21.06.2013 Views

Novel Ozone-based Cleaning Technique for EUV Optics ... - Sematech

Novel Ozone-based Cleaning Technique for EUV Optics ... - Sematech

Novel Ozone-based Cleaning Technique for EUV Optics ... - Sematech

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Novel</strong> <strong>Ozone</strong>-<strong>based</strong> <strong>Cleaning</strong> <strong>Technique</strong> <strong>for</strong><br />

<strong>EUV</strong> Masks and <strong>Optics</strong> Carbon Contamination<br />

Toshihisa Anazawa, Yasushi Nishiyama † , Noriaki Takagi,<br />

Osamu Suga, Iwao Nishiyama<br />

MIRAI-Semiconductor Leading Edge Technologies, Inc.<br />

Toshinori Miura<br />

MEIDENSHA CORPORATION<br />

† present affiliation: TOPPAN PRINTING CO.,LTD.


Contamination Contamination on on <strong>EUV</strong> <strong>EUV</strong> optics<br />

optics<br />

degrades degrades reflectivity<br />

reflectivity<br />

and and must must be be be cleaned.<br />

cleaned.<br />

Method<br />

Oxygen Plasma<br />

Hydrogen Plasma<br />

<strong>EUV</strong>+Gas (O 2 )<br />

UV<strong>Ozone</strong><br />

A carbon contamination sample<br />

on the SFET illumination mirror.<br />

(after ~9 months of use)<br />

H-Radical<br />

(W-fil. cracking)<br />

Shielded Plasma<br />

Rate<br />


Experimental<br />

Experimental<br />

Cleanability Test:<br />

Sample: C/Si-Wafer<br />

C-deposition: SEM with Phenanthrene (C 10 H 10 ) gas;<br />

Area=1 m; Electron dose=6 ~ 600×10 18 e - •cm -2<br />

<strong>Cleaning</strong>:<br />

<strong>Ozone</strong>-<strong>based</strong> dry process with 100% pure ozone<br />

generated by MEIDENSHA's pure ozone generator<br />

Evaluation: AFM (Be<strong>for</strong>e and after processing)<br />

Damage Test:<br />

Reflectivity (Reflectometer)<br />

Ru-alloy cap. ML Si cap. ML<br />

Oxidation (XPS)<br />

Ru-alloy cap. ML Si cap. ML<br />

TaBN LR-TaBN TaSi LRTaSi<br />

<strong>EUV</strong>L <strong>EUV</strong>L Symposium Symposium 2009 2009<br />

3


Merits of gas addition<br />

No light irradiation<br />

No kinetic damage<br />

No thermal damage<br />

Ethylene<br />

Ethylene<br />

Gas Gas Addition Addition Method<br />

Method<br />

MEIDENSHA's<br />

MEIDENSHA's<br />

MEIDENSHA's<br />

pure pure pure ozone ozone generator<br />

generator<br />

•O 3 generation<br />

Pure Pure O O3<br />

~100 100 %<br />

%<br />

•O 3 condensation<br />

•evaporation<br />

~100 100 100 100 100 Pa<br />

Pa<br />

Pa<br />

Pa<br />

C C H<br />

Extraordinarily Extraordinarily reactive reactive reactive agents agents are are are generated generated by by O O3<br />

×C2H4 reaction.<br />

+O +O +O3<br />

But, actual agents and processes are still unknown.<br />

primary<br />

ozonide<br />

Exhaust<br />

Exhaust<br />

via via combustion<br />

combustion<br />

abatement abatement system system<br />

system<br />

<strong>EUV</strong>L <strong>EUV</strong>L Symposium Symposium 2009 2009<br />

4<br />

R<br />

O O O<br />

C C H<br />

R<br />

C O O O C H - +<br />

R<br />

・O O ?<br />

?<br />

unsatulated<br />

hydrocarbon<br />

ozone<br />

・O H H ?<br />

?<br />

・H H ?<br />

?<br />

misc. radicals<br />

"<strong>Novel</strong> "<strong>Novel</strong> Plasmaless Plasmaless Plasmaless Photoresist Photoresist Removal Removal Method Method in in gas gas Phase Phase at at Roo Room Roo m Temperature", Temperature", T. T. Miura Miura et et al., al., 921, 921, 215th ECS Meeting (2009).<br />

(2009).<br />

?<br />

some<br />

candidates<br />

of reactant


Room Room Temperature Temperature (1 (1 min)<br />

min)<br />

Cleanability<br />

Cleanability<br />

Initial Initial Initial<br />

Processed<br />

Processed<br />

100 100 °C C (1 (1 min)<br />

min)<br />

Thickness (nm)<br />

Thickness (nm)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

<strong>EUV</strong>L <strong>EUV</strong>L Symposium Symposium 2009 2009<br />

5<br />

0<br />

0<br />

Be<strong>for</strong>e<br />

After<br />

Carbon Carbon have removed by 70~80 70~80 70~80 70~80 nm/min nm/min. nm/min<br />

nm/min. nm/min<br />

Initial Initial Initial<br />

Processed<br />

Processed<br />

Removed<br />

Be<strong>for</strong>e<br />

After<br />

Removed<br />

Carbon Carbon have removed by 150~250 150~250 150~250 150~250 nm/min nm/min. nm/min<br />

nm/min. nm/min<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Removed (nm)<br />

Removed (nm)


Be<strong>for</strong>e<br />

After<br />

10<br />

*<br />

0<br />

-10<br />

Position (mm)<br />

65<br />

64<br />

63<br />

62<br />

61<br />

60<br />

Reflectivity (%)<br />

Reflectivity<br />

Reflectivity<br />

Reflectivity Reflectivity Reflectivity Change Change Change after after after 1 1 min min min of of of Processing<br />

Processing<br />

Processing<br />

Si Si capped capped ML<br />

ML<br />

Be<strong>for</strong>e<br />

After<br />

10<br />

-10<br />

Ru Ru-alloy Ru alloy capped capped ML<br />

0<br />

65<br />

64<br />

63<br />

62<br />

61<br />

60<br />

Position (mm)<br />

Reflectivity (%)<br />

Reflectivity (%)<br />

Reflectivity (%)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

* Initial Initial data was not not measured at at point 0 0 <strong>for</strong> Ru Ru-alloy Ru<br />

alloy alloy<br />

thus thus thus the the the average average value value of of 10 10 and and -10 10 is plotted.<br />

Correspond to 70~80 nm of carbon film removal.<br />

13.1 13.6 14.1<br />

Wavelength (nm)<br />

13.0 13.5 14.0<br />

Wavelength (nm)<br />

Average Average<br />

Average<br />

Processed<br />

Reference<br />

No degradation was observed.<br />

No degradation was observed.<br />

Processed<br />

Reference<br />

be<strong>for</strong>e<br />

63.6 %<br />

63.6 %<br />

be<strong>for</strong>e<br />

63.7 %<br />

63.4 %<br />

diff.*<br />

-1.8 %<br />

<strong>EUV</strong>L <strong>EUV</strong>L Symposium Symposium 2009 2009<br />

6<br />

-<br />

after<br />

64.0 %<br />

63.7 %<br />

after<br />

61.9 %<br />

~2 % of reflectivity down.<br />

~2 % of reflectivity down.<br />

diff.*<br />

+0.4 %<br />

+0.1 %<br />

* Measurement errors and secular changes are included.<br />

Average<br />

Average<br />

* Measurement errors and secular changes are included.<br />

included.<br />

-


Oxidation Oxidation<br />

Oxidation<br />

Oxidation Oxidation State State Change Change after after 1 1 and and 1+2=3 1+2=3 min min Processing<br />

Processing<br />

Atomic Atomic %<br />

%<br />

Correspond to 70~80 nm (1min) and 210~240 nm (1+2 = 3min) of carbon film removal, respectively.<br />

Si capped ML (Si oxidation state)<br />

60<br />

40<br />

20<br />

0<br />

Si Si Si<br />

Si<br />

Si<br />

Si 4+<br />

Si +<br />

Si Si 2+ Si Si 3+<br />

Oxidation Oxidation Oxidation Oxidation State State State State<br />

Si<br />

Si<br />

SiO SiO SiO2<br />

1<br />

0<br />

1+2 1+2 1+2 1+2<br />

Estimated Estimated SiO<br />

SiO2 Thickness* Thickness* (nm)<br />

(nm)<br />

3<br />

2<br />

1<br />

0<br />

Time Time Time Time (min) (min) (min) (min)<br />

A A small growth<br />

(0.4 nm ~ 2 atomic layers/3 min)<br />

of oxide layer is observed<br />

but it seems to tend to be saturated.<br />

The The growth is expected to stop when the<br />

thickness reaches the maximum thickness<br />

of natural oxide. (usual 2~3 nm thick)<br />

*Calculated from escape depth of the photoelectron of Si<br />

assuming uni<strong>for</strong>m SiO 2 surface layer on the bulk Si.<br />

Si cap ML is durable against our new process.<br />

Si cap ML is durable against our new process.<br />

<strong>EUV</strong>L <strong>EUV</strong>L Symposium Symposium 2009 2009<br />

7


Oxidation Oxidation<br />

Oxidation<br />

Oxidation Oxidation State State Change Change after after 1 1 and and 1+2=3 1+2=3 min min Processing<br />

Processing<br />

Correspond to 70~80 nm (1min) and 210~240 nm (1+2 = 3min) of carbon film removal, respectively.<br />

Ru-alloy capped ML (Ru oxidation state)<br />

Atomic Atomic %<br />

%<br />

60<br />

40<br />

20<br />

0<br />

Ru<br />

Ru<br />

4+<br />

6+<br />

Ru4+ Ru 6+<br />

(min) (min) (min) (min)<br />

1+2 1+2 1+2 1+2<br />

1<br />

0<br />

Oxidation State of Ru.<br />

Si/Ru Si/Ru Ratio Ratio<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

90 90° 90<br />

45 45°30 45<br />

30 30° 30<br />

(min) (min) (min) (min)<br />

1+2 1+2 1+2 1+2<br />

1<br />

0<br />

Si/Ru Ratio by Angle-Resolved XPS.<br />

Weighted* Weighted* Si Si Oxide<br />

Oxide<br />

(arb. (arb. units)<br />

units)<br />

90 90° 90<br />

45 45°30 45<br />

30 30° 30<br />

(min) (min) (min) (min)<br />

1+2 1+2 1+2 1+2<br />

1<br />

0<br />

Weighted* Ratio of Si Oxide.<br />

*Weight: Weight:<br />

SiO 2 2<br />

Si (3) 3/2<br />

Si (2) 1<br />

Si (1) 1/2<br />

Ru is oxidized and oxidation proceeds with process time. (left fig.) fig.)<br />

The ratio of Si/Ru increases with process time. (middle fig.)<br />

Si oxide near surface increases with process time. (right fig.)<br />

loss of Ru and/or surface segregation of Si. (Sublimation Pressure Pressure<br />

of Ru 8+ is high.)<br />

Ru-alloy cap is not durable against our new process.<br />

Some process tuning or oxidation resistant capping<br />

layer is disired (if Si cap is not suitable).<br />

<strong>EUV</strong>L <strong>EUV</strong>L Symposium Symposium 2009 2009<br />

8


Oxidation Oxidation<br />

Oxidation<br />

Oxidation Oxidation Oxidation State State Change Change after after after 1 1 min min min Processing<br />

Processing<br />

Low Low Low-Reflection Low Reflection Layers<br />

Normalized<br />

Normalized<br />

Intensity Intensity<br />

LR LR-TaBN LR<br />

TaBN<br />

Ta Ta 4f<br />

4f<br />

0 0 min<br />

min<br />

1 1 min<br />

min<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

Binding Binding Energy Energy (eV) (eV)<br />

(eV)<br />

Absorbers Absorbers<br />

Ta Ta of of TaBN TaBN absorber<br />

absorber<br />

Atomic Atomic %<br />

%<br />

80<br />

60<br />

40<br />

20<br />

0<br />

5/2<br />

5/2<br />

7/2<br />

7/2<br />

Ta, Ta Ta-B Ta<br />

TaOx, TaOx, TaOx, TaOx, Ta Ta-N Ta<br />

Ta 2O5 1 1 1 1 min min min min<br />

0 0 0 0 min min min min<br />

Normalized<br />

Normalized<br />

Intensity<br />

Intensity<br />

Atomic Atomic %<br />

%<br />

80<br />

60<br />

40<br />

20<br />

0<br />

LRTaSi<br />

LRTaSi<br />

Ta Ta 4f<br />

4f<br />

5/2<br />

5/2<br />

0 0 min<br />

min<br />

1 1 min min<br />

min<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

Binding Binding Energy Energy (eV)<br />

(eV)<br />

Ta Ta of of TaSi TaSi absorber<br />

absorber<br />

Ta, Ta Ta-Si Ta<br />

Si Si Si<br />

TaOx TaOx TaOx TaOx<br />

Ta 2O5 7/2 7/2<br />

7/2<br />

Ta Ta Ta metal metal<br />

metal<br />

(if (if (if exists)<br />

exists)<br />

5+ Ta 5+<br />

Ta<br />

Ta<br />

1 1 1 1 min min min min<br />

0 0 0 0 min min min min<br />

Correspond to 70~80 nm of carbon film removal.<br />

Ta Ta metal*<br />

metal*<br />

(if (if exists)<br />

exists)<br />

Ta in LR-TaBN LR TaBN and LRTaSi<br />

are almost fully oxidized<br />

from the beginning<br />

and was not affected<br />

by the process.<br />

Spectra Spectra <strong>for</strong> <strong>for</strong> LRTaSi LRTaSi (right (right panel) panel) seems seems broadened<br />

broadened<br />

because because of of the the charge charge-up charge up effect.<br />

*Baseline Baseline rises in LRTaSi spectra but it is not the signal<br />

signal<br />

of of Ta Ta metal metal because because no no 4f 4f 5/2 5/2 - 7/2 structure is seen.<br />

Ta in TaBN also showed no change.<br />

Ta in TaSi tend to be oxidized a little.<br />

LR-TaBN is durable against our new process.<br />

LRTaSi needs more examinations.<br />

<strong>EUV</strong>L <strong>EUV</strong>L Symposium Symposium 2009 2009<br />

9


Summary Summary<br />

Summary<br />

Cleanability<br />

Using novel ozone <strong>based</strong> cleaning technique, emulated<br />

carbon contamination film was removed efficiently.<br />

The removal rate exceeds 70 nm/min at room temperature<br />

and accelerated to 150~200 nm/min at 100 °C.<br />

Damage<br />

Reflectivity did not degrade <strong>for</strong> Si capped ML mirror<br />

but ~2 % down <strong>for</strong> Ru-alloy cap. with 1 min of processing.<br />

On mask materials, oxide-like anti-reflective layer and<br />

TaBN seemed stable to our new process.<br />

In conclusion, our new process could be applicable to<br />

Si-cap. mirror and Si-cap. mask with LR-TaBN absorber;<br />

but some tuning will be needed <strong>for</strong> Ru-alloy cap. optics.<br />

This Work was Supported by NEDO*<br />

(*New Energy and Industrial Technology Development Organization)<br />

<strong>EUV</strong>L <strong>EUV</strong>L Symposium Symposium 2009 2009<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!