21.06.2013 Views

SOLVO Biotechnology

SOLVO Biotechnology

SOLVO Biotechnology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>SOLVO</strong> <strong>Biotechnology</strong><br />

"The Transporter Company"<br />

Bill Johnson Johnson, Ph Ph.D. D<br />

VP, Global Operations & Services


Presentation Topics<br />

<strong>SOLVO</strong> "The The Transporter Company" Company<br />

Membrane Transporters Transporters, Barriers<br />

RRegulatory l t BBackground k d<br />

Assay Service and Systems


"[Kelsey] prevented ... the birth of tho<br />

armless and legless children." The publi<br />

was swift and drug testing reforms were<br />

unanimously y by y Congress g a few months lat<br />

The drug testing reforms required "stric<br />

on the testing and distribution of new d<br />

to avoid similar problems.<br />

The amendments also, for the first time,<br />

recognized that "effectiveness [should b<br />

required to be established prior to mark<br />

Frances Kathleen Oldham Kelsey receiving the<br />

President's Award for Distinguished Federal<br />

Civilian Service from President John F.<br />

Kennedy, in 1962.


• Founded in Hungary in1999<br />

<strong>SOLVO</strong> Facts<br />

• 100+ transporter related products and<br />

services<br />

• 25 peer reviewed articles in transporter<br />

science i<br />

• 400+ clients in 35 countries<br />

• 80 employees, 60 scientists and 30 in<br />

R&D


Why <strong>SOLVO</strong>?<br />

Proven Scientific Expertise<br />

Topic Publications<br />

Impact cholesterol on transporter<br />

activity<br />

IVIVC<br />

BCRP<br />

MRP2<br />

MDR1<br />

Pal et al (2007), (2007) Kis et al (2009)<br />

MDR1: Sziraki et al (2011)<br />

MRP2: Heredi-Szabo (2009)<br />

BSEP Kis et al 2009 (2)<br />

Interaction with neutraceuticals and<br />

environmental toxicants<br />

Ozvegy et al (2001), Jani et al (2009),<br />

Kis et al (2009), Pál et al (2007),<br />

Glavinas et al (2007), ( ),<br />

Krajcsi et al (2005), Heredi-Szabo et al<br />

(2008)<br />

SSzeremy et t al l 2010, 2010 RRajnai j i et t al l 2010, 2010 V<br />

Richter et al 2009, Schmitt et al 2006<br />

Dreiseitel et al (2009), Oosterhuis et<br />

al (2008), Williamson et al (2007),<br />

Zh n t l (2007) L pin t l (2006)


Why <strong>SOLVO</strong>?<br />

Portfolio<br />

We offer the entire FDA and EMA set (and a<br />

lot more): )<br />

• P P-gp (MDCKII or vesicles) i l )<br />

• BCRP (MDCKII or vesicles)<br />

• BSEP (vesicles) (vesicles)<br />

• OAT1 (CHO cells)<br />

• OAT3 (CHO cells)<br />

• OCT1 (CHO cells)<br />

• OCT2 (CHO cells)<br />

• OATP1B1 (CHO cells) ll )<br />

• OATP1B3 (CHO cells)


RRecent t Developments D l t at t <strong>SOLVO</strong><br />

• Transporter Consultancy Service<br />

– How to study transporters - Experimental design, which transporters are<br />

important, etc.<br />

– When to study transporters - Let us help you in designing your transporter<br />

strategy<br />

– Why to study transporters - Help with regulatory requests, questions and<br />

submissions<br />

• Additional Services<br />

– Primary Renal Proximal Tubule cells (aProximateTM – Primary Renal Proximal Tubule cells (aProximate )<br />

Package]<br />

[Kidney<br />

– Hepatocyte uptake assay (various protocols)<br />

Package] g<br />

[Liver<br />

– Excipient interaction assay [Absorption Package]<br />

– Solubility Assay [Absorption Package]<br />

– RBEC, , MBEC [BBB [ Package] g ]<br />

• US Expansion<br />

A il 2012 <strong>SOLVO</strong> ffi i B t MA d t bli h i l


Lack of adequate q superiority p y in<br />

efficacy the major reason related<br />

tto ddrug ffailure il


Role of Transporters:<br />

ADMET ADMETox and d DDrug-Drug D<br />

Interactions


Types of Transporters<br />

Uptake (SLC) transporters<br />

• Mediate active transport of<br />

compounds accross cell membranes<br />

• Energy source differs per family<br />

of transporters (sodium gradient gradient,<br />

proton gradient, etc)<br />

• Transport wide variety of<br />

molecules: peptides, organic anions<br />

and cations, cations bile acids acids, amino<br />

acids, fatty acids, etc<br />

• Expression in all major barrier<br />

organs<br />

H + , Na + , other<br />

extracellular<br />

S<br />

A<br />

L<br />

B<br />

C intracellular C<br />

ATP<br />

ADP + Pi<br />

Efflux (ABC) transporters<br />

• >1 >1,000 000 different transporters in<br />

the family (49 human)<br />

• Energy source: ATP<br />

• Functions:<br />

– Transport substrates<br />

accross cell membranes<br />

– Regulate(d) ion channels<br />

– Regulate multi-protein<br />

channel complexes<br />

(receptors)<br />

• Alter pharmacokinetics of drugs,<br />

nutrients and other molecules<br />

• An array of genetic diseases<br />

linked with the human transporters


EExpression i in i Barrier B i OOrgans<br />

Intestinal efflux<br />

Pgp, gp, MRP2, , MRP4, ,<br />

BCRP<br />

CNS efflux<br />

PPgp, OAT3 OAT3, MRP1 MRP1,<br />

MRP2, BCRP, MRP4<br />

ATP dependent efflux transporters<br />

Exchange/co-transport transporters<br />

Intestinal uptake<br />

OATP2B1, OATP1A2<br />

PEPT-1, MRP3<br />

Biliary secretion<br />

Pgp, MDR3, BCRP<br />

MRP2 (BSEP)<br />

Hepatic uptake<br />

OATP1B1 OCT1<br />

OATP2B1 OAT2<br />

OATP1B3 NTCP<br />

Hepatic efflux<br />

MRP3, , MRP4, ,<br />

MRP6<br />

Renal uptake<br />

OAT1,OAT3, OCT2, OATP4C1<br />

Renal re-uptake<br />

OATP2B1, PEPT-2<br />

Renal secretion<br />

Pgp, MRP4, MRP2, OAT4, MATE1, MATE2K


Role of Transporters p in<br />

ADMETox H extracellular<br />

+ , Na + , other<br />

• Intestinal absorption<br />

S<br />

A<br />

• Distribution<br />

L<br />

C<br />

B<br />

C<br />

• Modulation of metabolism<br />

• Excretion ATP<br />

– Intestinal<br />

– Liver<br />

– Kidney<br />

• Drug-drug interaction<br />

• Toxicity<br />

– interference with<br />

transport and d<br />

metabolism<br />

of endogenous<br />

b<br />

intracellular ADP + Pi


Role of Transporters p in<br />

• Intestinal absorption<br />

Drug Transporter Effect<br />

Paclitaxel MDR1 6 x increase in<br />

Mdr1a -/- mice<br />

(Van Asperen et<br />

al 2007)<br />

Digoxin MDR1 157% increase in<br />

AUC when codosing<br />

with Dronedarone<br />

Atorvastatin BCRP 71% increase in<br />

AUC in c.421AA<br />

genotypes<br />

Rosuvastatin BCRP 144% increase in<br />

AUC in c.421AA<br />

genotypes<br />

(M Niemi, 2010)<br />

ADMETox


Roles of Transporters p in<br />

• Distribution<br />

ADMETox<br />

– CNS (blood-brain barrier, blood – CSF barrier)<br />

– Fetus (blood-placenta barrier in<br />

syncytiotrophoblast)<br />

– Testis (blood-testis ( barrier) )


Effect of P-gp P gp on BBB<br />

permeability of verapamil<br />

Lee et al 2006, JPET<br />

B/D B/D: 11C 11C‐Verapamil V ilb brain i uptake tk<br />

in rhesus monkeys<br />

C/E: 11C 11C‐Verapamil Verapamil brain uptake +<br />

PSC833<br />

>4 fold increase in brain uptake in<br />

presence of PSC833


First<br />

generation ti<br />

SSedative d ti Side Sid Eff Effects t of f<br />

Anti-histamines<br />

Anti histamines<br />

Transporter<br />

(MDR1)<br />

interaction<br />

brain/plasma Sedative CNS<br />

distribution side effect<br />

Notes<br />

chlorpheniramine No 18.4 Yes High passive<br />

permeability<br />

diphenhydramine No 34.0 Yes High passive<br />

permeability<br />

Hydroxyzine<br />

No 4.30 Yes High passive<br />

(At (Atarax) )<br />

permeability bilit<br />

Second<br />

generation<br />

FFexofenadine f di<br />

(Allegra, Aventis)<br />

YYes 00.018 018 NNo<br />

Acrivastine<br />

(Semprex, (Se p e , GSK) GS )<br />

Yes 0.072 No<br />

Cetirizine (Zyrtec,<br />

Pfizer)<br />

Yes 0.367 No


Roles of Transporters in<br />

ADMETox<br />

• Transporters play an important role in drug absorption,<br />

disposition, excretion and toxicity<br />

• Increasing evidence for clinical relevance of transporters<br />

• Increasing number of publications from regulatory authorities<br />

• RRegulatory l t view i iis still till evolving l i and d many questions ti remain i<br />

unanswered<br />

• The passive permeability of a compound has a great effect on<br />

the success of a transporter assay<br />

• Assays should be chosen wisely


Building evidence that adverse drug<br />

reactions are attributed, at least in part, to<br />

the involvement of drug transporters<br />

Cellular accumulation depends on transport<br />

What role of passive permeability?<br />

Adverse reactions can involve transporters<br />

MDR3, OATP, cardiac<br />

Zolk and Fromm, Clin Pharmacol Ther, 2001


Challenge g of Drug g Transporters p<br />

Rapidly growing scientific area with many in<br />

vitro, it preclinical li i l and d clinical li i l publications<br />

bli ti<br />

• More than 30 transporters ‘involved’ in ADME<br />

• Few agreed clinical translation approaches<br />

• Limited tools/reagents relative to CYP enzymes<br />

• Measuring drug exposure in plasma may not reflect impact on a<br />

drug’s disposition (e.g., toxicity)- this is highlighted in<br />

the EMA DDI guidance document<br />

• Conflicting messages to prescribers prescribers, patients patients, and regulatory<br />

bodies<br />

Drug Transporter White Paper<br />

‘Membrane Transporters in Drug Development’, NRDD 9:215 - 236 (2010)<br />

EMA Guideline on the Investigations of Drug<br />

Int Interactions- r ti n Draft guidance published 22April2010<br />

Fast changing, dynamic


Mechanisms Mechanisms of of Drug Drug-Induced Drug Drug-Induced Induced Liver<br />

Transporter<br />

Disruption<br />

Immune Injury j y<br />

hepatocyte<br />

Injury<br />

j y<br />

Bile<br />

Canaliculus<br />

Reactive Metabolites<br />

hepatocyte<br />

Mitochondrial Disruption<br />

Loss of ion<br />

gradients<br />

Other<br />

targets<br />

Glutathion<br />

e depletion


Hepatic Drug Transporters and<br />

OATP<br />

1B1<br />

OATP<br />

1B3<br />

OATP<br />

2B1<br />

MRP3<br />

Metabolising Enzymes<br />

MRP4<br />

Phase I:<br />

MRP5<br />

CYP 450, 450 FMO, FMO MAO<br />

Esterases<br />

ADH, CR, XO<br />

Phase II:<br />

UGT UGT, GST<br />

SULT<br />

NTCP N<br />

OCT1 O<br />

OAT2 O<br />

BLOOD<br />

Causes of transporter related<br />

hepatotoxicity<br />

• Cellular accumulation via<br />

efflux or uptake<br />

• “toxic” xenobiotics/<br />

BILE metabolites BSEP<br />

• Impaired p efflux<br />

• endogenous bioactive<br />

molecules (e.g. bile acids)<br />

• modification of nutrient<br />

gradient<br />

• candidate or concomitant<br />

meds<br />

• Inhibition or altered<br />

expression


Selected human transport proteins for drugs and endogenous substances<br />

Which Transporters Have the Most<br />

Attention in Early Discovery?<br />

•P-glycoprotein (ABCB1)<br />

•Breast Breast Cancer Resistance Protein<br />

(ABCG2)<br />

•Multi-drug Resistance Protein 2<br />

(ABCC2) ( )<br />

•Organic Anion Transport Protein<br />

(SLCO1B1)<br />

•Bile Salt Export Pump (ABCB11)


Classic Example p of f Transporter p<br />

Inhibition and Heptatoxicity<br />

Bosentan<br />

Troglitazone<br />

(400 mg)<br />

PFIC 1 >ATP8B1<br />

PFIC 2 >BSEP<br />

PFIC 3 >ABCB11<br />

Analogous with<br />

Changes g in bile acid transporters p during g<br />

Gilbert’s syndrome<br />

cholestasis.<br />

ASBT = apical Na+ dependent bile salt transporter<br />

CFTR = cystic fibrosis transmembrane regulator


Effect of Drugs with Clinical Cholestasis on BSEP<br />

*Er-Jia Wang, Schering-<br />

Plough Res. Inst., The<br />

Impact of drug transporters<br />

on preclinical development,<br />

Boston, June 2004<br />

Compounds I max (%CSA)* IC 50 (µM)*<br />

Chl Chlorpromazine i 88±2 34±1<br />

Clofazimine 335±41 24±6<br />

Cyclosporin y p A 105±7 ± 8±2 ±<br />

Glibenclamide 366±4 147±2<br />

Ketoconazole 83±4 69±4<br />

Paclitaxel 97±6 29±3<br />

Reserpine 167±40 19±5<br />

Rifamycin SV 133±19 39±15<br />

Tamoxifen 152±8 23±1<br />

Troglitazone 211±16 66±8<br />

Valinomycin 29±2 7±3<br />

Verapamil 152±17 179±24<br />

Vinblastine 204±14 62±7<br />

Cimetedine NE ND


Relative distribution of human BSEP IC50 values<br />

200 compounds d<br />

Drug-Induced BSEP Inhibition and Hepatotoxicity<br />

BSEP inhibition has been implicated in drug-induced<br />

hepatotoxicity<br />

p y<br />

80.5% of compounds that inhibit BSEP at


Clinically Relevant Transporters<br />

: EMA<br />

:FDA/<br />

EMA<br />

ITC whitepaper, NRDD 2010


Role of Oatp1a/1b transporters in paclitaxel (PTX) pharmacokinetics.<br />

van dde Steeg St E et t al. l Clin Cli Cancer C Res R 2011;17:294-301<br />

2011 17 294 301<br />

©2011 by American Association for Cancer Research<br />

OATP1A/1B polymorphisms may develop toxicity<br />

upon paclitaxel or methotrexate treatment<br />

Tumor OATP1A/1B expression may also affect<br />

tumor drug sensitivity.<br />

OATP1A/1B inhibition by (pre)treatment with ot<br />

drugs may affect drug toxicity and effi<br />

Mrp2 dominates hepatobiliary excretion, reduced by 80% in Mrp2 −/<br />

In contrast, P-gp dominates intestinal excretion, with a minor<br />

The AUC oral of paclitaxel increased 8.5-x by Mdr1a/1b deficiency,<br />

However, in the absence of Mdr1a/1b P-gp, additional<br />

Mrp2 deficiency increased the AUC oral another 1.7-fold.


DDIs - Rosuvastatin –<br />

Cyclosporine Cyc o po e A<br />

Limited bioavailability<br />

Hepatic portal vein<br />

Cyclosporine<br />

OATP1B1<br />

Pgp?<br />

BCRP<br />

MRP2?<br />

Bile<br />

7X AAUC0-24<br />

10X Cmax


DDrug-drug d Interactions I i of f<br />

Cyclosporine A with Statins<br />

Affected drug Interacting drug<br />

PK impact<br />

(clinical)<br />

Pravastatin Cyclosporine AUC 890%, C max 678%<br />

Pitavastatin Cyclosporine AUC 360%, Cmax 560%<br />

Glyburide Rifampicin AUC 125%<br />

Bosentan Rifampicin C through 500%<br />

Bosentan Lopinavir/ritonavi<br />

r<br />

Cyprotex 7th North American Drug Discovery Workshop<br />

C through 4700%


DDabigatran bi t (P (Pradax, d BI) BI):<br />

Arecent ece t example e a p e of o a P-gp gp DDI<br />

• Dabigatran: not substrate of SLC or<br />

Effl Efflux Transporter<br />

T<br />

• Dabigatran-Etexilate (prodrug):<br />

– ER = 6 @ 0.6 0 6 μMM<br />

– ER = 1 @ 40 μM (saturation effect assumed)<br />

• 80% excretion i in i ffaeces after f oral l<br />

administration, 6% excretion in faeces<br />

after iv i.v. administration<br />

administration.<br />

• 2.5 increase in AUC after co-dosing with<br />

Verapamil<br />

• Not all inhibitors affect absorption of<br />

DE


Clinical Translation From Mechanistic<br />

Hepatotox Investigation<br />

In Vitro Mechanistic data In Vivo Mechanistic data<br />

• The in vitro/in vivo work<br />

identify a mechanism that<br />

at a minimum exacerbate<br />

hepatotoxicity and may be<br />

an independent risk factor<br />

• Role of transporters (BSEP)<br />

• IImportance of f metabolism b li<br />

(CYP3A4 and UGT enzymes)<br />

T t k t t d t d b th<br />

Transporters are a key aspect to understand both<br />

the disposition as well as the toxicity of<br />

L ti ib


Platinum transport in renal cells<br />

Source: Drug Resistance Updates 2011; 14:22-34 (DOI:10.1016/j.drup.2010.12.002 )<br />

Copyright © 2011 Elsevier Ltd Terms and Coditions<br />

OCT2 in basolateral membrane of proximal tubule<br />

MATE1 & MATE2-K in brush-border membrane


Pl Platinum i transporters iin the h proximal i l<br />

tubular cells of the human kidney<br />

• At pH 7.4, about 40% of the commonly<br />

prescribed ib d ddrugs are organic i cations. ti<br />

• OCs are endogenous g (choline, , dopamine, p ,<br />

histamine) or exogenous (drugs such as<br />

vecuronium vecuronium, procainamide procainamide, quinine quinine,<br />

cimetidine).


Ci Cisplatin l i<br />

nephrotoxicity<br />

• Dose-limiting nephrotoxicity is a major concern<br />

-Observed in 41% of patients treated with cisplatin<br />

-One-third O hi d of f patients i experience i llong term kid kidney<br />

dysfunction, despite extensive<br />

prophylaxis<br />

-20% 20% of f all ll acute t renal l ffailure il cases among<br />

hospitalized patients<br />

are due to cisplatin-containing chemotherapy<br />

• Renal damage limits its use and efficacy in cancer<br />

treatment<br />

• Major determinant of nephrotoxicity: tubular cell death,<br />

tissue damage, and the loss of renal function or acute<br />

renal failure<br />

Cimetidine inhibits many transporters , OCTs , OATs


Influence of Oct1/Oct2-deficiency<br />

on cisplatin-induced cisplatin induced changes in urinary NAG and overall survival.<br />

©2010 by American Association for Cancer Research<br />

Franke R M et al. Clin Cancer Res 2010;16:4198-4206


Cisplatin-induced (10 mg/kg, i.p.) changes in urinary NAG activity in mice administered saline<br />

(i.v.), cimetidine (30 mg/kg, i.v.), or no injection immediately prior (n = 6-12 per treatment<br />

group).<br />

Franke R M et al. Clin Cancer Res 2010;16:4198-4206<br />

©2010 by American Association for Cancer Research


Influence of cimetidine on cisplatin<br />

nephrotoxicity (in vivo; dose, 10<br />

mg/kg) g/ g)<br />

NAG = N-acetyl-β-D-glucosaminidase, a<br />

marker for acute renal proximal p<br />

tubular damage<br />

Urinary NAG >0.4 AU in mice is<br />

associated with 21-fold increased odds<br />

for severe (grade 4) nephrotoxicity<br />

(P=0.0017)<br />

Cimetidine protects against cisplatin<br />

nephrotoxicity to a degree similar to<br />

that h observed b d in i Oct1/2(-/-) O 1/2( / ) mice i<br />

treated with cisplatin alone<br />

Ci Cimetidine tidi currently tl iin clinical lii ltil trial<br />

as a modulator of cisplatin toxicity<br />

Ototoxicity<br />

OCT in cochlear ce


Notable species differences<br />

Rats and humans have distinct composition of bile salt pools<br />

IIn humans, h a conjugated j t d cytotoxic tt i bil bile salt lt comprises i 31% of f t<br />

pool but in rats the related conjugated cytotoxic bile salt c<br />

only 2.5% of the bile salt pool.<br />

Risk of misinterpreted in vitro studies<br />

OATP1A2 function is inhibited by y rosuvastatin, ,y yet, , imatinib a<br />

was not dependent on OATP1A2 variants nor by rosuvastatin.


Recent Regulatory<br />

Developments p<br />

Focus on transporters in Drug-<br />

Focus on transporters in Drug<br />

Drug Interactions and Safety


Regulatory Background<br />

Guidance documents<br />

FDA , February, 2012<br />

GGuidance id for f<br />

Efflux<br />

Industry<br />

P-gp ( (MDR1) )<br />

BCRP<br />

Uptake<br />

OATP1B1<br />

OATP1B3<br />

OAT1 OAT1<br />

OAT3<br />

OCT2<br />

BSEP<br />

MATEs<br />

DRAFT GUIDANCE<br />

PRPs<br />

DDrug IInteraction i SStudies di —<br />

Study Design, Data Analysis,<br />

Implications for Dosing Dosing, and<br />

Labeling Recommendations


FDA Advisory y Committee for<br />

Pharmaceutical Science and Clinical<br />

Pharmacology<br />

Question 1: For evaluation of NMEs as potential substrates of<br />

transporters:<br />

Do you agree that P-gp, BCRP, OATP1B1/1B3, OAT1/3 and OCT2 are<br />

the major transporters that should be routinely evaluated<br />

based on the proposed flow chart (Figure 1) during drug<br />

development?<br />

VOTING VOTING: 12 YYes, 4 NNo, 0 Ab Abstain i<br />

Question 2: For evaluation of NMEs as potential inhibitors of<br />

transporters:<br />

Do you agree that P-gp, BCRP, OATP1B1/1B3, OAT1/3 and OCT2 are<br />

the major transporters that should be routinely evaluated<br />

based on the proposed flow chart (Figure 2) during drug<br />

Cyprotex development?<br />

7th North American Drug Discovery Workshop


ug Interaction Studies – Draft Guidance, FDA February 2012<br />

Determine P-gp and<br />

BCRP Substrate and<br />

Inhibitor<br />

interactions<br />

Study<br />

OATP1B1 and<br />

OATP1B3<br />

Sb Substrate<br />

and<br />

Inhibitor<br />

it ti<br />

All Investigational Drugs (IDs)<br />

Hepatic or Biliary<br />

Secretion Major?<br />

(>25%)<br />

Active Renal<br />

Secretion Major?<br />

(>25%)<br />

YES NO YES NO<br />

Study<br />

OATP1B1 and<br />

OATP1B3<br />

IInhibitor hibi<br />

interaction<br />

s<br />

Study OAT1,<br />

OAT3 and<br />

OCT2<br />

Substrate<br />

and<br />

Inhibitor<br />

interactions interactions<br />

Study OAT1,<br />

OAT3 and<br />

OCT2<br />

Inhibitor<br />

interaction<br />

s


Guidance documents<br />

EMA Guideline on the<br />

Investigation of Drug<br />

IInteractions t ti<br />

Efflux<br />

P P-gp (MDR1)<br />

BCRP<br />

BSEP<br />

Uptake<br />

OATP1B1<br />

OATP1B3<br />

OCT1<br />

OAT1<br />

OAT3 OAT3<br />

OCT2<br />

47<br />

RRegulatory l t Background<br />

B k d


EMA: Recent Developments<br />

• Current draft expected to be finalized<br />

in Q2 of 2012<br />

• Transporter list will be ‘living’<br />

• Id Identify tif transporter t t instead i t d of f check- h k<br />

box screening<br />

• Cut-off for DDI potential:<br />

– Ki > [I]<br />

• Where I liver = 50 x Cmax x fu<br />

• Where I intestine = 10 x dose/250ml<br />

More discussion needed!


Overview of Drugs with<br />

Transporter Information on<br />

Label<br />

2004-2006 2007-2009<br />

Number of approved NCEs 67 56<br />

Drugs with transporter information on label 11 21<br />

Number of drugs with P-gp/MDR1 P gp/MDR1 on label 6 20<br />

In vitro P-gp/MDR1 data 10 16<br />

In vivo P-gp/MDR1 data 14 9<br />

Number of drugs with other transporters on<br />

label<br />

1 6<br />

Drugs with transporters mentioned in<br />

Highlights section of label<br />

1 7<br />

Number of drugs requiring PMCs and/or PMRs<br />

ddue<br />

to transporters<br />

Agarwal et al., ACCP Annual Meeting, Sept 2010, Baltimore, MD<br />

Huang et al., AAPS workshop, March 2011, Bethesda MD<br />

3 10


New ABCB1 drug labels<br />

Aliskiren<br />

Direct renin inhibitor<br />

F= 0.026<br />

Contraindications<br />

The concomitant use of aliskiren<br />

with ciclosporin, a highly potent<br />

PP-glycoprotein l i (P (P-gp) ) iinhibitor, hibi<br />

and other potent P-gp inhibitors<br />

(quinidine, verapamil), is<br />

contraindicated<br />

Dabigatran<br />

Direct thrombin inhibitor<br />

F= 0.072, 0 072 BCS class IV<br />

Contraindications<br />

concomitant treatment with quinidine<br />

P- glycoprotein inhibitors<br />

caution should be exercised with<br />

strong P- glycoprotein inhibitors.<br />

Th The PP- glycoprotein l i iinhibitor hibi<br />

quinidine is contraindicated<br />

P- glycoprotein inducers<br />

potent P- glycoprotein inducers such<br />

as rifampicin or St John’s wort<br />

(Hypericum perforatum), may reduce<br />

the systemic exposure of dabigatran<br />

dabigatran.<br />

Caution is advised when coadministering<br />

these medicinal<br />

products.<br />

50


DDrugs Approved A d bby FDA iin 2009 ( (prior i to<br />

publication of ITC White Paper)<br />

Drug Indication<br />

or Tx<br />

Area<br />

Route DDI in<br />

Label<br />

Transporter<br />

DDI in Label<br />

Pralatrexate (Folotyn) Cancer IV <br />

Romidepsin (Istodax) Cancer IV <br />

Telavancin (Vipativ) Antibacterial IV <br />

Iloperidone (Fanapt) Schizophrenia Oral <br />

Saxagliptin (Onglyza)<br />

Artemether/Lumefantrine<br />

(Coartem)<br />

Type II<br />

Diabetes<br />

Oral <br />

Malaria Oral <br />

Dronedarone (Multaq) Atrial Fib Oral <br />

Everolimus (Afinitor) Cancer Oral <br />

Febuxostat (Uloric) Gout Oral <br />

Milnacipran (Savella) Fibromyalgia Oral <br />

Pazopanib (Votrient) Cancer Oral <br />

Pitavastatin (Livalo) Cholesterol Oral <br />

Prasugrel (Effient) ACS Oral <br />

Tolvaptan (Samsca) Heart Failure Oral <br />

Vigabatrin (Sabril) Epilepsy Oral <br />

Asenapine (Saphris) Antipsychotic Sublingual


PHATSO: Pharmacologic and Therapeutic Studies in<br />

the Obese<br />

Michelangelo<br />

's David<br />

Visits<br />

Modern USA<br />

Diabetes Obesity<br />

A GROWING epidemic


Clinical Examples of Transporter<br />

Mediated DDIs<br />

Victim Drug Inhibitor<br />

Clinical<br />

Consequence<br />

Pravistatin ( ) <br />

(1) Cyclosporine AUC 890%<br />

Rosuvastatin (1) Cyclosporine AUC 610%<br />

Bosentan (1) Ritonavir C trough 4700%<br />

Cerivastatin (1) Gemfibrozil<br />

Rhabdomyolysis<br />

Rhabdomyolysis,<br />

Death<br />

Digoxin (2) Digoxin Dronedarone AUC 157%<br />

( ) Dronedarone AUC 157%<br />

Metformin (3) Cimetidine AUC 50%<br />

(1): OATP (2) P-gp/MDR1 (3): OCT


Efflux<br />

Regulatory Recommendations<br />

Category Transporters Assays<br />

Hepatic p uptake p<br />

Renal uptake<br />

• P-gp (MDR1)<br />

• BCRP<br />

• BSEP (only EMA)<br />

• OATP1B1<br />

• OATP1B3<br />

• OCT1 (only EMA)<br />

Monolayer or Vesicles<br />

• Inhibition and substrate assays<br />

Cellular uptake<br />

• Inhibition<br />

• Substrate based on PK<br />

• OAT1<br />

Cellular uptake<br />

• OAT3<br />

• OCT2<br />

• Inhibition<br />

• Substrate based on PK


Conclusions<br />

The identification of transporters that influence the<br />

di disposition, i i toxicity i i and d safety f of f drugs d is i a new challenge h ll<br />

for drug discovery and development programs.<br />

Our understanding of drug transporters is still emerging and<br />

it is likely that multiple ABC and SLC transporters will<br />

influence the disposition and toxicity of a compound.<br />

For future drugs, drugs transporters are a key<br />

aspect in understanding efficacious response,<br />

as well as the drug’s drug s disposition, disposition toxicity<br />

and interactions. Multiple approaches<br />

Extrapolating animal studies not t


<strong>SOLVO</strong> Services and Assays<br />

Systems y to Study y<br />

Transporters


In-vitro In-vitro Approaches for Studying<br />

Membrane –<br />

based assays<br />

Cell –<br />

based assays<br />

Transporters<br />

ATPase assay<br />

liberated Pi; inexpensive, non‐radioactive<br />

indication on the nature of interaction (substrate or inhibitor)<br />

Vesicular transport assay<br />

quick and easy; vesicles from any cell type<br />

flexible readout (LSc, Fluo, LC/MS; modeling of ic. concentration<br />

Calcein assay<br />

fluorescent measurement<br />

indirect measurement – modulation of dye transport<br />

Cellular uptake assay<br />

quick and easy assay<br />

flexible read‐out and various expression systems<br />

Monolayer assay<br />

single or double transfectants; good absorption model<br />

permeability can be limiting<br />

Primary cells<br />

suspended and sandwich‐cultured sandwich cultured hepatocytes hepatocytes,<br />

brain capillary endothelial cells


Cellular Uptake Assay<br />

Flexible readout (LSc,<br />

LC/MS)<br />

Services<br />

Permeability is not a factor<br />

(inhibition)<br />

Modeling of Cmax<br />

Various expression systems<br />

Substrate testing only for<br />

low permeability compounds<br />

Substrate<br />

assay<br />

Inhibition<br />

assay<br />

Investigated drug<br />

Inhibitor


Uptake Transporter Studies<br />

General High-throughput High throughput Screening<br />

Protocol<br />

1. Add cells to the wells of a 96-<br />

2.<br />

well plate<br />

Add expression inducer<br />

33. Incubate in CO CO2 thermostat for 24h<br />

4. Wash wells<br />

55. Add test compounds<br />

6. Add labeled compound<br />

7. Incubate at 37 °C 8. Stop transport by ice-cold<br />

washing mix, wash wells<br />

9. Dissolve cells in 0.1% NaOH 12. Measure radioactivity y in<br />

10. Add scintillation cocktail to the<br />

wells of a 96-well plate<br />

11. Transfer lysate from plate 1<br />

each well<br />

13. Calculate transport rates<br />

and relative transport rates


Cellular Uptake Reference Data<br />

OATP1B1<br />

trnanspport<br />

rate<br />

(pmol/ /mg/min)<br />

Uptake of Fluvastatin into OATP1B1<br />

expressing cells<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 20000 40000 60000 80000<br />

Concentration Fluvastatin (pmol/ml)


Cellular Uptake Reference Data<br />

OATP1B3


Cellular Uptake Reference Data<br />

OATP2B1


Cellular Uptake Reference Data<br />

NNon-specific ifi binding bi di (NSB)<br />

Ceellular<br />

accummulation<br />

(pmol/mmg)<br />

Standard assay conditions Addition of 10% human serum<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

Cellular C accuumulation<br />

(pmol/ /mg)<br />

0<br />

-5000<br />

2 min 20 min<br />

0<br />

CHO‐OATP1B1 CHO OATP1B1<br />

2 min<br />

1107 1107.43 43<br />

20 min<br />

1886 1886.98 98<br />

CHO-OATP1B1<br />

CHO-K<br />

Transporter<br />

specific transport<br />

(pmol/mg)<br />

9887.65<br />

9032.43<br />

855.22<br />

22137.47<br />

22062.62<br />

74.85<br />

CHO‐K<br />

Transporter<br />

specific transport<br />

(pmol/mg) (p / g)<br />

425.38<br />

682.05<br />

490.89<br />

1396.09<br />

2500<br />

2000<br />

1500<br />

1000<br />

500


Uptake Assays at <strong>SOLVO</strong><br />

Cell line Probe substrate<br />

OATP1B1-CHO (SLCO1B1)/OATP2, OATP-C<br />

3 H-Estrone-3-Sulfate<br />

Reference<br />

Inhibitor<br />

Pravastatin;<br />

rosuvastatin<br />

Planned<br />

substrate<br />

Pravastatin;<br />

rosuvastatin<br />

OATP1B3-CHO (SLCO1B3)/OATP8 Fluo-3 Digoxin; rosuvastatin Digoxin; rosuvastatin<br />

OATP2B1-MDCKII (SLCO2B1)/OATP-B<br />

rat Oatp1a1 (Slco1a1)<br />

OATP1A2-HEK293 (SLCO1A2)<br />

OATP2A1-CHO (SLCO2A1)/PGT<br />

NTCP-CHO (SLC10A1), rat Ntpc (Slc10a1)<br />

NEW!<br />

NEW!<br />

3<br />

HH-Estrone-3-Sulfate E t 3 S lf t<br />

Fluvastatin<br />

3 H-Estrone-3-Sulfate Ketoconazole<br />

3 H-Estrone-3-Sulfate Fexofenadine<br />

3 H-Prostaglandin-E2 Diclofenac<br />

3 H-Taurocholate TCDC Rosuvastatin<br />

PEPT1-CHO PEPT1 CHO (SLC15A1) Glycylsarcosine Tyr-Phe Tyr Phe<br />

PEPT2-CHO (SLC15A2) Glycylsarcosine Cefadroxil<br />

3<br />

OAT1-CHO OAT1 CHO (SLC22A6), Rat Oat1 H-PAH H PAH Benzbromarone<br />

OAT3-CHO (SLC22A8)<br />

OCT1-CHO (SLC22A1)<br />

OCT2-CHO (SLC22A2)<br />

OCTN1-CHO (SLC22A4)<br />

OCTN2-CHO (SLC22A5), rat Octn2<br />

NEW!<br />

NEW! NEW!<br />

NEW!<br />

NEW!<br />

3 H-Estrone-3-Sulfate Probenecid<br />

Valacyclovir;<br />

ampicillin<br />

Valacyclovir;<br />

ampicillin<br />

Tenofovir; zidovudine;<br />

MTX<br />

Ciprofloxacin;<br />

zidovudine<br />

14 C-TEA, 14 C-Metformin Verapamil Metformin; quinidine<br />

14 C-TEA, 14 C-Metformin Cimetidine Cimetidine<br />

14 C-TEA Verapamil Quinidine; verapamil<br />

3 H-Carnitine Verapamil Quinidine; verapamil


Monolayer Assay Services<br />

Gold standard for PP-gp gp<br />

Modeling of important<br />

pharmacokinetic barriers<br />

Tight cell layer grown on<br />

a porous support<br />

Caco-2 and single and<br />

double transfectants<br />

MDCKII cells<br />

Permeability of test article<br />

should be considered


Determination of the P and P AB BA<br />

values and the net flux ratio in the MA<br />

t 0<br />

t 1<br />

AB BA<br />

Donor<br />

RReceiver i<br />

chamber<br />

chamber<br />

Apical Apical<br />

c 0<br />

Receiver<br />

chamber<br />

Basal Basal<br />

t 0<br />

t 1<br />

c c0 Donor<br />

chamber<br />

h b


MDDCKII-BCCRP<br />

MDCKII<br />

Interpretation of Results<br />

= dQ/dt<br />

PAPP <br />

Efflux ratio:<br />

ER = P app,BA/P app,AB<br />

ER NET = ERT/ER T W<br />

dQ<br />

dt<br />

1<br />

AC<br />

ERT and ERW are the efflux<br />

ratios for the transfected and<br />

non-transfected t f t d li lines<br />

0


Bidirectional Permeability of Digoxin on MDCKII<br />

Monolayer Assay Reference Data<br />

and MDCKII-MDR1 Monolayers in the Presence of<br />

Verapamil


Monolayer Assay Reference Data<br />

Bidirectional transport of Prazosin +/- / 1 μM Ko143<br />

throuhg MDCKII-BCRP and parental monolayers<br />

(10-6cm/secc)<br />

Papp<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

BCRP A-->B<br />

BCRP B-->A<br />

wt A-->B<br />

wt B-->A<br />

Prazosin 1uM / I. Prazosin 1uM / II. Prazosin 1uM + Ko143 1uM<br />

ER BCRP Parental<br />

Prazosin I 19 0.7<br />

Prazosin II 17 11.0 0<br />

Prazosin + Ko143 0.8 0.6


Appareent<br />

permeaability<br />

(10-6cm/sec)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Monolayer Assay Reference Data<br />

MDCKII-OATP2B1/BCRP<br />

Vectorial transport of E-3-S<br />

BCRP OATP-B OATP B BCRP / OATP-B OATP B MDCKII<br />

Cell line<br />

1 uM BA<br />

1 uM AB<br />

10 uM AB<br />

10 uM AB<br />

100 uM BA<br />

100 uM AB


MMonolayer l AAssays at t <strong>SOLVO</strong><br />

Cell line<br />

TType of f CCell ll li line<br />

Service<br />

assay<br />

licensing<br />

PreadyPort TM *<br />

Caco-2 Substrate ID<br />

(MDR1, BCRP) <br />

- -<br />

Inhibitor ID<br />

MDCKII-MDR1<br />

MDCKII-BCRP<br />

MDCKII-<br />

BCRP/OATP2B1<br />

MDCKII-BSEP/NTCP<br />

Substrate ID<br />

(24-well plate)<br />

<br />

IInhibitor hibi ID<br />

(96-well (96 well plate)<br />

Substrate ID<br />

Inhibitor ID<br />

Substrate ID<br />

Inhibitor ID<br />

Substrate ID Under<br />

Inhibitor ID<br />

<br />

Under Development<br />

Development<br />

Under<br />

Development<br />

Under Development<br />

* In cooperation with


PREDEASY ATP ATPase AAssay<br />

IInexpensive, i nonradioactive<br />

Idi Indication ti on th the nature t of f<br />

interaction<br />

For P-gp P gp reasonable<br />

correlation with cellular<br />

assays y<br />

Indirect assay<br />

Not as widely accepted by<br />

regulatory agencies as<br />

cell based and vesicular<br />

assays


PREDEASY TM ATPase kit<br />

Advanced d d Pi ddetection<br />

Higher sensitivity<br />

M More robust b t<br />

Shorter incubations<br />

Easier automation<br />

Lower cost for each<br />

data da a point po generated<br />

g a d<br />

Ready-to use<br />

•<br />

•<br />

membrane b preparation, ti<br />

and all reagents<br />

Data evaluation Excel on<br />

CD<br />

•<br />

•<br />

•<br />

3-compound size<br />

6- compound size<br />

99-compound d size<br />

i


Main Steps of the Assay<br />

1. Preparation of the assay mix<br />

2. Preparation of membrane suspension in<br />

assay mix (4 g g / well)<br />

3. Add membrane suspension and test drug<br />

to 96-well plate<br />

4. Pre-incubation (5 min, 37 o C)<br />

5. Add MgATP (final concentration: 2 mM)<br />

6. Incubation (10 min, 37 o C)<br />

7. Stop reaction by adding developer,<br />

add blocker after 2 min.<br />

8. Incubate (30 min)<br />

9. Measure OD at 620nm<br />

10 10. CCalculation l l ti


CContents t t of f th the AAssay-Mix Mi<br />

Name Conc Conc. Purpose<br />

MOPS-Tris, pH 7 50 mM Buffer<br />

KCl 50 mM Osmotic pressure<br />

Na-Azide 5 mM<br />

Inhibitor of mitochondrial ATPases<br />

(Antimicrobial agent)<br />

DTT 2 mM Denaturing agent, not for ABC transporters<br />

EGTA-Tris, pH 7 0,1 mM<br />

MgATP<br />

ATP 10 mM Catalyzes reaction<br />

MgCl 10 mM Co-factor Co factor<br />

Inhibitor of Ca2+ Inhibitor of Ca dependent ATPase activity<br />

2+ dependent ATPase activity<br />

(P-type)


Explanation of Results<br />

Abssorption<br />

at 620 6 nm<br />

1.600<br />

1.400<br />

1.200<br />

1000 1.000<br />

0.800<br />

0.600<br />

0.400<br />

0.200<br />

0.000<br />

vanadate sensitive baseline<br />

activity (0%)<br />

Solvent<br />

(CTRL1)<br />

Vanadate<br />

(CTRL2)<br />

vanadate sensitive activated<br />

transporter activity (100%)<br />

Activated<br />

(CTRL3)<br />

Activated +<br />

Vanadate<br />

(CTRL4)<br />

-34%<br />

Activated +<br />

Inhibitor<br />

(CTRL5)


vanadate se ensitive ATPase e acitivty<br />

(nmo ol Pi/mg prot./min n)<br />

PREDEASY Reference curves<br />

Substrate<br />

MDR1; Prazosin<br />

55<br />

50<br />

activation<br />

45<br />

40<br />

inhibition<br />

35<br />

30<br />

IC IC50= 50= 309 礛<br />

25<br />

20<br />

1 115<br />

10<br />

5<br />

0<br />

EC EC50= 50= 26.1 礛<br />

0 10 -7 10 -6 10-5 10-4 10-3 15<br />

10<br />

5<br />

0<br />

0 10 -7 10 -6 10-5 10-4 10-3 Prazosin a os [ [M] ]<br />

vanadate sensit tive ATPase acitiv vty<br />

(nmol Pi/ /mg prot./min)<br />

vanadate e sensitive ATPase e acitivty<br />

(n<br />

nmol Pi/mg prot./mi in)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Inhibitor<br />

MDR1; Cyclosporin A<br />

0<br />

0 10-8 10-7 10-6 10-5 10-4 10-3 0<br />

0 10-8 10-7 10-6 10-5 10-4 10-3 Cyclosporin A [M]<br />

50<br />

40<br />

30<br />

20<br />

10<br />

activation<br />

inhibition<br />

IC IC50=1.0 50=1.0 50 1.0 M M M M<br />

Slowly transported substrate<br />

MDR1; Ivermectin<br />

0<br />

0 10-8 10-7 10-6 10-5 10-4 10-3 0<br />

0 10<br />

Ivermectin [M]<br />

-8 10-7 10-6 10-5 10-4 10-3 Ivermectin [M]<br />

activation<br />

inhibition<br />

IC IC50=0.6 50=0.6 M M


vanadate e sensitive ATPa ase acitivty<br />

(n mol Pi/mg prot./ min)<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

PREDEASY Reference curves<br />

Substrate<br />

MRP1; NEM-GS<br />

8<br />

0 10-5 10-4 10-3 10-2 10-1 8<br />

0 10-5 10-4 10-3 10-2 10-1 NEM-GS [M]<br />

activation<br />

inhibition<br />

EC EC50= 50= 2231 M M<br />

vanadate sensitiv ve ATPase acitivty y<br />

(nmol Pi/m mg prot./min)<br />

va<br />

anadate sensitive e ATPase acitivty y<br />

(nmol Pi/mg g prot./min)<br />

20<br />

15<br />

10<br />

5<br />

Inhibitors<br />

MRP1; Benzbromarone<br />

0<br />

0 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 0<br />

0 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 0 10 10 10 10 10 10 10 10<br />

Benzbromarone [M]<br />

10.0<br />

7.5<br />

50 5.0<br />

2.5<br />

MRP1; MK571<br />

0.0<br />

0 10-7 10-6 10-5 10-4 10-3 10-2 10-1 0 10-7 10-6 10-5 10-4 10-3 10-2 10-1 MK571 [M]<br />

activation<br />

inhibition<br />

IC IC50=17 50=17 50 17.11 11 M M M M<br />

EC EC50=49.88 50=49.88 M M<br />

activation<br />

inhibition<br />

IC IC50=68.9 50=68.9 M M <br />

50<br />

EC EC50=404 50=404 M M


vanadate se nsitive ATPase acitivty a<br />

(nmol (nmol l Pi/mg prot./min)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

PREDEASY Reference curves<br />

Substrate<br />

MXR-HAM; BCRP-HAM; Furosemid Furosemide<br />

0<br />

0 10-7 10-6 10-5 10-4 10-3 0<br />

0 10<br />

Furosemid [M]<br />

-7 10-6 10-5 10-4 10-3 Furosemid [M]<br />

activation<br />

inhibition<br />

EC EC50=28.2 50=28.2 M M<br />

vanadate sen nsitive ATPase acitiv vty<br />

(nmol Pi/mg prot./min)<br />

vanad<br />

date sensitive ATPa ase acitivty<br />

(nmol Pi/mg prot./ min)<br />

Inhibitor<br />

MXR-HAM; BCRP-HAM; Ko 143 143Ko134<br />

70<br />

activation<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1<br />

0<br />

0 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1<br />

Ko 143 [mM ]<br />

MXR MXR-HAM HAM , Hoechst BCRP BCRP-HAM; HAM 33342 HHoechst33342 h 33342<br />

50<br />

40<br />

20<br />

10<br />

inhibition<br />

IC 50=35.3 50=35.3 nM<br />

IC 50=9.9 50=9.9 99 nM M<br />

Slowly transported substrate<br />

activation<br />

inhibition<br />

30 IC 50=3.1 50=3.1 M M<br />

0<br />

0 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3<br />

0<br />

0 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3<br />

Hoechst 33342 [M ]<br />

IC 50=2.1 50=2.1 M M


PREDEASY PREDEASY ATPase Assays Available at <strong>SOLVO</strong><br />

Transporter Activator<br />

MDR1-Sf9 Verapamil<br />

ratMdr1b-Sf9 ratMdr1b Sf9 Verapamil<br />

MRP1-Sf9 NEM-GS<br />

MRP2-Sf9 MRP2 Sf9 Sulfasalazine<br />

MRP3-Sf9 Benzbromarone<br />

BCRP-HAM-Sf9 / BCRP-M NEW! Sulfasalazine<br />

mouseBsep-HAM-Sf9 TCDC<br />

defMRP-Sf9 -<br />

defBCRP-Sf9 -<br />

defP-gp-Sf9 -<br />

All available as a kit and<br />

service


PREDIVEZ Vesicular Transport<br />

Quick and easy assay<br />

Assay<br />

Flexible l bl readout d ( (LSc, Fluo, l<br />

LC/MS)<br />

PPermeability bilit iis not t a ffactor t<br />

(inhibition)<br />

Modeling of IC concentration<br />

Vesicles from any cell type<br />

Substrate testing only for<br />

low permeability compounds


PREDIVEZ Assay Steps<br />

11.Plate Plate membrane suspension<br />

in assay mix (containing<br />

transported and reporter<br />

substrate)<br />

2. Equilibrate with probe,<br />

ttest t article ti l and d controls t l<br />

3. Start reaction with ATP<br />

44.Incubate Incubate<br />

5. Filter and wash vesicles<br />

6. Measure counts


PPractical ti l Information I f ti for f using i<br />

Equipment needed:<br />

Millipore Multiscreen Multiscreen HTS<br />

Vacuum Manifold (Cat No.<br />

MSVMHTS00)<br />

PREDIVEZ Kits ts<br />

Plate map:<br />

Pl Plate t Map M<br />

(for two<br />

parallels)<br />

CDCF calibration curve ATP + ATP -<br />

1 2 3 4 5 6 7 8<br />

A 20 pmol p CDCF 150.00 150.00 150.00 150.00<br />

B 10 pmol CDCF 50.00 50.00 50.00 50.00<br />

C 5 pmol CDCF 16.67 16.67 16.67 16.67<br />

D 2.5 pmol CDCF 5.56 5.56 5.56 5.56<br />

E 0 pmol CDCF 185 1.85 185 1.85 185 1.85 185 1.85<br />

F ATP + ATP - 0.62 0.62 0.62 0.62<br />

G ATP + ATP - 0.21 0.21 0.21 0.21<br />

H ATP + ATP - DMSO DMSO DMSO DMSO<br />

Alternative plate maps for assaying 2<br />

compounds + calibration curve +<br />

negative control membrane test or 3<br />

compounds


Time curve of TC uptake into BSEP<br />

vesicles<br />

transport (pmool/mg<br />

membrane<br />

prootein)<br />

200<br />

160<br />

120<br />

80<br />

40<br />

0<br />

PREDIVEZ Reference Curves<br />

ATP+<br />

ATP-<br />

0 10 20 30 40<br />

time (min)<br />

Substrate saturation of TC uptake<br />

iinto t BSEP vesicles i l 40<br />

ATP A<br />

dependent traansport<br />

(pmol/mg membbrane<br />

protein/minn)<br />

160<br />

120<br />

80<br />

40<br />

0<br />

0 10 20 30 40 50 60<br />

taurocholate (uM)<br />

ATP A dependent<br />

transport<br />

(%)<br />

Inhibition of NMQ transport into P-gp<br />

vesicles i l with ith reference f P-gp P iinhibitors hibit<br />

120<br />

110<br />

Cyclosporin A<br />

100<br />

90<br />

80<br />

Ketoconazole<br />

Verapamil<br />

70<br />

60<br />

50<br />

LY335979<br />

Erythromycin<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

Digoxin<br />

00.0001 0001 00.001 001 001 0.01 01 0.1 1 10 100 1000 10000 100000<br />

[drug] / M


Vesicular Transport of 3 PREDIVEZ Reference Curves<br />

H-Taurocholate into BSEP expressing<br />

vesicles<br />

Time dependent transport<br />

BSEP Beta-Gal<br />

trransport<br />

(pmol/m g membrane<br />

proteinn)<br />

ATP dependent transport t<br />

(pmol/mg memmbrane<br />

protein/min)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 10 20<br />

time (min)<br />

30 40<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

ATP ATP+<br />

ATP-<br />

ATP dependent transport t<br />

(pmol/mg memmbrane<br />

protein/miin)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

Concentraton dependent p transport p<br />

0 10 20 30 40 50 60<br />

taurocholate (uM)<br />

1/ /ATP dependent trransport<br />

(mg<br />

membrane m<br />

proteinn*min/pmol)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20 0 10 20 30 40 50 60<br />

0,06<br />

0,05<br />

0,04<br />

0,03<br />

0,02<br />

0,01<br />

taurocholate (uM)<br />

0<br />

-0,2 0 0,2<br />

1/taurocholate (uM)<br />

0,4 0,6


Effect of drugs on CDCF transport by MRP2-Sf9<br />

ndent trannsport<br />

(%) )<br />

ATP depe<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0<br />

-25<br />

00.0001 0001 00.001 001 001 0.01 01 0.1 1 10 100<br />

[drug] / mM<br />

PREDIVEZ Reference Curves<br />

Effect of drugs on CDCF transport by MRP3<br />

ive transport<br />

(%)<br />

Relat<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

0.01 0.1 1 10 100 1000 10000<br />

[drug] / M<br />

■ - Probenecid ■ - Indomethacin<br />

▲ - Sulfasalazine<br />

▼ - Indomethacin<br />

▲ - MK571<br />

▼ - Benzbromarone


Vesicular Transport Assays Available at <strong>SOLVO</strong><br />

Transporter Probe substrate<br />

* MDR1-K MDR1 K 3 3HH-NMQ NMQ or cold ld NMQ<br />

* ratMdr1b-Sf9 3 H-NMQ or cold NMQ<br />

* MRP1 MRP1-Sf9 Sf9<br />

3 3H-LTC4 H LTC4, B-GS B GS<br />

* MRP2-Sf9<br />

3H-E217bG, CDCF<br />

* ratMrp2-HEK293<br />

ratMrp2 HEK293 3H-E217bG, H E217bG, CDCF<br />

* MRP3-Sf9<br />

3H-E217bG, CDCF<br />

MRP4-LLC-PK1<br />

3H-DHEAS * MRP5-HEK293<br />

3H-cGMP, CDCF<br />

BSEP-Sf9<br />

3H-Taurocholate mouseBsep-Sf9<br />

3H-Taurocholate * BCRP-M, BCRP-HAM-Sf9<br />

3H-E3S, 3H-MTX, Lucifer Yellow<br />

mouseBcrp1-MDCKII<br />

* Available as a kit and<br />

service<br />

3 H-Estrone-3-Sulfate<br />

Fluorescent probe<br />

substrate


Cellular Models - Calcein assay<br />

Transporter specific<br />

Fluorescent measurement<br />

Potential for High<br />

throughput g p<br />

Least expensive method to<br />

screen for possible P‐gp<br />

related DDI<br />

Indirect measurement –<br />

modulation of dye<br />

transport<br />

Low permeability<br />

compounds may not get<br />

into the cells<br />

Cell line licensing available<br />

Cell lines used in dye efflux assays<br />

K562MDR (Calcein assay)<br />

HL60MDR1 (Calcein assay)<br />

Hl60MRP1 (Calcein assay)<br />

HL60MXR (Hoechst 33342 assay)


Cellular uptake assay<br />

Stably transfected cells<br />

Quick and easy assay method<br />

Permeability y is not a factor<br />

(inhibition)<br />

Address possible drug‐drug drug drug<br />

interaction risks<br />

Fl Flexible ibl readout d (LSc, (LS Fl Fluo,<br />

LC/MS)<br />

Inhibitor / substrate assessment<br />

studies<br />

S b i l f l bili<br />

Substrate testing only for low permeability<br />

compounds


PrediCell TM Cellular Uptake<br />

Kit<br />

Uptake transporter experiments without cell<br />

line development or licensing<br />

Preplated mammalian cells<br />

Active thermal insulation<br />

Protection against shear stress<br />

Customization<br />

Plate pattern, stably transfected and parental cell line<br />

Reference substrate & inhibitor, assay buffer are optionally<br />

included<br />

Radiochemicals must be purchased separately!<br />

I In The Th Box B<br />

Plates with cells<br />

Standard Timeline<br />

User’s Manual<br />

Day 1: Package Dispatch<br />

Product Data Sheet<br />

(typically Tuesdays)<br />

List of Items<br />

Days 2-3: Package Delivery<br />

Optional: Reagents<br />

Days 2-3: Transport Experiments


Activity of PrediCell TM Kit


UptakeTransport Assays Available at<br />

<strong>SOLVO</strong><br />

Cell line Probe substrate<br />

OATP1B1-CHO (SLCO1B1)/OATP2, OATP-C<br />

3 H-Estrone-3-Sulfate<br />

Reference<br />

Inhibitor<br />

Pravastatin;<br />

rosuvastatin<br />

OATP1B3-CHO (SLCO1B3)/OATP8 Fluo-3 Digoxin; rosuvastatin<br />

OATP2B1-MDCKII (SLCO2B1)/OATP-B<br />

rat Oatp1a1 (Slco1a1)<br />

NEW!<br />

3 H-Estrone-3-Sulfate<br />

3 H-Estrone-3-Sulfate Ketoconazole<br />

3<br />

OATP1A2-HEK293 OATP1A2 HEK293 (SLCO1A2) H-Estrone-3-Sulfate H Estrone 3 Sulfate Fexofenadine<br />

OATP2A1-CHO (SLCO2A1)/PGT<br />

NTCP-CHO (SLC10A1), rat Ntpc (Slc10a1)<br />

NEW! !<br />

3 H-Prostaglandin-E2 Diclofenac<br />

3 H-Taurocholate TCDC<br />

PrediCell TM ,<br />

Licensingg<br />

PrediCell TM /Licens<br />

ing<br />

PrediCell TM<br />

/Licensing<br />

Fluvastatin Licensing<br />

PEPT1 PEPT1-CHO CHO (SLC15A1) Gl Glycylsarcosine l i TTyr-Phe Ph Li Licensing i<br />

PEPT2-CHO (SLC15A2) Glycylsarcosine Cefadroxil Licensing<br />

OAT1-CHO (SLC22A6), Rat Oat1<br />

OAT3-CHO (SLC22A8)<br />

OCT1-CHO (SLC22A1)<br />

OCT2-CHO (SLC22A2)<br />

OCTN1-CHO (SLC22A4)<br />

OCTN2-CHO (SLC22A5), rat Octn2<br />

MATE1-CHO (SLC47A1)<br />

NEW!<br />

3 H-PAH Benzbromarone<br />

3 H-Estrone-3-Sulfate Probenecid<br />

PrediCell TM /Licens<br />

ing,<br />

14 C-TEA, 14 C-Metformin Verapamil Licensing<br />

PrediCell TM<br />

14 14<br />

NEW! C-TEA, C-Metformin Cimetidine<br />

/Licensing<br />

NEW!<br />

NEW!<br />

14 C-TEA Verapamil<br />

3 H-Carnitine Verapamil<br />

14 C-TEA, 14 C-Metformin Quinidine


Single and double<br />

transfectants<br />

Gold standard for P-gp<br />

Good for most PP-gp gp and<br />

BCRP substrates<br />

GGood d absorption b ti model d l<br />

Ti Time consuming i cell ll<br />

culturing (Caco-2)<br />

Permeability can be<br />

limiting<br />

MMonolayer l AAssay


Preplated ready-to-use MDCKII monolayers, in<br />

cooperation ti with ith Ad AdvanCell C ll SA SA.<br />

Available under a limited single-use license<br />

without extra charge<br />

Patented Shipping Medium<br />

– Forms semi-solid protective layer at room<br />

temperature while liquefies at 37°C -><br />

Patented Shipping Container<br />

– protection against physical shock<br />

Customization<br />

Adaptable to automation<br />

In The Box<br />

• Plates with cells<br />

• User’s Manual<br />

• AAspiration i ti manifold if ld (optional) ( ti l)<br />

• Product Data Sheet<br />

Standard Timeline<br />

• Day 1: Package Dispatch (typically<br />

Mondays)<br />

• Day 2-3: Package Delivery<br />

• Day 4: Replacement of Shipping Media<br />

• Day 7: QC Experiments, Media<br />

Replacement<br />

• Days 8-11: Transport Experiments


Activity of preplated ready-to-use ready to use MDCKII monolayers<br />

MDR1 t f t d MDCKII ll<br />

MDR1 tranfected MDCKII cells<br />

Each measurement was performed in<br />

triplicates at day 5 and at day 12.<br />

• Up to five days of<br />

transportation in<br />

semi-solid medium<br />

• Experiments can be<br />

performed up to 7<br />

days y after arrival


Using pre-plated pre plated MDCKII<br />

cells<br />

Mon Tue Wed Thu Fri Sat Sun<br />

QA check<br />

TEER + LY<br />

QA check<br />

TEER,<br />

change<br />

media<br />

di<br />

Plates<br />

Shipped<br />

Order<br />

Receival<br />

Days to perform assay(s)<br />

Cells<br />

Plated<br />

Change<br />

shipping<br />

medium


Monolayer Assays at <strong>SOLVO</strong><br />

CCell ll li line<br />

Type yp of<br />

assay<br />

Caco-2 (MDR1, Substrate ID<br />

BCRP) IInhibitor hibi ID<br />

MDCKII-MDR1<br />

MDCKII-BCRP<br />

MDCKII-<br />

BCRP/OATP2B1<br />

MDCKII-BSEP/NTCP<br />

Substrate ID<br />

Inhibitor ID<br />

Substrate ID<br />

Inhibitor ID<br />

Substrate ID<br />

Inhibitor ID<br />

SService i<br />

SSubstrate b t t ID Under<br />

Inhibitor ID<br />

Cell line<br />

licensing<br />

P d P tTM PreadyPort * TM *<br />

- -<br />

<br />

(24-well plate)<br />

(96-well plate)<br />

(24-well plate)<br />

Under Development<br />

Development<br />

Under<br />

Development<br />

Under Development<br />

* In cooperation with


RRecommendations d ti for f Choosing Ch i the th Optimal O ti l Assay A<br />

ompound assayed a<br />

P Papp<br />

of co<br />

Hiigh<br />

Low L<br />

ATPase /<br />

VT and<br />

uptake<br />

inhibitio<br />

n<br />

Reliable<br />

Reliable<br />

Monolayer<br />

efflux<br />

inhibition<br />

assay<br />

Reliable<br />

VT and<br />

uptake<br />

substrate<br />

Reliablee<br />

Monolayer<br />

efflux<br />

transport<br />

assay<br />

Application of different types of assays for Low-High permeability<br />

compounds<br />

d<br />

Reliable<br />

Reliablle


In In vitro vitro P-gp P gp assays – Correlation Analysis<br />

Von Richter 2008 Naun Schmied Arch Pharmacol<br />

Polli 2001 JPET<br />

Transporter effect in<br />

monolayer efflux assay<br />

No transporter effect in<br />

monolayer efflux assay<br />

● compounds that show ATPase activation<br />

◊ comounds that show no ATPase activation


Compound EAC<br />

Importance of Permeability<br />

MDCKII-MDR1<br />

AB<br />

permeability<br />

/ nm/sec*<br />

MDCKII- Digoxin g BA Calcein<br />

MDR1<br />

BA/AB*<br />

IC 50 /<br />

mM**<br />

assay IC 50<br />

/ mM<br />

MDR1<br />

vesicular i l<br />

transport<br />

IC50 / mM<br />

GF120918 NNY 2.12 ND 0.055 0.026 0.049<br />

Quinidine YYY 36.4 27.2 14.9 12.89 30.74<br />

Vinblastine YYY < 10 >23 17.8 26.00 0.44<br />

Cyclosporin<br />

e A<br />

Ketoconazol<br />

e<br />

YNY 15 15.9 9 99.61 61 11.6 6 00.49 49 00.201 201<br />

NYY 316 1.02 3.07 3.03 2.16<br />

Verapamil NYY 591 1.16 10.7 9.45 5.19<br />

Erythromyci<br />

n<br />

YYN 0.94 14.4 N/A N/A 36.2<br />

Digoxin YYN 3.07** 16 N/A N/A 162.5<br />

* ‐ Polli JPET 2001; ** ‐ Rautio DMD 2006


Additional Model<br />

Systems Offered at<br />

<strong>SOLVO</strong>


Wh Why <strong>SOLVO</strong>?<br />

Portfolio<br />

In vivo transporter services<br />

Blood-Brain Barrier<br />

• Brain penetration study - both in rats and<br />

mice<br />

Liver<br />

• Bile duct cannulated (BDC) rats<br />

Kidney<br />

• Renal excretion model - under<br />

development<br />

IIntestine t ti<br />

• Oral absorption model - under<br />

development


Rat Brain Endothelial Cell Culture<br />

Model<br />

Endothelial cells<br />

Pericytes<br />

At Astrocytes<br />

t<br />

Transport of Quinidine via RBEC monolayer<br />

in the presence and absence of PSC833<br />

Effflux<br />

ratio<br />

3<br />

2<br />

1<br />

0<br />

15 minn<br />

30 minn<br />

60 minn<br />

0.1 M QND<br />

0.1 MQND+ M QND 1 MPSC833<br />

M PSC833


Microdialysis (rats and<br />

mice)<br />

I. Determination of brain<br />

penetration of test molecules<br />

in rats (unbound)<br />

II. Determination of test molecule<br />

interactions with<br />

transporters; +/- / MDR11 or BCRP C<br />

specific inhibitors<br />

III.Determination of brain<br />

penetration of test molecules<br />

and simultaneous monitoring of<br />

neurotransmitter release in<br />

specified brain regions.


Dose-dependent Brain<br />

Penetration of Transporter<br />

Substrates b<br />

2007 AAPS-FDA workshop white paper: Chaurasia C.S. et al,<br />

Microdialysis principles, application and regulatory perspectives<br />

- Currently MD is the only tool available that explicitly provides<br />

data on the extracellular space


NNew LLaunch h<br />

Hepatocyte Uptake Assay<br />

Plated primary human and rat hepatocytes<br />

Simple uptake experiments<br />

Km/Vmax determination<br />

DDI studies<br />

Three probe substrates<br />

1. NTCP<br />

2. OATP<br />

3. OCT1-related uptake capacity


Biliary Excretion - rat<br />

Bile duct cannulated rats model<br />

Study the excretion of test compounds into<br />

the bile<br />

Study the effect of the test compound on<br />

the excretion of other (physiological)<br />

compounds ( (e.g. bile salts) )<br />

Both standard and transporter specific<br />

study designs<br />

Measure inhibition of Mrp2, Bcrp and Bsep


Liver<br />

Kidney<br />

<strong>SOLVO</strong> Barrier Packages<br />

Individual<br />

Transporters<br />

OATPs, MRPs,<br />

BSEP, NTCP, OCT1,<br />

P-gp P-gp, BCRP<br />

Cellular Models In vivo models<br />

Hepatocyte uptake<br />

assay<br />

BDC rats<br />

OATs, OCTs, Renal Proximal<br />

MATEs, MRPs, P- Tubule cells Under development<br />

gp, BCRP (aProximateTM )<br />

Absorption P-gp, P gp, BCRP Caco-2 Caco 2<br />

Blood-Brain<br />

Barrier<br />

PP-gp, BCRP<br />

RBEC, , MBEC, ,<br />

MDCKII-MDR1<br />

In vivo<br />

absorption ( (PK) )<br />

Mi Microdialyis<br />

di l i


Efflux<br />

Uptake<br />

Other<br />

Portfolio OOverview er ie<br />

Products Services<br />

• PREDEASYTM • PREDEASY ATPase kits • ATPase assays<br />

TM ATPase kits<br />

• ATPase assays<br />

• PREDIVEZTM VT kits<br />

• PREADYPORTTM Monolayer kits<br />

• ATPase membrane preparations<br />

• VT membrane preparations<br />

• VT substrate assays<br />

• VT inhibition assays<br />

• Dye efflux assays<br />

• MDCKII monolayers<br />

• MDCKII cell line licensing • Caco-2 monolayers<br />

• PREDICELLTM • Cellular uptake substrate assays<br />

kits<br />

• Cellular uptake inhibition assays<br />

• Cell line licensing • Double transfected monolayer assays<br />

• Isolated hepatocyte uptake studies<br />

• PSC833 (Pgp inhibitor)<br />

• Ko134 (BCRP inhibitor)<br />

• MDQ diagnostic kits<br />

•Solubility tests<br />

• In vivo microdialysis y studies<br />

- Pgp specific<br />

- BCRP specific<br />

• In vivo liver transporter studies<br />

• Rat Brain Endothelial Cell monolayer assay


Wh Why to choose h <strong>SOLVO</strong>?<br />

We are the h iindustry d lleader d iin the h fi field ld of f iin vitro i<br />

transporter services and products<br />

Unique expertise in the transporter science<br />

Widest drug-transporter assays portfolio<br />

Competitive pricing<br />

We not only y ship p a product, p , but provide p technical<br />

support whenever it is needed<br />

Continually expanding product and service portfolio<br />

with 10-15 10 15 new launches annually<br />

Provide assays for all efflux and uptake transporters<br />

assays recommended by the FDA / EMA<br />

1st 1 and only CRO offering transporter specific in<br />

vivo assays<br />

NOW! US operations providing direct customer<br />

support support, technical expertise expertise, and GLP assay services for<br />

our North American customers


Contact <strong>SOLVO</strong><br />

• Regular Webinars, Newsletters and Science<br />

letters, Scientific Publications, Reviews<br />

• LinkedIn, Facebook, Twitter<br />

• CConferences f<br />

• Transporter Workshops and Symposiums<br />

• www.solvo.com<br />

• sales@solvo.com Please contact me directly if you have any<br />

questions!<br />

Kent Grindstaff, Ph.D.<br />

Senior Director BD and Operations, North<br />

America<br />

grindstaff@solvo.com<br />

May 14, 2012<br />

119

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!