

65<br />

Tb<br />

Terbium<br />

158.93<br />

66<br />

Dy<br />

Dysprosium<br />

162.50<br />

67<br />

Ho<br />

Holmium<br />

164.93<br />

68<br />

Er<br />

Erbium<br />

167.26<br />

69<br />

Tm<br />

Thulium<br />

168.93<br />

70<br />

Yb<br />

Ytterbium<br />

173.04<br />

71<br />

Lu<br />

Lutetium<br />

174.97<br />

89<br />

Ac<br />

Actinium<br />

[227]<br />

90<br />

Th<br />

Thorium<br />

232.04<br />

91<br />

Pa<br />

Protactinium<br />

231.04<br />

92<br />

U<br />

Uranium<br />

238.03<br />

93<br />

Np<br />

Neptunium<br />

237.05<br />

94<br />

Pu<br />

Plutonium<br />

[244]<br />

95<br />

Am<br />

Americium<br />

[243]<br />

96<br />

Cm<br />

Curium<br />

[247]<br />

97<br />

Bk<br />

Berkelium<br />

[247]<br />

98<br />

Cf<br />

Californium<br />

[251]<br />

99<br />

Es<br />

Einsteinium<br />

[252]<br />

100<br />

Fm<br />

Fermium<br />

[257]<br />

101<br />

Md<br />

Mendelevium<br />

[258]<br />

102<br />

No<br />

Nobelium<br />

[259]<br />

103<br />

Lr<br />

Lawrencium<br />

[262]<br />

* Lanthanide series<br />

** Actinide series<br />

Alkali metals<br />

Alkaline earth metals<br />

Transition metals<br />

Poor metals<br />

Solid<br />

Liquid<br />

Gas<br />

Synthetic<br />

Br<br />

H<br />

Tc<br />

C<br />

Nonmetals<br />

Noble gases<br />

Lanthanide series<br />

Actinide series<br />

+1<br />

-1<br />

+1<br />

+1<br />

+1<br />

+1<br />

+1<br />

+1 +2<br />

+2<br />

+2<br />

+2<br />

+2<br />

+2<br />

+3<br />

+3<br />

+3<br />

+4<br />

+4<br />

+4<br />

+4 +5<br />

+3<br />

+4<br />

+5<br />

+3<br />

+5<br />

+2<br />

+3<br />

+4<br />

+5<br />

+2<br />

+3<br />

+6<br />

+2<br />

+3<br />

+4<br />

+5<br />

+6<br />

+2<br />

+3<br />

+4<br />

+5<br />

+6<br />

+2<br />

+3<br />

+4<br />

+5<br />

+6<br />

+7<br />

+2<br />

+4<br />

+7<br />

+2<br />

+3<br />

+4<br />

+6<br />

+7<br />

+3<br />

+4<br />

+6<br />

+8<br />

+2<br />

+3<br />

+4<br />

+6<br />

+8<br />

+2<br />

+3<br />

+6<br />

+2<br />

+3<br />

+2<br />

+3<br />

+4<br />

+5<br />

+2<br />

+3<br />

+4<br />

+6<br />

+2<br />

+3<br />

+2<br />

+4<br />

+2<br />

+4<br />

+6<br />

+1<br />

+2<br />

+3<br />

+1<br />

+2<br />

+3<br />

+1<br />

+3<br />

+2<br />

+2<br />

+1<br />

+2<br />

+3<br />

+3<br />

+3<br />

+1<br />

+3<br />

+1<br />

+3<br />

+2<br />

+4<br />

+4<br />

+2<br />

+4<br />

+2<br />

+4<br />

+2<br />

+4<br />

-3<br />

+2<br />

+3<br />

+4<br />

+5<br />

-3<br />

+3<br />

+5<br />

-3<br />

+3<br />

+5<br />

-3<br />

+3<br />

+5<br />

+3<br />

+5<br />

-1<br />

-2<br />

-2<br />

+2<br />

+4<br />

+6<br />

-2<br />

+4<br />

+6<br />

-2<br />

+4<br />

+6<br />

+2<br />

+4<br />

+6<br />

-1<br />

-1<br />

+1<br />

+3<br />

+5<br />

+7<br />

-1<br />

+1<br />

+3<br />

+5<br />

-1<br />

+1<br />

+5<br />

+7<br />

-1<br />

+1<br />

+3<br />

+5<br />

+7<br />

-<br />

-<br />

-<br />

+2<br />

+2<br />

+4<br />

+6<br />

+8<br />

+2<br />

+3<br />

+3<br />

+3<br />

+4<br />

+4<br />

+3<br />

+4<br />

+4<br />

+5<br />

+3<br />

+3<br />

+4<br />

+5<br />

+6<br />

+3<br />

+3<br />

+4<br />

+5<br />

+6<br />

+2<br />

+3<br />

+3<br />

+4<br />

+5<br />

+6<br />

+2<br />

+3<br />

+3<br />

+4<br />

+5<br />

+6<br />

+3<br />

+3<br />

+4<br />

+3<br />

+4<br />

+2<br />

+3<br />

+4<br />

+3<br />

+2<br />

+3<br />

+4<br />

+3<br />

+2<br />

+3<br />

+3<br />

+2<br />

+3<br />

+3<br />

+2<br />

+3<br />

+2<br />

+3<br />

+2<br />

+3<br />

+3<br />

+3<br />

6<br />

C<br />

Carbon<br />

12.011<br />

Oxidation degree<br />

Symbol<br />

Name<br />

Atomic weight<br />

IVA<br />

Group classification<br />

+2<br />

+4<br />

Atomic number


Commonly Used Abbreviations<br />

A<br />

A adenine or adenosine; one-letter code for alanine<br />

A 260 absorbance at 260 nm<br />

ACES N-(2-acetamido)-2-aminoethanesulfonic acid<br />

Ad-2 adenovirus-2<br />

ADA N-(2-acetamido)-2-iminodiacetic acid<br />

ADP adenosine 5’-diphosphate<br />

AMP adenosine monophosphate<br />

AMV Avian Myeloblastosis Virus<br />

AP alkaline phosphatase<br />

APS ammonium persulfate<br />

aRNA antisense RNA<br />

ATP adenosine 5’-triphosphate<br />

B<br />

BCIP 5-bromo-4-chloro-3-indolyl phosphate<br />

BES N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid<br />

BGG bovine gamma globulin<br />

BICINE N,N-bis(2-hydroxyethyl)glycine<br />

Bio-dNTP biotin-deoxynucleoside triphosphate<br />

BME -mercaptoethanol; 2-mercaptoethanol<br />

bp base pair<br />

Bq Becquerel<br />

BSA bovine serum albumin<br />

B/W blue/white cloning<br />

C<br />

C cytosine or cytidine; one-letter code for cysteine<br />

CA casamino-acids<br />

CAPS N-cyclohexyl-3-aminopropanesulfonic acid<br />

cDNA complementary deoxyribonucleic acid<br />

CEU cohesive end ligation unit<br />

Ci Curie<br />

CIAP calf intestinal alkaline phosphatase<br />

CMP cytidine monophosphate<br />

cpm counts per minute<br />

CTP cytidine 5’-triphosphate<br />

D<br />

Da Dalton<br />

dAMP deoxyadenosine monophosphate<br />

dATP deoxyadenosine triphosphate<br />

dCTP deoxycytidine triphosphate<br />

ddATP dideoxyadenosine triphosphate<br />

ddCTP dideoxycytidine triphosphate<br />

ddGTP dideoxyguanosine triphosphate<br />

ddNTP dideoxynucleoside triphosphate<br />

ddTTP dideoxythymidine triphosphate<br />

DE-81 Whatman diethylaminoethyl cellulose paper<br />

DEPC diethyl pyrocarbonate<br />

DIG digoxigenin<br />

dITP deoxyinosine triphosphate<br />

dGTP deoxyguanosine triphosphate<br />

DMSO dimethyl sulfoxide<br />

DNA deoxyribonucleic acid<br />

DNase deoxyribonuclease<br />

dNMP deoxyribonucleoside monophosphate<br />

dNTP deoxynucleoside triphosphate<br />

dpm disintegrations per minute<br />

ds double-stranded<br />

DTT dithiothreitol<br />

dTTP deoxythymidine triphosphate<br />

dUTP deoxyuridine triphosphate<br />

E<br />

EDTA ethylenediaminetetraacetic acid<br />

EGTA ethylene glycol tetraacetic acid<br />

ELISA enzyme-linked immunosorbent assay<br />

EMBL European <strong>Molecular</strong> <strong>Biology</strong> Laboratory<br />

EMSA electrophoretic mobility shift assay<br />

Endo endodeoxyribonuclease assay<br />

endo endonuclease<br />

(continued on next page)<br />

www.thermoscientific.com/onebio 471


472<br />

exo exonuclease<br />

Exo 5’ and 3’- exodeoxyribonuclease assay<br />

F<br />

FDU fast digest unit<br />

FOA (5-FOA) 5-fluoroorotic acid<br />

G<br />

G guanine or guanosine; one-letter code for glycine<br />

Gal D-galactose<br />

GMP guanosine monophosphate<br />

GMPD glycosylase mediated polymorphism detection<br />

GUS -D-glucuronidase<br />

GTP guanosine 5’-triphosphate<br />

GQ genetic quality<br />

H<br />

HC high concentration<br />

HEPES N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid)<br />

HRP horseradish peroxidase<br />

HPLC high-performance liquid chromatography<br />

I<br />

IEF isoelectric focussing<br />

IPTG isopropyl--D-thiogalactopyranoside<br />

K<br />

kb kilobase<br />

kDa kiloDalton<br />

L<br />

LAMP loop-mediated isothermal amplification<br />

LB Luria Bertani media<br />

LC low concentration<br />

LE low electroendosmosis<br />

LM low melting point<br />

LO labeled oligonucleotide<br />

M<br />

MCS multiple cloning site<br />

MES 2-(N-morpholino)ethanesulfonic acid<br />

MDA multiple displacement amplification<br />

M-MuLV Moloney Murine Leukemia Virus<br />

MOPS 3-(N-morpholino)propanesulfonic acid<br />

mRNA messenger ribonucleic acid<br />

MW molecular weight<br />

N<br />

NAD nicotinamide adenine dinucleotide<br />

NADH nicotinamide adenine dinucleotide, reduced form<br />

NADP nicotinamide adenine dinucleotide phosphate<br />

NADPH nicotinamide adenine dinucleotide phosphate, reduced form<br />

NBT nitro blue tetrazolium<br />

NDP nucleoside diphosphate<br />

NMP ribonucleoside monophosphate<br />

NR not recommended<br />

NP-40 Nonidet P-40 (detergent)<br />

nt nucleotide<br />

NTC no-template control<br />

NTP nucleoside triphosphate<br />

O<br />

oligo(A) oligoadenylic acid<br />

oligo(dT) oligodeoxythymidylic acid<br />

OMP orotidine monophosphate<br />

P<br />

P i inorganic phosphate<br />

PAAG polyacrylamide gel<br />

PAGE polyacrylamide-gel electrophoresis<br />

PBS phosphate-buffered saline<br />

PCR polymerase chain reaction<br />

PEI polyethylenimine<br />

PEG polyethylene glycol<br />

PIPES piperazine-N,N’-bis(2-ethanesulfonic acid)<br />

PNK polynucleotide kinase<br />

pNPP 4-nitrophenyl phosphate; para-nitrophenyl phosphate<br />

poly(A) polyadenylic acid<br />

poly(A) + polyadenylated (mRNA)<br />

poly(dA-dT) poly (deoxyadenylic acid – deoxythymidylic acid)<br />

www.thermoscientific.com/onebio<br />

(continued on next page)


poly(dT) polydeoxythymidylic acid<br />

PP i inorganic pyrophosphate<br />

PVDF polyvinylidene fluoride<br />

Q<br />

QCA quality control assay<br />

qPCR quantitative polymerase chain reaction<br />

R<br />

RACE Rapid Amplification of cDNA Ends<br />

RCA rolling circle amplification<br />

RDA random displacement amplification<br />

RE restriction endonuclease<br />

REase restriction endonuclease<br />

RNA ribonucleic acid<br />

RNase ribonuclease<br />

R-M restriction-modification<br />

rRNA ribosomal ribonucleic acid<br />

RT reverse transcriptase<br />

RT-PCR reverse transcription polymerase chain reaction<br />

RT-qPCR reverse transcription – quantitative polymerase chain reaction<br />

S<br />

SAM S-adenosylmethionine<br />

SDA strand displacement amplification<br />

SDS sodium dodecyl sulfate<br />

siRNA small interfering ribonucleic acid<br />

SNP single nucleotide polymorphism<br />

ss single-stranded<br />

SSC sodium chloride/sodium citrate (buffer)<br />

SSCP single-strand conformation polymorphism<br />

SSPE sodium chloride/sodium phosphate/EDTA (buffer)<br />

STR short tandem repeat<br />

T<br />

T thymine or thymidine; one-letter code for threonine<br />

TAE Tris/acetate/EDTA (buffer)<br />

TBE Tris/borate/EDTA (buffer)<br />

TdT terminal deoxynucleotidyl transferase<br />

TE Tris/EDTA (buffer)<br />

TEMED N,N,N’,N’-tetramethylethylenediamine<br />

TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid<br />

TLC thin layer chromatography<br />

Tm melting temperature<br />

TMB 3,3’, 5,5’-tetramethylbenzidine<br />

TRICINE N-tris(hydroxymethyl)methylglycine<br />

Tris tris(hydroxymethyl)aminomethane<br />

tRNA transfer ribonucleic acid<br />

TPE Tris/phosphate/EDTA (buffer)<br />

TX-100 triton X-100<br />

T4 T4 polynucleotide kinase<br />

U<br />

U uracil or uridine<br />

u unit<br />

UDG uracil-DNA glycosylase<br />

UMP uracil monophosphate<br />

UTP uridine 5’-triphosphate<br />

UV ultraviolet<br />

V<br />

v/v volume/volume<br />

W<br />

WGA whole genome amplification<br />

w/v weight/volume<br />

X<br />

X-Gal 5-bromo-4-chloro-3-indolyl--D-galactopyranoside<br />

X-Gluc 5-bromo-4-chloro-3-indolyl--D-glucuronic acid<br />

www.thermoscientific.com/onebio 473


474<br />

www.thermoscientific.com/onebio<br />

INDICES<br />

Numerical Index .............................................................................................................. 475<br />

Alphabetical Index .......................................................................................................... 482<br />

Protocol Index .................................................................................................................. 494


Numerical Index<br />

Cat. #<br />

B<br />

Product name Size Page<br />

B02 10X Buffer Cfr9I 1 ml 160<br />

B04 10X Buffer Cfr10I 1 ml 160<br />

B12 10X Buffer EcoRI 5x1 ml 160<br />

B13 10X Buffer Bsp143I 1 ml 160<br />

B14 Bovine Serum Albumin (BSA) 5 mg 422<br />

B19 Dilution Buffer for Restriction Enzymes 5x1 ml 160<br />

B22 10X Buffer for Eco52I 1 ml 160<br />

B23 10X Buffer for SduI, Ppu21I 1 ml 160<br />

B24 10X Buffer for SdaI 1 ml 160<br />

B25 10X Buffer for Eam1105I 1 ml 160<br />

B26 10X Buffer for Ecl136II, PacI, SacI 1 ml 160<br />

B27 10X Buffer for AarI, AjiI, Bpu10I, ScaI,<br />

PasI<br />

1 ml 160<br />

B28 10X Buffer for TaqI 1 ml 160<br />

B29 10X Buffer for KpnI 1 ml 160<br />

B30 Buffer Set for Restriction Enzymes 5x1 ml 160<br />

B31 10X Buffer for BseXI 1 ml 160<br />

B43 10X Reaction Buffer with MgCl2 for<br />

DNase I, RNase-free<br />

1 ml 255<br />

B57 10X Buffer BamHI, Lsp1109I, SgeI 5x1 ml 160<br />

B59 10X Buffer BfuI 1 ml 160<br />

B69 10X T4 DNA Ligase Buffer 1.5 ml 239<br />

BB5 10X Buffer B 5x1 ml 160<br />

BG5 10X Buffer G 5x1 ml 160<br />

BO5 10X Buffer O 5x1 ml 160<br />

BR5 10X Buffer R 5x1 ml 160<br />

BY5<br />

DK<br />

10X Buffer Tango 5x1 ml 160<br />

DK0011<br />

EF<br />

Viral DNA/RNA Purification Kit (IVD) 50 preps 315<br />

EF0221 Pyrophosphatase, Inorganic (from<br />

yeast)<br />

10 u (0.1 u/μl) 272<br />

EF0651 FastAP <strong>Thermo</strong>sensitive Alkaline<br />

Phosphatase<br />

1000 u (1 u/μl) 242<br />

EF0652 FastAP <strong>Thermo</strong>sensitive Alkaline<br />

Phosphatase<br />

5x1000 u (1 u/μl) 242<br />

EF0654<br />

EK<br />

FastAP <strong>Thermo</strong>sensitive Alkaline<br />

Phosphatase<br />

300 u (1 u/μl) 242<br />

EK0031 T4 Polynucleotide Kinase (T4 PNK) 500 u (10 u/μl) 243<br />

EK0032<br />

EL<br />

T4 Polynucleotide Kinase (T4 PNK) 2500 u (10 u/μl) 243<br />

EL0011 T4 DNA Ligase 1000 u (5 u/μl) 239<br />

EL0012 T4 DNA Ligase 5x1000 u (5 u/μl) 239<br />

EL0013 T4 DNA Ligase, HC 5000 u (30 u/μl) 239<br />

EL0014 T4 DNA Ligase 200 u (5 u/μl) 239<br />

EL0016 T4 DNA Ligase, LC 2x500 u (1 u/μl) 239<br />

EL0021<br />

EM<br />

T4 RNA Ligase 1000 u (10 u/μl) 240<br />

EM0821<br />

EN<br />

10X M.SssI Buffer, 50X (5 mM) SAM 25 μl 401<br />

EN0141 Endonuclease V, T.maritima (Endo V) 250 u (5 u/μl) 257<br />

EN0181 Micrococcal Nuclease 8000 u (300 u/μl) 268<br />

EN0191 Exonuclease III (Exo III) 4000 u (200 u/μl) 259<br />

EN0201 RNase H 100 u (5 u/μl) 266<br />

EN0202 RNase H 500 u (5 u/μl) 266<br />

EN0321 S1 Nuclease 10000 u (100 u/μl) 269<br />

EN0361 Uracil-DNA Glycosylase (UDG, UNG) 200 u (1 u/μl) 273<br />

EN0362 Uracil-DNA Glycosylase (UDG, UNG) 5x200 u (1 u/μl) 273<br />

EN0521 DNase I, RNase-free 1000 u (1 u/μl) 255<br />

EN0523 DNase I, RNase-free, HC 1000 u (50 u/μl) 255<br />

Cat. # Product name Size Page<br />

EN0525 DNase I, RNase-free (supplied<br />

with MnCl2)<br />

1000 u (1 u/μl) 255<br />

EN0531 RNase A, DNase and Protease-free 10 mg (10 mg/ml) 262<br />

EN0541 RNase T1 100000 u (1000 u/μl) 263<br />

EN0542 RNase T1 500000 u (1000 u/μl) 263<br />

EN0551 RNase A, RNase T1 1 ml 264<br />

EN0561 Lambda Exonuclease 1000 u (10 u/μl) 260<br />

EN0562 Lambda Exonuclease 5000 u (10 u/μl) 260<br />

EN0581 Exonuclease I (Exo I) 4000 u (20 u/μl) 258<br />

EN0582 Exonuclease I (Exo I) 20000 u (20 u/μl) 258<br />

EN0591 Endonuclease IV, E.coli (Endo IV) 100 u (2 u/μl) 256<br />

EN0601 RNase I 1000 u (10 u/μl) 265<br />

EN0602<br />

EO<br />

RNase I 5000 u (10 u/μl) 265<br />

EO0381 RiboLock RNase Inhibitor 2500 u (40 u/μl) 271<br />

EO0382 RiboLock RNase Inhibitor 4x2500 u (40 u/μl) 271<br />

EO0384 RiboLock RNase Inhibitor 24x2500 u (40 u/μl) 271<br />

EO0461 Agarase 100 u (0.5 u/μl) 319<br />

EO0491 Proteinase K (recombinant), PCR grade 1 ml (14-22 mg/ml) 270<br />

EO0492 Proteinase K (recombinant), PCR grade 5x1 ml (14-22 mg/ml) 270<br />

EO0861<br />

EP<br />

WELQut Protease 500 u (5 u/μl) 285<br />

EP0041 DNA Polymerase I 500 u (10 u/μl) 246<br />

EP0042 DNA Polymerase I 2500 u (10 u/μl) 246<br />

EP0051 Klenow Fragment 300 u (10 u/μl) 247<br />

EP0052 Klenow Fragment 1500 u (10 u/μl) 247<br />

EP0054 Klenow Fragment, LC 300 u (2 u/μl) 247<br />

EP0061 T4 DNA Polymerase 100 u (5 u/μl) 249<br />

EP0062 T4 DNA Polymerase 500 u (5 u/μl) 249<br />

EP0081 T7 DNA Polymerase 300 u (10 u/μl) 250<br />

EP0091 phi29 DNA Polymerase 250 u (10 u/μl) 245<br />

EP0092 phi29 DNA Polymerase 1000 u (10 u/μl) 245<br />

EP0094 phi29 DNA Polymerase 5000 u (10 u/μl) 245<br />

EP0101 T3 RNA Polymerase 2000 u (20 u/μl) 331<br />

EP0102 T3 RNA Polymerase 10000 u (20 u/μl) 331<br />

EP0103 T3 RNA Polymerase, HC 10000 u (>100 u/μl) 331<br />

EP0111 T7 RNA Polymerase 5000 u (20 u/μl) 330<br />

EP0112 T7 RNA Polymerase 5x5000 u (20 u/μl) 330<br />

EP0113 T7 RNA Polymerase, HC 25000 u (>100 u/μl) 330<br />

EP0131 SP6 RNA Polymerase 2000 u (20 u/μl) 331<br />

EP0133 SP6 RNA Polymerase, HC 5000 u (>100 u/μl) 331<br />

EP0161 Terminal Deoxynucleotidyl<br />

Transferase (TdT)<br />

500 u (20 u/μl) 251<br />

EP0162 Terminal Deoxynucleotidyl<br />

Transferase (TdT)<br />

2500 u (20 u/μl) 251<br />

EP0421 Klenow Fragment, exo- 300 u (5 u/μl) 248<br />

EP0422 Klenow Fragment, exo- 1500 u (5 u/μl) 248<br />

EP0691<br />

ER<br />

Bsm DNA Polymerase, Large Fragment 1600 u (8 u/μl) 253<br />

ER0011 AluI 600 u (10 u/μl) 85<br />

ER0012 AluI 3000 u (10 u/μl) 85<br />

ER0021 Alw21I (BsiHKAI) 500 u (10 u/μl) 86<br />

ER0031 Alw26I (BsmAI) 1000 u (10 u/μl) 86<br />

ER0041 Alw44I (ApaLI) 1000 u (10 u/μl) 86<br />

ER0051 BamHI 4000 u (10 u/μl) 88<br />

ER0052 BamHI 5x4000 u (10 u/μl) 88<br />

ER0053 BamHI, HC 20000 u (50 u/μl) 88<br />

ER0055 BamHI 10000 u (10 u/μl) 88<br />

ER0061 BcnI (NciI) 1000 u (10 u/μl) 89<br />

ER0071 BglI 2000 u (10 u/μl) 90<br />

ER0072 BglI 5x2000 u (10 u/μl) 90<br />

ER0081 BglII 500 u (10 u/μl) 91<br />

www.thermoscientific.com/onebio 475


476<br />

Cat. # Product name Size Page<br />

ER0082 BglII 2500 u (10 u/μl) 91<br />

ER0091 Bpu1102I (BlpI) 200 u (10 u/μl) 93<br />

ER0092 Bpu1102I (BlpI) 1000 u (10 u/μl) 93<br />

ER0111 Bsp68I (NruI) 800 u (10 u/μl) 98<br />

ER0121 Bsp119I (BstBI) 2500 u (10 u/μl) 99<br />

ER0131 Bsp120I (PspOMI) 1500 u (10 u/μl) 99<br />

ER0141 Bsu15I (ClaI) 600 u (10 u/μl) 103<br />

ER0142 Bsu15I (ClaI) 3000 u (10 u/μl) 103<br />

ER0145 Bsu15I (ClaI) 1000 u (10 u/μl) 103<br />

ER0151 BsuRI (HaeIII) 3000 u (10 u/μl) 103<br />

ER0171 Cfr9I (XmaI) 300 u (10 u/μl) 105<br />

ER0172 Cfr9I (XmaI) 1500 u (10 u/μl) 105<br />

ER0181 Cfr10I (BsrFI) 200 u (10 u/μl) 105<br />

ER0191 Cfr13I (Sau96I) 1000 u (10 u/μl) 105<br />

ER0201 Cfr42I (SacII) 1200 u (10 u/μl) 106<br />

ER0202 Cfr42I (SacII) 5x1200 u (10 u/μl) 106<br />

ER0205 Cfr42I (SacII) 2000 u (10 u/μl) 106<br />

ER0211 Csp6I (CviQI) 1500 u (10 u/μl) 107<br />

ER0221 DraI 1500 u (10 u/μl) 108<br />

ER0223 DraI, HC 7500 u (50 u/μl) 108<br />

ER0231 Eam1104I (EarI) 300 u (10 u/μl) 108<br />

ER0232 Eam1104I (EarI) 1500 u (10 u/μl) 108<br />

ER0241 Eam1105I (AhdI) 1000 u (10 u/μl) 108<br />

ER0251 Ecl136II (EcoICRI) 1500 u (10 u/μl) 109<br />

ER0261 EcoO109I (DraII) 2000 u (10 u/μl) 115<br />

ER0271 EcoRI 5000 u (10 u/μl) 115<br />

ER0272 EcoRI 5x5000 u (10 u/μl) 115<br />

ER0273 EcoRI, HC 25000 u (50 u/μl) 115<br />

ER0275 EcoRI 10000 u (10 u/μl) 115<br />

ER0281 Eco24I (BanII) 1500 u (10 u/μl) 109<br />

ER0291 Eco31I (BsaI) 1000 u (10 u/μl) 110<br />

ER0292 Eco31I (BsaI) 5000 u (10 u/μl) 110<br />

ER0301 Eco32I (EcoRV) 2000 u (10 u/μl) 110<br />

ER0302 Eco32I (EcoRV) 5x2000 u (10 u/μl) 110<br />

ER0303 Eco32I (EcoRV), HC 10000 u (50 u/μl) 110<br />

ER0305 Eco32I (EcoRV) 4000 u (10 u/μl) 110<br />

ER0311 Eco47I (AvaII) 800 u (10 u/μl) 110<br />

ER0312 Eco47I (AvaII) 4000 u (10 u/μl) 110<br />

ER0321 Eco47III (AfeI) 200 u (10 u/μl) 111<br />

ER0322 Eco47III (AfeI) 1000 u (10 u/μl) 111<br />

ER0331 Eco52I (EagI) 500 u (10 u/μl) 111<br />

ER0332 Eco52I (EagI) 2500 u (10 u/μl) 111<br />

ER0341 Eco57I (AcuI) 200 u (5 u/μl) 112<br />

ER0342 Eco57I (AcuI) 1000 u (5 u/μl) 112<br />

ER0361 Eco72I (PmlI) 2000 u (10 u/μl) 112<br />

ER0371 Eco81I (Bsu36I) 500 u (10 u/μl) 113<br />

ER0372 Eco81I (Bsu36I) 2500 u (10 u/μl) 113<br />

ER0381 Eco88I (AvaI) 1000 u (10 u/μl) 113<br />

ER0391 Eco91I (BstEII) 1000 u (10 u/μl) 113<br />

ER0392 Eco91I (BstEII) 5000 u (10 u/μl) 113<br />

ER0401 Eco105I (SnaBI) 600 u (10 u/μl) 114<br />

ER0402 Eco105I (SnaBI) 3000 u (10 u/μl) 114<br />

ER0411 Eco130I (StyI) 2500 u (10 u/μl) 114<br />

ER0421 Eco147I (StuI) 1000 u (10 u/μl) 114<br />

ER0422 Eco147I (StuI) 5000 u (10 u/μl) 114<br />

ER0431 ScaI 1000 u (10 u/μl) 142<br />

ER0432 ScaI 5000 u (10 u/μl) 142<br />

ER0441 EheI (SfoI) 500 u (10 u/μl) 116<br />

ER0451 Esp3I (BsmBI) 200 u (10 u/μl) 117<br />

ER0452 Esp3I (BsmBI) 1000 u (10 u/μl) 117<br />

ER0461 GsuI (BpmI) 100 u (5 u/μl) 118<br />

ER0462 GsuI (BpmI) 500 u (5 u/μl) 118<br />

ER0471 Hin1I (BsaHI) 300 u (10 u/μl) 119<br />

www.thermoscientific.com/onebio<br />

Cat. # Product name Size Page<br />

ER0481 Hin6I (HinP1I) 2000 u (10 u/μl) 120<br />

ER0491 HincII (HindII) 500 u (10 u/μl) 120<br />

ER0492 HincII (HindII) 2500 u (10 u/μl) 120<br />

ER0501 HindIII 5000 u (10 u/μl) 121<br />

ER0502 HindIII 5x5000 u (10 u/μl) 121<br />

ER0503 HindIII, HC 25000 u (50 u/μl) 121<br />

ER0505 HindIII 10000 u (10 u/μl) 121<br />

ER0511 HpaII 1000 u (10 u/μl) 121<br />

ER0512 HpaII 5000 u (10 u/μl) 121<br />

ER0521 KpnI 4000 u (10 u/μl) 123<br />

ER0522 KpnI 5x4000 u (10 u/μl) 123<br />

ER0523 KpnI, HC 20000 u (50 u/μl) 123<br />

ER0531 Kpn2I (BspEI) 500 u (10 u/μl) 123<br />

ER0532 Kpn2I (BspEI) 2500 u (10 u/μl) 123<br />

ER0541 MspI (HpaII) 3000 u (10 u/μl) 128<br />

ER0542 MspI (HpaII) 5x3000 u (10 u/μl) 128<br />

ER0551 MvaI (BstNI) 2000 u (10 u/μl) 129<br />

ER0561 MluI 1000 u (10 u/μl) 127<br />

ER0562 MluI 5000 u (10 u/μl) 127<br />

ER0571 NcoI 500 u (10 u/μl) 130<br />

ER0572 NcoI 2500 u (10 u/μl) 130<br />

ER0575 NcoI 1000 u (10 u/μl) 130<br />

ER0581 NdeI 500 u (10 u/μl) 131<br />

ER0582 NdeI 2500 u (10 u/μl) 131<br />

ER0585 NdeI 4000 u (10 u/μl) 131<br />

ER0591 NotI 300 u (10 u/μl) 132<br />

ER0592 NotI 1500 u (10 u/μl) 132<br />

ER0593 NotI, HC 1500 u (50 u/μl) 132<br />

ER0595 NotI 500 u (10 u/μl) 132<br />

ER0601 PaeI (SphI) 500 u (10 u/μl) 133<br />

ER0602 PaeI (SphI) 2500 u (10 u/μl) 133<br />

ER0611 PstI 3000 u (10 u/μl) 138<br />

ER0612 PstI 5x3000 u (10 u/μl) 138<br />

ER0615 PstI 10000 u (10 u/μl) 138<br />

ER0621 PvuI 300 u (10 u/μl) 139<br />

ER0622 PvuI 1500 u (10 u/μl) 139<br />

ER0631 PvuII 2500 u (10 u/μl) 140<br />

ER0633 PvuII, HC 12500 u (50 u/μl) 140<br />

ER0635 PvuII 5000 u (10 u/μl) 140<br />

ER0641 SalI 1500 u (10 u/μl) 141<br />

ER0642 SalI 5x1500 u (10 u/μl) 141<br />

ER0645 SalI 2000 u (10 u/μl) 141<br />

ER0651 SduI (Bsp1286I) 500 u (10 u/μl) 143<br />

ER0661 SmaI 1200 u (10 u/μl) 146<br />

ER0662 SmaI 5x1200 u (10 u/μl) 146<br />

ER0663 SmaI, HC 6000 u (50 u/μl) 146<br />

ER0665 SmaI 2000 u (10 u/μl) 146<br />

ER0671 TaqI 3000 u (10 u/μl) 149<br />

ER0672 TaqI 5x3000 u (10 u/μl) 149<br />

ER0681 XbaI 1500 u (10 u/μl) 153<br />

ER0682 XbaI 5x1500 u (10 u/μl) 153<br />

ER0683 XbaI, HC 7500 u (50 u/μl) 153<br />

ER0685 XbaI 3000 u (10 u/μl) 153<br />

ER0691 XhoI 2000 u (10 u/μl) 154<br />

ER0692 XhoI 5x2000 u (10 u/μl) 154<br />

ER0693 XhoI, HC 10000 u (50 u/μl) 154<br />

ER0695 XhoI 5000 u (10 u/μl) 154<br />

ER0701 Bst1107I (BstZ17I) 500 u (10 u/μl) 102<br />

ER0711 Van91I (PflMI) 400 u (10 u/μl) 152<br />

ER0712 Van91I (PflMI) 2000 u (10 u/μl) 152<br />

ER0721 BclI 1000 u (10 u/μl) 89<br />

ER0722 BclI 5000 u (10 u/μl) 89<br />

ER0725 BclI 3000 u (10 u/μl) 89


Cat. # Product name Size Page<br />

ER0731 Mph1103I (NsiI) 1000 u (10 u/μl) 128<br />

ER0732 Mph1103I (NsiI) 5000 u (10 u/μl) 128<br />

ER0741 CpoI (RsrII) 200 u (10 u/μl) 106<br />

ER0742 CpoI (RsrII) 1000 u (10 u/μl) 106<br />

ER0751 MunI (MfeI) 300 u (10 u/μl) 129<br />

ER0752 MunI (MfeI) 1500 u (10 u/μl) 129<br />

ER0761 Psp5II (PpuMI) 500 u (10 u/μl) 138<br />

ER0771 SspI 500 u (10 u/μl) 148<br />

ER0772 SspI 2500 u (10 u/μl) 148<br />

ER0781 Bsp143I (Sau3AI) 300 u (10 u/μl) 99<br />

ER0782 Bsp143I (Sau3AI) 1500 u (10 u/μl) 99<br />

ER0801 HinfI 2000 u (10 u/μl) 121<br />

ER0802 HinfI 5x2000 u (10 u/μl) 121<br />

ER0803 HinfI, HC 10000 u (50 u/μl) 121<br />

ER0811 MboI 300 u (10 u/μl) 126<br />

ER0812 MboI 1500 u (10 u/μl) 126<br />

ER0821 MboII 300 u (5 u/μl) 126<br />

ER0822 MboII 1500 u (5 u/μl) 126<br />

ER0831 BspTI (AflII) 1000 u (10 u/μl) 101<br />

ER0851 Pfl23II (BsiWI) 300 u (3 u/μl) 136<br />

ER0871 BseGI (BtssCI) 500 u (10 u/μl) 94<br />

ER0872 BseGI (FokI) 2500 u (10 u/μl) 94<br />

ER0881 BseNI (BsrI) 1000 u (10 u/μl) 96<br />

ER0882 BseNI (BsrI) 5000 u (10 u/μl) 96<br />

ER0891 Bsh1285I (BsiEI) 600 u (10 u/μl) 97<br />

ER0901 Acc65I (Asp718I) 1000 u (10 u/μl) 83<br />

ER0902 Acc65I (KpnI) 5000 u (10 u/μl) 83<br />

ER0911 VspI (AseI) 1000 u (10 u/μl) 152<br />

ER0912 VspI (AseI) 5000 u (10 u/μl) 152<br />

ER0921 Bsh1236I (BstUI) 500 u (10 u/μl) 97<br />

ER0922 Bsh1236I (BstUI) 2500 u (10 u/μl) 97<br />

ER0931 Bsp1407I (BsrGI) 300 u (10 u/μl) 100<br />

ER0932 Bsp1407I (BsrGI) 1500 u (10 u/μl) 100<br />

ER0941 Psp1406I (AclI) 300 u (10 u/μl) 138<br />

ER0942 Psp1406I (AclI) 1500 u (10 u/μl) 138<br />

ER0961 Mva1269I (BsmI) 200 u (10 u/μl) 130<br />

ER0962 Mva1269I (BsmI) 1000 u (10 u/μl) 130<br />

ER0971 NheI 500 u (10 u/μl) 131<br />

ER0972 NheI 2500 u (10 u/μl) 131<br />

ER0975 NheI 1000 u (10 u/μl) 131<br />

ER0981 Tru1I (MseI) 300 u (10 u/μl) 151<br />

ER0982 Tru1I (MseI) 1500 u (10 u/μl) 151<br />

ER0983 Tru1I (MseI), HC 1500 u (50 u/μl) 151<br />

ER0991 AatII 300 u (10 u/μl) 82<br />

ER0992 AatII 1500 u (10 u/μl) 82<br />

ER1001 BshNI (BanI) 2000 u (10 u/μl) 97<br />

ER1011 BpiI (BbsI) 200 u (10 u/μl) 92<br />

ER1012 BpiI (BbsI) 1000 u (10 u/μl) 92<br />

ER1021 BstXI 500 u (10 u/μl) 102<br />

ER1022 BstXI 2500 u (10 u/μl) 102<br />

ER1031 KspAI (HpaI) 500 u (10 u/μl) 124<br />

ER1032 KspAI (HpaI) 2500 u (10 u/μl) 124<br />

ER1071 MnlI 300 u (10 u/μl) 127<br />

ER1072 MnlI 1500 u (10 u/μl) 127<br />

ER1081 BseDI (BsaJI) 300 u (10 u/μl) 94<br />

ER1082 BseDI (BsaJI) 1500 u (10 u/μl) 94<br />

ER1091 PauI (BssHII) 200 u (10 u/μl) 134<br />

ER1092 PauI (BssHII) 1000 u (10 u/μl) 134<br />

ER1101 HphI 300 u (10 u/μl) 122<br />

ER1102 HphI 1500 u (10 u/μl) 122<br />

ER1121 RsaI 1000 u (10 u/μl) 140<br />

ER1122 RsaI 5000 u (10 u/μl) 140<br />

ER1131 SacI 1200 u (10 u/μl) 141<br />

Cat. # Product name Size Page<br />

ER1132 SacI 5x1200 u (10 u/μl) 141<br />

ER1135 SacI 2000 u (10 u/μl) 141<br />

ER1141 TaiI (MaeII) 400 u (10 u/μl) 149<br />

ER1142 TaiI (MaeII) 2000 u (10 u/μl) 149<br />

ER1151 BspLI (NlaIV) 200 u (10 u/μl) 100<br />

ER1152 BspLI (NlaIV) 1000 u (10 u/μl) 100<br />

ER1161 BfmI (SfcI) 200 u (10 u/μl) 90<br />

ER1162 BfmI (SfcI) 1000 u (10 u/μl) 90<br />

ER1181 Bpu10I 200 u (5 u/μl) 93<br />

ER1191 SdaI (SbfI) 300 u (10 u/μl) 143<br />

ER1192 SdaI (SbfI) 1500 u (10 u/μl) 143<br />

ER1201 BseLI (BslI) 500 u (10 u/μl) 95<br />

ER1211 MlsI (MscI) 200 u (5 u/μl) 127<br />

ER1212 MlsI (MscI) 1000 u (5 u/μl) 127<br />

ER1221 NsbI (FspI) 400 u (10 u/μl) 132<br />

ER1231 AdeI (DraIII) 500 u (10 u/μl) 83<br />

ER1241 SmiI (SwaI) 1000 u (10 u/μl) 146<br />

ER1251 BcuI (SpeI) 400 u (10 u/μl) 89<br />

ER1252 BcuI (SpeI) 2000 u (10 u/μl) 89<br />

ER1261 BseMI (BsrDI) 100 u (5 u/μl) 95<br />

ER1262 BseMI (BsrDI) 500 u (5 u/μl) 95<br />

ER1271 MbiI (BsrBI) 1000 u (10 u/μl) 125<br />

ER1281 PagI (BspHI) 400 u (10 u/μl) 134<br />

ER1282 PagI (BspHI) 2000 u (10 u/μl) 134<br />

ER1291 TatI 100 u (5 u/μl) 150<br />

ER1301 XagI (EcoNI) 1000 u (10 u/μl) 152<br />

ER1311 BplI 100 u (5 u/μl) 92<br />

ER1312 BplI 500 u (5 u/μl) 92<br />

ER1321 BspPI (AlwI) 100 u (2 u/μl) 101<br />

ER1322 BspPI (AlwI) 500 u (2 u/μl) 101<br />

ER1331 PsyI (Tth111I) 1000 u (10 u/μl) 139<br />

ER1341 MssI (PmeI) 250 u (5 u/μl) 129<br />

ER1342 MssI (PmeI) 1250 u (5 u/μl) 129<br />

ER1351 TasI (Tsp509I) 1000 u (10 u/μl) 150<br />

ER1352 TasI (Tsp509I) 5000 u (10 u/μl) 150<br />

ER1361 TaaI (HpyCH4III) 200 u (10 u/μl) 149<br />

ER1362 TaaI (HpyCH4III) 1000 u (10 u/μl) 149<br />

ER1371 SchI (MlyI) 1000 u (10 u/μl) 143<br />

ER1381 XapI (ApoI) 500 u (10 u/μl) 153<br />

ER1391 CaiI (AlwNI) 500 u (10 u/μl) 104<br />

ER1401 BseMII (BspCNI) 100 u (1 u/μl) 95<br />

ER1411 ApaI 3000 u (10 u/μl) 87<br />

ER1415 ApaI 5000 u (10 u/μl) 87<br />

ER1421 Bme1390I (ScrFI) 500 u (10 u/μl) 91<br />

ER1422 Bme1390I (ScrFI) 2500 u (10 u/μl) 91<br />

ER1431 BoxI (PshAI) 500 u (10 u/μl) 92<br />

ER1441 BseSI (Bme1580I) 500 u (10 u/μl) 96<br />

ER1451 BseXI (BbvI) 100 u (3 u/μl) 96<br />

ER1452 BseXI (BbvI) 500 u (3 u/μl) 96<br />

ER1461 BshTI (AgeI) 200 u (10 u/μl) 98<br />

ER1462 BshTI (AgeI) 1000 u (10 u/μl) 98<br />

ER1471 XceI (NspI) 500 u (10 u/μl) 153<br />

ER1472 XceI (NspI) 2500 u (10 u/μl) 153<br />

ER1481 XmiI (AccI) 400 u (10 u/μl) 154<br />

ER1482 XmiI (AccI) 2000 u (10 u/μl) 154<br />

ER1491 AloI 100 u (2 u/μl) 85<br />

ER1501 BfuI (BciVI) 100 u (5 u/μl) 90<br />

ER1511 NmuCI (Tsp45I) 200 u (10 u/μl) 132<br />

ER1521 PdiI (NaeI) 200 u (10 u/μl) 135<br />

ER1522 PdiI (NaeI) 1000 u (10 u/μl) 135<br />

ER1531 PdmI (XmnI) 500 u (10 u/μl) 135<br />

ER1532 PdmI (XmnI) 2500 u (10 u/μl) 135<br />

ER1551 PsuI (BstYI) 500 u (5 u/μl) 139<br />

www.thermoscientific.com/onebio 477


478<br />

Cat. # Product name Size Page<br />

ER1561 XmaJI (AvrII) 200 u (10 u/μl) 154<br />

ER1562 XmaJI (AvrII) 1000 u (10 u/μl) 154<br />

ER1571 Hpy8I (MjaIV) 200 u (10 u/μl) 122<br />

ER1572 Hpy8I (MjaIV) 1000 u (10 u/μl) 122<br />

ER1581 AarI 25 u (2 u/μl) 82<br />

ER1582 AarI 125 u (2 u/μl) 82<br />

ER1621 LweI (SfaNI) 100 u (10 u/μl) 125<br />

ER1622 LweI (SfaNI) 500 u (10 u/μl) 125<br />

ER1631 OliI (AleI) 200 u (10 u/μl) 133<br />

ER1632 OliI (AleI) 1000 u (10 u/μl) 133<br />

ER1641 SatI (Fnu4HI) 200 u (10 u/μl) 142<br />

ER1642 SatI (Fnu4HI) 1000 u (10 u/μl) 142<br />

ER1651 TauI 50 u (3 u/μl) 150<br />

ER1652 TauI 250 u (3 u/μl) 150<br />

ER1661 FspAI 100 u (5 u/μl) 118<br />

ER1662 FspAI 500 u (5 u/μl) 118<br />

ER1681 Nb.Bpu10I 1000 u (5 u/μl) 155<br />

ER1701 DpnI 500 u (10 u/μl) 107<br />

ER1702 DpnI 2500 u (10 u/μl) 107<br />

ER1705 DpnI 1000 u (10 u/μl) 107<br />

ER1711 BseJI (BsaBI) 2000 u (10 u/μl) 94<br />

ER1731 HpyF10VI (MwoI) 300 u (10 u/μl) 123<br />

ER1732 HpyF10VI (MwoI) 1500 u (10 u/μl) 123<br />

ER1741 BveI (BspMI) 250 u (5 u/μl) 104<br />

ER1751 PfoI 200 u (10 u/μl) 136<br />

ER1761 FspBI (BfaI) 500 u (10 u/μl) 118<br />

ER1762 FspBI (BfaI) 2500 u (10 u/μl) 118<br />

ER1771 I-SceI 250 u (10 u/μl) 157<br />

ER1781 PfeI (TfiI) 500 u (10 u/μl) 135<br />

ER1791 SsiI (AciI) 200 u (10 u/μl) 147<br />

ER1801 AlfI 50 u (2 u/μl) 85<br />

ER1811 FaqI (BsmFI) 100 u (2 u/μl) 117<br />

ER1821 SfiI 1000 u (10 u/μl) 144<br />

ER1831 Hin1II (NlaIII) 300 u (5 u/μl) 120<br />

ER1841 BauI (BssSI) 200 u (10 u/μl) 88<br />

ER1851 HhaI 2000 u (10 u/μl) 119<br />

ER1861 PasI 200 u (10 u/μl) 134<br />

ER1871 PscI (PciI) 200 u (10 u/μl) 137<br />

ER1872 PscI (PciI) 1000 u (10 u/μl) 137<br />

ER1881 HpyF3I (DdeI) 500 u (10 u/μl) 122<br />

ER1882 HpyF3I (DdeI) 2500 u (10 u/μl) 122<br />

ER1891 SgsI (AscI) 300 u (10 u/μl) 145<br />

ER1892 SgsI (AscI) 1500 u (10 u/μl) 145<br />

ER1901 CseI (HgaI) 100 u (5 u/μl) 106<br />

ER1921 EcoRII 200 u (10 u/μl) 116<br />

ER1931 LguI (SapI) 100 u (5 u/μl) 124<br />

ER1932 LguI (SapI) 500 u (5 u/μl) 124<br />

ER1941 AjiI (BmgBI) 200 u (5 u/μl) 84<br />

ER1951 AjuI 100 u (5 u/μl) 84<br />

ER1971 Ppu21I (BsaAI) 500 u (10 u/μl) 137<br />

ER1981 SmoI (SmlI) 200 u (10 u/μl) 147<br />

ER2001 RseI (MslI) 200 u (10 u/μl) 140<br />

ER2002 RseI (MslI) 1000 u (10 u/μl) 140<br />

ER2011 Nt.Bpu10I 1000 u (5 u/μl) 156<br />

ER2021 MreI (Sse232I) 300 u (10 u/μl) 128<br />

ER2031 SgrDI 200 u (5 u/μl) 145<br />

ER2041 BspOI (BmtI) 200 u (10 u/μl) 100<br />

ER2051 Nb.Mva1269I 1000 u (10 u/μl) 156<br />

ER2061 AanI (PsiI) 200 u (10 u/μl) 82<br />

ER2071 Lsp1109I (BbvI) 200 u (5 u/μl) 124<br />

ER2081 MauBI 100 u (5 u/μl) 125<br />

ER2091 SfaAI (AsiSI) 1000 u (10 u/μl) 144<br />

ER2101 TscAI (TspRI) 1000 u (10 u/μl) 151<br />

www.thermoscientific.com/onebio<br />

Cat. # Product name Size Page<br />

ER2191 SspDI (KasI) 250 u (10 u/μl) 148<br />

ER2201 PacI 250 u (10 u/μl) 133<br />

ER2202 PacI 1250 u (10 u/μl) 133<br />

ER2211<br />

F<br />

SgeI 250 u (3 u/μl) 145,<br />

402<br />

F-203S Terminal Transferase (TdT) 500 u (15 u/μl) 252<br />

F-203L Terminal Transferase (TdT) 2500 u (15 u/μl) 252<br />

F-541 Phusion Site-Directed Mutagenesis Kit 20 rxns incl.<br />

10 control rxns<br />

290<br />

F-602S PowerCut Dicer 60 u (1 u/μl) 267<br />

F-602L PowerCut Dicer 300 u (1 u/μl) 267<br />

F-610 Replicator RNAi Kit 40 rxns (of 50 μl) 329<br />

F-611S Phi6 RNA Replicase 60 u (1 u/μl) 332<br />

F-611L Phi6 RNA Replicase 300 u (1 u/μl) 332<br />

F-630<br />

FD<br />

Phi6 dsRNA 20 μg (0.5 μg/μl) 387<br />

FD0014 FastDigest AluI 100 rxns 16<br />

FD0024 FastDigest Alw21I 100 rxns 17<br />

FD0034 FastDigest Alw26I 100 rxns 17<br />

FD0044 FastDigest ApaLI (Alw44I) 200 rxns 18<br />

FD0054 FastDigest BamHI 800 rxns 20<br />

FD0055 FastDigest BamHI 2500 rxns 20<br />

FD0064 FastDigest NciI (BcnI) 200 rxns 51<br />

FD0074 FastDigest BglI 200 rxns 22<br />

FD0083 FastDigest BglII 100 rxns 23<br />

FD0084 FastDigest BglII 200 rxns 23<br />

FD0094 FastDigest BlpI (Bpu1102I) 50 rxns 23<br />

FD0124 FastDigest Bsp119I 200 rxns 29<br />

FD0134 FastDigest Bsp120I 200 rxns 30<br />

FD0143 FastDigest ClaI (Bsu15I) 50 rxns 34<br />

FD0144 FastDigest ClaI (Bsu15I) 100 rxns 34<br />

FD0154 FastDigest HaeIII (BsuRI) 400 rxns 42<br />

FD0184 FastDigest BsrFI (Cfr10I) 50 rxns 32<br />

FD0194 FastDigest Sau96I (Cfr13I) 100 rxns 62<br />

FD0214 FastDigest Csp6I 100 rxns 34<br />

FD0224 FastDigest DraI 200 rxns 35<br />

FD0234 FastDigest EarI (Eam1104I) 50 rxns 37<br />

FD0244 FastDigest Eam1105I 100 rxns 37<br />

FD0254 FastDigest Ecl136II 100 rxns 37<br />

FD0264 FastDigest EcoO109I 200 rxns 39<br />

FD0274 FastDigest EcoRI 800 rxns 39<br />

FD0275 FastDigest EcoRI 2500 rxns 39<br />

FD0293 FastDigest Eco31I 50 rxns 38<br />

FD0294 FastDigest Eco31I 100 rxns 38<br />

FD0303 FastDigest EcoRV (Eco32I) 200 rxns 39<br />

FD0304 FastDigest EcoRV (Eco32I) 400 rxns 39<br />

FD0314 FastDigest AvaII (Eco47I) 200 rxns 20<br />

FD0324 FastDigest AfeI (Eco47III) 20 rxns 15<br />

FD0334 FastDigest EagI (Eco52I) 50 rxns 36<br />

FD0344 FastDigest AcuI (Eco57I) 20 rxns 14<br />

FD0364 FastDigest PmlI (Eco72I) 200 rxns 56<br />

FD0374 FastDigest Bsu36I (Eco81I) 50 rxns 34<br />

FD0384 FastDigest AvaI (Eco88I) 200 rxns 19<br />

FD0394 FastDigest Eco91I 200 rxns 38<br />

FD0404 FastDigest SnaBI (Eco105I) 50 rxns 65<br />

FD0414 FastDigest StyI (Eco130I) 200 rxns 67<br />

FD0424 FastDigest StuI (Eco147I) 100 rxns 66<br />

FD0434 FastDigest ScaI 100 rxns 63<br />

FD0443 FastDigest EheI 20 rxns 40<br />

FD0444 FastDigest EheI 50 rxns 40<br />

FD0454 FastDigest BsmBI (Esp3I) 20 rxns 29<br />

FD0464 FastDigest BpmI (GsuI) 20 rxns 24


Cat. # Product name Size Page<br />

FD0474 FastDigest BsaHI (Hin1I) 100 rxns 26<br />

FD0484 FastDigest HinP1I (Hin6I) 200 rxns 44<br />

FD0494 FastDigest HincII 100 rxns 43<br />

FD0504 FastDigest HindIII 800 rxns 43<br />

FD0505 FastDigest HindIII 2500 rxns 43<br />

FD0514 FastDigest HpaII 200 rxns 44<br />

FD0524 FastDigest KpnI 300 rxns 45<br />

FD0534 FastDigest Kpn2I 100 rxns 46<br />

FD0544 FastDigest MspI 400 rxns 50<br />

FD0554 FastDigest MvaI 200 rxns 50<br />

FD0564 FastDigest MluI 100 rxns 47<br />

FD0573 FastDigest NcoI 20 rxns 52<br />

FD0574 FastDigest NcoI 100 rxns 52<br />

FD0575 FastDigest NcoI 300 rxns 52<br />

FD0583 FastDigest NdeI 100 rxns 52<br />

FD0584 FastDigest NdeI 300 rxns 52<br />

FD0585 FastDigest NdeI 1000 rxns 52<br />

FD0593 FastDigest NotI 20 rxns 54<br />

FD0594 FastDigest NotI 50 rxns 54<br />

FD0596 FastDigest NotI 250 rxns 54<br />

FD0604 FastDigest SphI (PaeI) 20 rxns 66<br />

FD0614 FastDigest PstI 800 rxns 58<br />

FD0615 FastDigest PstI 2500 rxns 58<br />

FD0624 FastDigest PvuI 20 rxns 59<br />

FD0634 FastDigest PvuII 400 rxns 59<br />

FD0644 FastDigest SalI 200 rxns 61<br />

FD0654 FastDigest Bsp1286I (SduI) 50 rxns 30<br />

FD0663 FastDigest SmaI 100 rxns 65<br />

FD0664 FastDigest SmaI 200 rxns 65<br />

FD0674 FastDigest TaqI 400 rxns 68<br />

FD0684 FastDigest XbaI 300 rxns 71<br />

FD0685 FastDigest XbaI 750 rxns 71<br />

FD0694 FastDigest XhoI 400 rxns 71<br />

FD0695 FastDigest XhoI 1200 rxns 71<br />

FD0704 FastDigest BstZ17I (Bst1107I) 100 rxns 33<br />

FD0714 FastDigest PflMI (Van91I) 100 rxns 56<br />

FD0724 FastDigest BclI 300 rxns 22<br />

FD0734 FastDigest NsiI (Mph1103I) 100 rxns 54<br />

FD0744 FastDigest RsrII (CpoI) 20 rxns 60<br />

FD0753 FastDigest MfeI (MunI) 20 rxns 47<br />

FD0754 FastDigest MfeI (MunI) 50 rxns 47<br />

FD0764 FastDigest PpuMI (Psp5II) 50 rxns 57<br />

FD0774 FastDigest SspI 100 rxns 66<br />

FD0784 FastDigest Sau3AI (Bsp143I) 40 rxns 62<br />

FD0804 FastDigest HinfI 400 rxns 43<br />

FD0814 FastDigest MboI 50 rxns 46<br />

FD0824 FastDigest MboII 50 rxns 47<br />

FD0834 FastDigest AflII (BspTI) 150 rxns 15<br />

FD0854 FastDigest BsiWI (Pfl23II) 50 rxns 28<br />

FD0874 FastDigest BseGI 100 rxns 26<br />

FD0884 FastDigest BseNI 100 rxns 27<br />

FD0894 FastDigest BsiEI (Bsh1285I) 100 rxns 28<br />

FD0904 FastDigest Acc65I 100 rxns 13<br />

FD0914 FastDigest AseI (VspI) 200 rxns 19<br />

FD0924 FastDigest Bsh1236I 100 rxns 27<br />

FD0933 FastDigest Bsp1407I 50 rxns 30<br />

FD0934 FastDigest Bsp1407I 100 rxns 30<br />

FD0944 FastDigest AclI (Psp1406I) 20 rxns 14<br />

FD0964 FastDigest Mva1269I 50 rxns 51<br />

FD0973 FastDigest Nhe I 50 rxns 52<br />

FD0974 FastDigest NheI 100 rxns 52<br />

FD0984 FastDigest Tru1I 50 rxns 69<br />

FD0994 FastDigest AatII 50 rxns 13<br />

Cat. # Product name Size Page<br />

FD1004 FastDigest BanI (BshNI) 300 rxns 21<br />

FD1014 FastDigest BbsI (BpiI) 20 rxns 21<br />

FD1024 FastDigest BstXI 100 rxns 33<br />

FD1034 FastDigest HpaI (KspAI) 50 rxns 44<br />

FD1074 FastDigest MnlI 50 rxns 48<br />

FD1084 FastDigest BsaJI (BseDI) 20 rxns 26<br />

FD1124 FastDigest RsaI 100 rxns 60<br />

FD1133 FastDigest SacI 100 rxns 60<br />

FD1134 FastDigest SacI 200 rxns 60<br />

FD1144 FastDigest TaiI 50 rxns 68<br />

FD1154 FastDigest NlaIV (BspLI) 20 rxns 53<br />

FD1164 FastDigest SfcI (BfmI) 20 rxns 64<br />

FD1184 FastDigest Bpu10I 20 rxns 25<br />

FD1194 FastDigest SbfI (SdaI) 20 rxns 62<br />

FD1204 FastDigest BslI (BseLI) 100 rxns 28<br />

FD1214 FastDigest MscI (MlsI) 50 rxns 49<br />

FD1224 FastDigest FspI (NsbI) 50 rxns 41<br />

FD1234 FastDigest DraIII (AdeI) 50 rxns 36<br />

FD1244 FastDigest SwaI (SmiI) 200 rxns 67<br />

FD1253 FastDigest SpeI (BcuI) 20 rxns 65<br />

FD1254 FastDigest SpeI (BcuI) 50 rxns 65<br />

FD1264 FastDigest BsrDI (BseMI) 20 rxns 32<br />

FD1274 FastDigest BsrBI (MbiI) 100 rxns 32<br />

FD1284 FastDigest BspHI (PagI) 50 rxns 31<br />

FD1294 FastDigest TatI 20 rxns 68<br />

FD1304 FastDigest EcoNI (XagI) 100 rxns 38<br />

FD1314 FastDigest BplI 20 rxns 24<br />

FD1334 FastDigest PsyI 100 rxns 59<br />

FD1344 FastDigest MssI 100 rxns 50<br />

FD1354 FastDigest Tsp509I (TasI) 100 rxns 70<br />

FD1364 FastDigest TaaI 20 rxns 67<br />

FD1374 FastDigest MlyI (SchI) 100 rxns 48<br />

FD1383 FastDigest XapI 50 rxns 70<br />

FD1384 FastDigest XapI 100 rxns 70<br />

FD1394 FastDigest AlwNI (CaiI) 50 rxns 17<br />

FD1404 FastDigest BspCNI (BseMII) 20 rxns 31<br />

FD1414 FastDigest ApaI 300 rxns 18<br />

FD1424 FastDigest ScrFI (Bme1390I) 100 rxns 63<br />

FD1434 FastDigest PshAI (BoxI) 100 rxns 57<br />

FD1444 FastDigest Bme1580I (BseSI) 50 rxns 23<br />

FD1454 FastDigest BseXI 20 rxns 27<br />

FD1464 FastDigest AgeI (BshTI) 20 rxns 15<br />

FD1474 FastDigest NspI (XceI) 50 rxns 55<br />

FD1484 FastDigest AccI (XmiI) 50 rxns 13<br />

FD1514 FastDigest NmuCI 20 rxns 53<br />

FD1524 FastDigest NaeI (PdiI) 50 rxns 51<br />

FD1534 FastDigest PdmI 100 rxns 55<br />

FD1554 FastDigest PsuI 150 rxns 58<br />

FD1564 FastDigest AvrII (XmaJI) 20 rxns 20<br />

FD1574 FastDigest Hpy8I 20 rxns 45<br />

FD1634 FastDigest AleI (OliI) 20 rxns 16<br />

FD1644 FastDigest Fnu4HI (SatI) 20 rxns 40<br />

FD1654 FastDigest TauI 20 rxns 69<br />

FD1664 FastDigest FspAI 20 rxns 41<br />

FD1703 FastDigest DpnI 50 rxns 35<br />

FD1704 FastDigest DpnI 100 rxns 35<br />

FD1714 FastDigest BsaBI (BseJI) 200 rxns 25<br />

FD1724 FastDigest DrdI (AasI) 25 rxns 36<br />

FD1734 FastDigest HpyF10VI 20 rxns 45<br />

FD1744 FastDigest BspMI (BveI) 50 rxns 31<br />

FD1754 FastDigest PfoI 20 rxns 56<br />

FD1764 FastDigest BfaI (FspBI) 50 rxns 22<br />

FD1784 FastDigest TfiI (PfeI) 50 rxns 69<br />

www.thermoscientific.com/onebio 479


480<br />

Cat. # Product name Size Page<br />

FD1794 FastDigest AciI (SsiI) 20 rxns 14<br />

FD1814 FastDigest BsmFI (FaqI) 20 rxns 29<br />

FD1824 FastDigest SfiI 150 rxns 64<br />

FD1834 FastDigest NlaIII (Hin1II) 100 rxns 53<br />

FD1854 FastDigest HhaI 200 rxns 42<br />

FD1884 FastDigest DdeI (HpyF3I) 50 rxns 35<br />

FD1894 FastDigest AscI (SgsI) 100 rxns 18<br />

FD1904 FastDigest HgaI (CseI) 20 rxns 42<br />

FD1934 FastDigest SapI (LguI) 20 rxns 61<br />

FD1954 FastDigest AjuI 20 rxns 16<br />

FD1974 FastDigest BsaAI (Ppu21I) 50 rxns 25<br />

FD2004 FastDigest MslI (RseI) 20 rxns 49<br />

FD2024 FastDigest MreI 20 rxns 48<br />

FD2044 FastDigest BmtI (BspOI) 20 rxns 24<br />

FD2064 FastDigest PsiI (AanI) 20 rxns 57<br />

FD2074 FastDigest BbvI (Lsp1109I) 100 rxns 21<br />

FD2084 FastDigest MauBI 20 rxns 46<br />

FD2094 FastDigest AsiSI (SfaAI) 100 rxns 19<br />

FD2104 FastDigest TspRI (TscAI) 100 rxns 70<br />

FD2114 FastDigest SexAI (CsiI) 50 rxns 63<br />

FD2124 FastDigest SfaNI (BmsI) 20 rxns 64<br />

FD2134 FastDigest BssHII (PteI) 20 rxns 33<br />

FD2144 FastDigest FokI 100 rxns 40<br />

FD2154 FastDigest NruI (RruI) 100 rxns 54<br />

FD2164 FastDigest SanDI (KflI) 20 rxns 61<br />

FD2174 FastDigest MseI (SaqAI) 50 rxns 49<br />

FD2184 FastDigest HaeII (BfoI) 200 rxns 41<br />

FD2204 FastDigest PacI 25 rxns 55<br />

FD2224<br />

K<br />

FastDigest PspFI 20 rxns 58<br />

K0441 TranscriptAid T7 High Yield<br />

Transcription Kit<br />

50 rxns 328<br />

K0481 GeneJET Plasmid Midiprep Kit 25 preps. 305<br />

K0482 GeneJET Plasmid Midiprep Kit 100 preps. 305<br />

K0491 GeneJET Plasmid Maxiprep Kit 10 preps. 306<br />

K0492 GeneJET Plasmid Maxiprep Kit 25 preps. 306<br />

K0502 GeneJET Plasmid Miniprep Kit 50 preps. 304<br />

K0503 GeneJET Plasmid Miniprep Kit 250 preps. 304<br />

K0512 Genomic DNA Purification Kit 100 preps. 311<br />

K0513 Silica Bead DNA Gel Extraction Kit 100 preps. (up to<br />

5 μg of DNA per prep)<br />

318<br />

K0621 DecaLabel DNA Labeling Kit 10 rxns 344<br />

K0622 DecaLabel DNA Labeling Kit 30 rxns 344<br />

K0651 Biotin DecaLabel DNA Labeling Kit 10 rxns 343<br />

K0652 Biotin DecaLabel DNA Labeling Kit 30 rxns 343<br />

K0661 Biotin Chromogenic Detection Kit 10 rxns 345<br />

K0662 Biotin Chromogenic Detection Kit 30 rxns 345<br />

K0691 GeneJET Gel Extraction Kit 50 preps. 317<br />

K0692 GeneJET Gel Extraction Kit 250 preps. 317<br />

K0701 GeneJET PCR Purification Kit 50 preps. 316<br />

K0702 GeneJET PCR Purification Kit 250 preps. 316<br />

K0721 GeneJET Genomic DNA Purification Kit 50 preps. 310<br />

K0722 GeneJET Genomic DNA Purification Kit 250 preps. 310<br />

K0731 GeneJET RNA Purification Kit 50 preps. 307<br />

K0732 GeneJET RNA Purification Kit 250 preps. 307<br />

K0761 GeneJET Whole Blood RNA<br />

Purification Mini Kit<br />

50 preps 308<br />

K0771 Fast DNA End Repair Kit 50 rxns 287<br />

K0781 GeneJET Whole Blood Genomic DNA<br />

Purification Mini Kit<br />

50 preps 312<br />

K0782 GeneJET Whole Blood Genomic DNA<br />

Purification Mini Kit<br />

250 preps 312<br />

K0791 GeneJET Plant Genomic DNA<br />

Purification Mini Kit<br />

50 preps 313<br />

www.thermoscientific.com/onebio<br />

Cat. # Product name Size Page<br />

K0792 GeneJET Plant Genomic DNA<br />

Purification Mini Kit<br />

250 preps 313<br />

K0801 GeneJET Plant RNA Purification Mini Kit 50 preps 309<br />

K0802 GeneJET Plant RNA Purification Mini Kit 250 preps 309<br />

K0821 GeneJET Viral DNA and RNA<br />

Purification Kit<br />

50 preps 314<br />

K1213 InsTAclone PCR Cloning Kit 10 rxns 10 rxns 281<br />

K1214 InsTAclone PCR Cloning Kit 30 rxns 30 rxns 281<br />

K1231 CloneJET PCR Cloning Kit 10 rxns 279<br />

K1232 CloneJET PCR Cloning Kit 40 rxns 279<br />

K1241 aLICator LIC Cloning<br />

and Expression Kit 1<br />

20 rxns 282<br />

K1251 aLICator LIC Cloning<br />

and Expression Kit 2<br />

20 rxns 282<br />

K1261 aLICator LIC Cloning<br />

and Expression Kit 3<br />

20 rxns 282<br />

K1271 aLICator LIC Cloning<br />

and Expression Kit 4<br />

30 rxns 282<br />

K1281 aLICator LIC Cloning<br />

and Expression Set 1<br />

20 rxns 282<br />

K1291 aLICator LIC Cloning<br />

and Expression Set 2<br />

30 rxns 282<br />

K1422 Rapid DNA Ligation Kit 50 rxns 329<br />

K1423 Rapid DNA Ligation Kit 150 rxns 329<br />

K1441 EpiJET DNA Methylation Analysis Kit<br />

(MspI/HpaII)<br />

200 rxns 399<br />

K1451 EpiJET DNA Methylation Analysis Kit<br />

(TaqI/HpyF30I)<br />

200 rxns 399<br />

K1481 EpiJET 5-hmC Analysis Kit 25 rxns 400<br />

K2561 Maxima H Minus Double-Stranded<br />

cDNA Synthesis Kit<br />

10 rxns 286<br />

K2710 TransformAid Bacterial<br />

Transformation Kit<br />

20 transf. 289<br />

K2711<br />

R<br />

TransformAid Bacterial<br />

Transformation Kit<br />

40 transf. 289<br />

R0391 IPTG, dioxane-free 1 g 424<br />

R0392 IPTG, dioxane-free 5 g 424<br />

R0393 IPTG, dioxane-free 5x5 g 424<br />

R0401 X-Gal 0.5 g 424<br />

R0402 X-Gal 2x1 g 424<br />

R0404 X-Gal 1 g 424<br />

R0421 dm4CTP, 10 mM 0.1 ml 415<br />

R0431 dm5CTP, 10 mM 0.1 ml 415<br />

R0441 ATP, 100 mM 0.25 ml 411<br />

R0451 CTP, 100 mM 0.25 ml 412<br />

R0461 GTP, 100 mM 0.25 ml 412<br />

R0471 UTP, 100 mM 0.25 ml 412<br />

R0481 NTP Set, 100 mM 4x0.25 ml 411<br />

R0491 TopVision Agarose 100 g 427<br />

R0492 TopVision Agarose 500 g 427<br />

R0501 dm6ATP, 10 mM Solution 0.1 ml 415<br />

R0551 Glycogen, RNA grade 2x0.1 ml (20 mg/ml) 423<br />

R0561 Glycogen, molecular biology grade 2x0.25 ml (20 mg/ml) 423<br />

R0581 Water, nuclease-free 4x1.25 ml 420<br />

R0582 Water, nuclease-free 30 ml 420<br />

R0601 DEPC-treated Water 30 ml 420<br />

R0603 DEPC-treated Water 5x1 ml 420<br />

R0641 2X RNA Loading Dye 1 ml 388<br />

R0801 TopVision Low Melting Point Agarose 25 g 427<br />

R0811 5-Fluoroorotic Acid 1 g 425<br />

R0812 5-Fluoroorotic Acid 5 g 425<br />

R0821 BCIP-T 1 g 426<br />

R0822 BCIP-T 5 g 426


Cat. # Product name Size Page<br />

R0841 NBT 1 g 426<br />

R0842 NBT 5 g 426<br />

R0851 X-Gluc 0.1 g 425<br />

R0852 X-Gluc 0.5 g 425<br />

R0861 DTT 5 g 420<br />

R0862 DTT 25 g 420<br />

R0941 X-Gal Solution, ready-to-use 10 ml (20 mg/ml) 424<br />

R0971 25 mM MgCl2 4x1.25 ml 421<br />

R1021 0.5 M EDTA, pH 8.0 5x1 ml 421<br />

R1091 Aminoallyl-UTP, 50 mM 0.05 ml 414<br />

R1101 Aminoallyl-dUTP, 50 mM 0.05 ml 414<br />

R1171 IPTG Solution, ready-to-use 10x1.5 ml 424<br />

R1181 3 M Sodium Acetate Solution, pH 5.2,<br />

molecular biology grade<br />

5x1 ml 421<br />

R1191<br />

SD<br />

dITP, 100 mM Solution 0.25 ml 410<br />

SD0011 Lambda DNA 500 μg 291<br />

SD0021 Lambda DNA (dam-, dcm-) 500 μg 291<br />

SD0031 X174 RF1 DNA 50 μg 291<br />

SD0041 pBR322 DNA 100 μg 291<br />

SD0051 pUC18 DNA 50 μg 292<br />

SD0061 pUC19 DNA 50 μg 292<br />

SD0141 pTZ19R DNA 50 μg 292<br />

SD0171 pUC57 DNA 50 μg 292<br />

SD1111 Jurkat Genomic DNA 15 μg 403<br />

SD1121 CpG Methylated Jurkat Genomic DNA 15 μg 403<br />

SD1131<br />

SM<br />

CpG Methylated Human Genomic DNA 15 μg 403<br />

SM0101/ Lambda DNA/HindIII Marker, 2<br />

2/3<br />

5x50 μg 369<br />

SM0191/ Lambda DNA/EcoRI+HindIII Marker, 3<br />

2/3<br />

5x50 μg 369<br />

SM0221/ pUC19 DNA/MspI (HpaII) Marker, 23<br />

2/3<br />

50 μg 369<br />

SM0241/ GeneRuler 100 bp DNA Ladder<br />

2/3<br />

50 μg 360<br />

SM0251/ X174 DNA/BsuRI (HaeIII) Marker, 9<br />

2/3<br />

50 μg 369<br />

SM0271 pBR322 DNA/BsuRI (HaeIII) Marker, 5 50 μg 369<br />

SM0281 Lambda DNA/EcoRI Marker, 1 5x50 μg 369<br />

SM0311/ GeneRuler 1 kb DNA Ladder<br />

2/3<br />

5x50 μg 360<br />

SM0331/ GeneRuler DNA Ladder Mix<br />

2/3<br />

5x50 μg 360<br />

SM0371/ GeneRuler 50 bp DNA Ladder<br />

2/3<br />

50 μg 360<br />

SM0383 MassRuler Low Range DNA Ladder,<br />

ready-to-use<br />

2x500 μl 363<br />

SM0393 MassRuler High Range DNA Ladder,<br />

ready-to-use<br />

2x500 μl 363<br />

SM0403 MassRuler DNA Ladder Mix, readyto-use<br />

2x500 μl 363<br />

SM0613 O’RangeRuler 50 bp DNA Ladder,<br />

ready-to-use<br />

25 μg 367<br />

SM0623 O’RangeRuler 100 bp DNA Ladder,<br />

ready-to-use<br />

25 μg 367<br />

SM0633 O’RangeRuler 200 bp DNA Ladder,<br />

ready-to-use<br />

25 μg 367<br />

SM0643 O’RangeRuler 500 bp DNA Ladder,<br />

ready-to-use<br />

25 μg 367<br />

SM0653 O’RangeRuler 100 bp+500 bp DNA<br />

Ladder, ready-to-use<br />

25 μg 367<br />

SM1103 FastRuler Low Range DNA Ladder,<br />

ready-to-use<br />

2x500 μl 364<br />

SM1113 FastRuler Middle Range DNA Ladder,<br />

ready-to-use<br />

2x500 μl 364<br />

Cat. # Product name Size Page<br />

SM1123 FastRuler High Range DNA Ladder,<br />

ready-to-use<br />

2x500 μl 364<br />

SM1133 O’GeneRuler 50 bp DNA Ladder,<br />

ready-to-use<br />

50 μg 360<br />

SM1143 O’GeneRuler 100 bp DNA Ladder,<br />

ready-to-use<br />

50 μg 360<br />

SM1153 O’GeneRuler 100 bp Plus DNA Ladder,<br />

ready-to-use<br />

50 μg 360<br />

SM1163 O’GeneRuler 1 kb DNA Ladder,<br />

ready-to-use<br />

5x50 μg 360<br />

SM1173 O’GeneRuler DNA Ladder Mix,<br />

ready-to-use<br />

5x50 μg 360<br />

SM1191/ GeneRuler Low Range DNA Ladder<br />

2/3<br />

50 μg 361<br />

SM1203 O’GeneRuler Low Range DNA Ladder,<br />

ready-to-use<br />

50 μg 363<br />

SM1211/ GeneRuler Ultra Low Range DNA<br />

50 μg 361<br />

2/3 Ladder<br />

SM1223 O’GeneRuler Ultra Low Range DNA<br />

Ladder, ready-to-use<br />

50 μg 361<br />

SM1233 FastRuler Ultra Low Range DNA Ladder,<br />

ready-to-use<br />

2x500 μl 364<br />

SM1243 MassRuler Express HR Forward DNA<br />

Ladder, ready-to-use<br />

2x500 μl 363<br />

SM1253 MassRuler Express HR Reverse DNA<br />

Ladder, ready-to-use<br />

2x500 μl 363<br />

SM1263 MassRuler Express LR Forward DNA<br />

Ladder, ready-to-use<br />

2x500 μl 363<br />

SM1273 MassRuler Express LR Reverse DNA<br />

Ladder, ready-to-use<br />

2x500 μl 363<br />

SM1283 MassRuler Express Forward DNA<br />

Ladder Mix, ready-to-use<br />

2x500 μl 363<br />

SM1293 MassRuler Express Reverse DNA<br />

Ladder Mix, ready-to-use<br />

2x500 μl 363<br />

SM1303 O’RangeRuler 5 bp DNA Ladder,<br />

ready-to-use<br />

50 μg 367<br />

SM1313 O’RangeRuler 10 bp DNA Ladder,<br />

ready-to-use<br />

50 μg 367<br />

SM1323 O’RangeRuler 20 bp DNA Ladder,<br />

ready-to-use<br />

50 μg 367<br />

SM1343 O’GeneRuler 1 kb Plus DNA Ladder,<br />

ready-to-use<br />

5x50 μg 360<br />

SM1351/ GeneRuler High Range DNA Ladder<br />

2/3<br />

50 μg 361<br />

SM1551/ GeneRuler Express DNA Ladder<br />

2/3<br />

50 μg 361<br />

SM1563 O’GeneRuler Express DNA Ladder,<br />

ready-to-use<br />

50 μg 361<br />

SM1821 RiboRuler High Range RNA Ladder 5x20 μl 386<br />

SM1831<br />

SO<br />

RiboRuler Low Range RNA Ladder 5x20 μl 386<br />

SO131 Oligo(dT)18 Primer 30 μg (100 μM) 417<br />

SO132 Oligo(dT)18 Primer 60 μg (100 μM) 417<br />

SO142 Random Hexamer Primer 24 μg (100 μM) 417<br />

SO181 Exo-Resistant Random Primer 100 μl (500 μM) 417<br />

www.thermoscientific.com/onebio 481


482<br />

Alphabetical Index<br />

A<br />

AanI ............................................................................................ 57, 82<br />

AarI ...................................................................................................82<br />

AasI ..................................................................................................36<br />

AatII ............................................................................................ 13, 82<br />

Abbreviations ...................................................................................471<br />

Acc65I ........................................................................................ 13, 83<br />

AccI .......................................................................................... 13, 154<br />

AciI ........................................................................................... 14, 147<br />

AclI ........................................................................................... 14, 138<br />

Activity Assay for<br />

Conventional Restriction Enzymes ...................................................77<br />

DNA/RNA Modifying Enzymes .......................................................236<br />

FastDigest Restriction Enzymes .........................................................8<br />

Activity of<br />

DNA/RNA modifying enzymes in <strong>Thermo</strong> <strong>Scientific</strong> buffers ..............274<br />

Mesophilic and <strong>Thermo</strong>philic Enzymes at 37°C ..............................165<br />

Restriction Enzymes in Five Buffer System .....................................161<br />

AcuI .......................................................................................... 14, 112<br />

AdeI ............................................................................................ 36, 83<br />

AfeI ........................................................................................... 15, 111<br />

AflII ........................................................................................... 15, 101<br />

Agarase...........................................................................................319<br />

Agarose...........................................................................................427<br />

AgeI ............................................................................................ 15, 98<br />

AhdI ................................................................................................108<br />

AjiI ....................................................................................................84<br />

AjuI ............................................................................................. 16, 84<br />

AleI ........................................................................................... 16, 133<br />

AlfI ....................................................................................................85<br />

aLICator Ligation Independent Cloning (LIC)<br />

and Expression System ....................................................................282<br />

Alkaline Phosphatase<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase ...............................242<br />

AloI ...................................................................................................85<br />

Alphabetic List of<br />

Commercially Available Restriction Enzymes ..................................205<br />

Conventional Restriction Enzymes ...................................................78<br />

Enzymes Cleaving DNA on the Both Sides of their Recognition<br />

Sequence ....................................................................................228<br />

Enzymes Generating 3’-protruding Ends ........................................226<br />

Enzymes Generating 5’-protruding Ends ........................................223<br />

Enzymes Generating Blunt Ends ....................................................228<br />

FastDigest Restriction Enzymes .........................................................9<br />

Recognition Sequences ................................................................217<br />

AluI ............................................................................................. 16, 85<br />

Alw21I ........................................................................................ 17, 86<br />

Alw26I ........................................................................................ 17, 86<br />

Alw44I ........................................................................................ 18, 86<br />

AlwI ................................................................................................101<br />

AlwNI ........................................................................................ 17, 104<br />

Amino Acids<br />

Abbreviations and Structure ..........................................................463<br />

Codons ........................................................................................463<br />

Aminoallyl-dUTP ..............................................................................414<br />

Aminoallyl-UTP ................................................................................414<br />

Amplification ............................................. See in vitro transcription, PCR,<br />

Real-time PCR, Strand Displacement<br />

ApaI ............................................................................................ 18, 87<br />

www.thermoscientific.com/onebio<br />

ApaLI .......................................................................................... 18, 86<br />

ApoI ................................................................................................153<br />

AscI .......................................................................................... 18, 145<br />

AseI .......................................................................................... 19, 152<br />

AsiSI ......................................................................................... 19, 144<br />

Asp718I ............................................................................................83<br />

Assay<br />

Activity Assay ..................................................................... 8, 77, 236<br />

Contaminant Activities .................................................... 4, 8, 77, 236<br />

Double-stranded Endodeoxyribonuclease (dsENDO) ........................236<br />

E.coli Genomic DNA .....................................................................236<br />

Exodeoxyribonuclease ..................................................................236<br />

Functional....................................................................................236<br />

Labeled Oligonucleotide (LO)........................................... 7, 8, 77, 236<br />

Non-specific Nuclease and Cross-contamination ..............................77<br />

Protease ......................................................................................236<br />

Ribonuclease (RNase) ...................................................................236<br />

Single-stranded Endodeoxyribonuclease (ssENDO) .........................236<br />

ATP .................................................................................................411<br />

AvaI .......................................................................................... 19, 113<br />

AvaII .......................................................................................... 20, 110<br />

AvrII .......................................................................................... 20, 154<br />

B<br />

Bacterial Strain Genotypes ................................................................429<br />

Bacterial Transformation System ....................................... 286, 289, 290<br />

BamHI ......................................................................................... 20, 88<br />

BanI ............................................................................................ 21, 97<br />

BanII ...............................................................................................109<br />

BauI ..................................................................................................88<br />

BbsI ............................................................................................ 21, 92<br />

BbvI .................................................................................... 21, 96, 124<br />

BCIP-T ............................................................................................426<br />

BCIP-T/NBT Substrate Solution .........................................................426<br />

BciVI .................................................................................................90<br />

BclI ............................................................................................. 22, 89<br />

BcnI ............................................................................................ 51, 89<br />

BcuI ............................................................................................ 65, 89<br />

BfaI ........................................................................................... 22, 118<br />

BfmI ............................................................................................ 64, 90<br />

BfoI ...................................................................................................41<br />

BfuI ...................................................................................................90<br />

BglI ............................................................................................. 22, 90<br />

BglII ............................................................................................ 23, 91<br />

Biotin-11-dUTP ................................................................................414<br />

Biotin Chromogenic Detection Kit ......................................................345<br />

Biotin DecaLabel DNA Labeling Kit ....................................................343<br />

Blotting<br />

Southern .....................................................................................351<br />

BlpI ............................................................................................. 23, 93<br />

Blue/White (B/W) Cloning Assay ............................................................8<br />

Bme1390I ................................................................................... 63, 91<br />

Bme1580I ................................................................................... 23, 96<br />

BmgBI ...............................................................................................84<br />

BmsI .................................................................................................64<br />

BmtI .......................................................................................... 24, 100<br />

Bovine Serum Albumin (BSA) ............................................................422<br />

BoxI ............................................................................................ 57, 92<br />

BpiI ............................................................................................. 21, 92


BplI ............................................................................................. 24, 92<br />

BpmI ......................................................................................... 24, 118<br />

Bpu10I ........................................................................................ 25, 93<br />

Bpu1102I .................................................................................... 23, 93<br />

BsaAI ........................................................................................ 25, 137<br />

BsaBI .......................................................................................... 25, 94<br />

BsaHI ........................................................................................ 26, 119<br />

BsaI ................................................................................................110<br />

BsaJI ........................................................................................... 26, 94<br />

BseDI .......................................................................................... 26, 94<br />

BseGI .......................................................................................... 26, 94<br />

BseJI ........................................................................................... 25, 94<br />

BseLI........................................................................................... 28, 95<br />

BseMI ......................................................................................... 32, 95<br />

BseMII ......................................................................................... 31, 95<br />

BseNI .......................................................................................... 27, 96<br />

BseSI .......................................................................................... 23, 96<br />

BseXI .......................................................................................... 27, 96<br />

Bsh1236I .................................................................................... 27, 97<br />

Bsh1285I .................................................................................... 28, 97<br />

BshNI .......................................................................................... 21, 97<br />

BshTI .......................................................................................... 15, 98<br />

BsiEI ........................................................................................... 28, 97<br />

BsiHKAI .............................................................................................86<br />

BsiWI ........................................................................................ 28, 136<br />

BslI ............................................................................................. 28, 95<br />

BsmAI ...............................................................................................86<br />

BsmBI ....................................................................................... 29, 117<br />

Bsm DNA Polymerase, Large Fragment .............................................253<br />

BsmFI ....................................................................................... 29, 117<br />

BsmI ...............................................................................................130<br />

Bsp68I ..............................................................................................98<br />

Bsp119I ...................................................................................... 29, 99<br />

Bsp120I ...................................................................................... 30, 99<br />

Bsp143I ...................................................................................... 62, 99<br />

Bsp1286I .................................................................................. 30, 143<br />

Bsp1407I .................................................................................. 30, 100<br />

BspCNI ........................................................................................ 31, 95<br />

BspEI ..............................................................................................123<br />

BspHI ........................................................................................ 31, 134<br />

BspLI ........................................................................................ 53, 100<br />

BspMI ....................................................................................... 31, 104<br />

BspOI ........................................................................................ 24, 100<br />

BspPI ..............................................................................................101<br />

BspTI ........................................................................................ 15, 101<br />

BsrBI ......................................................................................... 32, 125<br />

BsrDI ........................................................................................... 32, 95<br />

BsrFI ......................................................................................... 32, 105<br />

BsrGI ...............................................................................................100<br />

BsrI ...................................................................................................96<br />

BssHII........................................................................................ 33, 134<br />

BssSI ................................................................................................88<br />

Bst1107I ................................................................................... 33, 102<br />

BstBI .................................................................................................99<br />

BstEII ..............................................................................................113<br />

BstNI ...............................................................................................129<br />

BstUI .................................................................................................97<br />

BstXI ......................................................................................... 33, 102<br />

BstYI ...............................................................................................139<br />

BstZ17I ..................................................................................... 33, 102<br />

Bsu15I ...................................................................................... 34, 103<br />

Bsu36I ...................................................................................... 34, 113<br />

BsuRI ........................................................................................ 42, 103<br />

BtsCI .................................................................................................94<br />

Buffers for DNA and RNA Electrophoresis<br />

10X TBE Buffer .................................................................... 371, 389<br />

50X TAE Buffer .................................................................... 371, 389<br />

Buffers for Restriction Enzymes<br />

10X Buffer AarI, AjiI, Bpu10I, ScaI, PasI ..........................................160<br />

10X Buffer B ................................................................................160<br />

10X Buffer BamHI, Lsp1109I, SgeI ................................................160<br />

10X Buffer BfuI ............................................................................160<br />

10X Buffer BseXI ..........................................................................160<br />

10X Buffer Bsp143I .....................................................................160<br />

10X Buffer Cfr9I ...........................................................................160<br />

10X Buffer Cfr10I .........................................................................160<br />

10X Buffer Eam1105I...................................................................160<br />

10X Buffer Ecl136II, PacI, SacI ......................................................160<br />

10X Buffer Eco52I ........................................................................160<br />

10X Buffer EcoRI ..........................................................................160<br />

10X Buffer G ................................................................................160<br />

10X Buffer KpnI ...........................................................................160<br />

10X Buffer O ...............................................................................160<br />

10X Buffer R ................................................................................160<br />

10X Buffer SdaI ...........................................................................160<br />

10X Buffer SduI, Ppu21I ...............................................................160<br />

10X Buffer Tango .....................................................................160<br />

10X Buffer TaqI ............................................................................160<br />

Buffer Set for Restriction Enzymes.................................................160<br />

Dilution Buffer for Restriction Enzymes ..........................................160<br />

BveI .......................................................................................... 31, 104<br />

C<br />

CaiI ........................................................................................... 17, 104<br />

Carriers for Precipitation of Nucleic Acids ..........................................423<br />

Cfr9I ...............................................................................................105<br />

Cfr10I ....................................................................................... 32, 105<br />

Cfr13I ....................................................................................... 62, 105<br />

Cfr42I .............................................................................................106<br />

Chromogenic Substrates<br />

BCIP-T ........................................................................................426<br />

NBT ............................................................................................426<br />

ClaI ........................................................................................... 34, 103<br />

Classification of Restriction Enzymes .................................................171<br />

Cleland’s reagent .............................................................................420<br />

CloneJET PCR Cloning Kit .................................................................279<br />

Cloning<br />

CloneJET PCR Cloning Kit .............................................................279<br />

InsTAclone PCR Cloning Kit ...........................................................281<br />

Phage and Plasmid DNA ...............................................................432<br />

Rapid DNA Ligation Kit .................................................................288<br />

TransformAid Bacterial Transformation Kit ...................... 286, 289, 290<br />

Codons and Assigned Amino Acids ....................................................463<br />

Commercially Available Restriction Enzymes, Alphabetic List ...............205<br />

Concentrations of Acids and Bases ...................................................464<br />

Constants, Physical<br />

General .......................................................................................465<br />

of the Nucleoside Triphosphates and Related Compounds ...............464<br />

Conventional Lambda DNA Markers ..................................................368<br />

Conventional Restriction Enzymes .......................................................77<br />

Conversions of<br />

Nucleic Acids ...............................................................................465<br />

Oligonucleotides ..........................................................................465<br />

www.thermoscientific.com/onebio 483


484<br />

CpG Methylation ..............................................................................176<br />

CpG Methylated Human Genomic DNA...............................................403<br />

CpG Methylated Jurkat Genomic DNA................................................403<br />

CpG Methyltransferase (M.SssI)......................................................... 401<br />

CpoI .......................................................................................... 60, 106<br />

CseI .......................................................................................... 42, 106<br />

CsiI ...................................................................................................63<br />

Csp6I ........................................................................................ 34, 107<br />

CTP.................................................................................................412<br />

Custom AND OEM Manufacturing ......................................................... IX<br />

Custom DNA Ladders Service ...........................................................370<br />

CviQI ...............................................................................................107<br />

D<br />

Dam Methylation ..............................................................................174<br />

dATP ...............................................................................................408<br />

Dcm Methylation ..............................................................................175<br />

dCTP ...............................................................................................408<br />

DdeI .......................................................................................... 35, 122<br />

DecaLabel DNA Labeling Kit .............................................................344<br />

Decay Factors for Calculating the Amount of Radioactivity ..................466<br />

Denaturing Polyacrylamide Gel Electrophoresis ..................................375<br />

Deoxyribonucleoside Triphosphates ...................................................406<br />

DEPC-treated Water .........................................................................420<br />

Dephosphorylation<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase ...............................242<br />

Detection<br />

Biotin Chromogenic Detection Kit ..................................................345<br />

dGTP ...............................................................................................409<br />

Digestion of PCR Products ........................................................ 158, 169<br />

Dilution Buffer for Restriction Enzymes ..............................................160<br />

Dilution of restriction enzymes ..........................................................158<br />

dITP ................................................................................................410<br />

dm 4 CTP ...........................................................................................415<br />

dm 5 CTP ...........................................................................................415<br />

dm 6 ATP ...........................................................................................415<br />

DNA<br />

Digestion ............................................................................... 72, 158<br />

Extraction ............................................................................ 317, 318<br />

Labeling .............................................................................. 341, 376<br />

Nick-Translation (protocols) .....................................................350<br />

Random-primed Labeling .......................................................350<br />

Ladders and Markers ...................................................................354<br />

Ligase .........................................................................................239<br />

Ligation ............................................................................... 288, 294<br />

Loading Dyes ........................................................................372-373<br />

Maps ...................................................................................432-456<br />

Migration in Agarose and Polyacrylamide Gels ...............................462<br />

Number of Restriction Sites in DNA Molecules ...............................457<br />

Transformation .............................................................................289<br />

DNA Ends Generated by Restriction Enzyme Cleavage<br />

Enzymes Generating 3’-protruding Ends ........................................226<br />

Enzymes Generating 5’-protruding Ends ........................................223<br />

Enzymes Generating Blunt Ends ....................................................228<br />

DNA Extraction from gels<br />

Agarase .......................................................................................319<br />

GeneJET Gel Extraction Kit ............................................................317<br />

Silica Bead DNA Gel Extraction Kit .................................................318<br />

DNA Labeling<br />

Biotin DecaLabel DNA Labeling Kit ................................................343<br />

DecaLabel DNA Labeling Kit .........................................................344<br />

www.thermoscientific.com/onebio<br />

Modified Nucleotides ....................................................................413<br />

Protocols .....................................................................................349<br />

DNA Ladders and Markers<br />

Group Selection Guide ..................................................................354<br />

Loading Dyes ...............................................................................372<br />

Protocols for Labeling ...................................................................349<br />

Range Selection Guide .................................................................355<br />

Reagents for Electrophoresis ........................................................371<br />

Reference Guide ..........................................................................356<br />

DNA Loading Dye, 6X .......................................................................373<br />

DNA Loading Dye & SDS Solution, 6X ................................................373<br />

DNA Polymerase I ............................................................................246<br />

DNA Quantification on Gels ...............................................................374<br />

DNase I, RNase-free .........................................................................255<br />

dNTP/dUTP Mix................................................................................408<br />

dNTP Mixes .....................................................................................408<br />

dNTP Set .........................................................................................408<br />

Double Digestion<br />

DoubleDigest Engine ....................................................................158<br />

in Five Buffer System ...................................................................158<br />

in the Universal Tango Buffer ........................................................158<br />

of pUC19 Multiple Cloning Site......................................................170<br />

Setting up ....................................................................................158<br />

Using FastDigest Enzymes ..............................................................72<br />

DpnI .......................................................................................... 35, 107<br />

DraI ........................................................................................... 35, 108<br />

DraII ................................................................................................115<br />

DraIII ........................................................................................... 36, 83<br />

DrdI...................................................................................................36<br />

DTT .................................................................................................420<br />

dTTP ...............................................................................................409<br />

dUTP ...............................................................................................409<br />

E<br />

EagI .......................................................................................... 36, 111<br />

Eam1104I ................................................................................. 37, 108<br />

Eam1105I ................................................................................. 37, 108<br />

EarI ........................................................................................... 37, 108<br />

Ecl136II ..................................................................................... 37, 109<br />

Eco24I ............................................................................................109<br />

Eco31I ...................................................................................... 38, 110<br />

Eco32I ...................................................................................... 39, 110<br />

Eco47I ...................................................................................... 20, 110<br />

Eco47III ..................................................................................... 15, 111<br />

Eco52I ...................................................................................... 36, 111<br />

Eco57I ...................................................................................... 14, 112<br />

Eco72I ...................................................................................... 56, 112<br />

Eco81I ...................................................................................... 34, 113<br />

Eco88I ...................................................................................... 19, 113<br />

Eco91I ...................................................................................... 38, 113<br />

Eco105I65, 114<br />

Eco130I .................................................................................... 67, 114<br />

Eco147I .................................................................................... 66, 114<br />

EcoBI Methylation ............................................................................179<br />

EcoICRI ...........................................................................................109<br />

EcoKI Methylation ............................................................................179<br />

E.coli Host Restriction and Modification Systems ................................431<br />

EcoNI ........................................................................................ 38, 152<br />

EcoO109I .................................................................................. 39, 115<br />

EcoRI ........................................................................................ 39, 115<br />

EcoRII ..............................................................................................116


EcoRV ....................................................................................... 39, 110<br />

EDTA, 0.5 M, pH 8.0 ........................................................................421<br />

EheI .......................................................................................... 40, 116<br />

Electrophoresis<br />

Buffers ................................................................................ 371, 389<br />

DNA Electrophoresis .....................................................................353<br />

Loading Dyes ....................................................................... 372, 388<br />

RNA Electrophoresis .....................................................................385<br />

Endonuclease IV, E.coli (Endo IV) .......................................................256<br />

Endonuclease V, T.maritima (Endo V)..................................................257<br />

EpiJET DNA Methylation Analysis Kit (TaqI/HpyF30I)............................399<br />

EpiJET DNA Methylation Analysis Kit (MspI/HpaII)................................399<br />

EpiJET 5-hmC Analysis Kit................................................................400<br />

Esp3I ........................................................................................ 29, 117<br />

Estimation of pmol DNA Ends ...........................................................465<br />

Exodeoxyribonuclease Assay .............................................................236<br />

Exonuclease I (Exo I) .........................................................................258<br />

Exonuclease III (Exo III) ......................................................................259<br />

Exo-Resistant Random Primer ...........................................................417<br />

Express DNA Ladders ....................................................... 358, 362, 365<br />

F<br />

5-Fluoroorotic Acid ...........................................................................425<br />

FaqI .......................................................................................... 29, 117<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase ...................................242<br />

FastDigest AatII ..................................................................................13<br />

FastDigest Acc65I ..............................................................................13<br />

FastDigest AccI (XmiI) .........................................................................13<br />

FastDigest AciI (SsiI) ...........................................................................14<br />

FastDigest AclI (Psp1406I) ..................................................................14<br />

FastDigest AcuI (Eco57I) .....................................................................14<br />

FastDigest AfeI (Eco47III) ....................................................................15<br />

FastDigest AflII (BspTI) ........................................................................15<br />

FastDigest AgeI (BshTI) .......................................................................15<br />

FastDigest AjuI ...................................................................................16<br />

FastDigest AleI (OliI) ...........................................................................16<br />

FastDigest AluI ...................................................................................16<br />

FastDigest Alw21I ..............................................................................17<br />

FastDigest Alw26I ..............................................................................17<br />

FastDigest AlwNI (CaiI) ........................................................................17<br />

FastDigest ApaI ..................................................................................18<br />

FastDigest ApaLI (Alw44I) ...................................................................18<br />

FastDigest AscI (SgsI) .........................................................................18<br />

FastDigest AseI (VspI) .........................................................................19<br />

FastDigest AsiSI (SfaAI) .......................................................................19<br />

FastDigest AvaI (Eco88I) .....................................................................19<br />

FastDigest AvaII (Eco47I) ....................................................................20<br />

FastDigest AvrII (XmaJI) ......................................................................20<br />

FastDigest BamHI ..............................................................................20<br />

FastDigest BanI (BshNI) ......................................................................21<br />

FastDigest BbsI (BpiI) .........................................................................21<br />

FastDigest BbvI (Lsp1109I) .................................................................21<br />

FastDigest BclI ...................................................................................22<br />

FastDigest BfaI (FspBI)........................................................................22<br />

FastDigest BglI ...................................................................................22<br />

FastDigest BglII ..................................................................................23<br />

FastDigest BlpI (Bpu1102I) .................................................................23<br />

FastDigest Bme1580I (BseSI)..............................................................23<br />

FastDigest BmtI (BspOI) ......................................................................24<br />

FastDigest BplI ...................................................................................24<br />

FastDigest BpmI (GsuI) .......................................................................24<br />

FastDigest Bpu10I ..............................................................................25<br />

FastDigest BsaAI (Ppu21I) ..................................................................25<br />

FastDigest BsaBI (BseJI) .....................................................................25<br />

FastDigest BsaHI (Hin1I) .....................................................................26<br />

FastDigest BsaJI (BseDI) .....................................................................26<br />

FastDigest BseGI ................................................................................26<br />

FastDigest BseNI ................................................................................27<br />

FastDigest BseXI ................................................................................27<br />

FastDigest Bsh1236I ..........................................................................27<br />

FastDigest BsiEI (Bsh1285I) ................................................................28<br />

FastDigest BsiWI (Pfl23II) ....................................................................28<br />

FastDigest BslI (BseLI) ........................................................................28<br />

FastDigest BsmBI (Esp3I) ....................................................................29<br />

FastDigest BsmFI (FaqI) ......................................................................29<br />

FastDigest Bsp119I ............................................................................29<br />

FastDigest Bsp120I ............................................................................30<br />

FastDigest Bsp1286I (SduI) ................................................................30<br />

FastDigest Bsp1407I ..........................................................................30<br />

FastDigest BspCNI (BseMII) .................................................................31<br />

FastDigest BspHI (PagI) ......................................................................31<br />

FastDigest BspMI (BveI) ......................................................................31<br />

FastDigest BsrBI (MbiI) .......................................................................32<br />

FastDigest BsrDI (BseMI) ....................................................................32<br />

FastDigest BsrFI (Cfr10I) .....................................................................32<br />

FastDigest BssHII (PteI) .......................................................................33<br />

FastDigest BstXI .................................................................................33<br />

FastDigest BstZ17I (Bst1107I) ............................................................33<br />

FastDigest Bsu36I (Eco81I) .................................................................34<br />

FastDigest ClaI (Bsu15I) .....................................................................34<br />

FastDigest Csp6I ................................................................................34<br />

FastDigest DdeI (HpyF3I).....................................................................35<br />

FastDigest DpnI .................................................................................35<br />

FastDigest DraI ..................................................................................35<br />

FastDigest DraIII (AdeI) .......................................................................36<br />

FastDigest DrdI (AasI) .........................................................................36<br />

FastDigest EagI (Eco52I) .....................................................................36<br />

FastDigest Eam1105I .........................................................................37<br />

FastDigest EarI (Eam1104I) ................................................................37<br />

FastDigest Ecl136II ............................................................................37<br />

FastDigest Eco31I ..............................................................................38<br />

FastDigest Eco91I ..............................................................................38<br />

FastDigest EcoNI (XagI) .......................................................................38<br />

FastDigest EcoO109I ..........................................................................39<br />

FastDigest EcoRI ................................................................................39<br />

FastDigest EcoRV (Eco32I) ..................................................................39<br />

FastDigest EheI ..................................................................................40<br />

FastDigest Fnu4HI (SatI) .....................................................................40<br />

FastDigest FokI ..................................................................................40<br />

FastDigest FspAI ................................................................................41<br />

FastDigest FspI (NsbI) .........................................................................41<br />

FastDigest HaeII (BfoI) ........................................................................41<br />

FastDigest HaeIII (BsuRI) .....................................................................42<br />

FastDigest HgaI (CseI) ........................................................................42<br />

FastDigest HhaI ..................................................................................42<br />

FastDigest HincII ................................................................................43<br />

FastDigest HindIII ...............................................................................43<br />

FastDigest HinfI ..................................................................................43<br />

FastDigest HinP1I (Hin6I) ....................................................................44<br />

FastDigest HpaII .................................................................................44<br />

FastDigest HpaI (KspAI) ......................................................................44<br />

FastDigest Hpy8I ................................................................................45<br />

FastDigest HpyF10VI ..........................................................................45<br />

www.thermoscientific.com/onebio 485


486<br />

FastDigest Kpn2I ................................................................................46<br />

FastDigest KpnI ..................................................................................45<br />

FastDigest MauBI ...............................................................................46<br />

FastDigest MboI .................................................................................46<br />

FastDigest MboII ................................................................................47<br />

FastDigest MfeI (MunI)........................................................................47<br />

FastDigest MluI ..................................................................................47<br />

FastDigest MlyI (SchI) .........................................................................48<br />

FastDigest MnlI ..................................................................................48<br />

FastDigest MreI ..................................................................................48<br />

FastDigest MscI (MlsI) ........................................................................49<br />

FastDigest MseI (SaqAI) ......................................................................49<br />

FastDigest MslI (RseI) .........................................................................49<br />

FastDigest MspI .................................................................................50<br />

FastDigest MssI .................................................................................50<br />

FastDigest Mva1269I .........................................................................51<br />

FastDigest MvaI .................................................................................50<br />

FastDigest NaeI (PdiI) .........................................................................51<br />

FastDigest NciI (BcnI) .........................................................................51<br />

FastDigest NcoI ..................................................................................52<br />

FastDigest NdeI .................................................................................52<br />

FastDigest NheI .................................................................................52<br />

FastDigest NlaIII (Hin1II) ......................................................................53<br />

FastDigest NlaIV (BspLI) ......................................................................53<br />

FastDigest NmuCI ..............................................................................53<br />

FastDigest NotI ..................................................................................54<br />

FastDigest NruI (RruI) .........................................................................54<br />

FastDigest NsiI (Mph1103I) .................................................................54<br />

FastDigest NspI (XceI) .........................................................................55<br />

FastDigest PacI ..................................................................................55<br />

FastDigest PdmI .................................................................................55<br />

FastDigest PflMI (Van91I) ....................................................................56<br />

FastDigest PfoI ...................................................................................56<br />

FastDigest PmlI (Eco72I) .....................................................................56<br />

FastDigest PpuMI (Psp5II) ...................................................................57<br />

FastDigest PshAI (BoxI) .......................................................................57<br />

FastDigest PsiI (AanI) ..........................................................................57<br />

FastDigest PspFI ................................................................................58<br />

FastDigest PstI ...................................................................................58<br />

FastDigest PsuI ..................................................................................58<br />

FastDigest PsyI ..................................................................................59<br />

FastDigest PvuI ..................................................................................59<br />

FastDigest PvuII .................................................................................59<br />

FastDigest Restriction Enzymes<br />

Activity and Quality Control Assays ....................................................8<br />

Navigation Guide ..............................................................................5<br />

Product List .....................................................................................9<br />

Protocols and Recommendations ....................................................72<br />

Reaction Conditions .......................................................................73<br />

Storage and Shipping .......................................................................8<br />

FastDigest® RsaI...............................................................................60<br />

FastDigest RsrII (CpoI) ........................................................................60<br />

FastDigest SacI ..................................................................................60<br />

FastDigest SalI ...................................................................................61<br />

FastDigest SanDI (KflI) ........................................................................61<br />

FastDigest SapI (LguI) .........................................................................61<br />

FastDigest Sau3AI (Bsp143I) ..............................................................62<br />

FastDigest Sau96I (Cfr13I) ..................................................................62<br />

FastDigest SbfI (SdaI) .........................................................................62<br />

FastDigest ScaI ..................................................................................63<br />

FastDigest ScrFI (Bme1390I) ..............................................................63<br />

FastDigest SexAI (CsiI) ........................................................................63<br />

www.thermoscientific.com/onebio<br />

FastDigest SfaNI (BmsI) ......................................................................64<br />

FastDigest SfcI (BfmI) .........................................................................64<br />

FastDigest SfiI ....................................................................................64<br />

FastDigest SmaI .................................................................................65<br />

FastDigest SnaBI (Eco105I) .................................................................65<br />

FastDigest SpeI (BcuI) ........................................................................65<br />

FastDigest SphI (PaeI) ........................................................................66<br />

FastDigest SspI ..................................................................................66<br />

FastDigest StuI (Eco147I) ....................................................................66<br />

FastDigest StyI (Eco130I) ....................................................................67<br />

FastDigest SwaI (SmiI) ........................................................................67<br />

FastDigest TaaI ..................................................................................67<br />

FastDigest TaiI ...................................................................................68<br />

FastDigest TaqI ..................................................................................68<br />

FastDigest TatI ...................................................................................68<br />

FastDigest TauI ..................................................................................69<br />

FastDigest TfiI (PfeI) ...........................................................................69<br />

FastDigest Tru1I .................................................................................69<br />

FastDigest Tsp509I (TasI) ....................................................................70<br />

FastDigest TspRI (TscAI) .....................................................................70<br />

FastDigest XapI ..................................................................................70<br />

FastDigest XbaI ..................................................................................71<br />

FastDigest XhoI ..................................................................................71<br />

Fast DNA End Repair Kit ...................................................................287<br />

FastRuler High Range DNA Ladder, ready-to-use ................................364<br />

FastRuler Low Range DNA Ladder, ready-to-use ................................364<br />

FastRuler Middle Range DNA Ladder, ready-to-use ............................364<br />

FastRuler Ultra Low Range DNA Ladder, ready-to-use ........................364<br />

First Strand cDNA Synthesis<br />

RiboLock RNase Inhibitor ..............................................................271<br />

RNase H ......................................................................................266<br />

Fluorescein-12-dUTP .......................................................................413<br />

Fnu4HI ...................................................................................... 40, 142<br />

FokI...................................................................................................40<br />

FspAI ........................................................................................ 41, 118<br />

FspBI ........................................................................................ 22, 118<br />

FspI........................................................................................... 41, 132<br />

Functional Assay ..............................................................................236<br />

FX174 DNA /BsuRI (HaeIII) Marker, 9 .................................................368<br />

FX174 DNA /BsuRI (HaeIII) Marker, 9, ready-to-use ............................368<br />

FX174 DNA Restriction Map and Restriction Sites .......................435-436<br />

FX174 RF1 DNA ..............................................................................291<br />

G<br />

Gels<br />

Agarose ............................................................................... 374, 390<br />

Polyacrylamide .................................................................... 375, 391<br />

Gene Expression ..............................................................................512<br />

GeneJET Plant RNA Purification Mini Kit ............................................309<br />

GeneJET Plasmid Maxiprep Kit..........................................................306<br />

GeneJET Plasmid Midiprep Kit ..........................................................305<br />

GeneJET Gel Extraction Kit................................................................317<br />

GeneJET Genomic DNA Purification Kit ..............................................310<br />

GeneJET PCR Purification Kit ............................................................316<br />

GeneJET Plant Genomic DNA Purification Mini Kit...............................313<br />

GeneJET Plasmid Maxiprep Kit..........................................................306<br />

GeneJET Plasmid Midiprep Kit ..........................................................305<br />

GeneJET Plasmid Miniprep Kit ..........................................................304<br />

GeneJET RNA Purification Kit ............................................................307<br />

GeneJET Viral DNA and RNA Purification Kit .......................................314<br />

GeneJET Whole Blood Genomic DNA Purification Mini Kit ...................312


GeneJET Whole Blood RNA Purification Mini Kit .................................308<br />

Generated Recognition Sequences Resulting from<br />

Fill-in of 5’-overhang and Self-ligation ...........................................200<br />

Ligation of Blunt DNA Ends ...........................................................180<br />

Ligation of Protruding Compatible DNA Ends ..................................190<br />

Removal of 3’-overhang and Self-ligation ......................................204<br />

GeneRuler 1 kb DNA Ladder .............................................................359<br />

GeneRuler 1 kb DNA Ladder, ready-to-use .........................................359<br />

GeneRuler 1 kb Plus DNA Ladder ......................................................359<br />

GeneRuler 1 kb Plus DNA Ladder, ready-to-use .................................359<br />

GeneRuler 50 bp DNA Ladder ...........................................................359<br />

GeneRuler 50 bp DNA Ladder, ready-to-use ......................................359<br />

GeneRuler 100 bp DNA Ladder .........................................................359<br />

GeneRuler 100 bp DNA Ladder, ready-to-use ....................................359<br />

GeneRuler 100 bp Plus DNA Ladder ..................................................359<br />

GeneRuler100 bp Plus DNA Ladder, ready-to-use ..........................359<br />

GeneRuler DNA Ladder Mix ..............................................................359<br />

GeneRuler DNA Ladder Mix, ready-to-use ..........................................359<br />

GeneRuler Express DNA Ladder ........................................................359<br />

GeneRuler Express DNA Ladder, ready-to-use ....................................359<br />

GeneRuler High Range DNA Ladder ...................................................359<br />

GeneRuler High Range DNA Ladder, ready-to-use ..............................359<br />

GeneRuler Low Range DNA Ladder ...................................................359<br />

GeneRuler Low Range DNA Ladder, ready-to-use ...............................359<br />

GeneRuler Ultra Low Range DNA Ladder ...........................................359<br />

GeneRuler Ultra Low Range DNA Ladder, ready-to-use .......................359<br />

Genetic Markers ..............................................................................430<br />

Genome Sizes ..................................................................................461<br />

Genomic DNA Purification<br />

GeneJET Genomic DNA Purification Kit ..........................................310<br />

Genomic DNA Purification Kit ........................................................311<br />

Genomic DNA Purification Kit ............................................................311<br />

Genotypes .......................................................................................429<br />

Glycogen .........................................................................................423<br />

Glycosylase (UDG, UNG) ....................................................................273<br />

GsuI .......................................................................................... 24, 118<br />

GTP ................................................................................................412<br />

Guide for<br />

DNA Ladders and Markers (group selection guide) .........................354<br />

Enzymes & Kits for <strong>Molecular</strong> Cloning ............................................278<br />

Enzymes & Kits for <strong>Molecular</strong> Labeling & Detection ........................342<br />

In vitro Transcription .....................................................................326<br />

Navigation .......................................................................................5<br />

Nucleic Acid Purification ...............................................................303<br />

RNA Ladders ...............................................................................386<br />

Selection of Deoxyribonucleases (DNases) .....................................254<br />

Selection of Ribonucleases (RNases) .............................................261<br />

Selection of Sugar Nonspecific Nucleases ......................................268<br />

H<br />

HaeII .................................................................................................41<br />

HaeIII......................................................................................... 42, 103<br />

HgaI .......................................................................................... 42, 106<br />

HhaI .......................................................................................... 42, 119<br />

Hin1I ......................................................................................... 26, 119<br />

Hin1II ........................................................................................ 53, 120<br />

Hin6I ......................................................................................... 44, 120<br />

HincII......................................................................................... 43, 120<br />

HindII ..............................................................................................120<br />

HindIII ........................................................................................ 43, 121<br />

HinfI .......................................................................................... 43, 121<br />

HinP1I ....................................................................................... 44, 120<br />

Histochemical Detection of GUS ........................................................425<br />

Homing Enzyme ...............................................................................157<br />

HpaI .......................................................................................... 44, 124<br />

HpaII ..................................................................................44, 121, 128<br />

HphI ................................................................................................122<br />

Hpy8I ........................................................................................ 45, 122<br />

HpyCH4III ........................................................................................149<br />

HpyF3I ...................................................................................... 35, 122<br />

HpyF10VI................................................................................... 45, 123<br />

Hybridization<br />

Biotin DecaLabel DNA Labeling Kit ................................................343<br />

DecaLabel DNA Labeling Kit .........................................................344<br />

I<br />

Icons, Description ........................................................................ 7, 237<br />

InsTAclone PCR Cloning Kit ...............................................................281<br />

IPTG ................................................................................................424<br />

IPTG Solution ...................................................................................424<br />

I-SceI ..............................................................................................157<br />

Isopropyl--D-thiogalactopyranoside (IPTG) .......................................424<br />

Isoschizomers<br />

Alphabetic List of Commercially Available<br />

Restriction Enzymes .....................................................................205<br />

J<br />

Jurkat Genomic DNA ........................................................................403<br />

K<br />

KasI ................................................................................................148<br />

KflI ....................................................................................................61<br />

Kinase .............................................................................................243<br />

Kits<br />

Biotin Chromogenic Detection Kit ..................................................345<br />

Biotin DecaLabel DNA Labeling Kit ................................................343<br />

CloneJET PCR Cloning Kit .............................................................279<br />

DecaLabel DNA Labeling Kit .........................................................344<br />

GeneJET Gel Extraction Kit ............................................................317<br />

GeneJET Genomic DNA Purification Kit ..........................................310<br />

GeneJET PCR Purification Kit ........................................................316<br />

GeneJET Plasmid Maxiprep Kit ......................................................306<br />

GeneJET Plasmid Midiprep Kit ......................................................305<br />

GeneJET Plasmid Miniprep Kit ......................................................304<br />

GeneJET RNA Purification Kit ........................................................307<br />

Genomic DNA Purification Kit ........................................................311<br />

InsTAclone PCR Cloning Kit ...........................................................281<br />

Rapid DNA Ligation Kit .................................................................288<br />

Silica Bead DNA Gel Extraction Kit .................................................318<br />

TranscriptAid T7 High Yield Transcription Kit ...................................328<br />

TransformAid Bacterial Transformation Kit .......................286, 289, 290<br />

Klenow Fragment .............................................................................247<br />

Klenow Fragment, exo – .....................................................................248<br />

Kpn2I ........................................................................................ 46, 123<br />

KpnI .......................................................................................... 45, 123<br />

KspAI ........................................................................................ 44, 124<br />

L<br />

Labeled Oligonucleotide (LO) Test .........................................4, 8, 77, 236<br />

Labeling .................................................................................. 341, 376<br />

www.thermoscientific.com/onebio 487


488<br />

Labeling Kits<br />

Biotin DecaLabel DNA Labeling Kit ................................................343<br />

DecaLabel DNA Labeling Kit .........................................................344<br />

Ladders<br />

DNA .....................................................................................370-380<br />

FastRuler High Range DNA Ladder, ready-to-use ......................364<br />

FastRuler Low Range DNA Ladder, ready-to-use ......................364<br />

FastRuler Middle Range DNA Ladder, ready-to-use...................364<br />

FastRuler Ultra Low Range DNA Ladder, ready-to-use ...............364<br />

GeneRuler 1 kb DNA Ladder ...................................................359<br />

GeneRuler 1 kb DNA Ladder, ready-to-use ...............................359<br />

GeneRuler 1 kb Plus DNA Ladder ............................................359<br />

GeneRuler 1 kb Plus DNA Ladder, ready-to-use .......................359<br />

GeneRuler 50 bp DNA Ladder .................................................359<br />

GeneRuler 50 bp DNA Ladder, ready-to-use .............................359<br />

GeneRuler 100 bp DNA Ladder ...............................................359<br />

GeneRuler 100 bp DNA Ladder, ready-to-use ...........................359<br />

GeneRuler 100 bp Plus DNA Ladder ........................................359<br />

GeneRuler100 bp Plus DNA Ladder, ready-to-use ................359<br />

GeneRuler DNA Ladder Mix.....................................................359<br />

GeneRuler DNA Ladder Mix, ready-to-use ................................359<br />

GeneRuler Express DNA Ladder ..............................................359<br />

GeneRuler Express DNA Ladder, ready-to-use ..........................359<br />

GeneRuler High Range DNA Ladder .........................................359<br />

GeneRuler High Range DNA Ladder, ready-to-use ....................359<br />

GeneRuler Low Range DNA Ladder .........................................359<br />

GeneRuler Low Range DNA Ladder, ready-to-use .....................359<br />

GeneRuler Ultra Low Range DNA Ladder ..................................359<br />

GeneRuler Ultra Low Range DNA Ladder, ready-to-use .............359<br />

MassRuler DNA Ladder Mix, ready-to-use................................362<br />

MassRuler Express Forward DNA Ladder Mix, ready-to-use ......362<br />

MassRuler Express HR Forward DNA Ladder, ready-to-use .......362<br />

MassRuler Express HR Reverse DNA Ladder, ready-to-use ........362<br />

MassRuler Express LR Forward DNA Ladder, ready-to-use ........362<br />

MassRuler Express LR Reverse DNA Ladder, ready-to-use ........362<br />

MassRuler Express Reverse DNA Ladder Mix, ready-to-use ......362<br />

MassRuler High Range DNA Ladder, ready-to-use ....................362<br />

MassRuler Low Range DNA Ladder, ready-to-use .....................362<br />

O’GeneRuler 1 kb DNA Ladder, ready-to-use ...........................359<br />

O’GeneRuler 1 kb Plus DNA Ladder, ready-to-use ....................359<br />

O’GeneRuler 50 bp DNA Ladder, ready-to-use .........................359<br />

O’GeneRuler 100 bp DNA Ladder, ready-to-use .......................359<br />

O’GeneRuler 100 bp Plus DNA, ready-to-use ...........................359<br />

O’GeneRuler DNA Ladder Mix, ready-to-use ............................359<br />

O’GeneRuler Express DNA Ladder, ready-to-use.......................359<br />

O’GeneRuler Low Range DNA Ladder ......................................359<br />

O’GeneRuler Ultra Low Range DNA Ladder, ready-to-use ..........359<br />

O’RangeRuler 5 bp DNA Ladder, ready-to-use..........................366<br />

O’RangeRuler 10 bp DNA Ladder, ready-to-use........................366<br />

O’RangeRuler 20 bp DNA Ladder, ready-to-use........................366<br />

O’RangeRuler 50 bp DNA Ladder, ready-to-use........................366<br />

O’RangeRuler 100+500 bp DNA Ladder, ready-to-use .............366<br />

O’RangeRuler 100 bp DNA Ladder, ready-to-use......................366<br />

O’RangeRuler 200 bp DNA Ladder, ready-to-use......................366<br />

O’RangeRuler 500 bp DNA Ladder, ready-to-use......................366<br />

ZipRuler Express DNA Ladder Set, ready-to-use .......................365<br />

RNA ............................................................................................386<br />

RiboRuler High Range RNA Ladder ..........................................386<br />

RiboRuler High Range RNA Ladder, ready-to-use ......................386<br />

RiboRuler Low Range RNA Ladder ...........................................386<br />

RiboRuler Low Range RNA Ladder, ready-to-use ......................386<br />

Lambda DNA ...................................................................................291<br />

www.thermoscientific.com/onebio<br />

Lambda DNA (dam – , dcm – ) ...............................................................291<br />

Lambda DNA/EcoRI+HindIII Marker, 3 ...............................................368<br />

Lambda DNA/EcoRI+HindIII Marker, 3, ready-to-use ...........................368<br />

Lambda DNA/EcoRI Marker, 1 ...........................................................368<br />

Lambda DNA/HindIII Marker, 2 ..........................................................368<br />

Lambda DNA/HindIII Marker, 2, ready-to-use .....................................368<br />

Lambda Exonuclease .......................................................................260<br />

LguI .......................................................................................... 61, 124<br />

Ligases, Ligation<br />

Rapid DNA Ligation Kit .................................................................288<br />

T4 DNA Ligase .............................................................................239<br />

T4 RNA Ligase .............................................................................240<br />

Loading Dyes ............................................................................372-373<br />

2X RNA Loading Dye ....................................................................373<br />

6X DNA Loading Dye ....................................................................373<br />

6X DNA Loading Dye & SDS Solution .............................................373<br />

6X MassRuler DNA Loading Dye ...................................................373<br />

6X Orange DNA Loading Dye ........................................................373<br />

6X TriTrack DNA Loading Dye ........................................................373<br />

LO (Labeled Oligonucleotide Test) .........................................4, 8, 77, 236<br />

Lsp1109I................................................................................... 21, 124<br />

LweI ................................................................................................125<br />

M<br />

M13mp18<br />

Restriction Map and Sites ......................................................437-438<br />

M13mp19<br />

Restriction Map and Sites ......................................................437-438<br />

M13/pUC Primers<br />

M13/pUC reverse sequencing primer (-26), 17-mer .......................416<br />

M13/pUC reverse sequencing primer (-46), 24-mer .......................416<br />

M13/pUC sequencing primer (-20), 17-mer ...................................416<br />

M13/pUC sequencing primer (-40), 17-mer ...................................416<br />

M13/pUC sequencing primer (-46), 22-mer ...................................416<br />

MaeII ...............................................................................................149<br />

Maps<br />

M13mp18, M13mp19 ..................................................................437<br />

pACYC177...................................................................................453<br />

pACYC184...................................................................................455<br />

pBluescript II KS(+/-), pBluescript II SK(+/-) ...................................449<br />

pBR322 .......................................................................................439<br />

pJET1.2 ......................................................................................432<br />

pTZ19R, pTZ19U .........................................................................445<br />

pTZ57R .......................................................................................447<br />

pUC18, pUC19 .............................................................................441<br />

pUC57.........................................................................................443<br />

X174 ........................................................................................435<br />

Markers<br />

DNA .....................................................................................368-371<br />

Lambda DNA/EcoRI+HindIII Marker, 3......................................368<br />

Lambda DNA/EcoRI+HindIII Marker, 3, ready-to-use .................368<br />

Lambda DNA/EcoRI Marker, 1 .................................................368<br />

Lambda DNA/HindIII Marker, 2 ................................................368<br />

Lambda DNA/HindIII Marker, 2, ready-to-use ...........................368<br />

pBR322 DNA/BsuRI (HaeIII) Marker, 5 ......................................368<br />

pUC19 DNA/MspI (HpaII) Marker, 23 ........................................368<br />

pUC19 DNA/MspI (HpaII) Marker, 23, ready-to-use ...................368<br />

X174 DNA /BsuRI (HaeIII) Marker, 9 ......................................368<br />

X174 DNA /BsuRI (HaeIII) Marker, 9, ready-to-use .................368<br />

MassRuler DNA Ladder Mix, ready-to-use .........................................362<br />

MassRuler DNA Loading Dye, 6X.......................................................373


MassRuler Express Forward DNA Ladder Mix, ready-to-use ................362<br />

MassRuler Express HR Forward DNA Ladder, ready-to-use .................362<br />

MassRuler Express HR Reverse DNA Ladder, ready-to-use .................362<br />

MassRuler Express LR Forward DNA Ladder, ready-to-use ..................362<br />

MassRuler Express LR Reverse DNA Ladder, ready-to-use ..................362<br />

MassRuler Express Reverse DNA Ladder Mix, ready-to-use ................362<br />

MassRuler High Range DNA Ladder, ready-to-use ..............................362<br />

MassRuler Low Range DNA Ladder, ready-to-use...............................362<br />

MauBI ....................................................................................... 46, 125<br />

Maxima H Minus Double-Stranded cDNA Synthesis Kit .......................286<br />

MbiI .......................................................................................... 32, 125<br />

MboI ......................................................................................... 46, 126<br />

MboII......................................................................................... 47, 126<br />

Media ....................................................................................... See FastMedia<br />

Media, Commonly Used ....................................................................467<br />

Melting Temperature of Duplex DNA and Oligonucleotides ..................465<br />

Mesophilic DNA Polymerases ............................................................244<br />

Methylation<br />

CpG176<br />

Dam ............................................................................................174<br />

Dcm ............................................................................................175<br />

Digestion of Methylated DNA ........................................................173<br />

EcoBI ..........................................................................................179<br />

EcoKI...........................................................................................179<br />

MfeI .......................................................................................... 47, 129<br />

MgCl 2 , 25 mM .................................................................................421<br />

Micrococcal Nuclease ......................................................................268<br />

MjaIV ..............................................................................................122<br />

MlsI........................................................................................... 49, 127<br />

MluI .......................................................................................... 47, 127<br />

MlyI ........................................................................................... 48, 143<br />

MnlI .......................................................................................... 48, 127<br />

Modified Nucleotides<br />

Aminoallyl-dUTP ..........................................................................414<br />

Aminoallyl-UTP ............................................................................414<br />

Biotin-11-dUTP ............................................................................414<br />

dm 4 CTP .......................................................................................415<br />

dm 5 CTP .......................................................................................415<br />

dm 6 ATP .......................................................................................415<br />

Fluorescein-12-dUTP ...................................................................413<br />

Modifying Enzymes<br />

Activity of DNA/RNA modifying enzymes in Fermentas buffers .............274<br />

Quality Control Assays ..................................................................236<br />

Storage and Shipping ...................................................................237<br />

Mph1103I ................................................................................. 54, 128<br />

MreI .......................................................................................... 48, 128<br />

MscI .......................................................................................... 49, 127<br />

MseI.......................................................................................... 49, 151<br />

MslI........................................................................................... 49, 140<br />

MspI ......................................................................................... 50, 128<br />

MssI .......................................................................................... 50, 129<br />

Multiple Cloning Sites<br />

Double Digestion of pUC19 MCS ...................................................170<br />

M13mp18, M13mp19 ..................................................................437<br />

pBluescript II KS(-), pBluescript II KS(+) .........................................450<br />

pJET1.2 ......................................................................................432<br />

pTZ19R, pTZ19U .........................................................................445<br />

pTZ57R .......................................................................................447<br />

pUC18, pUC19 .............................................................................441<br />

pUC57.........................................................................................443<br />

Multiple Displacement Amplification (MDA). .........See Strand Displacement<br />

MunI ......................................................................................... 47, 129<br />

Mva1269I .................................................................................. 51, 130<br />

MvaI .......................................................................................... 50, 129<br />

MwoI ...............................................................................................123<br />

N<br />

NaeI .......................................................................................... 51, 135<br />

Nb.Bpu10I .......................................................................................155<br />

Nb.Mva1269I...................................................................................156<br />

NBT ................................................................................................426<br />

NciI ............................................................................................. 51, 89<br />

NcoI .......................................................................................... 52, 130<br />

NdeI .......................................................................................... 52, 131<br />

Neoschizomers ................................................................................171<br />

Newly Generated Recognition Sites Resulting from<br />

Fill-in of 5’-overhang and Self-ligation ...........................................200<br />

Ligation of Blunt DNA Ends ...........................................................180<br />

Ligation of Protruding Compatible DNA Ends ..................................190<br />

Removal of 3’-overhang and Self-ligation ......................................204<br />

NheI .......................................................................................... 52, 131<br />

Nicking Enzymes ..............................................................................155<br />

NlaIII ......................................................................................... 53, 120<br />

NlaIV ......................................................................................... 53, 100<br />

NmuCI ....................................................................................... 53, 132<br />

NoLimits Custom DNA Ladders .........................................................370<br />

NoLimits Custom DNA Ladders Service .............................................370<br />

NoLimits Individual DNA Fragments ...................................................370<br />

Nondenaturing RNA Electrophoresis ..................................................390<br />

Non-specific Nuclease and Cross-contamination Assay ........................77<br />

NotI ........................................................................................... 54, 132<br />

NruI............................................................................................. 54, 98<br />

NsbI .......................................................................................... 41, 132<br />

NsiI ........................................................................................... 54, 128<br />

NspI .......................................................................................... 55, 153<br />

Nt.Bpu10I ........................................................................................156<br />

NTP Set ...........................................................................................411<br />

Nucleases<br />

DNase I, RNase-free .....................................................................255<br />

Endonuclease IV, E.coli (Endo IV) ...................................................256<br />

Endonuclease V, T.maritima (Endo V) ..............................................257<br />

Exonuclease I (Exo I) .....................................................................258<br />

Exonuclease III (Exo III) ..................................................................259<br />

Lambda Exonuclease ...................................................................260<br />

Micrococcal Nuclease ..................................................................268<br />

RNase A, DNase and Protease-free ....................................... 262, 313<br />

RNase A/T1 Mix ...........................................................................264<br />

RNase H ......................................................................................266<br />

RNase I .......................................................................................265<br />

RNase T1 ....................................................................................263<br />

S1 Nuclease ................................................................................269<br />

Nucleic Acids, Size and MW ..............................................................465<br />

Nucleotides .....................................................................................405<br />

dNTP Set .....................................................................................408<br />

Mixes ..........................................................................................408<br />

dNTP/dUTP Mix ......................................................................408<br />

dNTP Mix, 2 mM each ............................................................408<br />

dNTP Mix, 10 mM each ..........................................................408<br />

dNTP Mix, 25 mM each ..........................................................408<br />

Modified Nucleotides ....................................................................413<br />

Aminoallyl-dUTP .....................................................................414<br />

Aminoallyl-UTP ......................................................................414<br />

www.thermoscientific.com/onebio 489


490<br />

Biotin-11-dUTP ......................................................................414<br />

dm 4 CTP .................................................................................415<br />

dm 5 CTP .................................................................................415<br />

dm 6 ATP .................................................................................415<br />

Fluorescein-12-dUTP .............................................................413<br />

Number of Recognition Sites in DNA Molecules ..................................457<br />

O<br />

OEM................................................................................................... IX<br />

O’GeneRuler 1 kb DNA Ladder, ready-to-use .....................................359<br />

O’GeneRuler 1 kb Plus DNA Ladder, ready-to-use ..............................359<br />

O’GeneRuler 50 bp DNA Ladder, ready-to-use ...................................359<br />

O’GeneRuler 100 bp DNA Ladder, ready-to-use .................................359<br />

O’GeneRuler 100 bp Plus DNA Ladder, ready-to-use ..........................359<br />

O’GeneRuler DNA Ladder Mix, ready-to-use ......................................359<br />

O’GeneRuler Express DNA Ladder, ready-to-use ................................359<br />

O’GeneRuler Low Range DNA Ladder, ready-to-use ...........................359<br />

O’GeneRuler Ultra Low Range DNA Ladder, ready-to-use ....................359<br />

Oligo(dT) 18 Primer ............................................................................417<br />

Oligonucleotides ..............................................................................416<br />

OliI ............................................................................................ 16, 133<br />

Orange DNA Loading Dye, 6X ...........................................................373<br />

O’RangeRuler 5 bp DNA Ladder, ready-to-use ...................................366<br />

O’RangeRuler 10 bp DNA Ladder, ready-to-use .................................366<br />

O’RangeRuler 20 bp DNA Ladder, ready-to-use .................................366<br />

O’RangeRuler 50 bp DNA Ladder, ready-to-use .................................366<br />

O’RangeRuler 100+500 bp DNA Ladder, ready-to-use .......................366<br />

O’RangeRuler 100 bp DNA Ladder, ready-to-use ...............................366<br />

O’RangeRuler 200 bp DNA Ladder, ready-to-use ...............................366<br />

O’RangeRuler 500 bp DNA Ladder, ready-to-use ...............................366<br />

Ordering Iinformation .........................................................................VIII<br />

ORF ................................................................................................512<br />

P<br />

PacI .......................................................................................... 55, 133<br />

pACYC177 Restriction Map and Sites ................................................453<br />

pACYC184 Restriction Map and Sites ................................................455<br />

PaeI .......................................................................................... 66, 133<br />

PagI .......................................................................................... 31, 134<br />

PasI ................................................................................................134<br />

Patents............................................................................................502<br />

PauI ................................................................................................134<br />

pBluescript DNA Restriction Map and Sites ........................................449<br />

pBR322 DNA ...................................................................................291<br />

Restriction Map and Sites .............................................................439<br />

pBR322 DNA/BsuRI (HaeIII) Marker, 5 ................................................368<br />

PciI .................................................................................................137<br />

PCR, Analysis<br />

Agaroses .....................................................................................427<br />

DNA Ladders and Markers ............................................................354<br />

PCR, Clean-up<br />

Agarase .......................................................................................319<br />

Alkaline Phosphatases ...........................................................242-243<br />

Exonuclease I ...............................................................................258<br />

GeneJET Gel Extraction Kit ............................................................317<br />

Silica Bead DNA Gel Extraction Kit .................................................318<br />

PCR, Cloning<br />

CloneJET PCR Cloning Kit .............................................................279<br />

InsTAclone PCR Cloning Kit ...........................................................281<br />

Rapid DNA Ligation Kit .................................................................288<br />

www.thermoscientific.com/onebio<br />

T4 DNA Polymerase .....................................................................249<br />

T4 Polynucleotide Kinase ..............................................................243<br />

PCR, DNA Purification<br />

GeneJET Gel Extraction Kit ............................................................317<br />

GeneJET Genomic DNA Purification Kit ..........................................310<br />

GeneJET PCR Purification Kit ........................................................316<br />

GeneJET Plasmid Miniprep Kit ......................................................304<br />

Genomic DNA Purification Kit ........................................................311<br />

Glycogen .....................................................................................423<br />

Proteinase K ................................................................................270<br />

RNases .................................................................262-265, 313-316<br />

PCR, Ladders and Markers<br />

FastRuler DNA Ladders ................................................................364<br />

GeneRuler DNA Ladders ...............................................................358<br />

O’GeneRuler DNA Ladders ............................................................358<br />

O’RangeRuler DNA Ladders ..........................................................366<br />

ZipRuler DNA Ladder Set ..............................................................365<br />

PCR, Nucleotides<br />

dNTP Set and Mixes .....................................................................408<br />

Modified Nucleotides ....................................................................413<br />

PCR, qPCR and RT-PCR<br />

Digestion of PCR Products ...................................................72, 73-76<br />

PCR, Sequencing<br />

Alkaline Phosphatases ...........................................................242-243<br />

Exonuclease I (Exo I) .....................................................................258<br />

PCR, Single-stranded PCR Product<br />

Lambda Exonuclease ...................................................................260<br />

PdiI ........................................................................................... 51, 135<br />

PdmI ......................................................................................... 55, 135<br />

PfeI ........................................................................................... 69, 135<br />

Pfl23II ....................................................................................... 28, 136<br />

PflMI ......................................................................................... 56, 152<br />

PfoI ........................................................................................... 56, 136<br />

Phage and Plasmid DNA<br />

FX174 RF1 DNA ..........................................................................291<br />

Lambda DNA ...............................................................................291<br />

Lambda DNA (dam – , dcm – ) ...........................................................291<br />

M13mp18 ...................................................................................437<br />

M13mp19 ...................................................................................437<br />

pACYC177...................................................................................453<br />

pACYC184...................................................................................455<br />

pBluescript II KS(+/-) ....................................................................449<br />

pBluescript II SK(+/-) ....................................................................449<br />

pBR322 .......................................................................................439<br />

pJET1.2 DNA ...............................................................................432<br />

pTZ19R .......................................................................................445<br />

pTZ19U .......................................................................................445<br />

pTZ57R .......................................................................................447<br />

pUC18.........................................................................................441<br />

pUC19.........................................................................................441<br />

pUC57.........................................................................................443<br />

X174 ........................................................................................435<br />

phi29 DNA Polymerase ....................................................................245<br />

Phosphatases<br />

FastAP <strong>Thermo</strong>sensitive Alkaline Phosphatase ...............................242<br />

Phosphorylation<br />

T4 Polynucleotide Kinase (T4 PNK) ................................................243<br />

pJET1.2 ..........................................................................................432<br />

pJET1.2 Forward Sequencing Primer, ................................................416<br />

pJET1.2 Reverse Sequencing Primer .................................................416<br />

Plasmid DNA Purification<br />

GeneJET Plasmid Maxiprep Kit ......................................................306


GeneJET Plasmid Midiprep Kit ......................................................305<br />

GeneJET Plasmid Miniprep Kit ......................................................304<br />

PmeI ...............................................................................................129<br />

PmlI .......................................................................................... 56, 112<br />

Polyacrylamide Gels ................................................................. 375, 391<br />

Polymerases<br />

Bsm DNA Polymerase, Large Fragment .........................................253<br />

DNA Polymerase I ........................................................................246<br />

Klenow Fragment .........................................................................247<br />

Klenow Fragment, exo – .................................................................248<br />

phi29 DNA Polymerase.................................................................245<br />

T4 DNA Polymerase .....................................................................249<br />

T7 DNA Polymerase .....................................................................250<br />

Terminal Deoxynucleotidyl Transferase (TdT) ..................................251<br />

Ppu21I ...................................................................................... 25, 137<br />

PpuMI ....................................................................................... 57, 138<br />

Primers ...........................................................................................416<br />

Proteinase K (recombinant), PCR grade .............................................270<br />

Protocols and Recommendations for<br />

Conventional Restriction Enzymes .................................................158<br />

DNA Electrophoresis .....................................................................374<br />

DNA/RNA Modifying Enzymes .......................................................274<br />

FastDigest Restriction Enzymes .......................................................72<br />

In vitro Transcription .....................................................................335<br />

<strong>Molecular</strong> Cloning ........................................................................294<br />

<strong>Molecular</strong> Labeling and detection ..................................................349<br />

Nucleic Acid Purification ...............................................................322<br />

RNA Electrophoresis .....................................................................390<br />

Protocols (Protocol Index) .................................................................500<br />

PscI ................................................................................................137<br />

PshAI .......................................................................................... 57, 92<br />

PsiI ............................................................................................. 57, 82<br />

Psp5II........................................................................................ 57, 138<br />

Psp1406I .................................................................................. 14, 138<br />

PspFI.................................................................................................58<br />

PspOMI .............................................................................................99<br />

PstI ........................................................................................... 58, 138<br />

PsuI .......................................................................................... 58, 139<br />

PsyI ........................................................................................... 59, 139<br />

PteI ...................................................................................................33<br />

pTZ19R DNA ...................................................................................292<br />

pTZ19R, pTZ19U, pTZ57R<br />

Restriction Map and Sites ......................................................445-448<br />

pUC18 DNA .....................................................................................292<br />

pUC18, pUC19, pUC57<br />

Restriction Map and Sites ......................................................441-444<br />

pUC19 DNA .....................................................................................292<br />

pUC19 DNA/MspI (HpaII) Marker, 23..................................................368<br />

pUC19 DNA/MspI (HpaII) Marker, 23, ready-to-use .............................368<br />

pUC57 DNA .....................................................................................292<br />

Purification<br />

Genomic DNA<br />

GeneJET Genomic DNA Purification Kit ....................................310<br />

Genomic DNA Purification Kit ..................................................311<br />

PCR Products<br />

GeneJET PCR Purification Kit ..................................................316<br />

Plasmid DNA<br />

GeneJET Plasmid Maxiprep Kit ................................................306<br />

GeneJET Plasmid Midiprep Kit ................................................305<br />

GeneJET Plasmid Miniprep Kit ................................................304<br />

RNA<br />

GeneJET RNA Purification Kit ..................................................307<br />

PvuI .......................................................................................... 59, 139<br />

PvuII .......................................................................................... 59, 140<br />

Pyrophosphatase, Inorganic (from yeast) ............................................272<br />

Q<br />

Quality Control Assays .............................................................8, 77, 236<br />

R<br />

Radioisotopes ..................................................................................462<br />

Random Displacement Amplification (RDA)...........See Strand Displacement<br />

Random Hexamer Primer ..................................................................417<br />

Random Primer<br />

Exo-Resistant Random Primer .......................................................417<br />

Random Hexamer Primer ..............................................................417<br />

Rapid DNA Ligation Kit .....................................................................288<br />

Reagents .........................................................................................419<br />

Recognition Sites in DNA Molecules ..................................................457<br />

Recomendations for<br />

Conventional Restriction Enzymes .................................................158<br />

FastDigest Restriction Enzymes .......................................................72<br />

Recommendations for<br />

DNA Electrophoresis .....................................................................374<br />

DNA/RNA Modifying Enzymes .......................................................274<br />

In vitro Transcription .....................................................................335<br />

<strong>Molecular</strong> Cloning ........................................................................294<br />

<strong>Molecular</strong> Labeling and Detection .................................................349<br />

Nucleic Acid Purification ...............................................................322<br />

RNA Electrophoresis .....................................................................390<br />

Recommendations for Loading<br />

DNA Ladders and Markers ............................................................376<br />

RNA Ladders ...............................................................................390<br />

Reducing Agent ...............................................................................420<br />

Relaxation of Specificity (Star Activity) ................................................172<br />

Restriction Enzymes<br />

Activity Assay ............................................................................. 8, 77<br />

Alphabetic Lists of<br />

Commercially Available Restriction Enzymes ............................205<br />

Conventional Restriction Enzymes .............................................78<br />

FastDigest Restriction Enzymes ...................................................9<br />

Recognition Sequences ..........................................................217<br />

Classification of Restriction Enzymes .............................................171<br />

Digestion of Methylated DNA ........................................................173<br />

Navigation Guide ..............................................................................5<br />

Newly Generated Cleavage Sites ...................................................180<br />

Product Description .................................................................. 13, 82<br />

Protocols and Recommendations ............................................ 72, 158<br />

Reaction Conditions ............................................................... 73, 160<br />

Selection Guides ..........................................................................205<br />

Star Activity .................................................................................172<br />

Storage and Shipping ................................................................. 8, 77<br />

Troubleshooting Guide ..................................................................229<br />

RiboLock RNase Inhibitor ..................................................................271<br />

RiboRuler RNA Ladders<br />

High Range ..................................................................................386<br />

High Range, ready-to-use .............................................................386<br />

Low Range ..................................................................................386<br />

Low Range, ready-to-use..............................................................386<br />

RNA Electrophoresis<br />

Agarose .......................................................................................427<br />

Ladders .......................................................................................386<br />

Protocols and Recommendations ..................................................390<br />

www.thermoscientific.com/onebio 491


492<br />

RNAi ...............................................................................................512<br />

RNA Ladders ...................................................................................386<br />

RNA Loading Dye .............................................................................388<br />

RNA Polymerases<br />

SP6 RNA Polymerase ...................................................................331<br />

T3 RNA Polymerase .....................................................................331<br />

T7 RNA Polymerase .....................................................................330<br />

RNA Purification<br />

DNase I, RNase-free .....................................................................255<br />

GeneJET RNA Purification Kit ........................................................307<br />

Glycogen .....................................................................................423<br />

RNase A, DNase and Protease-free ........................................... 262, 313<br />

RNase A/T1 Mix ...............................................................................264<br />

RNase H ..........................................................................................266<br />

RNase I ...........................................................................................265<br />

RNase T1 ........................................................................................263<br />

RNA Sizing ......................................................................................386<br />

RruI ...................................................................................................54<br />

RsaI .......................................................................................... 60, 140<br />

RseI .......................................................................................... 49, 140<br />

RsrII .......................................................................................... 60, 106<br />

RT-PCR, Analysis on Gels<br />

Agarose .......................................................................................427<br />

DNA Ladders and Markers ............................................................353<br />

Electrophoresis Buffers .................................................................371<br />

RiboRuler RNA Ladders ................................................................386<br />

RT-PCR, Clean-up<br />

Agarase .......................................................................................319<br />

GeneJET Gel Extraction Kit ............................................................317<br />

Silica Bead DNA Gel Extraction Kit .................................................318<br />

RT-PCR, Cloning<br />

CloneJET PCR Cloning Kit .............................................................279<br />

InsTAclone PCR Cloning Kit ...........................................................281<br />

Rapid DNA Ligation Kit .................................................................288<br />

T4 DNA Polymerase .....................................................................249<br />

T4 Polynucleotide Kinase (T4 PNK) ................................................243<br />

RT-PCR, Enzymes<br />

RiboLock RNase Inhibitor ..............................................................271<br />

<strong>Thermo</strong>philic DNA Polymerases .................................................. .See PCR<br />

RT-PCR, Nucleotides<br />

dNTP Mixes .................................................................................408<br />

dNTP Set .....................................................................................408<br />

Modified Nucleotides ....................................................................413<br />

RT PCR, Primers for cDNA Synthesis<br />

Exo-Resistant Random Primer .......................................................417<br />

Oligo(dT) 18 Primer.........................................................................417<br />

Random Hexamer Primer ..............................................................417<br />

RT-PCR, Purification of RT-PCR Products .................. See RT-PCR, Clean-up<br />

RT-PCR, RNA Purification<br />

DNase I, RNase-free .....................................................................255<br />

GeneJET RNA Purification Kit ........................................................307<br />

Glycogen, RNA grade ...................................................................423<br />

RT-PCR, RNase Inhibitor<br />

RiboLock RNase Inhibitor ..............................................................271<br />

RT-PCR, Second Strand cDNA Synthesis<br />

DNA Polymerase I ........................................................................246<br />

RNase H ......................................................................................266<br />

S<br />

S1 Nuclease ....................................................................................269<br />

SacI .......................................................................................... 60, 141<br />

www.thermoscientific.com/onebio<br />

SacII................................................................................................106<br />

SalI ........................................................................................... 61, 141<br />

SanDI ................................................................................................61<br />

SapI .......................................................................................... 61, 124<br />

SaqAI ................................................................................................49<br />

SatI ........................................................................................... 40, 142<br />

Sau3AI ........................................................................................ 62, 99<br />

Sau96I ...................................................................................... 62, 105<br />

SbfI ........................................................................................... 62, 143<br />

ScaI .......................................................................................... 63, 142<br />

SchI .......................................................................................... 48, 143<br />

ScrFI ........................................................................................... 63, 91<br />

SdaI .......................................................................................... 62, 143<br />

SduI .......................................................................................... 30, 143<br />

Second Strand cDNA Synthesis<br />

DNA Polymerase I ........................................................................246<br />

RNase H ......................................................................................266<br />

Selection Guides for<br />

DNA/RNA Polymerases<br />

Mesophilic DNA Polymerases ..................................................244<br />

In vitro Transcription .....................................................................326<br />

Ligases .......................................................................................238<br />

<strong>Molecular</strong> Cloning ........................................................................278<br />

<strong>Molecular</strong> Labeling and Detection .................................................342<br />

Nucleases<br />

Deoxyribonucleases (DNases) .................................................254<br />

Ribonucleases (RNases)..........................................................261<br />

Sugar Nonspecific Nucleases ..................................................268<br />

Nucleic Acid Purification ...............................................................303<br />

Phosphatases and Kinase .............................................................241<br />

RNA Ladders ...............................................................................386<br />

Sensitivity to Methylation<br />

CpG Methylation ..........................................................................176<br />

Dam Methylation ..........................................................................174<br />

Dcm Methylation ..........................................................................175<br />

EcoKI and EcoBI Methylation .........................................................179<br />

Sequencing Primers<br />

M13/pUC reverse sequencing primer (-26), 17-mer .......................416<br />

M13/pUC reverse sequencing primer (-46), 24-mer .......................416<br />

M13/pUC sequencing primer (-20), 17-mer ...................................416<br />

M13/pUC sequencing primer (-40), 17-mer ...................................416<br />

M13/pUC sequencing primer (-46), 22-mer ...................................416<br />

pJET1.2 forward sequencing primer, 23-mer .................................416<br />

pJET1.2 reverse sequencing primer, 24-mer .................................416<br />

SP6 promoter sequencing primer, 18-mer .....................................416<br />

SP6 promoter sequencing primer, 24-mer .....................................416<br />

T3 promoter sequencing primer, 17-mer .......................................416<br />

T3 promoter sequencing primer, 24-mer .......................................416<br />

T7 promoter sequencing primer, 20-mer .......................................416<br />

SexAI ................................................................................................63<br />

SfaAI ......................................................................................... 19, 144<br />

SfaNI ......................................................................................... 64, 125<br />

SfcI ............................................................................................. 64, 90<br />

SfiI ............................................................................................ 64, 144<br />

SfoI .................................................................................................116<br />

SgeI ................................................................................................145<br />

SgrDI...............................................................................................145<br />

SgsI .......................................................................................... 18, 145<br />

Silica Bead DNA Gel Extraction Kit .....................................................318<br />

siRNA ..............................................................................................512<br />

siRNA Analysis on Gel ......................................................................387<br />

Site Preferences by Restriction Endonucleases ..................................171


SI Unit Prefixes ................................................................................464<br />

SmaI ......................................................................................... 65, 146<br />

SmiI .......................................................................................... 67, 146<br />

SmlI ................................................................................................147<br />

SmoI ...............................................................................................147<br />

SnaBI ........................................................................................ 65, 114<br />

Sodium Acetate Solution, 3 M, pH 5.2 ...............................................421<br />

SP6 Promoter Sequencing Primers ...................................................416<br />

SP6 RNA Polymerase .......................................................................331<br />

SpeI ............................................................................................ 65, 89<br />

SphI .......................................................................................... 66, 133<br />

Sse232I ..........................................................................................128<br />

SsiI ........................................................................................... 14, 147<br />

SspDI ..............................................................................................148<br />

SspI .......................................................................................... 66, 148<br />

Star Activity .....................................................................................172<br />

Step Ladders ...................................................................................366<br />

Stock <strong>Solutions</strong>, Commonly Used ......................................................467<br />

Strand Displacement<br />

Bsm DNA Polymerase, Large Fragment .........................................253<br />

Exo-Resistant Random Primer .......................................................417<br />

phi29 DNA Polymerase.................................................................245<br />

Random Hexamer Primer ..............................................................417<br />

StuI ........................................................................................... 66, 114<br />

StyI ........................................................................................... 67, 114<br />

SwaI.......................................................................................... 67, 146<br />

T<br />

T3 promoter sequencing primer, 17-mer ...........................................416<br />

T3 promoter sequencing primer, 24-mer ...........................................416<br />

T3 RNA Polymerase .........................................................................331<br />

T4 DNA Ligase .................................................................................239<br />

T4 DNA Polymerase .........................................................................249<br />

T4 Polynucleotide Kinase (T4 PNK) ....................................................243<br />

T4 RNA Ligase .................................................................................240<br />

T7 DNA Polymerase .........................................................................250<br />

T7 promoter sequencing primer, 20-mer ...........................................416<br />

T7 RNA Polymerase .........................................................................330<br />

TaaI ........................................................................................... 67, 149<br />

TAE Buffer, 50X ................................................................................371<br />

TaiI ....................................................................................................68<br />

Tail ..................................................................................................149<br />

TaqI ........................................................................................... 68, 149<br />

TasI ........................................................................................... 70, 150<br />

TatI ........................................................................................... 68, 150<br />

TauI ........................................................................................... 69, 150<br />

TBE Buffer, 10X ...............................................................................371<br />

TdT (Terminal Deoxynucleotidyl Transferase) ......................................251<br />

Temperature Dependence of pH<br />

for Commonly Used Buffers ..........................................................466<br />

of 50 mM Tris-HCl <strong>Solutions</strong> .........................................................465<br />

Terminal Deoxynucleotidyl Transferase (TdT) ......................................251<br />

TfiI ............................................................................................ 69, 135<br />

TopVision Agarose ............................................................................427<br />

TopVision Low Melting Point Agarose.................................................427<br />

Trademarks .....................................................................................503<br />

TranscriptAid T7 High Yield Transcription Kit .......................................328<br />

Transcription in vitro<br />

RiboLock RNase Inhibitor ..............................................................271<br />

RNA Ladders ...............................................................................386<br />

SP6 RNA Polymerase ...................................................................331<br />

T3 RNA Polymerase .....................................................................331<br />

T7 RNA Polymerase .....................................................................330<br />

TranscriptAid T7 High Yield Transcription Kit ...................................328<br />

Transcription Promoter Primers .........................................................416<br />

Transferase .....................................................................................251<br />

TransformAid Bacterial Transformation Kit ..........................................289<br />

Troubleshooting Guide for<br />

DNA Digestion .............................................................................229<br />

DNA Electrophoresis .....................................................................378<br />

In vitro Transcription .....................................................................337<br />

<strong>Molecular</strong> Cloning ........................................................................297<br />

RNA Electrophoresis .....................................................................392<br />

Tru1I ......................................................................................... 69, 151<br />

TscAI......................................................................................... 70, 151<br />

Tsp45I ............................................................................................132<br />

Tsp509I .................................................................................... 70, 150<br />

TspRI ........................................................................................ 70, 151<br />

Tth111I ...........................................................................................139<br />

U<br />

Uracil-DNA Glycosylase (UDG, UNG) ..................................................273<br />

UTP .................................................................................................412<br />

V<br />

Van91I ...................................................................................... 56, 152<br />

Viral DNA/RNA Purification Kit (IVD) ...................................................315<br />

VspI .......................................................................................... 19, 152<br />

W<br />

Water, DEPC-treated ........................................................................420<br />

Water, nuclease-free ........................................................................420<br />

WELQut Protease .............................................................................285<br />

Whole Genome Amplification (WGA) .......................................... 245, 253<br />

X<br />

XagI .......................................................................................... 38, 152<br />

XapI .......................................................................................... 70, 153<br />

XbaI .......................................................................................... 71, 153<br />

XceI .......................................................................................... 55, 153<br />

X-Gal ..............................................................................................424<br />

X-Gal Solution ..................................................................................424<br />

X-Gluc .............................................................................................425<br />

XhoI .......................................................................................... 71, 154<br />

XmaI ...............................................................................................105<br />

XmaJI........................................................................................ 20, 154<br />

XmiI .......................................................................................... 13, 154<br />

XmnI ...............................................................................................135<br />

Z<br />

ZipRuler Express DNA Ladder Set, ready-to-use .................................365<br />

www.thermoscientific.com/onebio 493


494<br />

Protocol Index<br />

<strong>Thermo</strong> <strong>Scientific</strong> FastDigest & Conventional Restriction Enzymes<br />

1.1. Fast DNA digestion ..................................................................72<br />

1.2. Reaction set-up for digestion of multiple DNA samples ..............72<br />

1.3. Double and multiple digestion of DNA .......................................72<br />

1.4. Scaling up DNA digestion reaction ............................................72<br />

1.5. DNA digestion .......................................................................158<br />

1.6. Digestion of PCR products .....................................................158<br />

1.7. Setting up double digestion ....................................................158<br />

1.7.1. Double digestion with FastDigest enzymes .....................158<br />

1.7.2. DoubleDigest Engine ....................................................158<br />

1.7.3. Double digestion in the universal Tango Buffer ...............158<br />

1.7.4. Double digestion in the Five Buffer System .....................158<br />

1.7.5. Digestion with enzymes having different<br />

optimum temperatures ...........................................................158<br />

1.7.6. Sequential digestion .....................................................158<br />

1.8. Stability during prolonged incubation ......................................158<br />

1.9. Dilution of restriction enzymes................................................158<br />

1.10. Partial digestion of DNA .......................................................158<br />

1.11. Digestion of agarose-embedded DNA ...................................159<br />

1.12. Inactivation of restriction enzymes ........................................159<br />

<strong>Thermo</strong> <strong>Scientific</strong> DNA/RNA Modifying Enzymes<br />

2.1. Activity of DNA/RNA modifying enzymes<br />

in <strong>Thermo</strong> <strong>Scientific</strong> buffers ..........................................................274<br />

2.2. Dilution of DNA/RNA modifying enzymes .................................275<br />

<strong>Thermo</strong> <strong>Scientific</strong> <strong>Molecular</strong> Cloning Products<br />

3.1. DNA ligation ..........................................................................294<br />

3.1.1. Sticky-end ligation ........................................................294<br />

3.1.2. Blunt-end ligation .........................................................294<br />

3.1.3. Self-circularization of linear DNA ...................................294<br />

3.1.4. Linker ligation ..............................................................294<br />

3.1.5. Analysis of ligation products by agarose<br />

gel electrophoresis .................................................................294<br />

3.1.6. Control reaction for T4 DNA Ligase activity .....................294<br />

3.2. DNA blunting ........................................................................295<br />

3.2.1. Blunting of 5’- or 3’-overhangs with<br />

T4 DNA Polymerase ...............................................................295<br />

3.2.2. Fill-in of 5’-overhangs with Klenow Fragment, exo – ...........295<br />

3.2.3. Removal of 3’- and 5’-overhangs<br />

with S1 Nuclease ...................................................................295<br />

3.3. Phosphorylation of DNA .........................................................295<br />

3.4. Dephosphorylation of DNA and RNA .......................................295<br />

3.4.1. Dephosphorylation of DNA and RNA ..............................295<br />

3.4.2. Fast simultaneous plasmid vector linearization<br />

and dephosphorylation ...........................................................295<br />

3.5. Removal of tags from recombinant proteins<br />

using WELQut Protease ................................................................295<br />

3.5.1. Optimization of WELQut Protease cleavage .....................295<br />

3.5.2. Cleavage of fusion proteins in solution ...........................296<br />

3.5.3. Cleavage of fusion proteins during<br />

affinity purification ..................................................................296<br />

3.6. Transformation ......................................................................296<br />

3.7. Cultivation of E.coli ................................................................296<br />

3.7.1. Preparation of E.coli culture glycerol stocks ...................296<br />

3.7.2. Preparation of X-Gal/IPTG LB agar plates<br />

for blue/white colony screening ...............................................296<br />

3.8. Analysis of recombinant clones ..............................................296<br />

www.thermoscientific.com/onebio<br />

<strong>Thermo</strong> <strong>Scientific</strong> Nucleic Acid Purification Products<br />

4.1. Purification of genomic DNA from mouse tails<br />

with Proteinase K .........................................................................322<br />

4.2. Purification of DNA from cultured eukaryotic cells<br />

with Proteinase K .........................................................................322<br />

4.3. Casting high quality agarose gels ...........................................322<br />

4.4. Recovery of DNA from LM agarose gels with Agarase ..............322<br />

4.5. Nucleic acid precipitation from diluted solutions<br />

with Glycogen ..............................................................................323<br />

4.6. Removal of template DNA after in vitro transcription ................323<br />

4.7. Removal of genomic DNA from RNA preparations ....................323<br />

4.8. PCR product clean-up prior to sequencing ..............................323<br />

4.9. Phenol/chloroform extraction and ethanol precipitation ............323<br />

<strong>Thermo</strong> <strong>Scientific</strong> in vitro Transcription Products<br />

5.1. DNA template preparation for in vitro transcription...................335<br />

5.2. Avoiding RNase contamination ...............................................335<br />

5.3. in vitro transcription ...............................................................335<br />

5.4. Synthesis of radiolabeled RNA probes<br />

of high specific activity .................................................................335<br />

5.5. Purification of RNA transcripts ................................................336<br />

5.6. Evaluation of transcription reaction products ...........................336<br />

<strong>Thermo</strong> <strong>Scientific</strong> <strong>Molecular</strong> Labeling & Detection Products<br />

6.1. DNA/RNA end labeling ...........................................................349<br />

6.1.1. DNA 5’-end labeling by T4 PNK<br />

in the exchange reaction.........................................................349<br />

6.1.2. DNA/RNA 5’-end labeling by<br />

T4 PNK in the forward reaction ...............................................349<br />

6.1.3. Radiolabeling of RNA Ladders by T4 PNK .......................349<br />

6.1.4. DNA 3’-end labeling by fill-in of 5’-overhangs ................349<br />

6.1.5. DNA and oligonucleotide 3’-end labeling by tailing .........349<br />

6.1.6. RNA 3’-end labeling by ligation .....................................350<br />

6.2. Random-primed labeling........................................................350<br />

6.2.1. Radioactive random-primed DNA labeling ......................350<br />

6.2.2. Non-radioactive random-primed DNA labeling ................350<br />

6.3. DNA labeling by nick-translation .............................................350<br />

6.3.1. Radioactive DNA labeling by nick-translation ..................350<br />

6.3.2. Non-radioactive DNA labeling by nick-translation ............350<br />

6.4. RNA labeling by in vitro transcription ......................................350<br />

6.4.1. Synthesis of radiolabeled RNA probes<br />

of high specific activity ...........................................................350<br />

6.5. Synthesis of labeled cDNA .....................................................350<br />

6.5.1. Synthesis of cDNA probes<br />

with high specific radioactivity .................................................350<br />

6.5.2. Synthesis of non-radioactively labeled cDNA ..................351<br />

6.6. Southern Blotting ..................................................................351<br />

<strong>Thermo</strong> <strong>Scientific</strong> DNA Electrophoresis Products<br />

7.1. General recommendations for DNA electrophoresis .................374<br />

7.1.1. Recommendations for accurate<br />

in-gel DNA quantification ........................................................374<br />

7.2. Preparation of agarose gels for DNA electrophoresis ...............374<br />

7.2.1. Non-denaturing agarose gel electrophoresis ..................374<br />

7.2.2. Alkaline agarose gel electrophoresis ..............................375<br />

7.3. Preparation of gels for PAGE ..................................................375<br />

7.3.1. Non-denaturing PAGE ...................................................375<br />

7.3.2. Denaturing polyacrylamide/urea gel electrophoresis .......375


7.4. Preparation of DNA samples for electrophoresis ......................376<br />

7.4.1. Preparation of DNA samples for conventional<br />

DNA electrophoresis ...............................................................376<br />

7.4.2. Preparation of DNA samples for denaturing<br />

polyacrylamide/urea gel electrophoresis ..................................376<br />

7.4.3. Preparation of DNA samples for denaturing<br />

alkaline agarose gel electrophoresis ........................................376<br />

7.4.4. Preparation of DNA samples containing<br />

DNA binding proteins ..............................................................376<br />

7.5. Preparation of DNA ladders/markers for electrophoresis ..........376<br />

7.6. Labeling of DNA ladders/markers ...........................................376<br />

7.7. Separation of Express DNA ladders in different<br />

electrophoresis conditions ............................................................377<br />

<strong>Thermo</strong> <strong>Scientific</strong> RNA Electrophoresis Products<br />

8.1. General recommendations for RNA electrophoresis .................390<br />

8.2. Preparation of RNA ladders for electrophoresis ........................390<br />

8.3. Preparation of RNA samples for electrophoresis ......................390<br />

8.4. Preparation of gels for RNA electrophoresis ............................390<br />

8.4.1. Non-denaturing agarose gels ........................................390<br />

8.4.3. Denaturing glyoxal/DMSO gels in sodium<br />

phosphate buffer ....................................................................390<br />

8.4.4. Denaturing polyacrylamide/urea gels<br />

in TBE buffer ..........................................................................391<br />

www.thermoscientific.com/onebio 495


496<br />

Patents<br />

The purchase of below listed products includes a non-transferable license<br />

to use these products for the purchaser’s internal research. All other<br />

commercial uses of these products, including without limitation product<br />

use for diagnostic purposes, resale of product in the original or any<br />

modified form or product use in providing commercial services require a<br />

separate license from Fermentas, a subsidiary of <strong>Thermo</strong> Fisher <strong>Scientific</strong>.<br />

For further information on obtaining licenses please contact at<br />

info.fermentas.lt@thermofisher.com<br />

Nickases (N.Bpu10I)<br />

This product or the use of this product is covered by US patent<br />

No. 6,867,028 and corresponding counterparts.<br />

Restriction enzymes with altered specificity (Eco57MI)<br />

This product or the use of this product is covered by US patent<br />

No. 6,893,854 and corresponding counterparts.<br />

Nucleic acid purification process (NoLimits fragments,<br />

DNA ladders)<br />

Manufacture of this product uses process covered by US patent<br />

No. 7,811,807 and corresponding counterparts.<br />

pJET1.2 vector<br />

This product or the use of this product is covered by US patent application<br />

US20090042249A1 and corresponding counterparts.<br />

Protein evolution in vitro method; Mutant Reverse<br />

Transcriptase technology (RevertAid Premium and Maxima RT)<br />

This product or the use of this product is covered by US patent application<br />

US20110065606A1 and corresponding counterparts.<br />

Methylation-specific REases (SgeI)<br />

This product or the use of this product is covered by US patent application<br />

US20110207139A1 and corresponding counterparts.<br />

dsRNA synthesis using Phi6 RNA Replicase<br />

This product or the use of this product is covered by EP patent<br />

EP1242586B1 and other patents exclusively licensed to<br />

<strong>Thermo</strong> Fisher <strong>Scientific</strong> Inc. and its subsidiaries.<br />

www.thermoscientific.com/onebio<br />

Licenses<br />

Fermentas and/or its affiliates products may be covered by one or more<br />

licenses. By use of these products you agree to comply with the terms<br />

and conditions of applicable license:<br />

Nicking enzyme technology (Nb.Mva1269I)<br />

This product is licensed under US. Patent No. 7,081,358 or corresponding<br />

foreign patents.<br />

Recombinant thermostable DNA polymerase<br />

from archaebacteria<br />

This product is licensed under EP patent EP0547920B1, owned by<br />

New England Biolabs, Inc.<br />

Homing endonuclease I-SceI<br />

This product is licensed under one or more US Patent Nos.<br />

5,474,896, 5,866,361, 5,792,632 or corresponding counterparts.<br />

Nucleic acid marker ladder for estimating mass<br />

Purchase of this product includes a limited license under US Patent<br />

Nos. 5,834,201, 6,680,378, and/or 7,132,520 to use this product for<br />

internal research purposes only.<br />

Bsm DNA Polymerase<br />

This product is patent pending with rights co-owned by K.K.<br />

DNAFORM and RIKEN, The Institute of Physical and Chemical<br />

Research.<br />

PCR Product Clean-up Prior to Sequencing<br />

(Exonuclease I, Alkaline phosphatases)<br />

The purchase of this product allows the purchaser to use it for<br />

preparing amplified DNA fragments under a license from GE<br />

Healthcare of US Patent Nos. 5,741,676 and 5,756,285 and other<br />

foreign patents.


Trademarks<br />

aLICator, CloneJET, DecaLabel, DoubleDigest, DreamTaq, EpiJET, FastAP,<br />

FastDigest, FastDigest and PureExtreme, FastRuler, GeneJET, GeneRuler,<br />

InsTAclone, MassRuler, Maxima, NoLimits, O’GeneRuler, O’RangeRuler,<br />

PageRuler, PageSilver, Phusion, PowerCut, Premium, PureExtreme,<br />

Replicator, REsearch, REviewer, RevertAid, RiboLock, RiboRuler, Tango,<br />

TopVision, TranscriptAid, TransformAid, TriTrack, WELQut, ZipRuler are<br />

trademarks of <strong>Thermo</strong> Fisher <strong>Scientific</strong> Inc. and its subsidiaries.<br />

Cy, Ficoll, and Sephadex are trademarks of GE Healthcare.<br />

DH5 and DH5F’ are trademarks of Life Technologies, Inc.<br />

Elugent is a trademark of Calbiochem Novabiochem, Inc.<br />

LabChip is a trademark of Caliper Life Sciences, Inc.<br />

Nonidet is a trademark of Shell Chemical Co.<br />

Norit is a registered trademark of Norit N.V.<br />

pBluescript is a trademark of Agilent Technologies, Inc.<br />

Saran Wrap is a trademark of the Dow Chemical Company.<br />

Triton X-100 is a trademark of Union Carbide Chemicals & Plastics<br />

Technology Corporation.<br />

Tween is a trademark of ICI Americas, Inc.<br />

Whatman is a trademark of Whatman Ltd.<br />

www.thermoscientific.com/onebio 497


498<br />

Notes<br />

www.thermoscientific.com/onebio


Notes<br />

www.thermoscientific.com/onebio 499


500<br />

Notes<br />

www.thermoscientific.com/onebio


Notes<br />

www.thermoscientific.com/onebio 501


502<br />

<strong>Solutions</strong> for PCR and qPCR<br />

The <strong>Thermo</strong> <strong>Scientific</strong> PCR and qPCR portfolio has everything you need for a successful run: reagents, instruments and plastic<br />

consumables. Our innovative portfolio is assembled by combining the state-of-the-art product lines from ABgene, Finnzymes and<br />

Fermentas. The products within – born of scientific breakthroughs, themselves – are accelerating discovery in life science, and our<br />

aim is to continue to develop new tools to increase your efficiency and enhance your effectiveness.<br />

<strong>Solutions</strong> for RNAi and Gene Expression<br />

The <strong>Thermo</strong> <strong>Scientific</strong> RNAi and gene expression products encompass the most comprehensive portfolio of tools for gene<br />

knockdown and over-expression. Our innovative product portfolio combines state-of-the-art product lines from Dharmacon and<br />

Open Biosystems. Find industry-leading siRNA, shRNA, microRNA, cDNA and ORF reagents as well as a complete suite of controls<br />

and solutions for RNAi delivery and screening.<br />

www.thermoscientific.com/onebio<br />

Find the complete workflow of <strong>Thermo</strong> <strong>Scientific</strong><br />

PCR and qPCR products, including reagents,<br />

instruments and plastic consumables at<br />

www.thermoscientific.com/pcr<br />

From single gene analysis to genome-scale screens,<br />

find your RNAi and Gene Expression solutions at<br />

www.thermoscientific.com/silence


Contact details<br />

North America<br />

Technical Services<br />

ts.molbio@thermofisher.com<br />

Customer Services<br />

cs.molbio@thermofisher.com<br />

Ordering Information<br />

www.thermoscientific.com/onebio<br />

Europe and Asia<br />

Technical Services<br />

ts.molbio.eu@thermofisher.com<br />

Customer Services<br />

cs.molbio.eu@thermofisher.com<br />

Ordering Information<br />

www.thermoscientific.com/onebio

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!