20.06.2013 Views

Advances in Microbial Physiology, Volume 57.pdf

Advances in Microbial Physiology, Volume 57.pdf

Advances in Microbial Physiology, Volume 57.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Advances</strong> <strong>in</strong><br />

MICROBIAL<br />

PHYSIOLOGY<br />

VOLUME 57


This page <strong>in</strong>tentionally left blank


<strong>Advances</strong> <strong>in</strong><br />

MICROBIAL<br />

PHYSIOLOGY<br />

Edited by<br />

ROBERT K. POOLE<br />

West Rid<strong>in</strong>g Professor of Microbiology<br />

Department of Molecular Biology and Biotechnology<br />

The University of Sheffield<br />

Firth Court, Western Bank<br />

Sheffield, UK<br />

VOLUME 57<br />

Amsterdam Boston Heidelberg London New York Oxford<br />

Paris San Diego San Francisco S<strong>in</strong>gapore Sydney Tokyo<br />

Academic Press is an impr<strong>in</strong>t of Elsevier<br />

ACADEMIC<br />

PRESS


Academic Press is an impr<strong>in</strong>t of Elsevier<br />

32 Jamestown Road, London NW1 7BY, UK<br />

L<strong>in</strong>acre House, Jordan Hill, Oxford OX2 8DP, UK<br />

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands<br />

Corporate Drive, Suite 400, Burl<strong>in</strong>gton, MA 01803, USA<br />

525 B Street, Suite 1900, San Diego, CA 92101-4495, USA<br />

First edition 2010<br />

Copyright Ó 2010 Elsevier Ltd. All rights reserved.<br />

No part of this publication may be reproduced, stored <strong>in</strong> a retrieval system<br />

or transmitted <strong>in</strong> any form or by any means electronic, mechanical, photocopy<strong>in</strong>g,<br />

record<strong>in</strong>g or otherwise without the prior written permission of the publisher.<br />

Permissions may be sought directly from Elsevier’s Science & Technology Rights<br />

Department <strong>in</strong> Oxford, UK: phone (+ 44) (0) 1865 843830; fax (+ 44) (0) 1865<br />

853333; email: permissions@elsevier.com. Alternatively you can submit your<br />

request onl<strong>in</strong>e by visit<strong>in</strong>g the Elsevier web site at http://www.elsevier.com/locate/<br />

permissions, and select<strong>in</strong>g Obta<strong>in</strong><strong>in</strong>g permission to use Elsevier material<br />

Notice<br />

No responsibility is assumed by the publisher for any <strong>in</strong>jury and/or damage to<br />

persons or property as a matter of products liability, negligence or otherwise, or<br />

from any use or operation of any methods, products, <strong>in</strong>structions or ideas<br />

conta<strong>in</strong>ed <strong>in</strong> the material here<strong>in</strong>. Because of rapid advances <strong>in</strong> the medical<br />

sciences, <strong>in</strong> particular, <strong>in</strong>dependent verification of diagnoses and drug dosages<br />

should be made<br />

ISBN: 978-0-12-381045-8<br />

ISSN: 0065-2911<br />

For <strong>in</strong>formation on all Academic Press publications<br />

visit our website at elsevierdirect.com<br />

Pr<strong>in</strong>ted and bound <strong>in</strong> the United K<strong>in</strong>gdom<br />

1011121310987654321


Contents<br />

CONTRIBUTORS TO VOLUME 57 ............................................... vii<br />

Ammonia-Oxidis<strong>in</strong>g Archaea – <strong>Physiology</strong>, Ecology and Evolution<br />

Christa Schleper and Graeme W. Nicol<br />

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

2. Discovery of Archaea <strong>in</strong> Moderate Aerobic Habitats . . . . . . . . . . . . . . . . 4<br />

3. First Insights <strong>in</strong>to the <strong>Physiology</strong> of Ammonia-oxidis<strong>in</strong>g Archaea . . . 6<br />

4. Model Organisms of Ammonia-Oxidis<strong>in</strong>g Archaea . . . . . . . . . . . . . . . . . . 9<br />

5. Membrane Lipids of Ammonia-Oxidis<strong>in</strong>g Archaea . . . . . . . . . . . . . . . . . 13<br />

6. Genomes and Metagenomes of Ammonia-Oxidis<strong>in</strong>g Archaea . . . . . . 15<br />

7. Diversity, Distribution and Activity of Ammonia-oxidis<strong>in</strong>g<br />

Archaea <strong>in</strong> the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

8. Conclud<strong>in</strong>g Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

Acknowledgement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

Reductive Stress <strong>in</strong> Microbes: Implications for Understand<strong>in</strong>g<br />

Mycobacterium tuberculosis Disease and Persistence<br />

Aisha Farhana, Loni Guidry, Anup Srivastava, Amit S<strong>in</strong>gh,<br />

Mary K. Hondalus and Adrie J.C. Steyn<br />

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

2. Scope ............................................................... 46<br />

3. The Concept of Reductive Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

4. Overview: General Physiological Characteristics of<br />

Mycobacterium Tuberculosis ........................................ 49


vi CONTENTS<br />

5. Reductive S<strong>in</strong>ks <strong>in</strong> Microbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

6. Redox S<strong>in</strong>ks <strong>in</strong> Mycobacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

7. Conclud<strong>in</strong>g Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br />

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br />

Regulation of CtsR Activity <strong>in</strong> Low GC, Gram+ Bacteria<br />

Alexander K.W. Elsholz, Ulf Gerth and Michael Hecker<br />

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br />

1. Prote<strong>in</strong> Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br />

2. CtsR-Regulated Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122<br />

3. Cellular Functions of Genes Regulated by CtsR . . . . . . . . . . . . . . . . . . . 125<br />

4. Mechanisms for the Inactivation of the CtsR Repressor . . . . . . . . . . . 129<br />

5. Control of CtsR Degradation by the Regulated Adaptor McsB . . . . 136<br />

6. Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />

AUTHOR INDEX ......................................................... 145<br />

SUBJECT INDEX ......................................................... 167


Contributors to <strong>Volume</strong> 57<br />

ALEXANDER K.W. ELSHOLZ, Ernst-Moritz-Arndt-University Greifswald,<br />

Institute of Microbiology, Greifswald, Germany<br />

AISHA FARHANA, Department of Microbiology, University of Alabama at<br />

Birm<strong>in</strong>gham, AL, USA<br />

ULF GERTH, Ernst-Moritz-Arndt-University Greifswald, Institute of<br />

Microbiology, Greifswald, Germany<br />

LONI GUIDRY, Department of Microbiology, University of Alabama at<br />

Birm<strong>in</strong>gham, AL, USA<br />

MICHAEL HECKER, Ernst-Moritz-Arndt-University Greifswald, Institute of<br />

Microbiology, Greifswald, Germany<br />

MARY K. HONDALUS, Department of Infectious Diseases, University of<br />

Georgia, Athens, GA, USA<br />

GRAEME W. NICOL, Institute of Biological & Environmental Sciences,<br />

Cruickshank Build<strong>in</strong>g, University of Aberdeen, Aberdeen, UK<br />

CHRISTA SCHLEPER, Department of Genetics <strong>in</strong> Ecology, University of<br />

Vienna, Vienna, Austria<br />

AMIT SINGH, International Center for Genetic Eng<strong>in</strong>eer<strong>in</strong>g and<br />

Biotechnology, Aruna Asaf Ali Marg, New Delhi, India<br />

ANUP SRIVASTAVA, Department of Microbiology, University of Alabama at<br />

Birm<strong>in</strong>gham, AL, USA<br />

ADRIE J.C. STEYN, Department of Microbiology, University of Alabama at<br />

Birm<strong>in</strong>gham, AL, USA


This page <strong>in</strong>tentionally left blank


Ammonia-Oxidis<strong>in</strong>g Archaea – <strong>Physiology</strong>,<br />

Ecology and Evolution<br />

Christa Schleper 1 and Graeme W. Nicol 2<br />

1 Department of Genetics <strong>in</strong> Ecology, University of Vienna, Vienna, Austria<br />

2 Institute of Biological & Environmental Sciences, Cruickshank Build<strong>in</strong>g,<br />

University of Aberdeen, Aberdeen, UK<br />

ABSTRACT<br />

Nitrification is a microbially mediated process that plays a central role <strong>in</strong><br />

the global cycl<strong>in</strong>g of nitrogen and is also of economic importance <strong>in</strong><br />

agriculture and wastewater treatment. The first step <strong>in</strong> nitrification is<br />

performed by ammonia-oxidis<strong>in</strong>g microorganisms, which convert<br />

ammonia <strong>in</strong>to nitrite ions. Ammonia-oxidis<strong>in</strong>g bacteria (AOB) have been<br />

known for more than 100 years. However, metagenomic studies and<br />

subsequent cultivation efforts have recently demonstrated that<br />

microorganisms of the doma<strong>in</strong> archaea are also capable of perform<strong>in</strong>g this<br />

process. Astonish<strong>in</strong>gly, members of this group of ammonia-oxidis<strong>in</strong>g<br />

archaea (AOA), which was overlooked for so long, are present <strong>in</strong> almost<br />

every environment on Earth and typically outnumber the known bacterial<br />

ammonia oxidisers by orders of magnitudes <strong>in</strong> common environments such<br />

as the mar<strong>in</strong>e plankton, soils, sediments and estuaries. Molecular studies<br />

<strong>in</strong>dicate that AOA are amongst the most abundant organisms on this<br />

planet, adapted to the most common environments, but are also present <strong>in</strong><br />

those considered extreme, such as hot spr<strong>in</strong>gs. The ecological distribution<br />

and community dynamics of these archaea are currently the subject of<br />

<strong>in</strong>tensive study by many research groups who are attempt<strong>in</strong>g to<br />

understand the physiological diversity and the ecosystem function of these<br />

ADVANCES IN MICROBIAL PHYSIOLOGY, VOL. 57 Copyright Ó 2010 by Elsevier Ltd.<br />

ISSN: 0065-2911 All rights reserved<br />

DOI:10.1016/B978-0-12-381045-8.00001-1


2 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

organisms. The cultivation of a s<strong>in</strong>gle mar<strong>in</strong>eisolateandtwoenrichments<br />

from hot terrestrial environments has demonstrated a<br />

chemolithoautotrophic mode of growth. Both pure culture-based and<br />

environmental studies <strong>in</strong>dicate that at least some AOA have a high<br />

substrate aff<strong>in</strong>ity for ammonia and are able to grow under extremely<br />

oligotrophic conditions. Information from the first available genomes of<br />

AOA <strong>in</strong>dicate that their metabolism is fundamentally different from that<br />

of their bacterial counterparts, <strong>in</strong>volv<strong>in</strong>g a highly copper-dependent<br />

system for ammonia oxidation and electron transport, as well as a novel<br />

carbon fixation pathway that has recently been discovered <strong>in</strong><br />

hyperthermophilic archaea. A dist<strong>in</strong>ct set of <strong>in</strong>formational process<strong>in</strong>g<br />

genes of AOA <strong>in</strong>dicates that they are members of a dist<strong>in</strong>ct and novel<br />

phylum with<strong>in</strong> the archaea, the ‘Thaumarchaeota’, which may even be a<br />

more ancient l<strong>in</strong>eage than the established Cren- and Euryarchaeota<br />

l<strong>in</strong>eages, rais<strong>in</strong>g questions about the evolutionary orig<strong>in</strong>s of archaea and<br />

the orig<strong>in</strong>s of ammonia-oxidis<strong>in</strong>g metabolism.<br />

Abbreviations . . . ............................................ 3<br />

1. Introduction ................................................ 3<br />

2. Discovery of archaea <strong>in</strong> moderate aerobic habitats. . ................ 4<br />

3. First <strong>in</strong>sights <strong>in</strong>to the physiology of ammonia-oxidis<strong>in</strong>g archaea ........ 6<br />

4. Model organisms of ammonia-oxidis<strong>in</strong>g archaea. ................... 9<br />

5. Membrane lipids of ammonia-oxidis<strong>in</strong>g archaea .................... 13<br />

6. Genomes and metagenomes of ammonia-oxidis<strong>in</strong>g archaea .......... 15<br />

6.1. Metagenomic Studies of Uncultivated Ammonia Oxidisers. ....... 15<br />

6.2. Predictions from Complete Genome Sequences of Two Mar<strong>in</strong>e<br />

Archaea . . . ............................................<br />

16<br />

6.3. Ammonia Oxidisers: A Dist<strong>in</strong>ct Phylum with<strong>in</strong> the Archaea . . . .... 19<br />

7. Diversity, distribution and activity of ammonia-oxidis<strong>in</strong>g archaea <strong>in</strong> the 22<br />

environment ................................................<br />

7.1. AOA <strong>in</strong> the Soil Environment ............................... 23<br />

7.2. AOA Activity <strong>in</strong> the Soil Environment. . . ...................... 25<br />

7.3. AOA <strong>in</strong> the Mar<strong>in</strong>e Environment . ........................... 28<br />

7.4. AOA Activity <strong>in</strong> the Mar<strong>in</strong>e Environment ...................... 29<br />

7.5. AOA <strong>in</strong> Sediments ....................................... 30<br />

7.6. AOA <strong>in</strong> Geothermal Environments .......................... 32<br />

7.7. AOA Associated with Mar<strong>in</strong>e Invertebrates. ................... 33<br />

8. Conclud<strong>in</strong>g remarks . . . ....................................... 33<br />

Acknowledgement ........................................... 34<br />

References. ................................................ 34<br />

22


AMMONIA-OXIDISING ARCHAEA 3<br />

ABBREVIATIONS<br />

AOA ammonia-oxidis<strong>in</strong>g archaea<br />

AOB ammonia-oxidis<strong>in</strong>g bacteria<br />

GDGT glycerol dialkyl glycerol tetraether<br />

16S rRNA 16S ribosomal ribonucleic acid<br />

1. INTRODUCTION<br />

In many ecosystems and <strong>in</strong> the biosphere as a whole, microorganisms are<br />

considered to constitute the largest component, <strong>in</strong> terms of both biomass and<br />

biological activity (Whitman et al., 1998). They are major players <strong>in</strong> regulat<strong>in</strong>g<br />

the biosphere through their participation <strong>in</strong> global biogeochemical<br />

cycles. Until recently, the role of archaea <strong>in</strong> these global cycles, as well as<br />

their phylogenetic and physiological diversity, had been largely underestimated.<br />

Only the distribution of methanogenic archaea <strong>in</strong> many different<br />

anaerobic habitats worldwide, as well as their role <strong>in</strong> the global carbon cycle,<br />

has been well described (Garcia et al., 2000). All other archaea were considered<br />

extremophiles, with specific adaptations allow<strong>in</strong>g them to <strong>in</strong>habit<br />

environments considered <strong>in</strong>hospitable for most other organisms, such as<br />

salt-saturated lakes, high-temperature terrestrial spr<strong>in</strong>gs and deep-sea vents<br />

(Woese, 1987). However, with the help of culture-<strong>in</strong>dependent molecular<br />

techniques, <strong>in</strong>volv<strong>in</strong>g the amplification of 16S rRNA genes directly from<br />

environmental samples, it has been shown over the past two decades that<br />

archaea are not conf<strong>in</strong>ed to extreme habitats. By contrast, they have a<br />

ubiquitous distribution on this planet and occur <strong>in</strong> significant numbers <strong>in</strong><br />

common environments such as soils, mar<strong>in</strong>e plankton and sediments as well<br />

as <strong>in</strong> the deep subsurface (DeLong, 1998; Schleper et al., 2005). However,<br />

s<strong>in</strong>ce their <strong>in</strong>itial discovery, it took over a decade before any aspect of the<br />

physiology or ecological role of moderate, aerobic archaea could be determ<strong>in</strong>ed.<br />

Only very recently, metagenomic and cultivation studies have<br />

provided evidence that moderate archaea of terrestrial and mar<strong>in</strong>e environments<br />

are capable of ammonia oxidation and thus potentially represent<br />

important players <strong>in</strong> the global nitrogen cycle.<br />

Nitrification, the biological conversion of ammonia to nitrate via nitrite, is<br />

a central component of the natural nitrogen cycle (Prosser, 1989; Kowalchuk<br />

and Stephen, 2001). It is a two-step, aerobic, microbially mediated process,<br />

with ammonia first oxidised to nitrite by ammonia-oxidis<strong>in</strong>g microorganisms,


4 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

and nitrite subsequently oxidised to nitrate by nitrite-oxidis<strong>in</strong>g microorganisms.<br />

The first step is considered to be rate limit<strong>in</strong>g for this process<br />

(Kowalchuk and Stephen, 2001). Nitrification ensures the conversion of<br />

ammonia (derived from organic nitrogen dur<strong>in</strong>g decomposition and m<strong>in</strong>eralisation<br />

of biomass) <strong>in</strong>to the oxidised and more soluble form of nitrate, and<br />

provides the substrate for denitrification, which returns nitrogen back to the<br />

atmosphere. Nitrate is the preferred substrate of plants and aerobic microorganisms.<br />

However, the consequences of nitrification for human activities<br />

are also considerable. The process is used <strong>in</strong> wastewater treatment plants to<br />

remove urea and ammonia from sewage. In agricultural soils, the oxidation<br />

of ammonia to nitrate <strong>in</strong>creases the availability of nitrogen for plants, but it<br />

also has negative consequences, because this results <strong>in</strong> loss of vast amounts of<br />

nitrogen fertiliser from agricultural land by leach<strong>in</strong>g of the more soluble<br />

nitrate, result<strong>in</strong>g <strong>in</strong> groundwater pollution. Ammonia oxidisers have a further<br />

substantial environmental impact as contributors to greenhouse gas emissions<br />

via both ammonia oxidation directly as well as nitrifier-denitrification<br />

mechanisms (Wrage et al., 2001).<br />

S<strong>in</strong>ce the recognition of ammonia and nitrite-oxidis<strong>in</strong>g bacteria by Percy<br />

Faraday Frankland and Sergei W<strong>in</strong>ogradsky and others over 100 years ago,<br />

only proteobacteria of the beta- and gamma-subdivisions were considered as<br />

capable of perform<strong>in</strong>g aerobic ammonia oxidation (Purkhold et al., 2000).<br />

Here, we summarise the current knowledge of the recently discovered<br />

ammonia-oxidis<strong>in</strong>g archaea (AOA), their physiology, genomic potential<br />

and distribution and activity <strong>in</strong> various environments.<br />

2. DISCOVERY OF ARCHAEA IN MODERATE AEROBIC<br />

HABITATS<br />

Archaea <strong>in</strong> moderate aerobic habitats were first recognised by Fuhrman et al.,<br />

1992Fuhrman and colleagues (1992) and DeLong (1992), based on 16S rRNA<br />

gene surveys of mar<strong>in</strong>e environments. They were <strong>in</strong>itially grouped <strong>in</strong>to three<br />

previously undetected l<strong>in</strong>eages that were termed Group I, affiliated to the<br />

k<strong>in</strong>gdom of Crenarchaeota, and Groups II and III with<strong>in</strong> the k<strong>in</strong>gdom<br />

Euryarchaeota (DeLong, 1992) (Fig. 1a). In particular, organisms with<strong>in</strong><br />

Group I (a l<strong>in</strong>eage dist<strong>in</strong>ct from, but specifically associated with, cultured<br />

hyperthermophilic organisms) were found <strong>in</strong> many moderate habitats <strong>in</strong>clud<strong>in</strong>g<br />

soils (B<strong>in</strong>trim et al., 1997; Buckley et al., 1998; Sandaa et al., 1999; Jurgens<br />

et al., 2000; Simon et al., 2000; Ochsenreiter et al.,2003), the ocean’s plankton<br />

(DeLong, 1992; Fuhrman et al., 1992), estuaries (Crump and Baross, 2000),


[(Figure_1)TD$FIG]<br />

Figure 1 (a) Phylogenetic relationship between various archaeal 16S rRNA gene-def<strong>in</strong>ed l<strong>in</strong>eages, <strong>in</strong>clud<strong>in</strong>g sequences from<br />

cultivated organisms and environmental samples. Groups 1, 2 and 3 represent l<strong>in</strong>eages which were orig<strong>in</strong>ally discovered <strong>in</strong><br />

planktonic mar<strong>in</strong>e habitats, with Group 1 sequences now recovered <strong>in</strong> nearly all terrestrial and aquatic habitats. (b) Phylogenetic<br />

relationships of Group I archaea. Black triangles represent groups <strong>in</strong> which amoA genes have been discovered (adapted from<br />

Prosser and Nicol, 2008).<br />

AMMONIA-OXIDISING ARCHAEA 5


6 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

mar<strong>in</strong>e and freshwater sediments (MacGregor et al., 1997;Schleperet al.,<br />

1997; Vetriani et al.,1998;Keoughet al.,2003), but also <strong>in</strong> the deep subsurface<br />

(Takai et al., 2001). Extensive surveys of 16S rRNA gene sequences from<br />

mar<strong>in</strong>e and soil samples revealed that Group I Crenarchaeota can be separated<br />

<strong>in</strong>to a number of dist<strong>in</strong>ct clades, with the majority of soil and mar<strong>in</strong>e<br />

sequences placed with<strong>in</strong> two of these, referred to as Group 1.1a and 1.1b<br />

l<strong>in</strong>eages, respectively (Fig. 1b). While aspects of the physiology and energy<br />

metabolism of these organisms rema<strong>in</strong>ed unknown for a long time, some<br />

<strong>in</strong>itial <strong>in</strong>direct <strong>in</strong>sights <strong>in</strong>to the carbon metabolism of mar<strong>in</strong>e archaea were<br />

obta<strong>in</strong>ed us<strong>in</strong>g stable isotope, microautoradiography or natural radiocarbon<br />

analyses. They <strong>in</strong>dicated that both modes of carbon assimilation occurred<br />

with<strong>in</strong> mar<strong>in</strong>e archaea, that is autotrophy (us<strong>in</strong>g <strong>in</strong>organic carbon as a nutrient<br />

source) (e.g. Kuypers et al., 2001; Pearson et al., 2001; Wuchter et al.,2003)<br />

and heterotrophy (us<strong>in</strong>g organic carbon compounds as nutrients) (Ouverney<br />

and Fuhrman, 2000; Herndl et al., 2005; Ingalls et al., 2006;Teiraet al., 2006).<br />

3. FIRST INSIGHTS INTO THE PHYSIOLOGY<br />

OF AMMONIA-OXIDISING ARCHAEA<br />

The first <strong>in</strong>sight <strong>in</strong>to a specific energy metabolism of Group I archaea<br />

stemmed from a fosmid clone derived from a soil metagenomic library<br />

(Treusch and Schleper, 2004; Treusch et al., 2004a,b, 2005). It conta<strong>in</strong>ed an<br />

<strong>in</strong>sert of about 43 kb. Based on 16S and 23S rRNA genes, clone ‘54d9’ was<br />

identified as belong<strong>in</strong>g to the Group 1.1b l<strong>in</strong>eage (Fig. 2, deposited <strong>in</strong><br />

GenBank, February 2004). In addition, it conta<strong>in</strong>ed homologues to bacterial<br />

genes <strong>in</strong>volved <strong>in</strong> nitrogen cycl<strong>in</strong>g. Specifically, it conta<strong>in</strong>ed two open<br />

read<strong>in</strong>g frames (ORFs) cod<strong>in</strong>g for putative alpha and beta subunits<br />

(AmoA and AmoB, respectively) of an ammonia monooxygenase<br />

(AMO) as well as a gene whose product was highly similar to copperdependent<br />

nitrite reductases (NirK) (Treusch et al., 2005). An <strong>in</strong> silico<br />

comparison to environmental sequences deposited <strong>in</strong> public databases<br />

showed that the soil-derived archaeal amoA andamoB genes were highly<br />

similar to archaea-associated scaffolds from the whole-genome shotgun<br />

(WGS) sequenc<strong>in</strong>g project of the Sargasso Sea (Venter et al., 2004;<br />

Schleper et al., 2005). Additionally, the genomic fragments from mar<strong>in</strong>e<br />

archaea assembled <strong>in</strong> the Sargasso Sea project conta<strong>in</strong>ed genes cod<strong>in</strong>g for<br />

the C-subunit of an AMO, apparently organised <strong>in</strong> a cluster together with<br />

amoA andamoB <strong>in</strong> a BCA gene order and contrasted with the CAB<br />

arrangement found <strong>in</strong> ammonia-oxidis<strong>in</strong>g bacteria (AOB) (Nicol and


[(Figure_2)TD$FIG]<br />

Figure 2 Schematic diagram show<strong>in</strong>g predicted ORFs on the 43 kb soil fosmid 54d9, some of which are potentially <strong>in</strong>volved <strong>in</strong><br />

nitrogen transformations (amoA and amoB: genes for potential subunits of ammonia monooxygenase; nirK for nitrite reductase gene,<br />

ORF38 conserved <strong>in</strong> amo clusters) (Treusch et al., 2005). Homologues present <strong>in</strong> scaffolds assembled from the Sargasso Sea sequenc<strong>in</strong>g<br />

project (Venter et al., 2004) presented underneath. (Adapted from Schleper et al. (2005), with permission.)<br />

AMMONIA-OXIDISING ARCHAEA 7


8 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

[(Figure_3)TD$FIG]<br />

Figure 3 Maximum-likelihood tree of derived am<strong>in</strong>o acid sequences show<strong>in</strong>g the<br />

phylogenetic relationship of ammonia monooxygenases and particulate methane<br />

monooxygenases (AMO and pMMO respectively) of bacteria and archaea. The<br />

phylogenetic tree is based on 156 unambiguously aligned positions.<br />

Schleper, 2006). Sequence comparison of the soil- and mar<strong>in</strong>e-derived<br />

archaeal AmoA sequences to the alpha subunits of the bacterial AMO<br />

and the particulate methane monooxygenase (pMMO) from bacterial methane<br />

oxidisers <strong>in</strong>dicated that they were quite dist<strong>in</strong>ct (Fig. 3), with only about<br />

40% similarity ( 25% identity) at the am<strong>in</strong>o acid level. In contrast, the<br />

similarity between the two related prote<strong>in</strong>s <strong>in</strong> AMO and pMMO <strong>in</strong> bacteria<br />

is much higher with up to 74% ( 50% identity). Furthermore, the putative<br />

amo/pmo genes of archaea were considerably shorter than those of their<br />

bacterial homologues. A comparison with structural data obta<strong>in</strong>ed of the<br />

pMMO of Methylococcus capsulatus (Lieberman and Rosenzweig, 2005)<br />

brought further evidence that the respective archaeal ORFs <strong>in</strong>deed coded<br />

for subunits of an AMO/pMMO-related prote<strong>in</strong>, as many am<strong>in</strong>o acid


AMMONIA-OXIDISING ARCHAEA 9<br />

[(Figure_4)TD$FIG]<br />

Figure 4 Aerobic ammonia oxidation dur<strong>in</strong>g nitrification. The oxidation of<br />

ammonia is performed by ammonia oxidisers (archaea and bacteria), and the nitrite<br />

produced is subsequently oxidised by nitrite-oxidis<strong>in</strong>g bacteria. In bacteria, ammonia<br />

is oxidised to nitrite via the <strong>in</strong>termediate hydroxylam<strong>in</strong>e and the enzyme hydroxylam<strong>in</strong>e<br />

oxidoreductase (HAO). No HAO homologue has yet been identified <strong>in</strong><br />

archaea, and oxidation of ammonia to nitrite may occur via a different biochemical<br />

pathway (see hypotheses Fig. 7).<br />

residues potentially <strong>in</strong>volved <strong>in</strong> copper b<strong>in</strong>d<strong>in</strong>g metal centres were also found<br />

to be conserved <strong>in</strong> the archaeal variants (Treusch et al., 2005). Moreover,<br />

microcosm experiments with soil slurries were conducted to study transcription<br />

of the archaeal amoA genes. Upon <strong>in</strong>cubation with NH4 + a significant<br />

<strong>in</strong>crease <strong>in</strong> transcriptional activity of the putative amoA gene was observed,<br />

suggest<strong>in</strong>g that the amo-like genes <strong>in</strong>deed coded for a monooxygenase<br />

<strong>in</strong>volved <strong>in</strong> the oxidation of ammonia (Treusch et al., 2005). The ultimate<br />

support for this hypothesis came from the cultivation of an autotrophic<br />

AOA, Nitrosopumilus maritimus, that conta<strong>in</strong>s amoA genes highly related<br />

to those found on the fosmid clone 54d9 (K€onneke et al., 2005). These<br />

f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicated that archaea could be <strong>in</strong>volved <strong>in</strong> ammonia oxidation<br />

(Fig. 4) <strong>in</strong> many terrestrial and mar<strong>in</strong>e environments because 16S rRNA<br />

and amoA gene sequences related to those of N. maritimus and 54d9 were<br />

found <strong>in</strong> many habitats around the planet.<br />

4. MODEL ORGANISMS OF AMMONIA-OXIDISING ARCHAEA<br />

Chemolithoautotrophic ammonia oxidisers, bacteria or archaea, are notoriously<br />

difficult to grow and ma<strong>in</strong>ta<strong>in</strong> <strong>in</strong> (pure) laboratory cultures. This is also<br />

illustrated by the fact that stra<strong>in</strong> collections of AOB are only kept <strong>in</strong> a few<br />

specialised laboratories (J. Prosser, University of Aberdeen, pers. comm.).<br />

The isolation of the first AOA, Candidatus N. maritimus [nitrosus (lat<strong>in</strong>):


10 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

nitrous; pumilus (Lat<strong>in</strong>): dwarf; maritimus (Lat<strong>in</strong>): of the sea] (K€onneke et al.,<br />

2005) has therefore represented a breakthrough for the characterisation of<br />

AOA, provid<strong>in</strong>g the first <strong>in</strong>sights <strong>in</strong>to the general physiology and specific<br />

metabolism of these organisms. N. maritimus stra<strong>in</strong> SCM1 was isolated from<br />

a tropical mar<strong>in</strong>e aquarium and grows with a near-stoichiometric conversion<br />

of ammonia <strong>in</strong>to nitrite under aerobic conditions. It grows to a maximum<br />

density of about 1.4 10 7 cells mL 1 at 28 C <strong>in</strong> def<strong>in</strong>ed m<strong>in</strong>eral medium<br />

supplemented with bicarbonate and 500 mM ammonium (K€onneke et al.,<br />

2005), and its growth is <strong>in</strong>hibited when organic compounds are added even <strong>in</strong><br />

low amounts. N. maritimus is a straight, relatively small rod with a diameter<br />

of 0.17–0.22 mm and a length of 0.5–0.9 mm (Fig. 5a). Based on 16S rRNA<br />

gene phylogeny, N. maritimus, like the earlier described sponge symbiont<br />

Cenarchaeum symbiosum (Preston et al., 1996), belongs to the Group 1.1a<br />

l<strong>in</strong>eage of mar<strong>in</strong>e archaea that is found <strong>in</strong> large numbers <strong>in</strong> the open ocean.<br />

Us<strong>in</strong>g the sequence <strong>in</strong>formation from metagenomic studies, K€onneke et al.<br />

(2005) designed primers aga<strong>in</strong>st amoA, amoB and amoC sequences and<br />

were able to amplify the respective homologous genes from N. maritimus.<br />

This analysis provided the direct l<strong>in</strong>k between the metagenomic predictions<br />

and physiological studies. In contrast to AOB, N. maritimus is apparently<br />

adapted to an extremely oligotrophic lifestyle (Martens-Habbena et al.,<br />

2009). It possesses a half-saturation constant (Km = 133 nM total ammonium)<br />

and a substrate threshold (


AMMONIA-OXIDISING ARCHAEA 11<br />

Two enrichments of thermophilic AOA have further demonstrated the<br />

capability of archaea to grow autotrophically with ammonia as a sole energy<br />

source. In an enrichment of ammonia-oxidis<strong>in</strong>g microorganisms from a<br />

microbial mat from the Siberian Garga hot spr<strong>in</strong>g (Lebedeva et al., 2005),<br />

cells of Candidatus Nitrososphaera gargensis [nitrosus (Lat<strong>in</strong>): nitrous;<br />

sphaera (Lat<strong>in</strong>): spherical; gargensis: from Garga spr<strong>in</strong>g] (Hatzenpichler<br />

et al., 2008) were visualised us<strong>in</strong>g CARD-FISH and simultaneous <strong>in</strong>corporation<br />

of radioactive labelled bicarbonate <strong>in</strong>dicat<strong>in</strong>g ammonia-dependent<br />

autotrophic growth at concentrations of 0.14 and 0.79 mM NH4 + .<br />

However, at higher concentrations, around 3 mM ammonium, or at lower<br />

concentrations but <strong>in</strong> the presence of allylthiourea, a potent <strong>in</strong>hibitor of<br />

ammonia oxidation, this <strong>in</strong>corporation was considerably reduced.<br />

Interest<strong>in</strong>gly, N. gargensis belongs to the l<strong>in</strong>eage of AOA dist<strong>in</strong>ct from<br />

mar<strong>in</strong>e AOA, the Group 1.1b l<strong>in</strong>eage, which is mostly represented by environmental<br />

sequences from soils and other terrestrial habitats (Ochsenreiter<br />

et al., 2003; Nicol et al., 2006). It is therefore the first representative of this<br />

second major l<strong>in</strong>eage which has been obta<strong>in</strong>ed <strong>in</strong> laboratory enrichments.<br />

The thermophilic AOA Candidatus Nitrosocaldus yellowstonii [nitrosus<br />

(Lat<strong>in</strong>): nitrous; caldus (Lat<strong>in</strong>): hot; yellowstonii: from Yellowstone] (de la<br />

Torre et al., 2008) obta<strong>in</strong>ed from a hot spr<strong>in</strong>g located <strong>in</strong> the Yellowstone<br />

National Park has an even higher optimal growth temperature between 65<br />

and 72 C, aga<strong>in</strong> grow<strong>in</strong>g with a stoichiometric conversion of ammonia to<br />

nitrite. This organism was particularly <strong>in</strong>terest<strong>in</strong>g as it not only extended the<br />

temperature limit for cultivated ammonia oxidisers, but broadened the<br />

known 16S rRNA and amoA gene diversity associated with ammonia oxidation<br />

(Table 1, Fig. 3).<br />

C. symbiosum [cen from Greek ka<strong>in</strong>os/ko<strong>in</strong>os: recent/common refers to<br />

the recent (derived from thermophiles) and widespread (common) occurrence<br />

of this group of archaea; (Preston et al., 1996)] was detected by 16S<br />

rRNA-based PCR surveys among the complex microbial communities<br />

with<strong>in</strong> the tissues of the mar<strong>in</strong>e sponge Ax<strong>in</strong>ella mexicana (Preston et al.,<br />

1996). S<strong>in</strong>ce it can be ‘quasi’-cultivated <strong>in</strong> the laboratory by ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g it <strong>in</strong><br />

stable association with its host under controlled conditions, it was the first<br />

described mesophilic crenarchaeon. The Cenarchaeum/Ax<strong>in</strong>ella association<br />

provided the first tractable system for the study of mar<strong>in</strong>e archaea and gave<br />

access to relatively large amounts of biomass of this species, allow<strong>in</strong>g the<br />

study of lipids, genomic DNA and cell structure by microscopy. As it is<br />

ma<strong>in</strong>ta<strong>in</strong>ed with<strong>in</strong> the tissues of the sponge and cannot be cultivated <strong>in</strong>dependently,<br />

ammonia oxidation by C. symbiosum has not been proven<br />

directly. However, the genome sequence of this organism, the presence of<br />

archaeal amoA genes and measured ammonia oxidation activity <strong>in</strong> other


Table 1 Ammonia-oxidis<strong>in</strong>g archaea <strong>in</strong> laboratory cultures or enrichments.<br />

Characteristics Nitrosopumilus<br />

maritimus<br />

Cenarchaeum<br />

symbiosum<br />

Nitrosocaldus<br />

yellowstonii<br />

Nitrososphaera<br />

gargensis<br />

Orig<strong>in</strong> Tropical mar<strong>in</strong>e Mar<strong>in</strong>e sponge symbiont Terrestrial hot<br />

Terrestrial warm spr<strong>in</strong>g<br />

aquarium<br />

spr<strong>in</strong>g<br />

Culture Pure laboratory Inside Ax<strong>in</strong>ella mexicana Laboratory<br />

Laboratory enrichment<br />

culture<br />

(aquarium)<br />

enrichment<br />

Affiliation Group 1.1a<br />

Group 1.1a<br />

HWCGIII Group 1.1b<br />

Thaumarchaeota Thaumarchaeota<br />

Thaumarchaeota<br />

Growth<br />

temperature<br />

28 C 10 C(8–18 C) 72 C (65–74 C) 46 C<br />

Shape Rod Curved rod Spherical Spherical, coccoid<br />

Genome 1.65 Mb 2.05 Mb n.d. >2.6 Mb, draft<br />

Reference K€onneke et al. (2005) Preston et al. (1996) de la Torre et al. (2008) Hatzenpichler et al. (2008),<br />

Spang et al. (2010)<br />

12 CHRISTA SCHLEPER AND GRAEME W. NICOL


AMMONIA-OXIDISING ARCHAEA 13<br />

mar<strong>in</strong>e sponges (Taylor et al., 2007; Bayer et al., 2008; Steger et al., 2008;<br />

Hoffmann et al., 2009) strongly support the hypothesis that C. symbiosum,<br />

like its close free-liv<strong>in</strong>g relatives <strong>in</strong> mar<strong>in</strong>e water, is capable of ammonia<br />

oxidation.<br />

5. MEMBRANE LIPIDS OF AMMONIA-OXIDISING ARCHAEA<br />

S<strong>in</strong>ce their discovery as a separate doma<strong>in</strong>, dist<strong>in</strong>ct from the eukaryotes (or<br />

Eukarya) and bacteria based on 16S rRNA gene phylogenies (Woese and<br />

Fox, 1977), the archaea have been found to possess a number of cellular and<br />

molecular features that clearly dist<strong>in</strong>guishes them from the other two<br />

doma<strong>in</strong>s. The best dist<strong>in</strong>guish<strong>in</strong>g feature is the membrane lipids of archaea,<br />

which are fundamentally different from all representatives <strong>in</strong> the other two<br />

doma<strong>in</strong>s (Brown and Doolittle, 1997). The phospholipids of archaea are<br />

glycerol–ether lipids <strong>in</strong> which isoprenoid side cha<strong>in</strong>s, not fatty acids like <strong>in</strong><br />

bacteria or Eukarya, are l<strong>in</strong>ked via an ether bond (<strong>in</strong>stead of an ester bond)<br />

to a glycerol moiety, and have a stereochemistry that is reverse of that <strong>in</strong><br />

bacteria and Eukarya. Furthermore, the C20-isoprenoid side cha<strong>in</strong>s are often<br />

l<strong>in</strong>ked to each other, which leads to the formation of a lipid monolayer with<br />

C 40 side cha<strong>in</strong>s, <strong>in</strong>stead of the typical membrane bilayer found <strong>in</strong> other<br />

organisms. Thus, the core, apolar component of archaeal cellular membrane<br />

lipids (<strong>in</strong> particular those of Crenarchaeota) are dom<strong>in</strong>ated by glycerol<br />

dialkyl glycerol tetraethers (GDGTs, see Fig. 6). The side cha<strong>in</strong>s may conta<strong>in</strong><br />

multiple cyclopentane moieties (see Fig. 5), whose numbers have been<br />

shown to <strong>in</strong>crease <strong>in</strong> response to an <strong>in</strong>crease <strong>in</strong> growth temperature of<br />

Archaeoglobus species (Lai et al., 2008). Interest<strong>in</strong>gly, a specific structure,<br />

a unique GDGT with a cyclohexane moiety <strong>in</strong> addition to the four cyclopentane<br />

r<strong>in</strong>gs (Fig. 5, bottom), was found <strong>in</strong> natural samples from moderate<br />

environments as well as <strong>in</strong> the mar<strong>in</strong>e sponge A. mexicana, which harbours<br />

C. symbiosum, a member of the mar<strong>in</strong>e Group 1.1a (Damste et al., 2002). It<br />

was thus termed ‘crenarchaeol’, although this lipid compound had never<br />

been found <strong>in</strong> cultivated hyperthermophilic Crenarchaeota and seems to<br />

be present <strong>in</strong> ‘mesophilic’ archaea only. In support of this, crenarchaeol<br />

and the other GDGT compounds have also been isolated from the laboratory<br />

cultures of N. maritimus (Schouten et al., 2008). In addition, with the<br />

f<strong>in</strong>d<strong>in</strong>g that the moderate thermophile N. gargensis (Pitcher et al., 2009) and<br />

the extremely thermophilic N. yellowstonii (de la Torre et al., 2008) also<br />

conta<strong>in</strong> crenarchaeol, and with the recovery of crenarchaeol from various<br />

hot spr<strong>in</strong>gs around the world (Pearson et al., 2004; Zhang et al., 2006;


14 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

[(Figure_6)TD$FIG]<br />

Figure 6 (a) Isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs) of<br />

archaea, <strong>in</strong>clud<strong>in</strong>g crenarchaeol that is so far exclusively found <strong>in</strong> cultured<br />

Thaumarchaeota and <strong>in</strong> many natural environments. (b) Correlation between<br />

GDGT abundance and AmoA gene copies (eight different soils types). (Adapted<br />

from data obta<strong>in</strong>ed by Le<strong>in</strong><strong>in</strong>ger et al. (2006), with permission.)<br />

Reigstad et al., 2008; Pitcher et al., 2009), it is now evident that this compound<br />

is not an <strong>in</strong>dicator for mesophilic archaea per se, but rather for certa<strong>in</strong><br />

l<strong>in</strong>eages of archaea to which ammonia oxidisers are affiliated (Pitcher<br />

et al., 2009). At least <strong>in</strong> some environments, crenarchaeol could be a suitable<br />

biomarker for AOA (Wuchter et al., 2004; Coolen et al., 2007; Schouten et al.,<br />

2007). For example, <strong>in</strong> 8 out of 12 <strong>in</strong>vestigated soils, the abundance of<br />

crenarchaeol (as well as the abundance of total GDGTs) correlated significantly<br />

with the abundance of amoA genes (Le<strong>in</strong><strong>in</strong>ger et al., 2006). Only the<br />

analysis of more isolates of AOA and of other more remotely related<br />

l<strong>in</strong>eages of archaea will help to clarify whether this lipid compound is<br />

restricted to ammonia oxidisers.<br />

It is <strong>in</strong>terest<strong>in</strong>g to note <strong>in</strong> this context that the relative abundance of<br />

crenarchaeol <strong>in</strong> the different laboratory cultures of AOA seems to vary quite<br />

considerably. The GDGTs of N. gargensis (grown at 46 C) consisted ma<strong>in</strong>ly<br />

of crenarchaeol, its regioisomer and a novel GDGT, while crenarchaeol was<br />

a m<strong>in</strong>or compound <strong>in</strong> the other organisms. Vary<strong>in</strong>g relative amounts of the<br />

crenarchaeol or its regioisomer <strong>in</strong> different l<strong>in</strong>eages of AOA could potentially<br />

confuse the TEX86 <strong>in</strong>dex that is used for paleothermometry, that is for<br />

reconstruct<strong>in</strong>g average temperatures experienced by plankton <strong>in</strong> earlier


AMMONIA-OXIDISING ARCHAEA 15<br />

times by measur<strong>in</strong>g the relative composition of sedimentary archaeal membrane<br />

lipids (Wuchter et al., 2004).<br />

6. GENOMES AND METAGENOMES<br />

OF AMMONIA-OXIDISING ARCHAEA<br />

Inspired by the rapid advances <strong>in</strong> genomic techniques applied to cultivated<br />

microorganisms, Ste<strong>in</strong> et al. (1996) used a BAC-derived fosmid vector to<br />

prepare a large-<strong>in</strong>sert library from mar<strong>in</strong>e water of the North-Eastern Pacific<br />

<strong>in</strong> order to characterise mar<strong>in</strong>e planktonic archaea. A 38.5-kb genomic<br />

fragment of an uncultivated mesophilic Crenarchaeota was identified with<strong>in</strong><br />

3552 clones us<strong>in</strong>g archaea-specific 16S rRNA gene probes. This study was<br />

the beg<strong>in</strong>n<strong>in</strong>g of a novel and now explod<strong>in</strong>g field of microbial environmental<br />

genomics or ‘metagenomics’. Large genome fragments are cloned <strong>in</strong>to bacterial<br />

artificial chromosomes (BACs) or, more commonly, BAC-derived<br />

fosmid vectors (a hybrid of a cosmid and BAC) which are archived <strong>in</strong><br />

Escherichia coli clone libraries (Handelsman, 2004; Treusch and Schleper,<br />

2005). Alternatively, large-scale sequenc<strong>in</strong>g us<strong>in</strong>g a whole-genome-shotgun<br />

approach allows the generation of small sequence reads from environmental<br />

samples that can be assembled <strong>in</strong>to larger fragments <strong>in</strong> silico (Venter et al.,<br />

2004). These techniques are now <strong>in</strong>creas<strong>in</strong>gly used for the characterisation of<br />

microbial communities, particularly s<strong>in</strong>ce novel deep sequenc<strong>in</strong>g technologies<br />

allow <strong>in</strong>creas<strong>in</strong>gly cheaper and high-throughput analysis. The first complete<br />

genome of a potential AOA (C. symbiosum) was also assembled from a<br />

metagenomic library, and now with cultivated or enriched organisms available,<br />

complete reference genomes of the first model organisms are easily<br />

obta<strong>in</strong>ed. While the complete genome sequences will be <strong>in</strong>valuable for the<br />

reconstruction of full metabolic pathways, the metagenomic datasets of<br />

AOA are of great importance to study the distribution and the genomic<br />

potential of the organisms <strong>in</strong> the various environments.<br />

6.1. Metagenomic Studies of Uncultivated Ammonia Oxidisers<br />

Several metagenomic libraries from microorganisms associated with a<br />

mar<strong>in</strong>e sponge, mar<strong>in</strong>e plankton or soil have been produced to characterise<br />

the genomic content of Group I archaea (Schleper et al., 1998; Beja et al.,<br />

2000, 2002; Quaiser et al., 2002; López-Garcıa et al., 2004; Treusch et al.,<br />

2004). Soil fosmid 54d9 was detected <strong>in</strong> such a library and led to the discovery<br />

of amo-related genes <strong>in</strong> archaea (Treusch et al., 2005). Comparative analyses


16 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

of metagenomic clones from the mar<strong>in</strong>e plankton <strong>in</strong>dicated the conservation<br />

of gene order around the 16S rRNA gene, thus confirm<strong>in</strong>g the close relationship<br />

of the planktonic archaea, even <strong>in</strong> stra<strong>in</strong>s from different oceanic<br />

prov<strong>in</strong>ces (Beja et al., 2002; López-Garcıa et al., 2004). Conversely, considerable<br />

genomic variation was dissected, <strong>in</strong>clud<strong>in</strong>g microheterogeneity, <strong>in</strong><br />

prote<strong>in</strong>-encod<strong>in</strong>g regions and <strong>in</strong>tergenic spacers, when genome fragments<br />

with otherwise identical or almost identical 16S rRNA genes were compared<br />

from the same DNA library (Schleper et al., 1998; Beja et al., 2002). Given the<br />

abundance and ubiquity of mar<strong>in</strong>e planktonic archaea, it is plausible that<br />

large numbers of archaeal genes would be detected <strong>in</strong> global random<br />

sequenc<strong>in</strong>g surveys of DNA obta<strong>in</strong>ed from filtered waters (Venter et al.,<br />

2004; Nealson and Venter, 2007). The huge databases from BAC and fosmid<br />

libraries (Treusch et al., 2004; Mart<strong>in</strong>-Cuadrado et al., 2008; Konstant<strong>in</strong>idis<br />

et al., 2009) as well as large-scale shotgun sequenc<strong>in</strong>g efforts are a valuable<br />

resource for dissect<strong>in</strong>g the diversity and distribution of AOA, particularly<br />

s<strong>in</strong>ce the first genomes of cultivated isolates are now available that allow us<br />

to test hypotheses on gene functions and metabolisms experimentally.<br />

6.2. Predictions from Complete Genome Sequences of Two<br />

Mar<strong>in</strong>e Archaea<br />

Although C. symbiosum has not been cultivated or completely physically<br />

separated from the tissues of its host (the mar<strong>in</strong>e sponge A. mexicana) and<br />

from the co-exist<strong>in</strong>g bacteria, cell fractions that were enriched with the<br />

archaeon were used for the construction of large-<strong>in</strong>sert genomic libraries<br />

(Schleper et al., 1997, 1998), facilitat<strong>in</strong>g the isolation of genome fragments<br />

and lead<strong>in</strong>g to a genome sequenc<strong>in</strong>g project that was completed <strong>in</strong> 2006<br />

(Hallam et al., 2006a, 2006bHallam et al., 2006a,b). The second genome from<br />

N. maritimus, the first cultivated isolate of mar<strong>in</strong>e AOA, has recently been<br />

completed (Walker et al., 2010).<br />

The C. symbiosum genome has a considerably higher G + C content<br />

(>55%) (Schleper et al., 1998; Hallam et al., 2006a) than its relatives <strong>in</strong> the<br />

mar<strong>in</strong>e plankton (approximately 34%), which might reflect adaptation to the<br />

lifestyle <strong>in</strong> the metazoan host, rather than a large evolutionary distance.<br />

Despite this difference, however, the two organisms show high overlap <strong>in</strong><br />

gene content with each other (approx. 1200 genes) and with mar<strong>in</strong>e metagenomes,<br />

<strong>in</strong>dicat<strong>in</strong>g that they can serve as suitable models to study the<br />

globally distributed and abundant mar<strong>in</strong>e planktonic archaea (Walker<br />

et al., 2010). With a few m<strong>in</strong>or exceptions, both genomes share similar gene<br />

content with respect to potential energy metabolism and carbon fixation


AMMONIA-OXIDISING ARCHAEA 17<br />

pathways, both of which seem to be clearly different from known bacterial<br />

ammonia oxidisers. AOA conta<strong>in</strong> amoA, B and C genes for the three subunits<br />

of a potential archaeal AMO, but no homologous genes of the bacterial<br />

hydroxylam<strong>in</strong>e oxidoreductase (HAO) complex that catalyses the second<br />

step of this process <strong>in</strong> bacteria, that is the oxidation of hydroxylam<strong>in</strong>e to<br />

nitrite (Hallam et al., 2006b; Walker et al., 2010). In AOB, this complex<br />

delivers electrons back to the AMO and to an electron transport cha<strong>in</strong> with<br />

cytochrome c prote<strong>in</strong>s (c 554 and c 552) required for electron flow to ubiqu<strong>in</strong>one<br />

(Fig. 6). These cytochromes are also not present <strong>in</strong> AOA, but they do<br />

possess numerous copper-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s such as multicopper oxidases,<br />

small blue copper-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s (Hallam et al., 2006a; Bartossek et al.,<br />

2010; Walker et al., 2010) as well as potential thiol-disulphide oxidoreductases,<br />

which may functionally replace cytochromes (Walker et al., 2010). In<br />

pr<strong>in</strong>ciple, it appears that the energy metabolism of AOA relies on copperrather<br />

than on iron-conta<strong>in</strong><strong>in</strong>g electron transfer systems (Hallam et al.,<br />

2006a; Walker et al., 2010).<br />

While C. symbiosum (like mar<strong>in</strong>e metagenomes) conta<strong>in</strong>s genes for urease,<br />

<strong>in</strong>dicat<strong>in</strong>g a potential broader substrate spectrum, N. maritimus does<br />

not. Both organisms also do not seem to conta<strong>in</strong> a homologue of nitric oxide<br />

reductase, that is part of the denitrification pathway of AOB, reduc<strong>in</strong>g nitric<br />

oxide (NO) to nitrous oxide (N 2O). N. maritimus (Walker et al., 2010), as well<br />

as soil archaea (Treusch et al., 2004a; Bartossek et al., 2010), does, however,<br />

conta<strong>in</strong> homologues of nitrite reductase, the first enzyme <strong>in</strong>volved <strong>in</strong> dentrification,<br />

that (<strong>in</strong> bacteria) reduces nitrite, the product of ammonia oxidation,<br />

to nitric oxide. In total, the genetic makeup of archaeal ammonia<br />

oxidisers <strong>in</strong>dicates that the biochemistry underly<strong>in</strong>g ammonia oxidation to<br />

nitrite could be fundamentally different from that of AOB. Even the key<br />

metabolic enzyme, AMO, shows only little sequence similarity to bacterial<br />

AMO and pMMOs. It is possible that AOA use the same pathway as AOB,<br />

that is oxidis<strong>in</strong>g ammonia via hydroxylam<strong>in</strong>e to nitrite, but with different<br />

enzymes. Alternatively, a fundamentally different pathway may be operat<strong>in</strong>g.<br />

Mart<strong>in</strong> Klotz (University of Louisville, Kentucky, USA) has proposed<br />

an alternative pathway for AOA that does not <strong>in</strong>volve hydroxylam<strong>in</strong>e as an<br />

<strong>in</strong>termediate, but rather nitroxyl (HNO) (see Walker et al., 2010)(Fig. 7). A<br />

nitroxyl oxidoreductase could then operate to oxidise nitroxyl to nitrite<br />

(Walker et al., 2010). In his extended model, Klotz proposes that the activation<br />

of AMO could be achieved by recycl<strong>in</strong>g NO, the product of nitrite<br />

reduction via nitrite reductase (see Fig. 7). The activation of O 2 by NO would<br />

then result <strong>in</strong> the production of N2. If this or a similar pathway for ammonia<br />

oxidation is <strong>in</strong>deed operat<strong>in</strong>g, it would <strong>in</strong>dicate most probably that AOA do<br />

not produce the greenhouse gas N2O, as do their bacterial counterparts. It is


18 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

[(Figure_7)TD$FIG]<br />

Figure 7 Proposed pathways of nitrogen, oxygen and electron flow <strong>in</strong> the qu<strong>in</strong>one-oxidis<strong>in</strong>g<br />

and -reduc<strong>in</strong>g branches of the electron transport cha<strong>in</strong>s (ETC) <strong>in</strong><br />

ammonia-oxidis<strong>in</strong>g bacteria (AOB) and archaea (AOA). (a) Basic <strong>in</strong>ventory encoded<br />

<strong>in</strong> all AOB. Ammonia monooxygenase (AMO); N-oxide-Ubiqu<strong>in</strong>one Redox Module<br />

(NURM) consist<strong>in</strong>g of hydroxylam<strong>in</strong>e oxidoreductase (HAO), cytochrome c554 and<br />

qu<strong>in</strong>one reductase cM552; cytochrome c552; cytochromes b and c1 (complex III), with<br />

several proton-pump<strong>in</strong>g oxygen-reduc<strong>in</strong>g heme-copper oxidases (complex IV) and<br />

several NO-reduc<strong>in</strong>g heme-copper oxidases (HCO-NOR) <strong>in</strong> the membrane-associated<br />

branch, and copper-conta<strong>in</strong><strong>in</strong>g nitrite reductase (NirK) and cytochrome c NOreductases<br />

<strong>in</strong> the soluble branch of the ETC, plus bacterial F0F 1-type ATP synthetase.<br />

The question mark <strong>in</strong>dicates that a direct qu<strong>in</strong>ol oxidase function of bacterial AMO/<br />

pMMO has not yet been demonstrated. (b) Basic <strong>in</strong>ventory predicted from genome<br />

sequences <strong>in</strong> AOA. AMO; NURM consist<strong>in</strong>g of nitroxyl oxidoreductase (NxOR) and<br />

plastocyan<strong>in</strong>-doma<strong>in</strong> conta<strong>in</strong><strong>in</strong>g membrane-associated putative qu<strong>in</strong>one reductase<br />

(Pcy); plastocyan<strong>in</strong>s (pcy); cytochrome b and associated plastocyan<strong>in</strong> (complex III)<br />

with several proton-pump<strong>in</strong>g oxygen-reduc<strong>in</strong>g plastocyan<strong>in</strong>-copper oxidases (complex<br />

IV) plus F0F 1-type ATP synthetase <strong>in</strong> the membrane-associated branch.<br />

Copper-conta<strong>in</strong><strong>in</strong>g nitrite reductase (NirK), active <strong>in</strong> the soluble branch of the<br />

ETC, has been identified <strong>in</strong> all AOA genomes with the exception of Cenarchaeum<br />

symbiosum (Bartossek et al., 2010). No <strong>in</strong>ventory encod<strong>in</strong>g cytochrome c and hemecopper<br />

NO-reductases has been identified. The asterisks <strong>in</strong>dicate the need for activation<br />

of oxygen <strong>in</strong> the monooxygenase reaction facilitated by AMO. Because a<br />

qu<strong>in</strong>ol oxidase function of archaeal AMO is not part of the model, it is predicted that<br />

oxygen activation <strong>in</strong> AOA is accomplished by utilis<strong>in</strong>g the NO radical produced <strong>in</strong> the<br />

soluble branch of the ETC. This would produce one-half molecule of d<strong>in</strong>itrogen gas<br />

per oxidised ammonia and <strong>in</strong>troduce AOA as non-classical aerobic denitrifiers. This<br />

chemistry needs to be experimentally tested as <strong>in</strong>dicated by ‘??’ (Figure and legend<br />

k<strong>in</strong>dly provided by Prof. Mart<strong>in</strong> G. Klotz, University of Louisville, USA).


AMMONIA-OXIDISING ARCHAEA 19<br />

<strong>in</strong>terest<strong>in</strong>g to note <strong>in</strong> this context that Bartossek et al. (2010) recently found<br />

variants of genes encod<strong>in</strong>g for copper-dependent nitrite reductases <strong>in</strong> soils<br />

and other environments, <strong>in</strong>dicat<strong>in</strong>g that this enzyme might <strong>in</strong>deed be widely<br />

distributed <strong>in</strong> AOA. Furthermore, transcription of the nitrite reductase<br />

homologue <strong>in</strong> soil archaea was observed even under aerobic (and potentially<br />

ammonia-oxidis<strong>in</strong>g) conditions, rather than under low-oxygen conditions<br />

that favour denitrification (Bartossek et al., 2010). Thus, the copperdependent<br />

nitrite reductase of archaea might <strong>in</strong>deed fulfill a different function<br />

<strong>in</strong> AOA metabolism than is assumed for the bacterial counterpart.<br />

From the genome sequences of the two mar<strong>in</strong>e organisms one can also<br />

deduce a possible pathway for carbon fixation. Whereas autotrophic AOB<br />

fix carbon with the ribulose bisphosphate carboxylase/oxygenase (RubisCO)<br />

<strong>in</strong> the Calv<strong>in</strong>–Bassham–Benson cycle, N. maritimus and C. symbiosum seem<br />

to conta<strong>in</strong> a different pathway, similar to that recently described for the<br />

hyperthermophilic archaeon Metallosphaera sedula (Berg et al., 2007). The<br />

pathway <strong>in</strong>volves the transformation of acetyl-CoA with two bicarbonate<br />

molecules via 3-hydroxyproprionate to succ<strong>in</strong>yl-CoA. This <strong>in</strong>termediate is<br />

reduced to 4-hydroxybutyrate and subsequently converted <strong>in</strong>to two acetyl-<br />

CoA molecules. Key enzymes for this pathway are found <strong>in</strong> both AOA<br />

organisms, such as the biot<strong>in</strong>ylated acetyl-CoA/propionyl-CoA carboxylase,<br />

methylmalonyl-CoA epimerase and mutase and 4-hydroxybutyrate dehydratase,<br />

but some prote<strong>in</strong>s of the M. sedula pathway are also miss<strong>in</strong>g,<br />

<strong>in</strong>dicat<strong>in</strong>g the AOA use a variant of this pathway or may possess nonorthologous<br />

gene replacements (Hallam et al., 2006b; Walker et al., 2010).<br />

While autotrophic growth of N. maritimus and its <strong>in</strong>hibition by organic<br />

compounds has been reported, both AOA conta<strong>in</strong> components of an oxidative<br />

TCA cycle that can potentially be utilised for the consumption of organic<br />

carbon or for the production of <strong>in</strong>termediates for am<strong>in</strong>o acid and cofactor<br />

biosynthesis. Mixotrophic growth has not been shown yet for any of the<br />

cultivated or enriched AOA, but it might well be possible that this growth<br />

mode will be found as more organisms are obta<strong>in</strong>ed <strong>in</strong> laboratory cultures.<br />

6.3. Ammonia Oxidisers: A Dist<strong>in</strong>ct Phylum with<strong>in</strong> the Archaea<br />

Based on 16S rRNA sequence phylogeny, AOA were orig<strong>in</strong>ally placed as a<br />

sister group of the Crenarchaeota (DeLong, 1992; Fuhrman et al., 1992),<br />

suggest<strong>in</strong>g that these archaea might have ancestors <strong>in</strong> hot spr<strong>in</strong>gs and only<br />

later radiated <strong>in</strong>to moderate environments. The AOA have s<strong>in</strong>ce been<br />

referred to as Crenarchaeota <strong>in</strong> all follow<strong>in</strong>g 16S rRNA-based diversity


20 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

studies. Us<strong>in</strong>g a concatenated dataset of 53 ribosomal prote<strong>in</strong>s from C.<br />

symbiosum which are shared by archaea and eukaryotes, Brochier-<br />

Armanet et al. (2008) calculated that ‘moderate Crenarchaeota’ constitute<br />

a separate phylum of the archaea that branches off before the separation of<br />

Crenarchaeota and Euryarchaeota. Includ<strong>in</strong>g the genomic <strong>in</strong>formation of N.<br />

maritimus and N. gargensis (draft genome) <strong>in</strong> this analysis confirmed the<br />

separation of AOA (Spang et al., 2010). The name Thaumarchaeota (from<br />

the Greek word ‘thaumas’ for wonder) was proposed for the new phylum<br />

(Brochier-Armanet et al., 2008).<br />

Several <strong>in</strong>formation process<strong>in</strong>g genes, whose presence or absence is characteristic<br />

for Euryarchaeota and/or Crenarchaeota, show a pattern <strong>in</strong> the<br />

three <strong>in</strong>vestigated Thaumarchaeota genomes that is dist<strong>in</strong>ctive from either of<br />

the two described phyla and this po<strong>in</strong>ts to fundamental differences <strong>in</strong> cellular<br />

processes. Thus, this gene content comparison strongly supports the<br />

Thaumarchaeota proposal (Table 2 and Brochier-Armanet et al., 2008;<br />

Spang et al., 2010). Most notably, Thaumarchaeota possess unsplit RNA<br />

Table 2 Distribution of core <strong>in</strong>formational process<strong>in</strong>g genes <strong>in</strong> the four different<br />

phyla of archaea.<br />

Thaumarchaeota<br />

Euryarchaeota<br />

Crenarchaeota<br />

Ribosomal prote<strong>in</strong>s<br />

r-prote<strong>in</strong> S25e + + +<br />

r-prote<strong>in</strong> S26e + + +<br />

r-prote<strong>in</strong> S30e + + +<br />

r-prote<strong>in</strong> L13e + +<br />

r-prote<strong>in</strong> L14e + (some) + +<br />

r-prote<strong>in</strong> L34e + (some) + +<br />

r-prote<strong>in</strong>s L38e W<br />

r-prote<strong>in</strong> L29p + + +<br />

r-prote<strong>in</strong> Lxa + (most) +<br />

Transcription/RNA polymerase<br />

rpoG (=rpo8) + +<br />

rpoA – s<strong>in</strong>gle ORF + split split +<br />

rpoB – s<strong>in</strong>gle ORF + W split + +<br />

Rpc34 + W +<br />

MBF 1 W + + +<br />

EIF 1 + +<br />

Korarchaeota<br />

(cont<strong>in</strong>ued)


AMMONIA-OXIDISING ARCHAEA 21<br />

Table 2 (cont<strong>in</strong>ued)<br />

Thaumarchaeota<br />

Euryarchaeota<br />

Crenarchaeota<br />

DNA polymerases/replication<br />

DNA pol D + + +<br />

RPA (Eury-like) + + +<br />

RPA/SSB + + (some) +/( ) +<br />

>one PCNA gene +<br />

Topoisomerases<br />

Topo IB +<br />

Topo IA W + + +<br />

Reverse gyrase + (HT) + +<br />

Topo IIA W<br />

Cell division<br />

ESCRT-III + +<br />

Vps4 (CdvC) + +<br />

CdvA + +<br />

Fts Z + + +<br />

Smc + + +<br />

ScpA + ScpB + + (many) +<br />

Histones (H3/H4)<br />

+ + (exc. 2) +<br />

Repair<br />

Hef-nuclease +<br />

ERCC4-type nuclease + + +<br />

ERRC4-type helicase +<br />

RadB +<br />

HSP70s, GrpE, Hsp40 + +<br />

UvrABC + W<br />

Korarchaeota<br />

polymerase A and B genes, both topoisomerases IA and B, and histones, but<br />

lack the archaea-specific r-prote<strong>in</strong> LXa. Thaumarchaeota, like all other<br />

archaea, conta<strong>in</strong> genes for central <strong>in</strong>formation process<strong>in</strong>g mach<strong>in</strong>ery (replication,<br />

transcription, etc.) that are shared with eukaryotes or are more<br />

closely related to eukaryotes than to bacteria (Bell and Jackson, 1998;<br />

Garrett and Klenk, 2007). In several phylogenetic analyses with <strong>in</strong>formation<br />

process<strong>in</strong>g factors, such as RNA polymerase subunits (see Fig. 8),<br />

Thaumarchaeota branch off early, <strong>in</strong>dicat<strong>in</strong>g that a more detailed characterisation<br />

of this previously enigmatic group might change our perception of the<br />

early evolution with<strong>in</strong> the archaeal and eukaryotic l<strong>in</strong>eage (Spang et al.,<br />

2010).


22 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

[(Figure_8)TD$FIG]<br />

Figure 8 Phylogenetic tree of RNA polymerase subunit A (rpoA) and schematic<br />

overview of gene arrangements <strong>in</strong> different archaeal l<strong>in</strong>eages and <strong>in</strong> bacteria and<br />

eukaryotes. Like the latter two, Thaumarchaeota have an unsplit rpoA gene. In l<strong>in</strong>e<br />

with this f<strong>in</strong>d<strong>in</strong>g, they form a separate and deeply branch<strong>in</strong>g l<strong>in</strong>eage with<strong>in</strong> the<br />

archaea <strong>in</strong> the phylogenetic analysis of the correspond<strong>in</strong>g prote<strong>in</strong> RpoA. (Modified<br />

from Spang et al. (2010), with permission.)<br />

7. DIVERSITY, DISTRIBUTION AND ACTIVITY OF AMMONIA-<br />

OXIDISING ARCHAEA IN THE ENVIRONMENT<br />

With<strong>in</strong> the archaeal doma<strong>in</strong>, the ability to oxidise ammonia appears thus far<br />

to be restricted to the Group 1 l<strong>in</strong>eage. After the <strong>in</strong>itial identification of<br />

AOA amo genes <strong>in</strong> soil and mar<strong>in</strong>e environments (Venter et al., 2004;<br />

Treusch et al., 2005), oligonucleotide primers were designed to target conserved<br />

regions of this gene and used <strong>in</strong> PCR, clon<strong>in</strong>g and sequenc<strong>in</strong>g<br />

approaches to exam<strong>in</strong>e the diversity and abundance of these organisms <strong>in</strong><br />

DNA extracted from environmental samples. It became clear that these<br />

organisms are globally distributed <strong>in</strong> most, if not all, environments (Fig. 9),<br />

similar to the f<strong>in</strong>d<strong>in</strong>gs for 16S rRNA gene surveys (Fig. 1). Current efforts are<br />

to determ<strong>in</strong>e the fundamental aspects of their ecophysiology and their ecological<br />

importance to nitrification processes globally by l<strong>in</strong>k<strong>in</strong>g environmental<br />

factors to AOA and AOB population dynamics.


AMMONIA-OXIDISING ARCHAEA 23<br />

[(Figure_9)TD$FIG]<br />

Figure 9 Phylogenetic tree describ<strong>in</strong>g major ammonia-oxidis<strong>in</strong>g archaeal amoA<br />

gene-def<strong>in</strong>ed l<strong>in</strong>eages and environments of orig<strong>in</strong>. Analyses were performed on an<br />

alignment of 486 positions from 188 sequences representative of known amoA diversity<br />

and the shape of triangular blocks are proportional to the number of sequences<br />

and maximum branch lengths with<strong>in</strong>. Multifurcat<strong>in</strong>g branches <strong>in</strong>dicate where the<br />

relative branch<strong>in</strong>g order of major l<strong>in</strong>eages could not be determ<strong>in</strong>ed <strong>in</strong> the majority<br />

of bootstrap replicates us<strong>in</strong>g various tree<strong>in</strong>g methods (distance, parsimony and maximum<br />

likelihood analyses). L<strong>in</strong>eages with cultivated representatives are highlighted<br />

together with soil fosmid clone 54d9.<br />

7.1. AOA <strong>in</strong> the Soil Environment<br />

Thaumarchaeota are the dom<strong>in</strong>ant archaea <strong>in</strong> most soil systems where they<br />

constitute up to 5% of all prokaryotes (e.g. Ochsenreiter et al., 2003;<br />

Lehtovirta et al., 2009). There are a number of thaumarchaeal l<strong>in</strong>eages found<br />

<strong>in</strong> high numbers <strong>in</strong> soil, and Group 1.1b (Fig. 1) is the dom<strong>in</strong>ant l<strong>in</strong>eage <strong>in</strong>


24 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

most soil systems (Auguet et al., 2010). This l<strong>in</strong>eage <strong>in</strong>cludes the archaeon<br />

from which soil fosmid 54d9 was derived, therefore <strong>in</strong>dicat<strong>in</strong>g that the most<br />

abundant archaea <strong>in</strong> soil may be capable of ammonia oxidation. Us<strong>in</strong>g<br />

quantitative PCR of amoA genes, Le<strong>in</strong><strong>in</strong>ger et al. (2006) exam<strong>in</strong>ed the<br />

abundance of AOA and AOB <strong>in</strong> 12 surface soils sampled across Europe.<br />

These soils represented a wide range of physicochemical properties and<br />

land-use types. Without exception, AOA represented the dom<strong>in</strong>ant group,<br />

with the ratio of AOA to AOB amoA genes rang<strong>in</strong>g from 1.5 to over 230<br />

(Fig. 10). This observation was confirmed for most soils exam<strong>in</strong>ed so far (e.g.<br />

He et al., 2007; Nicol et al., 2008; Jia and Conrad, 2009; Schauss et al., 2009; Di<br />

et al., 2010), although there are exceptions (Boyle-Yarwood et al., 2008).<br />

Another general trend observed is that the relative abundance of AOA to<br />

AOB changes with soil depth, with AOA numbers rema<strong>in</strong><strong>in</strong>g relatively<br />

constant but AOB numbers decreas<strong>in</strong>g dramatically (Le<strong>in</strong><strong>in</strong>ger et al., 2006;<br />

Jia and Conrad, 2009; Di et al., 2010), <strong>in</strong>dicat<strong>in</strong>g that AOA may be<br />

[(Figure_0)TD$FIG]<br />

Figure 10 AOA and AOB amoA gene abundance <strong>in</strong> 12 soils represent<strong>in</strong>g a wide<br />

geographical distribution and contrast<strong>in</strong>g physicochemical properties. Gene abundances<br />

(copies per dry weight soil gram) were calculated us<strong>in</strong>g two specific quantitative<br />

PCR assays. (From Le<strong>in</strong><strong>in</strong>ger et al. (2006), with permission.)


AMMONIA-OXIDISING ARCHAEA 25<br />

particularly well adapted to conditions with low levels of available nutrients<br />

and oxygen.<br />

7.2. AOA Activity <strong>in</strong> the Soil Environment<br />

With the co-occurrence of AOA and AOB <strong>in</strong> the soil environment, a major<br />

focus has been to determ<strong>in</strong>e the relative activities of both groups and<br />

what conditions determ<strong>in</strong>e their growth. Schauss and colleagues (2009) were<br />

the first to demonstrate growth of AOA <strong>in</strong> response to (organic) fertiliser<br />

additions. They demonstrated differences <strong>in</strong> the growth characteristics<br />

of AOA and AOB, but perhaps also provided some evidence for potential<br />

functional redundancy, with AOA and AOB both respond<strong>in</strong>g to the same<br />

source of ammonia: <strong>in</strong> microcosms amended with the antibiotic sulphadiaz<strong>in</strong>e,<br />

growth of AOB was <strong>in</strong>hibited while nitrification still occurred. Model<br />

calculations revealed that <strong>in</strong> such microcosms, a substantial contribution of<br />

ammonia oxidation must be attributed to AOA activity (Schauss et al.,<br />

2009).<br />

In some agricultural soils receiv<strong>in</strong>g significant N <strong>in</strong>puts, AOA have been<br />

shown to make a relatively small contribution to overall ammonia oxidation,<br />

with only the growth of AOB correlat<strong>in</strong>g with measured nitrification activity.<br />

Jia and Conrad (2009) demonstrated that <strong>in</strong> microcosms of agricultural soil<br />

receiv<strong>in</strong>g regular amendments of 7 mM <strong>in</strong>organic ammonium fertiliser,<br />

growth of AOB populations (only) correlated with ammonia oxidation activity,<br />

and growth of Group 1.1b AOA populations occurred even when all<br />

nitrification activity was <strong>in</strong>hibited by acetylene. In addition, grow<strong>in</strong>g AOA<br />

populations did not take up 13 C–CO 2, <strong>in</strong>dicat<strong>in</strong>g that they may possess<br />

heterotrophic metabolism. Di et al. (2009, 2010) reported similar f<strong>in</strong>d<strong>in</strong>gs<br />

<strong>in</strong> a number of experimental soils <strong>in</strong> New Zealand which were amended with<br />

high concentrations of urea–N (<strong>in</strong> the form of collected ur<strong>in</strong>e). Aga<strong>in</strong>, <strong>in</strong><br />

these field soil experiments, only AOB growth showed a positive relationship<br />

to nitrification activity. However, AOA growth (and not AOB) was<br />

observed <strong>in</strong> unamended (control) soils with low levels of nitrification fuelled<br />

by m<strong>in</strong>eralised organic nitrogen (Fig. 11), <strong>in</strong>dicat<strong>in</strong>g AOA growth associated<br />

with low levels of ammonia. Conclusive evidence of AOA growth <strong>in</strong> soil<br />

associated with nitrification activity was provided by studies of an agricultural<br />

soil, aga<strong>in</strong> receiv<strong>in</strong>g no fertiliser. Tourna et al. (2008) demonstrated that<br />

with different rates of nitrification (controlled as a function of temperature),<br />

changes were associated specifically with the transcript profiles of AOA<br />

amoA. These transcriptionally active populations grew dur<strong>in</strong>g nitrification<br />

(Offre et al., 2009), and their growth was completely <strong>in</strong>hibited when


[(Figure_1)TD$FIG]<br />

Figure 11 Contrast<strong>in</strong>g response of AOA and AOB communities to nitrogen deposition <strong>in</strong> a New Zealand agricultural soil. (a)<br />

Nitrification k<strong>in</strong>etics <strong>in</strong> soils receiv<strong>in</strong>g no amendment (control) and a high nitrogen load (collected dairy cow ur<strong>in</strong>e and added at an<br />

equivalent rate of 1000 kgN/ha). Growth dynamics of AOA (b) and AOB (c) communities <strong>in</strong> response to the different ammonia<br />

concentrations. (Adapted from data obta<strong>in</strong>ed by Di et al. (2010), with permission.)<br />

26 CHRISTA SCHLEPER AND GRAEME W. NICOL


AMMONIA-OXIDISING ARCHAEA 27<br />

[(Figure_2)TD$FIG]<br />

Figure 12 Growth of acetylene-sensitive ammonia-oxidis<strong>in</strong>g archaea <strong>in</strong> nitrify<strong>in</strong>g<br />

soil microcosms. (a) DGGE analysis of amoA-def<strong>in</strong>ed AOA communities. Arrow<br />

<strong>in</strong>dicates the growth of a specific population for which a specific qPCR assay was<br />

developed. (b) Inhibition of ammonia-oxidis<strong>in</strong>g activity <strong>in</strong> microcosms with a 10 Pa<br />

acetylene headspace partial pressure. (c) qPCR analysis demonstrat<strong>in</strong>g growth of<br />

AOA (group 1.1a archaea) only <strong>in</strong> microcosms with active nitrification. (Adapted<br />

from data obta<strong>in</strong>ed by Offre et al. (2009), with permission.)<br />

nitrification was <strong>in</strong>hibited with the addition of low concentrations of acetylene<br />

(Fig. 12), thus provid<strong>in</strong>g, for the first time, a direct l<strong>in</strong>k between soil<br />

nitrification and archaeal activity. However, one has to note that the active<br />

AOA phylotypes <strong>in</strong> these experiments were affiliated to Group 1.1a archaea<br />

typically found <strong>in</strong> the mar<strong>in</strong>e environment whereas Group 1.1b archaea<br />

(typically found <strong>in</strong> soils) did not exhibit activity <strong>in</strong> these experiments.<br />

Although based on a limited number of studies, published data describ<strong>in</strong>g<br />

the growth dynamics of AOA and AOB populations do h<strong>in</strong>t at fundamental<br />

differences <strong>in</strong> AOA and AOB physiology. From the relatively large number<br />

of cultivated AOB stra<strong>in</strong>s, it is known that there is a range of physiological<br />

diversity (adaptation to different ranges of ammonia concentrations,


28 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

temperature optima, contrast<strong>in</strong>g ureolytic capabilities, etc.) and it would<br />

seem likely that similar physiological diversity could be found with<strong>in</strong> the<br />

AOA. Therefore, it is probable that some populations of AOA and AOB do<br />

share or compete with<strong>in</strong> a similar dist<strong>in</strong>ct ecological niche present <strong>in</strong> soil.<br />

However, current evidence suggests the opposite may be the general rule,<br />

with populations of each l<strong>in</strong>eage resid<strong>in</strong>g <strong>in</strong> dist<strong>in</strong>ct ecological niches <strong>in</strong> the<br />

soil, and ammonia concentration (also pH) be<strong>in</strong>g the major driver for the<br />

relative activity of AOA and AOB. In addition, the source of ammonia may<br />

be a critical factor <strong>in</strong> determ<strong>in</strong><strong>in</strong>g relative growth. In all soil-based studies to<br />

date, where substantial AOA growth has been demonstrated, ammonium<br />

has been supplied to the system <strong>in</strong> the form of m<strong>in</strong>eralised organic N derived<br />

from composted manure (Schauss et al., 2009) or soil organic matter (Offre<br />

et al., 2009; Di et al., 2010) and AOB-dom<strong>in</strong>ated nitrification activity associated<br />

with ammonia from <strong>in</strong>organic fertiliser (Jia and Conrad, 2009) or<br />

(hydrolysed) urea (Di et al., 2010).<br />

7.3. AOA <strong>in</strong> the Mar<strong>in</strong>e Environment<br />

In the mar<strong>in</strong>e water column, nearly all AOA are placed with<strong>in</strong> a specific<br />

l<strong>in</strong>eage which is dist<strong>in</strong>ct from those associated with soil environments (Fig.<br />

3), and is congruent with the phylogenetic partition<strong>in</strong>g of 16S rRNA genes.<br />

Thaumarchaeota (formerly crenarchaeota) are found <strong>in</strong> very large numbers<br />

throughout the water column and they have been estimated to represent<br />

approximately 20% of prokaryotic cells <strong>in</strong> the water column (Karner et al.,<br />

2001). Indeed, the relative numbers of archaea decrease much less than<br />

bacteria and therefore generally represent a greater proportion of total<br />

prokaryotic numbers at depth. However, although thaumarchaeota are distributed<br />

throughout the water column, there is a clear phylogenetic separation<br />

of dist<strong>in</strong>ct AOA groups, with well-def<strong>in</strong>ed ‘shallow’ and ‘deep’ water<br />

l<strong>in</strong>eages (Francis et al., 2005; Hallam et al., 2006a; M<strong>in</strong>cer et al., 2007; Beman<br />

et al., 2008) and with only a small amount of overlap. Us<strong>in</strong>g specific qPCR<br />

assays for the ‘deep’ and ‘shallow’ l<strong>in</strong>eages, Beman et al. (2008) demonstrated<br />

that the shallow AOA l<strong>in</strong>eage was also found <strong>in</strong> deeper samples, but<br />

the deep l<strong>in</strong>eage demonstrated a more restricted distribution and did not<br />

occur <strong>in</strong> the shallower waters. This observation was also reflected <strong>in</strong> the<br />

detection of amoA mRNA transcripts of both these groups (Santoro et al.,<br />

2010).<br />

It is unclear whether all these thaumarchaeota are capable of ammonia<br />

oxidation and autotrophic growth. A recent study exam<strong>in</strong><strong>in</strong>g the ratio of<br />

thaumarchaeal 16S rRNA and AOA amoA genes <strong>in</strong>dicated that all shallow


AMMONIA-OXIDISING ARCHAEA 29<br />

archaeal populations may be capable of ammonia oxidation, with 16S rRNA:<br />

amoA gene ratios approach<strong>in</strong>g 1:1 (Agogue et al., 2008), and is consistent<br />

with the ratio found <strong>in</strong> the limited number of AOA genomes sequence thus<br />

far. However, with decreas<strong>in</strong>g depth this ratio <strong>in</strong>creases, with 16S rRNA:<br />

amoA gene ratio greater than 100:1 found at depths greater than 1000 m,<br />

thus <strong>in</strong>dicat<strong>in</strong>g that archaea <strong>in</strong> the deep ocean may not all be autotrophic<br />

ammonia oxidisers but heterotrophs (Agogue et al., 2008). However, analysis<br />

of radiocarbon data <strong>in</strong> archaeal lipids recovered from samples taken from the<br />

North Pacific Gyre have confirmed that the dom<strong>in</strong>ant thaumarchaeotal<br />

metabolism at depth does appear to be autotrophy (Ingalls et al., 2006),<br />

and potential discrepancies between amoA and 16 rRNA gene copy number<br />

may be due to a lack of coverage associated with certa<strong>in</strong> AOA amoA primer<br />

sets (Konstant<strong>in</strong>idis et al., 2009).<br />

There is strong correlative evidence that Group 1.1a archaea are not the<br />

only AOA l<strong>in</strong>eage present <strong>in</strong> the World’s oceans. Us<strong>in</strong>g quantitative PCR,<br />

M<strong>in</strong>cer et al. (2007) observed that there was a discrepancy <strong>in</strong> the abundance<br />

of AOA amoA and Group 1.1a 16S rRNA genes. However, when the<br />

abundance of a novel archaeal group related to the pSL12 clade [a l<strong>in</strong>eage<br />

orig<strong>in</strong>ally discovered <strong>in</strong> terrestrial hot spr<strong>in</strong>gs (Barns et al., 1996)] was taken<br />

<strong>in</strong>to account, a strong correlation was observed. Despite the relatively large<br />

sequence divergence between these two l<strong>in</strong>eages, the amoA genes of this<br />

l<strong>in</strong>eage appear to be <strong>in</strong>dist<strong>in</strong>guishable from Group 1.1a.<br />

7.4. AOA Activity <strong>in</strong> the Mar<strong>in</strong>e Environment<br />

It is perhaps <strong>in</strong> the mar<strong>in</strong>e environment that the clearest correlations<br />

between AOA abundance and nitrification activity are observed, and where<br />

AOA do appear to be both numerically dom<strong>in</strong>ant and functionally more<br />

active (relative to AOB). Abundances of AOA amoA and thaumarchaeal<br />

16S rRNA genes show a high correlation with nitrification rates, with up to<br />

10 4 –10 5 gene copies mL 1 <strong>in</strong> zones of high activity, and contrasts with the<br />

abundances of their bacterial counterparts which are frequently detected <strong>in</strong><br />

low numbers or are even undetectable (Ward, 2000; Wuchter et al., 2006;<br />

M<strong>in</strong>cer et al., 2007). AOA amoA abundance correlates with nitrite maxima<br />

<strong>in</strong> both oxygenated shallow waters and deeper waters <strong>in</strong> the oxygen m<strong>in</strong>imum<br />

zone (Coolen et al., 2007; Herfort et al., 2007; Beman et al., 2008).<br />

Nitrification activity (and AOA numbers) is greatest <strong>in</strong> the water column<br />

at the bottom of the euphotic zone. This may be due to competition for<br />

ammonia between nitrifiers and phytoplankton and/or light <strong>in</strong>hibition of<br />

the AMO enzyme (Ward, 2005). There is an <strong>in</strong>verse correlation between


30 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

thaumarchaeota and chlorophyll a (Murray et al., 1998), support<strong>in</strong>g the idea<br />

that phytoplankton have a negative effect on nitrifier communities (Ward,<br />

2005; Herfort et al., 2007). Additionally, previous studies have failed to f<strong>in</strong>d a<br />

correlation between bacterial ammonia-oxidis<strong>in</strong>g community structures and<br />

nitrification rates <strong>in</strong> ocean waters (O’Mullan and Ward, 2005).<br />

In an impressive time-series experiment over 11 months <strong>in</strong> the North Sea,<br />

Wuchter et al. (2006) quantified the abundance of <strong>in</strong>organic nitrogen concentrations<br />

together with bacterial and archaeal amoA gene copy numbers<br />

(Fig. 13). Ammonia concentrations were greatest <strong>in</strong> autumn and w<strong>in</strong>ter and<br />

decreased <strong>in</strong> the spr<strong>in</strong>g months. This decrease <strong>in</strong> ammonia concentration<br />

correlated with not only <strong>in</strong>creases <strong>in</strong> nitrite and nitrate concentrations (<strong>in</strong>dicative<br />

of aerobic ammonia oxidation), but also concomitant <strong>in</strong>creases <strong>in</strong><br />

archaea amoA and 16S rRNA gene copies and also thaumarchaeotal cell<br />

numbers (enumerated by fluorescent <strong>in</strong> situ hybridisation).<br />

Besides look<strong>in</strong>g at the correlation between <strong>in</strong>organic nitrogen concentrations<br />

and gene copies, Beman et al. (2008) also measured the oxidation of<br />

15 N-labelled ammonium pools <strong>in</strong> water samples taken from between the<br />

surface and 100 m depth <strong>in</strong> the Gulf of California. This study demonstrated<br />

that there was a correlation between AOA cell numbers and actual rates of<br />

ammonia oxidation.<br />

Correlations with the activity of other organisms <strong>in</strong>volved <strong>in</strong> the nitrogen<br />

cycle are also observed. For example, <strong>in</strong>creases <strong>in</strong> the abundance of AOA<br />

populations together with nitrite peaks <strong>in</strong> suboxic zones <strong>in</strong>dicate that they<br />

may supply the nitrite required for planctomycete bacteria perform<strong>in</strong>g the<br />

anammox processes (Coolen et al., 2007). In aerobic sub-surface waters at<br />

the bottom of the euphotic zone, correlations are observed between the<br />

abundance of AOA and nitrite-oxidis<strong>in</strong>g Nitrosp<strong>in</strong>a, suggest<strong>in</strong>g that the<br />

two groups are metabolically l<strong>in</strong>ked with AOA provid<strong>in</strong>g the nitrite substrate<br />

for Nitrosp<strong>in</strong>a populations and complet<strong>in</strong>g aerobic nitrification<br />

(M<strong>in</strong>cer et al., 2007; Santoro et al., 2010).<br />

7.5. AOA <strong>in</strong> Sediments<br />

AOA amoA sequences have been recovered from both freshwater<br />

(Herrmann et al., 2009) and estuar<strong>in</strong>e, coastal and deep-water mar<strong>in</strong>e sediments<br />

(e.g. Francis et al., 2005; Dang et al., 2009). There is a wide diversity of<br />

AOA <strong>in</strong> sediments, with sequences not only placed with<strong>in</strong> the mar<strong>in</strong>e water/<br />

sediment cluster where they are found <strong>in</strong> specific groups, but also affiliated to<br />

the major soil/sediment clade (Fig. 9). However, unlike <strong>in</strong> the mar<strong>in</strong>e column<br />

and most soils, the numerical dom<strong>in</strong>ance of AOA over AOB is not so


AMMONIA-OXIDISING ARCHAEA 31<br />

[(Figure_3)TD$FIG]<br />

Figure 13 Correlation of fluxes <strong>in</strong> <strong>in</strong>organic nitrogen concentrations and<br />

archaeal/AOA abundances dur<strong>in</strong>g an 11-month sampl<strong>in</strong>g time series. (a)<br />

Ammonia, nitrite and nitrate concentrations. (b) Enumeration of crenarchaeol (thaumarchaeal)<br />

abundance as determ<strong>in</strong>ed by qPCR and CARD-FISH with microscopy.<br />

(c) Abundance of AOA and AOB populations, as determ<strong>in</strong>ed by measur<strong>in</strong>g amoA<br />

gene copy numbers. (Adapted from data obta<strong>in</strong>ed by Wuchter et al. (2006), with<br />

permission.)


32 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

prevalent. Both communities show strong patterns of selection with different<br />

physicochemical properties (<strong>in</strong>clud<strong>in</strong>g sal<strong>in</strong>ity, ammonia and oxygen concentrations)<br />

(Mosier and Francis, 2008; Santoro et al., 2008), with AOA<br />

preferr<strong>in</strong>g lower sal<strong>in</strong>ities and lower ammonia concentrations. Estuaries<br />

are particularly important as they probably experience the highest concentrations<br />

of anthropogenic N <strong>in</strong>puts <strong>in</strong> the mar<strong>in</strong>e environment (particularly<br />

from agricultural run-off) and therefore represent an important area of<br />

nitrify<strong>in</strong>g transformations on a global scale.<br />

7.6. AOA <strong>in</strong> Geothermal Environments<br />

Although often referred to as ‘mesophilic’ or ‘nonthermophilic’ (cren)<br />

archaea, organisms associated with this l<strong>in</strong>eage were known to be present<br />

<strong>in</strong> terrestrial hot spr<strong>in</strong>gs, through the detection of 16S rRNA genes (Kvist<br />

et al., 2005, 2007) or archaeal-specific isoprenoid GDGTs lipids such as<br />

crenarchaeol (e.g. Pearson et al., 2004; Schouten et al., 2007). These f<strong>in</strong>d<strong>in</strong>gs<br />

therefore raised the possibility that AOA would also be found <strong>in</strong> such<br />

environments. This concept was particularly fasc<strong>in</strong>at<strong>in</strong>g as no known AOB<br />

had ever been found <strong>in</strong> such an environment, and it also raised questions<br />

about the potential orig<strong>in</strong>s of prokaryotic ammonia oxidation.<br />

There is now conclusive evidence that thaumarchaeota possess<strong>in</strong>g AMO<br />

are found <strong>in</strong> terrestrial environments of high temperature, with AOA amoA<br />

genes detected <strong>in</strong> a variety of habitats. These <strong>in</strong>clude speleothems (m<strong>in</strong>eral<br />

deposits), water and biofilms (Weidler et al., 2008) of geothermal caves<br />

and m<strong>in</strong>es, as well as terrestrial hot spr<strong>in</strong>gs. Thermal spr<strong>in</strong>gs (from where<br />

sulphur-dependent Crenarchaeota are typically cultured) which represent<br />

a wide range of temperatures and broad pH ranges located on the Russian<br />

Kamchatka pen<strong>in</strong>sula and on Iceland (Reigstad et al., 2008) as well as <strong>in</strong><br />

Yellowstone National Park (de la Torre et al., 2008) and further terrestrial<br />

hot spr<strong>in</strong>gs <strong>in</strong> the USA, Ch<strong>in</strong>a and Russia (Zhang et al., 2008) all harbour<br />

AOA gene markers. Reigstad et al. (2008) measured actual nitrification<br />

activity <strong>in</strong> an acidic hot muddy pool of 80 C under <strong>in</strong> situ conditions, demonstrat<strong>in</strong>g<br />

that this process is <strong>in</strong>deed found at considerable levels <strong>in</strong> terrestrial<br />

hot-spr<strong>in</strong>gs. A thermophilic AOA (N. yellowstonii) was grown <strong>in</strong> enrichment<br />

culture obta<strong>in</strong>ed from a hot spr<strong>in</strong>g located <strong>in</strong> the Yellowstone National<br />

Park with an optimal growth temperature between 65 and 72 C, grow<strong>in</strong>g<br />

with a stoichiometric conversion of ammonia to nitrite. Not only does this<br />

organism grow at the highest temperature for any known ammonia oxidiser,<br />

but it represents a separate l<strong>in</strong>eage outwith the ‘mar<strong>in</strong>e’ and ‘soil’ dom<strong>in</strong>ated<br />

groups (de la Torre et al., 2008).


AMMONIA-OXIDISING ARCHAEA 33<br />

7.7. AOA Associated with Mar<strong>in</strong>e Invertebrates<br />

Associations between AOA and a variety of mar<strong>in</strong>e <strong>in</strong>vertebrates are<br />

known, <strong>in</strong>clud<strong>in</strong>g mar<strong>in</strong>e sponges and corals, where they may play an important<br />

role <strong>in</strong> potentially complex nitrogen-cycl<strong>in</strong>g <strong>in</strong>teractions with<strong>in</strong> the host<br />

‘ecosystem’. The first Group 1 ‘model’ archaeon was the sponge symbiont C.<br />

symbiosum (Preston et al.,1996), which is found <strong>in</strong> the tissues of the mar<strong>in</strong>e<br />

sponge A. mexicana, and is closely related to those thaumarchaeota dom<strong>in</strong>at<strong>in</strong>g<br />

planktonic archaeal communities. The genome of this organism was<br />

the first to be sequenced with<strong>in</strong> the AOA l<strong>in</strong>eage (Hallam et al., 2006a,b) and<br />

possessed many <strong>in</strong>terest<strong>in</strong>g attributes, <strong>in</strong>clud<strong>in</strong>g the absence of some genes<br />

found <strong>in</strong> planktonic AOA (probably reflect<strong>in</strong>g the specific association with<br />

the sponge), and also had near-complete components of a 3-hydroxypropionate/4-hydroxybutyrate<br />

as well as TCA cycles, <strong>in</strong>dicative of both autotrophic<br />

and heterotrophic modes of growth, respectively. Recent studies of AOA<br />

amoA sequences <strong>in</strong> mar<strong>in</strong>e sponges (e.g. Meyer et al., 2008; Steger et al.,<br />

2008; Hoffmann et al., 2009) and corals (Beman et al., 2007; Siboni et al.,<br />

2008) have demonstrated that there are specific l<strong>in</strong>eages of AOA adapted<br />

to association with mar<strong>in</strong>e <strong>in</strong>vertebrates (Fig. 9), an observation<br />

previously found <strong>in</strong> 16S rRNA-based surveys. The association with AOA<br />

and mar<strong>in</strong>e sponges appears to be a cont<strong>in</strong>uous and stable one, with the<br />

transmission of AOA from adults to offspr<strong>in</strong>g <strong>in</strong> the larval stage observed<br />

<strong>in</strong> a number of different sponge species (Steger et al., 2008). A range<br />

of nitrogen transformative processes have been observed <strong>in</strong> sponges,<br />

with complex communities <strong>in</strong>clud<strong>in</strong>g anammox planctomycetes, nitrite<br />

oxidisers, denitrifiers, as well as AOA and AOB (Hoffmann et al., 2009;<br />

Mohamed et al., 2010). These sponge-associated communities therefore<br />

may represent a nitrogen cycl<strong>in</strong>g ecosystem which is dist<strong>in</strong>ct from that <strong>in</strong><br />

the surround<strong>in</strong>g water, and one which is essential for sponge health and<br />

cycl<strong>in</strong>g of waste.<br />

8. CONCLUDING REMARKS<br />

Based on the quantification of genes and cell numbers, Thaumarchaeota<br />

range among the most abundant microorganisms on this planet. Although<br />

their metabolic activity and versatility are still not entirely understood, there<br />

is no doubt that many of them are capable of ammonia oxidation and thus<br />

contribute significantly to global nitrogen and carbon cycl<strong>in</strong>g. Due to the<br />

extensive use of fertilisers <strong>in</strong> agriculture, the anthropogenic <strong>in</strong>put of fixed


34 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

nitrogen <strong>in</strong>to the World’s ecosystems is now estimated to be more than<br />

double that from natural processes (Rockstr€om et al., 2009). The major<br />

consequence of this shift <strong>in</strong> the equilibrium of the nitrogen cycle is an<br />

acceleration of nitrification, as well as eutrophication of freshwater and<br />

estuar<strong>in</strong>e environments. Another major consequence of accelerated rates<br />

of global nitrification is the <strong>in</strong>creased release of nitrogen oxides <strong>in</strong>to the<br />

atmosphere, which are produced by the denitrification activity of many<br />

bacteria, <strong>in</strong>clud<strong>in</strong>g ammonia oxidisers. However, it rema<strong>in</strong>s to be elucidated<br />

whether archaea also contribute to this process, with analyses of the first<br />

AOA genomes <strong>in</strong>dicat<strong>in</strong>g that ammonia oxidation is performed by a fundamentally<br />

different metabolic pathway. This new area of microbiology eagerly<br />

anticipates the results of current and future research which will compare the<br />

fundamental differences (or similarities) between bacterial and archaeal<br />

ammonia oxidation <strong>in</strong> various environments to understand whether these<br />

two groups of organisms have compet<strong>in</strong>g (or rather complement<strong>in</strong>g) roles <strong>in</strong><br />

various ecosystem processes.<br />

ACKNOWLEDGEMENT<br />

The authors would like to thank Mart<strong>in</strong> G. Klotz for discussions and for<br />

permission to <strong>in</strong>clude his hypotheses on the ammonia-oxidis<strong>in</strong>g metabolism<br />

of AOA, and provision of Fig. 7 used <strong>in</strong> this article. The authors also gratefully<br />

acknowledge the formatt<strong>in</strong>g work of Nathalia Jandl and support for<br />

Table 2 as well as Fig. 8 from Anja Spang.<br />

REFERENCES<br />

Agogue, H., Br<strong>in</strong>k, M., D<strong>in</strong>asquet, J. and Herndl, G.J. (2008) Major gradients <strong>in</strong><br />

putatively nitrify<strong>in</strong>g and non-nitrify<strong>in</strong>g Archaea <strong>in</strong> the deep North Atlantic.<br />

Nature 457, 550.<br />

Auguet, J., Barberan, A. and Casamayor, E.O. (2010) Global ecological patterns <strong>in</strong><br />

uncultured Archaea. ISME J. 4, 182–190.<br />

Barns, S.M., Delwiche, C.F., Palmer, J.D. and Pace, N.R. (1996) Perspectives on<br />

archaeal diversity, thermophily and monophyly from environmental rRNA<br />

sequences. Proc. Natl. Acad. Sci. U.S.A. 93, 9188–9193.<br />

Bartossek, R., Nicol, G., Lanzen, A., Klenk, H.-P. and Schleper, C. (2010)<br />

Homologues of nitrite reductases <strong>in</strong> ammonia-oxidiz<strong>in</strong>g Archaea: diversity and<br />

genomic context. Environ. Microbiol. 12, 1075–1088.<br />

Bayer, K., Schmitt, S. and Hentschel, U. (2008) <strong>Physiology</strong>, phylogeny and <strong>in</strong> situ<br />

evidence for bacterial and archaeal nitrifiers <strong>in</strong> the mar<strong>in</strong>e sponge Aplys<strong>in</strong>a aerophoba.<br />

Environ. Microbiol. 10, 2942–2955.


AMMONIA-OXIDISING ARCHAEA 35<br />

Beja, O., Koon<strong>in</strong>, E.V., Arav<strong>in</strong>d, L., Taylor, L.T., Seitz, H., Ste<strong>in</strong>, J.L., Bensen, D.C.,<br />

Feldman, R.A., Swanson, R.V. and DeLong, E.F. (2002) Comparative genomic<br />

analysis of archaeal genotypic variants <strong>in</strong> a s<strong>in</strong>gle population and <strong>in</strong> two different<br />

oceanic prov<strong>in</strong>ces. Appl. Environ. Microbiol. 68, 335–345.<br />

Beja, O., Suzuki, M.T., Koon<strong>in</strong>, E.V., Arav<strong>in</strong>d, L., Hadd, A., Nguyen, L.P.,<br />

Villacorta, R., Garrigues, C., Jovanovich, S.B., Feldman, R.A. and DeLong,<br />

E.F. (2000) Construction and analysis of bacterial artificial chromosome libraries<br />

from a mar<strong>in</strong>e microbial assemblage. Environ. Microbiol. 2, 516–529.<br />

Bell, S.D. and Jackson, S.P. (1998) Transcription <strong>in</strong> archaea. Cold Spr<strong>in</strong>g Harbor.<br />

Symp. Quant. Biol. 63, 41–51.<br />

Beman, J.M., Popp, B.N. and Francis, C.A. (2008) Molecular and biogeochemical<br />

evidence for ammonia oxidation by mar<strong>in</strong>e Crenarchaeota <strong>in</strong> the Gulf of<br />

California. ISME J. 2, 429–441.<br />

Beman, J.M., Roberts, K., Wegley, L., Rohwer, F. and Francis, C.A. (2007)<br />

Distribution and diversity of archaeal ammonia monooxygenase (amoA) genes<br />

associated with corals. Appl. Environ. Microbiol. 73, 5642–5647.<br />

Berg, I.A., Kockelkorn, D., Buckel, W. and Fuchs, G. (2007) A 3-hydroxypropionate/<br />

4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway <strong>in</strong> archaea.<br />

Science 318, 1782–1786.<br />

B<strong>in</strong>trim, S.B., Donohue, T.J., Handelsman, J., Roberts, G.P. and Goodman, R.M.<br />

(1997) Molecular phylogeny of Archaea from soil. Proc. Natl. Acad. Sci. USA 94,<br />

277–282.<br />

Boyle-Yarwood, S.A., Bottomley, P.J. and Myrold, D.D. (2008) Community composition<br />

of ammonia-oxidiz<strong>in</strong>g bacteria and archaea <strong>in</strong> soils under stands of red alder<br />

and Douglas fir <strong>in</strong> Oregon. Environ. Microbiol. 10, 2956–2965.<br />

Brochier-Armanet, C., Boussau, B., Gribaldo, S. and Forterre, P. (2008) Mesophilic<br />

Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat.<br />

Rev. Microbiol. 6, 245–252.<br />

Brown, J.R. and Doolittle, W.F. (1997) Archaea and the prokaryote-to-eukaryote<br />

transition. Microbiol. Mol. Biol. Rev. 61, 456–502.<br />

Buckley, D.H., Graber, J.R. and Schmidt, T.M. (1998) Phylogenetic analysis of nonthermophilic<br />

members of the k<strong>in</strong>gdom crenarchaeota and their diversity and<br />

abundance <strong>in</strong> soils. Appl. Environ. Microbiol. 64, 4333–4339.<br />

Coolen, M.J., Abbas, B., van Bleijswijk, J., Hopmans, E.C., Kuypers, M.M., Wakeham,<br />

S.G. and Damste, J.S.S. (2007) Putative ammonia-oxidiz<strong>in</strong>g Crenarchaeota <strong>in</strong> suboxic<br />

waters of the Black Sea: a bas<strong>in</strong>-wide ecological study us<strong>in</strong>g 16S ribosomal and<br />

functional genes and membrane lipids. Environ. Microbiol. 9, 1001–1016.<br />

Crump, B.C. and Baross, J.A. (2000) Archaeaplankton <strong>in</strong> the Columbia River, its<br />

estuary and the adjacent coastal ocean, USA. FEMS Microbiol. Ecol. 31, 231–239.<br />

Damste, J.S.S., Schouten, S., Hopmans, E.C., van Du<strong>in</strong>, A.C. and Geenevasen, J.A.<br />

(2002) Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether<br />

membrane lipid of cosmopolitan pelagic crenarchaeota. J. Lipid Res. 43,<br />

1641–1651.<br />

Dang, H., Li, J., Zhang, X., Li, T., Tian, F. and J<strong>in</strong>, W. (2009) Diversity and spatial<br />

distribution of amoA-encod<strong>in</strong>g archaea <strong>in</strong> the deep-sea sediments of the tropical<br />

west pacific cont<strong>in</strong>ental marg<strong>in</strong>. J. Appl. Microbiol. 106, 1482–1493.<br />

de la Torre, J.R., Walker, C.B., Ingalls, A.E., K€onneke, M. and Stahl, D.A. (2008)<br />

Cultivation of a thermophilic ammonia-oxidiz<strong>in</strong>g archaeon synthesiz<strong>in</strong>g crenarchaeol.<br />

Environ. Microbiol. 10, 810–818.


36 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

DeLong, E.F. (1992) Archaea <strong>in</strong> coastal mar<strong>in</strong>e environments. Proc. Natl. Acad. Sci.<br />

USA 89, 5685–5689.<br />

DeLong, E.F. (1998) Everyth<strong>in</strong>g <strong>in</strong> moderation: archaea as ‘non-extremophiles’.<br />

Curr. Op<strong>in</strong>. Genet. Dev. 8, 649–654.<br />

Di, H.J., Cameron, K.C., Shen, J.P., W<strong>in</strong>efield, C.S., O’Callaghan, M., Bowatte, S.<br />

and He, J.Z. (2009) Nitrification driven by bacteria and not archaea <strong>in</strong> nitrogenrich<br />

grassland soils. Nat. Geosci. 2, 621–624.<br />

Di, H., Cameron, K., Shen, J., W<strong>in</strong>efield, C., O’Callaghan, M., Bowatte, S. and He, J.<br />

(2010) Ammonia-oxidiz<strong>in</strong>g bacteria and archaea grow under contrast<strong>in</strong>g soil<br />

nitrogen conditions. FEMS Microbiol. Ecol. 64, 167–174.<br />

Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E. and Oakley, B.B. (2005)<br />

Ubiquity and diversity of ammonia-oxidiz<strong>in</strong>g archaea <strong>in</strong> water columns and sediments<br />

of the ocean. Proc. Natl. Acad. Sci. USA 102, 14683–14688.<br />

Fuhrman, J.A., McCallum, K. and Davis, A.A. (1992) Novel major archaebacterial<br />

group from mar<strong>in</strong>e plankton. Nature 356, 148–149.<br />

Garcia, J.-L., Patel, B.K.C. and Ollivier, B. (2000) Taxonomic, phylogenetic, and<br />

ecological diversity of methanogenic Archaea. Anaerobe 6, 205–226.<br />

Garrett, R.A. and Klenk, H.P. (2007) Archaea: Evolution, <strong>Physiology</strong>, and Molecular<br />

Biology. Blackwell Publish<strong>in</strong>g, S<strong>in</strong>gapore.<br />

Hallam, S.J., Konstant<strong>in</strong>idis, K.T., Putnam, N., Schleper, C., Watanabe, Y., Sugahara,<br />

J., Preston, C., de la Torre, J., Richardson, P.M. and DeLong, E.F. (2006a)<br />

Genomic analysis of the uncultivated mar<strong>in</strong>e crenarchaeote Cenarchaeum symbiosum.<br />

Proc. Natl. Acad. Sci. USA 103, 18296–18301.<br />

Hallam, S.J., M<strong>in</strong>cer, T.J., Schleper, C., Preston, C.M., Roberts, K., Richardson, P.M.<br />

and DeLong, E.F. (2006b) Pathways of carbon assimilation and ammonia oxidation<br />

suggested by environmental genomic analyses of mar<strong>in</strong>e Crenarchaeota.<br />

PLoS Biol. 4, 520–536.<br />

Hatzenpichler, R., Lebedeva, E.V., Spieck, E., Stoecker, K., Richter, A., Daims, H.<br />

and Wagner, M. (2008) A moderately thermophilic ammonia-oxidiz<strong>in</strong>g crenarchaeote<br />

from a hot spr<strong>in</strong>g. Proc. Natl. Acad. Sci. USA 105, 2134–2139.<br />

He, J., Shen, J., Zhang, L., Zhu, Y., Zheng, Y., Xu, M. and Di, H. (2007) Quantitative<br />

analyses of the abundance and composition of ammonia-oxidiz<strong>in</strong>g bacteria and<br />

ammonia-oxidiz<strong>in</strong>g archaea of a Ch<strong>in</strong>ese upland red soil under long-term fertilization<br />

practices. Environ. Microbiol. 9, 2364–2374.<br />

Herfort, L., Schouten, S., Abbas, B., Veldhuis, M.J.W., Coolen, M.J.L., Wuchter, C.,<br />

Boon, J.P., Herndl, G.J. and Damste, J.S.S. (2007) Variations <strong>in</strong> spatial and<br />

temporal distribution of Archaea <strong>in</strong> the North Sea <strong>in</strong> relation to environmental<br />

variables. FEMS Microbiol. Ecol. 62, 242–257.<br />

Herndl, G.J., Re<strong>in</strong>thaler, T., Teira, E., van Aken, H., Veth, C., Pernthaler, A. and<br />

Pernthaler, J. (2005) Contribution of Archaea to total prokaryotic production <strong>in</strong><br />

the deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303–2309.<br />

Herrmann, M., Saunders, A.M. and Schramm, A. (2009) Effect of lake trophic status<br />

and rooted macrophytes on community composition and abundance of ammoniaoxidiz<strong>in</strong>g<br />

prokaryotes <strong>in</strong> freshwater sediments. Appl. Environ. Microbiol. 75,<br />

3127–3136.<br />

Hoffmann, F., Radax, R., Woebken, D., Holtappels, M., Lavik, G., Rapp, H.T.,<br />

Schl€appy, M.-L., Schleper, C. and Kuypers, M.M.M. (2009) Complex nitrogen<br />

cycl<strong>in</strong>g <strong>in</strong> the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243.<br />

Ingalls, A.E., Shah, S.R., Hansman, R.L., Aluwihare, L.I., Santos, G.M., Druffel,<br />

E.R. and Pearson, A. (2006) Quantify<strong>in</strong>g archaeal community autotrophy <strong>in</strong> the


AMMONIA-OXIDISING ARCHAEA 37<br />

mesopelagic ocean us<strong>in</strong>g natural radiocarbon. Proc. Natl. Acad. Sci. USA 103,<br />

6442–6447.<br />

Jia, Z. and Conrad, R. (2009) Bacteria rather than Archaea dom<strong>in</strong>ate microbial<br />

ammonia oxidation <strong>in</strong> an agricultural soil. Environ. Microbiol. 11, 1658–1671.<br />

Jurgens, G., Glockner, F., Amann, R., Saano, A., Montonen, L., Likolammi, M. and<br />

Munster, U. (2000) Identification of novel Archaea <strong>in</strong> bacterioplankton of a boreal<br />

forest lake by phylogenetic analysis and fluorescent <strong>in</strong> situ hybridization. FEMS<br />

Microbiol. Ecol. 34, 45–56.<br />

Karner, M.B., DeLong, E.F. and Karl, D.M. (2001) Archaeal dom<strong>in</strong>ance <strong>in</strong> the<br />

mesopelagic zone of the Pacific Ocean. Nature 409, 507–510.<br />

Keough, B.P., Schmidt, T.M. and Hicks, R.E. (2003) Archaeal nucleic acids <strong>in</strong> picoplankton<br />

from great lakes on three cont<strong>in</strong>ents. Microb. Ecol. 46, 238–248.<br />

K€onneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B. and<br />

Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidiz<strong>in</strong>g mar<strong>in</strong>e<br />

archaeon. Nature 437, 543–546.<br />

Konstant<strong>in</strong>idis, K.T., Braff, J., Karl, D.M. and DeLong, E.F. (2009) Comparative<br />

metagenomic analysis of a microbial community resid<strong>in</strong>g at a depth of 4,000<br />

meters at station ALOHA <strong>in</strong> the North Pacific Subtropical Gyre. Appl.<br />

Environ. Microbiol. 75, 5345–5355.<br />

Kowalchuk, G.A. and Stephen, J.R. (2001) Ammonia-oxidiz<strong>in</strong>g bacteria: a model for<br />

molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529.<br />

Kuypers, M.M.M., Blokker, P., Erbacher, J., K<strong>in</strong>kel, H., Pancost, R.D., Schouten, S.<br />

and Damste, J.S.S. (2001) Massive expansion of mar<strong>in</strong>e archaea dur<strong>in</strong>g a mid-<br />

Cretaceous oceanic anoxic event. Science 293, 92–94.<br />

Kvist, T., Ahr<strong>in</strong>g, B.K. and Westermann, P. (2007) Archaeal diversity <strong>in</strong> Icelandic hot<br />

spr<strong>in</strong>gs. FEMS Microbiol. Ecol. 59, 71–80.<br />

Kvist, T., Mengewe<strong>in</strong>, A., Manzei, S., Ahr<strong>in</strong>g, B.K. and Westermann, P. (2005)<br />

Diversity of thermophilic and non-thermophilic Crenarchaeota at 80 degrees C.<br />

FEMS Microbiol. Lett. 244, 61–68.<br />

Lai, D., Spr<strong>in</strong>gstead, J.R. and Monbouquette, H.G. (2008) Effect of growth temperature<br />

on ether lipid biochemistry <strong>in</strong> Archaeoglobus fulgidus. Extremophiles 12,<br />

271–278.<br />

Lebedeva, E., Alawi, M., Fiencke, C., Namsaraev, B., Bock, E. and Spieck, E. (2005)<br />

Moderately thermophilic nitrify<strong>in</strong>g bacteria of a hot spr<strong>in</strong>g of the Baikal rift zone.<br />

FEMS Microbiol. Ecol. 54, 297–306.<br />

Lehtovirta, L.E., Prosser, J.I. and Nicol, G.W. (2009) Soil pH regulates the abundance<br />

and diversity of Group 1.1c Crenarchaeota. FEMS Microbiol. Ecol. 70,<br />

367–376.<br />

Le<strong>in</strong><strong>in</strong>ger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I.,<br />

Schuster, S.C. and Schleper, C. (2006) Archaea predom<strong>in</strong>ate among ammoniaoxidiz<strong>in</strong>g<br />

prokaryotes <strong>in</strong> soils. Nature 442, 806–809.<br />

Lieberman, R.L. and Rosenzweig, A.C. (2005) Crystal structure of a membranebound<br />

metalloenzyme that catalyses the biological oxidation of methane. Nature<br />

434, 177–182.<br />

López-Garcıa, P., Brochier, C., Moreira, D. and Rodrıguez-Valera, F. (2004)<br />

Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote<br />

reveals multiple horizontal gene transfers. Environ. Microbiol. 6,<br />

19–34.<br />

MacGregor, B.J., Moser, D.P., Alm, E.W., Nealson, K.H. and Stahl, D.A. (1997)<br />

Crenarchaeota <strong>in</strong> Lake Michigan sediment. Appl. Environ. Microbiol. 63,<br />

1178–1181.


38 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

Martens-Habbena, W., Berube, P.M., Urakawa, H., de la Torre, J.R. and Stahl, D.A.<br />

(2009) Ammonia oxidation k<strong>in</strong>etics determ<strong>in</strong>e niche separation of nitrify<strong>in</strong>g<br />

Archaea and Bacteria. Nature 461, 976–979.<br />

Mart<strong>in</strong>-Cuadrado, A.B., Rodriguez-Valera, F., Moreira, D., Alba, J.C., Ivars-<br />

Martınez, E., Henn, M.R., Talla, E. and López-Garcıa, P. (2008) H<strong>in</strong>dsight <strong>in</strong><br />

the relative abundance, metabolic potential and genome dynamics of uncultivated<br />

mar<strong>in</strong>e archaea from comparative metagenomic analyses of bathypelagic plankton<br />

of different oceanic regions. ISME J. 2(8); 865–886.<br />

Meyer, M., Stenzel, U. and Hofreiter, M. (2008) Parallel tagged sequenc<strong>in</strong>g on the 454<br />

platform. Nat. Protoc. 3, 267–278.<br />

M<strong>in</strong>cer, T.J., Church, M.J., Taylor, L.T., Preston, C., Karl, D.M. and DeLong, E.F.<br />

(2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers <strong>in</strong><br />

Monterey Bay and the North Pacific Subtropical Gyre. Environ. Microbiol. 9,<br />

1162–1175.<br />

Mohamed, N.M., Saito, K., Tal, Y. and Hill, R.T. (2010) Diversity of aerobic and<br />

anaerobic ammonia-oxidiz<strong>in</strong>g bacteria <strong>in</strong> mar<strong>in</strong>e sponges. ISME J. 4, 38–48.<br />

Mosier, A.C. and Francis, C.A. (2008) Relative abundance and diversity of ammoniaoxidiz<strong>in</strong>g<br />

archaea and bacteria <strong>in</strong> the San Francisco Bay estuary. Environ.<br />

Microbiol. 10, 3002–3016.<br />

Murray, A.E., Preston, C.M., Massana, R., Taylor, L.T., Blakis, A., Wu, K. and<br />

DeLong, E.F. (1998) Seasonal and spatial variability of bacterial and archaeal<br />

assemblages <strong>in</strong> the coastal waters near Anvers Island, Antarctica. Appl. Environ.<br />

Microbiol. 64, 2585–2595.<br />

Nealson, K.H. and Venter, J.C. (2007) Metagenomics and the global ocean survey:<br />

what’s <strong>in</strong> it for us, and why should we care? ISME J. 1, 185–187.<br />

Nicol, G.W., Tscherko, D., Chang, L., Hammesfahr, U. and Prosser, J.I. (2006)<br />

Crenarchaeal community assembly and microdiversity <strong>in</strong> develop<strong>in</strong>g soils at two<br />

sites associated with deglaciation. Environ. Microbiol. 8, 1382–1393.<br />

Nicol, G.W., Le<strong>in</strong><strong>in</strong>ger, S., Schleper, C. and Prosser, J.I. (2008) The <strong>in</strong>fluence of soil<br />

pH on the diversity, abundance and transcriptional activity of ammonia-oxidiz<strong>in</strong>g<br />

archaea and bacteria. Environ. Microbiol.<br />

Nicol, G.W. and Schleper, C. (2006) Ammonia-oxidis<strong>in</strong>g Crenarchaeota: important<br />

players <strong>in</strong> the nitrogen cycle? Trends Microbiol. 14, 207–212.<br />

O’Mullan, G.D. and Ward, B.B. (2005) Relationship of temporal and spatial variabilities<br />

of ammonia-oxidiz<strong>in</strong>g bacteria to nitrification rates <strong>in</strong> Monterey Bay,<br />

California. Appl. Environ. Microbiol. 71, 697–705.<br />

Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L. and Schleper, C.<br />

(2003) Diversity and abundance of Crenarchaeota <strong>in</strong> terrestrial habitats studied by<br />

16S RNA surveys and real time PCR. Environ. Microbiol. 5, 787–797.<br />

Offre, P., Prosser, J.I. and Nicol, G. (2009) Growth of ammonia-oxidiz<strong>in</strong>g<br />

archaea <strong>in</strong> soil microcosms is <strong>in</strong>hibited by acetylene. FEMS Microbiol. Ecol.<br />

70, 99–108.<br />

Ouverney, C.C. and Fuhrman, J.A. (2000) Mar<strong>in</strong>e planktonic archaea take up am<strong>in</strong>o<br />

acids. Appl. Environ. Microbiol. 66, 4829–4833.<br />

Pearson, A., Huang, Z., Ingalls, A.E., Romanek, C.S., Wiegel, J., Freeman, K.H.,<br />

Smittenberg, R.H. and Zhang, C.L. (2004) Nonmar<strong>in</strong>e crenarchaeol <strong>in</strong> Nevada hot<br />

spr<strong>in</strong>gs. Appl. Environ. Microbiol. 70, 5229–5237.<br />

Pearson, A., McNichol, A.P., Benitez-Nelson, B.C., Hayes, J.M. and Egl<strong>in</strong>ton, T.I.<br />

(2001) Orig<strong>in</strong>s of lipid biomarkers <strong>in</strong> Santa Monica Bas<strong>in</strong> surface sediment: a case


AMMONIA-OXIDISING ARCHAEA 39<br />

study us<strong>in</strong>g compound-specific D14C analysis. Geochim. Cosmochim. Acta 65,<br />

3123–3137.<br />

Pitcher, A., Schouten, S. and Damste, J.S.S. (2009) In situ production of Crenarchaeol<br />

<strong>in</strong> two California hot spr<strong>in</strong>gs. Appl. Environ. Microbiol. 75, 4443–4451.<br />

Preston, C.M., Wu, K.Y., Mol<strong>in</strong>ski, T.F. and DeLong, E.F. (1996) A psychrophilic<br />

crenarchaeon <strong>in</strong>habits a mar<strong>in</strong>e sponge: Cenarchaeum symbiosum gen. nov., sp.<br />

nov. Proc. Natl. Acad. Sci. USA 93, 6241–6246.<br />

Prosser, J. (1989) Autotrophic nitrification <strong>in</strong> bacteria. Adv. Microbiol. Physiol. 30,<br />

125–181.<br />

Prosser, J.I. and Nicol, G.W. (2008) Relative contributions of archaea and bacteria to<br />

aerobic ammonia oxidation <strong>in</strong> the environment. Environ. Microbiol. 10,<br />

2931–2941.<br />

Purkhold, U., Pommeren<strong>in</strong>g-R€oser, A., Juretschko, S., Schmid, M.C., Koops, H.P.<br />

and Wagner, M. (2000) Phylogeny of all recognized species of ammonia oxidizers<br />

based on comparative 16S rRNA and amoA sequence analysis: implications for<br />

molecular diversity surveys. Appl. Environ. Microbiol. 66, 5368–5382.<br />

Quaiser, A., Ochsenreiter, T., Klenk, H.-P., Kletz<strong>in</strong>, A., Treusch, A.H., Meurer, G.b.,<br />

Eck, J., Sensen, C.W. and Schleper, C. (2002) First <strong>in</strong>sight <strong>in</strong>to the genome of an<br />

uncultivated crenarchaeote from soil. Environ. Microbiol. 4, 603–611.<br />

Reigstad, L.J., Richter, A., Daims, H., Urich, T., Schwark, L. and Schleper, C. (2008)<br />

Nitrification <strong>in</strong> terrestrial hot spr<strong>in</strong>gs of Iceland and Kamchatka. FEMS Microbiol.<br />

Ecol. 64, 167–174.<br />

Sandaa, R.A., Enger, O. and Torsvik, V. (1999) Abundance and diversity of Archaea<br />

<strong>in</strong> heavy-metal-contam<strong>in</strong>ated soils. Appl. Environ. Microbiol. 65, 3293–3297.<br />

Santoro, A.E., Francis, C.A., de Sieyes, N.R. and Boehm, A.B. (2008) Shifts <strong>in</strong> the<br />

relative abundance of ammonia-oxidiz<strong>in</strong>g bacteria and archaea across physicochemical<br />

gradients <strong>in</strong> a subterranean estuary. Environ. Microbiol. 10,<br />

1068–1079.<br />

Santoro, A.E., Casciotti, K.L. and Francis, C.A. (2010) Activity, abundance and<br />

diversity of nitrify<strong>in</strong>g archaea and bacteria <strong>in</strong> the central California Current.<br />

Environ. Microbiol. 12, 1989–2006.<br />

Schauss, K., Focks, A., Le<strong>in</strong><strong>in</strong>ger, S., Kotzerke, A., Heuer, H., Thiele-Bruhn, S.,<br />

Sharma, S., Wilke, B.M., Matthies, M., Smalla, K., Munch, J.C., Amelung, W.,<br />

Kaupenjohann, M., Schloter, M. and Schleper, C. (2009) Dynamics and functional<br />

relevance of ammonia-oxidiz<strong>in</strong>g archaea <strong>in</strong> two agricultural soils. Environ.<br />

Microbiol. 11, 446–456.<br />

Schleper, C., DeLong, E.F., Preston, C.M., Feldman, R.A., Wu, K.-Y. and Swanson,<br />

R.V. (1998) Genomic analysis reveals chromosomal variation <strong>in</strong> natural populations<br />

of the uncultured psychrophilic archaeon Cenarchaeum symbiosum.<br />

J. Bacteriol. 180, 5003–5009.<br />

Schleper, C., Holben, W. and Klenk, H.P. (1997) Recovery of crenarchaeotal ribosomal<br />

DNA sequences from freshwater-lake sediments. ApplEnviron Microbiol<br />

63, 321–323.<br />

Schleper, C., Jurgens, G. and Jonuscheit, M. (2005) Genomic studies of uncultivated<br />

archaea. Nat. Rev. Microbiol. 3, 479–488.<br />

Schouten, S., Hopmans, E.C., Baas, M., Boumann, H., Standfest, S., Konneke, M.,<br />

Stahl, D.A. and Damste, J.S.S. (2008) Intact membrane lipids of Candidatus<br />

‘Nitrosopumilus maritimus’, a cultivated representative of the cosmopolitan mesophilic<br />

Group I Crenarchaeota. Appl. Environ. Microbiol. 74, 2433–2440.


40 CHRISTA SCHLEPER AND GRAEME W. NICOL<br />

Schouten, S., van der Meer, M.T., Hopmans, E.C., Rijpstra, W.I., Reysenbach, A.L.,<br />

Ward, D.M. and Damste, J.S.S. (2007) Archaeal and bacterial glycerol dialkyl<br />

glycerol tetraether lipids <strong>in</strong> hot spr<strong>in</strong>gs of Yellowstone National Park (USA).<br />

Appl. Environ. Microbiol. 73, 6181–6191.<br />

Siboni, N., Ben-Dov, E., Sivan, A. and Kushmaro, A. (2008) Global distribution and<br />

diversity of coral-associated Archaea and their possible role <strong>in</strong> the coral holobiont<br />

nitrogen cycle. Environ. Microbiol. 10, 2979–2990.<br />

Simon, H.M., Dodsworth, J.A. and Goodman, R.M. (2000) Crenarchaeota colonize<br />

terrestrial plant roots. Environ. Microbiol. 2, 495–505.<br />

Spang, A., Hatzenpichler, R., Brochier-Armanet, C., Rattei, T., Tischler, P., Spieck,<br />

E., Streit, W., Stahl, D.A., Wagner, M. and Schleper, C. (2010) Dist<strong>in</strong>ct gene set <strong>in</strong><br />

two different l<strong>in</strong>eages of ammonia-oxidiz<strong>in</strong>g archaea supports the phylum<br />

Thaumarchaeota. Trends Microbiol. 18, 331–340.<br />

Steger, D., Ett<strong>in</strong>ger-Epste<strong>in</strong>, P., Whalan, S., Hentschel, U., de Nys, R., Wagner, M.<br />

and Taylor, M.W. (2008) Diversity and mode of transmission of ammonia-oxidiz<strong>in</strong>g<br />

archaea <strong>in</strong> mar<strong>in</strong>e sponges. Environ. Microbiol. 10, 1087–1094.<br />

Ste<strong>in</strong>, J.L., Marsh, T.L., Wu, K.Y., Shizuya, H. and DeLong, E.F. (1996)<br />

Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair<br />

genome fragment from a planktonic mar<strong>in</strong>e archaeon. J. Bacteriol. 178,<br />

591–599.<br />

Takai, K., Moser, D.P., DeFlaun, M., Onstott, T.C. and Fredrickson, J.K. (2001)<br />

Archaeal diversity <strong>in</strong> waters from deep South African gold m<strong>in</strong>es. Appl.<br />

Environ. Microbiol. 67, 5750–5760.<br />

Taylor, M.W., Radax, R., Steger, D. and Wagner, M. (2007) Sponge-associated<br />

microorganisms: evolution, ecology, and biotechnological potential. Microbiol.<br />

Mol. Biol. Rev. 71, 295–347.<br />

Teira, E., Van Aken, H., Veth, C. and Herndl, G.J. (2006) Archaeal uptake of<br />

enantiomeric am<strong>in</strong>o acids <strong>in</strong> the meso- and bathypelagic waters of the North<br />

Atlantic. Limnol. Oceanogr. 51, 60–69.<br />

Tourna, M., Freitag, T.E., Nicol, G.W. and Prosser, J.I. (2008) Growth, activity and<br />

temperature responses of ammonia-oxidiz<strong>in</strong>g archaea and bacteria <strong>in</strong> soil microcosms.<br />

Environ. Microbiol. 10, 1357–1364.<br />

Treusch, A.H., Kletz<strong>in</strong>, A., Raddatz, G., Ochsenreiter, T., Quaiser, A., Meurer, G.,<br />

Schuster, S.C. and Schleper, C. (2004a) Characterization of large-<strong>in</strong>sert DNA<br />

libraries from soil for environmental genomic studies of Archaea. Environ.<br />

Microbiol. 6, 970–980.<br />

Treusch, A.H. and Schleper, C. (2004b) The uncultivated crenarchaeota from soil:<br />

what can we learn from metagenomics? 10th International Symposium on<br />

<strong>Microbial</strong>Ecology (ISME). Cancun, Mexico.<br />

Treusch, A.H., Le<strong>in</strong><strong>in</strong>ger, S., Kletz<strong>in</strong>, A., Schuster, S.C., Klenk, H.P. and Schleper, C.<br />

(2005) Novel genes for nitrite reductase and Amo-related prote<strong>in</strong>s <strong>in</strong>dicate a role<br />

of uncultivated mesophilic crenarchaeota <strong>in</strong> nitrogen cycl<strong>in</strong>g. Environ. Microbiol.<br />

7, 1985–1995.<br />

Venter, J.C., Rem<strong>in</strong>gton, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A.,<br />

Wu, D., Paulsen, I., Nelson, K.E., Nelson, W., Fouts, D.E., Levy, S., Knap, A.H.,<br />

Lomas, M.W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R.,<br />

Baden-Tillson, H., Pfannkoch, C., Rogers, Y.H. and Smith, H.O. (2004)<br />

Environmental genome shotgun sequenc<strong>in</strong>g of the Sargasso Sea. Science 304,<br />

66–74.


AMMONIA-OXIDISING ARCHAEA 41<br />

Vetriani, C., Reysenbach, A. and Dore, J. (1998) Recovery and phylogenetic analysis<br />

of archaeal rRNA sequences from cont<strong>in</strong>ental shelf sediments. FEMS Microbiol.<br />

Lett. 161, 83–88.<br />

Walker, C.B., de la Torre, J., Klotz, M.G., Urakawa, H., P<strong>in</strong>el, N., Arp, D.J., Brochier-<br />

Armanet, C., Cha<strong>in</strong>, P.S.G., Chan, P.P., Gollabgir, A., Hemp, J., H€ugler, M., Karr,<br />

E.A., K€onneke, M., Sh<strong>in</strong>, M., Lawton, T.J., Lowe, T., Martens-Habbena, W.,<br />

Sayavedra-Soto, L.A., Lang, D., Sievert, S.M., Rosenzweig, A.C., Mann<strong>in</strong>g,<br />

G. and Stahl, D.A. (2010) Nitrosopumilus maritimus genome reveals unique<br />

mechanisms for nitrification and autotrophy <strong>in</strong> globally distributed mar<strong>in</strong>e<br />

crenarchaea. Proc. Natl. Acad. Sci. USA 107, 8818–8823.<br />

Ward, B.B. (2000) Nitrification and the mar<strong>in</strong>e nitrogen cycle. In: Kirchmann, D.L.<br />

(Ed.), <strong>Microbial</strong> Ecology of the Oceans. Wiley Series, New York, pp. 427–453.<br />

Ward, B.B. (2005) Temporal variability <strong>in</strong> nitrification rates and related biogeochemical<br />

factors <strong>in</strong> Monterey Bay, California, USA. Mar. Ecol. Prog. Ser. 292,97–109.<br />

Weidler, G.W., Gerbl, F.W. and Stan-Lotter, H. (2008) Crenarchaeota and their role<br />

<strong>in</strong> the nitrogen cycle <strong>in</strong> a subsurface radioactive thermal spr<strong>in</strong>g <strong>in</strong> the Austrian<br />

Central Alps. Appl. Environ. Microbiol. 74, 5934–5942.<br />

Whitman, W.B., Coleman, D.C. and Wiebe, W.J. (1998) Prokaryotes: the unseen<br />

majority. Proc. Natl. Acad. Sci. USA 95, 6578–6583.<br />

Woese, C.R. (1987) Bacterial evolution. Microbiol. Rev. 51, 221–271.<br />

Woese, C.R. and Fox, G.E. (1977) Phylogenetic structure of the prokaryotic doma<strong>in</strong>:<br />

the primary k<strong>in</strong>gdoms. Proc. Natl. Acad. Sci. USA 74, 5088–5090.<br />

Wrage, N., Velthof, G.L., Van Beusichem, M.L. and Oenema, O. (2001) Role of<br />

nitrifier denitrification <strong>in</strong> the production of nitrous oxide. Soil Biol. Biochem. 33,<br />

1723–1732.<br />

Wuchter, C., Abbas, B., Coolen, M.J., Herfort, L., van Bleijswijk, J., Timmers, P.,<br />

Strous, M., Teira, E., Herndl, G.J., Middelburg, J.J., Schouten, S. and Damste, J.S.<br />

S. (2006) Archaeal nitrification <strong>in</strong> the ocean. Proc. Natl. Acad. Sci. USA 103,<br />

12317–12322.<br />

Wuchter, C., Schouten, S., Boschker, H.T. and Damste, J.S.S. (2003) Bicarbonate<br />

uptake by mar<strong>in</strong>e Crenarchaeota. FEMS Microbiol. Lett. 219, 203–207.<br />

Wuchter, C., Schouten, S., Coolen, M.J.L. and Damste, J.S.S. (2004) Temperaturedependent<br />

variation <strong>in</strong> the distribution of tetraether membrane lipids of mar<strong>in</strong>e<br />

Crenarchaeota: implications for TEX86 paleothermometry. Paleooceanography<br />

19, PA4028.<br />

Zhang, C.L., Pearson, A., Yi-Lian, L., Mills, G. and Wiegel, J. (2006) Thermophilic<br />

temperature optimum for crenarchaeol synthesis and its implication for archaeal<br />

evolution. Appl. Environ. Microbiol. 72, 4419–4422.<br />

Zhang, C.L., Ye, Q., Huang, Z.Y., Li, W.J., Chen, J.Q., Song, Z.Q., Zhao, W.D.,<br />

Bagwell, C., Inskeep, W.P., Ross, C., Gao, L., Wiegel, J., Romanek, C.S., Shock,<br />

E.L. and Hedlund, B.P. (2008) Global occurrence of archaeal amoA genes <strong>in</strong><br />

terrestrial hot spr<strong>in</strong>gs. Appl. Environ. Microbiol. 74, 6417–6426.


This page <strong>in</strong>tentionally left blank


Reductive Stress <strong>in</strong> Microbes: Implications for<br />

Understand<strong>in</strong>g Mycobacterium tuberculosis<br />

Disease and Persistence<br />

Aisha Farhana 1 , Loni Guidry 1 , Anup Srivastava 1 , Amit S<strong>in</strong>gh 2 ,<br />

Mary K. Hondalus 3 and Adrie J.C. Steyn 1<br />

1 Department of Microbiology, University of Alabama at Birm<strong>in</strong>gham, AL, USA<br />

2 International Center for Genetic Eng<strong>in</strong>eer<strong>in</strong>g and Biotechnology, Aruna Asaf Ali Marg,<br />

New Delhi, India<br />

3 Department of Infectious Diseases, University of Georgia, Athens, GA, USA<br />

ABSTRACT<br />

Mycobacterium tuberculosis (Mtb) is a remarkably successful pathogen that<br />

is capable of persist<strong>in</strong>g <strong>in</strong> host tissues for decades without caus<strong>in</strong>g disease.<br />

Years after <strong>in</strong>itial <strong>in</strong>fection, the bacilli may resume growth, the outcome of<br />

which is active tuberculosis (TB). In order to establish <strong>in</strong>fection, resist host<br />

defences and re-emerge, Mtb must coord<strong>in</strong>ate its metabolism with the<br />

<strong>in</strong> vivo environmental conditions and nutrient availability with<strong>in</strong> the primary<br />

site of <strong>in</strong>fection, the lung. Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g metabolic homeostasis for an<br />

<strong>in</strong>tracellular pathogen such as Mtb requires a carefully orchestrated series of<br />

oxidation–reduction reactions, which, if unbalanced, generate oxidative or<br />

reductive stress. The importance of oxidative stress <strong>in</strong> microbial<br />

pathogenesis has been appreciated and well studied over the past several<br />

decades. However, the role of its counterpart, reductive stress, has been<br />

largely ignored. Reductive stress is def<strong>in</strong>ed as an aberrant <strong>in</strong>crease <strong>in</strong><br />

reduc<strong>in</strong>g equivalents, the magnitude and identity of which is determ<strong>in</strong>ed<br />

by host carbon source utilisation and <strong>in</strong>fluenced by the presence of<br />

host-generated gases (e.g. NO, CO, O2 and CO 2). This <strong>in</strong>creased reductive<br />

ADVANCES IN MICROBIAL PHYSIOLOGY, VOL. 57 Copyright Ó 2010 by Elsevier Ltd.<br />

ISSN: 0065-2911 All rights reserved<br />

DOI:10.1016/B978-0-12-381045-8.00002-3


44 AISHA FARHANA ET AL.<br />

power must be dissipated for bacterial survival. To recycle reduc<strong>in</strong>g<br />

equivalents, microbes have evolved unique electron ‘s<strong>in</strong>ks’ that are dist<strong>in</strong>ct<br />

for their particular environmental niche. In this review, we describe the<br />

specific mechanisms that some microbes have evolved to dispel reductive<br />

stress. The <strong>in</strong>tention of this review is to <strong>in</strong>troduce the concept of reductive<br />

stress, <strong>in</strong> tuberculosis research <strong>in</strong> particular, <strong>in</strong> the hope of stimulat<strong>in</strong>g new<br />

avenues of <strong>in</strong>vestigation.<br />

Abbreviations . . . ............................................ 44<br />

1. Introduction ................................................ 45<br />

2. Scope. . . .................................................. 46<br />

3. The Concept of Reductive Stress ............................... 47<br />

4. Overview: General Physiological Characteristics of Mycobacterium 49<br />

tuberculosis ................................................<br />

4.1. Historic Overview. ....................................... 49<br />

4.2. Environmental Factors that Influence Metabolism .............. 50<br />

5. Reductive S<strong>in</strong>ks <strong>in</strong> Microbes . . ................................. 59<br />

5.1. Fermentation ........................................... 59<br />

5.2. Polymer Deposition ...................................... 64<br />

5.3. Nitrate Reductase ....................................... 66<br />

5.4. Phenaz<strong>in</strong>e Production . . . ................................. 67<br />

5.5. Hydrogenases . . . ....................................... 70<br />

5.6. The Reverse TCA (rTCA) Cycle . ........................... 72<br />

5.7. Carbon Monoxide (CO) Dehydrogenase (CODH). .............. 74<br />

5.8. Other Mechanisms ...................................... 75<br />

6. Redox S<strong>in</strong>ks <strong>in</strong> Mycobacteria. . ................................. 76<br />

6.1. The Mycobacterial Intracellular Redox Environment. . . .......... 76<br />

6.2. The Mtb<br />

Dos Dormancy Regulon ........................... 79<br />

6.3. Mtb WhiB3 is an Intracellular Redox Sensor<br />

88<br />

that Counters Reductive Stress. . ...........................<br />

7. Conclud<strong>in</strong>g Remarks . . ....................................... 95<br />

Acknowledgements . . . ....................................... 98<br />

References. ................................................ 98<br />

ABBREVIATIONS<br />

GSH glutathione<br />

GSSG glutathione disulfide (oxidised glutathione)<br />

49<br />

88


REDUCTIVE STRESS IN MICROBES 45<br />

Sometimes scientific progress is not based on a discovery or the generation<br />

of new data but on a change of viewpo<strong>in</strong>t that allows one to see a set<br />

of already exist<strong>in</strong>g data <strong>in</strong> a new light’<br />

(Michael Reth)<br />

1. INTRODUCTION<br />

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a disease<br />

of great <strong>in</strong>ternational concern and the lead<strong>in</strong>g cause of death worldwide from<br />

a curable <strong>in</strong>fectious disease. Across the globe, one human life is lost to TB<br />

every 15 s (WHO Factsheet, 2009). The situation is further exacerbated by<br />

the coexistent HIV epidemic, and the emergence of multidrug resistant<br />

(MDR), extensively drug resistant (XDR) and Super-XDR (S-XDR) Mtb<br />

stra<strong>in</strong>s (Gandhi et al., 2006; Pillay and Sturm, 2007; Velayati et al., 2009).<br />

Despite the availability of ample genomic, proteomic and bio<strong>in</strong>formatic <strong>in</strong>formation<br />

on Mtb, it is estimated that <strong>in</strong> 2009 more TB-related deaths occurred<br />

than at any time <strong>in</strong> history (Fauci, 2008). The variably efficacious BCG<br />

(Bacille Calmette-Guer<strong>in</strong>) vacc<strong>in</strong>e rema<strong>in</strong>s the only available TB vacc<strong>in</strong>e<br />

and no new anti-mycobacterial drug has been deployed s<strong>in</strong>ce the discovery<br />

of rifampic<strong>in</strong> <strong>in</strong> 1963 (Duncan, 2004; Young et al., 2008; Kaufmann et al.,<br />

2010). The slow pace <strong>in</strong> the development of TB <strong>in</strong>tervention strategies compared<br />

to an overwhelm<strong>in</strong>g <strong>in</strong>crease <strong>in</strong> global TB <strong>in</strong>cidence compromises the<br />

achievements made <strong>in</strong> TB control. An important hurdle to the development<br />

of successful TB treatment regimes is the lack of knowledge concern<strong>in</strong>g the<br />

mechanisms by which Mtb is able to persist <strong>in</strong> a dormant state, unresponsive<br />

to anti-mycobacterial drugs (Gomez and McK<strong>in</strong>ney, 2004; Sacchett<strong>in</strong>i et al.,<br />

2008; Ma et al., 2010). We have yet to understand the physiological status of<br />

the persist<strong>in</strong>g mycobacterial organisms or the environmental cues which lead<br />

to reactivation of disease. Detailed knowledge of this persistent state of Mtb is<br />

crucial for the establishment of efficacious TB eradication schemes.<br />

Mtb displays a remarkable capacity to persist <strong>in</strong> latent form and switch<br />

between replicative and non-replicative (dormant) states <strong>in</strong> response to<br />

environmental signals generated by the host immune responses (Cosma<br />

et al., 2003; Warner and Mizrahi, 2007; Rustad et al., 2009). Mtb harbours<br />

the mach<strong>in</strong>ery necessary to synthesise almost all essential vitam<strong>in</strong>s, am<strong>in</strong>o<br />

acids and enzyme cofactors, provid<strong>in</strong>g the organism with the ability to alter<br />

its metabolic state enabl<strong>in</strong>g an aerobic (e.g. oxidative phosphorylation) and<br />

possibly an anaerobic mode of respiration (Wheeler and Ratledge, 1994;<br />

Muttucumaru et al., 2004). Importantly, this metabolic flexibility ensures


46 AISHA FARHANA ET AL.<br />

bacilli survival <strong>in</strong> the varied environments with<strong>in</strong> the human host rang<strong>in</strong>g<br />

from that of high oxygen tension <strong>in</strong> the lung alveolus to microaerophilic<br />

conditions with<strong>in</strong> the tuberculous granuloma (Ulrichs and Kaufmann, 2006).<br />

Most studies of the physiology and biochemistry of mycobacteria were<br />

carried out <strong>in</strong> the early 1910–1980s, and it was discovered that fundamental<br />

differences exist <strong>in</strong> the metabolism of Mtb cultured <strong>in</strong> vitro and that of bacilli<br />

grow<strong>in</strong>g <strong>in</strong> vivo. An important difference <strong>in</strong>cludes demonstrat<strong>in</strong>g that Mtb<br />

harvested from lungs showed <strong>in</strong>active respiratory responses to various carbohydrates<br />

and glycolytic <strong>in</strong>termediates, whereas positive responses were<br />

obta<strong>in</strong>ed to these same substrates by the same stra<strong>in</strong> when cultured <strong>in</strong> vitro<br />

(Dubos, 1953; Artman and Bekierkunst, 1961; Segal, 1965, 1984; Brez<strong>in</strong>a<br />

et al., 1967). Unfortunately, much of the data generated from these classical<br />

studies rema<strong>in</strong> hidden <strong>in</strong> the historical ‘archives’ not accessible through<br />

PubMed or similar literature database searches. In part, the goal of this<br />

review is to excavate some of this ‘buried’ <strong>in</strong>formation on Mtb and <strong>in</strong>tegrate<br />

it with the current understand<strong>in</strong>g of metabolic paradigms of prokaryotic and<br />

lower eukaryotic organisms.<br />

2. SCOPE<br />

In this review, we aim to <strong>in</strong>troduce the idea of ‘reductive stress’ <strong>in</strong> TB<br />

research. A strong emphasis is placed on the historical knowledge of Mtb<br />

physiology obta<strong>in</strong>ed by <strong>in</strong> vivo studies performed <strong>in</strong> the earlier half of the last<br />

century, because <strong>in</strong> some respects, these analyses are a lost art <strong>in</strong> the modern<br />

era of molecular techniques. This is then followed by a discussion of the<br />

<strong>in</strong> vivo factors that affect Mtb growth and metabolic mechanisms, such as<br />

redox s<strong>in</strong>ks, which microorganisms have evolved to ma<strong>in</strong>ta<strong>in</strong> redox homeostasis<br />

<strong>in</strong> response to oxido-reductive stress. Parallels between oxidoreductive<br />

pathways <strong>in</strong> mycobacteria versus other bacteria and yeast are<br />

highlighted. Metabolic eng<strong>in</strong>eer<strong>in</strong>g approaches that modulate reductive<br />

stress are also described. Next, the <strong>in</strong>tracellular redox environment of Mtb<br />

is discussed followed by a description of the best-known paradigm for signal<br />

transduction <strong>in</strong> Mtb: the Dos dormancy regulon, and its role <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

redox balance. Lastly, the role of the <strong>in</strong>tracellular redox sensor, Mtb WhiB3,<br />

<strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g redox homeostasis is discussed. This review does not cover<br />

oxidative stress per se, but it is considered when appropriate to the theme.<br />

Regard<strong>in</strong>g virulence and persistence, and general mycobacterial metabolism,<br />

we refer the reader to several articles that discuss these issues <strong>in</strong> detail<br />

(Ramakrishnan et al., 1972; Cosma et al., 2003; Boshoff and Barry, 2005; Hett


REDUCTIVE STRESS IN MICROBES 47<br />

and Rub<strong>in</strong>, 2008; Barry et al., 2009; Rustad et al., 2009; Meena and Rajni,<br />

2010; Paige and Bishai, 2010). In sum, we aim to present a clear analysis of<br />

the current knowledge of reductive stress <strong>in</strong> microorganisms <strong>in</strong> order to<br />

provide a better foundation for future <strong>in</strong>terpretation of the physiological<br />

events associated with Mtb <strong>in</strong>fection.<br />

3. THE CONCEPT OF REDUCTIVE STRESS<br />

The physiology and metabolism of Mtb are unique, allow<strong>in</strong>g it to survive<br />

under a wide range of <strong>in</strong> vitro and <strong>in</strong> vivo environmental conditions. This<br />

flexibility is evident from the fact that Mtb is exposed to a plethora of<br />

products <strong>in</strong>clud<strong>in</strong>g carbohydrates, organic acids, lipids, am<strong>in</strong>o acids, ions,<br />

etc., as well as gases such as nitric oxide (NO) (Voskuil et al., 2003, 2009)<br />

carbon monoxide (CO) (Kumar et al., 2007, 2008), carbon dioxide (CO 2)<br />

(Florczyk et al., 2003), oxygen (O 2)(Voskuil et al., 2003) and its correspond<strong>in</strong>g<br />

free radicals <strong>in</strong> vivo. These molecules subsequently <strong>in</strong>flict either oxidative<br />

or reductive stress with<strong>in</strong> the bacteria. Over the years, oxidative stress<br />

and the critical role it plays <strong>in</strong> a wide range of diseases has been well studied;<br />

however, the role of its counterpart, namely reductive stress, has largely been<br />

underappreciated. The likely reasons for this, primarily, <strong>in</strong>clude a lack of<br />

understand<strong>in</strong>g of the concept of reductive stress and the dearth of experimental<br />

techniques for exam<strong>in</strong><strong>in</strong>g it (Ghyczy and Boros, 2007).<br />

A crucial element <strong>in</strong> reductive stress is redox coupl<strong>in</strong>g, which entails<br />

electron transfer. More specifically, redox reactions <strong>in</strong>volve the transfer of<br />

electrons and hydrogen atoms from an electron donor (reductant or reduc<strong>in</strong>g<br />

agent) to an electron acceptor (oxidant or oxidis<strong>in</strong>g agent), which together<br />

function as a redox couple. These redox couples (e.g. NAD + /NADH,<br />

E 0’ = 315 mV; NADP + /NADPH, E 0’ = 320 mV; FAD/FADH2,<br />

E 0’ = 219 mV; 2GSH/GSSG, E hc = 250 mV [10 mM]) are vital to both<br />

anabolic and catabolic reactions. NADH functions as an energy-rich electron<br />

transfer coenzyme, which generates almost three ATPs for every NADH to<br />

NAD + oxidation event, whereas NAD + functions as a s<strong>in</strong>k for electrons. In<br />

contrast, NADPH is the primary source of electrons for reductive synthesis<br />

or anabolism of fatty acids (FAs) and reduction of the glutathione system,<br />

which is the key cellular antioxidant defence system. Thus, the NAD + /<br />

NADH coenzyme system required for catabolism contrasts with the<br />

NADPH/NADP + system that is required for anabolism (Voet et al., 2008).<br />

The above redox couples are often thermodynamically l<strong>in</strong>ked because<br />

elevated levels of either reductant or pro-oxidant are deleterious to the


48 AISHA FARHANA ET AL.<br />

microbial cell (Schafer and Buettner, 2001). Balanced rates of oxidation and<br />

reduction of these molecules are necessary for optimal metabolic function as<br />

redox imbalance <strong>in</strong> cells can lead to either oxidative or reductive stress, of<br />

which the latter has mostly escaped the attention of the scientific <strong>in</strong>vestigator.<br />

Reductive stress can be def<strong>in</strong>ed as an abnormal <strong>in</strong>crease <strong>in</strong> reductive<br />

equivalents (e.g. NADH, NADPH, GSH, etc.) or reduc<strong>in</strong>g power<br />

(Dimmeler and Zeiher, 2007; Ghyczy and Boros, 2007; Zhang et al., 2010).<br />

The central focus of this review is to exam<strong>in</strong>e the mechanisms used by<br />

microorganisms and Mtb <strong>in</strong> particular to recycle reduc<strong>in</strong>g equivalents <strong>in</strong><br />

order to ma<strong>in</strong>ta<strong>in</strong> redox balance.<br />

The formal concept of reductive stress emerged little over a decade ago.<br />

Us<strong>in</strong>g animal models for diabetes, several studies reported that the metabolic<br />

imbalance l<strong>in</strong>ked to an <strong>in</strong>creased blood flow to the ret<strong>in</strong>a, kidney and peripheral<br />

nerve is cytosolic reductive stress. This <strong>in</strong>creased NADH/NAD + ratio or<br />

hypoxia-like state is l<strong>in</strong>ked to the <strong>in</strong>creased oxidation of substrates such as<br />

sorbitol, glucoronic acid and non-esterified FAs, and to the reduction of<br />

NAD + to yield NADH (Ido et al., 1997; Tilton, 2002; Ido, 2007). S<strong>in</strong>ce an<br />

<strong>in</strong>crease <strong>in</strong> NADH was observed under hypoxic conditions, the observation<br />

was termed ‘pseudohypoxia’, orreferredtoasthe‘reductive stress hypothesis’<br />

(Ido, 2007). In a sem<strong>in</strong>al study, Rajasekaran et al. (2007) reported reductive<br />

stress <strong>in</strong> mice express<strong>in</strong>g the mutant human ab-crystall<strong>in</strong> gene. In this<br />

study, because of <strong>in</strong>creased activity of glucose-6-phosphate dehydrogenase<br />

(G6PD), enhanced levels of NADPH and GSH caused prote<strong>in</strong> aggregation,<br />

cardiomyopathy and <strong>in</strong>creased expression of heat shock prote<strong>in</strong>s (Hsp)<br />

<strong>in</strong>clud<strong>in</strong>g Hsp27. S<strong>in</strong>ce NADPH is a cofactor of NADPH oxidases and NO<br />

synthases, these f<strong>in</strong>d<strong>in</strong>gs established a l<strong>in</strong>k between reductive stress and<br />

oxidative or nitrosative stress signal<strong>in</strong>g pathways. Subsequently, it was shown<br />

that overexpression of Hsp27 <strong>in</strong>duces reductive stress <strong>in</strong> the heart<br />

(Zhang et al., 2010), which was evident by an <strong>in</strong>crease <strong>in</strong> 2GSH/GSSG, myocardial<br />

glutathione peroxidase activity and decreased levels of reactive oxygen<br />

species (ROS). Interest<strong>in</strong>gly, 2GSH levels rose but GSSG levels rema<strong>in</strong>ed<br />

unaltered. In another study, G6PD was overexpressed <strong>in</strong> Drosophila melanogaster,<br />

which resulted <strong>in</strong> <strong>in</strong>creased levels of NADH and NADPH, and<br />

<strong>in</strong>creased GSH/GSSG ratio. The presence of high amounts of these reduc<strong>in</strong>g<br />

equivalents enhanced resistance to oxidative stress and were associated with<br />

an extension of life span <strong>in</strong> the transgenic flies (Legan et al., 2008).<br />

On the other hand, <strong>in</strong>creased reductive stress may also lead to an<br />

<strong>in</strong>creased oxidative stress, as was demonstrated <strong>in</strong> hypoxic <strong>in</strong>jury studies<br />

(Gores et al., 1989; Khan and O’Brien, 1995). In those studies, it was proposed<br />

that reduction of electron carriers that are normally oxidised under<br />

aerobic conditions (reductive stress) promotes formation of toxic ROS upon


REDUCTIVE STRESS IN MICROBES 49<br />

O 2 availability. In an attempt to address the possible mode of action, it was<br />

shown that reduc<strong>in</strong>g equivalents can release redox-active iron lead<strong>in</strong>g to<br />

oxidative stress and cell <strong>in</strong>jury (Staubli and Boelsterli, 1998).<br />

In conclusion, it is clear that normal cellular functions essentially depend<br />

on ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g redox homeostasis. A redox imbalance can lead to either<br />

oxidative or reductive stress. Lastly, it is evident that reductive stress might<br />

be a common mechanism <strong>in</strong> many eukaryotic diseases but, unfortunately, its<br />

implications <strong>in</strong> microbial pathogenesis are poorly understood. The concept<br />

of reductive stress <strong>in</strong> bacteria, particularly as it applies to Mtb, is an example<br />

of a shift <strong>in</strong> perspective.<br />

4. OVERVIEW: GENERAL PHYSIOLOGICAL<br />

CHARACTERISTICS OF MYCOBACTERIUM<br />

TUBERCULOSIS<br />

4.1. Historic Overview<br />

Mtb is a prototrophic, obligate aerobe that is able to survive periods of<br />

extended anaerobiosis, although conditions are yet to be identified where<strong>in</strong><br />

the bacilli are capable of replication <strong>in</strong> the absence of O 2. In fact, studies<br />

reported <strong>in</strong> 1933 established that Mtb could survive for up to 12 years <strong>in</strong><br />

sealed tubes and rema<strong>in</strong> fully virulent (Corper and Cohn, 1933).<br />

Mycobacteria can utilise a wide range of carbon compounds for growth <strong>in</strong><br />

vitro <strong>in</strong>clud<strong>in</strong>g carbohydrates, lipids and prote<strong>in</strong>s, which suggests that the<br />

bacilli are able to assimilate a wide range of host substrates for growth<br />

<strong>in</strong> vivo. For example, micromolar quantities of organic acids (e.g. lactate,<br />

pyruvate, citrate, succ<strong>in</strong>ate, malate, acetoacetate, etc.), micro to millimolar<br />

quantities of carbohydrates (glucose, glycogen, fructose, etc.), micromolar<br />

quantities of virtually all am<strong>in</strong>o acids, nucleic acid precursors, nucleotides,<br />

and milligram to gram/litre quantities of lipids (<strong>in</strong>clud<strong>in</strong>g total and free FAs,<br />

triacylglycerol [TAG] and total cholesterol) are available as sources of metabolic<br />

energy (Wheeler and Ratledge, 1994). The degradative pathways of<br />

the above substrates converge on common <strong>in</strong>termediates, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong> many<br />

cases acetyl-coenzyme A (acetyl-CoA) that eventually produce ATP.<br />

Decades ago, many of the scientific studies of Mtb metabolism and physiology<br />

were performed on <strong>in</strong> vivo-derived bacilli (Segal and Bloch, 1956;<br />

Artman and Bekierkunst, 1961; Segal, 1962, 1965, 1984). The complex and<br />

laborious approaches (e.g. isolat<strong>in</strong>g, purify<strong>in</strong>g and characteris<strong>in</strong>g bacilli from<br />

<strong>in</strong>fected mouse lungs) yielded a wealth of <strong>in</strong>formation regard<strong>in</strong>g the


50 AISHA FARHANA ET AL.<br />

differences between the <strong>in</strong> vivo and <strong>in</strong> vitro physiology of Mtb. In addition,<br />

differences between virulent and avirulent Mtb stra<strong>in</strong>s were noted. In recent<br />

years, a number of eloquent molecular and metabolic studies of Mtb have<br />

been performed. Although valuable <strong>in</strong>formation was obta<strong>in</strong>ed, an <strong>in</strong>herent<br />

weakness of much of that work was the use of <strong>in</strong> vitro cultured bacilli. The<br />

chemical makeup of artificial growth media critically <strong>in</strong>fluences the biochemical<br />

activity of the organism, and the applicability of data thus generated is<br />

limited to the conditions under which it was derived. Therefore, keep<strong>in</strong>g the<br />

complexity of the host environment <strong>in</strong> m<strong>in</strong>d, certa<strong>in</strong> aspects of Mtb physiology<br />

will undoubtedly have to be revisited when exam<strong>in</strong><strong>in</strong>g Mtb <strong>in</strong> vivo.<br />

Nonetheless, ample data exist to <strong>in</strong>dicate that Mtb adjusts its metabolism<br />

<strong>in</strong> response to the availability of nutrients and environmental gases dur<strong>in</strong>g<br />

different stages of <strong>in</strong>fection (Wheeler and Ratledge, 1994; McK<strong>in</strong>ney et al.,<br />

2000; Boshoff and Barry, 2005; Tian et al., 2005; Munoz-Elias et al., 2006;<br />

Ja<strong>in</strong> et al., 2007; Barry et al., 2009). It is therefore important to understand<br />

how this metabolic response permits the bacterium to persist long term <strong>in</strong> the<br />

human host.<br />

4.2. Environmental Factors that Influence Metabolism<br />

4.2.1. The TCA Cycle<br />

The global metabolic pathway of a microbial cell is an <strong>in</strong>terl<strong>in</strong>ked network of<br />

chemical reactions through which the cell breaks down substrate compounds<br />

<strong>in</strong>to smaller organic molecules, which then serve as precursors for the biosynthesis<br />

of diverse macromolecules. Microorganisms employ different metabolic<br />

strategies of which the ultimate goal is to generate a proton motive<br />

force and cellular energy, ATP. The TCA cycle is present <strong>in</strong> all aerobic<br />

organisms and serves as a means to oxidise carbohydrates such as glucose<br />

to CO2 and H2O and the energy released is efficiently harvested by the<br />

electron transport cha<strong>in</strong> (ETC). The TCA cycle is amphibolic because it<br />

can be used for both anabolic and catabolic processes, and yields much more<br />

energy per mole of glucose (38 moles of ATP) when completely oxidised<br />

than the 1–4 moles of ATP generated via anaerobic fermentation. The<br />

complete oxidation of 1 mole of glucose via glycolysis and the TCA cycle<br />

of Escherichia coli yields 10 moles of NAD(P)H and 2 moles of FADH 2<br />

(Vemuri et al., 2006) as depicted below:<br />

Glucose + 8NAD + + 2NADP + + 2FAD + 4ADP + 4Pi<br />

! 6CO2 + 8NADH + 2NADPH + 2FADH2 + 4ATP + 10H +


REDUCTIVE STRESS IN MICROBES 51<br />

Most of the TCA cycle enzymes are repressed by glucose and further<br />

repressed by anaerobiosis. Under aerobic conditions, succ<strong>in</strong>ate is formed<br />

through the oxidation of a-ketoglutarate (KG), whereas under anaerobic<br />

conditions bacteria form succ<strong>in</strong>ate through reduction of fumarate. Under<br />

anaerobic growth, the 2-oxoglutarate dehydrogenase complex (ODHC) and<br />

succ<strong>in</strong>ate dehydrogenase (SDH) are also repressed, caus<strong>in</strong>g the activity of<br />

the TCA cycle to virtually cease. The cycle is thus transformed <strong>in</strong>to its<br />

branched or non-cyclic form <strong>in</strong> which the carbon flows <strong>in</strong>to <strong>in</strong>dependent<br />

oxidative and reductive pathways lead<strong>in</strong>g to the formation of 2-oxoglutarate<br />

(glutamate), and succ<strong>in</strong>ate and succ<strong>in</strong>yl-CoA respectively (Amaras<strong>in</strong>gham<br />

and Davis, 1965; Spencer and Guest, 1987; Guest and Russell, 1992). In the<br />

branched or reductive pathway, SDH is replaced by fumarate reductase<br />

(FRD) which enables fumarate to be used as an electron acceptor <strong>in</strong> anaerobic<br />

respiration. Alternative anaerobic routes to succ<strong>in</strong>ate production occur<br />

either via aspartate <strong>in</strong>volv<strong>in</strong>g aspartate oxaloacetate am<strong>in</strong>otransferase, or<br />

via isocitrate catalysed by isocitrate lyase (Spencer and Guest, 1987; Guest<br />

and Russell, 1992).<br />

Environmental factors such as the availability of O2 and the nature (e.g.<br />

carbon oxidation state, COS; see Section 4.2.2) and quantity of the carbon<br />

source profoundly affect the status of the TCA cycle (Spencer and Guest,<br />

1987; Clark, 1989; Guest and Russell, 1992). O2 is a poisonous lethal gas,<br />

which allows aerobic microbes to survive as they have developed appropriate<br />

antioxidant defence mechanisms (Halliwell, 2008). TCA cycle enzymes<br />

*<br />

known to be <strong>in</strong>hibited by the O2 radical, superoxide anion (O2 ), and under<br />

high pO2 <strong>in</strong>clude aconitase, isocitrate dehydrogenase, a-ketoglutarate<br />

dehydrogenase (KDH) and fumarase (Halliwell, 2008). Several of these<br />

enzymes conta<strong>in</strong> 4Fe–4S clusters, which fall apart when targeted by O2 or<br />

*<br />

O2 . The <strong>in</strong>activation of these enzymes leads to the release of iron, which<br />

*<br />

can then promote the production of OH via the Fenton reaction. In addition,<br />

NO, a host-generated gas can effectively and irreversibly react with the<br />

Fe–S clusters of TCA cycle enzymes lead<strong>in</strong>g to the formation of a prote<strong>in</strong>bound<br />

DNIC complex, which affects specific enzymatic activity and overall<br />

metabolic activity of the cell (Imlay, 2006, 2008; Duan et al., 2009). In<br />

accordance with the critical role of the TCA enzymes <strong>in</strong> the production or<br />

*<br />

consumption of reduc<strong>in</strong>g equivalents, it is logical to believe that O2, O2 and NO also affect redox balance. Nonetheless, the impact of these diatomic<br />

gases and oxygen radicals on the components of the Mtb TCA cycle is an<br />

understudied area.<br />

The first evidence of TCA cycle activity dur<strong>in</strong>g <strong>in</strong> vivo growth of Mtb was<br />

the demonstration of SDH activity <strong>in</strong> <strong>in</strong> vivo-derived bacilli (Segal, 1962).<br />

Subsequently, the activity of all the TCA cycle enzymes with the exception of


52 AISHA FARHANA ET AL.<br />

KDH was established through the analysis of Mycobacterium lepraemurium<br />

harvested from mur<strong>in</strong>e lepromas (Mori et al., 1971; Tepper and Varma,<br />

1972). Another important study which characterised the enzymes of the<br />

Mtb TCA cycle noted that all the dehydrogenases, unlike those present <strong>in</strong><br />

other organisms, are NADP + -dependent with the exception of malate dehydrogenase<br />

which is NAD + -dependent (Murthy et al., 1962). Likely explanations<br />

for this f<strong>in</strong>d<strong>in</strong>g are: (i) the NADP + dependence of the Mtb dehydrogenases<br />

‘guarantees’ the presence of substantial quantities of NADPH, the<br />

reduc<strong>in</strong>g agent necessary for metabolic biosynthesis of essential lipids, and<br />

(ii) the presence of NADH oxidase ensures that adequate NAD + is cont<strong>in</strong>uously<br />

available as an oxidis<strong>in</strong>g agent dur<strong>in</strong>g these processes (Murthy et al.,<br />

1962). Present-day genomic analysis seems to support the above <strong>in</strong>terpretations<br />

<strong>in</strong> that a considerable portion of the Mtb genome is dedicated to lipid<br />

anabolism, which requires NADPH.<br />

The work of Wayne and others (Segal, 1984) identified a switch from<br />

aerobic to anaerobic metabolism dur<strong>in</strong>g <strong>in</strong> vivo growth and found this to<br />

be an important factor <strong>in</strong> virulence. Notably, the identification of hypoxia<br />

as an <strong>in</strong> vivo signal for metabolic transformation profoundly affected<br />

future scientific studies and led many years later to the widely used<br />

Wayne model of <strong>in</strong> vitro dormancy (Wayne and Hayes, 1996). This <strong>in</strong> turn<br />

facilitated the identification of the 48-member Mtb Dos dormancy regulon,<br />

a genetic response <strong>in</strong>duced by hypoxia, NO and CO (Sherman et al.,<br />

2001; Ohno et al., 2003; Voskuil et al., 2003; Kumar et al., 2008; Shiloh et al.,<br />

2008), which has become a paradigm for Mtb signal transduction <strong>in</strong><br />

response to host cues (see Section 6.2 for a complete discussion). The<br />

implication is that the metabolic adaptation or response of Mtb to the lack<br />

of O2 or the presence of NO and CO <strong>in</strong> vivo <strong>in</strong>duces the Dos regulon and<br />

allows establishment of a latent <strong>in</strong>fection. This raises several important<br />

questions such as which term<strong>in</strong>al electron acceptor, besides O 2,isused<br />

<strong>in</strong> vivo, and how are reduc<strong>in</strong>g equivalents re-oxidised to ma<strong>in</strong>ta<strong>in</strong> redox<br />

balance?<br />

4.2.2. The Carbon Oxidation State (COS)<br />

Experimental evidence <strong>in</strong> support of FAs as potential <strong>in</strong> vivo carbon<br />

sources for Mtb was provided several decades ago (Segal and Bloch,<br />

1956; Segal, 1984), and is supported by many recent studies (McK<strong>in</strong>ney<br />

et al., 2000; Munoz-Elias and McK<strong>in</strong>ney, 2005). In vivo grown Mtb and<br />

M. lepraemurium were shown to robustly oxidise long-cha<strong>in</strong> FA such as<br />

n-heptanoic, octanoic, oleic, palmitic, steric, l<strong>in</strong>oleic, l<strong>in</strong>olenic and luric


REDUCTIVE STRESS IN MICROBES 53<br />

acids, but failed to utilise carbohydrates (Segal and Bloch, 1956; Segal,<br />

1984). This disagrees with the impression that bacilli <strong>in</strong> <strong>in</strong>fected tissue exist<br />

<strong>in</strong> a reduced state of metabolic activity. These f<strong>in</strong>d<strong>in</strong>gs are further supported<br />

by recent Mtb genome data reveal<strong>in</strong>g the presence of 36 homologs<br />

of fadE and fadD genes catalys<strong>in</strong>g the first step of b-oxidation. Other<br />

bacteria such as E. coli and Salmonella enterica serovar Typhimurium,<br />

have only a s<strong>in</strong>gle fadE gene (Campbell and Cronan, 2002). Several studies<br />

strongly suggest that isocitrate lyase (icl), an enzyme of the glyoxylate<br />

cycle, enabl<strong>in</strong>g the recycl<strong>in</strong>g of acetyl-CoA (formed via b-oxidation), plays<br />

an important role <strong>in</strong> FA carbon source utilisation <strong>in</strong> vivo. Studies of an Mtb<br />

Dicl mutant <strong>in</strong> mice (McK<strong>in</strong>ney et al., 2000) showed that this mutant stra<strong>in</strong><br />

is attenuated at the onset of adaptive immunity (3 weeks post-<strong>in</strong>fection) <strong>in</strong><br />

immunocompetent animals, but rema<strong>in</strong>s virulent <strong>in</strong> g-IFN-deficient mice.<br />

Further research on icl (Munoz-Elias and McK<strong>in</strong>ney, 2005; Munoz-Elias<br />

et al., 2006) substantiates the importance of lipids as an important <strong>in</strong> vivo<br />

carbon source for Mtb.<br />

The effect of a carbon source (e.g. glucose vs. FA) on the ‘spontaneity’<br />

of a process, as def<strong>in</strong>ed by the Gibbs free energy (G) (Voet et al.,<br />

2008) is illustrated by the fact that the complete oxidation of glucose<br />

yields DG ’ = 2850 kJ/mol, whereas oxidation of a C 16 FA such as<br />

palmitate (C 16H 32O 2, a putative <strong>in</strong> vivo carbon substrate of Mtb) ismore<br />

exergonic and yields DG ’ = 9781 kJ/mol. Palmitate and oleate have<br />

highly reduced carbon oxidation states (COSs) of 28 and 30 respectively,<br />

compared to other FA precursors such as propionate (COS = 1),<br />

valerate (COS = 6) and carbohydrates such as glucose (COS = 0) and<br />

sorbitol (COS = 1). Subsequent b-oxidation of palmitate generates 106<br />

ATP, whereas oxidation of glucose produces 38 ATP. Importantly,<br />

b-oxidation of FA yields one NADH and one FADH2 molecule for every<br />

acetyl-CoA generated, a condition which has the potential to cause<br />

cellular redox imbalance lead<strong>in</strong>g to reductive stress if the consequent<br />

buildup of reduc<strong>in</strong>g equivalents is not dissipated. Thus, the oxidation<br />

state of the carbon source determ<strong>in</strong>es the amount of reduc<strong>in</strong>g equivalents<br />

[e.g. NAD(P)H] to be recycled and consequently also the excreted<br />

products (see Section 4.2.3).<br />

In E. coli, it has been shown that the COS, extracellular oxido-reduction<br />

potential and environmental pH (Kleman and Strohl, 1994) <strong>in</strong>fluence the<br />

composition of excreted fermentation products. For example, <strong>in</strong> E. coli,<br />

oxidation of glucose and sorbitol generates two and three reduc<strong>in</strong>g equivalents<br />

respectively, whereas utilisation of the highly oxidised sugar glucuronic<br />

acid (COS = +2) results <strong>in</strong> no NADH production. Thus, <strong>in</strong> order to recycle<br />

the NADH produced dur<strong>in</strong>g growth on the more reduced substrate, sorbitol,


54 AISHA FARHANA ET AL.<br />

E. coli excretes reduced ethanol (COS = 2). In contrast, cells grown on<br />

glucuronic acid are redox balanced and do not need to produce ethanol;<br />

rather, glucuronic acid is converted to acetate (COS = 0) (Wolfe, 2005).<br />

Other studies have shown that as the pH drops, E. coli produces lactate<br />

rather than acetate or formate (Bunch et al., 1997), and that the rate of<br />

glycolysis is dramatically reduced (Og<strong>in</strong>o et al., 1980). Clearly, the physicochemical<br />

properties of a particular carbon source (e.g. FA or glucose and<br />

therefore the COS), environmental factors and the metabolites produced<br />

dur<strong>in</strong>g substrate utilisation profoundly affect redox balance and thus overall<br />

microbial physiology.<br />

4.2.3. Excretion of Metabolites and Redox Balance<br />

E. coli regenerates NAD + under anaerobic conditions via the production and<br />

excretion of partially oxidised metabolic <strong>in</strong>termediates such as D-lactate,<br />

succ<strong>in</strong>ate, formate and ethanol. Similarly, acetate excretion by E. coli occurs<br />

anaerobically dur<strong>in</strong>g mixed acid fermentation <strong>in</strong> order to regenerate the<br />

NAD + consumed by glycolysis and to recycle Coenzyme A (CoASH) utilised<br />

dur<strong>in</strong>g the conversion of pyruvate to acetyl-CoA (Wolfe, 2005). Acetate can<br />

also be excreted dur<strong>in</strong>g aerobic growth on high concentrations of glucose<br />

(Crabtree effect), which <strong>in</strong>hibits respiration (Ko et al., 1993; Wolfe, 2005).<br />

Because NAD + is required by the glycolytic enzyme glyceraldehyde-3phosphate<br />

dehydrogenase (GAPDH), E. coli must re-oxidise NADH to<br />

ma<strong>in</strong>ta<strong>in</strong> a work<strong>in</strong>g glycolytic pathway. In the absence of a functional<br />

TCA cycle dur<strong>in</strong>g anaerobic growth, the reduc<strong>in</strong>g equivalents are recycled<br />

by the production of metabolic <strong>in</strong>termediates such as D-lactate, ethanol,<br />

succ<strong>in</strong>ate and formate, which are secreted along with acetate <strong>in</strong>to the culture<br />

medium. However, acetate excretion produces ATP, whereas the other<br />

metabolites are not used as energy harvest<strong>in</strong>g molecules, but rather consume<br />

reduc<strong>in</strong>g equivalents (Wolfe, 2005). Thus, under anaerobic conditions, bacteria<br />

excrete a range of products <strong>in</strong> order to regenerate NAD + and to<br />

ma<strong>in</strong>ta<strong>in</strong> redox balance.<br />

Other studies have yielded a few clues as to the <strong>in</strong>termediary metabolic<br />

changes mycobacteria undergo dur<strong>in</strong>g aerobic respiration and oxidation of<br />

diverse substrates. An <strong>in</strong>terest<strong>in</strong>g observation made <strong>in</strong> 1930 (Merrill, 1930)<br />

was that mycobacteria utilise carbohydrates without the production of acids,<br />

suggest<strong>in</strong>g that carbohydrates are completely oxidised, leav<strong>in</strong>g <strong>in</strong>significant<br />

amounts of partially oxidised products (e.g. acids) <strong>in</strong> the medium (Merrill,<br />

1930; Edson, 1951). Initially, precise manometer measurements of respiratory<br />

changes (the respiratory quotient) were determ<strong>in</strong>ed by measur<strong>in</strong>g O2 consumption<br />

and CO2 production of bacilli grow<strong>in</strong>g on carbon sources such as


REDUCTIVE STRESS IN MICROBES 55<br />

glucose or glycerol. However, it quickly became clear that <strong>in</strong> order to accurately<br />

<strong>in</strong>terpret the respiratory quotients, lipid and prote<strong>in</strong> content of the bacilli<br />

had to be determ<strong>in</strong>ed. Subsequently, ‘starved’ bacilli (achieved by float<strong>in</strong>g<br />

bacilli on phosphate buffered sal<strong>in</strong>e for several days) rather than ‘washed’ cell<br />

suspensions were used <strong>in</strong> manometer techniques. Notably, autorespiration was<br />

barely impaired after 1–4 days of starvation. It subsequently became clear that<br />

glycerol, acetate and FA enhanced respiration whereas glucose stimulation<br />

was weak, and arab<strong>in</strong>ose, fructose, mannose and <strong>in</strong>ositol showed no effect<br />

(Edson, 1951). However, an <strong>in</strong>trigu<strong>in</strong>g and important observation was that<br />

there did not seem to be a direct correlation between growth and the respir<strong>in</strong>g<br />

capacity of a substrate. In fact, a substrate that promotes respiration could<br />

<strong>in</strong>hibit or <strong>in</strong>duce bacterial growth, or may have no <strong>in</strong>fluence at all (Bloch et al.,<br />

1947). Carbon balance experiments have shown that when glucose was used as<br />

a carbon source, 34% of its carbon was recovered as CO 2, 63% was found <strong>in</strong><br />

the bacilli and 2–6% rema<strong>in</strong>ed <strong>in</strong> the media (Edson, 1951).<br />

Several studies demonstrated that human and bov<strong>in</strong>e tubercle bacilli<br />

grow<strong>in</strong>g <strong>in</strong> glycerol medium generated alkal<strong>in</strong>e culture supernatants<br />

(reviewed <strong>in</strong> Merrill, 1930). This contrasts with the vast majority of bacteria,<br />

which produce organic acids as cleavage products upon the utilisation of<br />

carbohydrates. Some researchers also argued that m<strong>in</strong>ute quantities of acids<br />

were formed from the oxidation of glycerol, whereas others believed that<br />

glycerol was completely utilised without the production of <strong>in</strong>termediates.<br />

However, unconfirmed studies (Fowler et al., 1960) claimed that virulent and<br />

avirulent mycobacterial stra<strong>in</strong>s accumulate acetic acid, succ<strong>in</strong>ic acid, malic<br />

acid, citric acid, oxalic acid and pyruvic acid <strong>in</strong> the culture filtrate. Further,<br />

Mycobacterium butyricum became a model organism for study<strong>in</strong>g acid formation,<br />

s<strong>in</strong>ce it was noted that M. butyricum acidifies its culture medium.<br />

Us<strong>in</strong>g this organism, several studies demonstrated the excretion of a-ketoglutaric<br />

acid (2-oxoglutaric acid), succ<strong>in</strong>ic acid, acetic acid and pyruvic acid<br />

<strong>in</strong>to the culture filtrate (Hunter, 1953; Wright, 1959). Succ<strong>in</strong>ic, acetic and<br />

fumaric acids and DL-5-carboxymethylhydanto<strong>in</strong> were also isolated as crystall<strong>in</strong>e<br />

products from Mtb and Mycobacterium ranae cultured <strong>in</strong> a def<strong>in</strong>ed<br />

medium conta<strong>in</strong><strong>in</strong>g asparag<strong>in</strong>e, glycerol and trace quantities of citrate<br />

(Fowler et al., 1960). Acetyl L-isoleuc<strong>in</strong>e and acetyl L-leuc<strong>in</strong>e were also<br />

identified <strong>in</strong> culture filtrates of M. ranae (Fowler et al., 1961). Although a<br />

recent mass spectrometry-based study identified small quantities of pyruvate<br />

(18 mM), succ<strong>in</strong>ate (15 mM) and lactate (15 mM) (Goodw<strong>in</strong> et al., 2006) <strong>in</strong> the<br />

culture supernatants of Mtb, the experimental conditions were limited,<br />

necessitat<strong>in</strong>g a more comprehensive <strong>in</strong>vestigations to exam<strong>in</strong>e excreted metabolic<br />

<strong>in</strong>termediates of Mtb under a range of environmental conditions.<br />

Thus, unlike E. coli, mycobacterial species <strong>in</strong> general appears not to excrete


56 AISHA FARHANA ET AL.<br />

large amounts of <strong>in</strong>termediary metabolites and therefore has a dist<strong>in</strong>ct metabolic<br />

mechanism to ma<strong>in</strong>ta<strong>in</strong> <strong>in</strong>tracellular redox balance.<br />

4.2.4. The Balanc<strong>in</strong>g Act In Vitro and In Vivo<br />

In agreement with prior f<strong>in</strong>d<strong>in</strong>gs (Segal and Bloch, 1956), many studies have<br />

confirmed that there are metabolic dist<strong>in</strong>ctions between <strong>in</strong> vivo and <strong>in</strong> vitro<br />

grown mycobacteria. For example, differences exist between phtiocol, tuberculostearic<br />

acid, phtioic acid, specific polysaccharides (Anderson et al., 1943)<br />

and the lipid content of <strong>in</strong> vitro cultured Mtb and that of bacilli <strong>in</strong> tuberculous<br />

lung tissue (Sheehan and Whitwell, 1949). The subsequent development of<br />

differential centrifugation techniques to purify Mtb from animal lung tissue<br />

(Segal and Bloch, 1956), and biochemical comparison with <strong>in</strong> vitro grown<br />

Mtb led to a profoundly new understand<strong>in</strong>g of the phenotypic and metabolic<br />

states of Mtb grown <strong>in</strong> vitro and <strong>in</strong> vivo. In these studies, separation of<br />

tubercle bacilli from <strong>in</strong>fected lungs <strong>in</strong>volved the use of isotonic sucrose<br />

and differential centrifugation at low temperatures to yield considerable<br />

quantities of highly purified bacilli. Us<strong>in</strong>g Warburg manometry (which measures<br />

O2 consumption) and test<strong>in</strong>g the hydrogen transfer capacity of bacilli <strong>in</strong><br />

the presence of a range of substrates and the electron acceptor 2,3,5-triphenyl<br />

tetrazolium chloride, it was shown that the metabolic activity of <strong>in</strong> vivo<br />

grown Mtb was very low compared to that of <strong>in</strong> vitro cultured Mtb, which was<br />

ma<strong>in</strong>ta<strong>in</strong>ed for at least 20 h post-purification. In addition, the respiratory<br />

response of <strong>in</strong> vivo grown Mtb to glucose, glycerol, sodium lactate, sodium<br />

acetate and sodium pyruvate was shown to be virtually absent. On the other<br />

hand, salicylate and the FA n-heptanoic acid, octanoic acid and oleic acid,<br />

stimulated respiration to the same degree <strong>in</strong> <strong>in</strong> vivo grown bacilli as that<br />

observed <strong>in</strong> <strong>in</strong> vitro cultured Mtb. The robust respiratory responses of the<br />

bacilli isolated from the lungs towards FAs suggest that <strong>in</strong> vivo bacilli do not<br />

exist <strong>in</strong> a reduced state of metabolic activity. Intrigu<strong>in</strong>gly, <strong>in</strong> vitro cultur<strong>in</strong>g of<br />

the lung-derived Mtb <strong>in</strong> standard culture medium rapidly reversed the <strong>in</strong> vivo<br />

phenotype to that of the <strong>in</strong> vitro cultured bacilli (Segal and Bloch, 1956).<br />

An additional study (Segal, 1962) raised concerns regard<strong>in</strong>g the validity of<br />

<strong>in</strong> vitro based experiments by demonstrat<strong>in</strong>g that untreated whole cells of<br />

<strong>in</strong> vivo grown Mtb exhibit active SDH activity, whereas <strong>in</strong> vitro cultured Mtb<br />

cells are negative for SDH activity (cell-free extracts of the latter were shown<br />

to be positive for SDH activity). In another study, the lack of respiratory<br />

responses of <strong>in</strong> vivo grown Mtb for succ<strong>in</strong>ate, fumarate, a-oxoglutarate,<br />

malate and glyoxylate was <strong>in</strong> fact due to the impermeability of the bacilli<br />

because cell free extracts, but not <strong>in</strong>tact cells, oxidised these substrates <strong>in</strong> the<br />

presence of an electron acceptor (Murthy et al., 1962). This metabolic


REDUCTIVE STRESS IN MICROBES 57<br />

disparity between <strong>in</strong> vitro and <strong>in</strong> vivo grown Mtb was hypothesised to be<br />

(i) <strong>in</strong>itial repression of the TCA cycle and/or repression of the ETC dur<strong>in</strong>g<br />

<strong>in</strong> vivo growth, (ii) host-<strong>in</strong>duced <strong>in</strong>hibition of Mtb oxidative enzymes dur<strong>in</strong>g<br />

<strong>in</strong> vivo growth or (iii) substrate impermeability dur<strong>in</strong>g <strong>in</strong> vivo growth (Segal,<br />

1984). Collectively, the metabolic dissimilarity between <strong>in</strong> vivo and <strong>in</strong> vitro<br />

grown bacilli po<strong>in</strong>ted to a metabolic shift away from the respiratory pathway<br />

towards anaerobic glycolysis (Segal, 1984).<br />

The gross morphological and biochemical differences between <strong>in</strong> vivo and<br />

<strong>in</strong> vitro cultured Mtb, as <strong>in</strong>dicated by the above-mentioned studies, are <strong>in</strong><br />

agreement with modern expression studies demonstrat<strong>in</strong>g differential<br />

expression of genes encod<strong>in</strong>g prote<strong>in</strong>s needed for cell wall synthesis, virulence<br />

lipid anabolism and energy production <strong>in</strong> macrophages, animal models<br />

and humans (Triccas et al., 1999; Talaat et al., 2004, 2007; Shi et al., 2005;<br />

Rachman et al., 2006; Srivastava et al., 2007, 2008; Fontan et al., 2008). In a<br />

sem<strong>in</strong>al study, transcriptional analysis of Mtb derived from <strong>in</strong>fected lung<br />

samples (Rachman et al., 2006) found dramatic changes <strong>in</strong> genes <strong>in</strong>volved<br />

<strong>in</strong> cell envelope, lipid biosynthesis, FA and mycolic acid biosynthesis, and<br />

anaerobic respiration. In addition, us<strong>in</strong>g the mouse model for TB, <strong>in</strong> vivo<br />

lipidomics studies have suggested a l<strong>in</strong>k between host lipid catabolism and<br />

<strong>in</strong>creased production of Mtb virulence lipid (PDIM, SL-1) (Ja<strong>in</strong> et al., 2007).<br />

In an elegant study exam<strong>in</strong><strong>in</strong>g the transcriptional profile of Mtb <strong>in</strong> sputum,<br />

genes <strong>in</strong>volved <strong>in</strong> anaerobic respiration and tgs1, which encodes for the<br />

enzyme responsible for produc<strong>in</strong>g TAG (Garton et al., 2008), were found<br />

to be overexpressed. Tgs1 is under the strict control of the Dos dormancy<br />

regulon that is <strong>in</strong>duced by hypoxia, NO and CO (Sherman et al., 2001; Ohno<br />

et al., 2003; Voskuil et al., 2004). TAG production <strong>in</strong> sputum contradicts the<br />

assumption that sputum conta<strong>in</strong>s aerobically replicat<strong>in</strong>g bacilli. It has been<br />

argued that hypoxic conditions do not exist <strong>in</strong> sputum and thus the Dos<br />

dormancy regulon would not be <strong>in</strong>duced (Barry et al., 2009). While the pO 2<br />

concentration of tuberculous sputum has not been established, Worlitzsch<br />

et al. (2002) reported an <strong>in</strong> situ pO2 concentration of 2.5 mm Hg <strong>in</strong> the mucus<br />

of cystic fibrosis (CF) patients, a measurement made via aClarkeelectrode<br />

attached to a fibre-optic bronchoscope. The latter f<strong>in</strong>d<strong>in</strong>g along with the<br />

severely restricted diffusion of O2 through mucopurulent lum<strong>in</strong>al material<br />

(Worlitzsch et al., 2002) provides good evidence that a hypoxic environment<br />

can <strong>in</strong>deed be generated <strong>in</strong> sputum.<br />

Us<strong>in</strong>g fluorescent dyes and cell surface antibodies to exam<strong>in</strong>e the ultrastructure<br />

of Mtb <strong>in</strong> mice and gu<strong>in</strong>ea pigs, it was shown that Mtb exists <strong>in</strong><br />

different subpopulations (Ryan et al., 2010). This suggests that Mtb <strong>in</strong> vivo<br />

exist as vary<strong>in</strong>g stochastic phenotypes, which may allow the bacilli to adapt to<br />

a chang<strong>in</strong>g host environment. Collectively, modern-day gene expression,


58 AISHA FARHANA ET AL.<br />

cellular and morphological data are <strong>in</strong> support of the classical biochemical<br />

studies (Anderson et al., 1943; Segal and Bloch, 1956; Segal, 1965, 1984),<br />

which reported profound differences <strong>in</strong> cell wall architecture, virulence, lipid<br />

production and energy metabolism between <strong>in</strong> vivo grown Mtb and <strong>in</strong> vitro<br />

cultured bacilli.<br />

4.2.5. The Gaseous Environment of the Lung<br />

An irrefutable f<strong>in</strong>d<strong>in</strong>g, based upon 100 years of study, ascerta<strong>in</strong>ed that Mtb<br />

cannot replicate <strong>in</strong> the absence of O2. The rate of Mtb multiplication<br />

decreases rapidly as the partial O2 pressure (pO2) falls below that of room<br />

air (Dubos, 1953; Wayne and Hayes, 1996). The pO2 of atmospheric O2 is<br />

150–160 mm Hg and drops substantially <strong>in</strong> the lung (60–150 mm Hg) and<br />

blood ( 104 mm Hg) (Aly et al., 2006; Brahimi-Horn and Pouyssegur, 2007),<br />

the rat spleen ( 16 mm Hg) and thymus (10 mm Hg) (Braun et al., 2001) and<br />

the TB granuloma (1.59 mm Hg) (Via et al., 2008).<br />

The total alveolar surface area encountered by O2 <strong>in</strong> <strong>in</strong>haled air is<br />

130 m 2 , which allows for optimum O2 exchange (Murray, 2010). Besides<br />

O2, another gas, NO, is encountered by Mtb dur<strong>in</strong>g <strong>in</strong>fection. NO is a small,<br />

highly diffusible free radical. Inducible nitric oxide synthase (iNOS) and<br />

therefore NO production are crucial for protection of mice aga<strong>in</strong>st Mtb<br />

(MacMick<strong>in</strong>g et al., 1997; Chan et al.,2001). Importantly, human macrophages<br />

present <strong>in</strong> Mtb-<strong>in</strong>fected tissues have been demonstrated to express iNOS<br />

(Nicholson et al., 1996). Similarly, <strong>in</strong>creased exhaled NO and NO3 levels<br />

<strong>in</strong> patients with active pulmonary TB were shown to be due to <strong>in</strong>creased<br />

iNOS production (Wang et al., 1998). In macrophages, iNOS uses NADPH<br />

and O2 as cofactors and produces NO and its oxidative products NO2 and<br />

NO3 . The diffusion distance of NO is 175 mm (Leone et al., 1996) and the<br />

concentrations <strong>in</strong> sk<strong>in</strong>, a s<strong>in</strong>gle endothelial cell, and rat lung ranges from 0.14<br />

to 0.95 mM (Clough et al., 1998; Brovkovych et al., 1999). Although it is<br />

<strong>in</strong>tuitively assumed that NO is present <strong>in</strong> TB lesions, the fact that iNOS<br />

requires O2 as cofactor for its enzymatic function (KmO2 ¼ 135 mM) (Dweik,<br />

2005) suggests that NO production would be severely <strong>in</strong>hibited with<strong>in</strong> these<br />

hypoxic granulomas [1.59 mm Hg (Via et al., 2008)].<br />

CO is a diatomic gas that is endogenously produced by heme oxygenase-1<br />

(HO-1) <strong>in</strong> the human lungs <strong>in</strong> response to oxidative stress. HO-1 enzymatic<br />

activity requires three moles of molecular O2 per heme molecule oxidised<br />

and NADPH or NADH (albeit only <strong>in</strong> vitro) as reduc<strong>in</strong>g equivalents (Chung<br />

et al., 2009; Ryter and Choi, 2009). A credible role for CO <strong>in</strong> Mtb persistence<br />

was first discovered dur<strong>in</strong>g the biochemical and biophysical characterisations<br />

of DosS and DosT (Kumar et al., 2007; Sousa et al., 2007). CO was


REDUCTIVE STRESS IN MICROBES 59<br />

subsequently shown to <strong>in</strong>duce the complete Mtb Dos dormancy regulon and<br />

was demonstrated to be produced <strong>in</strong> the lungs of Mtb-<strong>in</strong>fected mice (Kumar<br />

et al., 2008; Shiloh et al., 2008). It is known that hypoxia, NO (Voskuil et al.,<br />

2003) and CO (Davidge et al., 2009) each <strong>in</strong>dividually <strong>in</strong>hibits respiration and<br />

that comb<strong>in</strong>ations of these gases may even act synergistically to do the same.<br />

CO 2 has also been shown to be extremely unfavourable for <strong>in</strong> vitro survival<br />

(Dubos, 1953) and survival of Mtb <strong>in</strong> the cavities of TB patients<br />

(Haapanen et al., 1959). On the other hand, low concentrations of CO 2 have<br />

been shown to enhance survival of BCG under hypoxic conditions<br />

(Florczyk et al., 2003).<br />

Differences exist <strong>in</strong> ventilation and perfusion of various areas of the lung,<br />

as do the degree of blood oxygenation and pO2. In the upper lung regions,<br />

higher O 2 tension is present (Rich and Follis, 1942; Rasmussen, 1957; Riley,<br />

1957; West, 1977). As proposed earlier (Kumar et al., 2008), Mtb likely<br />

encounters gradients of gases (e.g. NO, CO, O2 or CO2) dur<strong>in</strong>g the course<br />

of <strong>in</strong>fection, which contribute towards produc<strong>in</strong>g vary<strong>in</strong>g microenvironments<br />

and dist<strong>in</strong>ct granulomatous populations. These microenvironments<br />

may <strong>in</strong>clude caseous, fibrotic and non-necrotis<strong>in</strong>g granulomas all occurr<strong>in</strong>g<br />

with<strong>in</strong> the same lung (Barry et al., 2009). Thus, it is reasonable to conclude<br />

that if anaerobic granulomas exist, Mtb will not be able to survive <strong>in</strong> them.<br />

However, hypoxic (as opposed to anaerobic) granulomas provide bacilli with<br />

the capacity to respire, albeit at a low metabolic state, allow<strong>in</strong>g survival<br />

and promot<strong>in</strong>g antimicrobial tolerance (see Section 6.2.4.1 on the role of<br />

NO3 /NO2 <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g Mtb viability under anaerobic conditions).<br />

Mtb has an extraord<strong>in</strong>ary capacity to persist for decades <strong>in</strong> the human lung<br />

despite conditions that should be detrimental to its survival. Low levels of O 2<br />

<strong>in</strong> TB granulomas and the presence of diatomic host gases <strong>in</strong>hibit respiration,<br />

effects which profoundly <strong>in</strong>fluence the metabolic state of the tubercle bacillus.<br />

Detailed knowledge of the metabolic state of Mtb with<strong>in</strong> the granulomatous<br />

host environment is lack<strong>in</strong>g and severely hampers our understand<strong>in</strong>g<br />

of the mechanism(s) of Mtb persistence.<br />

5. REDUCTIVE SINKS IN MICROBES<br />

5.1. Fermentation<br />

5.1.1. Saccharomyces cerevisiae<br />

A vast literature shows that mycobacterial species are <strong>in</strong>capable of fermentation.<br />

Nonetheless, s<strong>in</strong>ce Mtb is exposed to a hypoxic environment <strong>in</strong> vivo


60 AISHA FARHANA ET AL.<br />

and encounters host defence molecules such as NO and CO, which <strong>in</strong>hibit<br />

respiration, it is important to identify the metabolic pathways <strong>in</strong>volved <strong>in</strong> the<br />

reoxidation of reduc<strong>in</strong>g equivalents <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> redox balance. It<br />

therefore becomes imperative to look at examples provided by other model<br />

organisms to identify parallels of such metabolic events.<br />

The lower eukaryote Saccharomyces cerevisiae (S. cerevisiae) isaparticularly<br />

attractive model organism s<strong>in</strong>ce, as is the case for eukaryotes, its cytoplasm<br />

is highly reduced [2GSH/GSSG = 70–190:1 (Grant et al., 1998; Garrido<br />

and Grant, 2002)], whereas the endoplasmic reticulum (ER), where oxidative<br />

prote<strong>in</strong> fold<strong>in</strong>g occurs, is oxidised [2GSH/GSSG = 1–3:1 (Hwang et al.,1992)].<br />

Compartmentalisation of these oxido-reductive events is essential for proper<br />

cellular function<strong>in</strong>g of the organism, and more specifically, to protect <strong>in</strong>tracellular<br />

components from non-specific oxidation or reduction. In order to<br />

dissect the oxido-reductive events associated with these functionally dist<strong>in</strong>ct<br />

cellular compartments, the strong reduc<strong>in</strong>g agent dithiothreitol (DTT)<br />

was used as a molecular tool to promote reductive stress. Comprehensive<br />

microarray analysis showed that S. cerevisiae treated with DTT generates a<br />

transcriptional response that is dist<strong>in</strong>ct from other stresses such as hyperosmotic<br />

stress, starvation and heat shock (Gasch et al., 2000). DTT exposure<br />

also <strong>in</strong>duces the upregulation of prote<strong>in</strong> disulfide isomerase, prote<strong>in</strong> fold<strong>in</strong>g<br />

chaperones localised to the ER and other genes that respond to changes <strong>in</strong><br />

the cellular redox potential. Furthermore, the upregulation of genes <strong>in</strong>volved<br />

<strong>in</strong> cell wall synthesis and signal<strong>in</strong>g pathways responsive to cell wall damage<br />

was noted and led the <strong>in</strong>vestigators to conclude that cell wall defects eventually<br />

<strong>in</strong>itiate the environmental stress response (ESR). Further <strong>in</strong>vestigations<br />

us<strong>in</strong>g DTT exposure showed that the loss of S. cerevisiae genes encod<strong>in</strong>g two<br />

thioredox<strong>in</strong>s (trx1, trx2) causes sensitivity to DTT (Trotter and Grant, 2002).<br />

S<strong>in</strong>ce thioredox<strong>in</strong>s are small oxidoreductases that typically protect cells<br />

aga<strong>in</strong>st oxidative stress, the observed sensitivity to DTT was <strong>in</strong>trigu<strong>in</strong>g.<br />

Given that thioredox<strong>in</strong> loss was previously shown to cause an imbalance <strong>in</strong><br />

the 2GSH:GSSG ratio (Muller, 1996; Garrido and Grant, 2002), the f<strong>in</strong>d<strong>in</strong>gs<br />

suggest that the yeast cellular redox mach<strong>in</strong>ery requires precise regulation to<br />

protect aga<strong>in</strong>st oxidative and reductive stress, and that thioredox<strong>in</strong>s help<br />

ma<strong>in</strong>ta<strong>in</strong> redox homeostasis <strong>in</strong> response to both oxidative and reductive<br />

stress. The mode of action of the yeast redox mach<strong>in</strong>ery is functionally dist<strong>in</strong>ct<br />

from that of bacteria, s<strong>in</strong>ce loss of bacterial thioredox<strong>in</strong> results <strong>in</strong> sensitivity to<br />

the thiol-oxidis<strong>in</strong>g agent diamide (Ritz et al., 2000), whereas loss of trx1 and<br />

trx2 <strong>in</strong> S. cerevisiae produced diamide resistance (Trotter and Grant, 2002).<br />

Thioredox<strong>in</strong>s, glutaredox<strong>in</strong>s and GSH are thermodynamically l<strong>in</strong>ked, s<strong>in</strong>ce<br />

oxidised thioredox<strong>in</strong>s are reduced by NADPH and thioredox<strong>in</strong> reductase,<br />

whereas oxidised glutaredox<strong>in</strong>s are reduced by GSH and NADPH.


REDUCTIVE STRESS IN MICROBES 61<br />

In cont<strong>in</strong>uation of the above studies (Rand and Grant, 2006), S. cerevisiae<br />

was used <strong>in</strong> a screen to identify mutants sensitive to DTT. A large number of<br />

mutations were found that affected gene expression, metabolism and components<br />

of the secretory pathway, <strong>in</strong>clud<strong>in</strong>g a mutation that resulted <strong>in</strong> the<br />

loss of TSA1, encod<strong>in</strong>g a peroxiredox<strong>in</strong>. It was observed that TSA1 mutants<br />

accumulate aggregated ribosomal prote<strong>in</strong>s, thus impair<strong>in</strong>g translation<br />

<strong>in</strong>itiation (Rand and Grant, 2006). A complementary and physiologically<br />

relevant approach to study<strong>in</strong>g DTT exposure <strong>in</strong>cluded analysis of a glycerol-<br />

3-phosphate dehydrogenase (GPD2) mutant shown to have altered <strong>in</strong>tracellular<br />

NADH levels. Excessive NADH levels are thought to be the underly<strong>in</strong>g<br />

reason for the attenuated anaerobic growth of S. cerevisiae lack<strong>in</strong>g GPD2<br />

(Ansell et al., 1997).<br />

Dur<strong>in</strong>g S. cerevisiae fermentation, NADH/NAD + redox balance is ma<strong>in</strong>ta<strong>in</strong>ed<br />

when acetaldehyde is reduced to ethanol, which is redox neutral.<br />

Dur<strong>in</strong>g anaerobic growth, glycerol is follow<strong>in</strong>g ethanol and CO2, the most<br />

abundant byproduct, which is produced by the NADH-mediated reduction<br />

of dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate, followed<br />

by dephosphorylation (van Dijken and Scheffers, 1986). Nonetheless, the<br />

reduction of NAD + to NADH occurs via metabolite and biomass synthesis<br />

and NADH <strong>in</strong> turn must be re-oxidised to NAD + to ma<strong>in</strong>ta<strong>in</strong> redox balance.<br />

Thus, <strong>in</strong>tr<strong>in</strong>sically, glycerol functions as a redox s<strong>in</strong>k for anaerobic growth of<br />

S. cerevisiae, and as such, glycerol must be cont<strong>in</strong>uously produced to ma<strong>in</strong>ta<strong>in</strong><br />

redox balance (van Dijken and Scheffers, 1986). S. cerevisiae<br />

Dgpd1Dgpd2 cells are unable to synthesise glycerol under anaerobic conditions<br />

(Ansell et al., 1997) and consequently cannot re-oxidise NADH, which<br />

leads to NADH accumulation and growth arrest. However, provision of<br />

exogenous aceto<strong>in</strong> or acetaldehyde to the media (Ansell et al., 1997) as<br />

electron acceptors restored redox balance and growth. 2D-PAGE analyses<br />

of anaerobically grown S. cerevisiae Dgpd2 showed <strong>in</strong>creased expression of<br />

Tdh1p, the m<strong>in</strong>or isoform of G3PD, an effect which could be reversed by the<br />

addition of aceto<strong>in</strong>. S<strong>in</strong>ce deletion of TDH1 improved anaerobic growth of<br />

S. cerevisiae Dgpd2, it was speculated that TDH1 functions as a reporter for<br />

<strong>in</strong>tracellular NADH reductive stress (Valadi et al., 2004).<br />

The requirement of glycerol formation as a redox s<strong>in</strong>k for NADH<br />

<strong>in</strong> anaerobically cultured S. cerevisiae was abrogated by the NADHdependent<br />

reduction of acetic acid to ethanol (Med<strong>in</strong>a et al., 2010). In this<br />

study, the E. coli mhpF gene, encod<strong>in</strong>g the acetylat<strong>in</strong>g NAD + -dependent<br />

acetaldehyde dehydrogenase, was expressed <strong>in</strong> S. cerevisiae Dgpd1Dgpd2<br />

and was able to restore growth of the mutant under anaerobic conditions<br />

when the medium was supplemented with acetate as an electron acceptor<br />

(Med<strong>in</strong>a et al., 2010). An alternative approach for the reoxidation of


62 AISHA FARHANA ET AL.<br />

NADH, based upon the absence of transhydrogenase activity (NADH<br />

+NADP + $ NAD + +NADPH)<strong>in</strong>yeasts(van Dijken and Scheffers, 1986)<br />

was attempted, where<strong>in</strong> the ultimate goal was to heterologously <strong>in</strong>troduce<br />

a different pathway for reoxidation of NADH <strong>in</strong> yeast when glycerol<br />

synthesis was impaired. This would lead to an <strong>in</strong>creased ethanol production<br />

under aerobic and anaerobic conditions. Unfortunately, the system<br />

appeared to be more complex than anticipated, and attempts to <strong>in</strong>troduce<br />

an alternative NADH oxidation pathway by express<strong>in</strong>g the transhydrogenase<br />

of Azotobacter v<strong>in</strong>elandii <strong>in</strong> S. cerevisiae Dgpd1Dgpd2 was unsuccessful<br />

(Nissen et al., 2000).<br />

Formate is a particularly important NADH-generat<strong>in</strong>g substrate utilised<br />

by S. cerevisiae under aerobic conditions, s<strong>in</strong>ce CO2 [product of the formate<br />

dehydrogenase (FDH) reaction] does not accumulate <strong>in</strong> solution. In a metabolic<br />

eng<strong>in</strong>eer<strong>in</strong>g approach, formate, which cannot act as a carbon source<br />

for biomass formation, was used to <strong>in</strong>crease glycerol production under<br />

anaerobic conditions (Geertman et al., 2006). However, formate oxidation<br />

was shown to be <strong>in</strong>complete. S<strong>in</strong>ce low <strong>in</strong>tracellular NAD + concentrations<br />

negatively affect the <strong>in</strong> vivo Km of FDH for formate, GPD2 was overexpressed<br />

to re-oxidise NADH. The concurrent overexpression of FDH1 with<br />

GPD2 demonstrated a synergistic effect that resulted <strong>in</strong> consumption of 70%<br />

of the supplied formate (Geertman et al., 2006).<br />

In sum, overproduction of NAD(P)H has to be balanced by NAD(P)Hconsum<strong>in</strong>g<br />

pathways. In order to ma<strong>in</strong>ta<strong>in</strong> redox balance, yeast may secrete<br />

ethanol, polyalcohols, monocarboxylic acids and di- and tricarboxylic acids.<br />

5.1.2. Escherichia coli<br />

Bacteria have evolved a variety of mechanisms to balance the rate of oxidation<br />

and reduction. Reoxidation of NAD(P)H requires electron acceptors<br />

acquired from the environment (external acceptors) or they may be generated<br />

<strong>in</strong>tracellularly. When electron transfer occurs <strong>in</strong> a membrane-bound<br />

process, NADH oxidation may be l<strong>in</strong>ked to respiration (either aerobic or<br />

anaerobic) (de Graef et al., 1999), whereas electron transfer that occurs <strong>in</strong> the<br />

cytosol, aka fermentation, also re-oxidises NADH to generate NAD +<br />

(Wolfe, 2005).<br />

Pyruvate catabolism is the major switch po<strong>in</strong>t between the respiratory and<br />

fermentative responses. In the absence of O 2, energy must be supplied by<br />

either anaerobic respiration coupled to electron acceptors such as nitrate<br />

(NO 3 ) and fumarate, or by fermentation (Gray et al., 1966; Clark, 1989).<br />

For example, facultative anaerobes such as E. coli can use term<strong>in</strong>al electron<br />

acceptors such as fumarate, NO3 or DMSO <strong>in</strong> the process of anaerobic


REDUCTIVE STRESS IN MICROBES 63<br />

respiration. Alternatively, if no term<strong>in</strong>al electron acceptor is available,<br />

E. coli switches to fermentation, which makes use of endogenous organic<br />

compounds as electron acceptors to generate soluble products <strong>in</strong>clud<strong>in</strong>g<br />

acetate, ethanol, lactate, formate and succ<strong>in</strong>ate and gaseous products such<br />

as H 2 and CO 2 (Clark, 1989). Notably, because redox balance has to be<br />

ma<strong>in</strong>ta<strong>in</strong>ed, the ratio of these products is <strong>in</strong>fluenced by the number of<br />

reduc<strong>in</strong>g equivalents generated dur<strong>in</strong>g breakdown of the substrate. In the<br />

ethanolic fermentation pathway, ethanol, propionic acid and CO 2 are the<br />

end products whose formation is coupled with the conversion of NADH to<br />

NAD + . In the case of mixed acid fermentation carried out by E. coli and<br />

members of the genera Salmonella and Shigella, pyruvate is converted <strong>in</strong>to<br />

ethanol, acetate, succ<strong>in</strong>ate, formate, molecular H 2, lactate and CO2 (Gray<br />

et al., 1966; Wolfe, 2005). Dur<strong>in</strong>g synthesis of these products, NADH is<br />

re-oxidised to NAD + , and acetate production is accompanied by ATP formation<br />

via substrate-level phosphorylation. In addition to carbohydrates,<br />

am<strong>in</strong>o acids such as arg<strong>in</strong><strong>in</strong>e can be fermented by Clostridium, Streptococcus<br />

and Mycoplasma spp. to ornith<strong>in</strong>e, CO 2 and NH 3. Clostridia can<br />

ferment multiple am<strong>in</strong>o acids through the Stickland reaction <strong>in</strong> which one<br />

am<strong>in</strong>o acid functions as an electron donor and the other as an electron<br />

acceptor, allow<strong>in</strong>g regeneration of reduc<strong>in</strong>g equivalents (Atlas, 1996).<br />

The <strong>in</strong>tracellular redox state of E. coli as <strong>in</strong>dicated by the NADH/NAD +<br />

ratio is strongly <strong>in</strong>fluenced by the availability and nature of the external<br />

electron acceptors present <strong>in</strong> the extracellular environment (de Graef<br />

et al., 1999). Both fumarate and nitrate were shown to be electron acceptors<br />

capable of function<strong>in</strong>g as effective reductive (NADH) s<strong>in</strong>ks. The highest<br />

NADH/NAD + ratios occurred dur<strong>in</strong>g fermentation followed by fumarate<br />

respiration and nitrite respiration. Furthermore, <strong>in</strong> exam<strong>in</strong><strong>in</strong>g the relationship<br />

between dissolved O 2 tension (DOT) and the <strong>in</strong>tracellular levels of<br />

reduc<strong>in</strong>g equivalents, the NADH/NAD + redox ratio was found to <strong>in</strong>versely<br />

correlate with DOT; the lower the DOT, the higher the ratio, such that the<br />

most anaerobic condition exam<strong>in</strong>ed (DOT of 0.1%) was associated with the<br />

largest ratio (de Graef et al., 1999).<br />

As described earlier, acetogenesis, or the excretion of acetic acid <strong>in</strong>to the<br />

culture medium, can either occur as a result of growth <strong>in</strong>volv<strong>in</strong>g a high rate of<br />

glucose consumption <strong>in</strong> the presence of ample O2 (Crabtree effect), or<br />

dur<strong>in</strong>g growth under anaerobic conditions when the TCA cycle is not operat<strong>in</strong>g.<br />

Although acetic acid production can be viewed as a mechanism to<br />

reduce NAD(P)H accumulation, it subsequently leads to the production of<br />

ATP, whereas D-lactate, succ<strong>in</strong>ate, ethanol, formate and CO 2 are the<br />

excreted products that function as s<strong>in</strong>ks for accumulat<strong>in</strong>g reduc<strong>in</strong>g equivalents<br />

to ma<strong>in</strong>ta<strong>in</strong> redox balance (Wolfe, 2005).


64 AISHA FARHANA ET AL.<br />

To exam<strong>in</strong>e the role of the NADH/NAD + ratio <strong>in</strong> acetic acid overflow<br />

metabolism, the redox ratio <strong>in</strong> E. coli was modulated by overexpress<strong>in</strong>g<br />

the Streptococcus pneumoniae nox gene (encod<strong>in</strong>g water-form<strong>in</strong>g<br />

NADH oxidase), which decouples NADH oxidation from respiration<br />

(Vemuri et al., 2006). The data demonstrated that an <strong>in</strong>crease <strong>in</strong> oxidation<br />

of excess NADH led to decreased acetate formation and biomass yield, and<br />

<strong>in</strong>creased the glucose consumption rate by 50%. As expected, the redox<br />

ratio was always greater for nox bacteria than for the nox + stra<strong>in</strong>.<br />

However, acetate formation for both stra<strong>in</strong>s occurred at an identical<br />

NADH/NAD + ratio of 0.06, thereby establish<strong>in</strong>g a relationship between<br />

the redox state of the cell and overflow metabolism (Vemuri et al., 2006).<br />

Conversely, the effect of <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tracellular NADH was studied by<br />

substitut<strong>in</strong>g the native cofactor-<strong>in</strong>dependent FDH with an NAD + -dependent<br />

FDH from Candida boid<strong>in</strong>ii (Berrios-Rivera et al., 2002a,b,c).<br />

Overexpression of the yeast FDH <strong>in</strong> E. coli under anaerobic conditions<br />

caused an <strong>in</strong>crease <strong>in</strong> NADH and favoured the production of more reduced<br />

metabolites such as ethanol, which also generated a three- to fourfold<br />

<strong>in</strong>crease <strong>in</strong> the ethanol/acetate ratio (Berrios-Rivera et al., 2002b). In fact,<br />

the <strong>in</strong>creased availability of NADH <strong>in</strong>duced a shift towards fermentation <strong>in</strong><br />

the presence of O2 evident by the production of lactate, ethanol and succ<strong>in</strong>ate,<br />

all metabolites typically produced dur<strong>in</strong>g anaerobic fermentation<br />

(Berrios-Rivera et al., 2002a,b).<br />

5.2. Polymer Deposition<br />

5.2.1. Polyhydroxyalkonate (PHA), Poly-b-Hydroxybutyrate (PHB)<br />

and Triacylglycerol (TAG)<br />

Biosynthesis of polyketide or lipid-like molecules <strong>in</strong> response to a change <strong>in</strong><br />

<strong>in</strong>tracellular redox balance may be a general compensatory mechanism<br />

found <strong>in</strong> many bacteria. In fact, polyhydroxyalkonate (PHA) and polyb-hydroxybutyrate<br />

(PHB) are accumulated by diverse bacteria as carbon<br />

and reductive-power storage molecules (Encarnacion et al., 1995; Cevallos<br />

et al., 1996). As <strong>in</strong> the case of the TCA cycle, carbon flow through the<br />

pathways necessary for PHB or PHA accumulation is greatly <strong>in</strong>fluenced<br />

by growth and environmental conditions (e.g. O2 concentration) (Senior<br />

and Dawes, 1973).<br />

Biosynthesis of PHA, a storage lipid, <strong>in</strong> Azotobacter beijer<strong>in</strong>ckii was<br />

shown to be regulated by O2 concentration and carbon source (Senior and


REDUCTIVE STRESS IN MICROBES 65<br />

Dawes, 1973). The central regulator of PHA production is the flux of acetyl-<br />

CoA, which may be oxidised via the TCA cycle or can serve as a precursor<br />

for PHA synthesis depend<strong>in</strong>g upon oxygen concentration. Under oxygen<br />

limitation, when the NADH/NAD + ratio <strong>in</strong>creases, the activities of the TCA<br />

cycle enzymes, citrate synthase and isocitrate dehydrogenase are <strong>in</strong>hibited<br />

by NADH and as a consequence, acetyl-CoA could no longer enters the<br />

TCA cycle. Instead, acetyl-CoA is converted to acetoacetyl-CoA by 3ketothiolase,<br />

the first enzyme <strong>in</strong> the PHA biosynthesis pathway. Based on<br />

these f<strong>in</strong>d<strong>in</strong>gs, it was proposed that PHA serves not only as a reserve carbon<br />

and energy source, but also as a reductant s<strong>in</strong>k, similar to what was suggested<br />

for TAG (Senior and Dawes, 1973). Direct evidence <strong>in</strong> support of PHA <strong>in</strong><br />

regulat<strong>in</strong>g <strong>in</strong>tracellular redox balance was provided by Page and Knosp<br />

(1989), us<strong>in</strong>g an NADH oxidase-deficient stra<strong>in</strong> of A. v<strong>in</strong>elandii. This stra<strong>in</strong><br />

is unable to re-oxidise NADH via oxygen-dependent respiration and <strong>in</strong>stead<br />

accumulates large amounts of PHA, as a mechanism for the disposal of<br />

excess reductants (Page and Knosp, 1989).<br />

Species belong<strong>in</strong>g to the genera Rhizobium, Bradyrhizobium and<br />

Azorhizobium synthesise PHB dur<strong>in</strong>g symbiosis and <strong>in</strong> free-liv<strong>in</strong>g state<br />

(Encarnacion et al., 1995; Cevallos et al., 1996). Interest<strong>in</strong>gly, even though<br />

Rhizobium spp. are strict aerobes that are well adapted to survive microaerophilically,<br />

a fermentative response was also described. Besides serv<strong>in</strong>g<br />

as a s<strong>in</strong>k of reductive power, PHB is also a fermentative product, which is<br />

secreted like other organic acids and am<strong>in</strong>o acids (Encarnacion et al., 1995).<br />

Studies <strong>in</strong> Rhizobium etli have shown that a PHB mutant excreted significantly<br />

more pyruvate, fumarate, lactate, acetate and b-hydroxybutyrate<br />

compared to the wild-type (wt) stra<strong>in</strong> (Cevallos et al., 1996). This data,<br />

together with the observation that the NAD + /NADH ratio is much reduced,<br />

<strong>in</strong>dicates that the oxidative capacity of the organism is significantly<br />

decreased because of the absence of a s<strong>in</strong>k for reductive power<br />

(Cevallos et al., 1996).<br />

TAG is a water-<strong>in</strong>soluble triester of glycerol with FA and an excellent<br />

reserve substrate because of the reduced COS relative to carbohydrates or<br />

prote<strong>in</strong>s. Because of these properties, it yields significantly more energy<br />

when oxidised (Alvarez and Ste<strong>in</strong>buchel, 2002; Waltermann et al., 2007).<br />

b-Oxidation of the FA cha<strong>in</strong>s of TAG generates large quantities of reduc<strong>in</strong>g<br />

equivalents, which require subsequent oxidation. This requirement<br />

might be the reason why TAG-produc<strong>in</strong>g bacteria are all aerobes.<br />

Consistent with this notion, it has been suggested that, <strong>in</strong> act<strong>in</strong>omycetes,<br />

TAG could serve as a s<strong>in</strong>k for excess reductants accumulated <strong>in</strong> the<br />

absence of term<strong>in</strong>al electron acceptors (Alvarez and Ste<strong>in</strong>buchel, 2002).<br />

Rhodococcus ruber is capable of accumulat<strong>in</strong>g both TAG and PHA and


66 AISHA FARHANA ET AL.<br />

disruption of PHA biosynthesis leads to <strong>in</strong>creased accumulation of TAG,<br />

suggest<strong>in</strong>g a metabolic l<strong>in</strong>k between these two triesters (Alvarez et al.,<br />

2000; Alvarez and Ste<strong>in</strong>buchel, 2002). Studies <strong>in</strong> Rhodococcus opacus<br />

PD630 suggested that TAG production can be promoted by cultur<strong>in</strong>g<br />

bacteria under limited aeration (Alvarez and Ste<strong>in</strong>buchel, 2002).<br />

Similarly, <strong>in</strong>creased expression of Mtb tgs1 lead<strong>in</strong>g to TAG accumulation<br />

occurs under hypoxic conditions and dur<strong>in</strong>g exposure to NO and CO<br />

(Sherman et al., 2001; Ohno et al., 2003; Voskuil et al., 2003; Kumar<br />

et al., 2008). Consistent with the biological function of TAG and PHA, it<br />

appears that <strong>in</strong>hibition of respiration by NO or lack of O2 as term<strong>in</strong>al<br />

electron acceptor leads to an <strong>in</strong>creased amount of reduc<strong>in</strong>g equivalents,<br />

which can be dissipated via TAG, PHA or PHB anabolism.<br />

Recent reports provide important mechanistic l<strong>in</strong>ks between reductive<br />

stress, polyketide and TAG anabolism (see Section 6.2.4.2). It has been<br />

shown that dur<strong>in</strong>g persistence Mtb accumulates NAD(P)H, confirm<strong>in</strong>g the<br />

physiological presence of reductive stress <strong>in</strong> Mtb pathogenesis (Boshoff et al.,<br />

2008). Furthermore, <strong>in</strong> the mouse model for TB (Ja<strong>in</strong> et al., 2007) and <strong>in</strong> the<br />

<strong>in</strong> vitro model for dormancy (Daniel et al., 2004), Mtb <strong>in</strong>duces production of<br />

complex polyketides, such as PDIM and SL-1, and the storage lipid TAG<br />

respectively. S<strong>in</strong>ce accumulation of NADH can eventually lead to oxidative<br />

*<br />

stress by auto-oxidation and reduction of O2 to generate O2 , it has been<br />

proposed that polyketide and TAG anabolism could serve as efficient reductant<br />

disposal mechanisms utilised by Mtb to alleviate reductive stress for<br />

long-term persistence (S<strong>in</strong>gh et al., 2009). TAG is metabolised by Mtb upon<br />

reactivation from the Wayne model of <strong>in</strong> vitro dormancy (Deb et al., 2006),<br />

<strong>in</strong>dicat<strong>in</strong>g a possible role for TAG <strong>in</strong> emergence from a persistent state.<br />

5.3. Nitrate Reductase<br />

Under normal grow<strong>in</strong>g conditions, aerobic respiration <strong>in</strong> bacteria is primarily<br />

required to generate a proton motive force for ATP synthesis. Several<br />

studies suggest that <strong>in</strong>hibition of aerobic respiration, due to the lack of<br />

oxygen or exposure to NO, results <strong>in</strong> accumulation of reduc<strong>in</strong>g equivalents<br />

and depletion of ATP (de Graef et al., 1999; San et al., 2002; Berrios-Rivera<br />

et al., 2004; Sanchez et al., 2005; Vemuri et al., 2006; Husa<strong>in</strong> et al., 2008). It has<br />

been shown that <strong>in</strong> addition to hypoxia and NO, oxidative metabolism of<br />

highly reduced carbon substrates (e.g. palmitate, caproate, butyrate, oleate)<br />

also results <strong>in</strong> <strong>in</strong>tracellular reductive stress even <strong>in</strong> the presence of oxygen<br />

(Alam and Clark, 1989; Clark, 1989; Sears et al., 2000; Berrios-Rivera et al.,<br />

2004; L<strong>in</strong> et al., 2005; Sanchez et al., 2005). These studies suggest that under


REDUCTIVE STRESS IN MICROBES 67<br />

conditions of reductive stress, respiration is not coupled to proton translocation;<br />

rather, disposal of excess reductants from cells without ATP generation<br />

may be the dom<strong>in</strong>ant function of respiration (Sears et al., 2000). For<br />

example, <strong>in</strong> Paracoccus pantotrophus, electrons flow from ubiqu<strong>in</strong>ol to periplasmic<br />

nitrate reductase (Nap) without proton translocation dur<strong>in</strong>g growth<br />

on reduced carbon substrates such as acetate and butyrate (Ell<strong>in</strong>gton et al.,<br />

2002). P. pantotrophus is capable of both aerobic and anaerobic respiration<br />

on NO 3 <strong>in</strong> the presence of a variety of carbon sources with broad oxidation<br />

states. It has been shown that Nap is required to ma<strong>in</strong>ta<strong>in</strong> cellular redox<br />

homeostasis by provid<strong>in</strong>g an alternate route for the oxidation of excess<br />

reductants generated from the oxidative metabolism of highly reduced carbon<br />

substrates (Richardson, 2000). Furthermore, demonstrat<strong>in</strong>g that highly<br />

reduced carbon substrates (e.g. caproate and butyrate) <strong>in</strong>crease Nap activity<br />

whereas oxidised carbon substrates (e.g. succ<strong>in</strong>ate and malate) decrease Nap<br />

activity po<strong>in</strong>ts to a clear correlation between Nap activity and the COS of a<br />

carbon substrate (Sears et al., 2000). More importantly, transcription of the<br />

nap operon is shown to be dependent on carbon source, imply<strong>in</strong>g that nap<br />

transcription responds to a change <strong>in</strong> the cellular redox state due to the<br />

metabolism of the reduced carbon substrates (Sears et al., 2000). A strict<br />

hierarchical preference for carbon sources was exhibited by P. pantotrophus.<br />

The less reduced carbon source, succ<strong>in</strong>ate, is preferred over acetate, which <strong>in</strong><br />

turn is preferred over butyrate for growth. This hierarchical preference for<br />

carbon substrates is directly correlated with the expression of nap, such that<br />

nap is maximally <strong>in</strong>duced dur<strong>in</strong>g growth on butyrate followed by acetate and<br />

then succ<strong>in</strong>ate (Ell<strong>in</strong>gton et al., 2002). As was demonstrated by the low<br />

growth rate, P. pantotrophus cells grown on butyrate were ‘stra<strong>in</strong>ed’ as<br />

compared to succ<strong>in</strong>ate. This suggests a growth-restrict<strong>in</strong>g effect of reduced<br />

carbon source. Consistent with cellular energetics, butyrate as a carbon<br />

substrate is more reduced than most of the sugars and thus generates an<br />

excess of toxic reduc<strong>in</strong>g equivalents, which must be dissipated. The excess<br />

reductants can be disposed only if there is a mechanism for uncoupl<strong>in</strong>g the<br />

respiratory electron flow from ATP synthesis. In P. pantotrophus, the ubiqu<strong>in</strong>ol-Nap<br />

nitrate reductase pathway is one such mechanism (Richardson,<br />

2000; Sears et al., 2000). See Section 6.2.4.1 for a description of the role of<br />

Mtb nitrate reductase <strong>in</strong> reductive stress.<br />

5.4. Phenaz<strong>in</strong>e Production<br />

Phenaz<strong>in</strong>es are redox-active heterocyclic compounds produced naturally<br />

and modified at different positions on their r<strong>in</strong>gs by various phenaz<strong>in</strong>e-


68 AISHA FARHANA ET AL.<br />

generat<strong>in</strong>g bacterial species. To date, there are approximately 100 natural<br />

phenaz<strong>in</strong>e products that are almost exclusively produced <strong>in</strong> high levels (mg<br />

to g/L) by eubacteria (Mavrodi et al., 2006). Many members of the genus<br />

Streptomyces, which are high G + C content bacteria, also produce simple<br />

and complex phenaz<strong>in</strong>es (Mavrodi et al., 2006; Mentel et al., 2009;<br />

W<strong>in</strong>stanley and Fothergill, 2009). Pyocyan<strong>in</strong> (PYO; 5-N-methyl-1-hydroxyphenaz<strong>in</strong>e)<br />

was the first described phenaz<strong>in</strong>e and is produced by<br />

Pseudomonas aerug<strong>in</strong>osa. PYO naturally occurs as a zwitterion that has<br />

hydrophobic and hydrophilic regions, which can easily penetrate cytoplasmic<br />

membranes, and can undergo cellular redox cycl<strong>in</strong>g <strong>in</strong> the presence of<br />

*<br />

NADPH, NADH and O2 to generate O2 and H2O2 (Dietrich et al., 2008;<br />

Mentel et al., 2009). PYO and phenaz<strong>in</strong>e-1-carboxylic acid (another major<br />

phenaz<strong>in</strong>e produced by P. aerug<strong>in</strong>osa) have redox potentials of 34 mV<br />

(Friedheim and Michaelis, 1931) and 116 mV (Price-Whelan et al., 2007)<br />

respectively, and therefore can be reduced by NADH (E 0’ = 320 mV). Not<br />

surpris<strong>in</strong>gly, establish<strong>in</strong>g that NADH can react with PYO <strong>in</strong> vitro led to the<br />

conclusion that bacteria may use PYO as a mechanism to ma<strong>in</strong>ta<strong>in</strong> <strong>in</strong>tracellular<br />

redox homoeostasis (Friedheim, 1931; Price-Whelan et al., 2006).<br />

Consistent with this, recent studies have shown that PYO can directly activate<br />

SoxR, a Fe–S cluster and regulatory prote<strong>in</strong> that is typically upregulated<br />

<strong>in</strong> response to oxidative stress (Dietrich et al., 2006). It was also suggested<br />

that excreted phenaz<strong>in</strong>es reduce Fe 3+ to the more soluble Fe 2+ form that can<br />

be taken up by siderophores (Hernandez et al., 2004). Thus, it is clear that<br />

phenaz<strong>in</strong>es have the potential to generate substantial oxidative stress on<br />

cells.<br />

Because phenaz<strong>in</strong>es have low mid-po<strong>in</strong>t redox potentials, it has been<br />

suggested that they can be directly reduced by NADH or GSH<br />

(Hernandez and Newman, 2001). Several groups observed that both synthetic<br />

and natural phenaz<strong>in</strong>es are reduced by prokaryotes, but <strong>in</strong> most of<br />

these studies the physiological effect of this reduction was not exam<strong>in</strong>ed.<br />

However, Methanobacterium mazei Go1, an archeon produc<strong>in</strong>g methanophenaz<strong>in</strong>e<br />

(a phenaz<strong>in</strong>e derivative), has been shown to utilise phenaz<strong>in</strong>es<br />

<strong>in</strong>stead of qu<strong>in</strong>ones <strong>in</strong> the ETC <strong>in</strong> order to generate ATP (Deppenmeier,<br />

2002). Thus, <strong>in</strong> M. mazei, phenaz<strong>in</strong>e production is not only crucial to energy<br />

metabolism, but also for re-oxidis<strong>in</strong>g NADH (Deppenmeier, 2004). This<br />

raises the possibility that phenaz<strong>in</strong>es may be similarly <strong>in</strong>volved <strong>in</strong> dissipat<strong>in</strong>g<br />

reductive stress <strong>in</strong> pseudomonads.<br />

In an <strong>in</strong>terest<strong>in</strong>g report exam<strong>in</strong><strong>in</strong>g the NAD + and NADH concentrations<br />

<strong>in</strong> Clostridium welchii, Klebsiella aerogenes, E. coli, Staphylococcus albus<br />

and P. aerug<strong>in</strong>osa (Wimpenny and Firth, 1972), it was demonstrated that<br />

all the species, with the exception of P. aerug<strong>in</strong>osa, have NADH/NAD +


REDUCTIVE STRESS IN MICROBES 69<br />

ratios of


70 AISHA FARHANA ET AL.<br />

Phenaz<strong>in</strong>es have the potential to directly associate with the respiratory cha<strong>in</strong><br />

to either couple their reduction to ATP generation or dissipate reductive<br />

stress (Hernandez and Newman, 2001; Mavrodi et al., 2006; Price-Whelan<br />

et al., 2006, 2007).<br />

5.5. Hydrogenases<br />

Hydrogenases (H 2ases) are redox metalloenzymes found throughout the<br />

eukaryotic and prokaryotic genera, the majority of which conta<strong>in</strong> an iron–<br />

sulphur (Fe–S) cluster or alternatively two metal atoms (two Fe atoms or an<br />

Ni–Fe comb<strong>in</strong>ation) (Vignais et al., 2001; Jenney and Adams, 2008). H 2ases<br />

catalyse the reversible conversion/oxidation of hydrogen gas (Nandi and<br />

Sengupta, 1998; Meyer, 2007; Jenney and Adams, 2008):<br />

H2 $ 2H + +2e<br />

Membrane-bound hydrogenases split the protons from H2, thus creat<strong>in</strong>g a<br />

proton gradient across the cytoplasmic membrane. The electrons (e ) produced<br />

<strong>in</strong> the H2 oxidation process are transferred to electron carriers <strong>in</strong> the<br />

bacterial membrane and ultimately to term<strong>in</strong>al electron acceptors such as O2 (aerobic respiration) or fumarate, NO3 ,SO4 2 and CO2 (anaerobic respiration)<br />

(Vignais et al., 2001; Vignais and Colbeau, 2004). In addition, some<br />

bacteria can use the protons as oxidants to dispose of excess reduc<strong>in</strong>g power,<br />

thereby reoxidis<strong>in</strong>g their coenzymes <strong>in</strong> the process (Cammack et al., 2001;<br />

Vignais et al., 2001). S<strong>in</strong>ce the oxidation of H2 is reversible, the H2ase will<br />

produce H2 <strong>in</strong> the presence of an electron donor and will act as a H2 uptake<br />

enzyme <strong>in</strong> the presence of an electron acceptor. H2ase activity is modulated<br />

by numerous regulatory pathways and responds to changes <strong>in</strong> the valance<br />

state of the metal cofactors, O2 levels and pH (Vignais and Colbeau, 2004).<br />

H2 is a high-energy reductant that is present <strong>in</strong> the mucus layer of the mouse<br />

stomach at 43 mM, <strong>in</strong> the liver at 50 mM(Olson and Maier, 2002; Maier et al.,<br />

2003) and spreads throughout host tissues by diffusion, or alternatively is<br />

carried through the bloodstream to organs such as the lungs (Levitt, 1969).<br />

H2 has a likely role to play <strong>in</strong> microbial pathogenesis as it was recently<br />

*<br />

demonstrated that H2 is highly effective <strong>in</strong> reduc<strong>in</strong>g OH and alleviat<strong>in</strong>g<br />

*<br />

OH -<strong>in</strong>duced cytotoxicity without affect<strong>in</strong>g other ROS (Ohsawa et al., 2007).<br />

H2ases can be classified <strong>in</strong>to three categories based on the composition of<br />

their metal centres: (i) [NiFe]-hydrogenases, (ii) [FeFe]-hydrogenases and<br />

(iii) the Fe–S cluster-free hydrogenases (Nandi and Sengupta, 1998; Vignais<br />

and Colbeau, 2004; Burgdorf et al., 2005; Jenney and Adams, 2008). S<strong>in</strong>ce the<br />

enzymatic activity of uptake H2ases can <strong>in</strong>crease under anaerobic conditions


REDUCTIVE STRESS IN MICROBES 71<br />

(reductive activation) (Maier et al., 2003), it has implications for a wide range<br />

of pathogens. For example, <strong>in</strong> a sem<strong>in</strong>al study, a role for H2 <strong>in</strong> Helicobacter<br />

pathogenesis was reported (Olson and Maier, 2002). It was shown that H2<br />

produced by the gastric flora <strong>in</strong> mice functions as a respiratory substrate for<br />

Helicobacter pylori and substantially <strong>in</strong>creases its ability to colonise the<br />

stomach (Olson and Maier, 2002). On the other hand, Salmonella H 2ases<br />

(e.g. Hyd) may oxidise H2 with O2 as the term<strong>in</strong>al electron acceptor with the<br />

<strong>in</strong>tention of conserv<strong>in</strong>g energy dur<strong>in</strong>g different stages of host <strong>in</strong>fection (Zbell<br />

et al., 2008). Genetic studies <strong>in</strong> Salmonella have shown that H2 can be<br />

generated and oxidised by the same organism (Zbell and Maier, 2009).<br />

Us<strong>in</strong>g H 2 as an energy source <strong>in</strong> vivo by bacterial pathogens is not unique<br />

and has been reported previously (Olson and Maier, 2002; Zbell et al., 2007;<br />

da Silva et al., 2008).<br />

S<strong>in</strong>ce the TCA cycle is repressed under anaerobic conditions, fermentative<br />

grow<strong>in</strong>g bacteria must oxidise reduc<strong>in</strong>g equivalents such as NADH to<br />

ensure cont<strong>in</strong>uous conversion of the substrate. Klebsiella pneumoniae has<br />

evolved a clever mechanism by which the bacteria ga<strong>in</strong> limited quantities of<br />

the reduc<strong>in</strong>g equivalent NADPH from the oxidation of citrate (Pfenn<strong>in</strong>ger-<br />

Li and Dimroth, 1992), but because of the downregulation of the TCA cycle,<br />

sufficient quantities of NADH is lack<strong>in</strong>g. K. pneumoniae solves this problem<br />

by generat<strong>in</strong>g NADPH via the oxidation of H 2 dur<strong>in</strong>g citrate fermentation by<br />

aH 2:NAD(P) + oxidoreductase (hydrogenase). Thus, reduc<strong>in</strong>g equivalents<br />

are provided for the production of biomass (Steuber et al., 1999).<br />

Pyrococcus furiosus employs a different strategy. This organism can use a<br />

range of carbohydrates, convert<strong>in</strong>g them to acetate, CO2,H2 and, if elemental<br />

sulphur (S 0 ) is present, H 2S(Ma et al., 1993). An important characteristic<br />

is that ferredox<strong>in</strong> serves as electron acceptor dur<strong>in</strong>g glycolysis and that no<br />

NAD(P) + is generated. Subsequently, it was found that a H2-evolv<strong>in</strong>g membrane-bound<br />

H 2ase couples the oxidation of ferredox<strong>in</strong> and the reduction of<br />

2H + to H 2 production. Next, a membrane-bound oxidase oxidises ferredox<strong>in</strong><br />

and reduces NADP, which is used by a NAD(P)H S 0 oxidoreductase to<br />

reduce S 0 to H 2S. Thus, P. furiosus disposes of excess reductant us<strong>in</strong>g protons<br />

or S 0 as electron acceptors to yield H 2S(Ma et al., 1993; Schut et al., 2007;<br />

Jenney and Adams, 2008). The production of H2 via hydrogenases is a<br />

specific mechanism to dispose of surplus reduc<strong>in</strong>g equivalents (Nandi and<br />

Sengupta, 1998).<br />

A recent study suggested a feasible and physiologically relevant role for<br />

mycobacterial hydrogenases <strong>in</strong> scaveng<strong>in</strong>g H 2 as an energy source or as a<br />

redox s<strong>in</strong>k (Berney and Cook, 2010). Microarray analysis of hypoxic, carbonlimited<br />

cont<strong>in</strong>uous cultures of Mycobacterium smegmatis identified a number<br />

of hydrogenases that are differentially regulated under energy- or


72 AISHA FARHANA ET AL.<br />

oxygen-limit<strong>in</strong>g conditions. S<strong>in</strong>ce it rema<strong>in</strong>s unclear how mycobacteria recycle<br />

reduc<strong>in</strong>g equivalents under hypoxic conditions lack<strong>in</strong>g exogenous electron<br />

acceptors, it was hypothesised that (i) mycobacteria switch to NAD + /<br />

NADH-<strong>in</strong>dependent enzymes and use ferredox<strong>in</strong>s as electron carriers,<br />

which is typical for anaerobic bacteria, and that (ii) hydrogenases either<br />

oxidise H 2 or produce H 2, or perform both. The <strong>in</strong>vestigators cited the<br />

significant upregulation of many ferredox<strong>in</strong>-reduc<strong>in</strong>g and oxidis<strong>in</strong>g enzymes<br />

identified <strong>in</strong> their study, as well as the results of another study identify<strong>in</strong>g an<br />

anaerobic type a-ketoglutarate:ferredox<strong>in</strong> oxidoreductase (KOR), which<br />

upon disruption requires CO2 for growth (Baughn et al., 2009), to provide<br />

credence to their hypotheses (Berney and Cook, 2010). In order to <strong>in</strong>vestigate<br />

the role of H 2ases under conditions of energy limitation, a highly upregulated<br />

putative hydrogen:qu<strong>in</strong>one oxidoreductase of Msm was disrupted.<br />

The Msm mutant showed a 20% reduction <strong>in</strong> biomass, thus demonstrat<strong>in</strong>g<br />

the essential role of this particular H2ase <strong>in</strong> adapt<strong>in</strong>g to energy limitation.<br />

F<strong>in</strong>ally, based on the Msm studies, it was argued that acidic, hypoxic and<br />

lipid-rich environments (which contribute to a highly reductive <strong>in</strong>tracellular<br />

milieu) may require H2ases to function as reductive s<strong>in</strong>ks, or alternatively,<br />

that H2 could serve as an energy source for Mtb (Berney and Cook, 2010).<br />

The role of H 2ases <strong>in</strong> Mtb pathogenesis is a highly relevant, albeit unexplored<br />

area of <strong>in</strong>vestigation.<br />

5.6. The Reverse TCA (rTCA) Cycle<br />

The TCA cycle is widely distributed <strong>in</strong> aerobic microorganisms and is an<br />

energy acquisition pathway that is exergonic (spontaneous). Although this<br />

cycle only operates under aerobic conditions, it is also present <strong>in</strong> anaerobes<br />

(Sr<strong>in</strong>ivasan and Morowitz, 2006). The reverse TCA (rTCA) cycle is generally<br />

regarded as the phylogenetic orig<strong>in</strong> of the TCA cycle and uses CO2 as the<br />

key source for carbon fixation. The rTCA cycle is, <strong>in</strong> fact, a reversal of the<br />

oxidative TCA cycle and is an endergonic (unfavourable, non-spontaneous)<br />

anabolic pathway that requires reduc<strong>in</strong>g equivalents such as NADH,<br />

NADPH and FADH2 to complete the cycle (Hugler et al., 2005; Sr<strong>in</strong>ivasan<br />

and Morowitz, 2006; Aoshima, 2007; Ikeda et al., 2010). The end result is the<br />

fixation of two molecules of CO 2 and the production of one molecule of<br />

acetyl-CoA, which is reductively carboxylated to pyruvate from which many<br />

central metabolites can be formed. Three enzymes allow the TCA cycle to<br />

operate <strong>in</strong> the reverse direction and their activity is <strong>in</strong>dicative of a function<strong>in</strong>g<br />

rTCA cycle (Hugler et al., 2005; Sr<strong>in</strong>ivasan and Morowitz, 2006). These<br />

enzymes are ATP citrate lyase, 2-oxoglutarate:ferredox<strong>in</strong> oxidoreductase


REDUCTIVE STRESS IN MICROBES 73<br />

(OGFO) and FRD, which catalyse the ATP-dependent cleavage of citrate<br />

to acetyl-CoA and oxaloacetate, the carboxylation of succ<strong>in</strong>yl-CoA to 2oxoglutarate<br />

and the reduction of fumarate to form succ<strong>in</strong>ate, respectively.<br />

Hav<strong>in</strong>g these three enzymes to drive the rTCA cycle provides pathogens<br />

with the flexibility to effectively respond to diverse environments <strong>in</strong> order to<br />

survive <strong>in</strong> their physiological niche (Hugler et al., 2005; Sr<strong>in</strong>ivasan and<br />

Morowitz, 2006; Aoshima, 2007).<br />

S. cerevisiae conta<strong>in</strong>s two FRDs that use FADH 2,FMNH 2 or reduced<br />

riboflav<strong>in</strong> as electron donors to irreversibly reduce fumarate to succ<strong>in</strong>ate. It<br />

has been suggested that these FRDs are <strong>in</strong>volved <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g redox<br />

homeostasis dur<strong>in</strong>g anaerobiosis (Enomoto et al., 2002; Camarasa et al.,<br />

2007). The oxidative and reductive branches of the TCA cycle can also<br />

operate under anaerobic fermentation. For example, dur<strong>in</strong>g yeast fermentation,<br />

if aspartate is the nitrogen source, succ<strong>in</strong>ate can be generated via the<br />

reductive branch. On the other hand, if glutamate is the nitrogen source,<br />

succ<strong>in</strong>ate can be made via the oxidative branch (Sr<strong>in</strong>ivasan and Morowitz,<br />

2006). Thus, it is clear that depend<strong>in</strong>g on the environmental conditions such<br />

as O2 concentration and energy source availability, the rTCA cycle can<br />

operate <strong>in</strong> either a reductive or oxidative direction.<br />

S<strong>in</strong>ce Mtb resides <strong>in</strong> a hypoxic, presumably nutrient-starved environment,<br />

it was speculated that these environmental conditions may severely restrict<br />

the ability of the organism to re-oxidise reduc<strong>in</strong>g equivalents to ma<strong>in</strong>ta<strong>in</strong><br />

redox homeostasis (Boshoff and Barry, 2005; Sr<strong>in</strong>ivasan and Morowitz,<br />

2006; Leistikow et al., 2010), which would eventually lead to a redox imbalance<br />

and death. S<strong>in</strong>ce tubercle lesions generate substantial quantities of CO2<br />

(Haapanen et al., 1959), the rTCA cycle, with its capacity to fix CO 2, may be<br />

an effective mechanism to dissipate reduc<strong>in</strong>g equivalents generated by hypoxic<br />

or microaerophilic conditions and host gases (NO or CO) that <strong>in</strong>hibit<br />

Mtb respiration or by the catabolism of highly reduced <strong>in</strong> vivo carbon sources<br />

such as FA.<br />

Intrigu<strong>in</strong>gly, Mtb appears to lack a CoA-dependent KDH because the<br />

correspond<strong>in</strong>g enzymatic activity was absent <strong>in</strong> crude cellular extracts<br />

(Tian et al., 2005). This f<strong>in</strong>d<strong>in</strong>g suggests that Mtb might operate separate<br />

oxidative and reductive TCA half-cycles. Therefore, the study proposed that<br />

the oxidative branch (that produces a-ketoglutarate [KG] and glutamate)<br />

and reductive branch (that produces succ<strong>in</strong>ate) may be l<strong>in</strong>ked by a-ketoglutarate<br />

decarboxylase (KGD) and succ<strong>in</strong>ic semialdehyde dehydrogenase<br />

(SSADH) to generate succ<strong>in</strong>ate from KG via succ<strong>in</strong>ic semialdehyde (SSA)<br />

(Tian et al., 2005). In conflict with the above <strong>in</strong>terpretation are the results of<br />

an <strong>in</strong>dependent study where<strong>in</strong> an anaerobic type CoA-dependent KG dehydrogenase<br />

activity was assayed <strong>in</strong> Mtb (Baughn et al., 2009). An <strong>in</strong>terest<strong>in</strong>g


74 AISHA FARHANA ET AL.<br />

f<strong>in</strong>d<strong>in</strong>g was that this KOR is highly stable under aerobic conditions. KOR is<br />

expendable for growth when the glyoxylate shunt is non-functional whereas<br />

KGD is critical for this bypass. Collectively, these f<strong>in</strong>d<strong>in</strong>gs po<strong>in</strong>t to a<br />

pathway that operates concomitantly with b-oxidation (KOR-dependent)<br />

and another pathway that functions <strong>in</strong> the absence of b-oxidation (KGDdependent).<br />

Intrigu<strong>in</strong>gly, an Mtb korAB mutant stra<strong>in</strong> required substantial<br />

amounts of CO 2 for growth, suggest<strong>in</strong>g that the KOR-dependent decarboxylation<br />

of KG is a valuable source of CO2 <strong>in</strong> Mtb metabolism (Baughn et al.,<br />

2009). This f<strong>in</strong>d<strong>in</strong>g may have important physiological implications <strong>in</strong> vivo<br />

as alveolar air, blood and <strong>in</strong>terstitial fluids conta<strong>in</strong> 5–6% CO 2 (Florczyk<br />

et al., 2003). Furthermore, CO 2 preserves microaerophilic growth of<br />

Mycobacterium bovis BCG and prevents growth <strong>in</strong>hibition when O2 is<br />

rapidly removed (Florczyk et al., 2003), suggest<strong>in</strong>g a role of CO 2 <strong>in</strong> mycobacterial<br />

persistence. Despite differences <strong>in</strong> mechanisms proposed (Tian<br />

et al., 2005; Baughn et al., 2009), the production of succ<strong>in</strong>ate under lowoxygen<br />

conditions via the rTCA cycle is a feasible survival mechanism<br />

under this physiological condition. In agreement with this, FRD was<br />

recently speculated to be <strong>in</strong>volved <strong>in</strong> survival and ATP production dur<strong>in</strong>g<br />

hypoxia (Rao et al., 2008).<br />

5.7. Carbon Monoxide (CO) Dehydrogenase (CODH)<br />

Carboxydotrophic microbes are aerobic organisms that use CO as the sole<br />

source of carbon and energy dur<strong>in</strong>g chemolithoautotrophic growth. These<br />

CO-utilis<strong>in</strong>g microorganisms use the enzyme CODH to reversibly oxidise<br />

CO accord<strong>in</strong>g to the follow<strong>in</strong>g reaction (Ferry, 1995; Ragsdale, 2004;<br />

Seravalli and Ragsdale, 2008):<br />

CO + H 2O $ CO 2 +2H + +2e<br />

CODH enzymes are divided <strong>in</strong>to two classes accord<strong>in</strong>g to metal or cofactor<br />

content or metabolic role and catalytic activity. Aerobic carboxydotrophic<br />

bacteria uses a Cu-, Fe- and Mo-conta<strong>in</strong><strong>in</strong>g flavoenzyme, whereas anaerobic<br />

and archaebacteria use an oxygen-sensitive Ni- and Fe-conta<strong>in</strong><strong>in</strong>g CODH<br />

(Ragsdale, 2004; Jeoung and Dobbek, 2007; Oelgeschlager and Rother,<br />

2008). Genes encod<strong>in</strong>g aerobic CODH are usually denoted as carbon monoxide<br />

oxidases (cox). CODH oxidises CO to generate CO 2, which is then<br />

fixed <strong>in</strong>to biomass via the rTCA cycle, the Calv<strong>in</strong>–Benson–Bassham cycle,<br />

the 3-hydroxypropionate cycle or the Wood–Ljungdahl pathway (Ragsdale,<br />

2004; Seravalli and Ragsdale, 2008). When CODH is coupled with acetyl-<br />

CoA synthase (ACS) (CODH/ACS), acetyl-CoA is generated from CO2,


REDUCTIVE STRESS IN MICROBES 75<br />

CoA and a methyl group. In this scenario, CODH/ACS reduces CO 2 to CO,<br />

which supplies the carbonyl group of acetyl-CoA <strong>in</strong> the Wood–Ljungdahl<br />

pathway. Acetyl-CoA is then used <strong>in</strong> ATP production or for biomass synthesis<br />

(Oelgeschlager and Rother, 2008).<br />

Diverse respiratory events <strong>in</strong>clud<strong>in</strong>g oxygen respiration, hydrogenesis,<br />

desulphurication, acetogenesis and methanogenesis can all be coupled to<br />

CO oxidation (Oelgeschlager and Rother, 2008). These f<strong>in</strong>d<strong>in</strong>gs serve to<br />

demonstrate the range of microbes capable of us<strong>in</strong>g CO as an energy source.<br />

In a recent 13 C-metabolic flux analysis study, (McK<strong>in</strong>lay and Harwood, 2010)<br />

it was reported that the Calv<strong>in</strong>–Benson–Bassham (Calv<strong>in</strong>) cycle plays an<br />

important role <strong>in</strong> reoxidis<strong>in</strong>g approximately half of the reduced cofactors<br />

generated by conversion of acetate <strong>in</strong>to biomass. Thus, the Calv<strong>in</strong> cycle is an<br />

electron accept<strong>in</strong>g process and helps ma<strong>in</strong>ta<strong>in</strong> redox balance by fix<strong>in</strong>g CO 2<br />

and oxidis<strong>in</strong>g the reduced cofactor NADH to NAD + .<br />

Phylogenetic and growth analyses (K<strong>in</strong>g, 2003; Song et al., 2010), and<br />

exam<strong>in</strong>ation of crude extracts suggest the presence of CODH (Park et al.,<br />

2003) with NO dehydrogenase (NODH) activity (Park et al., 2007) <strong>in</strong><br />

Mtb. The presence of CODH subunit homologues (Rv0373c, Rv0374c,<br />

Rv0375c) <strong>in</strong> the Mtb genome are consistent with the above observation.<br />

Furthermore, CODH can jo<strong>in</strong> the Calv<strong>in</strong> cycle and the rTCA cycle (see<br />

above) as a means to fix CO 2 <strong>in</strong>to biomass (Meyer and Schlegel, 1983;<br />

Ferry, 1995). However, s<strong>in</strong>ce the Calv<strong>in</strong> cycle appears to be absent <strong>in</strong> Mtb<br />

(Park et al., 2003), the rTCA is a plausible mechanism for conversion of<br />

exogenous CO2 to biomass. A sub-lethal source of CO2 may be the cavities<br />

of lesions found <strong>in</strong> TB patients (Haapanen et al., 1959), which are essential<br />

for Mtb growth (Baughn et al., 2009). Thus, the rTCA cycle <strong>in</strong> Mtb may<br />

operate when encounter<strong>in</strong>g reductive stress generated by host FA catabolism,<br />

hypoxia, NO and CO (and other signals), <strong>in</strong> order to fix CO2 and to<br />

consume reduc<strong>in</strong>g equivalents. The presence of CODH and NODH activities<br />

<strong>in</strong> Mtb suggest that the tubercle bacillus may detoxify host-generated<br />

NO and/or CO <strong>in</strong> order to survive and persist <strong>in</strong> the host. The roles<br />

of CODH and NODH <strong>in</strong> Mtb pathogenesis represent an important area<br />

of research.<br />

5.8. Other Mechanisms<br />

Under aerobic culture conditions, Staphylococcus aureus primarily excretes<br />

acetate whereas under ferment<strong>in</strong>g growth conditions the organism produces<br />

L-lactate, ethanol and formate. In an elegant study, it was shown that upon<br />

NO exposure the cells exclusively produce L-lactate from both aerobically


76 AISHA FARHANA ET AL.<br />

respir<strong>in</strong>g and ferment<strong>in</strong>g cells (Richardson et al., 2008). Subsequently, it was<br />

demonstrated that S. aureus exposure to NO caused an <strong>in</strong>crease <strong>in</strong> reduc<strong>in</strong>g<br />

equivalents, which was metabolically balanced via L-lactate dehydrogenase<br />

activity to generate L-lactate. Thus, the NO-<strong>in</strong>ducible L-lactate dehydrogenase<br />

dissipates reductive stress by reoxidis<strong>in</strong>g NADH to generate NAD + and<br />

L-lactate (Richardson et al., 2008). In the case of Enterococcus faecalis, the<br />

regeneration of NAD + from excess NADH was accomplished by generat<strong>in</strong>g<br />

extracellular a-ketoisocaproic acid, 1,1-dihydroxy-4-methyl-2-pentanone<br />

(Ward et al., 2000). Other mechanisms the microorganisms have evolved<br />

to dissipate excess reduc<strong>in</strong>g power <strong>in</strong>clude the use of the Calv<strong>in</strong> cycle as a<br />

reductive s<strong>in</strong>k (Xanthobacter flavus)(Van Keulen et al., 2000), the synthesis<br />

of branched cha<strong>in</strong> am<strong>in</strong>o acids (Aspergillus nidulans) (Shimizu et al., 2010)<br />

and the overproduction of L-alan<strong>in</strong>e dehydrogenase by non-pathogenic<br />

mycobacteria (Hutter and Dick, 1998; Feng et al., 2002) and Arthrobacter<br />

oxydans (Hashimoto and Katsumata, 1999).<br />

6. REDOX SINKS IN MYCOBACTERIA<br />

6.1. The Mycobacterial Intracellular Redox Environment<br />

In aerobic microbes, the production of ROS is not perfectly balanced by<br />

antioxidants. The latter dampens the effects of the former rather than elim<strong>in</strong>at<strong>in</strong>g<br />

them (Halliwell, 2008). If the balance is severely disturbed, a state of<br />

either oxidative or reductive stress ensues. The presence of substantial quantities<br />

of redox buffers such as glutathione or mycothiol <strong>in</strong> the microbial<br />

cytoplasm generates a reduc<strong>in</strong>g environment. Nonetheless, dur<strong>in</strong>g aerobic<br />

respiration, redox couples such as NAD + /NADH exist predom<strong>in</strong>antly <strong>in</strong> the<br />

oxidised, NAD + state because of rapid electron flow to the ETC (Green and<br />

Paget, 2004).<br />

To study the redox environment of a microbial cell, it is impractical and<br />

impossible to measure the concentration of all l<strong>in</strong>ked redox couples. Rather,<br />

quantification of a representative redox couple can be used to <strong>in</strong>fer the<br />

overall redox environment of the cell. For example, <strong>in</strong> eukaryotes and many<br />

bacteria, the glutathione disulfide–glutathione couple (GSSG/2GSH) is the<br />

major thiol-disulfide redox buffer and the redox state of this couple can be<br />

used to <strong>in</strong>fer the status of the redox environment. As elegantly discussed<br />

(Schafer and Buettner, 2001), the reduction potential of GSSG/2GSH is<br />

dependent on the absolute concentration of GSH, as well as the GSSG/<br />

2GSH ratio. This circumstance differs from that of NAD + /NADH and


REDUCTIVE STRESS IN MICROBES 77<br />

NADP + /NADPH couples <strong>in</strong> which assessment of the absolute concentration<br />

of the <strong>in</strong>dividual components is not necessary and measurement of the ratio<br />

of the oxidised and reduced species of the redox couples is sufficient.<br />

Therefore, the redox state of a redox couple is def<strong>in</strong>ed by the half-cell<br />

reduction potential and the reduc<strong>in</strong>g capacity of that couple (Schafer and<br />

Buettner, 2001).<br />

As is the case for GSH, thioredox<strong>in</strong> acts as an antioxidant by facilitat<strong>in</strong>g<br />

the reduction of cyst<strong>in</strong>e residues <strong>in</strong> prote<strong>in</strong>s by cyste<strong>in</strong>e thiol-disulphide<br />

exchange. GSH is typically present <strong>in</strong> millimolar concentration <strong>in</strong> bacterial<br />

and mammalian cells, whereas the concentration of thioredox<strong>in</strong> [TrxSS/Trx<br />

(SH) 2] is <strong>in</strong> the micromolar range <strong>in</strong> bacteria (Halliwell, 2008). Notably, s<strong>in</strong>ce<br />

the Trx and GSH systems use NADPH as a reduc<strong>in</strong>g factor, the NADP + /<br />

NADPH, GSSG/2GSH and TrxSS/Trx(SH) 2 redox systems are not isolated<br />

systems and are thermodynamically l<strong>in</strong>ked to one another (Schafer and<br />

Buettner, 2001). Intrigu<strong>in</strong>gly, mycobacterial species do not produce glutathione;<br />

<strong>in</strong>stead, they produce millimolar quantities of mycothiol (MSH) as a<br />

redox buffer.<br />

6.1.1. Mycothiol: The Mycobacterial Redox Buffer<br />

In addition to act<strong>in</strong>g as the major redox buffer <strong>in</strong> mycobacteria, the lowmolecular-weight<br />

(LMW) thiol, mycothiol, is <strong>in</strong>volved <strong>in</strong> the removal of toxic<br />

compounds from the cell. Besides, another antioxidant, ergothione<strong>in</strong>e,<br />

(ERG; ERGox/ERGred), is also synthesised by mycobacteria (Genghof<br />

and Van Damme, 1964, 1968), although little is known so far about its role<br />

<strong>in</strong> these bacteria.<br />

MSH is produced <strong>in</strong> a five-step process and all but one of the enzymes<br />

responsible for its synthesis have been identified. The first step <strong>in</strong>volves<br />

l<strong>in</strong>k<strong>in</strong>g 1L-myo-<strong>in</strong>ositol-1-phosphate (derived from glucose-6-phosphate)<br />

to UDP-N-acetylglucosam<strong>in</strong>e to produce N-acetylglucosam<strong>in</strong>yl<strong>in</strong>ositol<br />

phosphate, catalysed by the glycosyltransferase encoded by mshA (Newton<br />

et al., 2003). MshA2, the MSH phosphatase whose gene is not yet identified,<br />

then dephosphorylates N-acetylglucosam<strong>in</strong>yl<strong>in</strong>ositol phosphate (Newton<br />

et al., 2006) followed by deacetylation by MshB, the MSH deacetylase, to<br />

produce glucosam<strong>in</strong>yl<strong>in</strong>ositol [1-O-(2-am<strong>in</strong>o-1-deoxy-a-D-glucopyranosyl)-<br />

D-myo-<strong>in</strong>ositol] (Newton et al., 2000a). Cyste<strong>in</strong>e is ligated to this compound<br />

via its carboxyl group <strong>in</strong> an ATP-dependent reaction catalysed by the MSH<br />

ligase, MshC (Sareen et al., 2002). The f<strong>in</strong>al step is the acetylation of the<br />

am<strong>in</strong>o group of cyste<strong>in</strong>e by MshD, the MSH acetyltransferase (Koled<strong>in</strong> et al.,<br />

2002), a reaction which serves to make mycothiol more resistant to autoxidation<br />

than free cyste<strong>in</strong>e (Newton et al., 1995, 2008).


78 AISHA FARHANA ET AL.<br />

Mutants <strong>in</strong> the mycothiol biosynthetic pathway have been isolated <strong>in</strong><br />

M. smegmatis (Msm) and Mtb. In Msm and the Mtb stra<strong>in</strong>s H37Rv,<br />

Erdman and CDC1551, the loss of MshA activity results <strong>in</strong> undetectable<br />

levels of MSH and its <strong>in</strong>termediates (Newton et al., 1999, 2003; Vilcheze<br />

et al., 2008). mshB mutants of Msm and Mtb display accumulation of<br />

pathway <strong>in</strong>termediate, N-acetylglucosam<strong>in</strong>yl<strong>in</strong>ositol, but are still able to<br />

produce low levels of MSH, which may be attributed to an uncharacterised<br />

enzyme with a complementary deacetylase function (Buchmeier et al.,<br />

2003; Rawat et al., 2003). An mshC mutant <strong>in</strong> Msm does not produce<br />

detectable levels of MSH but has <strong>in</strong>creased glucosam<strong>in</strong>yl<strong>in</strong>ositol levels<br />

(Rawat et al., 2002). Efforts to produce an mshC mutant of Mtb Erdman<br />

were unsuccessful and the researchers attributed this <strong>in</strong>ability to the essentiality<br />

of mycothiol for Mtb survival (Sareen et al., 2003). mshD mutants of<br />

Msm and Mtb have been shown to produce decreased MSH, <strong>in</strong>creased<br />

levels of its immediate precursor and two novel thiols (Newton et al.,2005;<br />

Buchmeier et al., 2006).<br />

Based on the phenotypes of various MSH mutants <strong>in</strong> response to redox<br />

stress, it is clear that MSH contributes greatly to the ma<strong>in</strong>tenance of redox<br />

homeostasis <strong>in</strong> mycobacteria. Increased sensitivity to oxidative stress is a<br />

common theme, and <strong>in</strong> agreement to this, the Msm mycothiol mutants have<br />

decreased survival compared to wild type after treatment with hydrogen<br />

peroxide and plumbag<strong>in</strong>, a superoxide generator (Newton et al., 1999;<br />

Rawat et al., 2002, 2007). In Mtb, the mshB and mshD mutants have<br />

<strong>in</strong>creased sensitivity to cumene hydroperoxide and hydrogen peroxide<br />

respectively (Buchmeier et al., 2003, 2006). Additionally, it has been shown<br />

that the MSH mutants of Msm are more sensitive than wild type to reduc<strong>in</strong>g<br />

stress based on disk assays <strong>in</strong> the presence of 10 mM DTT, a reductant<br />

(Rawat et al., 2007). Antibiotic resistance is also altered <strong>in</strong> the mutants;<br />

<strong>in</strong>creased resistance to ethionamide (ETH) has been reported for all Msm<br />

mutants except mshC (Rawat et al., 2003, 2007). However, the mshA and<br />

mshD Msm mutants are more resistant to isoniazid (INH) (Koled<strong>in</strong> et al.,<br />

2002; Newton et al., 2003). In Mtb, the mshA mutant has <strong>in</strong>creased resistance<br />

to INH and ETH (Vilcheze et al., 2008), and INH resistance has also been<br />

reported for the mshB mutant (Buchmeier et al., 2003).<br />

The regulation of MSH biosynthesis has not yet been fully elucidated.<br />

Transcriptional regulators are located upstream of mshA and mshD <strong>in</strong> Mtb,<br />

but not a s<strong>in</strong>gle study has been carried out to determ<strong>in</strong>e their role <strong>in</strong> MSH<br />

regulation (Newton et al., 2008). MSH levels are <strong>in</strong>fluenced by growth phase<br />

<strong>in</strong> Mtb and are <strong>in</strong>creased greater than threefold <strong>in</strong> stationary phase as compared<br />

to early exponential phase (Buchmeier et al., 2006). However, it is not<br />

known what causes this effect. No direct transcriptional analysis of the genes<br />

<strong>in</strong>volved <strong>in</strong> MSH biosynthesis at these different phases has been performed


REDUCTIVE STRESS IN MICROBES 79<br />

(Newton et al., 2008), but microarray analysis to identify genes whose expression<br />

levels differ <strong>in</strong> exponential and stationary phases did not identify the<br />

MSH-encod<strong>in</strong>g genes (Voskuil et al., 2004). MshB activity is <strong>in</strong>hibited <strong>in</strong> the<br />

presence of MSH; thus, MSH biosynthesis may be regulated <strong>in</strong> part by<br />

feedback <strong>in</strong>hibition (Newton and Fahey, 2002).<br />

Many MSH-dependent enzymes are present <strong>in</strong> mycobacteria such as MSH<br />

disulfide reductase, or Mtr. In the course of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the reduc<strong>in</strong>g environment<br />

of the cell, MSH becomes oxidised (MSSM) and must be re-reduced<br />

to ensure proper function<strong>in</strong>g of cellular processes. This crucial task is performed<br />

by Mtr, which uses FAD as a cofactor <strong>in</strong> a reaction that consumes<br />

NADPH (Rietveld et al., 1994; Patel and Blanchard, 1998, 1999). MSH has a<br />

role <strong>in</strong> the removal of toxic compounds such as antibiotics, via the action of<br />

mycothiol S-conjugate amidase (Mca). MSH fuses with the toxic compound<br />

and then Mca breaks down the complex <strong>in</strong>to glucosam<strong>in</strong>yl<strong>in</strong>ositol that is used<br />

to synthesise more MSH and a mercapturic acid, which is subsequently<br />

excreted from the cell (Newton et al., 2000b; Newton and Fahey, 2002).<br />

Similarly, the detoxification of formaldehyde is accomplished due to the<br />

action of formaldehyde dehydrogenase (MscR), an enzyme that also acts<br />

as a nitrosothiol reductase. MSH can react with formaldehyde, and <strong>in</strong> the<br />

presence of NAD + , the formaldehyde is oxidised by MscR to the less toxic<br />

formate (Vogt et al., 2003). The nitrosothiol reductase activity of MscR is<br />

greater than its formaldehyde dehydrogenase activity (Vogt et al., 2003).<br />

This activity protects the cell from NO, and <strong>in</strong> fact, it was shown that<br />

mycothiol plays a major part <strong>in</strong> protection of mycobacteria from NO<br />

(Miller et al., 2007). MSNO, an adduct of MSH and NO, is formed, which<br />

is subsequently broken down <strong>in</strong>to nitrate and MSH by the action of MscR <strong>in</strong><br />

the presence of NADH (Vogt et al., 2003).<br />

It has been established that MSH is the most abundant LMW thiol <strong>in</strong><br />

mycobacteria, which ma<strong>in</strong>ta<strong>in</strong>s redox homeostasis and is thermodynamically<br />

l<strong>in</strong>ked with a variety of enzymes to elim<strong>in</strong>ate toxic compounds.<br />

Unfortunately, little is known thus far of the mechanisms utilised by mycobacteria<br />

to regulate the production of MSH.<br />

6.2. The Mtb Dos Dormancy Regulon<br />

6.2.1. Biological Role and Function<br />

The Dos two-component system was first identified <strong>in</strong> a virulent stra<strong>in</strong> of<br />

Mtb (K<strong>in</strong>ger and Tyagi, 1993) where<strong>in</strong> DosR (Rv3133c) was demonstrated<br />

to possess homology to response regulator prote<strong>in</strong>s of the NarL/UhpA/<br />

FixJ subfamily and DosS (Rv3132c) to sensor histid<strong>in</strong>e k<strong>in</strong>ases. The


80 AISHA FARHANA ET AL.<br />

two-component pair genes, dosR and dosS, are cotranscribed and conserved<br />

<strong>in</strong> Mtb and M. bovis BCG (Dasgupta et al., 2000) and their expression is<br />

hypoxia-responsive <strong>in</strong> pathogenic and non-pathogenic mycobacteria <strong>in</strong>clud<strong>in</strong>g<br />

Mtb (Sherman et al., 2001), M. bovis BCG (Boon et al., 2001)andM. smegmatis<br />

(Mayuri et al.,2002). A series of studies revealed that significant overlap<br />

exists between the expression profiles of Mtb cells cultured under hypoxic<br />

conditions and those exposed to NO and that the transcriptional response is<br />

under direct control of DosR (Sherman et al., 2001; Ohno et al., 2003; Voskuil<br />

et al., 2003). Subsequently, DosT (Rv2027c), a homologue of DosS, was<br />

discovered and was also shown to phosphorylate DosR (Roberts et al.,<br />

2004; Sa<strong>in</strong>i et al., 2004), <strong>in</strong>dicat<strong>in</strong>g a crosstalk between DosS, DosT and<br />

DosR. The role of DosT rema<strong>in</strong>s enigmatic as it is an orphan sensor k<strong>in</strong>ase,<br />

has no cognate response regulator and is not upregulated under any known<br />

condition. Thus, DosS/T/R can be regarded as a ‘three’-component system<br />

believed to facilitate transition from active to the latent form of <strong>in</strong>fection.<br />

Detailed studies have shown that DosT is active early <strong>in</strong> the hypoxia response.<br />

As O 2 becomes more limit<strong>in</strong>g, DosT loses its activity and DosS cont<strong>in</strong>ues to<br />

<strong>in</strong>duce the regulon thereafter. Thus, it has been proposed that Mtb responds to<br />

hypoxia <strong>in</strong> a stepwise manner (Honaker et al.,2009). More recently, significant<br />

studies have demonstrated that <strong>in</strong> addition to hypoxia and NO, the complete<br />

Dos regulon is also <strong>in</strong>duced by CO (Kumar et al., 2007, 2008; Shiloh et al.,<br />

2008). Because of the acknowledged role of hypoxia and NO (and likely also<br />

CO) <strong>in</strong> Mtb persistence, the Dos regulon is a paradigm for Mtb signal transduction,<br />

illustrat<strong>in</strong>g that sens<strong>in</strong>g and relay<strong>in</strong>g of physiologically relevant host<br />

<strong>in</strong>formation <strong>in</strong>duces an adaptive bacterial transcriptional response.<br />

The response of the Dos regulon to O 2, NO and CO consists of the altered<br />

expression of 100 genes (Sherman et al., 2001; Voskuil et al., 2003, 2009;<br />

Kumar et al., 2007, 2008; Shiloh et al., 2008) that <strong>in</strong>clude the repression of<br />

well-characterised genes of prote<strong>in</strong> synthesis, DNA synthesis/cell division,<br />

lipid or am<strong>in</strong>o acid synthesis, aerobic metabolism and the <strong>in</strong>duction of 48<br />

genes which are mostly uncharacterised. Nearly all of the 48 genes <strong>in</strong>itially<br />

<strong>in</strong>duced by hypoxia, NO and CO require DosR for their <strong>in</strong>duction (Honaker<br />

et al., 2008, 2009). Among these 48 genes, with known or predicted function,<br />

many are speculated to play a role <strong>in</strong> adaptation to hypoxic stress, such as acr<br />

(rv2031c; chaperone function), narX (rv1736c; unknown function), nark2<br />

(rv1737c; nitrate/nitrite transport), fdxA (rv2007c; ferredox<strong>in</strong>), nrdZ<br />

(rv0570; ribonuclease reductase), tgs1 (rv3130; triglyceride synthase) and<br />

Mtb orthologues of the universal stress prote<strong>in</strong> family (rv1996, rv2005c,<br />

rv2028c, rv2623, rv2624c, rv3134c) (Voskuil et al., 2009).<br />

A particularly <strong>in</strong>terest<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>g is that isolates of the W-Beij<strong>in</strong>g l<strong>in</strong>eage<br />

of Mtb constitutively overexpress the Dos regulon under <strong>in</strong> vitro conditions


REDUCTIVE STRESS IN MICROBES 81<br />

(Reed et al., 2007), suggest<strong>in</strong>g that the Dos regulon may confer an adaptive<br />

advantage for growth under conditions that <strong>in</strong>hibit aerobic respiration.<br />

Studies of a Mtb Ddos rv3134c/rv3133c/rv3132c mutant deficient <strong>in</strong> expression<br />

of the Dos regulon (Leistikow et al., 2010) demonstrate its essential role<br />

<strong>in</strong> Mtb survival <strong>in</strong> the Wayne model for <strong>in</strong> vitro dormancy where<strong>in</strong> O 2 is<br />

limit<strong>in</strong>g. Notably, the Dos regulon is important for resumption of growth<br />

once Mtb exits this anaerobic state (Leistikow et al., 2010). More recently, an<br />

additional transcriptional response, def<strong>in</strong>ed as the endur<strong>in</strong>g hypoxia<br />

response, was identified and comprised a set of 230 genes <strong>in</strong>duced subsequent<br />

to the Dos dormancy response and expressed long term (Rustad et al.,<br />

2008).<br />

Several l<strong>in</strong>es of evidence suggest that the diatomic gases O2, NO and CO<br />

likely play roles <strong>in</strong> mycobacterial persistence. First, it was demonstrated that<br />

tubercle bacilli require oxygen for growth, and s<strong>in</strong>ce reactivation disease<br />

occurs primarily <strong>in</strong> the oxygen-rich upper lung lobes (Medlar, 1948), the role<br />

of oxygen tension <strong>in</strong> TB has received wide attention (Dubos, 1953; Wayne<br />

and Hayes, 1996; Boon et al., 2001; Voskuil et al., 2009; Gengenbacher et al.,<br />

2010). Rapid withdrawal of oxygen is lethal to Mtb; however, gradual depletion<br />

allows time for adaptation and bacterial survival (Wayne and Hayes,<br />

1996). Furthermore, TB is associated with the most O2-rich site (upper<br />

region of the lung) with<strong>in</strong> the body (Rich and Follis, 1942; Rasmussen,<br />

1957; Riley, 1957), and significantly more bacilli are present <strong>in</strong> TB lung<br />

lesions connected to open airways versus lesions closed to airways<br />

(Medlar, 1948; Haapanen et al., 1959). Secondly, iNOS and therefore NO<br />

production is crucial for protection of mice aga<strong>in</strong>st Mtb (MacMick<strong>in</strong>g et al.,<br />

1997), and human macrophages <strong>in</strong> Mtb-<strong>in</strong>fected tissues are also shown to<br />

express iNOS (Nicholson et al., 1996; Nathan and Shiloh, 2000). Conv<strong>in</strong>c<strong>in</strong>g<br />

studies have demonstrated iNOS RNA and prote<strong>in</strong> <strong>in</strong> bronchoalveolar<br />

lavage specimens from active pulmonary TB patients (Nicholson et al.,<br />

1996). Studies have also shown that <strong>in</strong>creased exhaled NO and nitrite <strong>in</strong><br />

patients with active pulmonary TB is due to an <strong>in</strong>creased iNOS production<br />

(Wang et al., 1998) and that a polymorphism <strong>in</strong> iNOS <strong>in</strong>fluences susceptibility<br />

to TB (Gomez et al., 2007). Thirdly, significant overlap exists between the<br />

gene expression profiles of Mtb cells treated <strong>in</strong> vitro with NO or CO and that<br />

of bacilli cultured under hypoxic conditions (Voskuil et al., 2003, 2009).<br />

Fourthly, <strong>in</strong> recent studies it was shown that NO, O2 and CO (Ioanoviciu<br />

et al., 2007; Kumar et al., 2007, 2008; Sousa et al., 2007; Yukl et al., 2007) are<br />

modulatory ligands of the heme sensor k<strong>in</strong>ases DosT and DosS and that they<br />

either b<strong>in</strong>d directly to the heme-irons or oxidise the heme irons, suggest<strong>in</strong>g<br />

that the bacilli have the mach<strong>in</strong>ery to cont<strong>in</strong>uously monitor O2, NO and CO<br />

levels dur<strong>in</strong>g the course of <strong>in</strong>fection. Regardless of the aforementioned data,


82 AISHA FARHANA ET AL.<br />

the evidence l<strong>in</strong>k<strong>in</strong>g hypoxia, NO and CO to latent TB <strong>in</strong> humans rema<strong>in</strong>s<br />

circumstantial.<br />

Is there a role for CO <strong>in</strong> human TB? Intrigu<strong>in</strong>gly, a role for environmental<br />

CO <strong>in</strong> TB was first described as early as 1923 (Hazleton, 1923) when <strong>in</strong>dividuals<br />

exposed to coal gas (which conta<strong>in</strong>s large quantities of CO) contracted<br />

TB. In observ<strong>in</strong>g a large number of similar cases, the <strong>in</strong>vestigator concluded<br />

that the <strong>in</strong>halation of small quantities of coal gas for a considerable period of<br />

time might have been a predispos<strong>in</strong>g cause of TB. Also, more recently, <strong>in</strong><br />

exam<strong>in</strong><strong>in</strong>g the historical statistics on coal consumption and TB, an <strong>in</strong>terest<strong>in</strong>g<br />

hypothesis that l<strong>in</strong>ks TB and coal-generated CO (and thus air pollution) was<br />

developed (Tremblay, 2007). The newly discovered role of b<strong>in</strong>d<strong>in</strong>g of CO to<br />

DosS and DosT (Kumar et al., 2007; Sousa et al., 2007) and evidence suggest<strong>in</strong>g<br />

that mycobacteria can oxidise CO (K<strong>in</strong>g, 2003; Park et al., 2003, 2007)<br />

have implications for understand<strong>in</strong>g Mtb disease and persistence. Lastly, a<br />

sem<strong>in</strong>al study demonstrated a role for HO-1 generated CO <strong>in</strong> protection<br />

aga<strong>in</strong>st experimental cerebral malaria (Pamplona et al., 2007). Thus, hostgenerated<br />

CO production may be part of a generalised host response to a<br />

variety of pathogens.<br />

6.2.2. The Mtb Dos Dormancy Regulon and Virulence<br />

For many decades, it has been postulated that pO2 <strong>in</strong>fluences the progression<br />

of human TB (Rich and Follis, 1942; Medlar, 1948; Rasmussen, 1957).<br />

Present-day studies us<strong>in</strong>g the hypoxia marker pimonidazole hydrochloride<br />

yielded the surpris<strong>in</strong>g discovery that granulomatous tissue <strong>in</strong> the Mtb<strong>in</strong>fected<br />

mouse model is relatively aerobic ( 37 mm Hg) (Aly et al., 2006;<br />

Tsai et al., 2006), but that tuberculous pulmonary lesions <strong>in</strong> macaques, rabbits<br />

and gu<strong>in</strong>ea pigs are hypoxic (Via et al., 2008). In fact, a detailed analysis<br />

us<strong>in</strong>g a fibre-optic O 2 sensor showed that the pO 2 <strong>in</strong> rabbit pulmonary lesions<br />

was 1.59 mm Hg (Via et al., 2008), demonstrat<strong>in</strong>g that the TB granuloma is<br />

<strong>in</strong>deed hypoxic. In vivo virulence studies have shown that an Mtb dosR<br />

mutant is attenuated <strong>in</strong> the gu<strong>in</strong>ea pig TB <strong>in</strong>fection model (Malhotra et al.,<br />

2004; Converse et al., 2009). However, studies <strong>in</strong> mice (Parish et al., 2003;<br />

Rustad et al., 2008) have produced conflict<strong>in</strong>g results. The discrepancies <strong>in</strong><br />

data obta<strong>in</strong>ed <strong>in</strong> the various <strong>in</strong> vivo studies have been thoroughly discussed<br />

elsewhere (Converse et al., 2009).<br />

The pronounced expression of the Dos regulon and the presence of<br />

TAG <strong>in</strong> bacilli procured from the sputum of Mtb-<strong>in</strong>fected <strong>in</strong>dividuals<br />

(Garton et al., 2008) suggest that sputum conta<strong>in</strong>s non-replicat<strong>in</strong>g bacilli<br />

and has significant implications for understand<strong>in</strong>g the physiological makeup<br />

of the host environment that allows Mtb to persist. For example, because of


REDUCTIVE STRESS IN MICROBES 83<br />

the low O 2 diffusion capability <strong>in</strong> mucus (Worlitzsch et al., 2002), it is plausible<br />

that the sputum is depleted for O2, which leads to upregulation of the<br />

Dos regulon. Furthermore, the direct <strong>in</strong>duction of the Dos regulon by NO,<br />

CO or a comb<strong>in</strong>ation thereof cannot be excluded, s<strong>in</strong>ce TB patients (<strong>in</strong>clud<strong>in</strong>g<br />

healthy <strong>in</strong>dividuals) exhale NO (Gustafsson et al., 1991; Borland et al.,<br />

1993; Wang et al., 1998). Lastly, the diffusion of NO metabolites (NO 3 ,<br />

NO2 ) across the alveolar capillary membrane followed by aerosolisation of<br />

airway epithelial l<strong>in</strong><strong>in</strong>g fluid and conf<strong>in</strong>ement of NO2 /NO 3 to the oropharyngeal<br />

tract and trachea (Marteus et al., 2005; Br<strong>in</strong>dicci et al., 2009;<br />

Fitzpatrick et al., 2009), po<strong>in</strong>t to an environment <strong>in</strong> which access to NO 3<br />

may enable Mtb to oxidise excess NADH via NarG (see Section 6.2.4.1).<br />

6.2.3. The Dos Regulon and CO<br />

The biochemical and biophysical basis of the Mtb response to O2, NO and<br />

CO <strong>in</strong>volv<strong>in</strong>g the heme-irons of the sensor k<strong>in</strong>ases DosS and DosT has been<br />

previously reviewed (Voskuil et al., 2009). However, s<strong>in</strong>ce the role of CO <strong>in</strong><br />

<strong>in</strong>duction of the Dos regulon has only recently been discovered, a short<br />

overview will be given here on the biological relevance of this host gas.<br />

CO is a LMW gas that is endogenously produced by HO-1 <strong>in</strong> humans dur<strong>in</strong>g<br />

normal metabolism and it is <strong>in</strong>creased <strong>in</strong> response to oxidative stress (Ferry,<br />

1995; Chung et al., 2009). CO b<strong>in</strong>d<strong>in</strong>g to the heme-irons of DosS and DosT<br />

modulates their autok<strong>in</strong>ase activity lead<strong>in</strong>g to the upregulation of key members<br />

of the Dos regulon (e.g. dosR, hspX and fdxA)(Kumar et al., 2007). This<br />

f<strong>in</strong>d<strong>in</strong>g led the <strong>in</strong>vestigators to hypothesise that CO is capable of <strong>in</strong>duc<strong>in</strong>g the<br />

Dos regulon. Indeed, subsequent microarray studies performed by two <strong>in</strong>dependent<br />

groups have shown that exposure to CO <strong>in</strong>duces the 48-member<br />

Dos regulon (Kumar et al., 2008; Shiloh et al., 2008).<br />

HO-1 requires O 2 and NADPH as cofactors and utilises heme as a substrate,<br />

ultimately generat<strong>in</strong>g biliverd<strong>in</strong>, iron and CO. HO-1 confers protection<br />

aga<strong>in</strong>st oxidative stress via the anti-<strong>in</strong>flammatory and anti-apoptotic<br />

activities of its byproducts (Chung et al., 2009; Ryter and Choi, 2009).<br />

Infection of macrophages by Mtb <strong>in</strong>duces the expression of HO-1 mRNA,<br />

prote<strong>in</strong> levels and enzymatic activity (Kumar et al., 2008). The ability of HO-<br />

1 generated CO to <strong>in</strong>duce the Dos regulon was demonstrated by <strong>in</strong>fection of<br />

HO-1 +/+ and HO-1 / bone marrow-derived macrophages with Mtb, followed<br />

by expression analysis of the Dos regulon members (Kumar et al.,<br />

2008; Shiloh et al., 2008). Importantly, upregulation of HO-1 was found to be<br />

<strong>in</strong>dependent of the NO pathway (Kumar et al., 2008). In addition, HO-1 was<br />

found to be produced <strong>in</strong> the lungs of Mtb-<strong>in</strong>fected mice (Kumar et al., 2008;<br />

Shiloh et al., 2008). Thus, the comb<strong>in</strong>ed presence of NO and CO at the site of


84 AISHA FARHANA ET AL.<br />

Mtb <strong>in</strong>fection, which might also be hypoxic, provides new <strong>in</strong>sight <strong>in</strong>to how<br />

gaseous gradients may <strong>in</strong>fluence disease progression (Kumar et al., 2008).<br />

However, as mentioned earlier (Section 6.2.1), s<strong>in</strong>ce O2 is a cofactor for<br />

iNOS [KmO2<br />

¼ 135 mM; (Dweik et al., 1998; Dweik, 2005)], the hypoxic<br />

nature of the granuloma (Via et al., 2008) might prevent production of<br />

significant quantities of NO.<br />

Although CO typically <strong>in</strong>hibits respiration <strong>in</strong> other bacteria<br />

(Davidge et al., 2009), Mtb is unusual <strong>in</strong> the sense that it is capable of<br />

tolerat<strong>in</strong>g relatively high concentrations of CO [80 mM (Shiloh et al.,<br />

2008)]. An important functional difference between NO and CO is that<br />

CO can only react with ferrous iron (Fe 2+ ) whereas NO can react with both<br />

Fe 2+ and ferric iron (Fe 3+ )(Kumar et al., 2007). Recently, a protective role<br />

for CO <strong>in</strong> experimental cerebral malaria was demonstrated and it was proposed<br />

that CO locks cell free haemoglob<strong>in</strong> <strong>in</strong> the Fe 2+ state, thereby prevent<strong>in</strong>g<br />

oxidation to the Fe 3+ state, which upon reaction with ROS would<br />

lead to disruption of the blood–bra<strong>in</strong> barrier (Pamplona et al., 2007). A<br />

similar model termed the ‘sense-and-lock’ model was proposed for the<br />

mechanisms of DosS and DosT <strong>in</strong> sens<strong>in</strong>g O2, NO and CO (Kumar et al.,<br />

2007). However, a def<strong>in</strong>ite role for CO <strong>in</strong> Mtb pathogenesis has yet to be<br />

demonstrated, and represents an important but underexplored area of<br />

<strong>in</strong>vestigation.<br />

6.2.4. The Mtb Dos Regulon and Reductive Stress<br />

In physiological terms, it makes bioenergetic sense for an aerobe such as Mtb<br />

to express energy-dissipat<strong>in</strong>g systems under hypoxic conditions <strong>in</strong> order to<br />

ma<strong>in</strong>ta<strong>in</strong> redox balance. For example, when Mtb encounters highly reduced<br />

carbon sources <strong>in</strong> vivo, the carbon source must be oxidised to the po<strong>in</strong>t of<br />

assimilation. If oxidation releases more reduc<strong>in</strong>g equivalents, for example<br />

via b-oxidation, than is needed for ATP generation (reductive stress), the<br />

bacillus must <strong>in</strong>itiate mechanisms to dispose of excess reductants, otherwise<br />

the growth rate will be slowed to the rate at which NADH can be oxidised or<br />

ADP be phosphorylated.<br />

Us<strong>in</strong>g an <strong>in</strong> vitro dormancy model, studies have shown that <strong>in</strong> an Mtb Ddos<br />

rv3134c/rv3133c/rv3132c mutant, the ATP level decreased to 10% of that<br />

measured under aerobic growth. In contrast, the ATP level <strong>in</strong> the wt stra<strong>in</strong><br />

stabilised at 25% of the aerobic level (Leistikow et al., 2010). These f<strong>in</strong>d<strong>in</strong>gs<br />

are <strong>in</strong> agreement with an <strong>in</strong>dependent study demonstrat<strong>in</strong>g that, dur<strong>in</strong>g<br />

hypoxia, Mtb has a much reduced but cont<strong>in</strong>uous pool of ATP (Rao et al.,<br />

2008). In fact, it was shown that further reduction of ATP (three to fourfold)<br />

under hypoxic conditions <strong>in</strong>creases cell death to more than 90% whereas a


REDUCTIVE STRESS IN MICROBES 85<br />

depletion of more than 90% of ATP was required to see a kill<strong>in</strong>g effect under<br />

aerobic growth conditions. Consistent with these f<strong>in</strong>d<strong>in</strong>gs, it was demonstrated<br />

that the membrane of Mtb cultured under hypoxia is fully energised<br />

and is required for ATP production (Rao et al., 2008).<br />

NAD + and NADH concentrations decrease by 50% when wt Mtb is grown<br />

under hypoxic conditions, yet the overall redox couple ratio is ma<strong>in</strong>ta<strong>in</strong>ed.<br />

This is an <strong>in</strong>trigu<strong>in</strong>g observation as the NADH/NAD + ratio typically<br />

<strong>in</strong>creases <strong>in</strong> bacteria as O2 levels decrease (de Graef et al., 1999; Berrios-<br />

Rivera et al., 2002a). One explanation might be that <strong>in</strong>creased NADH generated<br />

under hypoxia is consumed dur<strong>in</strong>g TAG synthesis, thereby ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

an ‘optimal’ NADH/NAD + ratio. Regardless, <strong>in</strong> the Mtb Ddos mutant,<br />

the NAD + levels dropped to 10% of the wt level, and the NAD + /NADH<br />

ratio was sixfold less under hypoxia. Thus, the data clearly suggest that<br />

the Mtb Dos regulon plays a role <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g redox homeostasis<br />

(Leistikow et al., 2010). Furthermore, it appears that ndh-2 rather than<br />

ndh-1 contributes to the generation of the proton motive force for ATP<br />

production under hypoxic conditions and that Ndh-2 is responsible for<br />

replenish<strong>in</strong>g NAD + <strong>in</strong> Mtb grown under hypoxic conditions (Rao et al.,<br />

2008).<br />

Two reports provide direct evidence for the presence of reductive stress <strong>in</strong><br />

Mtb. First, the accumulation of extraord<strong>in</strong>arily high levels of NAD(P)H<br />

relative to NAD(P) + was found <strong>in</strong> bacilli derived from the lungs of <strong>in</strong>fected<br />

mice (Boshoff et al., 2008). Secondly, polyketide and TAG anabolism have<br />

been demonstrated to occur <strong>in</strong> vivo and the synthesis of such may serve as<br />

efficient reductant disposal mechanisms to alleviate reductive stress for longterm<br />

persistence (S<strong>in</strong>gh et al., 2009) (Fig. 1) (see also Section 6.2.4.2).<br />

In conclusion, a role for the Dos regulon <strong>in</strong> reductive stress has largely<br />

been underappreciated. Nonetheless, the DosR-controlled NarGHJI/NarK2<br />

and Tgs1 prote<strong>in</strong>s are likely candidates for dispos<strong>in</strong>g of excess reduc<strong>in</strong>g<br />

equivalents and thereby ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g redox balance.<br />

6.2.4.1. Nitrate reductase<br />

Several functions can be attributed to nitrate reduction <strong>in</strong> bacteria (Cole,<br />

1996; Richardson et al., 2001; Morozk<strong>in</strong>a and Zvyagilskaya, 2007) and<br />

<strong>in</strong>clude (i) NO3 assimilation (us<strong>in</strong>g NO3 as a nitrogen source), (ii) NO3 dissimilation (disposal of excess reduc<strong>in</strong>g equivalents to ma<strong>in</strong>ta<strong>in</strong> redox<br />

balance) and (iii) NO3 respiration (us<strong>in</strong>g NO3 as the term<strong>in</strong>al electron<br />

acceptor for the production of energy). Mtb conta<strong>in</strong>s two possible nitrate<br />

reductases, the NarGHJI (RV1161–1164) complex, which catalyses the<br />

reduction of NO3 to NO2 and NarX that has no known function to date.


86 AISHA FARHANA ET AL.<br />

[(Figure_1)TD$FIG]<br />

Figure 1 Model depict<strong>in</strong>g the dissipation of excess reductants through the Dos<br />

regulon to ma<strong>in</strong>ta<strong>in</strong> redox homeostasis. Hypoxia, NO and likely CO, which <strong>in</strong>hibit<br />

respiration, are sensed by DosS/T lead<strong>in</strong>g to activation of the Dos regulon via DosR.<br />

Included <strong>in</strong> the Dos regulon are genes encod<strong>in</strong>g for components of the rTCA cycle,<br />

and narGHJI-narK. These pathways serve as alternate electron s<strong>in</strong>ks for reductive<br />

stress dissipation. The excess NADH, NADPH and FADH2 that are produced upon<br />

<strong>in</strong>hibition of respiration or b-oxidation of host FA are utilised for the generation of<br />

metabolic <strong>in</strong>termediates. (a) The rTCA cycle <strong>in</strong>corporates one molecule of CO 2 <strong>in</strong> an<br />

energy-consum<strong>in</strong>g process, where<strong>in</strong> the energy is provided by the reduc<strong>in</strong>g equivalents.<br />

This allows the recycl<strong>in</strong>g of excess reductants for the production of essential<br />

metabolites, thereby lower<strong>in</strong>g their <strong>in</strong>tracellular concentrations. (b) The uptake of<br />

NO 3 by NarK2 and its correspond<strong>in</strong>g reduction to NO 2 by NarG consumes cellular<br />

reduc<strong>in</strong>g equivalents. As the concentration of cytosolic NO 2 <strong>in</strong>creases to reach toxic<br />

levels, it is pumped out via NarK. As extracellular levels of NO3 decrease, NO2 is<br />

transported back <strong>in</strong>to the cell and reduced via NirBD to NH3. (c) NADPH is a<br />

cofactor <strong>in</strong> the FASI pathway and is consumed dur<strong>in</strong>g anabolism of the storage<br />

lipid, TAG.


REDUCTIVE STRESS IN MICROBES 87<br />

Several studies have shown that nitrate reductase activity <strong>in</strong>creases dramatically<br />

dur<strong>in</strong>g cultur<strong>in</strong>g of Mtb under microaerophilic conditions (Sohaskey<br />

and Wayne, 2003; Sohaskey, 2005, 2008). The narGHJI operon is constitutively<br />

expressed <strong>in</strong> Mtb whereas narK2, encod<strong>in</strong>g for the NO 3 /NO 2 transporter,<br />

is under control of DosR and therefore a component of the<br />

Dos regulon that is highly <strong>in</strong>duced dur<strong>in</strong>g hypoxia and upon exposure to<br />

NO and CO (Sherman et al., 2001; Voskuil et al., 2003; Kumar et al.,<br />

2008). Depend<strong>in</strong>g on the organism, nitrate reductases require NADH<br />

or NADPH as cofactors (Richardson et al., 2001; Morozk<strong>in</strong>a and<br />

Zvyagilskaya, 2007). Genetic experiments suggest that nitrate reductase<br />

activity <strong>in</strong> Mtb is not coupled to proton translocation and ATP synthesis<br />

(Sohaskey and Wayne, 2003). Rather, it has been concluded that nitrate<br />

reductase may be <strong>in</strong>volved <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g redox balance dur<strong>in</strong>g microaerophilic<br />

growth by dissipat<strong>in</strong>g excess reduc<strong>in</strong>g equivalents (Sohaskey, 2008).<br />

The redox potential of NO3 /NO2 is +420 mV and the change <strong>in</strong> Gibbs free<br />

energy approximates 82 kJ/mol (Seifritz et al., 1993), which suggests that<br />

NO 3 is an effective electron s<strong>in</strong>k.<br />

Although Mtb can utilise NO3 as a term<strong>in</strong>al electron acceptor under<br />

anaerobic conditions to ma<strong>in</strong>ta<strong>in</strong> some degree of viability or to prolong<br />

survival, active replication does not occur <strong>in</strong> the absence of O 2 (Sohaskey<br />

and Wayne, 2003; Aly et al., 2006; Sohaskey, 2008; Gengenbacher et al.,<br />

2010). S<strong>in</strong>ce Mtb does not actively respire anaerobically, it is tempt<strong>in</strong>g to<br />

theorise that the release of Gibbs free energy from the reduction of NO 3 to<br />

NO2 contributes towards ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g viability of the bacilli when encounter<strong>in</strong>g<br />

hypoxia <strong>in</strong> vivo. Complementation of an E. coli nark narU mutant with<br />

Mtb narK2 strongly suggests that NarK2 transports NO 3 <strong>in</strong>to and NO 2 out<br />

of Mtb. Thus, under low-O2 conditions, NO3 is transported <strong>in</strong>to the cell,<br />

reduced to NO2 and, when toxic levels of NO2 are reached, exported out.<br />

An <strong>in</strong>terest<strong>in</strong>g parallel exists between Mtb and Staphylococcus carnosus. In<br />

case of the latter, the exported NO2 is transported back <strong>in</strong>to the cell and<br />

reduced to ammonia, which aga<strong>in</strong> accumulates <strong>in</strong> the medium (Neubauer<br />

and Gotz, 1996). This event is rem<strong>in</strong>iscent of the <strong>in</strong>creased alkal<strong>in</strong>ity (as<br />

opposed to acidity) detected <strong>in</strong> the culture supernatant of Mtb, which was<br />

shown to be due to buildup of ammonia (Merrill, 1930). It is tempt<strong>in</strong>g to<br />

speculate that NirB (Rv0252) and NirD (Rv0253) are Mtb nitrite reductase<br />

subunits that reduce NO2 to ammonia without liberat<strong>in</strong>g <strong>in</strong>termediate<br />

products and may expla<strong>in</strong> the observed alkal<strong>in</strong>ity by Merrill (1930).<br />

An obvious question is: does Mtb encounter NO 3 and/or NO 2 <strong>in</strong> vivo?<br />

Indeed, the presence of NO3 plus NO 2 <strong>in</strong> saliva (313 mM), NO 3 <strong>in</strong> trachael<br />

secretions (144–421 mM) (Grasemann et al., 1998; L<strong>in</strong>nane et al., 1998;<br />

Worlitzsch et al., 2002), NO3 (0.5–37 mM) and NO2 (1.4–15 mM) <strong>in</strong>


88 AISHA FARHANA ET AL.<br />

bronchoalveolar lavage fluid (Dweik et al., 2001; Fitzpatrick et al., 2009), and<br />

NO2 /NO3 <strong>in</strong> exhaled breath condensate (17 mmol) and sputum (449 mmol)<br />

(Br<strong>in</strong>dicci et al., 2009) provides evidence that Mtb is likely to encounter<br />

NO 2 and/or NO 3 dur<strong>in</strong>g the full spectrum of disease.<br />

6.2.4.2. TAG production<br />

An underappreciated consequence of Mtb utilisation of host lipids for energy<br />

is the production of large quantities of reduc<strong>in</strong>g equivalents that are essential<br />

cofactors for the production of storage lipids (TAG) and virulence lipids such<br />

as SL-1, PDIM and PAT/DAT. At least two widely known biological functions<br />

of TAG <strong>in</strong> prokaryotes <strong>in</strong>clude its use as an effective reserve carbon<br />

source because of its reduced COS, and its service as an electron s<strong>in</strong>k for<br />

excess reduc<strong>in</strong>g equivalents (Alvarez and Ste<strong>in</strong>buchel, 2002). Thus, it appears<br />

that TAG anabolism is a plausible mechanism for dissipation of reductive<br />

stress <strong>in</strong> Mtb (S<strong>in</strong>gh et al., 2009). TAG production is under the control of the<br />

DosR regulon and its generation is highly <strong>in</strong>creased when Mtb cells are<br />

exposed to hypoxia, NO or CO (Voskuil et al., 2009). Interest<strong>in</strong>gly, TAG is<br />

found <strong>in</strong> the sputum of TB patients (Garton et al., 2008). Studies us<strong>in</strong>g the <strong>in</strong><br />

vitro Wayne model for dormancy have shown that TAG is catabolised by Mtb<br />

upon reactivation (Deb et al., 2006) and thus may implicate a possible role for<br />

TAG <strong>in</strong> emergence of Mtb from a persistent state <strong>in</strong> vivo.<br />

6.3. Mtb WhiB3 is an Intracellular Redox Sensor<br />

that Counters Reductive Stress<br />

6.3.1. The WhiB Family of Prote<strong>in</strong>s<br />

The first WhiB-like prote<strong>in</strong> was characterised <strong>in</strong> Streptomyces <strong>in</strong> 1992 (Davis<br />

and Chater, 1992) and was predicted to have a putative helix-turn-helix (HTH)<br />

motif at its C-term<strong>in</strong>us. WhiB-like prote<strong>in</strong>s are LMW (81–122 am<strong>in</strong>o acids)<br />

and are restricted to act<strong>in</strong>omycetes (den Hengst and Buttner, 2008). WhiB<br />

members conta<strong>in</strong> four conserved Cys residues, with one exception (Cole et al.,<br />

1998). Mtb conta<strong>in</strong>s seven homologues of WhiB (WhiB1, Rv3219; WhiB2,<br />

Rv3260c; WhiB3, Rv3416; WhiB4, Rv3681c; WhiB5, Rv0022c; WhiB6,<br />

Rv3862c and WhiB7, Rv3197A) that show strong homology to regulatory<br />

prote<strong>in</strong>s of Streptomyces spp. critical for sporulation (Chater, 1972; Flardh<br />

et al., 1999). In one of the <strong>in</strong>itial studies on mycobacterial WhiB prote<strong>in</strong>s, it<br />

was shown that Msm WhmD is essential and is <strong>in</strong>volved <strong>in</strong> septum formation<br />

and fragmentation (Gomez and Bishai, 2000). Subsequently, other members


REDUCTIVE STRESS IN MICROBES 89<br />

of the WhiB family have been shown to play a role <strong>in</strong> combat<strong>in</strong>g oxidative<br />

stress <strong>in</strong> Corynebacterium glutamicum (Kim et al.,2005). An important f<strong>in</strong>d<strong>in</strong>g<br />

was the establishment of Mtb WhiB3 as a virulence factor (Steyn et al., 2002)<br />

(see Section 6.3.2 below for a complete description). Moreover, the observations<br />

that Mtb WhiB7 plays a role <strong>in</strong> antibiotic resistance and that it is highly<br />

upregulated <strong>in</strong> the presence of palmitic acid, a putative <strong>in</strong> vivo carbon source,<br />

are particularly <strong>in</strong>terest<strong>in</strong>g (Morris et al.,2005) and suggest that, dur<strong>in</strong>g <strong>in</strong>fection,<br />

the specific <strong>in</strong> vivo environment might allow Mtb to effectively resist<br />

chemotherapeutic <strong>in</strong>tervention strategies. Exam<strong>in</strong>ation of the differential<br />

expression of all seven Mtb whiB genes dur<strong>in</strong>g growth and upon exposure<br />

to a wide range of antibiotics or to a variety of <strong>in</strong> vitro stress conditions<br />

<strong>in</strong>dicates that the Mtb WhiB family is strongly reactive to a wide range of<br />

environmental stress conditions (Geiman et al., 2006).<br />

Consistent with the presence of conserved Cys residues <strong>in</strong> the WhiB<br />

family, it was demonstrated that WhiD, a Streptomyces member of the<br />

WhiB family, conta<strong>in</strong>s a 4Fe–4S cluster (Jakimowicz et al., 2005). Subsequently,<br />

it was demonstrated that Mtb WhiB3 also possesses a 4Fe–4S<br />

cluster (S<strong>in</strong>gh et al., 2007), suggest<strong>in</strong>g that this feature might be common<br />

to all seven Mtb homologues. Studies on Mtb apo-WhiB1 (Garg et al., 2007)<br />

and apo-WhiB4 (Alam et al., 2007) suggest that they function as disulphide<br />

reductases. Us<strong>in</strong>g the yeast two-hybrid system, the same group has shown<br />

that WhiB1 <strong>in</strong>teracts with GlgB (an a-1,4-glucan branch<strong>in</strong>g enzyme) and<br />

reduces the <strong>in</strong>tra-molecular disulfide bond of GlgB (Garg et al., 2009).<br />

Additionally, a biochemical study provides some evidence that all the Mtb<br />

WhiB’s conta<strong>in</strong> Fe–S clusters (Alam et al., 2009). However, s<strong>in</strong>ce the study<br />

predom<strong>in</strong>antly used UV-visible spectroscopy and not electron paramagnetic<br />

resonance spectroscopy to characterise the Fe–S clusters, the type of Fe–S<br />

cluster (4Fe–4S, 3Fe–4S or 2Fe–2S) of each homologue was not conclusively<br />

demonstrated.<br />

Lastly, an <strong>in</strong>terest<strong>in</strong>g study has shown that the WhiB-like prote<strong>in</strong> of<br />

mycobacteriophage TM4 leads to the downregulation of Mtb whiB2 with<br />

subsequent filamentation and growth <strong>in</strong>hibition (Rybniker et al., 2010). The<br />

likely redox-mediated regulation of a host mycobacterial prote<strong>in</strong> by a viral<br />

factor is an excit<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>g and warrants further <strong>in</strong>vestigations.<br />

6.3.2. Mtb WhiB3 and Virulence<br />

In 1995, a s<strong>in</strong>gle po<strong>in</strong>t mutation (Arg515–His) <strong>in</strong> the 4.2 region of rpoV<br />

(encod<strong>in</strong>g the pr<strong>in</strong>cipal s-factor SigA) was shown to be responsible for the<br />

loss of virulence of wt M. bovis (Steyn et al., 2002). rpoV was the first gene<br />

identified <strong>in</strong> the Mtb complex required for virulence. The biological


90 AISHA FARHANA ET AL.<br />

mechanism of attenuation caused by this mutation rema<strong>in</strong>ed unknown until a<br />

yeast two-hybrid screen, which employed the wt rpoV 4.2 region allele as<br />

bait, identified a small regulatory prote<strong>in</strong>, WhiB3, as an <strong>in</strong>teract<strong>in</strong>g partner.<br />

Significantly, WhiB3 <strong>in</strong>teraction with the attenuated RpoV allele conta<strong>in</strong><strong>in</strong>g<br />

the s<strong>in</strong>gle po<strong>in</strong>t mutation described above was severely impaired<br />

(Steyn et al., 2002). Therefore, loss of <strong>in</strong>teraction with WhiB3 was the likely<br />

reason for the attenuat<strong>in</strong>g nature of the RpoV R-H mutation. Although<br />

whiB3 (Rv3416) deletion mutants of both Mtb H37Rv and M. bovis displayed<br />

no observable phenotypic changes dur<strong>in</strong>g <strong>in</strong> vitro growth, both were<br />

shown to be attenuated <strong>in</strong> vivo. Infection of gu<strong>in</strong>ea pigs with the M. bovis<br />

DwhiB3 mutant demonstrated that this stra<strong>in</strong> was unable to colonise the<br />

spleen. Perhaps a more strik<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>g was that the Mtb DwhiB3 deletion<br />

mutant showed wt-like growth <strong>in</strong> all organs, yet the mean survival time of<br />

C57BL/6 mice <strong>in</strong>fected with the Mtb DwhiB3 deletion stra<strong>in</strong> (280 days) was<br />

virtually twice to that of mice similarly <strong>in</strong>fected with wt Mtb H37Rv (150<br />

days). Furthermore, despite identical organ burdens, a dramatic difference <strong>in</strong><br />

lung pathology <strong>in</strong>duced by mutant and wt was observed. The lungs of the Mtb<br />

DwhiB3-<strong>in</strong>fected mice showed less pathology and cellular <strong>in</strong>filtration compared<br />

to those of mice <strong>in</strong>fected with wt Mtb, an observation that suggested<br />

that <strong>in</strong>fection with the Mtb DwhiB3 mutant was not associated with a harmful<br />

<strong>in</strong>flammatory response (Steyn et al., 2002). Ow<strong>in</strong>g to the reduced immunopathology<br />

caused by this mutant <strong>in</strong> mice and because a Streptomyces whiD<br />

mutant has repressed expression of whiE that encodes a polyketide synthase<br />

(Kelemen et al., 1998), a connection between whiB3, the production of Mtb<br />

polyketides and detrimental immunopathology was proposed (Steyn et al.,<br />

2002). Consistent with the idea that WhiB3 is needed for the synthesis of cellsurface<br />

polyketides is the observation of differences <strong>in</strong> colony morphology<br />

displayed by the wt and the DwhiB3 mutant stra<strong>in</strong>s (S<strong>in</strong>gh et al., 2007).<br />

F<strong>in</strong>ally, whiB3 expression was found to <strong>in</strong>versely correlate with bacterial<br />

density <strong>in</strong> vivo <strong>in</strong> the mouse system, suggest<strong>in</strong>g a possible role for WhiB3 <strong>in</strong><br />

quorum sens<strong>in</strong>g (Banaiee et al., 2006).<br />

An important f<strong>in</strong>d<strong>in</strong>g was the demonstration that Mtb conta<strong>in</strong>s a cyste<strong>in</strong>e<br />

desulphurase (IscS; Rv3025c) capable of assembl<strong>in</strong>g the WhiB3 4Fe–4S<br />

cluster (S<strong>in</strong>gh et al., 2007). The four WhiB3 Cys residues were subsequently<br />

shown to be essential <strong>in</strong> coord<strong>in</strong>at<strong>in</strong>g a Fe–S cluster. Exposure of purified<br />

WhiB3 to air or NO led to cluster degradation or formation of a d<strong>in</strong>itrosyl<br />

iron–dithiol complex respectively. Therefore, WhiB3 reacts directly with O 2<br />

and NO and likely functions as an endogenous sensor of these two dormancy<br />

gases (S<strong>in</strong>gh et al., 2007).<br />

Aside from the identification of a functional IscS, not much is known<br />

about Fe–S cluster assembly systems <strong>in</strong> mycobacteria. A putative Mtb SUF


REDUCTIVE STRESS IN MICROBES 91<br />

(mobilisation of sulphur) system (SufBCD) was identified through prote<strong>in</strong>–<br />

prote<strong>in</strong> <strong>in</strong>teraction studies (Huet et al., 2005), and formation of this prote<strong>in</strong><br />

complex depends on the prote<strong>in</strong> splic<strong>in</strong>g (via an <strong>in</strong>te<strong>in</strong>) of SufB (Huet et al.,<br />

2006). Mtb conta<strong>in</strong>s more than one IscS homolog and the SufBCD system,<br />

which are virtually uncharacterised <strong>in</strong> terms of general Fe–S cluster<br />

assembly.<br />

It has now been demonstrated that WhiB3 is a regulator of cellular metabolism,<br />

where<strong>in</strong> it is important for growth <strong>in</strong> the presence of glucose, pyruvate,<br />

succ<strong>in</strong>ate and fumarate as sole carbon sources (S<strong>in</strong>gh et al., 2007). The<br />

defective growth exhibited by the Mtb DwhiB3 mutant on glucose or succ<strong>in</strong>ate<br />

as the sole carbon source can be rescued by complementation with wt<br />

WhiB3, but not with WhiB3 that has all four Cys residues mutated. Thus, the<br />

[4Fe–4S] + cluster is necessary for WhiB3 to function as a metabolic regulator.<br />

Intrigu<strong>in</strong>gly, the Mtb DwhiB3 mutant grows much better <strong>in</strong> media conta<strong>in</strong><strong>in</strong>g<br />

the short-cha<strong>in</strong> FA acetate, suggest<strong>in</strong>g that WhiB3 is a potential regulator of<br />

FA metabolism <strong>in</strong> Mtb. It has been proposed that WhiB3 senses or responds<br />

to cellular substrates via its [4Fe–4S] + cluster <strong>in</strong> order to affect a metabolic<br />

switchover to the use of FA as the preferred carbon source <strong>in</strong> vivo<br />

(S<strong>in</strong>gh et al., 2007). The role of WhiB3 <strong>in</strong> core <strong>in</strong>termediary metabolism is<br />

consistent with studies on FNR and ArcA, which regulate key enzymes <strong>in</strong> the<br />

glycolytic and TCA cycles <strong>in</strong> response to carbon source starvation (Levanon<br />

et al., 2005; Shalel-Levanon et al., 2005).<br />

In conclusion, the pathological defect <strong>in</strong>duced by Mtb DwhiB3 <strong>in</strong> the<br />

mouse model (Steyn et al., 2002) as well as the altered colony morphology<br />

and growth properties of Mtb DwhiB3 on carbon-limit<strong>in</strong>g media, <strong>in</strong> particular<br />

FAs (S<strong>in</strong>gh et al., 2007), suggests that WhiB3 is <strong>in</strong>volved <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

redox homeostasis by regulat<strong>in</strong>g catabolism and polyketide biosynthesis <strong>in</strong><br />

Mtb. The precise mechanism by which this occurs rema<strong>in</strong>s to be <strong>in</strong>vestigated.<br />

6.3.3. WhiB3 and Reductive Stress<br />

Mtb WhiB3 is essential for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g bacterial cell shape and size, and<br />

modulates the biosynthesis of complex virulence lipids <strong>in</strong>clud<strong>in</strong>g PAT, DAT,<br />

SL-1 and PDIM (S<strong>in</strong>gh et al., 2009). An <strong>in</strong>terest<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>g was that Mtb<br />

DwhiB3 displayed defective production of the methyl-branched polar lipids<br />

PAT, DAT and SL-1 but showed <strong>in</strong>creased synthesis of PDIM and, to a<br />

lesser extent, TAG. The f<strong>in</strong>d<strong>in</strong>g that Mtb DwhiB3 accumulates PDIM and<br />

TAG is unique and has not yet been reported for any Mtb mutant to date.<br />

Exam<strong>in</strong>ation of the mycolic acid profiles demonstrated a decrease <strong>in</strong><br />

a,a’-trehalose dimycolate (TDM) and a,a’-trehalose monomycolate<br />

(TMM) <strong>in</strong> Mtb DwhiB3 as compared to wt Mtb. Importantly, further studies


92 AISHA FARHANA ET AL.<br />

revealed that WhiB3 regulates the production of PAT, PDIM and TAG <strong>in</strong> a<br />

redox-dependent manner <strong>in</strong> vitro (S<strong>in</strong>gh et al., 2009). The discovery of a<br />

redox-switch<strong>in</strong>g mechanism of Mtb virulence lipid production is the first of its<br />

k<strong>in</strong>d and provides important <strong>in</strong>sight <strong>in</strong>to how oxido-reductive host factors<br />

could modulate the synthesis of lipids <strong>in</strong>volved <strong>in</strong> virulence. In these experiments,<br />

diamide and DTT were used as a thiol-specific oxidant and reductant<br />

respectively. An <strong>in</strong>terest<strong>in</strong>g observation was that under reductive stress<br />

conditions (treatment with DTT), a significant <strong>in</strong>crease <strong>in</strong> TAG production<br />

was observed <strong>in</strong> Mtb DwhiB3 compared to wt Mtb (S<strong>in</strong>gh et al., 2009). These<br />

f<strong>in</strong>d<strong>in</strong>gs have several important biological implications. First, they establish a<br />

l<strong>in</strong>k between the extracellular heme-based Dos dormancy signal<strong>in</strong>g pathway<br />

(TAG is under DosR control), the <strong>in</strong>tracellular 4Fe–4S cluster WhiB3<br />

signal<strong>in</strong>g pathway and reductive stress. Secondly, they suggest that <strong>in</strong>tracellular<br />

oxido-reductive stress modulates diverse polyketides, which are implicated<br />

<strong>in</strong> virulence (Cox et al., 1999; Trivedi et al., 2005), and TAG production<br />

that might be essential for emergence from a persistent state (Deb et al.,<br />

2006). Thirdly, s<strong>in</strong>ce it is well known that TAG can function as an effective<br />

electron s<strong>in</strong>k <strong>in</strong> bacteria (Alvarez and Ste<strong>in</strong>buchel, 2002), the data implicate<br />

WhiB3 <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>in</strong>tracellular redox homeostasis.<br />

As host FAs are degraded via b-oxidation, potentially toxic levels of<br />

propionate, a byproduct of odd cha<strong>in</strong> FA assimilation, are generated (Ja<strong>in</strong><br />

et al., 2007; Upton and McK<strong>in</strong>ney, 2007). The fact that Mtb DwhiB3 was able<br />

to grow on much higher concentrations of propionate compared to wt Mtb,<br />

and that it accumulated PDIM and TAG dur<strong>in</strong>g <strong>in</strong>tra-macrophage growth,<br />

suggests that the <strong>in</strong>creased resistance to propionate toxicity is because propionate<br />

is channelled <strong>in</strong>to PDIM via the methyl-malonyl CoA (MMCoA)<br />

pathway, and <strong>in</strong>to TAG (S<strong>in</strong>gh et al., 2009). Thus, WhiB3-mediated regulation<br />

of virulence lipid anabolism is a plausible mechanism for the detoxification<br />

of excess levels of propionate <strong>in</strong> vivo. In fact, it was shown that<br />

<strong>in</strong>creased flux of MMCoA augments the size and abundance of PDIM and<br />

SL-1. The <strong>in</strong>creased synthesis and mass of PDIM that occurred dur<strong>in</strong>g <strong>in</strong>fection<br />

of mice provides credence to the notion that propionate toxicity <strong>in</strong> vivo is<br />

relieved via PDIM anabolism (Ja<strong>in</strong> et al., 2007).<br />

Large quantities of NADH and NADPH are generated from b-oxidation<br />

of host FA (e.g. palmitate) (see Section 4.2.2), which, if not properly balanced,<br />

can lead to reductive stress. A central question is: How does Mtb<br />

WhiB3 modulate the disposal of, or dissipate excess reduc<strong>in</strong>g equivalents to<br />

ma<strong>in</strong>ta<strong>in</strong> redox balance? In light of the fact that Mtb does not use NO 3 as a<br />

term<strong>in</strong>al electron acceptor under anaerobic conditions to promote replication,<br />

does not ferment and, to the best of our knowledge, does not secrete<br />

redox active molecules or use electron bifurcation mechanisms (Thauer,


REDUCTIVE STRESS IN MICROBES 93<br />

1988; Darrouzet and Daldal, 2003; Xia et al., 2007; Thauer et al., 2008; Costa<br />

et al., 2010) for energy production; this raises the question as to what the<br />

primary electron s<strong>in</strong>k <strong>in</strong> Mtb is? Although this is an emerg<strong>in</strong>g area of <strong>in</strong>vestigation<br />

and not much is known at this po<strong>in</strong>t of time, several recent f<strong>in</strong>d<strong>in</strong>gs<br />

suggest that Mtb lipid anabolism, which requires NAD(P)H as cofactors,<br />

functions as an effective electron s<strong>in</strong>k and that WhiB3 plays an important<br />

regulatory role <strong>in</strong> this process. First, <strong>in</strong> vivo studies have shown that Mtb<br />

isolated from <strong>in</strong>fected mouse lungs have extraord<strong>in</strong>arily high levels of NAD<br />

(P)H, provid<strong>in</strong>g evidence that Mtb experiences severe reductive stress<br />

(Boshoff et al., 2008). Second, studies have shown that PDIM levels and<br />

bacterial mass <strong>in</strong>crease significantly <strong>in</strong> <strong>in</strong>fected mice (Ja<strong>in</strong> et al., 2007).<br />

Third, WhiB3 was shown to modulate the differential anabolism of mycobacterial<br />

lipids <strong>in</strong>clud<strong>in</strong>g methyl-branched FAs (PDIM, SL-1, PAT and<br />

DAT) and TAG dur<strong>in</strong>g growth <strong>in</strong> vitro and <strong>in</strong> macrophages (S<strong>in</strong>gh et al.,<br />

2009). Fourth, Mtb DwhiB3 treated with DTT <strong>in</strong>creased synthesis of TAG<br />

dramatically (S<strong>in</strong>gh et al., 2009). Fifth, us<strong>in</strong>g [ 14 C] nicot<strong>in</strong>amide <strong>in</strong>corporation<br />

and enzymatic cycl<strong>in</strong>g assays, it was shown that Mtb DwhiB3 accumulated<br />

large quantities of NADPH <strong>in</strong> macrophages and therefore experienced<br />

reductive stress (S<strong>in</strong>gh et al., 2009). Collectively, the data suggest that Mtb<br />

lipid anabolism <strong>in</strong> vitro and <strong>in</strong> vivo demand substantial quantities of NAD(P)<br />

H and therefore functions as an effective electron s<strong>in</strong>k to alleviate excess<br />

reduc<strong>in</strong>g equivalents and reductive stress.<br />

In order to expla<strong>in</strong> these events, a model (Fig. 2) was proposed to illustrate<br />

the catabolism of highly reduced host FAs, as well as exposure of the bacilli<br />

to hypoxic conditions or NO, thereby generat<strong>in</strong>g reductive stress. In order to<br />

dispose or dissipate the excess reduc<strong>in</strong>g equivalents [NAD(P)H], Mtb anabolises<br />

PAT/DAT, SL-1, PDIM and predom<strong>in</strong>antly TAG, which function as<br />

electron s<strong>in</strong>ks. In conclusion, the mode of action of Mtb WhiB3 represents an<br />

elegant avenue for exam<strong>in</strong><strong>in</strong>g the mechanistic basis of reductive stress dissipation<br />

<strong>in</strong> bacterial pathogens and should open new areas of <strong>in</strong>vestigation.<br />

6.3.4. WhiB3 and DNA B<strong>in</strong>d<strong>in</strong>g<br />

For more than 15 years, WhiB homologues <strong>in</strong> act<strong>in</strong>omycetes have been<br />

speculated to be putative DNA-b<strong>in</strong>d<strong>in</strong>g transcription factors (den Hengst<br />

and Buttner, 2008). However, a formal proof demonstrat<strong>in</strong>g their DNA<br />

b<strong>in</strong>d<strong>in</strong>g activity was lack<strong>in</strong>g until recently. S<strong>in</strong>gh et al. (2009) provided the<br />

first evidence that a member of the WhiB family can b<strong>in</strong>d to DNA. Gel<br />

retardation studies have shown that the redox state of the Mtb WhiB3 4Fe–<br />

4S cluster does not <strong>in</strong>fluence DNA b<strong>in</strong>d<strong>in</strong>g and that oxidised apo-WhiB3<br />

b<strong>in</strong>ds DNA tightly compared to holo-WhiB3. This is unusual because either


94 AISHA FARHANA ET AL.<br />

[(Figure_2)TD$FIG]<br />

Figure 2 Model depict<strong>in</strong>g the role of Mtb WhiB3 <strong>in</strong> sens<strong>in</strong>g and dissipat<strong>in</strong>g<br />

reductive stress to ma<strong>in</strong>ta<strong>in</strong> redox homeostasis. (a) Generation of reductants. b-oxidation<br />

of host FA and the <strong>in</strong>hibition of respiration by hypoxia, NO and possibly CO<br />

lead to the generation of NADH and NADPH that are major contributors to reductive<br />

stress <strong>in</strong> Mtb. (b) Regulation. WhiB3 ma<strong>in</strong>ta<strong>in</strong>s <strong>in</strong>tracellular redox homeostasis<br />

through its Fe–S cluster via an alteration <strong>in</strong> its apo and holo redox states. This<br />

modulates DNA b<strong>in</strong>d<strong>in</strong>g and regulates the expression of genes necessary for lipid<br />

anabolism. (c) Dissipat<strong>in</strong>g reductive stress. The <strong>in</strong>duction of lipid anabolism by WhiB3<br />

leads to the dissipation of excess reductants. Anabolism of a wide range of lipids<br />

implicated <strong>in</strong> virulence (PAT, DAT, PDIM and SL-1) via MMCoA, and the synthesis<br />

of storage lipid (TAG) by the FASI pathway functions as electron s<strong>in</strong>ks. Note that the<br />

Dos dormancy regulon and the WhiB3 signal<strong>in</strong>g pathway are l<strong>in</strong>ked via TAG anabolism<br />

(S<strong>in</strong>gh et al., 2009).<br />

classic bacterial Fe–S cluster prote<strong>in</strong>s such as FNR and SufR require an Fe–S<br />

cluster for DNA b<strong>in</strong>d<strong>in</strong>g (Green and Paget, 2004), or b<strong>in</strong>d<strong>in</strong>g is dictated by<br />

the redox state of the Fe–S cluster (Shen et al., 2007). In a recent study, apo-<br />

WhiB b<strong>in</strong>d<strong>in</strong>g was also demonstrated for Mtb WhiB2 and a mycobacteria<br />

phage TM4 WhiB homologue, WhiBTM4 (Rybniker et al., 2010), suggest<strong>in</strong>g


REDUCTIVE STRESS IN MICROBES 95<br />

that apo-WhiB b<strong>in</strong>d<strong>in</strong>g of DNA might be a common feature of the WhiB<br />

family.<br />

Although DNA b<strong>in</strong>d<strong>in</strong>g does not provide categorical proof for transcriptional<br />

regulation, evidence from a previous study demonstrat<strong>in</strong>g that WhiB3<br />

selectively <strong>in</strong>teracts with the 4.2 doma<strong>in</strong> of the Mtb pr<strong>in</strong>cipal sigma factor,<br />

RpoV (SigA) (Steyn et al., 2002), suggests a plausible role for WhiB3 <strong>in</strong><br />

transcriptional regulation. Consistent with this observation, WhiB3 directly<br />

regulates the transcription of various lipid/polyketide biosynthetic genes<br />

<strong>in</strong>clud<strong>in</strong>g pks2 (for SL-1 production), pks3 (PAT/DAT production), fbpA<br />

(TDM biosynthesis), mas, ppsA, fadD26 and fadD28 (PDIM production) by<br />

directly b<strong>in</strong>d<strong>in</strong>g to their promoter regions (S<strong>in</strong>gh et al., 2009). However, the<br />

role of the WhiB3 4Fe–4S cluster and the oxidation state thereof <strong>in</strong> transcriptional<br />

regulation of those genes rema<strong>in</strong>s to be determ<strong>in</strong>ed.<br />

7. CONCLUDING REMARKS<br />

Development of new <strong>in</strong>tervention strategies aga<strong>in</strong>st latent TB h<strong>in</strong>ges on<br />

ga<strong>in</strong><strong>in</strong>g a substantially better understand<strong>in</strong>g of the <strong>in</strong> vivo physiology of<br />

Mtb, <strong>in</strong>clud<strong>in</strong>g the critical anabolic and catabolic pathways which allow the<br />

bacillus to persist <strong>in</strong> spite of host immune responses and/or chemotherapy.<br />

The crucial role of redox couples (e.g. NADH/NAD + , NADPH/NADP + ,<br />

FADH2/FAD, MSH/MSSM, ERG ox/ERG red) <strong>in</strong> metabolic homeostasis<br />

clearly suggests that oxidation–reduction reactions play an <strong>in</strong>dispensible role<br />

<strong>in</strong> the ma<strong>in</strong>tenance of latency. Even though the balance of such reactions can<br />

sw<strong>in</strong>g either way, research has focused primarily on oxidative stress and its<br />

counterpart, reductive stress, has largely been ignored.<br />

An emerg<strong>in</strong>g hypothesis regard<strong>in</strong>g the trigger<strong>in</strong>g events result<strong>in</strong>g <strong>in</strong> the<br />

Mtb latency response might be that of ‘reductive stress’. As stated earlier,<br />

reductive stress is def<strong>in</strong>ed as <strong>in</strong>creased ‘reduc<strong>in</strong>g power’, usually caused by<br />

an excess of high-energy reductant <strong>in</strong>clud<strong>in</strong>g NADH or NADPH, or a failure<br />

of the mechanism(s) to counter those excesses, lead<strong>in</strong>g to a reductive<br />

cytosolic environment (Ido et al., 1997). Although very little is known about<br />

reductive stress <strong>in</strong> bacterial biology, it is possibly more prevalent than<br />

oxidative stress and may also be the ma<strong>in</strong> source of ROS (Ghyczy and<br />

Boros, 2007).<br />

The phenomenon of reductive stress is well established <strong>in</strong> eukaryotic<br />

biology and its role has been demonstrated <strong>in</strong> various human diseases <strong>in</strong>clud<strong>in</strong>g<br />

diabetes and cardiomyopathy (Boucher, 2007; Zhang et al., 2010).<br />

Although the role of reductive stress <strong>in</strong> microbial-<strong>in</strong>duced diseases is <strong>in</strong>vit<strong>in</strong>g


96 AISHA FARHANA ET AL.<br />

an <strong>in</strong>creas<strong>in</strong>g research <strong>in</strong>terest, very few such studies have been reported.<br />

Nonetheless, the concept of reductive stress has provided researchers with a<br />

plethora of new research avenues that <strong>in</strong>clude the potential for development<br />

of new diagnostic and therapeutic <strong>in</strong>tervention strategies.<br />

Numerous studies have demonstrated <strong>in</strong>creased sensitivity to both oxidative<br />

and reductive stress <strong>in</strong> MSH mutants, emphasis<strong>in</strong>g the importance of<br />

MSH as the major redox buffer <strong>in</strong> mycobacteria. However, ERG <strong>in</strong> mycobacteria<br />

has not been studied for the past 50 years and warrants further<br />

<strong>in</strong>vestigation. Also, the l<strong>in</strong>k between redox homeostasis and drug efficacy <strong>in</strong><br />

mycobacteria is important, s<strong>in</strong>ce many anti-mycobacterial drugs are prodrugs<br />

that are activated upon reduction <strong>in</strong> the mycobacterial cytoplasm.<br />

This leads to the logical conclusion that mechanisms <strong>in</strong>volved <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

the <strong>in</strong>tracellular redox homeostasis of Mtb are important factors <strong>in</strong> drug<br />

resistance studies. However, the genetically <strong>in</strong>tractable nature of this pathogen<br />

and the lack of novel tools allow<strong>in</strong>g measurement of the <strong>in</strong>tracellular<br />

redox environment of Mtb hamper novel drug discovery approaches <strong>in</strong> this<br />

regard.<br />

The wealth of anabolic and catabolic <strong>in</strong>formation gathered from a diverse<br />

spectrum of non-pathogenic and pathogenic bacteria, lower eukaryotes and<br />

other model microbes has revealed numerous electron s<strong>in</strong>ks (e.g. fermentation,<br />

<strong>in</strong>tracellular lipid accumulation, Calv<strong>in</strong> cycle, rTCA cycle, hydrogenase<br />

activity, lipid anabolism, etc.) for the recycl<strong>in</strong>g of reduc<strong>in</strong>g equivalents.<br />

These recycl<strong>in</strong>g s<strong>in</strong>ks are unique for the particular environmental niche<br />

the microbe occupies. Despite some recent progress (S<strong>in</strong>gh et al., 2009), their<br />

place <strong>in</strong> Mtb physiology is poorly def<strong>in</strong>ed at present. As more is learned<br />

about the role of electron s<strong>in</strong>ks <strong>in</strong> model microbes, Mtb researchers should<br />

be compelled to revisit the exist<strong>in</strong>g paradigms for bacilli persistence, and to<br />

seek new testable hypotheses.<br />

As is clear from many historical studies, Mtb utilises carbohydrates dur<strong>in</strong>g<br />

<strong>in</strong> vitro growth without the production of acids; rather, the culture media<br />

becomes alkal<strong>in</strong>e. The latter f<strong>in</strong>d<strong>in</strong>g begs the questions of how carbohydrate<br />

metabolism by Mtb is dist<strong>in</strong>ct from other bacteria that produce acids, and<br />

what are the generated end products, if any? Data <strong>in</strong>dicat<strong>in</strong>g that lipids are<br />

the preferred <strong>in</strong> vivo carbon sources are compell<strong>in</strong>g, but are based upon<br />

<strong>in</strong>direct gene knockout <strong>in</strong>ferences and genome sequence <strong>in</strong>formation.<br />

Detailed <strong>in</strong> vivo studies us<strong>in</strong>g radiolabeled FA precursors should be undertaken.<br />

The effect of exogenous host lipid catabolism on endogenous Mtb<br />

lipid anabolism must be explored. Insights <strong>in</strong>to how these metabolic events<br />

are coord<strong>in</strong>ated to recycle reduc<strong>in</strong>g equivalents are needed. Furthermore,<br />

direct measurement of the <strong>in</strong>tracellular redox environment of Mtb dur<strong>in</strong>g<br />

<strong>in</strong> vitro growth and dur<strong>in</strong>g <strong>in</strong>fection will prove <strong>in</strong>valuable.


REDUCTIVE STRESS IN MICROBES 97<br />

The majority of <strong>in</strong>vestigations address<strong>in</strong>g the fundamental aspects of<br />

<strong>in</strong> vivo Mtb physiology (mean<strong>in</strong>g the study of Mtb isolated from <strong>in</strong>fected<br />

lung tissue) are decades old. Although they rema<strong>in</strong> remarkably perceptive,<br />

there is an urgent need to revisit those studies us<strong>in</strong>g modern molecular<br />

biological tools. Mtb is an excellent candidate for <strong>in</strong> vivo study because<br />

answers to key questions regard<strong>in</strong>g the mechanisms of persistence have<br />

not yet been obta<strong>in</strong>ed us<strong>in</strong>g <strong>in</strong> vitro model systems. In pr<strong>in</strong>ciple, the need<br />

to study <strong>in</strong> vivo-derived organisms was recognised long ago, particularly<br />

when it was elegantly revealed that the respiratory responses to a spectrum<br />

of carbohydrates and FAs were vastly different between <strong>in</strong> vitro-cultured<br />

and <strong>in</strong> vivo-isolated bacilli (Segal and Bloch, 1956). The marked response of<br />

<strong>in</strong> vivo-derived bacilli to FAs and lack of utilisation of carbohydrates suggest<br />

physiological and biochemical adaptation to widely diverse environments,<br />

changes which should be analysed by modern-day molecular tools such as<br />

DNA microarray, mass spectrometry and metabolic profil<strong>in</strong>g. Us<strong>in</strong>g gene<br />

knock-out strategies and enzyme activity assays, a systematic <strong>in</strong> vitro and<br />

<strong>in</strong> vivo analysis of the Krebs cycle components and constituents of other<br />

pathways (e.g. glycolysis) should be undertaken. 13 C-metabolic flux analysis<br />

of <strong>in</strong> vivo-isolated Mtb versus <strong>in</strong> vitro-cultured bacilli should reveal important<br />

<strong>in</strong>sights <strong>in</strong>to pathways that are specific for <strong>in</strong>fection, and perhaps<br />

persistence.<br />

As discussed, the <strong>in</strong> vivo carbon source(s) used by Mtb is important from<br />

the perspective of energy generation and the choice almost certa<strong>in</strong>ly <strong>in</strong>fluences<br />

metabolic homeostasis. The comb<strong>in</strong>ed effect of <strong>in</strong> vivo carbon substrate<br />

utilisation (most likely lipids and cholesterol) and the presence of<br />

environmental gases (e.g. NO, CO2) that <strong>in</strong>hibit respiration results <strong>in</strong> the<br />

accumulation of reduc<strong>in</strong>g equivalents that require recycl<strong>in</strong>g to ma<strong>in</strong>ta<strong>in</strong><br />

redox balance. The admittedly limited biochemical and physiological data<br />

on reductive stress <strong>in</strong> Mtb po<strong>in</strong>ts to lipid anabolism as an electron s<strong>in</strong>k for<br />

recycl<strong>in</strong>g reduc<strong>in</strong>g equivalents (S<strong>in</strong>gh et al., 2009). The latter f<strong>in</strong>d<strong>in</strong>g raises<br />

hopes for the future unveil<strong>in</strong>g of novel features of the <strong>in</strong> vivo Mtb metabolome,<br />

lipodome and redoxome. Furthermore, the potential roles of hydrogenases,<br />

CODH and the rTCA cycle <strong>in</strong> dissipat<strong>in</strong>g reductive stress <strong>in</strong> Mtb are<br />

unexplored and therefore represent new research areas <strong>in</strong> need of <strong>in</strong>vestigations.<br />

Insight <strong>in</strong>to the role of WhiB3 <strong>in</strong> the ma<strong>in</strong>tenance of redox homeostasis<br />

by divert<strong>in</strong>g reductive stress <strong>in</strong> macrophages (S<strong>in</strong>gh et al., 2009) and the<br />

observation that an extraord<strong>in</strong>ary amount of reduc<strong>in</strong>g equivalents are produced<br />

<strong>in</strong> the lungs of Mtb-<strong>in</strong>fected mice (Boshoff et al., 2008) represent<br />

start<strong>in</strong>g po<strong>in</strong>ts for other <strong>in</strong>novative avenues of research.<br />

Studies on the microenvironment of the granuloma where<strong>in</strong> Mtb resides<br />

<strong>in</strong> vivo rema<strong>in</strong> at an early stage of <strong>in</strong>vestigation, and few reports are


98 AISHA FARHANA ET AL.<br />

available. The current paradigm, which suggests that Mtb resides <strong>in</strong> dist<strong>in</strong>ct<br />

and dynamic microenvironments with<strong>in</strong> the lung (Barry et al., 2009), represents<br />

a biological predicament for the mycobacteriologist, s<strong>in</strong>ce the metabolic<br />

state of the bacilli with<strong>in</strong> each <strong>in</strong>dependent granuloma may be dissimilar<br />

from that of another. For example, the microaerophilic or anaerobic state<br />

of the particular granuloma, presence of gases, and exposure of the bacilli to<br />

a vast range of host factors that vary throughout the course of <strong>in</strong>fection,<br />

illustrate the challenges of exam<strong>in</strong><strong>in</strong>g Mtb <strong>in</strong> vivo. Creatively exploit<strong>in</strong>g<br />

genome-wide technologies that exam<strong>in</strong>e the transcriptional state and metabolic<br />

profile of Mtb with<strong>in</strong> dist<strong>in</strong>ct granulomas is essential towards identify<strong>in</strong>g<br />

new pathways and metabolites, and establish<strong>in</strong>g whether exist<strong>in</strong>g pathways<br />

are ‘active’ dur<strong>in</strong>g <strong>in</strong>fection. As more is learned about the physiology<br />

and biochemistry of Mtb, a better understand<strong>in</strong>g of TB is obta<strong>in</strong>ed which is<br />

key to the development of effective anti-mycobacterial strategies.<br />

ACKNOWLEDGEMENTS<br />

We wish to thank members of the Steyn laboratory for critical read<strong>in</strong>g of this<br />

manuscript. Research <strong>in</strong> our laboratories is supported <strong>in</strong> whole or <strong>in</strong> part, by<br />

National Institutes of Health Grants AI058131, AI076389 (to A.J.C.S.) and<br />

AI060469 (to M.K.H.) This work was also supported by the University of<br />

Alabama at Birm<strong>in</strong>gham (UAB) Center for AIDS Research, UAB Center<br />

for Free Radical Biology and UAB Center for Emerg<strong>in</strong>g Infections and<br />

Emergency Preparedness (A.J.C.S.). A.J.C.S. is a Burroughs Wellcome<br />

Investigator <strong>in</strong> the Pathogenesis of Infectious Diseases.<br />

REFERENCES<br />

Alam, K.Y. and Clark, D.P. (1989) Anaerobic fermentation balance of Escherichia<br />

coli as observed by <strong>in</strong> vivo nuclear magnetic resonance spectroscopy. J. Bacteriol.<br />

171, 6213–6217.<br />

Alam, M.S., Garg, S.K. and Agrawal, P. (2007) Molecular function of WhiB4/<br />

Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe–4S] cluster co-ord<strong>in</strong>at<strong>in</strong>g<br />

prote<strong>in</strong> disulphide reductase. Mol. Microbiol. 63, 1414–1431.<br />

Alam, M.S., Garg, S.K. and Agrawal, P. (2009) Studies on structural and functional<br />

divergence among seven WhiB prote<strong>in</strong>s of Mycobacterium tuberculosis H37Rv.<br />

FEBS J. 276, 76–93.<br />

Alvarez-Ortega, C. and Harwood, C.S. (2007) Responses of Pseudomonas aerug<strong>in</strong>osa<br />

to low oxygen <strong>in</strong>dicate that growth <strong>in</strong> the cystic fibrosis lung is by aerobic<br />

respiration. Mol. Microbiol. 65, 153–165.


REDUCTIVE STRESS IN MICROBES 99<br />

Alvarez, H.M., Kalscheuer, R. and Ste<strong>in</strong>buchel, A. (2000) Accumulation and mobilization<br />

of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber<br />

NCIMB 40126. Appl. Microbiol. Biotechnol. 54, 218–223.<br />

Alvarez, H.M. and Ste<strong>in</strong>buchel, A. (2002) Triacylglycerols <strong>in</strong> prokaryotic microorganisms.<br />

Appl. Microbiol. Biotechnol. 60, 367–376.<br />

Aly, S., Wagner, K., Keller, C., Malm, S., Malzan, A., Brandau, S., Bange, F.C. and<br />

Ehlers, S. (2006) Oxygen status of lung granulomas <strong>in</strong> Mycobacterium tuberculosis-<strong>in</strong>fected<br />

mice. J. Pathol. 210, 298–305.<br />

Amaras<strong>in</strong>gham, C.R. and Davis, B.D. (1965) Regulation of alpha-ketoglutarate<br />

dehydrogenase formation <strong>in</strong> Escherichia coli. J. Biol. Chem. 240, 3664–3668.<br />

Anderson, R.J., Reeves, R.E., Creighton, M.M. and Lothrop, W.C. (1943) The<br />

chemistry of the lipids of tubercle bacilli, LXV. An <strong>in</strong>vestigation of tuberculous<br />

lung tissue. Am. Rev. Tuberc. 48, 65–75.<br />

Ansell, R., Granath, K., Hohmann, S., Thevele<strong>in</strong>, J.M. and Adler, L. (1997) The two<br />

isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase<br />

encoded by GPD1 and GPD2 have dist<strong>in</strong>ct roles <strong>in</strong> osmoadaptation and redox<br />

regulation. EMBO J. 16, 2179–2187.<br />

Aoshima, M. (2007) Novel enzyme reactions related to the tricarboxylic acid cycle:<br />

phylogenetic/functional implications and biotechnological applications. Appl.<br />

Microbiol. Biotechnol. 75, 249–255.<br />

Artman, M. and Bekierkunst, A. (1961) Studies on Mycobacterium tuberculosis<br />

H37RV grown <strong>in</strong> vivo. Am. Rev. Respir. Dis. 83, 100–106.<br />

Atlas, R.L. (1996) Pr<strong>in</strong>ciples of Microbiology, 2nd edn. Wm. C. Brown Publishers<br />

pp. 117.<br />

Banaiee, N., Jacobs Jr., W.R. and Ernst, J.D. (2006) Regulation of Mycobacterium<br />

tuberculosis whiB3 <strong>in</strong> the mouse lung and macrophages. Infect. Immun. 74, 6449.<br />

Barry 3rd, C.E., Boshoff, H.I., Dartois, V., Dick, T., Ehrt, S., Flynn, J., Schnapp<strong>in</strong>ger,<br />

D., Wilk<strong>in</strong>son, R.J. and Young, D. (2009) The spectrum of latent tuberculosis:<br />

reth<strong>in</strong>k<strong>in</strong>g the biology and <strong>in</strong>tervention strategies. Nat. Rev. Microbiol. 7,<br />

845–855.<br />

Baughn, A.D., Garforth, S.J., Vilcheze, C. and Jacobs Jr., W.R. (2009) An<br />

anaerobic-type alpha-ketoglutarate ferredox<strong>in</strong> oxidoreductase completes the<br />

oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis. PLoS<br />

Pathog. 5, e1000662.<br />

Berney, M. and Cook, G.M. (2010) Unique flexibility <strong>in</strong> energy metabolism allows<br />

mycobacteria to combat starvation and hypoxia. PLoS One 5, e8614.<br />

Berrios-Rivera, S.J., Bennett, G.N. and San, K.Y. (2002a) The effect of <strong>in</strong>creas<strong>in</strong>g<br />

NADH availability on the redistribution of metabolic fluxes <strong>in</strong> Escherichia coli<br />

chemostat cultures. Metab. Eng. 4, 230–237.<br />

Berrios-Rivera, S.J., Bennett, G.N. and San, K.Y. (2002b) Metabolic eng<strong>in</strong>eer<strong>in</strong>g of<br />

Escherichia coli: <strong>in</strong>crease of NADH availability by overexpress<strong>in</strong>g an NAD<br />

(+)-dependent formate dehydrogenase. Metab. Eng. 4, 217–229.<br />

Berrios-Rivera, S.J., San, K.Y. and Bennett, G.N. (2002c) The effect of NAPRTase<br />

overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the<br />

distribution of metabolites <strong>in</strong> Escherichia coli. Metab. Eng. 4, 238–247.<br />

Berrios-Rivera, S.J., Sanchez, A.M., Bennett, G.N. and San, K.Y. (2004) Effect of<br />

different levels of NADH availability on metabolite distribution <strong>in</strong> Escherichia<br />

coli fermentation <strong>in</strong> m<strong>in</strong>imal and complex media. Appl. Microbiol. Biotechnol. 65,<br />

426–432.


100 AISHA FARHANA ET AL.<br />

Bloch, H., Matter, E. and Suter, E. (1947) The effect of glycerol and related substances<br />

on the growth and the oxygen uptake of the tubercle bacillus. Am. Rev.<br />

Tuberc. 55, 540–551.<br />

Boon, C., Li, R., Qi, R. and Dick, T. (2001) Prote<strong>in</strong>s of Mycobacterium bovis BCG<br />

<strong>in</strong>duced <strong>in</strong> the Wayne dormancy model. J. Bacteriol. 183, 2672–2676.<br />

Borland, C., Cox, Y. and Higenbottam, T. (1993) Measurement of exhaled nitric<br />

oxide <strong>in</strong> man. Thorax 48, 1160–1162.<br />

Boshoff, H.I. and Barry 3rd, C.E. (2005) Tuberculosis – metabolism and respiration <strong>in</strong><br />

the absence of growth. Nat. Rev. Microbiol. 3, 70–80.<br />

Boshoff, H.I., Xu, X., Tahlan, K., Dowd, C.S., Pethe, K., Camacho, L.R., Park, T.H.,<br />

Yun, C.S., Schnapp<strong>in</strong>ger, D., Ehrt, S., Williams, K.J. and Barry 3rd, C.E. (2008)<br />

Biosynthesis and recycl<strong>in</strong>g of nicot<strong>in</strong>amide cofactors <strong>in</strong> Mycobacterium tuberculosis.<br />

An essential role for NAD <strong>in</strong> nonreplicat<strong>in</strong>g bacilli. J. Biol. Chem. 283,<br />

19329–19341.<br />

Boucher, B.J. (2007) Nutrition Discussion Forum. Br. J. Nutr. 80, 115–117.<br />

Brahimi-Horn, M.C. and Pouyssegur, J. (2007) Oxygen, a source of life and stress.<br />

FEBS Lett. 581, 3582–3591.<br />

Braun, R.D., Lanzen, J.L., Snyder, S.A. and Dewhirst, M.W. (2001) Comparison<br />

of tumor and normal tissue oxygen tension measurements us<strong>in</strong>g OxyLite or<br />

microelectrodes <strong>in</strong> rodents. Am. J. Physiol. Heart Circ. Physiol. 280, H2533–<br />

H2544.<br />

Brez<strong>in</strong>a, O., Drobnicova, I. and Drobnica, L. (1967) Proliferation of Mycobacterium<br />

tuberculosis from mouse lung tissue on various carbon sources. Nature 214,<br />

1036–1037.<br />

Br<strong>in</strong>dicci, C., Ito, K., Torre, O., Barnes, P.J. and Kharitonov, S.A. (2009) Effects of<br />

am<strong>in</strong>oguanid<strong>in</strong>e, an <strong>in</strong>hibitor of <strong>in</strong>ducible nitric oxide synthase, on nitric oxide<br />

production and its metabolites <strong>in</strong> healthy control subjects, healthy smokers, and<br />

COPD patients. Chest 135, 353–367.<br />

Brovkovych, V., Stolarczyk, E., Oman, J., Tomboulian, P. and Mal<strong>in</strong>ski, T. (1999)<br />

Direct electrochemical measurement of nitric oxide <strong>in</strong> vascular endothelium.<br />

J. Pharm. Biomed. Anal. 19, 135–143.<br />

Buchmeier, N.A., Newton, G.L. and Fahey, R.C. (2006) A mycothiol synthase mutant<br />

of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited<br />

tolerance to stress. J. Bacteriol. 188, 6245–6252.<br />

Buchmeier, N.A., Newton, G.L., Koled<strong>in</strong>, T. and Fahey, R.C. (2003) Association of<br />

mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and<br />

antibiotics. Mol. Microbiol. 47, 1723–1732.<br />

Bunch, P.K., Mat-Jan, F., Lee, N. and Clark, D.P. (1997) The ldhA gene encod<strong>in</strong>g the<br />

fermentative lactate dehydrogenase of Escherichia coli. Microbiology 143(Pt 1);<br />

187–195.<br />

Burgdorf, T., Lenz, O., Buhrke, T., Van der L<strong>in</strong>den, E., Jones, A.K., Albracht, S.P.J.<br />

and Friedrich, B. (2005) [NiFe]-Hydrogenases of Ralstonia eutropha H16: modular<br />

enzymes for oxygen-tolerant biological hydrogen oxidation. J. Molec.<br />

Microbiol. Biotechnol. 10, 181–196.<br />

Camarasa, C., Faucet, V. and Dequ<strong>in</strong>, S. (2007) Role <strong>in</strong> anaerobiosis of the isoenzymes<br />

for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and<br />

FRDS1. Yeast 24, 391–401.<br />

Cammack, R., Frey, M. and Robson, R. (2001) Hydrogen as Fuel. Learn<strong>in</strong>g from<br />

Nature. Taylor & Francis, London.


REDUCTIVE STRESS IN MICROBES 101<br />

Campbell, J.W. and Cronan Jr., J.E. (2002) The enigmatic Escherichia coli fadE gene<br />

is yafH. J. Bacteriol. 184, 3759–3764.<br />

Cevallos, M.A., Encarnacion, S., Leija, A., Mora, Y. and Mora, J. (1996) Genetic and<br />

physiological characterization of a Rhizobium etli mutant stra<strong>in</strong> unable to synthesize<br />

poly-beta-hydroxybutyrate. J. Bacteriol. 178, 1646–1654.<br />

Chan, E.D., Chan, J. and Schluger, N.W. (2001) What is the role of nitric oxide <strong>in</strong><br />

mur<strong>in</strong>e and human host defense aga<strong>in</strong>st tuberculosis? Current knowledge. Am. J.<br />

Respir. Cell Mol. Biol. 25, 606–612.<br />

Chater, K.F. (1972) A morphological and genetic mapp<strong>in</strong>g study of white colony<br />

mutants of Streptomyces coelicolor. J. Gen. Microbiol. 72, 9–28.<br />

Chung, S.W., Hall, S.R. and Perrella, M.A. (2009) Role of haem oxygenase-1 <strong>in</strong><br />

microbial host defence. Cell. Microbiol. 11, 199–207.<br />

Clark, D.P. (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol.<br />

Rev. 5, 223–234.<br />

Clough, G.F., Bennett, A.R. and Church, M.K. (1998) Measurement of nitric oxide<br />

concentration <strong>in</strong> human sk<strong>in</strong> <strong>in</strong> vivo us<strong>in</strong>g dermal microdialysis. Exp. Physiol. 83,<br />

431–434.<br />

Cole, J. (1996) Nitrate reduction to ammonia by enteric bacteria: redundancy, or a<br />

strategy for survival dur<strong>in</strong>g oxygen starvation? FEMS Microbiol. Lett. 136, 1–11.<br />

Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.<br />

V., Eiglmeier, K., Gas, S., Barry 3rd, C.E., Tekaia, F., Badcock, K., Basham, D.,<br />

Brown, D., Chill<strong>in</strong>gworth, T., Connor, R., Davies, R., Devl<strong>in</strong>, K., Feltwell, T.,<br />

Gentles, S., Haml<strong>in</strong>, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean,<br />

J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A., Rajandream, M.A.,<br />

Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J.E.,<br />

Taylor, K., Whitehead, S. and Barrell, B.G. (1998) Decipher<strong>in</strong>g the biology of<br />

Mycobacterium tuberculosis from the complete genome sequence. Nature 393,<br />

537–544.<br />

Converse, P.J., Karakousis, P.C., Kl<strong>in</strong>kenberg, L.G., Kesavan, A.K., Ly, L.H., Allen,<br />

S.S., Grosset, J.H., Ja<strong>in</strong>, S.K., Lamichhane, G. and Manabe, Y.C. (2009) Role of<br />

the dosR-dosS two-component regulatory system <strong>in</strong> Mycobacterium tuberculosis<br />

virulence <strong>in</strong> three animal models. Infect. Immun. 77, 1230.<br />

Corper, H.J. and Cohn, M.L. (1933) The viability and virulence of old cultures of<br />

tubercle bacilli: studies on twelve-year broth cultures ma<strong>in</strong>ta<strong>in</strong>ed at <strong>in</strong>cubator<br />

temperature. Am. Rev. Tuberc. Pulm. Dis. 28, 856–874.<br />

Cosma, C.L., Sherman, D.R. and Ramakrishnan, L. (2003) The secret lives of the<br />

pathogenic mycobacteria. Annu. Rev. Microbiol. 57, 641–676.<br />

Costa, K.C., Wong, P.M., Wang, T., Lie, T.J., Dodsworth, J.A., Swanson, I., Burn,<br />

J.A., Hackett, M. and Leigh, J.A. (2010) Prote<strong>in</strong> complex<strong>in</strong>g <strong>in</strong> a methanogen<br />

suggests electron bifurcation and electron delivery from formate to heterodisulfide<br />

reductase. Proc. Natl. Acad. Sci. 107(24); 11050–11055.<br />

Cox, J.S., Chen, B., McNeil, M. and Jacobs Jr., W.R. (1999) Complex lipid determ<strong>in</strong>es<br />

tissue-specific replication of Mycobacterium tuberculosis <strong>in</strong> mice. Nature 402,<br />

79–83.<br />

da Silva, S.M., Venceslau, S.S., Fernandes, C.L.V., Valente, F.M.A. and Pereira, I.A.<br />

C. (2008) Hydrogen as an energy source for the human pathogen Bilophila wadsworthia.<br />

Antonie Leeuwenhoek 93, 381–390.<br />

Daniel, J., Deb, C., Dubey, V.S., Sirakova, T.D., Abomoelak, B., Morbidoni, H.R.<br />

and Kolattukudy, P.E. (2004) Induction of a novel class of diacylglycerol


102 AISHA FARHANA ET AL.<br />

acyltransferases and triacylglycerol accumulation <strong>in</strong> Mycobacterium tuberculosis<br />

as it goes <strong>in</strong>to a dormancy-like state <strong>in</strong> culture. J. Bacteriol. 186, 5017–5030.<br />

Darrouzet, E. and Daldal, F. (2003) Prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions between<br />

Cytochrome b and the Fe–S prote<strong>in</strong> subunits dur<strong>in</strong>g QH2 oxidation and largescale<br />

doma<strong>in</strong> movement <strong>in</strong> the bc1 complex. Biochemistry 42, 1499–1507.<br />

Dasgupta, N., Kapur, V., S<strong>in</strong>gh, K.K., Das, T.K., Sachdeva, S., Jyothisri, K. and<br />

Tyagi, J.S. (2000) Characterization of a two-component system, devR-devS,<br />

of Mycobacterium tuberculosis. Tuberc. Lung Dis. 80, 141–159.<br />

Davidge, K.S., Sangu<strong>in</strong>etti, G., Yee, C.H., Cox, A.G., McLeod, C.W., Monk, C.E.,<br />

Mann, B.E., Motterl<strong>in</strong>i, R. and Poole, R.K. (2009) Carbon monoxide-releas<strong>in</strong>g<br />

antibacterial molecules target respiration and global transcriptional regulators.<br />

J. Biol. Chem. 284, 4516–4524.<br />

Davis, N.K. and Chater, K.F. (1992) The Streptomyces coelicolor whiB gene encodes<br />

a small transcription factor-like prote<strong>in</strong> dispensable for growth but essential for<br />

sporulation. Mol. Gen. Genet. 232, 351–358.<br />

de Graef, M.R., Alexeeva, S., Snoep, J.L. and Teixeira de Mattos, M.J. (1999) The<br />

steady-state <strong>in</strong>ternal redox state (NADH/NAD) reflects the external redox state<br />

and is correlated with catabolic adaptation <strong>in</strong> Escherichia coli. J. Bacteriol. 181,<br />

2351–2357.<br />

Deb, C., Daniel, J., Sirakova, T.D., Abomoelak, B., Dubey, V.S. and Kolattukudy,<br />

P.E. (2006) A novel lipase belong<strong>in</strong>g to the hormone-sensitive lipase family<br />

<strong>in</strong>duced under starvation to utilize stored triacylglycerol <strong>in</strong> Mycobacterium tuberculosis.<br />

J. Biol. Chem. 281, 3866–3875.<br />

den Hengst, C.D. and Buttner, M.J. (2008) Redox control <strong>in</strong> act<strong>in</strong>obacteria. Biochim.<br />

Biophys. Acta 1780, 1201–1216.<br />

Deppenmeier, U. (2002) The unique biochemistry of methanogenesis. Prog. Nucleic<br />

Acid Res. Mol. Biol. 71, 223–283.<br />

Deppenmeier, U. (2004) The membrane-bound electron transport system of<br />

Methanosarc<strong>in</strong>a species. J. Bioenerg. Biomembr. 36, 55–64.<br />

Dietrich, L.E., Price-Whelan, A., Petersen, A., Whiteley, M. and Newman, D.K.<br />

(2006) The phenaz<strong>in</strong>e pyocyan<strong>in</strong> is a term<strong>in</strong>al signall<strong>in</strong>g factor <strong>in</strong> the quorum<br />

sens<strong>in</strong>g network of Pseudomonas aerug<strong>in</strong>osa. Mol. Microbiol. 61, 1308–1321.<br />

Dietrich, L.E., Teal, T.K., Price-Whelan, A. and Newman, D.K. (2008) Redox-active<br />

antibiotics control gene expression and community behavior <strong>in</strong> divergent bacteria.<br />

Science 321, 1203–1206.<br />

Dimmeler, S. and Zeiher, A.M. (2007) A ‘reductionist’ view of cardiomyopathy. Cell<br />

130, 401–402.<br />

Duan, X., Yang, J., Ren, B., Tan, G. and D<strong>in</strong>g, H. (2009) Reactivity of nitric oxide<br />

with the [4Fe–4S] cluster of dihydroxyacid dehydratase from Escherichia coli.<br />

Biochem. J. 417, 783–789.<br />

Dubos, R.J. (1953) Effect of the composition of the gaseous and aqueous environments<br />

on the survival of tubercle bacilli <strong>in</strong> vitro. J. Exp. Med. 97, 357.<br />

Duncan, K. (2004) Identification and validation of novel drug targets <strong>in</strong> tuberculosis.<br />

Curr. Pharm. Des. 10, 3185–3194.<br />

Dweik, R.A. (2005) Nitric oxide, hypoxia, and superoxide: the good, the bad, and the<br />

ugly! Thorax 60, 265–267.<br />

Dweik, R.A., Comhair, S.A., Gaston, B., Thunnissen, F.B., Farver, C., Thomassen,<br />

M.J., Kavuru, M., Hammel, J., Abu-Soud, H.M. and Erzurum, S.C. (2001) NO


REDUCTIVE STRESS IN MICROBES 103<br />

chemical events <strong>in</strong> the human airway dur<strong>in</strong>g the immediate and late antigen<strong>in</strong>duced<br />

asthmatic response. Proc. Natl. Acad. Sci. USA 98, 2622–2627.<br />

Dweik, R.A., Laskowski, D., Abu-Soud, H.M., Kaneko, F., Hutte, R., Stuehr, D.J.<br />

and Erzurum, S.C. (1998) Nitric oxide synthesis <strong>in</strong> the lung. Regulation by oxygen<br />

through a k<strong>in</strong>etic mechanism. J. Cl<strong>in</strong>. Invest. 101, 660–666.<br />

Edson, N.L. (1951) The <strong>in</strong>termediary metabolism of the mycobacteria. Microbiol.<br />

Molec. Biol. Rev. 15, 147.<br />

Ell<strong>in</strong>gton, M.J., Bhakoo, K.K., Sawers, G., Richardson, D.J. and Ferguson, S.J. (2002)<br />

Hierarchy of carbon source selection <strong>in</strong> Paracoccus pantotrophus: strict correlation<br />

between reduction state of the carbon substrate and aerobic expression of the<br />

nap operon. J. Bacteriol. 184, 4767–4774.<br />

Encarnacion, S., Dunn, M., Willms, K. and Mora, J. (1995) Fermentative and aerobic<br />

metabolism <strong>in</strong> Rhizobium etli. J. Bacteriol. 177, 3058–3066.<br />

Enomoto, K., Arikawa, Y. and Muratsubaki, H. (2002) Physiological role of soluble<br />

fumarate reductase <strong>in</strong> redox balanc<strong>in</strong>g dur<strong>in</strong>g anaerobiosis <strong>in</strong> Saccharomyces<br />

cerevisiae. FEMS Microbiol. Lett. 215, 103–108.<br />

Fauci, A.S. (2008) Multidrug-resistant and extensively drug-resistant tuberculosis:<br />

the National Institute of Allergy and Infectious Diseases Research agenda and<br />

recommendations for priority research. J. Infect. Dis. 197, 1493–1498.<br />

Feng, Z., Caceres, N.E., Sarath, G. and Barletta, R.G. (2002) Mycobacterium<br />

smegmatisL-alan<strong>in</strong>e dehydrogenase (Ald) is required for proficient utilization of<br />

alan<strong>in</strong>e as a sole nitrogen source and susta<strong>in</strong>ed anaerobic growth. J. Bacteriol. 184,<br />

5001–5010.<br />

Ferry, J.G. (1995) CO dehydrogenase. Annu. Rev. Microbiol. 49, 305–333.<br />

Fitzpatrick, A.M., Brown, L.A., Holgu<strong>in</strong>, F. and Teague, W.G. (2009) Levels of nitric<br />

oxide oxidation products are <strong>in</strong>creased <strong>in</strong> the epithelial l<strong>in</strong><strong>in</strong>g fluid of children with<br />

persistent asthma. J. Allergy Cl<strong>in</strong>. Immunol. 124, 990–996 e1-9.<br />

Flardh, K., F<strong>in</strong>dlay, K.C. and Chater, K.F. (1999) Association of early sporulation<br />

genes with suggested developmental decision po<strong>in</strong>ts <strong>in</strong> Streptomyces coelicolor A3<br />

(2). Microbiology 145, 2229.<br />

Florczyk, M.A., McCue, L.A., Purkayastha, A., Currenti, E., Wol<strong>in</strong>, M.J. and<br />

McDonough, K.A. (2003) A family of acr-coregulated Mycobacterium tuberculosis<br />

genes shares a common DNA motif and requires Rv3133c (dosR or devR) for<br />

expression. Infect. Immun. 71, 5332–5343.<br />

Fontan, P., Aris, V., Ghanny, S., Soteropoulos, P. and Smith, I. (2008) Global transcriptional<br />

profile of Mycobacterium tuberculosis dur<strong>in</strong>g THP-1 human macrophage<br />

<strong>in</strong>fection. Infect. Immun. 76, 717–725.<br />

Fowler, A.V., Camien, M.N. and Dunn, M.S. (1960) Extracellular acids produced by<br />

Mycobacterium ranae and Mycobacterium tuberculosis H37Rv. J. Biol. Chem. 235,<br />

1386–1389.<br />

Fowler, A.V., Camien, M.N. and Dunn, M.S. (1961) Acetyl L-isoleuc<strong>in</strong>e and acetyl<br />

L-leuc<strong>in</strong>e as extracellular products of Mycobacterium ranae. J. Bacteriol. 81, 163.<br />

Friedheim, E. (1931) Pyocyan<strong>in</strong>e, an accessory respiratory pigment. J. Exp. Med. 54,<br />

207–221.<br />

Friedheim, E. and Michaelis, L. (1931) Potentiometric study of the pyocyan<strong>in</strong>e.<br />

J. Biol. Chem. 91, 355–368.<br />

Gandhi, N.R., Moll, A., Sturm, A.W., Paw<strong>in</strong>ski, R., Govender, T., Lalloo, U., Zeller,<br />

K., Andrews, J. and Friedland, G. (2006) Extensively drug-resistant tuberculosis


104 AISHA FARHANA ET AL.<br />

as a cause of death <strong>in</strong> patients co-<strong>in</strong>fected with tuberculosis and HIV <strong>in</strong> a rural area<br />

of South Africa. Lancet 368, 1575–1580.<br />

Garg, S., Alam, M.S., Bajpai, R., Kishan, K.V. and Agrawal, P. (2009) Redox biology<br />

of Mycobacterium tuberculosis H 37 Rv: prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction between GlgB<br />

and WhiB 1 <strong>in</strong>volves exchange of thiol-disulfide. BMC Biochem. 10, 1.<br />

Garg, S.K., Suhail Alam, M., Soni, V., Radha Kishan, K.V. and Agrawal, P. (2007)<br />

Characterization of Mycobacterium tuberculosis WhiB1/Rv3219 as a prote<strong>in</strong> disulfide<br />

reductase. Prote<strong>in</strong> Expr. Purif. 52, 422–432.<br />

Garrido, E.O. and Grant, C.M. (2002) Role of thioredox<strong>in</strong>s <strong>in</strong> the response of<br />

Saccharomyces cerevisiae to oxidative stress <strong>in</strong>duced by hydroperoxides. Mol.<br />

Microbiol. 43, 993–1003.<br />

Garton, N.J., Waddell, S.J., Sherratt, A.L., Lee, S.M., Smith, R.J., Senner, C., H<strong>in</strong>ds,<br />

J., Rajakumar, K., Adegbola, R.A. and Besra, G.S. (2008) Cytological and transcript<br />

analyses reveal fat and lazy persister-like bacilli <strong>in</strong> tuberculous sputum.<br />

PLoS Med. 5, e75.<br />

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G.,<br />

Botste<strong>in</strong>, D. and Brown, P.O. (2000) Genomic expression programs <strong>in</strong> the<br />

response of yeast cells to environmental changes. Molec. Biol. Cell 11, 4241.<br />

Geertman, J.M., van Dijken, J.P. and Pronk, J.T. (2006) Eng<strong>in</strong>eer<strong>in</strong>g NADH metabolism<br />

<strong>in</strong> Saccharomyces cerevisiae: formate as an electron donor for glycerol<br />

production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res.<br />

6, 1193–1203.<br />

Geiman, D.E., Raghunand, T.R., Agarwal, N. and Bishai, W.R. (2006) Differential<br />

gene expression <strong>in</strong> response to exposure to antimycobacterial agents and other<br />

stress conditions among seven Mycobacterium tuberculosis whiB-like genes.<br />

Antimicrob. Agents Chemother. 50, 2836.<br />

Gengenbacher, M., Rao, S.P., Pethe, K. and Dick, T. (2010) Nutrient-starved, nonreplicat<strong>in</strong>g<br />

Mycobacterium tuberculosis requires respiration, ATP synthase and<br />

isocitrate lyase for ma<strong>in</strong>tenance of ATP homeostasis and viability. Microbiology<br />

156, 81–87.<br />

Genghof, D.S. and Van Damme, O. (1964) Biosynthesis of ergothione<strong>in</strong>e and hercyn<strong>in</strong>e<br />

by Mycobacteria. J. Bacteriol. 87, 852–862.<br />

Genghof, D.S. and Van Damme, O. (1968) Biosynthesis of ergothione<strong>in</strong>e from<br />

endogenous hercyn<strong>in</strong>e <strong>in</strong> Mycobacterium smegmatis. J. Bacteriol. 95, 340–344.<br />

Ghyczy, M. and Boros, M. (2007) Electrophilic methyl groups present <strong>in</strong> the diet<br />

ameliorate pathological states <strong>in</strong>duced by reductive and oxidative stress: a hypothesis.<br />

Br. J. Nutr. 85, 409–414.<br />

Gomez, J.E. and Bishai, W.R. (2000) whmD is an essential mycobacterial gene<br />

required for proper septation and cell division. Proc. Natl. Acad. Sci. USA 97, 8554.<br />

Gomez, J.E. and McK<strong>in</strong>ney, J.D. (2004) M. tuberculosis persistence, latency, and<br />

drug tolerance. Tuberculosis 84, 29–44.<br />

Gomez, L.M., Anaya, J.M., Vilchez, J.R., Cadena, J., H<strong>in</strong>ojosa, R., Velez, L.,<br />

Lopez-Nevot, M.A. and Mart<strong>in</strong>, J. (2007) A polymorphism <strong>in</strong> the <strong>in</strong>ducible<br />

nitric oxide synthase gene is associated with tuberculosis. Tuberculosis<br />

(Ed<strong>in</strong>b.) 87, 288–294.<br />

Goodw<strong>in</strong>, M.B., Boshoff, H.I. and Barry, C.E. (2006) Quantification of small molecule<br />

organic acids from Mycobacterium tuberculosis culture supernatant us<strong>in</strong>g ion<br />

exclusion liquid chromatography/mass spectrometry. Rapid Commun. Mass<br />

Spectrom. 20, 3345–3350.


REDUCTIVE STRESS IN MICROBES 105<br />

Gores, G.J., Flarsheim, C.E., Dawson, T.L., Niem<strong>in</strong>en, A.L., Herman, B. and<br />

Lemasters, J.J. (1989) Swell<strong>in</strong>g, reductive stress, and cell death dur<strong>in</strong>g chemical<br />

hypoxia <strong>in</strong> hepatocytes. Am. J. Physiol. Cell Physiol. 257, C347.<br />

Grant, C.M., Perrone, G. and Dawes, I.W. (1998) Glutathione and catalase provide<br />

overlapp<strong>in</strong>g defenses for protection aga<strong>in</strong>st hydrogen peroxide <strong>in</strong> the yeast<br />

Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 253, 893–898.<br />

Grasemann, H., Ioannidis, I., Tomkiewicz, R.P., De Groot, H., Rub<strong>in</strong>, B.K. and<br />

Ratjen, F. (1998) Nitric oxide metabolites <strong>in</strong> cystic fibrosis lung disease. Arch.<br />

Dis. Childhood 78, 49.<br />

Gray, C.T., Wimpenny, J.W. and Mossman, M.R. (1966) Regulation of metabolism <strong>in</strong><br />

facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the<br />

formation of Krebs cycle enzymes <strong>in</strong> Escherichia coli. Biochim. Biophys. Acta 117,<br />

33–41.<br />

Green, J. and Paget, M.S. (2004) Bacterial redox sensors. Nat. Rev. Microbiol. 2,<br />

954–966.<br />

Guest, J.R. and Russell, G.C. (1992) Complexes and complexities of the citric acid<br />

cycle <strong>in</strong> Escherichia coli. Curr. Top Cell. Regul. 33, 231–247.<br />

Gustafsson, L.E., Leone, A.M., Persson, M.G., Wiklund, N.P. and Moncada, S. (1991)<br />

Endogenous nitric oxide is present <strong>in</strong> the exhaled air of rabbits, gu<strong>in</strong>ea pigs and<br />

humans. Biochem. Biophys. Res. Commun. 181, 852–857.<br />

Haapanen, J.H., Kass, I., Gens<strong>in</strong>i, G. and Middlebrook, G. (1959) Studies on the<br />

gaseous content of tuberculous cavities. Am. Rev. Respir. Dis. 80, 1.<br />

Halliwell, B. and Gutterridge, J.M.C. (2008) Free Radicals <strong>in</strong> Biology and Medic<strong>in</strong>e,<br />

4th edn. Oxford University Press, pp. 30-78.<br />

Hashimoto, S. and Katsumata, R. (1999) Mechanism of alan<strong>in</strong>e hyperproduction by<br />

Arthrobacter oxydans HAP-1: metabolic shift to fermentation under nongrowth<br />

aerobic conditions. Appl. Environ. Microbiol. 65, 2781.<br />

Hazleton, E.B. (1923) Carbon monoxide a predispos<strong>in</strong>g cause of pulmonary tuberculosis.<br />

Br. Med. J. ii, 763–764.<br />

Hernandez, M.E., Kappler, A. and Newman, D.K. (2004) Phenaz<strong>in</strong>es and other<br />

redox-active antibiotics promote microbial m<strong>in</strong>eral reduction. Appl. Environ.<br />

Microbiol. 70, 921–928.<br />

Hernandez, M.E. and Newman, D.K. (2001) Extracellular electron transfer. Cell Mol.<br />

Life Sci. 58, 1562–1571.<br />

Hett, E.C. and Rub<strong>in</strong>, E.J. (2008) Bacterial growth and cell division: a mycobacterial<br />

perspective. Microbiol. Mol. Biol. Rev. 72, 126–156 table of contents.<br />

Honaker, R.W., Leistikow, R.L., Bartek, I.L. and Voskuil, M.I. (2009) Unique roles<br />

of DosT and DosS <strong>in</strong> DosR regulon <strong>in</strong>duction and Mycobacterium tuberculosis<br />

dormancy. Infect. Immun. 77, 3258.<br />

Honaker, R.W., Stewart, A., Schittone, S., Izzo, A., Kle<strong>in</strong>, M.R. and Voskuil, M.I.<br />

(2008) Mycobacterium bovis BCG vacc<strong>in</strong>e stra<strong>in</strong>s lack narK2 and narX <strong>in</strong>duction<br />

and exhibit altered phenotypes dur<strong>in</strong>g dormancy. Infect. Immun. 76, 2587–2593.<br />

Huet, G., Casta<strong>in</strong>g, J.P., Fournier, D., Daffe, M. and Saves, I. (2006) Prote<strong>in</strong> splic<strong>in</strong>g<br />

of SufB is crucial for the functionality of the Mycobacterium tuberculosis SUF<br />

mach<strong>in</strong>ery. J. Bacteriol. 188, 3412.<br />

Huet, G., Daffe, M. and Saves, I. (2005) Identification of the Mycobacterium tuberculosis<br />

SUF mach<strong>in</strong>ery as the exclusive mycobacterial system of [Fe–S] cluster<br />

assembly: evidence for its implication <strong>in</strong> the pathogen’s survival. J. Bacteriol. 187,<br />

6137.


106 AISHA FARHANA ET AL.<br />

Hugler, M., Wirsen, C.O., Fuchs, G., Taylor, C.D. and Sievert, S.M. (2005)<br />

Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle<br />

by members of the epsilon subdivision of proteobacteria. J. Bacteriol. 187,<br />

3020–3027.<br />

Hunter, G.J.E. (1953) Acid formation <strong>in</strong> cultures of Mycobacterium butyricum.<br />

J. Bacteriol. 66, 676.<br />

Husa<strong>in</strong>, M., Bourret, T.J., McCollister, B.D., Jones-Carson, J., Laughl<strong>in</strong>, J. and<br />

Vazquez-Torres, A. (2008) Nitric oxide evokes an adaptive response to oxidative<br />

stress by arrest<strong>in</strong>g respiration. J. Biol. Chem. 283, 7682–7689.<br />

Hutter, B. and Dick, T. (1998) Increased alan<strong>in</strong>e dehydrogenase activity dur<strong>in</strong>g<br />

dormancy <strong>in</strong> Mycobacterium smegmatis. FEMS Microbiol. Lett. 167, 7–11.<br />

Hwang, C., S<strong>in</strong>skey, A.J. and Lodish, H.F. (1992) Oxidized redox state of glutathione<br />

<strong>in</strong> the endoplasmic reticulum. Science 257, 1496–1502.<br />

Ido, Y. (2007) Pyrid<strong>in</strong>e nucleotide redox abnormalities <strong>in</strong> diabetes. Antioxid. Redox<br />

Signal. 9, 931–942.<br />

Ido, Y., Kilo, C. and Williamson, J.R. (1997) Cytosolic NADH/NAD+, free radicals,<br />

and vascular dysfunction <strong>in</strong> early diabetes mellitus. Diabetologia 40, 115–117.<br />

Ikeda, T., Yamamoto, M., Arai, H., Ohmori, D., Ishii, M. and Igarashi, Y. (2010)<br />

Enzymatic and electron paramagnetic resonance studies of anabolic pyruvate<br />

synthesis by pyruvate:ferredox<strong>in</strong> oxidoreductase from Hydrogenobacter thermophilus.<br />

FEBS J. 277, 501–510.<br />

Imlay, J.A. (2006) Iron-sulphur clusters and the problem with oxygen. Mol.<br />

Microbiol. 59, 1073–1082.<br />

Imlay, J.A. (2008) Cellular defenses aga<strong>in</strong>st superoxide and hydrogen peroxide.<br />

Annu. Rev. Biochem. 77, 755–776.<br />

Ioanoviciu, A., Yukl, E.T., Moenne-Loccoz, P. and de Montellano, P.R. (2007) DevS,<br />

a heme-conta<strong>in</strong><strong>in</strong>g two-component oxygen sensor of Mycobacterium tuberculosis.<br />

Biochemistry 46, 4250–4260.<br />

Ja<strong>in</strong>, M., Petzold, C.J., Schelle, M.W., Leavell, M.D., Mougous, J.D., Bertozzi, C.R.,<br />

Leary, J.A. and Cox, J.S. (2007) Lipidomics reveals control of Mycobacterium<br />

tuberculosis virulence lipids via metabolic coupl<strong>in</strong>g. Proc. Natl. Acad. Sci. USA<br />

104, 5133–5138.<br />

Jakimowicz, P., Cheesman, M.R., Bishai, W.R., Chater, K.F., Thomson, A.J. and<br />

Buttner, M.J. (2005) Evidence that the Streptomyces developmental prote<strong>in</strong><br />

WhiD, a member of the WhiB family, b<strong>in</strong>ds a [4Fe–4S] cluster. J. Biol. Chem.<br />

280, 8309–8315.<br />

Jenney Jr., F.E. and Adams, M.W.W. (2008) Hydrogenases of the model hyperthermophiles.<br />

Ann. NY Acad. Sci. 1125, 252–266.<br />

Jeoung, J.H. and Dobbek, H. (2007) Carbon dioxide activation at the Ni, Fe-cluster of<br />

anaerobic carbon monoxide dehydrogenase. Science 318, 1461–1464.<br />

Kaufmann, S.H., Hussey, G. and Lambert, P.H. (2010) New vacc<strong>in</strong>es for tuberculosis.<br />

Lancet 375, 2110–2119.<br />

Kelemen, G.H., Brian, P., Flardh, K., Chamberl<strong>in</strong>, L., Chater, K.F. and Buttner,<br />

M.J. (1998) Developmental regulation of transcription of whiE, a locus specify<strong>in</strong>g<br />

the polyketide spore pigment <strong>in</strong> Streptomyces coelicolor A3 (2).<br />

J. Bacteriol. 180, 2515.<br />

Khan, S. and O’Brien, P.J. (1995) Modulat<strong>in</strong>g hypoxia-<strong>in</strong>duced hepatocyte <strong>in</strong>jury by<br />

affect<strong>in</strong>g <strong>in</strong>tracellular redox state. Biochim. Biophys. Acta (BBA) Molec. Cell Res.<br />

1269, 153–161.


REDUCTIVE STRESS IN MICROBES 107<br />

Kim, T.H., Park, J.S., Kim, H.J., Kim, Y., Kim, P. and Lee, H.S. (2005) The whcE gene<br />

of Corynebacterium glutamicum is important for survival follow<strong>in</strong>g heat and oxidative<br />

stress. Biochem. Biophys. Res. Commun. 337, 757–764.<br />

K<strong>in</strong>g, G.M. (2003) Molecular and culture-based analyses of aerobic carbon monoxide<br />

oxidizer diversity. Appl. Environ. Microbiol. 69, 7257–7265.<br />

K<strong>in</strong>ger, A.K. and Tyagi, J.S. (1993) Identification and clon<strong>in</strong>g of genes differentially<br />

expressed <strong>in</strong> the virulent stra<strong>in</strong> of Mycobacterium tuberculosis. Gene 131, 113–117.<br />

Kleman, G.L. and Strohl, W.R. (1994) Acetate metabolism by Escherichia coli <strong>in</strong><br />

high-cell-density fermentation. Appl. Environ. Microbiol. 60, 3952–3958.<br />

Ko, Y.F., Bentley, W.E. and Weigand, W.A. (1993) An <strong>in</strong>tegrated metabolic model<strong>in</strong>g<br />

approach to describe the energy efficiency of Escherichia coli fermentations<br />

under oxygen-limited conditions: cellular energetics, carbon flux, and acetate<br />

production. Biotechnol. Bioeng. 42, 843–853.<br />

Koled<strong>in</strong>, T., Newton, G.L. and Fahey, R.C. (2002) Identification of the mycothiol<br />

synthase gene (mshD) encod<strong>in</strong>g the acetyltransferase produc<strong>in</strong>g mycothiol <strong>in</strong><br />

act<strong>in</strong>omycetes. Arch. Microbiol. 178, 331–337.<br />

Kumar, A., Deshane, J.S., Crossman, D.K., Bolisetty, S., Yan, B.S., Kramnik, I.,<br />

Agarwal, A. and Steyn, A.J. (2008) Heme oxygenase-1-derived carbon monoxide<br />

<strong>in</strong>duces the Mycobacterium tuberculosis dormancy regulon. J. Biol. Chem. 283,<br />

18032–18039.<br />

Kumar, A., Toledo, J.C., Patel, R.P., Lancaster Jr., J.R. and Steyn, A.J. (2007)<br />

Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor.<br />

Proc. Natl. Acad. Sci. USA 104, 11568–11573.<br />

Legan, S.K., Rebr<strong>in</strong>, I., Mockett, R.J., Radyuk, S.N., Klichko, V.I., Sohal, R.S. and<br />

Orr, W.C. (2008) Overexpression of glucose-6-phosphate dehydrogenase extends<br />

the life span of Drosophila melanogaster. J. Biol. Chem. 283, 32492.<br />

Leistikow, R.L., Morton, R.A., Bartek, I.L., Frimpong, I., Wagner, K. and Voskuil,<br />

M.I. (2010) The Mycobacterium tuberculosis DosR regulon assists <strong>in</strong> metabolic<br />

homeostasis and enables rapid recovery from nonrespir<strong>in</strong>g dormancy. J. Bacteriol.<br />

192, 1662.<br />

Leone, A.M., Furst, V.W., Foxwell, N.A., Cellek, S. and Moncada, S. (1996)<br />

Visualisation of nitric oxide generated by activated mur<strong>in</strong>e macrophages.<br />

Biochem. Biophys. Res. Commun. 221, 37–41.<br />

Levanon, S.S., San, K.Y. and Bennett, G.N. (2005) Effect of oxygen on the<br />

Escherichia coli ArcA and FNR regulation systems and metabolic responses.<br />

Biotechnol. Bioeng. 89, 556–564.<br />

Levitt, M.D. (1969) Production and excretion of hydrogen gas <strong>in</strong> man. N. Engl. J.<br />

Med. 281, 122–127.<br />

L<strong>in</strong>, H., Bennett, G.N. and San, K.Y. (2005) Effect of carbon sources differ<strong>in</strong>g <strong>in</strong><br />

oxidation state and transport route on succ<strong>in</strong>ate production <strong>in</strong> metabolically eng<strong>in</strong>eered<br />

Escherichia coli. J. Ind. Microbiol. Biotechnol. 32, 87–93.<br />

L<strong>in</strong>nane, S.J., Keat<strong>in</strong>gs, V.M., Costello, C.M., Moynihan, J.B., O’Connor, C.M.,<br />

Fitzgerald, M.X. and McLoughl<strong>in</strong>, P. (1998) Total sputum nitrate plus nitrite is<br />

raised dur<strong>in</strong>g acute pulmonary <strong>in</strong>fection <strong>in</strong> cystic fibrosis. Am. J. Respir. Crit. Care<br />

Med. 158, 207.<br />

Ma, K., Schicho, R.N., Kelly, R.M. and Adams, M.W. (1993) Hydrogenase of the<br />

hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase:<br />

evidence for a sulfur-reduc<strong>in</strong>g hydrogenase ancestor. Proc. Natl. Acad.<br />

Sci. USA 90, 5341.


108 AISHA FARHANA ET AL.<br />

Ma, Z., Lienhardt, C., McIlleron, H., Nunn, A.J. and Wang, X. (2010) Global tuberculosis<br />

drug development pipel<strong>in</strong>e: the need and the reality. Lancet 375,<br />

2100–2109.<br />

MacMick<strong>in</strong>g, J.D., North, R.J., LaCourse, R., Mudgett, J.S., Shah, S.K. and Nathan,<br />

C.F. (1997) Identification of nitric oxide synthase as a protective locus aga<strong>in</strong>st<br />

tuberculosis. Proc. Natl. Acad. Sci. USA 94, 5243–5248.<br />

Maier, R.J., Olson, J. and Olczak, A. (2003) Hydrogen-oxidiz<strong>in</strong>g capabilities of<br />

Helicobacter hepaticus and <strong>in</strong> vivo availability of the substrate. J. Bacteriol. 185,<br />

2680.<br />

Malhotra, V., Sharma, D., Ramanathan, V.D., Shakila, H., Sa<strong>in</strong>i, D.K., Chakravorty,<br />

S., Das, T.K., Li, Q., Silver, R.F., Narayanan, P.R. and Tyagi, J.S. (2004)<br />

Disruption of response regulator gene, devR, leads to attenuation <strong>in</strong> virulence<br />

of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 231, 237–245.<br />

Marteus, H., T€ornberg, D.C., Weitzberg, E., Sched<strong>in</strong>, U. and Alv<strong>in</strong>g, K. (2005) Orig<strong>in</strong><br />

of nitrite and nitrate <strong>in</strong> nasal and exhaled breath condensate and relation to nitric<br />

oxide formation. Br. Med. J. 60, 219.<br />

Mavrodi, D.V., Blankenfeldt, W. and Thomashow, L.S. (2006) Phenaz<strong>in</strong>e compounds<br />

<strong>in</strong> fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev.<br />

Phytopathol. 44, 417–445.<br />

Mayuri, Bagchi, G., Das, T.K. and Tyagi, J.S. (2002) Molecular analysis of the<br />

dormancy response <strong>in</strong> Mycobacterium smegmatis: expression analysis of genes<br />

encod<strong>in</strong>g the DevR-DevS two-component system, Rv3134c and chaperone<br />

alpha-crystall<strong>in</strong> homologues. FEMS Microbiol. Lett. 211, 231–237.<br />

McK<strong>in</strong>lay, J.B. and Harwood, C.S. (2010) Carbon dioxide fixation as a central<br />

redox cofactor recycl<strong>in</strong>g mechanism <strong>in</strong> bacteria. Proc. Natl. Acad. Sci. 107,<br />

11669.<br />

McK<strong>in</strong>ney, J.D., Honer zu Bentrup, K., Munoz-Elias, E.J., Miczak, A., Chen, B.,<br />

Chan, W.T., Swenson, D., Sacchett<strong>in</strong>i, J.C., Jacobs Jr., W.R. and Russell,<br />

D.G. (2000) Persistence of Mycobacterium tuberculosis <strong>in</strong> macrophages<br />

and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406,<br />

735–738.<br />

Med<strong>in</strong>a, V.G., Almer<strong>in</strong>g, M.J.H., van Maris, A.J.A. and Pronk, J.T. (2010)<br />

Elim<strong>in</strong>ation of glycerol production <strong>in</strong> anaerobic cultures of a Saccharomyces<br />

cerevisiae stra<strong>in</strong> eng<strong>in</strong>eered to use acetic acid as an electron acceptor. Appl.<br />

Environ. Microbiol. 76, 190.<br />

Medlar, E.M. (1948) The pathogenesis of m<strong>in</strong>imal pulmonary tuberculosis: a study<br />

of 1,225 necropsies <strong>in</strong> cases of sudden and unexpected death. Am. Rev. Tuberc.<br />

58, 583.<br />

Meena, L.S and Rajni (2010) Survival mechanisms of pathogenic Mycobacterium<br />

tuberculosis H37Rv. FEBS J. 277, 2416–2427.<br />

Mentel, M., Ahuja, E.G., Mavrodi, D.V., Bre<strong>in</strong>bauer, R., Thomashow, L.S. and<br />

Blankenfeldt, W. (2009) Of two make one: the biosynthesis of phenaz<strong>in</strong>es.<br />

Chembiochem 10, 2295–2304.<br />

Merrill, M.H. (1930) Carbohydrate metabolism of organisms of the genus<br />

Mycobacterium. J. Bacteriol. 20, 235.<br />

Meyer, J. (2007) [FeFe] hydrogenases and their evolution: a genomic perspective.<br />

Cell. Molec. Life Sci. 64, 1063–1084.<br />

Meyer, O. and Schlegel, H.G. (1983) Biology of aerobic carbon monoxide-oxidiz<strong>in</strong>g<br />

bacteria. Annu. Rev. Microbiol. 37, 277–310.


REDUCTIVE STRESS IN MICROBES 109<br />

Miller, C.C., Rawat, M., Johnson, T. and Av-Gay, Y. (2007) Innate protection of<br />

Mycobacterium smegmatis aga<strong>in</strong>st the antimicrobial activity of nitric oxide is<br />

provided by mycothiol. Antimicrob. Agents Chemother. 51, 3364–3366.<br />

Mori, T., Kosaka, K. and Tanaka, Y. (1971) Tricarboxylic acid cycle <strong>in</strong> M. lepraemurium.<br />

Int. J. Lepr. Other Mycobact. Dis. 39, 796–812.<br />

Morozk<strong>in</strong>a, E.V. and Zvyagilskaya, R.A. (2007) Nitrate reductases: structure, functions,<br />

and effect of stress factors. Biochemistry (Moscow) 72, 1151–1160.<br />

Morris, R.P., Nguyen, L., Gatfield, J., Visconti, K., Nguyen, K., Schnapp<strong>in</strong>ger, D.,<br />

Ehrt, S., Liu, Y., Heifets, L. and Pieters, J. (2005) Ancestral antibiotic resistance <strong>in</strong><br />

Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 102, 12200.<br />

Muller, E.G. (1996) A glutathione reductase mutant of yeast accumulates high levels<br />

of oxidized glutathione and requires thioredox<strong>in</strong> for growth. Mol. Biol. Cell 7,<br />

1805–1813.<br />

Munoz-Elias, E.J. and McK<strong>in</strong>ney, J.D. (2005) Mycobacterium tuberculosis isocitrate<br />

lyases 1 and 2 are jo<strong>in</strong>tly required for <strong>in</strong> vivo growth and virulence. Nat. Med. 11,<br />

638–644.<br />

Munoz-Elias, E.J., Upton, A.M., Cherian, J. and McK<strong>in</strong>ney, J.D. (2006) Role of the<br />

methylcitrate cycle <strong>in</strong> Mycobacterium tuberculosis metabolism, <strong>in</strong>tracellular<br />

growth, and virulence. Mol. Microbiol. 60, 1109–1122.<br />

Murray, J.F. (2010) The structure and function of the lung. Int. J. Tuberc. Lung Dis.<br />

14, 391–396.<br />

Murthy, P.S., Sirsi, M. and Ramakrishnan, T. (1962) Tricarboxylic acid cycle and<br />

related enzymes <strong>in</strong> cell-free extracts of Mycobacterium tuberculosis H37Rv.<br />

Biochem. J. 84, 263–269.<br />

Muttucumaru, D.G., Roberts, G., H<strong>in</strong>ds, J., Stabler, R.A. and Parish, T. (2004) Gene<br />

expression profile of Mycobacterium tuberculosis <strong>in</strong> a non-replicat<strong>in</strong>g state.<br />

Tuberculosis (Ed<strong>in</strong>b.) 84, 239–246.<br />

Nandi, R. and Sengupta, S. (1998) <strong>Microbial</strong> production of hydrogen: an overview.<br />

Crit. Rev. Microbiol. 24, 61–84.<br />

Nathan, C. and Shiloh, M.U. (2000) Reactive oxygen and nitrogen <strong>in</strong>termediates <strong>in</strong><br />

the relationship between mammalian hosts and microbial pathogens. Proc. Natl.<br />

Acad. Sci. USA 97, 8841–8848.<br />

Neubauer, H. and Gotz, F. (1996) <strong>Physiology</strong> and <strong>in</strong>teraction of nitrate and nitrite<br />

reduction <strong>in</strong> Staphylococcus carnosus. J. Bacteriol. 178, 2005.<br />

Newton, G.L., Av-Gay, Y. and Fahey, R.C. (2000a) N-Acetyl-1-D-myo-<strong>in</strong>osityl-2am<strong>in</strong>o-2-deoxy-alpha-D-glucopyranoside<br />

deacetylase (MshB) is a key enzyme <strong>in</strong><br />

mycothiol biosynthesis. J. Bacteriol. 182, 6958–6963.<br />

Newton, G.L., Av-Gay, Y. and Fahey, R.C. (2000b) A novel mycothiol-dependent<br />

detoxification pathway <strong>in</strong> mycobacteria <strong>in</strong>volv<strong>in</strong>g mycothiol S-conjugate amidase.<br />

Biochemistry 39, 10739–10746.<br />

Newton, G.L., Bewley, C.A., Dwyer, T.J., Horn, R., Aharonowitz, Y., Cohen, G.,<br />

Davies, J., Faulkner, D.J. and Fahey, R.C. (1995) The structure of U17 isolated<br />

from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur. J.<br />

Biochem. 230, 821–825.<br />

Newton, G.L., Buchmeier, N. and Fahey, R.C. (2008) Biosynthesis and functions of<br />

mycothiol, the unique protective thiol of Act<strong>in</strong>obacteria. Microbiol. Mol. Biol.<br />

Rev. 72, 471–494.<br />

Newton, G.L. and Fahey, R.C. (2002) Mycothiol biochemistry. Arch. Microbiol. 178,<br />

388–394.


110 AISHA FARHANA ET AL.<br />

Newton, G.L., Koled<strong>in</strong>, T., Gorovitz, B., Rawat, M., Fahey, R.C. and Av-Gay, Y.<br />

(2003) The glycosyltransferase gene encod<strong>in</strong>g the enzyme catalyz<strong>in</strong>g the first step<br />

of mycothiol biosynthesis (mshA). J. Bacteriol. 185, 3476–3479.<br />

Newton, G.L., Ta, P., Bzymek, K.P. and Fahey, R.C. (2006) Biochemistry of the <strong>in</strong>itial<br />

steps of mycothiol biosynthesis. J. Biol. Chem. 281, 33910–33920.<br />

Newton, G.L., Ta, P. and Fahey, R.C. (2005) A mycothiol synthase mutant of<br />

Mycobacterium smegmatis produces novel thiols and has an altered thiol redox<br />

status. J. Bacteriol. 187, 7309–7316.<br />

Newton, G.L., Unson, M.D., Anderberg, S.J., Aguilera, J.A., Oh, N.N., delCardayre,<br />

S.B., Av-Gay, Y. and Fahey, R.C. (1999) Characterization of Mycobacterium<br />

smegmatis mutants defective <strong>in</strong> 1-D-myo-<strong>in</strong>osityl-2-am<strong>in</strong>o-2-deoxy-alpha-D-glucopyranoside<br />

and mycothiol biosynthesis. Biochem. Biophys. Res. Commun. 255,<br />

239–244.<br />

Nicholson, S., Bonec<strong>in</strong>i-Almeida Mda, G., Lapa e Silva, J.R., Nathan, C., Xie, Q.W.,<br />

Mumford, R., Weidner, J.R., Calaycay, J., Geng, J., Boechat, N., L<strong>in</strong>hares, C.,<br />

Rom, W. and Ho, J.L. (1996) Inducible nitric oxide synthase <strong>in</strong> pulmonary alveolar<br />

macrophages from patients with tuberculosis. J. Exp. Med. 183, 2293–2302.<br />

Nissen, T.L., Hamann, C.W., Kielland-Brandt, M.C., Nielsen, J. and Villadsen, J.<br />

(2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae<br />

mutants impaired <strong>in</strong> glycerol synthesis. Yeast 16, 463–474.<br />

Oelgeschlager, E. and Rother, M. (2008) Carbon monoxide-dependent energy<br />

metabolism <strong>in</strong> anaerobic bacteria and archaea. Arch. Microbiol. 190, 257–269.<br />

Og<strong>in</strong>o, T., Arata, Y. and Fujiwara, S. (1980) Proton correlation nuclear magnetic<br />

resonance study of metabolic regulations and pyruvate transport <strong>in</strong> anaerobic<br />

Escherichia coli cells. Biochemistry 19, 3684–3691.<br />

Ohno, H., Zhu, G., Mohan, V.P., Chu, D., Kohno, S., Jacobs Jr., W.R. and Chan, J.<br />

(2003) The effects of reactive nitrogen <strong>in</strong>termediates on gene expression <strong>in</strong><br />

Mycobacterium tuberculosis. Cell. Microbiol. 5, 637–648.<br />

Ohsawa, I., Ishikawa, M., Takahashi, K., Watanabe, M., Nishimaki, K., Yamagata, K.,<br />

Katsura, K., Katayama, Y., Asoh, S. and Ohta, S. (2007) Hydrogen acts as a<br />

therapeutic antioxidant by selectively reduc<strong>in</strong>g cytotoxic oxygen radicals. Nat.<br />

Med. 13, 688–694.<br />

Olson, J.W. and Maier, R.J. (2002) Molecular hydrogen as an energy source for<br />

Helicobacter pylori. Science 298, 1788.<br />

Page, W.J. and Knosp, O. (1989) Hyperproduction of poly-beta-hydroxybutyrate<br />

dur<strong>in</strong>g exponential growth of Azotobacter v<strong>in</strong>elandii UWD. Appl. Environ.<br />

Microbiol. 55, 1334–1339.<br />

Paige, C. and Bishai, W.R. (2010) Penitentiary or penthouse condo: the tuberculous<br />

granuloma from the microbe’s po<strong>in</strong>t of view. Cell. Microbiol. 12, 301–309.<br />

Pamplona, A., Ferreira, A., Balla, J., Jeney, V., Balla, G., Epiphanio, S., Chora, A.,<br />

Rodrigues, C.D., Gregoire, I.P., Cunha-Rodrigues, M., Portugal, S., Soares, M.P.<br />

and Mota, M.M. (2007) Heme oxygenase-1 and carbon monoxide suppress the<br />

pathogenesis of experimental cerebral malaria. Nat. Med. 13, 703–710.<br />

Parish, T., Smith, D.A., Kendall, S., Casali, N., Bancroft, G.J. and Stoker, N.G. (2003)<br />

Deletion of two-component regulatory systems <strong>in</strong>creases the virulence of<br />

Mycobacterium tuberculosis. Infect. Immun. 71, 1134–1140.<br />

Park, S.W., Hwang, E.H., Park, H., Kim, J.A., Heo, J., Lee, K.H., Song, T., Kim, E.,<br />

Ro, Y.T., Kim, S.W. and Kim, Y.M. (2003) Growth of mycobacteria on carbon<br />

monoxide and methanol. J. Bacteriol. 185, 142–147.


REDUCTIVE STRESS IN MICROBES 111<br />

Park, S.W., Song, T., Kim, S.Y., Kim, E., Oh, J.I., Eom, C.Y. and Kim, Y.M. (2007)<br />

Carbon monoxide dehydrogenase <strong>in</strong> mycobacteria possesses a nitric oxide dehydrogenase<br />

activity. Biochem. Biophys. Res. Commun. 362, 449–453.<br />

Patel, M.P. and Blanchard, J.S. (1998) Synthesis of des-myo-<strong>in</strong>ositol mycothiol and<br />

demonstration of a mycobacterial specific reductase activity. J. Am. Chem. Soc.<br />

120, 11538–11539.<br />

Patel, M.P. and Blanchard, J.S. (1999) Expression, purification, and characterization<br />

of Mycobacterium tuberculosis mycothione reductase. Biochemistry 38,<br />

11827–11833.<br />

Pfenn<strong>in</strong>ger-Li, X.D. and Dimroth, P. (1992) NADH formation by Na(+)-coupled<br />

reversed electron transfer <strong>in</strong> Klebsiella pneumoniae. Mol. Microbiol. 6, 1943–1948.<br />

Pillay, M. and Sturm, A.W. (2007) Evolution of the extensively drug-resistant F15/<br />

LAM4/KZN stra<strong>in</strong> of Mycobacterium tuberculosis <strong>in</strong> KwaZulu-Natal, South<br />

Africa. Cl<strong>in</strong>. Infect. Dis. 45, 1409–1414.<br />

Price-Whelan, A., Dietrich, L.E. and Newman, D.K. (2006) Reth<strong>in</strong>k<strong>in</strong>g ‘secondary’<br />

metabolism: physiological roles for phenaz<strong>in</strong>e antibiotics. Nat. Chem. Biol. 2,<br />

71–78.<br />

Price-Whelan, A., Dietrich, L.E. and Newman, D.K. (2007) Pyocyan<strong>in</strong> alters redox<br />

homeostasis and carbon flux through central metabolic pathways <strong>in</strong> Pseudomonas<br />

aerug<strong>in</strong>osa PA14. J. Bacteriol. 189, 6372–6381.<br />

Rachman, H., Strong, M., Ulrichs, T., Grode, L., Schuchhardt, J., Mollenkopf, H.,<br />

Kosmiadi, G.A., Eisenberg, D. and Kaufmann, S.H.E. (2006) Unique transcriptome<br />

signature of Mycobacterium tuberculosis <strong>in</strong> pulmonary tuberculosis. Infect.<br />

Immun. 74, 1233.<br />

Ragsdale, S.W. (2004) Life with carbon monoxide. Crit. Rev. Biochem. Mol. Biol. 39,<br />

165–195.<br />

Rajasekaran, N.S., Connell, P., Christians, E.S., Yan, L.J., Taylor, R.P., Orosz, A.,<br />

Zhang, X.Q., Stevenson, T.J., Peshock, R.M., Leopold, J.A., Barry, W.H.,<br />

Loscalzo, J., Odelberg, S.J. and Benjam<strong>in</strong>, I.J. (2007) Human alpha B-crystall<strong>in</strong><br />

mutation causes oxido-reductive stress and prote<strong>in</strong> aggregation cardiomyopathy<br />

<strong>in</strong> mice. Cell 130, 427–439.<br />

Ramakrishnan, T., Murthy, P.S. and Gop<strong>in</strong>athan, K.P. (1972) Intermediary metabolism<br />

of mycobacteria. Bacteriol. Rev. 36, 65–108.<br />

Rand, J.D. and Grant, C.M. (2006) The thioredox<strong>in</strong> system protects ribosomes<br />

aga<strong>in</strong>st stress-<strong>in</strong>duced aggregation. Molec. Biol. Cell 17, 387.<br />

Rao, S.P., Alonso, S., Rand, L., Dick, T. and Pethe, K. (2008) The protonmotive<br />

force is required for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g ATP homeostasis and viability of hypoxic,<br />

nonreplicat<strong>in</strong>g Mycobacterium tuberculosis. Proc.Natl.Acad.Sci.USA105,<br />

11945–11950.<br />

Rasmussen, K.N. (1957) The apical localization of pulmonary tuberculosis. Acta<br />

Tuberc. Scand. 34, 245.<br />

Rawat, M., Johnson, C., Cadiz, V. and Av-Gay, Y. (2007) Comparative analysis of<br />

mutants <strong>in</strong> the mycothiol biosynthesis pathway <strong>in</strong> Mycobacterium smegmatis.<br />

Biochem. Biophys. Res. Commun. 363, 71–76.<br />

Rawat, M., Kovacevic, S., Billman-Jacobe, H. and Av-Gay, Y. (2003) Inactivation of<br />

mshB, a key gene <strong>in</strong> the mycothiol biosynthesis pathway <strong>in</strong> Mycobacterium smegmatis.<br />

Microbiology 149, 1341–1349.<br />

Rawat, M., Newton, G.L., Ko, M., Mart<strong>in</strong>ez, G.J., Fahey, R.C. and Av-Gay, Y. (2002)<br />

Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to


112 AISHA FARHANA ET AL.<br />

alkylat<strong>in</strong>g agents, free radicals, and antibiotics. Antimicrob. Agents Chemother. 46,<br />

3348–3355.<br />

Reed, M.B., Gagneux, S., DeRiemer, K., Small, P.M. and Barry III, C.E. (2007) The<br />

W-Beij<strong>in</strong>g l<strong>in</strong>eage of Mycobacterium tuberculosis overproduces triglycerides and<br />

has the DosR dormancy regulon constitutively upregulated. J. Bacteriol. 189, 2583.<br />

Rich, A.R. and Follis Jr., R.H. (1942) The effect of low oxygen tension upon the<br />

development of experimental tuberculosis. Bull. Johns Hopk<strong>in</strong>s Hosp. 71,<br />

345–363.<br />

Richardson, A.R., Libby, S.J. and Fang, F.C. (2008) A nitric oxide-<strong>in</strong>ducible lactate<br />

dehydrogenase enables Staphylococcus aureus to resist <strong>in</strong>nate immunity. Science<br />

319, 1672–1676.<br />

Richardson, D.J. (2000) Bacterial respiration: a flexible process for a chang<strong>in</strong>g environment.<br />

Microbiology 146(Pt 3); 551–571.<br />

Richardson, D.J., Berks, B.C., Russell, D.A., Spiro, S. and Taylor, C.J. (2001)<br />

Functional, biochemical and genetic diversity of prokaryotic nitrate reductases.<br />

Cell. Molec. Life Sci. 58, 165–178.<br />

Rietveld, P., Arscott, L.D., Berry, A., Scrutton, N.S., Deonara<strong>in</strong>, M.P., Perham, R.N.<br />

and Williams Jr., C.H. (1994) Reductive and oxidative half-reactions of glutathione<br />

reductase from Escherichia coli. Biochemistry 33, 13888–13895.<br />

Riley, R.L. (1957) Aerial dissem<strong>in</strong>ation of pulmonary tuberculosis. Am. Rev. Tuberc.<br />

Pulm. Dis. 76, 931–941.<br />

Ritz, D., Patel, H., Doan, B., Zheng, M., Aslund, F., Storz, G. and Beckwith, J. (2000)<br />

Thioredox<strong>in</strong> 2 is <strong>in</strong>volved <strong>in</strong> the oxidative stress response <strong>in</strong> Escherichia coli.<br />

J. Biol. Chem. 275, 2505–2512.<br />

Roberts, D.M., Liao, R.P., Wisedchaisri, G., Hol, W.G. and Sherman, D.R. (2004)<br />

Two sensor k<strong>in</strong>ases contribute to the hypoxic response of Mycobacterium tuberculosis.<br />

J. Biol. Chem. 279, 23082–23087.<br />

Rustad, T.R., Harrell, M.I., Liao, R. and Sherman, D.R. (2008) The endur<strong>in</strong>g hypoxic<br />

response of Mycobacterium tuberculosis. PLoS One 3, e1502.<br />

Rustad, T.R., Sherrid, A.M., M<strong>in</strong>ch, K.J. and Sherman, D.R. (2009) Hypoxia: a<br />

w<strong>in</strong>dow <strong>in</strong>to Mycobacterium tuberculosis latency. Cell. Microbiol. 11, 1151–1159.<br />

Ryan, G.J., Hoff, D.R., Driver, E.R., Voskuil, M.I., Gonzalez-Juarrero, M., Basaraba,<br />

R.J., Crick, D.C., Spencer, J.S. and Lenaerts, A.J. (2010) Multiple M. tuberculosis<br />

phenotypes <strong>in</strong> mouse and gu<strong>in</strong>ea pig lung tissue revealed by a dual-sta<strong>in</strong><strong>in</strong>g<br />

approach. PLoS One 5, e11108.<br />

Rybniker, J., Nowag, A., van Gumpel, E., Nissen, N., Rob<strong>in</strong>son, N., Plum, G. and<br />

Hartmann, P. (2010) Insights <strong>in</strong>to the function of the WhiB-like prote<strong>in</strong> of mycobacteriophage<br />

TM4 – a transcriptional <strong>in</strong>hibitor of WhiB2. Mol. Microbiol. 77,<br />

642–657.<br />

Ryter, S.W. and Choi, A.M. (2009) Heme oxygenase-1/carbon monoxide: from<br />

metabolism to molecular therapy. Am. J. Respir. Cell Mol. Biol. 41, 251–260.<br />

Sacchett<strong>in</strong>i, J.C., Rub<strong>in</strong>, E.J. and Freundlich, J.S. (2008) Drugs versus bugs: <strong>in</strong> pursuit<br />

of the persistent predator Mycobacterium tuberculosis. Nat. Rev. Microbiol. 6,<br />

41–52.<br />

Sa<strong>in</strong>i, D.K., Malhotra, V. and Tyagi, J.S. (2004) Cross talk between DevS sensor<br />

k<strong>in</strong>ase homologue, Rv2027c, and DevR response regulator of Mycobacterium<br />

tuberculosis. FEBS Lett. 565, 75–80.<br />

San, K.Y., Bennett, G.N., Berrios-Rivera, S.J., Vadali, R.V., Yang, Y.T., Horton, E.,<br />

Rudolph, F.B., Sariyar, B. and Blackwood, K. (2002) Metabolic eng<strong>in</strong>eer<strong>in</strong>g


REDUCTIVE STRESS IN MICROBES 113<br />

through cofactor manipulation and its effects on metabolic flux redistribution <strong>in</strong><br />

Escherichia coli. Metab. Eng. 4, 182–192.<br />

Sanchez, A.M., Bennett, G.N. and San, K.Y. (2005) Effect of different levels of<br />

NADH availability on metabolic fluxes of Escherichia coli chemostat cultures <strong>in</strong><br />

def<strong>in</strong>ed medium. J. Biotechnol. 117, 395–405.<br />

Sareen, D., Newton, G.L., Fahey, R.C. and Buchmeier, N.A. (2003) Mycothiol is<br />

essential for growth of Mycobacterium tuberculosis Erdman. J. Bacteriol. 185,<br />

6736–6740.<br />

Sareen, D., Steffek, M., Newton, G.L. and Fahey, R.C. (2002) ATP-dependent<br />

L-cyste<strong>in</strong>e:1D-myo-<strong>in</strong>osityl 2-am<strong>in</strong>o-2-deoxy-alpha-D-glucopyranoside ligase,<br />

mycothiol biosynthesis enzyme MshC, is related to class I cyste<strong>in</strong>yl-tRNA synthetases.<br />

Biochemistry 41, 6885–6890.<br />

Schafer, F.Q. and Buettner, G.R. (2001) Redox environment of the cell as viewed<br />

through the redox state of the glutathione disulfide/glutathione couple. Free Radic.<br />

Biol. Med. 30, 1191–1212.<br />

Schut, G.J., Bridger, S.L. and Adams, M.W. (2007) Insights <strong>in</strong>to the metabolism of<br />

elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization<br />

of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase.<br />

J. Bacteriol. 189, 4431–4441.<br />

Sears, H.J., Sawers, G., Berks, B.C., Ferguson, S.J. and Richardson, D.J. (2000)<br />

Control of periplasmic nitrate reductase gene expression (napEDABC) from<br />

Paracoccus pantotrophus <strong>in</strong> response to oxygen and carbon substrates.<br />

Microbiology 146(Pt 11); 2977–2985.<br />

Segal, W. (1962) Differential succ<strong>in</strong>ic dehydrogenase activity of <strong>in</strong>tact cells of<br />

Mycobacterium tuberculosis grown <strong>in</strong> vitro and <strong>in</strong> vivo. Bacteriol. Proc. 62, 96.<br />

Segal, W. (1965) Comparative study of Mycobacterium grown <strong>in</strong> vivo and <strong>in</strong> vitro. V.<br />

Differences <strong>in</strong> sta<strong>in</strong><strong>in</strong>g properties. Am. Rev. Respir. Dis. 91, 285.<br />

Segal, W. (1984) Growth Dynamics of the In Vivo and In Vitro Grown Mycobacterial<br />

Pathogens. Marcel Dekker, Inc., New York.<br />

Segal, W. and Bloch, H. (1956) Biochemical differentiation of Mycobacterium tuberculosis<br />

grown <strong>in</strong> vivo and <strong>in</strong> vitro. J. Bacteriol. 72, 132.<br />

Seifritz, C., Daniel, S.L., Gossner, A. and Drake, H.L. (1993) Nitrate as a preferred<br />

electron s<strong>in</strong>k for the acetogen Clostridium thermoaceticum. J. Bacteriol. 175,<br />

8008.<br />

Senior, P.J. and Dawes, E.A. (1973) The regulation of poly-beta-hydroxybutyrate<br />

metabolism <strong>in</strong> Azotobacter beijer<strong>in</strong>ckii. Biochem. J. 134, 225–238.<br />

Seravalli, J. and Ragsdale, S.W. (2008) 13 C NMR characterization of an exchange<br />

reaction between CO and CO2 catalyzed by carbon monoxide dehydrogenase.<br />

Biochemistry 47, 6770–6781.<br />

Shalel-Levanon, S., San, K.Y. and Bennett, G.N. (2005) Effect of ArcA and FNR on<br />

the expression of genes related to the oxygen regulation and the glycolysis pathway<br />

<strong>in</strong> Escherichia coli under microaerobic growth conditions. Biotechnol. Bioeng.<br />

92, 147–159.<br />

Sheehan, H.L. and Whitwell, F. (1949) The sta<strong>in</strong><strong>in</strong>g of tubercle bacilli with Sudan<br />

black B. J. Pathol. Bacteriol. 61, 269–271 pl.<br />

Shen, G., Balasubramanian, R., Wang, T., Wu, Y., Hoffart, L.M., Krebs, C., Bryant,<br />

D.A. and Golbeck, J.H. (2007) SufR coord<strong>in</strong>ates two [4Fe–4S]2+, 1+ clusters and<br />

functions as a transcriptional repressor of the sufBCDS operon and an autoregulator<br />

of sufR <strong>in</strong> cyanobacteria. J. Biol. Chem. 282, 31909–31919.


114 AISHA FARHANA ET AL.<br />

Sherman, D.R., Voskuil, M., Schnapp<strong>in</strong>ger, D., Liao, R., Harrell, M.I. and Schoolnik,<br />

G.K. (2001) Regulation of the Mycobacterium tuberculosis hypoxic response gene<br />

encod<strong>in</strong>g -crystall<strong>in</strong>. Proc. Natl. Acad. Sci. 98, 7534.<br />

Shi, L., Sohaskey, C.D., Kana, B.D., Dawes, S., North, R.J., Mizrahi, V. and Gennaro,<br />

M.L. (2005) Changes <strong>in</strong> energy metabolism of Mycobacterium tuberculosis <strong>in</strong><br />

mouse lung and under <strong>in</strong> vitro conditions affect<strong>in</strong>g aerobic respiration. Proc.<br />

Natl. Acad. Sci. USA 102, 15629.<br />

Shiloh, M.U., Manzanillo, P. and Cox, J.S. (2008) Mycobacterium tuberculosis senses<br />

host-derived carbon monoxide dur<strong>in</strong>g macrophage <strong>in</strong>fection. Cell Host Microbe 3,<br />

323–330.<br />

Shimizu, M., Fujii, T., Masuo, S. and Takaya, N. (2010) Mechanism of de novo<br />

branched-cha<strong>in</strong> am<strong>in</strong>o acid synthesis as an alternative electron s<strong>in</strong>k <strong>in</strong> hypoxic<br />

Aspergillus nidulans cells. Appl. Environ. Microbiol. 76, 1507–1515.<br />

S<strong>in</strong>gh, A., Crossman, D.K., Mai, D., Guidry, L., Voskuil, M.I., Renfrow, M.B. and<br />

Steyn, A.J. (2009) Mycobacterium tuberculosis WhiB3 ma<strong>in</strong>ta<strong>in</strong>s redox homeostasis<br />

by regulat<strong>in</strong>g virulence lipid anabolism to modulate macrophage response.<br />

PLoS Pathog. 5, e1000545.<br />

S<strong>in</strong>gh, A., Guidry, L., Narasimhulu, K.V., Mai, D., Trombley, J., Redd<strong>in</strong>g, K.E.,<br />

Giles, G.I., Lancaster, J.R. and Steyn, A.J.C. (2007) Mycobacterium tuberculosis<br />

WhiB3 responds to O2 and nitric oxide via its [4Fe–4S] cluster and is essential for<br />

nutrient starvation survival. Proc. Natl. Acad. Sci. 104, 11562.<br />

Sohaskey, C.D. (2005) Regulation of nitrate reductase activity <strong>in</strong> Mycobacterium<br />

tuberculosis by oxygen and nitric oxide. Microbiology 151, 3803–3810.<br />

Sohaskey, C.D. (2008) Nitrate enhances the survival of Mycobacterium tuberculosis<br />

dur<strong>in</strong>g <strong>in</strong>hibition of respiration. J. Bacteriol. 190, 2981–2986.<br />

Sohaskey, C.D. and Wayne, L.G. (2003) Role of narK2X and narGHJI <strong>in</strong> hypoxic<br />

upregulation of nitrate reduction by Mycobacterium tuberculosis. J. Bacteriol. 185,<br />

7247–7256.<br />

Song, T., Park, S.W., Park, S.J., Kim, J.H., Yu, J.Y., Oh, J.I. and Kim, Y.M. (2010)<br />

Clon<strong>in</strong>g and expression analysis of the duplicated genes for carbon monoxide<br />

dehydrogenase of Mycobacterium sp. stra<strong>in</strong> JC1 DSM 3803. Microbiology 156,<br />

999–1008.<br />

Sousa, E.H., Tuckerman, J.R., Gonzalez, G. and Gilles-Gonzalez, M.A. (2007) DosT<br />

and DevS are oxygen-switched k<strong>in</strong>ases <strong>in</strong> Mycobacterium tuberculosis. Prote<strong>in</strong> Sci.<br />

16, 1708–1719.<br />

Spencer, M.E. and Guest, J.R. (1987) Regulation of citric acid cycle genes <strong>in</strong> facultative<br />

bacteria. Microbiol. Sci. 4, 164–168.<br />

Sr<strong>in</strong>ivasan, V. and Morowitz, H.J. (2006) Ancient genes <strong>in</strong> contemporary persistent<br />

microbial pathogens. Biol. Bull. 210, 1–9.<br />

Srivastava, V., Ja<strong>in</strong>, A., Srivastava, B.S. and Srivastava, R. (2008) Selection of genes<br />

of Mycobacterium tuberculosis upregulated dur<strong>in</strong>g residence <strong>in</strong> lungs of <strong>in</strong>fected<br />

mice. Tuberculosis (Ed<strong>in</strong>b.) 88, 171–177.<br />

Srivastava, V., Rouanet, C., Srivastava, R., Ramal<strong>in</strong>gam, B., Locht, C. and Srivastava,<br />

B.S. (2007) Macrophage-specific Mycobacterium tuberculosis genes: identification<br />

by green fluorescent prote<strong>in</strong> and kanamyc<strong>in</strong> resistance selection. Microbiology<br />

153, 659–666.<br />

Staubli, A. and Boelsterli, U.A. (1998) The labile iron pool <strong>in</strong> hepatocytes: prooxidant-<strong>in</strong>duced<br />

<strong>in</strong>crease <strong>in</strong> free iron precedes oxidative cell <strong>in</strong>jury. Am. J. Physiol.<br />

Gastro<strong>in</strong>test. Liver Physiol. 274, 1031.


REDUCTIVE STRESS IN MICROBES 115<br />

Steuber, J., Krebs, W., Bott, M. and Dimroth, P. (1999) A membrane-bound NAD (P)<br />

+-reduc<strong>in</strong>g hydrogenase provides reduced pyrid<strong>in</strong>e nucleotides dur<strong>in</strong>g citrate<br />

fermentation by Klebsiella pneumoniae. J. Bacteriol. 181, 241.<br />

Steyn, A.J., Coll<strong>in</strong>s, D.M., Hondalus, M.K., Jacobs Jr., W.R., Kawakami, R.P. and<br />

Bloom, B.R. (2002) Mycobacterium tuberculosis WhiB3 <strong>in</strong>teracts with RpoV to<br />

affect host survival but is dispensable for <strong>in</strong> vivo growth. Proc. Natl. Acad. Sci.<br />

USA 99, 3147–3152.<br />

Talaat, A.M., Lyons, R., Howard, S.T. and Johnston, S.A. (2004) The temporal<br />

expression profile of Mycobacterium tuberculosis <strong>in</strong>fection <strong>in</strong> mice. Proc. Natl.<br />

Acad. Sci. USA 101, 4602.<br />

Talaat, A.M., Ward, S.K., Wu, C.W., Rondon, E., Tavano, C., Bannant<strong>in</strong>e, J.P.,<br />

Lyons, R. and Johnston, S.A. (2007) Mycobacterial bacilli are metabolically active<br />

dur<strong>in</strong>g chronic tuberculosis <strong>in</strong> mur<strong>in</strong>e lungs: <strong>in</strong>sights from genome-wide transcriptional<br />

profil<strong>in</strong>g. J. Bacteriol. 189, 4265.<br />

Tepper, R. and Varma, K.G. (1972) Metabolic activity of purified suspensions of<br />

Mycobacterium lepraemurium. J. Gen. Microbiol. 73, 143–152.<br />

Thauer, R.K. (1988) Citric-acid cycle, 50 years on. Eur. J. Biochem. 176, 497–508.<br />

Thauer, R.K., Kaster, A.K., Seedorf, H., Buckel, W. and Hedderich, R. (2008)<br />

Methanogenic archaea: ecologically relevant differences <strong>in</strong> energy conservation.<br />

Nat. Rev. Microbiol. 6, 579–591.<br />

Tian, J., Bryk, R., Itoh, M., Suematsu, M. and Nathan, C. (2005) Variant tricarboxylic<br />

acid cycle <strong>in</strong> Mycobacterium tuberculosis: identification of alpha-ketoglutarate<br />

decarboxylase. Proc. Natl. Acad. Sci. USA 102, 10670–10675.<br />

Tilton, R.G. (2002) Diabetic vascular dysfunction: l<strong>in</strong>ks to glucose-<strong>in</strong>duced reductive<br />

stress and VEGF. Microsc. Res. Tech. 57, 390–407.<br />

Tremblay, G.A. (2007) Historical statistics support a hypothesis l<strong>in</strong>k<strong>in</strong>g tuberculosis<br />

and air pollution caused by coal. Int. J. Tuberc. Lung Dis. 11, 722–732.<br />

Triccas, J.A., Berthet, F.X., Pelicic, V. and Gicquel, B. (1999) Use of fluorescence<br />

<strong>in</strong>duction and sucrose counterselection to identify Mycobacterium tuberculosis<br />

genes expressed with<strong>in</strong> host cells. Microbiology 145(Pt 10); 2923–2930.<br />

Trivedi, O.A., Arora, P., Vats, A., Ansari, M.Z., Tickoo, R., Sridharan, V., Mohanty,<br />

D. and Gokhale, R.S. (2005) Dissect<strong>in</strong>g the mechanism and assembly of a complex<br />

virulence mycobacterial lipid. Mol. Cell 17, 631–643.<br />

Trotter, E.W. and Grant, C.M. (2002) Thioredox<strong>in</strong>s are required for protection<br />

aga<strong>in</strong>st a reductive stress <strong>in</strong> the yeast Saccharomyces cerevisiae. Molec.<br />

Microbiol. 46, 869–878.<br />

Tsai, M.C., Chakravarty, S., Zhu, G., Xu, J., Tanaka, K., Koch, C., Tufariello, J.A.,<br />

Flynn, J.A. and Chan, J. (2006) Characterization of the tuberculous granuloma <strong>in</strong><br />

mur<strong>in</strong>e and human lungs: cellular composition and relative tissue oxygen tension.<br />

Cell. Microbiol. 8, 218–232.<br />

Ulrichs, T. and Kaufmann, S.H. (2006) New <strong>in</strong>sights <strong>in</strong>to the function of granulomas<br />

<strong>in</strong> human tuberculosis. J. Pathol. 208, 261–269.<br />

Upton, A.M. and McK<strong>in</strong>ney, J.D. (2007) Role of the methylcitrate cycle <strong>in</strong> propionate<br />

metabolism and detoxification <strong>in</strong> Mycobacterium smegmatis. Microbiology 153,<br />

3973–3982.<br />

Valadi, H., Valadi, A., Ansell, R., Gustafsson, L., Adler, L., Norbeck, J. and<br />

Blomberg, A. (2004) NADH-reductive stress <strong>in</strong> Saccharomyces cerevisiae <strong>in</strong>duces<br />

the expression of the m<strong>in</strong>or isoform of glyceraldehyde-3-phosphate dehydrogenase<br />

(TDH1). Curr. Genet. 45, 90–95.


116 AISHA FARHANA ET AL.<br />

van Dijken, J.P. and Scheffers, W.A. (1986) Redox balances <strong>in</strong> the metabolism of<br />

sugars by yeasts. FEMS Microbiol. Lett. 32, 199–224.<br />

Van Keulen, G., Dijkhuizen, L. and Meijer, W.G. (2000) Effects of the Calv<strong>in</strong> cycle<br />

on nicot<strong>in</strong>amide aden<strong>in</strong>e d<strong>in</strong>ucleotide concentrations and redox balances of<br />

Xanthobacter flavus. J. Bacteriol. 182, 4637.<br />

Velayati, A.A., Masjedi, M.R., Farnia, P., Tabarsi, P., Ghanavi, J., Ziazarifi, A.H. and<br />

Hoffner, S.E. (2009) Emergence of new forms of totally drug-resistant tuberculosis<br />

bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant<br />

stra<strong>in</strong>s <strong>in</strong> Iran. Chest 136, 420–425.<br />

Vemuri, G.N., Altman, E., Sangurdekar, D.P., Khodursky, A.B. and Eiteman, M.A.<br />

(2006) Overflow metabolism <strong>in</strong> Escherichia coli dur<strong>in</strong>g steady-state growth: transcriptional<br />

regulation and effect of the redox ratio. Appl. Environ. Microbiol. 72,<br />

3653–3661.<br />

Via, L.E., L<strong>in</strong>, P.L., Ray, S.M., Carrillo, J., Allen, S.S., Eum, S.Y., Taylor, K., Kle<strong>in</strong>,<br />

E., Manjunatha, U. and Gonzales, J. (2008) Tuberculous granulomas are hypoxic<br />

<strong>in</strong> gu<strong>in</strong>ea pigs, rabbits, and nonhuman primates. Infect. Immun. 76, 2333.<br />

Vignais, P.M., Billoud, B. and Meyer, J. (2001) Classification and phylogeny of<br />

hydrogenases. FEMS Microbiol. Rev. 25, 455–501.<br />

Vignais, P.M. and Colbeau, A. (2004) Molecular biology of microbial hydrogenases.<br />

Curr. Issues Mol. Biol. 6, 159–188.<br />

Vilcheze, C., Av-Gay, Y., Attarian, R., Liu, Z., Hazbon, M.H., Colangeli, R., Chen,<br />

B., Liu, W., Alland, D., Sacchett<strong>in</strong>i, J.C. and Jacobs Jr., W.R. (2008) Mycothiol<br />

biosynthesis is essential for ethionamide susceptibility <strong>in</strong> Mycobacterium tuberculosis.<br />

Mol. Microbiol. 69, 1316–1329.<br />

Voet, D., Voet, J.G. and Pratt, C.W. (2008) Fundamental of Biochemistry: Life at a<br />

Molecualr Level. John Wiley and Sons.<br />

Vogt, R.N., Steenkamp, D.J., Zheng, R. and Blanchard, J.S. (2003) The metabolism<br />

of nitrosothiols <strong>in</strong> the Mycobacteria: identification and characterization of Snitrosomycothiol<br />

reductase. Biochem. J. 374, 657–666.<br />

Voskuil, M.I., Honaker, R.W. and Steyn, A.J.C. (2009) In: Parish, T., Brown, A.<br />

(Eds.), Mycobacterium Genomics and Molecualar Biology. Caister Academic<br />

Press, Norfolk, UK, pp. 119–147.<br />

Voskuil, M.I., Schnapp<strong>in</strong>ger, D., Visconti, K.C., Harrell, M.I., Dolganov, G.M.,<br />

Sherman, D.R. and Schoolnik, G.K. (2003) Inhibition of respiration by nitric oxide<br />

<strong>in</strong>duces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198,<br />

705–713.<br />

Voskuil, M.I., Visconti, K.C. and Schoolnik, G.K. (2004) Mycobacterium tuberculosis<br />

gene expression dur<strong>in</strong>g adaptation to stationary phase and low-oxygen dormancy.<br />

Tuberculosis (Ed<strong>in</strong>b.) 84, 218–227.<br />

Waltermann, M., Stoveken, T. and Ste<strong>in</strong>buchel, A. (2007) Key enzymes for biosynthesis<br />

of neutral lipid storage compounds <strong>in</strong> prokaryotes: properties, function and<br />

occurrence of wax ester synthases/acyl-CoA: diacylglycerol acyltransferases.<br />

Biochimie 89, 230–242.<br />

Wang, C.H., Liu, C.Y., L<strong>in</strong>, H.C., Yu, C.T., Chung, K.F. and Kuo, H.P. (1998)<br />

Increased exhaled nitric oxide <strong>in</strong> active pulmonary tuberculosis due to <strong>in</strong>ducible<br />

NO synthase upregulation <strong>in</strong> alveolar macrophages. Eur. Respir. J. 11, 809–815.<br />

Ward, D.E., Van Der Weijden, C.C., Van Der Merwe, M.J., Westerhoff, H.V.,<br />

Claiborne, A. and Snoep, J.L. (2000) Branched-cha<strong>in</strong> alpha-keto acid catabolism


REDUCTIVE STRESS IN MICROBES 117<br />

via the gene products of the bkd operon <strong>in</strong> Enterococcus faecalis: a new, secreted<br />

metabolite serv<strong>in</strong>g as a temporary redox s<strong>in</strong>k. J. Bacteriol. 182, 3239.<br />

Warner, D.F. Mizrahi, V. (2007) The survival kit of Mycobacterium tuberculosis.<br />

Nat. Med. 13, 282–284.<br />

Wayne, L.G. and Hayes, L.G. (1996) An <strong>in</strong> vitro model for sequential study of<br />

shiftdown of Mycobacterium tuberculosis through two stages of nonreplicat<strong>in</strong>g<br />

persistence. Infect. Immun. 64, 2062–2069.<br />

West, J.B. (1977) Regional Differences <strong>in</strong> the Lung. Academic Press, New York.<br />

Wheeler, P.R. and Ratledge, C. (1994) In: Bloom, B.R. (Ed.), Tuberculosis:<br />

Pathogenesis, Protection, and Control. ASM Press, Wash<strong>in</strong>gton, pp. 353–385.<br />

Wimpenny, J.W.T. and Firth, A. (1972) Levels of nicot<strong>in</strong>amide aden<strong>in</strong>e d<strong>in</strong>ucleotide<br />

and reduced nicot<strong>in</strong>amide aden<strong>in</strong>e d<strong>in</strong>ucleotide <strong>in</strong> facultative bacteria and the<br />

effect of oxygen. J. Bacteriol. 111, 24.<br />

W<strong>in</strong>stanley, C. and Fothergill, J.L. (2009) The role of quorum sens<strong>in</strong>g <strong>in</strong> chronic cystic<br />

fibrosis Pseudomonas aerug<strong>in</strong>osa <strong>in</strong>fections. FEMS Microbiol. Lett. 290, 1–9.<br />

Wolfe, A.J. (2005) The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50.<br />

Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K.C., Birrer, P.,<br />

Bellon, G., Berger, J., Weiss, T., Botzenhart, K., Yankaskas, J.R., Randell, S.,<br />

Boucher, R.C. and Dor<strong>in</strong>g, G. (2002) Effects of reduced mucus oxygen concentration<br />

<strong>in</strong> airway Pseudomonas <strong>in</strong>fections of cystic fibrosis patients. J. Cl<strong>in</strong>. Invest.<br />

109, 317–325.<br />

Wright, D.E. (1959) The formation of keto and am<strong>in</strong>o acids by Mycobacterium<br />

butyricum grow<strong>in</strong>g <strong>in</strong> a chemically def<strong>in</strong>ed medium. Microbiology 20, 554.<br />

Xia, D., Esser, L., Yu, L. and Yu, C.A. (2007) Structural basis for the mechanism of<br />

electron bifurcation at the qu<strong>in</strong>ol oxidation site of the cytochrome bc 1 complex.<br />

Photosyn. Res. 92, 17–34.<br />

Young, D.B., Perk<strong>in</strong>s, M.D., Duncan, K. and Barry 3rd, C.E. (2008) Confront<strong>in</strong>g the<br />

scientific obstacles to global control of tuberculosis. J. Cl<strong>in</strong>. Invest. 118, 1255–1265.<br />

Yukl, E.T., Ioanoviciu, A., de Montellano, P.R. and Moenne-Loccoz, P. (2007)<br />

Interdoma<strong>in</strong> <strong>in</strong>teractions with<strong>in</strong> the two-component heme-based sensor DevS<br />

from Mycobacterium tuberculosis. Biochemistry 46, 9728–9736.<br />

Zbell, A.L., Benoit, S.L. and Maier, R.J. (2007) Differential expression of NiFe<br />

uptake-type hydrogenase genes <strong>in</strong> Salmonella enterica serovar Typhimurium.<br />

Microbiology 153, 3508–3516.<br />

Zbell, A.L. and Maier, R.J. (2009) Role of the Hya hydrogenase <strong>in</strong> recycl<strong>in</strong>g of<br />

anaerobically produced H 2 <strong>in</strong> Salmonella enterica serovar Typhimurium. Appl.<br />

Environ. Microbiol. 75, 1456.<br />

Zbell, A.L., Maier, S.E. and Maier, R.J. (2008) Salmonella enterica serovar<br />

Typhimurium NiFe uptake-type hydrogenases are differentially expressed<br />

<strong>in</strong> vivo. Infect. Immun. 76, 4445.<br />

Zhang, X., M<strong>in</strong>, X., Li, C., Benjam<strong>in</strong>, I.J., Qian, B., D<strong>in</strong>g, Z., Gao, X., Yao, Y., Ma, Y.,<br />

Cheng, Y. and Liu, L. (2010) Involvement of reductive stress <strong>in</strong> the cardiomyopathy<br />

<strong>in</strong> transgenic mice with cardiac-specific overexpression of heat shock prote<strong>in</strong><br />

27. Hypertension 55, 1412–1417.


This page <strong>in</strong>tentionally left blank


Regulation of CtsR Activity <strong>in</strong> Low GC,<br />

Gram+ Bacteria<br />

Alexander K.W. Elsholz, Ulf Gerth and Michael Hecker<br />

Ernst-Moritz-Arndt-University Greifswald, Institute of Microbiology, Greifswald, Germany<br />

ABSTRACT<br />

CtsR is the global transcriptional regulator of the core prote<strong>in</strong> quality<br />

networks <strong>in</strong> low GC, Gram+ bacteria. Balanc<strong>in</strong>g these networks dur<strong>in</strong>g<br />

environmental stress is of considerable importance for moderate survival of<br />

the bacteria, and also for virulence of pathogenic species. Therefore,<br />

<strong>in</strong>activation of the CtsR repressor is one of the major cellular responses for<br />

fast and efficient adaptation to different prote<strong>in</strong> stress conditions.<br />

Historically, CtsR <strong>in</strong>activation was ma<strong>in</strong>ly studied for the heat stress<br />

response, and recently it has been shown that CtsR is an <strong>in</strong>tr<strong>in</strong>sic<br />

thermosensor. Moreover, it has been demonstrated that CtsR degradation is<br />

regulated by a two-step mechanism dur<strong>in</strong>g heat stress, dependent on the<br />

arg<strong>in</strong><strong>in</strong>e k<strong>in</strong>ase activity of McsB. Interest<strong>in</strong>gly, CtsR is also <strong>in</strong>activated<br />

dur<strong>in</strong>g oxidative stress, but by a thiol-dependent regulatory pathway. These<br />

observations suggest that dual activity control of CtsR activity has developed<br />

dur<strong>in</strong>g the course of evolution.<br />

Abbreviations . . . ........................................... 120<br />

1. Prote<strong>in</strong> Quality Control. . ..................................... 120<br />

2. Ctsr-Regulated Genes . . ..................................... 122<br />

3. Cellular Functions Of Genes Regulated by CtsR. .................. 125<br />

4. Mechanisms for the Inactivation of the CtsR Repressor ............. 129<br />

4.1. Heat Inactivation of CtsR. . ............................... 129<br />

4.2. CtsR Inactivation Dur<strong>in</strong>g Oxidative Stress ................... 132<br />

ADVANCES IN MICROBIAL PHYSIOLOGY, VOL. 57 Copyright Ó 2010 by Elsevier Ltd.<br />

ISSN: 0065-2911 All rights reserved<br />

DOI:10.1016/B978-0-12-381045-8.00003-5


120 ALEXANDER K.W. ELSHOLZ ET AL.<br />

4.3. CtsR Inactivation Dur<strong>in</strong>g Other Stress Conditions ............. 134<br />

5. Control of Ctsr Degradation by the Regulated Adaptor McsB . ........ 136<br />

6. Summary And Outlook. . ..................................... 136<br />

Acknowledgement .......................................... 137<br />

References. ............................................... 137<br />

ABBREVIATIONS<br />

HTH helix-turn-helix<br />

HHP high-hydrostatic pressure<br />

LMWPTP low-molecular-weight prote<strong>in</strong> tyros<strong>in</strong>e phosphatase<br />

1. PROTEIN QUALITY CONTROL<br />

The ma<strong>in</strong>tenance of proper prote<strong>in</strong> homeostasis is important for viability and<br />

growth of all liv<strong>in</strong>g organisms, and cells have evolved two major strategies.<br />

Prote<strong>in</strong> quality networks ensure the correct prote<strong>in</strong> function as molecular<br />

chaperones promote prote<strong>in</strong> fold<strong>in</strong>g and mediate refold<strong>in</strong>g while ATPdependent<br />

proteases degrade misfolded or aggregated prote<strong>in</strong>s to prevent<br />

cell <strong>in</strong>jury when refold<strong>in</strong>g by molecular chaperones has failed. Stress conditions<br />

such as heat, oxidative stress and extreme pH values result <strong>in</strong> damage of<br />

the prote<strong>in</strong> structure that may lead to aggregation of prote<strong>in</strong>s which fail to<br />

fulfill their physiological function and are often lethal for the cell. Hence,<br />

enhanced expression of these critical prote<strong>in</strong> classes is needed for moderate<br />

survival of the cell dur<strong>in</strong>g severe prote<strong>in</strong> stress conditions (Geth<strong>in</strong>g and<br />

Sambrook, 1992; Wickner et al., 1999; Sauer et al., 2004; Hartl and Hayer-<br />

Hartl, 2009).<br />

The cellular chaperone mach<strong>in</strong>ery assists <strong>in</strong> non-covalent fold<strong>in</strong>g or<br />

unfold<strong>in</strong>g of macromolecular complexes, but molecular chaperones are<br />

not <strong>in</strong>volved <strong>in</strong> the normal enzymatic reactions of these complexes. In<br />

all three doma<strong>in</strong>s of life, a plethora of structurally unrelated chaperones<br />

have evolved (Young et al., 2004), but general modes of operation are<br />

conserved for all molecular chaperones. In general, all chaperones recognise<br />

hydrophobic residues and/or unstructured backbone regions <strong>in</strong> prote<strong>in</strong>s,<br />

that is structural features normally buried upon completion of<br />

fold<strong>in</strong>g but typically exposed by non-native prote<strong>in</strong>s. This ensures that


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 121<br />

only <strong>in</strong>correctly folded prote<strong>in</strong>s become targets for molecular chaperones<br />

(Hartl and Hayer-Hartl, 2009).<br />

Energy-dependent prote<strong>in</strong> degradation is achieved by large cyl<strong>in</strong>drical<br />

assemblies with a common r<strong>in</strong>g-stack<strong>in</strong>g architecture of diverse complexity.<br />

This architecture is highly conserved <strong>in</strong> all liv<strong>in</strong>g organisms and operates with<br />

similar pr<strong>in</strong>ciples. It is composed of a chaperone r<strong>in</strong>g compris<strong>in</strong>g ATPase<br />

doma<strong>in</strong>s of the AAA+-type (ATPase associated with a variety of cellular<br />

activities) that caps both ends of self-compartmentalised proteases whereby<br />

the active sites are located <strong>in</strong> an <strong>in</strong>ternal chamber and are thereby separated<br />

from the cytosol (Wickner et al., 1999; Sauer et al., 2004). Hydrolysis of ATP<br />

by the AAA+ superfamily of prote<strong>in</strong>s is translated <strong>in</strong>to force that unfolds<br />

substrates and translocates them <strong>in</strong>to the proteolytic chamber of the protease<br />

subunit where the peptide bonds are hydrolysed (Neuwald et al., 1999; Baker<br />

and Sauer, 2006).<br />

Prote<strong>in</strong> degradation <strong>in</strong> eukaryotes is performed by the 26S proteasome<br />

comprised of a 19S cap particle with six different AAA+ prote<strong>in</strong>s at its base,<br />

and a 20S core particle which conta<strong>in</strong>s the proteolytic site (Pickart and<br />

Cohen, 2004). A 26S proteasome system is not present <strong>in</strong> eubacteria, except<br />

for some act<strong>in</strong>obacteria (Darw<strong>in</strong>, 2009). However, at least four ATPdependent<br />

proteases (Clp, HslUV, Lon and FtsH) operat<strong>in</strong>g on a similar<br />

pr<strong>in</strong>ciple have evolved <strong>in</strong> eubacteria (Gottesman, 2003).<br />

In low GC, Gram+ bacteria the Clp mach<strong>in</strong>ery seems to be the major<br />

system for general prote<strong>in</strong> turnover (Frees and Ingmer, 1999; Kr€uger et al.,<br />

2000; Kock et al., 2004b; Gerth et al., 2008). The Clp protease is constituted of<br />

Hsp 100/Clp prote<strong>in</strong>s of the AAA+ superfamily and an associated barrel-like<br />

protease complex formed by ClpP (Gottesman, 2003). The multimeric barrellike<br />

structure of ClpP is formed by two stacked heptameric r<strong>in</strong>gs of ClpP<br />

homomers which create a catalytic cavity where<strong>in</strong> the 14 proteolytic active<br />

ser<strong>in</strong>e residues are enclosed (Wang et al.,1997). ClpP, on its own, is only able<br />

to degrade small peptides and with very restricted efficiency (Jenn<strong>in</strong>gs et al.,<br />

2008). Therefore, a regulatory AAA+ prote<strong>in</strong> of the HSP 100/Clp family<br />

flanks both ends of the ClpP complex, display<strong>in</strong>g a gateway to the protease.<br />

These regulatory prote<strong>in</strong>s form hexameric r<strong>in</strong>gs with a narrow pore <strong>in</strong> the<br />

middle through which the substrate is translocated <strong>in</strong>to the <strong>in</strong>ternal chamber<br />

of the peptidase (Zolkiewski, 2006). Substrate unfold<strong>in</strong>g and thread<strong>in</strong>g<br />

through the narrow pore <strong>in</strong>to the proteolytic chamber by the Hsp 100/Clp<br />

prote<strong>in</strong>s is ATP dependent (Weber-Ban et al., 1999). Once the unfolded<br />

polypeptide enters the ClpP proteolytic chamber, it is rapidly degraded,<br />

without further utilisation of ATP, to short peptides of 7–10 am<strong>in</strong>o acids<br />

length (Thompson et al., 1994).


122 ALEXANDER K.W. ELSHOLZ ET AL.<br />

2. CtsR-REGULATED GENES<br />

In the Gram-negative model organism Escherichia coli the regulation of<br />

classical heat shock genes depends ma<strong>in</strong>ly on the level of the alternative<br />

transcription factor s 32 (Yura, 1996). However, <strong>in</strong> the low GC, Gram+ model<br />

organism Bacillus subtilis regulation of prote<strong>in</strong> quality control systems differs<br />

significantly. To date, at least six different classes have been dist<strong>in</strong>guished for<br />

<strong>in</strong>duced expression of heat shock prote<strong>in</strong>s (Schumann, 2004). Class one was<br />

def<strong>in</strong>ed as genes regulated by the global repressor HrcA, class two encompasses<br />

genes under the control of the alternative sigma factor SigB, class<br />

three genes belong to the CtsR regulon, class four conta<strong>in</strong>s only the htpG<br />

gene, class five is controlled by the CssRS two-component system and class<br />

six is reserved for genes whose expression is <strong>in</strong>duced dur<strong>in</strong>g heat stress but<br />

with no known regulatory mechanism (Schumann, 2004). The central core of<br />

the prote<strong>in</strong> quality control <strong>in</strong> all low GC, Gram+ bacteria is under the control<br />

of CtsR (class three stress gene repressor), as long as a ctsR gene is present <strong>in</strong><br />

the correspond<strong>in</strong>g genome. To date, the only bacilli lack<strong>in</strong>g a ctsR gene<br />

belong to the Lactobacillus acidophilus group (van de Guchte et al., 2006).<br />

Although these six different classes of heat shock prote<strong>in</strong>s are not present<br />

<strong>in</strong> all Gram+ bacteria, regulation of heat shock <strong>in</strong>duction rema<strong>in</strong>s complex<br />

and is also divided <strong>in</strong>to several groups <strong>in</strong> other low GC, Gram+ bacteria.<br />

Nevertheless, these regulons are not very committed <strong>in</strong> their specific contributions<br />

and thus partial or full overlap between different classes can be<br />

found <strong>in</strong> some species, whereas these classes are very dist<strong>in</strong>ct <strong>in</strong> others.<br />

The alternative sigma factor SigB is only conserved <strong>in</strong> the order Bacillales<br />

(Hecker et al., 2007) and is def<strong>in</strong>ed as class two <strong>in</strong> the heat shock response of<br />

B. subtilis. SigB overlaps with CtsR <strong>in</strong> the regulation of the clpC operon and<br />

clpP <strong>in</strong> B. subtilis (Kr€uger et al., 1996; Gerth et al., 1998) as well as for the<br />

clpC, clpP and clpB operons <strong>in</strong> Listeria monocytogenes (Hu et al., 2007).<br />

However, <strong>in</strong> Staphylococcus aureus no functional overlap between SigB and<br />

CtsR was found. The clpC, clpP and clpB operons are solely under CtsR<br />

control, whereas SigB alone is responsible for heat <strong>in</strong>duction of clpL (Gertz<br />

et al., 2000; Chastanet et al., 2003). Dual regulation of heat shock gene<br />

regulation by SigB and CtsR does not mean that a SigB stimulus is sufficient<br />

for an effective <strong>in</strong>duction of transcription while CtsR is still active as a<br />

transcriptional repressor. Such a scenario leads to only a slight <strong>in</strong>duction<br />

of the dually regulated clpC operon <strong>in</strong> B. subtilis, for example dur<strong>in</strong>g different<br />

SigB activat<strong>in</strong>g stress conditions such as glucose limitation or ethanol<br />

stress (Kr€uger et al., 1994). SigB activity alone does not lead to an appropriate<br />

<strong>in</strong>duction of the target genes because the impact of CtsR repression on<br />

transcription is super-ord<strong>in</strong>ated, and thus CtsR <strong>in</strong>activation is str<strong>in</strong>gent for


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 123<br />

adequate expression. The major task of SigB for dually regulated genes<br />

maybe is to enhance the <strong>in</strong>duction of transcription when CtsR is <strong>in</strong>activated.<br />

Heat shock class one <strong>in</strong> B. subtilis is regulated by the global repressor<br />

HrcA (heat shock regulation by CIRCE) (Zuber and Schumann, 1994; Yuan<br />

and Wong, 1995) and regulates only two operons cod<strong>in</strong>g for the classical<br />

molecular chaperones dnaK and groE (Homuth et al., 1997). In B. subtilis<br />

and close relatives, the HrcA and the CtsR regulon are dist<strong>in</strong>ct from each<br />

other. However, <strong>in</strong> other groups of low GC, Gram+ bacteria, CtsR is also<br />

able to regulate expression of HrcA-dependent genes (Chastanet et al.,<br />

2003). In most cases, HrcA-regulated genes are under dual control of<br />

both transcriptional regulators, and only <strong>in</strong> Streptococcus salivarius and<br />

Streptococcus thermophilus clpP is <strong>in</strong> addition to CtsR under HrcA control<br />

(Chastanet and Msadek, 2003). In S. aureus both HrcA-dependent operons<br />

also belong to the CtsR regulon, whereas <strong>in</strong> the order of Lactobacillales only<br />

the groE operon stands under dual regulation (Chastanet et al., 2003).<br />

Moreover, <strong>in</strong> species where one of the two global heat shock repressors is<br />

absent, the other has taken over the regulation of both regulons. For example,<br />

CtsR is the global stress repressor <strong>in</strong> Oenococcus oeni (Grandvalet et al.,<br />

2005), a lactic acid bacterium miss<strong>in</strong>g hrcA <strong>in</strong> its genome. In contrast, HrcA is<br />

the correspond<strong>in</strong>g regulator of clp expression <strong>in</strong> the L. acidophilus group,<br />

which lack ctsR <strong>in</strong> their genome (van de Guchte et al., 2006) (Fig. 1).<br />

In contrast to dual regulation by a transcriptional ‘activator’ such as SigB<br />

and a repressor such as CtsR the <strong>in</strong>terplay between two transcriptional<br />

repressors seems odd. The major effect of this crosstalk is that basal transcription<br />

under repressor active conditions is lower compared to expression<br />

when only one repressor is responsible for regulation (Chastanet et al., 2003).<br />

HrcA activity is directly dependent on prote<strong>in</strong> stress (Mogk et al., 1997),<br />

whereas the CtsR repressor senses different stress <strong>in</strong>puts (Elsholz et al., 2010,<br />

manuscript submitted) and is also <strong>in</strong>activated dur<strong>in</strong>g virulence-related stress<br />

conditions. This gives space for speculation that dual regulation of the HrcA<br />

regulon ensures that the molecular chaperones, which are also crucial for<br />

virulence (see Section 3), are strongly <strong>in</strong>duced dur<strong>in</strong>g both specific stress and<br />

virulence conditions (Chastanet et al., 2003).<br />

The ctsR gene itself stands under its own control and is auto-regulated<br />

(Derre et al., 1999b). The ctsR gene is co-transcribed with clpC <strong>in</strong> an operon<br />

for all low GC, Gram+ bacteria and the AAA+ prote<strong>in</strong> ClpC belongs to the<br />

CtsR regulon <strong>in</strong> all cases when ctsR gene is present <strong>in</strong> a genome. In the<br />

order Bacillales of low GC, Gram+ bacteria the clpC operon is tetra-cistronic<br />

and, <strong>in</strong> addition to ctsR and clpC, also encodes the two modulators of<br />

CtsR activity, mcsA and mcsB. However, genes for these two modulators<br />

are absent <strong>in</strong> the order of Lactobacillales (Varmanen et al., 2000;


[(Figure_1)TD$FIG]<br />

Figure 1 Graphical presentation of the distribution of CtsR-regulated prote<strong>in</strong>s for different low GC, Gram+ species and known<br />

overlaps with other regulators such as SigB or HrcA. An arrow <strong>in</strong>dicates specific <strong>in</strong>fluence of transcriptional regulator for the<br />

expression of the correspond<strong>in</strong>g gene. Prote<strong>in</strong>s whose expression is solely dependent on CtsR activity are depicted <strong>in</strong> red, whereas<br />

prote<strong>in</strong>s that are dually regulated by CtsR and SigB (green) are shown <strong>in</strong> blue. Prote<strong>in</strong>s controlled by CtsR as well as HrcA are<br />

presented <strong>in</strong> grey, and prote<strong>in</strong>s that are regulated only by HrcA are shown <strong>in</strong> purple (See Colour Plate Section).<br />

124 ALEXANDER K.W. ELSHOLZ ET AL.


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 125<br />

Chastanet et al., 2001). In these species, ctsR is co-transcribed only with clpC<br />

<strong>in</strong> a bi-cistronic operon.<br />

The proteolytic component of the ATP-dependent protease ClpP is also a<br />

permanent member of the CtsR regulon <strong>in</strong> all low GC, Gram+ bacteria, as<br />

long as the ctsR gene is present <strong>in</strong> the correspond<strong>in</strong>g genome. With the<br />

exception of S. salivarius and S. thermophilus, where dual regulation with<br />

CtsR and HrcA is present (Chastanet and Msadek, 2003), expression of the<br />

clpP operon stands solely under control of CtsR. In low GC Gram+ bacteria,<br />

clpP is mostly encoded by a mono-cistronic gene (Gerth et al., 1996), but <strong>in</strong><br />

O. oeni clpP can be also co-transcribed with clpL (Beltramo et al., 2004).<br />

The molecular chaperones ClpB and ClpL lack an IGF loop and thus are<br />

probably not able to <strong>in</strong>teract directly with the proteolytic component ClpP<br />

(Kim et al., 2001; Frees et al., 2004; Weibezahn et al., 2004). ClpB and ClpL<br />

are not present <strong>in</strong> the families Bacillaceae and Listeriaceae, but can be found<br />

<strong>in</strong> Staphylococcaceae and more often <strong>in</strong> Lactobacillaceae. Both genes stand<br />

under CtsR control with the exception of clpL <strong>in</strong> staphylococci (Gertz et al.,<br />

2000). ClpE, another Hsp 100/Clp prote<strong>in</strong>, always stands under CtsR control<br />

as far as both clpE and ctsR genes are present <strong>in</strong> the genome.<br />

Interest<strong>in</strong>gly, new studies have revealed so far unknown and not typical<br />

members of the CtsR regulon. In Lactobacillus plantarum the ATP-dependent<br />

membrane-bound AAA+ protease FtsH and the small heat shock<br />

prote<strong>in</strong> Hsp1 are under direct CtsR control (Fiocco et al., 2008, 2010). In<br />

addition, a second small heat shock prote<strong>in</strong>, Hsp18, was found regulated by<br />

CtsR <strong>in</strong> O. oeni (Grandvalet et al., 2005).<br />

In O. oeni, a CtsR consensus sequence was surpris<strong>in</strong>gly found <strong>in</strong> front of<br />

the clpX operon, but no <strong>in</strong>fluence of CtsR was detected for clpX transcription<br />

(Grandvalet et al., 2005). It was speculated that this b<strong>in</strong>d<strong>in</strong>g site was an<br />

evolutionary remnant. Nevertheless, regulation of clpX expression rema<strong>in</strong>s<br />

unclear for all low GC, Gram+ bacteria, and to date, no CtsR-dependent<br />

regulation has been shown for ClpX.<br />

3. CELLULAR FUNCTIONS OF GENES REGULATED BY CtsR<br />

The physiological function of the CtsR regulon members lies not only <strong>in</strong> their<br />

important role <strong>in</strong> prote<strong>in</strong> quality control and the result<strong>in</strong>g effect <strong>in</strong> stress<br />

adaptation and general cellular processes, but also <strong>in</strong> their specific role <strong>in</strong><br />

regulated degradation of key regulators for essential cellular and physiological<br />

programmes <strong>in</strong> response to temporal, spatial or environmental stimuli.<br />

Not only the specific regulated proteolysis of transcription factors is


126 ALEXANDER K.W. ELSHOLZ ET AL.<br />

important, but also the re-arrangement of the complete proteome after a<br />

specific stress <strong>in</strong>put to atta<strong>in</strong> a better adaptation of the cell (Sauer et al., 2004;<br />

Neher et al., 2006). However, specific adaptor prote<strong>in</strong>s are needed for Clpspecific<br />

degradation. To date, only a few adaptor prote<strong>in</strong>s are known for the<br />

low GC, Gram+ model organism B. subtilis, but additional adaptor prote<strong>in</strong>s<br />

must exist (Kirste<strong>in</strong> et al., 2009), suggest<strong>in</strong>g that <strong>in</strong>duction of the Clp proteolytic<br />

mach<strong>in</strong>ery by <strong>in</strong>activation of CtsR alone is not sufficient for regulated<br />

degradation, with the exception of McsB-dependent proteolysis. Thus, the<br />

CtsR regulon seems to be embedded <strong>in</strong>to stress-specific modulons, where<br />

additional regulatory mechanisms <strong>in</strong>duce expression of stress-specific adaptor<br />

prote<strong>in</strong>s allow<strong>in</strong>g a concatenated stress response. Consequently, regulated<br />

prote<strong>in</strong> degradation seems to be under multiple control.<br />

The peptidase ClpP is the proteolytic component of the Clp degradation<br />

mach<strong>in</strong>ery and is ma<strong>in</strong>ly <strong>in</strong>volved <strong>in</strong> (1) prote<strong>in</strong> quality control (degradation<br />

of irreversibly damaged or ssrA-tagged prote<strong>in</strong>s) (Kr€uger et al., 2000;<br />

Wiegert and Schumann, 2001); (2) specific degradation of regulatory prote<strong>in</strong>s<br />

such as CtsR, ComK, SpoIIAB, Spx, DegU-P or RsiW (Turgay et al.,<br />

1998; Kr€uger et al., 2001; Pan et al., 2001; Nakano et al., 2002; Zellmeier et al.,<br />

2006; Ogura and Tsukahara, 2010); and (3) unemployed prote<strong>in</strong>s such as<br />

biosynthetic enzymes, which are no longer needed <strong>in</strong> starv<strong>in</strong>g cells such as<br />

MurAA, IlvB, PurF or PyrB (Kock et al., 2004a; Gerth et al., 2008) and also<br />

for virulence of pathogenic low GC, Gram+ bacteria (Frees et al., 2007).<br />

Synthesis of clpP is <strong>in</strong>duced dur<strong>in</strong>g several environmental stress conditions<br />

that causes damage to the prote<strong>in</strong> structure (Gerth et al., 1998, 2004;<br />

Frees and Ingmer, 1999; Gaillot et al., 2000; Chastanet et al., 2001; Frees et al.,<br />

2003a). Consequently, clpP <strong>in</strong>activation <strong>in</strong> low GC, Gram+ bacteria leads to<br />

a pleiotropic mutant phenotype <strong>in</strong>dicat<strong>in</strong>g the extraord<strong>in</strong>ary role of the Clp<br />

mach<strong>in</strong>ery for prote<strong>in</strong> quality control <strong>in</strong> low GC, Gram+ bacteria (Gerth<br />

et al., 1998; Msadek et al., 1998).<br />

A B. subtilis clpP mutant failed to activate specific developmental programmes<br />

due to failure <strong>in</strong> regulated degradation of key regulators, result<strong>in</strong>g<br />

<strong>in</strong> a deficiency <strong>in</strong> competence development and sporulation (Msadek et al.,<br />

1998). Both deficiencies depend on ClpCP-dependent degradation of either<br />

the master regulator of competence development ComK (Turgay et al., 1998)<br />

or the anti-sigma factor SpoIIAB, which regulates the sporulation-specific<br />

sigma factor s F <strong>in</strong> the forespore (Pan et al., 2001).<br />

A clpP mutant is more sensitive aga<strong>in</strong>st heat, oxidative or low pH stress <strong>in</strong><br />

Lactococcus lactis (Frees and Ingmer, 1999), L. monocytogenes (Gaillot<br />

et al., 2000), Streptococcus pneumoniae (Chastanet et al., 2001),<br />

Streptococcus mutans (Lemos and Burne, 2002), S. aureus (Frees et al.,<br />

2003a) andO. oeni (Beltramo et al., 2004). ClpP is also responsible for the


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 127<br />

controlled degradation of the MazE antitox<strong>in</strong>s and probably all other antitox<strong>in</strong>s<br />

<strong>in</strong> S. aureus (Donegan et al., 2010). In L. lactis, activity of the transcriptional<br />

stress repressor HdiR (heat and DNA damage-<strong>in</strong>ducible regulator)<br />

is controlled by ClpP-dependent degradation (Savijoki et al., 2003).<br />

F<strong>in</strong>ally, ClpP is also <strong>in</strong>volved <strong>in</strong> the virulence of pathogenic low GC, Gram<br />

+ bacteria. ClpP is essential <strong>in</strong> a mouse <strong>in</strong>fection model and for <strong>in</strong>tracellular<br />

survival of L. monocytogenes (Gaillot et al., 2000), <strong>in</strong> a mur<strong>in</strong>e sk<strong>in</strong> abscess<br />

model for S. aureus (Frees et al., 2003a), for survival of S. pneumoniae <strong>in</strong> mice<br />

(Robertson et al., 2002) and for expression of virulence genes <strong>in</strong> S. mutans<br />

(Kajfasz et al., 2009). In the last few years, different roles for ClpP <strong>in</strong> the<br />

expression of virulence factors were described. In L. monocytogenes, ClpP<br />

affects expression of listeriolys<strong>in</strong> O (Gaillot et al., 2000) and SvpA (Borezee<br />

et al., 2001). In S. aureus, ClpP <strong>in</strong>fluences expression of extracellular virulence<br />

factors such as hla (Frees et al., 2003a). In S. pneumoniae (Robertson<br />

et al., 2002; Kwon et al., 2003; Ibrahim et al., 2005) andS. mutans (Kajfasz<br />

et al., 2009), it was demonstrated that ClpP <strong>in</strong>fluences virulence gene<br />

expression.<br />

Based on the important cellular and physiological function of ClpP for<br />

stress adaptation and virulence of pathogenic bacteria, ClpP seems to be a<br />

promis<strong>in</strong>g target for newly developed antibiotics (Br€otz-Oesterhelt et al.,<br />

2005; B€ottcher and Sieber, 2008).<br />

ClpP needs a Clp ATPase to perform efficient prote<strong>in</strong> degradation. In<br />

low GC, Gram+ bacteria only ClpX, ClpC and ClpE are able to perform<br />

this function, but only clpC and clpE are under CtsR control. Interest<strong>in</strong>gly,<br />

B. subtilis ClpC needs specific adaptor prote<strong>in</strong>s for oligomerisation and<br />

ATPase activity (Kirste<strong>in</strong> et al., 2006),whichareneededforanefficient<br />

ClpCP activity. Contrarily, B. subtilis ClpE possesses an <strong>in</strong>tr<strong>in</strong>sic ATPase<br />

activity, which depends on a putative z<strong>in</strong>c f<strong>in</strong>ger (Miethke et al., 2006). A<br />

clpC mutant exhibits thermosensitivity <strong>in</strong> B. subtilis (Msadek et al., 1994),<br />

S. aureus (Frees et al., 2003a) andL. monocytogenes (Rouquette et al.,<br />

1996), but a clpC deletion <strong>in</strong> L. lactis (Ingmer et al., 1999)andS. pneumoniae<br />

(Chastanet et al., 2001) did not affect growth at higher temperatures.<br />

Opposite observations were made for ClpE. A clpE mutant has no obvious<br />

phenotype <strong>in</strong> B. subtilis (Derre et al., 1999a), whereas a clpE deletion <strong>in</strong><br />

L. lactis (Ingmer et al., 1999)orS. pneumoniae (Chastanet et al., 2001)has<br />

a severe thermosensitive phenotype. One could speculate that this observation<br />

is l<strong>in</strong>ked to the occurrence of the specific heat-activated ClpC<br />

adaptor McsB, which is present <strong>in</strong> the order of Bacillales but is absent <strong>in</strong><br />

Lactobacillales.<br />

ClpC is the major ATPase for prote<strong>in</strong> turnover and regulated degradation<br />

<strong>in</strong> B. subtilis (Kr€uger et al., 2000; Gerth et al., 2008) and a correspond<strong>in</strong>g


128 ALEXANDER K.W. ELSHOLZ ET AL.<br />

mutant has a severe phenotype (Kr€uger et al., 1994; Msadek et al., 1994).<br />

Therefore, degradation of key regulators or ‘unemployed’ prote<strong>in</strong>s such as<br />

SpoIIAB, ComK, MurAA and GlmS are ma<strong>in</strong>ly performed by the ClpCP<br />

system (Turgay et al., 1998; Pan et al., 2001; Kock et al., 2004a; Gerth et al.,<br />

2008). ClpC is also important <strong>in</strong> other low GC, Gram+ bacteria and a clpC<br />

mutant thus has also a severe phenotype <strong>in</strong> L. monocytogenes (Rouquette<br />

et al., 1998), S. pneumoniae (Charpentier et al., 2000) and S. aureus (Frees<br />

et al., 2004; Chatterjee et al., 2005). ClpC is <strong>in</strong>volved <strong>in</strong> the virulence of<br />

pathogenic bacteria such as L. monocytogenes (Rouquette et al., 1996,<br />

1998; Nair et al., 2000b), S. aureus (Frees et al., 2004) and S. pneumoniae<br />

(Charpentier et al., 2000). Similar to ClpP, ClpC also affects expression of<br />

virulence factors such as SvpA (Borezee et al., 2001) and listeriolys<strong>in</strong> O<br />

(Rouquette et al., 1998)<strong>in</strong>L. monocytogenes or general virulence expression<br />

<strong>in</strong> S. pneumoniae (Ibrahim et al., 2005).<br />

In B. subtilis, clpE does not show a severe phenotype (Derre et al., 1999a)<br />

and a specific function for ClpE <strong>in</strong> B. subtilis could only be l<strong>in</strong>ked to CtsR<br />

(Miethke et al., 2006). Deletion of clpE affects the re-repression of CtsRdependent<br />

transcription, suggest<strong>in</strong>g a role for ClpE <strong>in</strong> the re-activation of<br />

CtsR <strong>in</strong> B. subtilis (Miethke et al., 2006)andL. lactis (Varmanen et al., 2003).<br />

ClpE also participates <strong>in</strong> the degradation of CtsR, partially <strong>in</strong> B. subtilis<br />

(Miethke et al., 2006) and fully <strong>in</strong> L. lactis (Elsholz et al., manuscript<br />

submitted). In other low GC, Gram+ bacteria a clpE mutant is deficient <strong>in</strong><br />

stress survival <strong>in</strong> L. monocytogenes (Nair et al., 1999), L. lactis (Ingmer et al.,<br />

1999) and S. pneumoniae (Chastanet et al., 2001). In addition, ClpE is also<br />

needed for virulence of L. monocytogenes (Nair et al., 1999) and S. pneumoniae<br />

(Zhang et al., 2009).<br />

Effects of clpL or clpB knock-outs <strong>in</strong> S. aureus can only depend on<br />

chaperone activity because ClpL and ClpB lack the IGF loop which is crucial<br />

for <strong>in</strong>teraction with ClpP (Kim et al., 2001). A clpL mutant displays a heatsensitive<br />

phenotype and decreased virulence for S. pneumoniae (Kwon et al.,<br />

2003) and S. mutans. ClpL is <strong>in</strong>volved <strong>in</strong> stress tolerance and viability<br />

(Kajfasz et al., 2009). ClpB <strong>in</strong> L. monocytogenes is needed for virulence<br />

and <strong>in</strong>duction of thermotolerance, but not for other stress conditions<br />

(Chastanet et al., 2004). In S. aureus a clpB mutant showed decreased virulence<br />

and thermotolerance (Frees et al., 2004).<br />

The molecular chaperones DnaK and GroEL are highly conserved among<br />

pro- and eukaryotes (Craig, 1985), and are important for stress resistance. In<br />

S. aureus, both prote<strong>in</strong>s are important for virulence (Qoronfleh et al., 1993,<br />

1998). Deletion of either dnaK or groEL leads to reduced virulence and<br />

stress sensitivity (S<strong>in</strong>gh et al., 2007). S. mutans dnaK and groEL are needed<br />

for general stress tolerance (Lemos et al., 2007).


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 129<br />

The two modulators McsA and McsB <strong>in</strong> Bacillales were shown to act as an<br />

adaptor complex for ClpC (Kirste<strong>in</strong> et al., 2007). Recently, it has also been<br />

demonstrated that the McsAB adaptor complex mediates the delocalisation<br />

of competence prote<strong>in</strong>s from cell poles <strong>in</strong> B. subtilis (Hahn et al., 2009).<br />

Inactivation of CtsR itself leads to an enhanced stress tolerance accord<strong>in</strong>g<br />

to the <strong>in</strong>creased expression of the prote<strong>in</strong> quality control prote<strong>in</strong>s <strong>in</strong><br />

L. monocytogenes (Nair et al., 2000a; Karatzas et al., 2003), L. lactis<br />

(Varmanen et al., 2000), S. thermophilus (Zotta et al., 2009) and<br />

Lactobacillus sakeii (H€ufner et al., 2007; H€ufner and Hertel, 2008), where<br />

the utilisation of a ctsR mutant represents an advantage for <strong>in</strong>dustrial<br />

production <strong>in</strong> a fermenter.<br />

4. MECHANISMS FOR THE INACTIVATION OF THE CtsR<br />

REPRESSOR<br />

4.1. Heat Inactivation of CtsR<br />

CtsR, the first gene of the clpC operon, was described to conta<strong>in</strong> a putative<br />

helix-turn-helix (HTH) DNA b<strong>in</strong>d<strong>in</strong>g motif <strong>in</strong> low GC, Gram+ bacteria<br />

(Kr€uger et al., 1997). Later, CtsR was identified as the correspond<strong>in</strong>g repressor<br />

for clpC and clpP expression <strong>in</strong> B. subtilis. CtsR directly b<strong>in</strong>ds to the<br />

promoters and recognises the direct heptanucleotide repeat sequence (A/<br />

GGTCA A ANANA/GGTCA A A) (Derre et al., 1999b). This consensus<br />

sequence is highly conserved among low GC, Gram+ bacteria. Moreover,<br />

the ctsR gene itself is also highly conserved. However, CtsR is very specific<br />

for low GC, Gram+ bacteria because no homologues were found <strong>in</strong> either<br />

Gram-negative bacteria or the act<strong>in</strong>obacteria branch.<br />

An <strong>in</strong>itial characterisation <strong>in</strong> B. subtilis revealed that CtsR is only active as<br />

a dimer (Derre et al., 2000). The 2nd and 3rd genes of the tetra-cistronic clpCoperon<br />

<strong>in</strong> B. subtilis were renamed McsA and McsB (modulators of CtsR<br />

activity) accord<strong>in</strong>g to their <strong>in</strong>fluence on CtsR activity. McsB shows homology<br />

to ATP:guanid<strong>in</strong>o phosphotransferases such as arg<strong>in</strong><strong>in</strong>e k<strong>in</strong>ases and <strong>in</strong>hibited<br />

CtsR DNA b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> vitro. 2D Western analysis suggested that CtsR<br />

became phosphorylated by McsB dur<strong>in</strong>g heat stress (Kr€uger et al., 2001).<br />

McsA, a putative z<strong>in</strong>c f<strong>in</strong>ger prote<strong>in</strong>, was shown to be essential for CtsR<br />

activity <strong>in</strong> vivo because CtsR is no longer active <strong>in</strong> a mcsA mutant.<br />

Furthermore, it became clear that CtsR is degraded <strong>in</strong> ClpCP-dependent<br />

manner dur<strong>in</strong>g heat stress (Kr€uger et al., 2001).<br />

ClpE is needed for an efficient and timely re-repression of CtsRdependent<br />

transcription. In a L. lactis clpE mutant, re-repression was


130 ALEXANDER K.W. ELSHOLZ ET AL.<br />

delayed, but still occurred with a time lag. Therefore, ClpE does not seem<br />

solely responsible for the reconstitution of CtsR activity. In addition, the z<strong>in</strong>c<br />

f<strong>in</strong>ger of ClpE was identified to be crucial for re-repression (Varmanen et al.,<br />

2003). This observation was later also confirmed for B. subtilis. Moreover,<br />

the z<strong>in</strong>c f<strong>in</strong>ger of ClpE was l<strong>in</strong>ked to the autonomic ATPase function of ClpE<br />

(Miethke et al., 2006), as was also shown for ClpX <strong>in</strong> E. coli (Banecki et al.,<br />

2001).<br />

McsB was characterised as a tyros<strong>in</strong>e k<strong>in</strong>ase <strong>in</strong> vitro that specifically phosphorylates<br />

McsA, CtsR, ClpC as well as itself (Kirste<strong>in</strong> et al., 2005).<br />

However, McsB k<strong>in</strong>ase activity needs McsA as an activator for efficient<br />

phosphorylation. Specific phosphorylation sites for McsB, tyros<strong>in</strong>e residue<br />

155 and 210, as well as tyros<strong>in</strong>e residues for McsA were described. Inter-<br />

(McsB!McsA) and <strong>in</strong>tramolecular (McsB!McsB) phosphate transfer was<br />

observed. The low-molecular-weight prote<strong>in</strong> tyros<strong>in</strong>e phosphatase<br />

(LMWPTP) YwlE was identified as the cognate McsB phosphatase that<br />

dephosphorylates CtsR, McsA, McsB as well as ClpC <strong>in</strong> vitro. Furthermore,<br />

McsB is the only direct <strong>in</strong>teraction partner of CtsR and McsBdependent<br />

release of CtsR from the DNA <strong>in</strong> vitro is strongly enhanced when<br />

McsB is active as a k<strong>in</strong>ase. Additionally, ClpCP-dependent CtsR degradation<br />

dur<strong>in</strong>g heat stress is also dependent on McsA and McsB. Based on the<br />

observation that ClpC <strong>in</strong>hibits McsB activity and this repression is restricted<br />

when prote<strong>in</strong> aggregates are present, a titration model was postulated<br />

(Kirste<strong>in</strong> et al., 2005). Such a titration model is also known for other heat<br />

shockregulatorssuchass 32 (Bukau, 1993) orHrcA(Mogk et al., 1997), and<br />

seems to be an elegant model for regulation of CtsR activity as well (Fig. 2).<br />

A recent <strong>in</strong> vitro study with CtsR and McsB from Bacillus stearothermophilus<br />

revealed that McsB is an arg<strong>in</strong><strong>in</strong>e k<strong>in</strong>ase <strong>in</strong>stead of a tyros<strong>in</strong>e k<strong>in</strong>ase<br />

(Fuhrmann et al., 2009). Furthermore, the structure of CtsR b<strong>in</strong>d<strong>in</strong>g to its<br />

DNA operator was solved. It was shown that CtsR is a w<strong>in</strong>ged HTH prote<strong>in</strong><br />

where the HTH doma<strong>in</strong> b<strong>in</strong>ds <strong>in</strong> the major groove of the DNA whereas the<br />

b-hairp<strong>in</strong> w<strong>in</strong>g grabs <strong>in</strong>to the m<strong>in</strong>or groove. It was also demonstrated that<br />

McsB phosphorylates CtsR on specific arg<strong>in</strong><strong>in</strong>e residues with<strong>in</strong> the w<strong>in</strong>ged<br />

HTH region <strong>in</strong> vitro. Because the determ<strong>in</strong>ed phospho-sites are also<br />

<strong>in</strong>volved <strong>in</strong> DNA b<strong>in</strong>d<strong>in</strong>g of CtsR, it was thought that McsB is only able to<br />

b<strong>in</strong>d and phosphorylate free CtsR (Fuhrmann et al., 2009).<br />

Such a model supports only a transient <strong>in</strong>duction of gene expression, but<br />

not rapid and strong <strong>in</strong>duction with<strong>in</strong> 1–2 m<strong>in</strong>, as was observed for CtsRdependent<br />

transcription dur<strong>in</strong>g heat stress (Kr€uger et al., 1994). Exclusive<br />

phosphorylation of free CtsR would result <strong>in</strong> slow enhancement of transcription<br />

peak<strong>in</strong>g long after the stress <strong>in</strong>put because <strong>in</strong>activation of CtsR would<br />

depend on prior dissociation of DNA-bound CtsR. In addition, it has long


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 131<br />

[(Figure_2)TD$FIG]<br />

Figure 2 Graphical presentation of regulation and degradation of CtsR <strong>in</strong> the<br />

different low GC, Gram+ orders under specific stress conditions. (a) CtsR <strong>in</strong>activation<br />

and degradation dur<strong>in</strong>g heat stress <strong>in</strong> the order Bacillales. Under control conditions<br />

CtsR b<strong>in</strong>ds to its DNA operator and McsB k<strong>in</strong>ase is repressed by b<strong>in</strong>d<strong>in</strong>g to<br />

ClpC. Elevated temperatures lead to a loss of CtsR DNA b<strong>in</strong>d<strong>in</strong>g. In addition, McsB<br />

is released from ClpC and becomes activated as a k<strong>in</strong>ase by McsA. This activation<br />

results <strong>in</strong> target<strong>in</strong>g of free CtsR for a ClpCP-mediated proteolysis. (b) CtsR <strong>in</strong>activation<br />

and degradation dur<strong>in</strong>g heat stress <strong>in</strong> the order Lactobacillales that misses the<br />

two modulators McsA and McsB. Under control conditions CtsR b<strong>in</strong>ds to its DNA<br />

operator. Elevated temperatures lead to a loss of CtsR DNA b<strong>in</strong>d<strong>in</strong>g and ClpEPmediated<br />

degradation. (c) CtsR <strong>in</strong>activation dur<strong>in</strong>g oxidative stress conditions <strong>in</strong> the<br />

order Bacillales. Under control conditions CtsR b<strong>in</strong>ds to its DNA operator and McsB<br />

k<strong>in</strong>ase is repressed by b<strong>in</strong>d<strong>in</strong>g to ClpC. Dur<strong>in</strong>g oxidative stress critical thiols are<br />

oxidised with<strong>in</strong> the oxidative stress sensor prote<strong>in</strong> McsA. This oxidation disturbs<br />

<strong>in</strong>teraction of McsA/McsB and activates a specific McsB function. Consequently,<br />

McsB is now able to b<strong>in</strong>d and <strong>in</strong>activate DNA-bound CtsR, but CtsR cannot be<br />

degraded due to the <strong>in</strong>active McsB k<strong>in</strong>ase. (d) CtsR <strong>in</strong>activation dur<strong>in</strong>g oxidative<br />

stress <strong>in</strong> the order Lactobacillales. Under control conditions CtsR b<strong>in</strong>ds to its DNA<br />

operator. Oxidative stress leads to oxidation of critical thiols with<strong>in</strong> ClpE. This<br />

oxidation causes an activation of ClpE which is now able to target DNA-bound<br />

CtsR (See Colour Plate Section).


132 ALEXANDER K.W. ELSHOLZ ET AL.<br />

been known that the two modulators McsA and McsB are absent <strong>in</strong> the<br />

Lactobacillales order (Varmanen et al., 2000; Lemos and Burne, 2002).<br />

Recently, Elsholz and co-workers revealed that McsB is not <strong>in</strong>volved <strong>in</strong><br />

the regulation of CtsR activity dur<strong>in</strong>g heat stress <strong>in</strong> vivo, support<strong>in</strong>g a<br />

hypothesis that CtsR activity is identically regulated <strong>in</strong> all low GC, Gram+<br />

bacteria. It was suggested that CtsR is able to sense and respond to elevated<br />

temperatures by act<strong>in</strong>g as a prote<strong>in</strong> thermometer <strong>in</strong> all low GC, Gram+<br />

bacteria, which adjusts its activity <strong>in</strong>tr<strong>in</strong>sically to the surround<strong>in</strong>g temperatures.<br />

CtsR is able to b<strong>in</strong>d to its cognate DNA operator sequence with high<br />

aff<strong>in</strong>ity under control conditions, but DNA b<strong>in</strong>d<strong>in</strong>g under heat shock conditions<br />

is dramatically reduced. Furthermore, the CtsR prote<strong>in</strong> is adapted to<br />

the ecological niche of the specific low GC, Gram+ bacteria, and thus can<br />

respond to the very species-specific heat shock temperatures (Elsholz et al.,<br />

2010).<br />

The auto-<strong>in</strong>activation of CtsR is not an on/off decision, where CtsR activity<br />

is switched off above a specific temperature. CtsR is only partially <strong>in</strong>activated<br />

at modest heat temperatures and becomes fully <strong>in</strong>activated only at<br />

maximal heat stress temperatures, as observed for CtsR from B. subtilis<br />

(Kr€uger et al., 1994), S. aureus (Fleury et al., 2009) and L. lactis (Elsholz<br />

et al., 2010). This mechanism secures that only the needed amounts of heat<br />

shock prote<strong>in</strong>s become expressed under specific circumstances and excludes<br />

that an excess of prote<strong>in</strong> quality systems are expressed under a modest<br />

prote<strong>in</strong> stress which would waste important cellular resources.<br />

The b hairp<strong>in</strong> w<strong>in</strong>g with its tetra-glyc<strong>in</strong>e loop was identified as the region<br />

that is responsible for thermosens<strong>in</strong>g of CtsR <strong>in</strong> all low GC, Gram+ bacteria<br />

(Elsholz et al., 2010). This loop occupies an outstand<strong>in</strong>g position as it is<br />

directly located at the tip of the w<strong>in</strong>g implicat<strong>in</strong>g a potential regulatory role<br />

(Fuhrmann et al., 2009). It has long been known that glyc<strong>in</strong>e residues exhibit<br />

great conformational freedom and can adopt a conformation to a much wider<br />

range than the other am<strong>in</strong>o acid residues due to their free phi and psi angles<br />

(Matthews et al., 1987). As a result, glyc<strong>in</strong>e residues have more backbone<br />

conformational flexibility, which <strong>in</strong>creases the configurational entropy of the<br />

denatured state. Therefore, more free energy is needed to ma<strong>in</strong>ta<strong>in</strong> the<br />

structural <strong>in</strong>tegrity of the native state. This effect results <strong>in</strong> decreased thermostability<br />

of the prote<strong>in</strong> (Elsholz et al., 2010).<br />

4.2. CtsR Inactivation Dur<strong>in</strong>g Oxidative Stress<br />

It has long been known that, <strong>in</strong> addition to heat stress, CtsR is also <strong>in</strong>activated<br />

dur<strong>in</strong>g other stress conditions such as disulfide stress (Leichert et al.,


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 133<br />

2003), H 2O 2 (Mostertz et al., 2004), carbonyl electrophiles (Nguyen et al.,<br />

2009) and low pH (Frees et al., 2003b). As long as a titration model regard<strong>in</strong>g<br />

McsB was applicable, the <strong>in</strong>duction mechanism seemed to be clear and<br />

unique because all these stress conditions should result <strong>in</strong> damage of prote<strong>in</strong><br />

structure which may lead to prote<strong>in</strong> aggregation (Hartl and Hayer-Hartl,<br />

2009). However, s<strong>in</strong>ce the observation that CtsR is an <strong>in</strong>tr<strong>in</strong>sic heat sensor<br />

(Elsholz et al., 2010), the assumption that a common mechanism for CtsR<br />

<strong>in</strong>activation exists for all stress conditions turned out to be obsolete. Thus,<br />

dual activity control of CtsR activity must have evolved for CtsR <strong>in</strong>activation<br />

dur<strong>in</strong>g different stress conditions. This model is also underl<strong>in</strong>ed by the fact<br />

that CtsR-dependent transcription differs significantly dur<strong>in</strong>g oxidative<br />

stress and heat stress (Elsholz et al., manuscript submitted).<br />

A new mechanism for CtsR <strong>in</strong>activation dur<strong>in</strong>g oxidative stress was<br />

uncovered that depends solely on McsB, but not on its k<strong>in</strong>ase activity.<br />

McsB activity dur<strong>in</strong>g oxidative stress is regulated by McsA, which acts as a<br />

redox-sens<strong>in</strong>g prote<strong>in</strong> to adjust McsB function. Not only CtsR activity is<br />

dually regulated, but also McsA acts as a dual regulator of McsB. Under<br />

control and heat stress conditions, McsA and McsB are associated, and<br />

McsA can activate McsB k<strong>in</strong>ase as long as McsB is not <strong>in</strong>hibited by ClpC.<br />

On the other hand, McsA can also act as an <strong>in</strong>hibitor of McsB, and McsB<br />

ceases to <strong>in</strong>activate DNA-bound CtsR, as long as both prote<strong>in</strong>s are associated.<br />

Under oxidative stress conditions, the critical thiols of the second z<strong>in</strong>c<br />

f<strong>in</strong>ger of McsA become oxidised. As a result, these thiols act as a molecular<br />

redox switch to regulate the activity of McsB by decreas<strong>in</strong>g the <strong>in</strong>teraction of<br />

McsA with McsB. When McsB is free of McsA, it is able to b<strong>in</strong>d and<br />

<strong>in</strong>activate DNA-bound CtsR, result<strong>in</strong>g <strong>in</strong> <strong>in</strong>duced transcription of target<br />

genes. But due to the <strong>in</strong>active McsB k<strong>in</strong>ase, CtsR is not degraded. McsA is<br />

processed <strong>in</strong> a ClpCP-dependent manner, with the essential help of the<br />

adaptor prote<strong>in</strong> McsB, result<strong>in</strong>g <strong>in</strong> a cleaved McsA prote<strong>in</strong>, which may<br />

prevent b<strong>in</strong>d<strong>in</strong>g to McsB. Interest<strong>in</strong>gly, reversible oxidation of McsA seems<br />

to be required for correct cleavage of McsA (Elsholz et al., manuscript<br />

submitted).<br />

McsA, with its crucial cyste<strong>in</strong>e residues, is a redox-sens<strong>in</strong>g prote<strong>in</strong> which<br />

specifically regulates the activity of McsB and thus is responsible for a<br />

modest response to oxidative stress. Yet the oxidative stress sens<strong>in</strong>g complex<br />

McsA/B is not present <strong>in</strong> the order of Lactobacillales. The observation<br />

that CtsR-dependent transcription <strong>in</strong> L. lactis is strongly <strong>in</strong>duced<br />

dur<strong>in</strong>g oxidative stress suggests that another mechanism for CtsR <strong>in</strong>activation<br />

exists. It was found that ClpE is essential for CtsR <strong>in</strong>activation<br />

dur<strong>in</strong>g oxidative stress <strong>in</strong> L. lactis, reveal<strong>in</strong>g a new ClpE-mediated <strong>in</strong>activation<br />

mechanism for CtsR. Remarkably, L. lactis clpE expression is


134 ALEXANDER K.W. ELSHOLZ ET AL.<br />

relatively higher under control conditions when compared with B. subtilis<br />

to secure that ClpE is always present and can act as an redox-sensor<br />

prote<strong>in</strong> (Elsholz et al., manuscript submitted). This is due to the fact that<br />

the number of L. lactis CtsR b<strong>in</strong>d<strong>in</strong>g sites <strong>in</strong> front of clpE is lower compared<br />

with B. subtilis (Varmanen et al., 2000). It was demonstrated that<br />

the previously described thiol-dependent cleavage of ClpE by ClpP<br />

(Varmanen et al., 2003) depends on the reversible oxidation of the critical<br />

thiols. Interest<strong>in</strong>gly, this cleavage was not observed for B. subtilis ClpE,<br />

suggest<strong>in</strong>g that L. lactis ClpE specifically ga<strong>in</strong>ed this feature <strong>in</strong> the course<br />

of evolution (Elsholz et al., manuscript submitted).<br />

Signal transduction dur<strong>in</strong>g oxidative stress result<strong>in</strong>g <strong>in</strong> CtsR <strong>in</strong>activation is<br />

mediated by different signall<strong>in</strong>g pathways <strong>in</strong> low GC, Gram+ bacteria,<br />

dependent on the presence or evolutionary development of the redoxsens<strong>in</strong>g<br />

prote<strong>in</strong>s. Nevertheless, both aforementioned mechanisms depend<br />

on critical thiols, which act as nano-switches to adjust prote<strong>in</strong> activity <strong>in</strong> order<br />

to counteract oxidative stress (Elsholz et al., manuscript submitted). Both<br />

pathways are also completely different <strong>in</strong> comparison to heat <strong>in</strong>activation,<br />

demonstrat<strong>in</strong>g dual activity control of CtsR, which may be important for<br />

appropriate adaptation to different stress conditions.<br />

4.3. CtsR Inactivation Dur<strong>in</strong>g Other Stress Conditions<br />

Two dist<strong>in</strong>ct mechanisms are known for the <strong>in</strong>activation of CtsR, a temperature-dependent<br />

one for the response to elevated temperatures and a thioldependent<br />

one for sens<strong>in</strong>g of oxidative stress. Nevertheless, a few stress<br />

conditions which result <strong>in</strong> CtsR <strong>in</strong>activation cannot be expla<strong>in</strong>ed sufficiently<br />

by these two mechanisms. Inactivation of CtsR by prote<strong>in</strong> stress caused by<br />

specific antibiotics such as puromyc<strong>in</strong> (Kr€uger et al., 1996; Frees and Ingmer,<br />

1999) or low pH (Frees et al., 2003b) is not expla<strong>in</strong>able by the two identified<br />

mechanisms. Neither a heat-sens<strong>in</strong>g doma<strong>in</strong> nor critical thiols are known to<br />

respond to prote<strong>in</strong> aggregates. CtsR <strong>in</strong>activation dur<strong>in</strong>g these conditions<br />

may depend on activation of McsB k<strong>in</strong>ase by prote<strong>in</strong> aggregates. However,<br />

one could also speculate that an additional mechanism has become established<br />

for these conditions.<br />

Interest<strong>in</strong>gly, <strong>in</strong>duction of CtsR-dependent prote<strong>in</strong> quality control systems<br />

<strong>in</strong> L. monocytogenes under hydrostatic pressure was shown not to<br />

depend on a transcriptional signall<strong>in</strong>g cascade, but is regulated at the genomic<br />

level by genetic variation. Most of the isolated L. monocytogenes spontaneous<br />

high-hydrostatic pressure (HHP)-tolerant mutants bear a mutation<br />

<strong>in</strong> a specific region of CtsR which results <strong>in</strong> an <strong>in</strong>active CtsR prote<strong>in</strong>


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 135<br />

(Karatzas et al., 2003). The mutated region codes for the b hairp<strong>in</strong> w<strong>in</strong>g and<br />

the mutations are located <strong>in</strong> the tetra-glyc<strong>in</strong>e loop. This loop is encoded <strong>in</strong> L.<br />

monocytogenes by a short sequence repeat of GGT and all mutations were<br />

located with<strong>in</strong> this DNA repeat (Karatzas et al., 2005). Such hot spots of<br />

genetic variation, where Rec-<strong>in</strong>dependent mutations accumulate at high<br />

frequency, have been known for a long time. DNA repeats are very common<br />

<strong>in</strong> this group and most likely cause strand slippage of the DNA polymerase,<br />

thus promot<strong>in</strong>g genetic variability (Treangen et al., 2009). It was demonstrated<br />

for E. coli that such tandem repeats are very common <strong>in</strong> stress<br />

response genes to ensure a moderate stress survival (Rocha et al., 2002). In<br />

addition, such specific DNA repeats <strong>in</strong> virulence genes are of tremendous<br />

relevance for the adaptation of pathogenic bacteria to their specific host<br />

(Moxon et al., 2006).<br />

As noted above, a ctsR mutant displays an <strong>in</strong>creased stress tolerance due<br />

to the permanent <strong>in</strong>duction of the prote<strong>in</strong> quality control genes. Thus, transient<br />

gene silenc<strong>in</strong>g of ctsR would enhance fitness and stress tolerance and<br />

give the bacteria an advantage <strong>in</strong> the adaptation to a new ecological niche<br />

and their specific conditions. In fact, <strong>in</strong>activation of L. monocytogenes ctsR<br />

by a s<strong>in</strong>gle codon deletion enhances the stress tolerance and decreases the<br />

virulence (Karatzas et al., 2003), most probably to escape the immune system<br />

and persist with<strong>in</strong> the host.<br />

It seems likely that evolution has allowed an emergency exit for low GC,<br />

Gram+ bacteria to cope with conformational stress conditions when activation<br />

of prote<strong>in</strong> quality control genes through regular transcriptional<br />

regulation of CtsR is not applicable. As a consequence, a regulatory layer<br />

at the genomic level was <strong>in</strong>troduced to give the bacteria an opportunity to<br />

escape stress conditions by <strong>in</strong>creas<strong>in</strong>g the amount of prote<strong>in</strong> quality systems.<br />

Hence, specific mutations accumulate <strong>in</strong> a DNA repeat with<strong>in</strong> the<br />

ctsR gene dur<strong>in</strong>g evolutionary pressure to <strong>in</strong>activate CtsR and to give<br />

the bacteria a growth advantage, ensur<strong>in</strong>g that a subset of cells survive<br />

the stress.<br />

However, such a stress-specific genetic mutation is only shown for<br />

piezo-tolerant SCV of L. monocytogenes (Karatzas et al., 2003) and not<br />

for other low GC, Gram+ bacteria. In addition, <strong>in</strong> piezo-tolerant SCV of<br />

S. aureus no mutations for CtsR were detected (Karatzas et al., 2007), and<br />

the DNA repeats of the tetra-glyc<strong>in</strong>e doma<strong>in</strong> <strong>in</strong> ctsR are not so conserved<br />

<strong>in</strong> low GC, Gram+ bacteria as at the prote<strong>in</strong> level (Karatzas et al., 2005).<br />

To date, only these two studies have been reported, but this could be a<br />

widely used mechanism. Therefore, additional genetic studies must be<br />

performed to <strong>in</strong>vestigate more prote<strong>in</strong> stress conditions <strong>in</strong> different low<br />

GC, Gram+ bacteria.


136 ALEXANDER K.W. ELSHOLZ ET AL.<br />

5. CONTROL OF CTSR DEGRADATION BY THE REGULATED<br />

ADAPTOR McsB<br />

Controlled degradation of key transcriptional regulators plays a critical role<br />

<strong>in</strong> many bacterial regulatory circuits (Gottesman, 2003) However, CtsR<br />

degradation is not needed for <strong>in</strong>duction of ctsR-dependent genes. In vivo<br />

and <strong>in</strong> vitro experiments demonstrated that CtsR is a substrate for the ClpCP<br />

protease (Kr€uger et al., 2001), but CtsR is very stable under control conditions<br />

and only becomes degraded under stress conditions such as heat or<br />

puromyc<strong>in</strong> treatment (Kr€uger et al., 2001). It was revealed that the two<br />

modulators of CtsR activity, McsA and McsB, <strong>in</strong> B. subtilis are necessary<br />

for CtsR degradation dur<strong>in</strong>g heat stress (Kirste<strong>in</strong> et al., 2005). It was shown<br />

by <strong>in</strong> vitro experiments that specifically McsB k<strong>in</strong>ase is essential for CtsR<br />

degradation, but CtsR phosphorylation is not sufficient for CtsR degradation<br />

(Kirste<strong>in</strong> et al., 2007). Additionally, YwlE was identified as the cognate<br />

phosphatase of the McsB k<strong>in</strong>ase <strong>in</strong> vitro (Kirste<strong>in</strong> et al., 2005).<br />

Recently, it has been demonstrated that McsB k<strong>in</strong>ase activity is needed for<br />

an efficient CtsR degradation <strong>in</strong> vivo, underl<strong>in</strong><strong>in</strong>g the role of McsB as an<br />

adaptor for ClpC. CtsR degradation depends on the activation of McsB as an<br />

adaptor prote<strong>in</strong> by auto-phosphorylation and not on a direct CtsR phosphorylation.<br />

Only phosphorylated McsB is able to b<strong>in</strong>d CtsR. Consequently, a<br />

sophisticated regulatory two-step mechanism for CtsR degradation was<br />

uncovered as CtsR is only accessible for McsB when it is not bound to its<br />

DNA operator, and McsB can only target free CtsR when heat activated as<br />

an adaptor prote<strong>in</strong> (Elsholz et al., 2010).<br />

YwlE was shown to counteract McsB adaptor activity <strong>in</strong> vivo. When,<br />

dephosphorylation of McsB by YwlE failed, McsB adaptor activity is shutdown<br />

rapidly by degradation when phosphorylated. This regulatory switch<br />

prevents degradation of re-activated CtsR (Elsholz et al., 2010).<br />

CtsR was also shown to be rapidly degraded dur<strong>in</strong>g heat stress <strong>in</strong> the order<br />

of Lactobacillales, where mcsA and mcsB are not present. CtsR degradation<br />

<strong>in</strong> these bacteria was shown to depend on ClpE (Elsholz et al., 2010), but the<br />

precise mechanism of CtsR target<strong>in</strong>g and degradation, that is whether ClpE<br />

is heat activated or not, rema<strong>in</strong>s to be uncovered.<br />

6. SUMMARY AND OUTLOOK<br />

The regulation of CtsR activity and its controlled degradation has become<br />

one of the best-studied regulatory heat stress mechanisms <strong>in</strong> low GC, Gram+


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 137<br />

bacteria. In recent years, CtsR was established as a model system par excellence<br />

to study precise and f<strong>in</strong>e-tuned regulatory mechanisms <strong>in</strong> molecular<br />

detail. Generally, elucidation of CtsR activity provides deeper <strong>in</strong>sights <strong>in</strong>to a<br />

fundamental, highly conserved and global bacterial stress response system.<br />

Nevertheless, ‘solved’ problems tend to raise more questions. Thus, a further<br />

characterisation of the structural details of how CtsR gets <strong>in</strong>activated dur<strong>in</strong>g<br />

heat stress and how CtsR is re-activated as a DNA b<strong>in</strong>d<strong>in</strong>g repressor, as well<br />

as a molecular characterisation of CtsR degradation, rema<strong>in</strong>s an <strong>in</strong>terest<strong>in</strong>g<br />

subject for future studies.<br />

The identification of other prote<strong>in</strong> stress conditions that lead to CtsR<br />

<strong>in</strong>activation, as well as the underly<strong>in</strong>g molecular mechanisms, will provide<br />

a deeper understand<strong>in</strong>g of the function and role of CtsR <strong>in</strong> low GC, Gram+<br />

bacteria. In addition, new members of the CtsR regulon will probably also<br />

contribute to the physiological important function of CtsR. One of the major<br />

challenges is to connect the different mechanisms perta<strong>in</strong><strong>in</strong>g to the regulation<br />

of CtsR activity and stability, to <strong>in</strong>vestigate why different mechanisms<br />

have become established for the same physiological function <strong>in</strong> the different<br />

low GC, Gram+ orders and to place all the <strong>in</strong>formation <strong>in</strong>to a systems<br />

biology context.<br />

ACKNOWLEDGEMENT<br />

The authors are grateful to Volker Br€ozel (South Dakota State Univ., USA)<br />

for critical read<strong>in</strong>g of the manuscript and helpful comments.<br />

REFERENCES<br />

Baker, T.A. and Sauer, R.T. (2006) ATP-dependent proteases of bacteria: recognition<br />

logic and operat<strong>in</strong>g pr<strong>in</strong>ciples. Trend Biochem. Sci. 31, 647–653.<br />

Banecki, B., Wawrzynow, A., Puzewicz, J., Georgopoulos, C. and Zylicz, M. (2001)<br />

Structure–function analysis of the z<strong>in</strong>c-b<strong>in</strong>d<strong>in</strong>g region of the Clpx molecular chaperone.<br />

J. Biol. Chem. 276, 18843–18848.<br />

Beltramo, C., Grandvalet, C., Pierre, F. and Guzzo, J. (2004) Evidence for multiple<br />

levels of regulation of Oenococcus oeni clpP-clpL locus expression <strong>in</strong> response to<br />

stress. J. Bacteriol. 186, 2200–2205.<br />

Borezee, E., Pellegr<strong>in</strong>i, E., Beretti, J.L. and Berche, P. (2001) SvpA, a novel surface<br />

virulence-associated prote<strong>in</strong> required for <strong>in</strong>tracellular survival of Listeria monocytogenes.<br />

Microbiology (Read<strong>in</strong>g Engl.) 147, 2913–2923.<br />

B€ottcher, T. and Sieber, S.A. (2008) Beta-lactones as specific <strong>in</strong>hibitors of ClpP<br />

attenuate the production of extracellular virulence factors of Staphylococcus<br />

aureus. J. Am. Chem. Soc. 130, 14400–14401.


138 ALEXANDER K.W. ELSHOLZ ET AL.<br />

Br€otz-Oesterhelt, H., Beyer, D., Kroll, H.-P., Endermann, R., Ladel, C., Schroeder,<br />

W., H<strong>in</strong>zen, B., Raddatz, S., Paulsen, H., Henn<strong>in</strong>ger, K., Bandow, J.E., Sahl, H.-G.<br />

and Labisch<strong>in</strong>ski, H. (2005) Dysregulation of bacterial proteolytic mach<strong>in</strong>ery by a<br />

new class of antibiotics. Nat. Med. 11, 1082–1087.<br />

Bukau, B. (1993) Regulation of the Escherichia coli heat-shock response. Mol.<br />

Microbiol. 9, 671–680.<br />

Charpentier, E., Novak, R. and Tuomanen, E. (2000) Regulation of growth <strong>in</strong>hibition<br />

at high temperature, autolysis, transformation and adherence <strong>in</strong> Streptococcus<br />

pneumoniae by clpC. Mol. Microbiol. 37, 717–726.<br />

Chastanet, A., Derre, I., Nair, S. and Msadek, T. (2004) clpB, a novel member of the<br />

Listeria monocytogenes CtsR regulon, is <strong>in</strong>volved <strong>in</strong> virulence but not <strong>in</strong> general<br />

stress tolerance. J. Bacteriol. 186, 1165–1174.<br />

Chastanet, A., Fert, J. and Msadek, T. (2003) Comparative genomics reveal novel<br />

heat shock regulatory mechanisms <strong>in</strong> Staphylococcus aureus and other Grampositive<br />

bacteria. Mol. Microbiol. 47, 1061–1073.<br />

Chastanet, A. and Msadek, T. (2003) ClpP of Streptococcus salivarius is a novel<br />

member of the dually regulated class of stress response genes <strong>in</strong> gram-positive<br />

bacteria. J. Bacteriol. 185, 683–687.<br />

Chastanet, A., Prudhomme, M., Claverys, J.P. and Msadek, T. (2001) Regulation of<br />

Streptococcus pneumoniae clp genes and their role <strong>in</strong> competence development<br />

and stress survival. J. Bacteriol. 183, 7295–7307.<br />

Chatterjee, I., Becker, P., Grundmeier, M., Bischoff, M., Somerville, G.A., Peters, G.,<br />

S<strong>in</strong>ha, B., Harraghy, N., Proctor, R.A. and Herrmann, M. (2005) Staphylococcus<br />

aureus ClpC is required for stress resistance, aconitase activity, growth recovery,<br />

and death. J. Bacteriol. 187, 4488–4496.<br />

Craig, E.A. (1985) The heat shock response. CRC Crit. Rev. Biochem. 18, 239–280.<br />

Darw<strong>in</strong>, K.H. (2009) Prokaryotic ubiquit<strong>in</strong>-like prote<strong>in</strong> (Pup), proteasomes and<br />

pathogenesis. Nat. Rev. Micro. 7, 485–491.<br />

Derre, I., Rapoport, G., Dev<strong>in</strong>e, K., Rose, M. and Msadek, T. (1999a) ClpE, a novel<br />

type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis.<br />

Mol. Microbiol. 32, 581–593.<br />

Derre, I., Rapoport, G. and Msadek, T. (1999b) CtsR, a novel regulator of stress and<br />

heat shock response, controls clp and molecular chaperone gene expression <strong>in</strong><br />

gram positive bacteria. Mol. Microbiol. 31, 117–131.<br />

Derre, I., Rapoport, G. and Msadek, T. (2000) The CtsR regulator of stress response<br />

is active as a dimer and specifically degraded <strong>in</strong> vivo at 37 degrees C. Mol.<br />

Microbiol. 38, 335–347.<br />

Donegan, N.P., Thompson, E.T., Fu, Z. and Cheung, A.L. (2010) Proteolytic regulation<br />

of tox<strong>in</strong>-antitox<strong>in</strong> systems by ClpPC <strong>in</strong> Staphylococcus aureus. J. Bacteriol.<br />

192, 1416–1422.<br />

Elsholz, A.K.W., Hempel, K., P€other, D.C., Becher, D., Hecker, M. and Gerth, U. A<br />

new mechanism for CtsR <strong>in</strong>activation dur<strong>in</strong>g oxidative stress <strong>in</strong> low GC, Gram+<br />

bacteria. Manuscript Submitted.<br />

Elsholz, A.K.W., Michalik, S., Z€uhlke, D., Hecker, M. and Gerth, U. (2010) CtsR, the<br />

Gram positive master regulator of prote<strong>in</strong> quality control, feels the heat. EMBO J<br />

Fiocco, D., Capozzi, V., Coll<strong>in</strong>s, M., Gallone, A., Hols, P., Guzzo, J., Weidmann, S.,<br />

Rieu, A., Msadek, T. and Spano, G. (2010) Characterization of the CtsR stress<br />

response regulon <strong>in</strong> Lactobacillus plantarum. J. Bacteriol. 192, 896–900.


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 139<br />

Fiocco, D., Coll<strong>in</strong>s, M., Muscariello, L., Hols, P., Kleerebezem, M., Msadek, T. and<br />

Spano, G. (2008) The Lactobacillus plantarum ftsH gene is a novel member of the<br />

CtsR stress response regulon. J. Bacteriol. 191, 1688–1694.<br />

Fleury, B., Kelley, W.L., Lew, D., G€otz, F., Proctor, R.A. and Vaudaux, P. (2009)<br />

Transcriptomic and metabolic responses of Staphylococcus aureus exposed to<br />

supra-physiological temperatures. BMC Microbiol. 9, 76.<br />

Frees, D., Chastanet, A., Qazi, S., Sørensen, K., Hill, P., Msadek, T. and Ingmer, H. (2004)<br />

Clp ATPases are required for stress tolerance, <strong>in</strong>tracellular replication and biofilm formation<br />

<strong>in</strong> Staphylococcus aureus. Mol. Microbiol 54, 1445–1462.<br />

Frees, D. and Ingmer, H. (1999) ClpP participates <strong>in</strong> the degradation of misfolded<br />

prote<strong>in</strong> <strong>in</strong> Lactococcus lactis. Mol. Microbiol. 31, 79–87.<br />

Frees, D., Qazi, S.N.A., Hill, P.J. and Ingmer, H. (2003a) Alternative roles of ClpX<br />

and ClpP <strong>in</strong> Staphylococcus aureus stress tolerance and virulence. Mol. Microbiol.<br />

48, 1565–1578.<br />

Frees, D., Savijoki, K., Varmanen, P. and Ingmer, H. (2007) Clp ATPases and ClpP<br />

proteolytic complexes regulate vital biological processes <strong>in</strong> low GC, Grampositive<br />

bacteria. Mol. Microbiol. 63, 1285–1295.<br />

Frees, D., Vogensen, F.K. and Ingmer, H. (2003b) Identification of prote<strong>in</strong>s <strong>in</strong>duced<br />

at low pH <strong>in</strong> Lactococcus lactis. Int. J. Food Microbiol. 87, 293–300.<br />

Fuhrmann, J., Schmidt, A., Spiess, S., Lehner, A., Turgay, K., Mechtler, K.,<br />

Charpentier, E. and Clausen, T. (2009) McsB is a prote<strong>in</strong> arg<strong>in</strong><strong>in</strong>e k<strong>in</strong>ase that<br />

phosphorylates and <strong>in</strong>hibits the heat-shock regulator CtsR. Science 324,<br />

1323–1327.<br />

Gaillot, O., Pellegr<strong>in</strong>i, E., Bregenholt, S., Nair, S. and Berche, P. (2000) The ClpP<br />

ser<strong>in</strong>e protease is essential for the <strong>in</strong>tracellular parasitism and virulence of Listeria<br />

monocytogenes. Mol. Microbiol. 35, 1286–1294.<br />

Gerth, U., Kirste<strong>in</strong>, J., Mostertz, J., Waldm<strong>in</strong>ghaus, T., Miethke, M., Kock, H. and<br />

Hecker, M. (2004) F<strong>in</strong>e-tun<strong>in</strong>g <strong>in</strong> regulation of Clp prote<strong>in</strong> content <strong>in</strong> Bacillus<br />

subtilis. J. Bacteriol. 186, 179–191.<br />

Gerth, U., Kock, H., Kusters, I., Michalik, S., Switzer, R.L. and Hecker, M. (2008) Clp<br />

dependent proteolysis down-regulates central metabolic pathways <strong>in</strong> glucose<br />

starved Bacillus subtilis. J. Bacteriol. 190, 321–331.<br />

Gerth, U., Kr€uger, E., Derre, I., Msadek, T. and Hecker, M. (1998) Stress <strong>in</strong>duction of<br />

the Bacillus subtilis clpP gene encod<strong>in</strong>g a homologue of the proteolytic component<br />

of the Clp protease and the <strong>in</strong>volvement of ClpP and ClpX <strong>in</strong> stress tolerance. Mol.<br />

Microbiol. 28, 787–802.<br />

Gerth, U., Wipat, A., Harwood, C.R., Carter, N., Emmerson, P.T. and Hecker, M.<br />

(1996) Sequence and transcriptional analysis of clpX, a class-III heat-shock gene<br />

of Bacillus subtilis. Gene 181, 77–83.<br />

Gertz, S., Engelmann, S., Schmid, R., Ziebandt, A.K., Tischer, K., Scharf, C., Hacker,<br />

J. and Hecker, M. (2000) Characterization of the sigma(B) regulon <strong>in</strong><br />

Staphylococcus aureus. J. Bacteriol. 182, 6983–6991.<br />

Geth<strong>in</strong>g, M.J. and Sambrook, J. (1992) Prote<strong>in</strong> fold<strong>in</strong>g <strong>in</strong> the cell. Nature 355,33–45.<br />

Gottesman, S. (2003) Proteolysis <strong>in</strong> bacterial regulatory circuits. Annu. Rev. Cell Dev.<br />

Biol. 19, 565–587.<br />

Grandvalet, C., Coucheney, F., Beltramo, C. and Guzzo, J. (2005) CtsR is the master<br />

regulator of stress response gene expression <strong>in</strong> Oenococcus oeni. J. Bacteriol. 187,<br />

5614–5623.


140 ALEXANDER K.W. ELSHOLZ ET AL.<br />

Hahn, J., Kramer, N., Briley, K. and Dubnau, D. (2009) McsA and B mediate the<br />

delocalization of competence prote<strong>in</strong>s from the cell poles of Bacillus subtilis. Mol.<br />

Microbiol. 72, 202–215.<br />

Hartl, F.U. and Hayer-Hartl, M. (2009) Converg<strong>in</strong>g concepts of prote<strong>in</strong> fold<strong>in</strong>g <strong>in</strong><br />

vitro and <strong>in</strong> vivo. Nat. Struct. Mol. Biol. 16, 574–581.<br />

Hecker, M., Pane-Farre, J. and V€olker, U. (2007) SigB-dependent general stress<br />

response <strong>in</strong> Bacillus subtilis and related gram-positive bacteria. Annu. Rev.<br />

Microbiol. 61, 215–236.<br />

Homuth, G., Masuda, S., Mogk, A., Kobayashi, Y. and Schumann, W. (1997) The<br />

dnaK operon of Bacillus subtilis is heptacistronic. J. Bacteriol. 179, 1153–1164.<br />

Hu, Y., Raengpradub, S., Schwab, U., Loss, C., Orsi, R.H., Wiedmann, M. and Boor,<br />

K.J. (2007) Phenotypic and transcriptomic analyses demonstrate <strong>in</strong>teractions<br />

between the transcriptional regulators CtsR and Sigma B <strong>in</strong> Listeria monocytogenes.<br />

Appl. Environ. Microbiol. 73, 7967–7980.<br />

H€ufner, E. and Hertel, C. (2008) Improvement of raw sausage fermentation by stress<br />

condition<strong>in</strong>g of the starter organism Lactobacillus sakei. Curr. Microbiol. 57,<br />

490–496.<br />

H€ufner, E., Markieton, T., Chaillou, S., Crutz-Le Coq, A.-M., Zagorec, M. and<br />

Hertel, C. (2007) Identification of Lactobacillus sakei genes <strong>in</strong>duced dur<strong>in</strong>g meat<br />

fermentation and their role <strong>in</strong> survival and growth. Appl. Environ. Microbiol. 73,<br />

2522–2531.<br />

Ibrahim, Y.M., Kerr, A.R., Silva, N.A. and Mitchell, T.J. (2005) Contribution of the<br />

ATP dependent protease ClpCP to the autolysis and virulence of Streptococcus<br />

pneumoniae. Infect. Immun. 73, 730–740.<br />

Ingmer, H., Vogensen, F.K., Hammer, K. and Kilstrup, M. (1999) Disruption and<br />

analysis of the clpB, clpC, and clpE genes <strong>in</strong> Lactococcus lactis: ClpE, a new Clp<br />

family <strong>in</strong> gram-positive bacteria. J. Bacteriol. 181, 2075–2083.<br />

Jenn<strong>in</strong>gs, L.D., Lun, D.S., Medard, M. and Licht, S. (2008) ClpP hydrolyzes a prote<strong>in</strong><br />

substrate processively <strong>in</strong> the absence of the ClpA ATPase: mechanistic studies of<br />

ATP-<strong>in</strong>dependent proteolysis. Biochemistry 47, 11536–11546.<br />

Kajfasz, J.K., Mart<strong>in</strong>ez, A.R., Rivera-Ramos, I., Abranches, J., Koo, H., Quivey, R.G.<br />

and Lemos, J.A. (2009) Role of Clp prote<strong>in</strong>s <strong>in</strong> expression of virulence properties<br />

of Streptococcus mutans. J. Bacteriol. 191, 2060–2068.<br />

Karatzas, K.A.G., Valdramidis, V.P. and Wells-Bennik, M.H.J. (2005) Cont<strong>in</strong>gency<br />

locus <strong>in</strong> ctsR of Listeria monocytogenes Scott A: a strategy for occurrence of<br />

abundant piezo tolerant isolates with<strong>in</strong> clonal populations. Appl. Environ.<br />

Microbiol. 71, 8390–8396.<br />

Karatzas, K.A.G., Wouters, J.A., Gahan, C.G.M., Hill, C., Abee, T. and Bennik, M.<br />

H.J. (2003) The CtsR regulator of Listeria monocytogenes conta<strong>in</strong>s a variant<br />

glyc<strong>in</strong>e repeat region that affects piezo tolerance, stress resistance, motility and<br />

virulence. Mol. Microbiol. 49, 1227–1238.<br />

Karatzas, K.A.G., Zervos, A., Tassou, C.C., Mallidis, C.G. and Humphrey, T.J.<br />

(2007) Piezotolerant small-colony variants with <strong>in</strong>creased thermotolerance, antibiotic<br />

susceptibility, and low <strong>in</strong>vasiveness <strong>in</strong> a clonal Staphylococcus aureus population.<br />

Appl. Environ. Microbiol. 73, 1873–1881.<br />

Kim, Y.I., Levchenko, I., Fraczkowska, K., Woodruff, R.V., Sauer, R.T. and Baker, T.<br />

A. (2001) Molecular determ<strong>in</strong>ants of complex formation between Clp/Hsp100<br />

ATPases and the ClpP peptidase. Nat. Struct. Biol. 8, 230–233.


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 141<br />

Kirste<strong>in</strong>, J., Dougan, D.A., Gerth, U., Hecker, M. and Turgay, K. (2007) The tyros<strong>in</strong>e<br />

k<strong>in</strong>ase McsB is a regulated adaptor prote<strong>in</strong> for ClpCP. EMBO J. 26, 2061–2070.<br />

Kirste<strong>in</strong>, J., Moliere, N., Dougan, D.A. and Turgay, K. (2009) Adapt<strong>in</strong>g the mach<strong>in</strong>e:<br />

adaptor prote<strong>in</strong>s for Hsp100/Clp and AAA+ proteases. Nat. Rev. Micro. 7,589–599.<br />

Kirste<strong>in</strong>, J., Schlothauer, T., Dougan, D.A., Lilie, H., Tischendorf, G., Mogk, A.,<br />

Bukau, B. and Turgay, K. (2006) Adaptor prote<strong>in</strong> controlled oligomerization<br />

activates the AAA+ prote<strong>in</strong> ClpC. EMBO J. 25, 1481–1491.<br />

Kirste<strong>in</strong>, J., Z€uhlke, D., Gerth, U., Turgay, K. and Hecker, M. (2005) A tyros<strong>in</strong>e<br />

k<strong>in</strong>ase and its activator control the activity of the CtsR heat shock repressor <strong>in</strong> B.<br />

subtilis. EMBO J. 24, 3435–3445.<br />

Kock, H., Gerth, U. and Hecker, M. (2004a) MurAA, catalys<strong>in</strong>g the first committed<br />

step <strong>in</strong> peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis <strong>in</strong><br />

Bacillus subtilis. Mol. Microbiol. 51, 1087–1102.<br />

Kock, H., Gerth, U. and Hecker, M. (2004b) The ClpP peptidase is the major determ<strong>in</strong>ant<br />

of bulk prote<strong>in</strong> turnover <strong>in</strong> Bacillus subtilis. J. Bacteriol. 186, 5856–5864.<br />

Kr€uger, E., Msadek, T. and Hecker, M. (1996) Alternate promoters direct stress<strong>in</strong>duced<br />

transcription of the Bacillus subtilis clpC operon. Mol. Microbiol. 20,<br />

713–723.<br />

Kr€uger, E., Msadek, T., Ohlmeier, S. and Hecker, M. (1997) The Bacillus subtilis clpC<br />

operon encodes DNA repair and competence prote<strong>in</strong>s. Microbiology (Read<strong>in</strong>g<br />

Engl.) 143(Pt 4); 1309–1316.<br />

Kr€uger, E., V€olker, U. and Hecker, M. (1994) Stress <strong>in</strong>duction of clpC <strong>in</strong> Bacillus<br />

subtilis and its <strong>in</strong>volvement <strong>in</strong> stress tolerance. J. Bacteriol. 176, 3360–3367.<br />

Kr€uger, E., Witt, E., Ohlmeier, S., Hanschke, R. and Hecker, M. (2000) The clp<br />

proteases of Bacillus subtilis are directly <strong>in</strong>volved <strong>in</strong> degradation of misfolded<br />

prote<strong>in</strong>s. J. Bacteriol. 182, 3259–3265.<br />

Kr€uger, E., Z€uhlke, D., Witt, E., Ludwig, H. and Hecker, M. (2001) Clp-mediated<br />

proteolysis <strong>in</strong> Gram-positive bacteria is autoregulated by the stability of a repressor.<br />

EMBO J. 20, 852–863.<br />

Kwon, H.-Y., Kim, S.-W., Choi, M.-H., Ogunniyi, A.D., Paton, J.C., Park, S.-H., Pyo,<br />

S.-N. and Rhee, D.-K. (2003) Effect of heat shock and mutations <strong>in</strong> ClpL and ClpP<br />

on virulence gene expression <strong>in</strong> Streptococcus pneumoniae. Infect. Immun. 71,<br />

3757–3765.<br />

Leichert, L.I.O., Scharf, C. and Hecker, M. (2003) Global characterization of disulfide<br />

stress <strong>in</strong> Bacillus subtilis. J. Bacteriol. 185, 1967–1975.<br />

Lemos, J.A., Luzardo, Y. and Burne, R.A. (2007) Physiologic effects of forced downregulation<br />

of dnaK and groEL expression <strong>in</strong> Streptococcus mutans. J. Bacteriol.<br />

189, 1582–1588.<br />

Lemos, J.A.C. and Burne, R.A. (2002) Regulation and physiological significance of<br />

ClpC and ClpP <strong>in</strong> Streptococcus mutans. J. Bacteriol. 184, 6357–6366.<br />

Matthews, B.W., Nicholson, H. and Becktel, W.J. (1987) Enhanced prote<strong>in</strong> thermostability<br />

from site-directed mutations that decrease the entropy of unfold<strong>in</strong>g. Proc.<br />

Natl. Acad. Sci. U.S.A. 84, 6663–6667.<br />

Miethke, M., Hecker, M. and Gerth, U. (2006) Involvement of Bacillus subtilis ClpE<br />

<strong>in</strong> CtsR degradation and prote<strong>in</strong> quality control. J. Bacteriol. 188, 4610–4619.<br />

Mogk, A., Homuth, G., Scholz, C., Kim, L., Schmid, F.X. and Schumann, W. (1997)<br />

The GroE chaperon<strong>in</strong> mach<strong>in</strong>e is a major modulator of the CIRCE heat shock<br />

regulon of Bacillus subtilis. EMBO J. 16, 4579–4590.


142 ALEXANDER K.W. ELSHOLZ ET AL.<br />

Mostertz, J., Scharf, C., Hecker, M. and Homuth, G. (2004) Transcriptome and<br />

proteome analysis of Bacillus subtilis gene expression <strong>in</strong> response to superoxide<br />

and peroxide stress. Microbiology (Read<strong>in</strong>g Engl.) 150, 497–512.<br />

Moxon, R., Bayliss, C. and Hood, D. (2006) Bacterial cont<strong>in</strong>gency loci: the role of<br />

simple sequence DNA repeats <strong>in</strong> bacterial adaptation. Annu. Rev. Genet. 40,<br />

307–333.<br />

Msadek, T., Dartois, V., Kunst, F., Herbaud, M.L., Denizot, F. and Rapoport, G.<br />

(1998) ClpP of Bacillus subtilis is required for competence development, motility,<br />

degradative enzyme synthesis, growth at high temperature and sporulation. Mol.<br />

Microbiol. 27, 899–914.<br />

Msadek, T., Kunst, F. and Rapoport, G. (1994) MecB of Bacillus subtilis, a member of<br />

the ClpC ATPase family, is a pleiotropic regulator controll<strong>in</strong>g competence gene<br />

expression and growth at high temperature. Proc. Natl. Acad. Sci. U.S.A. 91,<br />

5788–5792.<br />

Nair, S., Derre, I., Msadek, T., Gaillot, O. and Berche, P. (2000a) CtsR controls class<br />

III heat shock gene expression <strong>in</strong> the human pathogen Listeria monocytogenes.<br />

Mol. Microbiol. 35, 800–811.<br />

Nair, S., Frehel, C., Nguyen, L., Escuyer, V. and Berche, P. (1999) ClpE, a novel<br />

member of the HSP100 family, is <strong>in</strong>volved <strong>in</strong> cell division and virulence of Listeria<br />

monocytogenes. Mol. Microbiol. 31, 185–196.<br />

Nair, S., Milohanic, E. and Berche, P. (2000b) ClpC ATPase is required for cell<br />

adhesion and <strong>in</strong>vasion of Listeria monocytogenes. Infect. Immun. 68, 7061–7068.<br />

Nakano, S., Zheng, G., Nakano, M.M. and Zuber, P. (2002) Multiple pathways of Spx<br />

(YjbD) proteolysis <strong>in</strong> Bacillus subtilis. J. Bacteriol. 184, 3664–3670.<br />

Neher, S.B., Villen, J., Oakes, E.C., Bakalarski, C.E., Sauer, R.T., Gygi, S.P. and<br />

Baker, T.A. (2006) Proteomic profil<strong>in</strong>g of ClpXP substrates after DNA damage<br />

reveals extensive <strong>in</strong>stability with<strong>in</strong> SOS regulon. Mol. Cell 22, 193–204.<br />

Neuwald, A.F., Arav<strong>in</strong>d, L., Spouge, J.L. and Koon<strong>in</strong>, E.V. (1999) AAA+: A class of<br />

chaperone-like ATPases associated with the assembly, operation, and disassembly<br />

of prote<strong>in</strong> complexes. Genome Res. 9, 27–43.<br />

Nguyen, T.T.H., Eiamphungporn, W., M€ader, U., Liebeke, M., Lalk, M., Hecker, M.,<br />

Helmann, J.D. and Antelmann, H. (2009) Genome-wide responses to carbonyl<br />

electrophiles <strong>in</strong> Bacillus subtilis: control of the thiol-dependent formaldehyde<br />

dehydrogenase AdhA and cyste<strong>in</strong>e prote<strong>in</strong>ase YraA by the MerR-family regulator<br />

YraB (AdhR). Mol. Microbiol. 71, 876–894.<br />

Ogura, M. and Tsukahara, K. (2010) Autoregulation of the Bacillus subtilis response<br />

regulator gene degU is coupled with the proteolysis of DegU-P by ClpCP. Mol.<br />

Microbiol. 75, 1592–1596.<br />

Pan, Q., Gars<strong>in</strong>, D.A. and Losick, R. (2001) Self-re<strong>in</strong>forc<strong>in</strong>g activation of a cellspecific<br />

transcription factor by proteolysis of an anti-sigma factor <strong>in</strong> B. subtilis.<br />

Mol. Cell 8, 873–883.<br />

Pickart, C.M. and Cohen, R.E. (2004) Proteasomes and their k<strong>in</strong>: proteases <strong>in</strong> the<br />

mach<strong>in</strong>e age. Nat. Rev. Mol. Cell Biol. 5, 177–187.<br />

Qoronfleh, M.W., Bortner, C.A., Schwartzberg, P. and Wilk<strong>in</strong>son, B.J. (1998)<br />

Enhanced levels of Staphylococcus aureus stress prote<strong>in</strong> GroEL and DnaK homologs<br />

early <strong>in</strong> <strong>in</strong>fection of human epithelial cells. Infect. Immun. 66, 3024–3027.<br />

Qoronfleh, M.W., Weraarchakul, W. and Wilk<strong>in</strong>son, B.J. (1993) Antibodies to a<br />

range of Staphylococcus aureus and Escherichia coli heat shock prote<strong>in</strong>s <strong>in</strong> sera<br />

from patients with S. aureus endocarditis. Infect. Immun. 61, 1567–1570.


REGULATION OF CtsR ACTIVITY IN LOW GC, GRAM+ BACTERIA 143<br />

Robertson, G.T., Ng, W.-L., Foley, J., Gilmour, R. and W<strong>in</strong>kler, M.E. (2002) Global<br />

transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and<br />

their effects on physiology and virulence. J. Bacteriol. 184, 3508–3520.<br />

Rocha, E.P.C., Matic, I. and Taddei, F. (2002) Over-representation of repeats <strong>in</strong> stress<br />

response genes: a strategy to <strong>in</strong>crease versatility under stressful conditions?<br />

Nucleic Acids Res. 30, 1886–1894.<br />

Rouquette, C., de Chastellier, C., Nair, S. and Berche, P. (1998) The ClpC ATPase of<br />

Listeria monocytogenes is a general stress prote<strong>in</strong> required for virulence and<br />

promot<strong>in</strong>g early bacterial escape from the phagosome of macrophages. Mol.<br />

Microbiol. 27, 1235–1245.<br />

Rouquette, C., Ripio, M.T., Pellegr<strong>in</strong>i, E., Bolla, J.M., Tascon, R.I., Vazquez-Boland,<br />

J.A. and Berche, P. (1996) Identification of a ClpC ATPase required for stress<br />

tolerance and <strong>in</strong> vivo survival of Listeria monocytogenes. Mol. Microbiol. 21,<br />

977–987.<br />

Sauer, R.T., Bolon, D.N., Burton, B.M., Burton, R.E., Flynn, J.M., Grant, R.A.,<br />

Hersch, G.L., Joshi, S.A., Kenniston, J.A., Levchenko, I., Neher, S.B., Oakes,<br />

E.S.C., Siddiqui, S.M., Wah, D.A. and Baker, T.A. (2004) Sculpt<strong>in</strong>g the proteome<br />

with AAA(+) proteases and disassembly mach<strong>in</strong>es. Cell 119, 9–18.<br />

Savijoki, K., Ingmer, H., Frees, D., Vogensen, F.K., Palva, A. and Varmanen, P.<br />

(2003) Heat and DNA damage <strong>in</strong>duction of the LexA-like regulator HdiR<br />

from Lactococcus lactis is mediated by RecA and ClpP. Mol. Microbiol. 50,<br />

609–621.<br />

Schumann, W. (2004) The Bacillus subtilis heat shock stimulon. Cell Stress Chaperone<br />

8, 207–217.<br />

S<strong>in</strong>gh, V.K., Utaida, S., Jackson, L.S., Jayaswal, R.K., Wilk<strong>in</strong>son, B.J. and<br />

Chamberla<strong>in</strong>, N.R. (2007) Role for dnaK locus <strong>in</strong> tolerance of multiple stresses<br />

<strong>in</strong> Staphylococcus aureus. Microbiology (Read<strong>in</strong>g Engl.) 153, 3162–3173.<br />

Thompson, M.W., S<strong>in</strong>gh, S.K. and Maurizi, M.R. (1994) Processive degradation of<br />

prote<strong>in</strong>s by the ATP-dependent Clp protease from Escherichia coli. Requirement<br />

for the multiple array of active sites <strong>in</strong> ClpP but not ATP hydrolysis. J. Biol. Chem.<br />

269, 18209–18215.<br />

Treangen, T.J., Abraham, A.-L., Touchon, M. and Rocha, E.P.C. (2009) Genesis,<br />

effects and fates of repeats <strong>in</strong> prokaryotic genomes. FEMS Microbiol. Rev. 33,<br />

539–571.<br />

Turgay, K., Hahn, J., Burghoorn, J. and Dubnau, D. (1998) Competence <strong>in</strong> Bacillus<br />

subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17,<br />

6730–6738.<br />

van de Guchte, M., Penaud, S., Grimaldi, C., Barbe, V., Bryson, K., Nicolas, P.,<br />

Robert, C., Oztas, S., Mangenot, S., Couloux, A., Loux, V., Dervyn, R., Bossy,<br />

R., Bolot<strong>in</strong>, A., Batto, J.-M., Walunas, T., Gibrat, J.-F., Bessieres, P.,<br />

Weissenbach, J., Ehrlich, S.D. and Magu<strong>in</strong>, E. (2006) The complete genome<br />

sequence of Lactobacillus bulgaricus reveals extensive and ongo<strong>in</strong>g reductive<br />

evolution. Proc. Natl. Acad. Sci. U.S.A. 103, 9274–9279.<br />

Varmanen, P., Ingmer, H. and Vogensen, F.K. (2000) ctsR of Lactococcus lactis<br />

encodes a negative regulator of clp gene expression. Microbiology (Read<strong>in</strong>g<br />

Engl.) 146(Pt 6); 1447–1455.<br />

Varmanen, P., Vogensen, F.K., Hammer, K., Palva, A. and Ingmer, H. (2003) ClpE<br />

from Lactococcus lactis promotes repression of CtsR-dependent gene expression.<br />

J. Bacteriol. 185, 5117–5124.


144 ALEXANDER K.W. ELSHOLZ ET AL.<br />

Wang, J., Hartl<strong>in</strong>g, J.A. and Flanagan, J.M. (1997) The structure of ClpP at 2.3<br />

resolution suggests a model for ATP-dependent proteolysis. Cell 91, 447–456.<br />

Weber-Ban, E.U., Reid, B.G., Miranker, A.D. and Horwich, A.L. (1999) Global<br />

unfold<strong>in</strong>g of a substrate prote<strong>in</strong> by the Hsp100 chaperone ClpA. Nature 401,<br />

90–93.<br />

Weibezahn, J., Tessarz, P., Schlieker, C., Zahn, R., Maglica, Z., Lee, S., Zentgraf, H.,<br />

Weber-Ban, E.U., Dougan, D.A., Tsai, F.T.F., Mogk, A. and Bukau, B. (2004)<br />

Thermotolerance requires refold<strong>in</strong>g of aggregated prote<strong>in</strong>s by substrate translocation<br />

through the central pore of ClpB. Cell 119, 653–665.<br />

Wickner, S., Maurizi, M.R. and Gottesman, S. (1999) Posttranslational quality control:<br />

fold<strong>in</strong>g, refold<strong>in</strong>g, and degrad<strong>in</strong>g prote<strong>in</strong>s. Science 286, 1888–1893.<br />

Wiegert, T. and Schumann, W. (2001) SsrA-mediated tagg<strong>in</strong>g <strong>in</strong> Bacillus subtilis. J.<br />

Bacteriol. 183, 3885–3889.<br />

Young, J.C., Agashe, V.R., Siegers, K. and Hartl, F.U. (2004) Pathways of chaperone<br />

mediated prote<strong>in</strong> fold<strong>in</strong>g <strong>in</strong> the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781–791.<br />

Yuan, G. and Wong, S.L. (1995) Isolation and characterization of Bacillus subtilis<br />

groE regulatory mutants: evidence for orf39 <strong>in</strong> the dnaK operon as a repressor<br />

gene <strong>in</strong> regulat<strong>in</strong>g the expression of both groE and dnaK. J. Bacteriol. 177,<br />

6462–6468.<br />

Yura, T. (1996) Regulation and conservation of the heat-shock transcription factor<br />

sigma32. Genes Cells 1, 277–284.<br />

Zellmeier, S., Schumann, W. and Wiegert, T. (2006) Involvement of Clp protease<br />

activity <strong>in</strong> modulat<strong>in</strong>g the Bacillus subtilis sigma-w stress response. Mol.<br />

Microbiol. 61, 1569–1582.<br />

Zhang, Q., Xu, S.-X., Wang, H., Xu, W.-C., Zhang, X.-M., Wu, K.-F., Liu, L. and Y<strong>in</strong>,<br />

Y.-B. (2009) Contribution of ClpE to virulence of Streptococcus pneumoniae. Can.<br />

J. Microbiol. 55, 1187–1194.<br />

Zolkiewski, M. (2006) A camel passes through the eye of a needle: prote<strong>in</strong> unfold<strong>in</strong>g<br />

activity of Clp ATPases. Mol. Microbiol. 61, 1094–1100.<br />

Zotta, T., Aster<strong>in</strong>ou, K., Rossano, R., Ricciardi, A., Varcamonti, M. and Parente, E.<br />

(2009) Effect of <strong>in</strong>activation of stress response regulators on the growth and<br />

survival of Streptococcus thermophilus Sfi39. Int. J. Food Microbiol. 129, 211–220.<br />

Zuber, U. and Schumann, W. (1994) CIRCE, a novel heat shock element <strong>in</strong>volved <strong>in</strong><br />

regulation of heat shock operon dnaK of Bacillus subtilis. J. Bacteriol. 176,<br />

1359–1363.


[(Plate_1)TD$FIG]<br />

Plate 1 Graphical presentation of the distribution of CtsR-regulated prote<strong>in</strong>s for different low GC, Gram+ species and known<br />

overlaps with other regulators such as SigB or HrcA. An arrow <strong>in</strong>dicates specific <strong>in</strong>fluence of transcriptional regulator for the expression<br />

of the correspond<strong>in</strong>g gene. Prote<strong>in</strong>s whose expression is solely dependent on CtsR activity are depicted <strong>in</strong> red, whereas prote<strong>in</strong>s that are<br />

dually regulated by CtsR and SigB (green) are shown <strong>in</strong> blue. Prote<strong>in</strong>s controlled by CtsR as well as HrcA are presented <strong>in</strong> grey, and<br />

prote<strong>in</strong>s that are regulated only by HrcA are shown <strong>in</strong> purple. (For b/w version, see page 126 <strong>in</strong> the volume.)


(a)<br />

(b)<br />

(c)<br />

(d)<br />

[(Plate_2)TD$FIG]<br />

Plate 2 Graphical presentation of regulation and degradation of CtsR <strong>in</strong> the<br />

different low GC, Gram+ orders under specific stress conditions. (a) CtsR <strong>in</strong>activation<br />

and degradation dur<strong>in</strong>g heat stress <strong>in</strong> the order Bacillales. Under control conditions<br />

CtsR b<strong>in</strong>ds to its DNA operator and McsB k<strong>in</strong>ase is repressed by b<strong>in</strong>d<strong>in</strong>g to<br />

ClpC. Elevated temperatures lead to a loss of CtsR DNA b<strong>in</strong>d<strong>in</strong>g. In addition, McsB<br />

is released from ClpC and becomes activated as a k<strong>in</strong>ase by McsA. This activation<br />

results <strong>in</strong> target<strong>in</strong>g of free CtsR for a ClpCP-mediated proteolysis. (b) CtsR <strong>in</strong>activation<br />

and degradation dur<strong>in</strong>g heat stress <strong>in</strong> the order Lactobacillales that misses the<br />

two modulators McsA and McsB. Under control conditions CtsR b<strong>in</strong>ds to its DNA<br />

operator. Elevated temperatures lead to a loss of CtsR DNA b<strong>in</strong>d<strong>in</strong>g and ClpEPmediated<br />

degradation. (c) CtsR <strong>in</strong>activation dur<strong>in</strong>g oxidative stress conditions <strong>in</strong> the<br />

order Bacillales. Under control conditions CtsR b<strong>in</strong>ds to its DNA operator and McsB<br />

k<strong>in</strong>ase is repressed by b<strong>in</strong>d<strong>in</strong>g to ClpC. Dur<strong>in</strong>g oxidative stress critical thiols are<br />

oxidised with<strong>in</strong> the oxidative stress sensor prote<strong>in</strong> McsA. This oxidation disturbs<br />

<strong>in</strong>teraction of McsA/McsB and activates a specific McsB function. Consequently,<br />

McsB is now able to b<strong>in</strong>d and <strong>in</strong>activate DNA-bound CtsR, but CtsR cannot be<br />

degraded due to the <strong>in</strong>active McsB k<strong>in</strong>ase. (d) CtsR <strong>in</strong>activation dur<strong>in</strong>g oxidative<br />

stress <strong>in</strong> the order Lactobacillales. Under control conditions CtsR b<strong>in</strong>ds to its DNA<br />

operator. Oxidative stress leads to oxidation of critical thiols with<strong>in</strong> ClpE. This<br />

oxidation causes an activation of ClpE which is now able to target DNA-bound<br />

CtsR. (For b/w version, see page 133 <strong>in</strong> the volume.)


Abbas, B., 14, 30, 32<br />

Abee, T., 131, 137<br />

Abomoelak, B., 68, 90, 94<br />

Abraham, A.-L., 137<br />

Abranches, J., 129, 130<br />

Abu-Soud, H.M., 86, 90<br />

Adams, M.W., 73<br />

Adams, M.W.W., 72, 73<br />

Adegbola, R.A., 59, 84, 90<br />

Adler, L., 63<br />

Agarwal, A., 49, 54, 61, 68, 85, 86, 89<br />

Agarwal, N., 91<br />

Agashe, V.R., 122<br />

Agogue, H., 29<br />

Agrawal, P., 91<br />

Aguilera, J.A., 80<br />

Aharonowitz, Y., 79<br />

Ahr<strong>in</strong>g, B.K., 32<br />

Ahuja, E.G., 70<br />

Alam, K.Y., 68<br />

Alam, M.S., 91<br />

Alawi, M., 11<br />

Albracht, S.P.J., 72<br />

Alexeeva, S., 64, 65, 68, 87<br />

Alland, D., 80<br />

Allen, S.S., 60, 84, 86<br />

Alm, E.W., 6<br />

Almer<strong>in</strong>g, M.J.H., 63<br />

Alonso, S., 76, 86, 87<br />

Altman, E., 52, 66, 68<br />

Aluwihare, L.I., 6, 29<br />

Alvarez, H.M., 67, 68, 90, 94<br />

Alvarez-Ortega, C., 71<br />

Alv<strong>in</strong>g, K., 85<br />

Aly, S., 60, 84, 89<br />

Amann, R., 4<br />

Amaras<strong>in</strong>gham, C.R., 53<br />

Amelung, W., 23, 25, 28<br />

Anaya, J.M., 83<br />

Author Index<br />

Anderberg, S.J., 80<br />

Anderson, R.J., 58, 60<br />

Andrews, J., 47<br />

Andrews-Pfannkoch, C., 34<br />

Ansari, M.Z., 94<br />

Ansell, R., 63<br />

Antelmann, H., 135<br />

Aoshima, M., 74, 75<br />

Arai, H., 74<br />

Arata, Y., 56<br />

Arav<strong>in</strong>d, L., 15, 16, 123<br />

Arikawa, Y., 75<br />

Aris, V., 59<br />

Arora, P., 94<br />

Arp, D.J., 16, 17<br />

Arscott, L.D., 81<br />

Artman, M., 48, 51<br />

Aslund, F., 62<br />

Asoh, S., 72<br />

Aster<strong>in</strong>ou, K., 131<br />

Atlas, R.L., 65<br />

Attarian, R., 80<br />

Av-Gay, Y., 79–81<br />

Baas, M., 13<br />

Badcock, K., 90<br />

Baden-Tillson, H., 6, 7, 10, 15, 16, 22, 34<br />

Bagwell, C., 33<br />

Bajpai, R., 91<br />

Bakalarski, C.E., 128<br />

Baker, T.A., 122, 123, 127, 128, 130<br />

Balasubramanian, R., 96<br />

Balla, G., 84, 86<br />

Balla, J., 84, 86<br />

Banaiee, N., 92<br />

Bancroft, G.J., 84<br />

Bandow, J.E., 129<br />

Banecki, B., 132<br />

Bange, F.C., 60, 84, 89


146 AUTHOR INDEX<br />

Bannant<strong>in</strong>e, J.P., 59<br />

Barbe, V., 124, 125<br />

Barletta, R.G., 78<br />

Barnes, P.J., 85, 90<br />

Barrell, B.G., 90<br />

Barry 3rd, C.E., 47–49, 52, 59, 61, 68, 75,<br />

83, 87, 90, 95, 99, 100<br />

Barry, C.E., 57<br />

Barry, W.H., 50<br />

Bartek, I.L., 75, 82, 83, 86, 87<br />

Bartossek, R., 17, 18<br />

Basaraba, R.J., 59<br />

Basham, D., 90<br />

Batto, J.-M., 124, 125<br />

Baughn, A.D., 74–77<br />

Bayer, K., 13<br />

Bayliss, C., 137<br />

Becker, P., 130<br />

Becktel, W.J., 134<br />

Beckwith, J., 62<br />

Beeson, K., 34<br />

Beja, O., 15, 16<br />

Bekierkunst, A., 48, 51<br />

Bellon, G., 59, 71, 85, 89<br />

Beltramo, C., 125, 127, 128<br />

Beman, J.M., 29, 30, 32, 33<br />

Ben-Dov, E., 33<br />

Benitez-Nelson, B.C., 6<br />

Benjam<strong>in</strong>, I.J., 50, 97<br />

Bennett, A.R., 60<br />

Bennett, G.N., 66, 68, 87, 93<br />

Bennik, M.H.J., 131, 137<br />

Benoit, S.L., 73<br />

Bensen, D.C., 15, 16<br />

Bentley, W.E., 56<br />

Berche, P., 128–131<br />

Beretti, J.L., 129, 130<br />

Berg, I.A., 19<br />

Berger, J., 59, 71, 85, 89<br />

Berks, B.C., 68, 69, 87, 89<br />

Berm<strong>in</strong>gham, E., 34<br />

Berney, M., 73, 74<br />

Bernhard, A.E., 9, 10, 12<br />

Berrios-Rivera, S.J., 66, 68, 87<br />

Berry, A., 81<br />

Berthet, F.X., 59<br />

Bertozzi, C.R., 52, 59, 68, 94, 95<br />

Berube, P.M., 10<br />

Besra, G.S., 59, 84, 90<br />

Bessieres, P., 124, 125<br />

Bewley, C.A., 79<br />

Beyer, D., 129<br />

Bhakoo, K.K., 69<br />

Billman-Jacobe, H., 80<br />

Billoud, B., 72<br />

B<strong>in</strong>trim, S.B., 4<br />

Birrer, P., 59, 71, 85, 89<br />

Bischoff, M., 130<br />

Bishai, W.R., 49, 90, 91<br />

Blackwood, K., 68<br />

Blakis, A., 30<br />

Blanchard, J.S., 81<br />

Blankenfeldt, W., 70, 72<br />

Bloch, H., 51, 54, 57, 58, 60, 99<br />

Blokker, P., 6<br />

Blomberg, A., 63<br />

Bloom, B.R., 91–93, 97<br />

Bock, E., 11<br />

Boechat, N., 60, 83<br />

Boehm, A.B., 32<br />

Boelsterli, U.A., 51<br />

Bolisetty, S., 49, 54, 61, 68, 85, 86, 89<br />

Bolla, J.M., 129, 130<br />

Bolon, D.N., 122, 123, 128<br />

Bolot<strong>in</strong>, A., 124, 125<br />

Bonch-Osmolovskaya, L., 4, 11, 23<br />

Bonec<strong>in</strong>i-Almeida Mda, G., 60, 83<br />

Bonilla-Rosso, G., 34<br />

Boon, C., 82, 83<br />

Boon, J.P., 30<br />

Boor, K.J., 124<br />

Borezee, E., 129, 130<br />

Borland, C., 85<br />

Boros, M., 49, 50, 97<br />

Bortner, C.A., 130<br />

Boschker, H.T., 6<br />

Boshoff, H.I., 48, 49, 52, 57, 59, 61, 68, 75,<br />

87, 95, 99, 100


AUTHOR INDEX 147<br />

Bossy, R., 124, 125<br />

Botste<strong>in</strong>, D., 62<br />

Bott, M., 73<br />

B€ottcher, T., 129<br />

Bottomley, P.J., 24<br />

Botzenhart, K., 59, 71, 85, 89<br />

Boucher, B.J., 97<br />

Boucher, R.C., 59, 71, 85, 89<br />

Boumann, H., 13<br />

Bourret, T.J., 68<br />

Boussau, B., 20<br />

Bowatte, S., 24, 26–28<br />

Boyle-Yarwood, S.A., 24<br />

Braff, J., 29<br />

Brahimi-Horn, M.C., 60<br />

Brandau, S., 60, 84, 89<br />

Braun, R.D., 60<br />

Bregenholt, S., 128, 129<br />

Bre<strong>in</strong>bauer, R., 70<br />

Brez<strong>in</strong>a, O., 48<br />

Brian, P., 92<br />

Bridger, S.L., 73<br />

Briley, K., 131<br />

Br<strong>in</strong>dicci, C., 85, 90<br />

Br<strong>in</strong>k, M., 29<br />

Brochier, C., 15, 16<br />

Brochier-Armanet, C., 16, 17, 20, 22, 23<br />

Brosch, R., 90<br />

Br€otz-Oesterhelt, H., 129<br />

Brovkovych, V., 60<br />

Brown, D., 90<br />

Brown, L.A., 85, 90<br />

Brown, P.O., 62<br />

Bryant, D.A., 96<br />

Bryk, R., 52, 75, 76<br />

Bryson, K., 124, 125<br />

Buchmeier, N., 80, 81<br />

Buchmeier, N.A., 80<br />

Buckel, W., 19, 94, 95<br />

Buckley, D.H., 4<br />

Buettner, G.R., 50, 78, 79<br />

Buhrke, T., 72<br />

Bukau, B., 127, 129, 132<br />

Bunch, P.K., 56<br />

Burgdorf, T., 72<br />

Burghoorn, J., 128, 130<br />

Burn, J.A., 95<br />

Burne, R.A., 128, 130, 134<br />

Burton, B.M., 122, 123, 128<br />

Burton, R.E., 122, 123, 128<br />

Buttner, M.J., 90–92, 95<br />

Bzymek, K.P., 79, 80<br />

Caceres, N.E., 78<br />

Cadena, J., 83<br />

Cadiz, V., 80<br />

Calaycay, J., 60, 83<br />

Camacho, L.R., 68, 87, 95, 99<br />

Camarasa, C., 75<br />

Cameron, K., 24, 26–28<br />

Cameron, K.C., 26<br />

Camien, M.N., 57<br />

Cammack, R., 72<br />

Campbell, J.W., 55<br />

Capozzi, V., 127<br />

Carmel-Harel, O., 62<br />

Carrillo, J., 60, 84, 86<br />

Carter, N., 127<br />

Casali, N., 84<br />

Casciotti, K.L., 29, 32<br />

Casta<strong>in</strong>g, J.P., 93<br />

Cekici, A., 59, 71, 85, 89<br />

Cellek, S., 60<br />

Cevallos, M.A., 66, 67<br />

Chaillou, S., 131<br />

Cha<strong>in</strong>, P.S.G., 16, 17<br />

Chakravarty, S., 84<br />

Chakravorty, S., 84<br />

Chamberla<strong>in</strong>, N.R., 130<br />

Chamberl<strong>in</strong>, L., 92<br />

Chan, E.D., 60<br />

Chan, J., 54, 59, 60, 68, 82, 84<br />

Chan, P.P., 16, 17<br />

Chan, W.T., 52, 54, 55<br />

Charpentier, E., 130, 132, 134<br />

Chastanet, A., 124, 125, 127–130<br />

Chater, K.F., 90–92<br />

Chatterjee, I., 130


148 AUTHOR INDEX<br />

Cheesman, M.R., 91<br />

Chen, B., 52, 54, 55, 80, 94<br />

Chen, J.Q., 33<br />

Cheng, Y., 50, 97<br />

Cherian, J., 52, 55<br />

Cheung, A.L., 129<br />

Chill<strong>in</strong>gworth, T., 90<br />

Cho, C.M., 34<br />

Choi, A.M., 60, 85<br />

Choi, M.-H., 129, 130<br />

Chora, A., 84, 86<br />

Christians, E.S., 50<br />

Chu, D., 54, 59, 68, 82<br />

Chung, K.F., 60, 83, 85<br />

Chung, S.W., 60, 85<br />

Church, M.J., 29, 30, 32<br />

Church, M.K., 60<br />

Churcher, C., 90<br />

Claiborne, A., 78<br />

Clark, D.P., 53, 56, 64, 65, 68<br />

Clausen, T., 132, 134<br />

Claverys, J.P., 127–130<br />

Clough, G.F., 60<br />

Cohen, G., 79<br />

Cohen, R.E., 123<br />

Cohn, M.L., 51<br />

Colangeli, R., 80<br />

Colbeau, A., 72<br />

Cole, J., 87<br />

Cole, S.T., 90<br />

Coleman, D.C., 3<br />

Coll<strong>in</strong>s, D.M., 91–93, 97<br />

Coll<strong>in</strong>s, M., 127<br />

Comhair, S.A., 90<br />

Connell, P., 50<br />

Connor, R., 90<br />

Conrad, R., 23, 24, 26, 28<br />

Converse, P.J., 84<br />

Cook, G.M., 73, 74<br />

Coolen, M.J., 14, 30, 32<br />

Coolen, M.J.L., 14, 15, 30<br />

Corper, H.J., 51<br />

Cosma, C.L., 47, 48<br />

Costa, K.C., 95<br />

Costello, C.M., 71, 89<br />

Coucheney, F., 125, 127<br />

Couloux, A., 124, 125<br />

Cox, A.G., 61, 86<br />

Cox, J.S., 52, 54, 59, 61, 68, 82, 85, 86,<br />

94, 95<br />

Cox, Y., 85<br />

Craig, E.A., 130<br />

Creighton, M.M., 58, 60<br />

Crick, D.C., 59<br />

Cronan Jr., J.E., 55<br />

Crossman, D.K., 49, 54, 61, 68, 85–87, 89,<br />

90, 93–99<br />

Crutz-Le Coq, A.-M., 131<br />

Cunha-Rodrigues, M., 84, 86<br />

Currenti, E., 49, 61, 76<br />

da Silva, S.M., 73<br />

Daffe, M., 93<br />

Daims, H., 11–13, 33<br />

Daldal, F., 95<br />

Damste, J.S.S., 6, 13–15, 30, 32<br />

Dang, H., 13<br />

Daniel, J., 68, 90, 94<br />

Daniel, S.L., 89<br />

Darrouzet, E., 95<br />

Dartois, V., 49, 52, 59, 61, 100, 128<br />

Darw<strong>in</strong>, K.H., 123<br />

Das, T.K., 82, 84<br />

Dasgupta, N., 82<br />

Davidge, K.S., 61, 86<br />

Davies, J., 79<br />

Davies, R., 90<br />

Davis, A.A., 4, 19<br />

Davis, B.D., 53<br />

Davis, N.K., 90<br />

Dawes, E.A., 66, 67<br />

Dawes, I.W., 62<br />

Dawes, S., 59<br />

Dawson, T.L., 50<br />

de Chastellier, C., 130<br />

de Graef, M.R., 64, 65, 68, 87<br />

De Groot, H., 89<br />

de la Torre, J., 16, 17, 29, 33<br />

de la Torre, J.R., 9–13, 33<br />

de Montellano, P.R., 83


AUTHOR INDEX 149<br />

de Nys, R., 13, 33, 34<br />

de Sieyes, N.R., 32<br />

Deb, C., 68, 90, 94<br />

DeFlaun, M., 6<br />

delCardayre, S.B., 80<br />

DeLong, E.F., 4, 10–12, 15, 16, 19, 29, 30,<br />

32, 33<br />

den Hengst, C.D., 90, 95<br />

Denizot, F., 128<br />

Deonara<strong>in</strong>, M.P., 81<br />

Deppenmeier, U., 70<br />

Dequ<strong>in</strong>, S., 75<br />

DeRiemer, K., 83<br />

Derre, I., 124, 125, 128–131<br />

Dervyn, R., 124, 125<br />

Deshane, J.S., 49, 54, 61, 68, 85, 86, 89<br />

Dev<strong>in</strong>e, K., 129, 130<br />

Devl<strong>in</strong>, K., 90<br />

Dewhirst, M.W., 60<br />

Di, H., 23, 24, 26–28<br />

Di, H.J., 26<br />

Dick, T., 49, 52, 59, 61, 76, 78, 82, 83, 86,<br />

87, 89, 100<br />

Dietrich, L.E., 70–72<br />

Dijkhuizen, L., 78<br />

Dimmeler, S., 50<br />

Dimroth, P., 73<br />

D<strong>in</strong>asquet, J., 29<br />

D<strong>in</strong>g, H., 53<br />

D<strong>in</strong>g, Z., 50, 97<br />

Doan, B., 62<br />

Dobbek, H., 76<br />

Dodsworth, J.A., 4, 95<br />

Dolganov, G.M., 49, 54, 61, 68, 82, 83, 89<br />

Donegan, N.P., 129<br />

Donohue, T.J., 4<br />

Dor<strong>in</strong>g, G., 59, 71, 85, 89<br />

Dougan, D.A., 127–129, 131, 138<br />

Dowd, C.S., 68, 87, 95, 99<br />

Drake, H.L., 89<br />

Driver, E.R., 59<br />

Drobnica, L., 48<br />

Drobnicova, I., 48<br />

Druffel, E.R., 6, 29<br />

Duan, X., 53<br />

Dubey, V.S., 68, 90, 94<br />

Dubnau, D., 128, 130, 131<br />

Dubos, R.J., 48, 60, 61, 83<br />

Duncan, K., 47<br />

Dunn, M., 66, 67<br />

Dunn, M.S., 57<br />

Dweik, R.A., 60, 86, 90<br />

Dwyer, T.J., 79<br />

Eck, J., 15<br />

Edson, N.L., 56, 57<br />

Egl<strong>in</strong>ton, T.I., 6<br />

Eguiarte, L.E., 34<br />

Ehlers, S., 60, 84, 89<br />

Ehrlich, S.D., 124, 125<br />

Ehrt, S., 49, 52, 59, 61, 68, 87, 91, 95,<br />

99, 100<br />

Eiamphungporn, W., 135<br />

Eiglmeier, K., 90<br />

Eisen, J.A., 6, 7, 10, 15, 16, 22, 34<br />

Eisen, M.B., 62<br />

Eisenberg, D., 59<br />

Eiteman, M.A., 52, 66, 68<br />

Ell<strong>in</strong>gton, M.J., 69<br />

Emmerson, P.T., 127<br />

Encarnacion, S., 66, 67<br />

Endermann, R., 129<br />

Engelmann, S., 124, 127<br />

Enger, O., 4<br />

Enomoto, K., 75<br />

Eom, C.Y., 77, 84<br />

Epiphanio, S., 84, 86<br />

Erbacher, J., 6<br />

Ernst, J.D., 92<br />

Erzurum, S.C., 86, 90<br />

Escuyer, V., 130<br />

Esser, L., 95<br />

Ett<strong>in</strong>ger-Epste<strong>in</strong>, P., 13, 33, 34<br />

Eum, S.Y., 60, 84, 86<br />

Fahey, R.C., 79–81<br />

Falcón, L.I., 34<br />

Fang, F.C., 78<br />

Farnia, P., 47<br />

Farver, C., 90


150 AUTHOR INDEX<br />

Faucet, V., 75<br />

Fauci, A.S., 47<br />

Faulkner, D.J., 79<br />

Feldman, R.A., 15, 16<br />

Feltwell, T., 90<br />

Feng, Z., 78<br />

Ferguson, S.J., 68, 69<br />

Fernandes, C.L.V., 73<br />

Ferrari, M.R., 34<br />

Ferreira, A., 84, 86<br />

Ferry, J.G., 76, 77, 87<br />

Fert, J., 124, 125, 127<br />

Fiencke, C., 11<br />

F<strong>in</strong>dlay, K.C., 90<br />

Fiocco, D., 127<br />

Firth, A., 70, 71<br />

Fitzgerald, M.X., 71, 89<br />

Fitzpatrick, A.M., 85, 90<br />

Flanagan, J.M., 123<br />

Flardh, K., 90, 92<br />

Flarsheim, C.E., 50<br />

Fleury, B., 134<br />

Florczyk, M.A., 49, 61, 76<br />

Flynn, J., 49, 52, 59, 61, 100<br />

Flynn, J.A., 84<br />

Flynn, J.M., 122, 123, 128<br />

Focks, A., 23, 25, 28<br />

Foley, J., 129<br />

Follis Jr., R.H., 61, 83, 84<br />

Fontan, P., 59<br />

Forterre, P., 20<br />

Fothergill, J.L., 70, 71<br />

Fournier, D., 93<br />

Fouts, D.E., 6, 7, 10, 15, 16, 22<br />

Fowler, A.V., 57<br />

Fox, G.E., 13<br />

Foxwell, N.A., 60<br />

Fraczkowska, K., 127, 130<br />

Francis, C.A., 29, 30, 32, 33<br />

Frazier, M., 34<br />

Fredrickson, J.K., 6<br />

Freeman, J., 34<br />

Freeman, K.H., 13, 32<br />

Frees, D., 123, 127–130, 135, 136<br />

Frehel, C., 130<br />

Freitag, T.E., 26<br />

Freundlich, J.S., 47<br />

Frey, M., 72<br />

Friedheim, E., 70<br />

Friedland, G., 47<br />

Friedman, R., 34<br />

Friedrich, B., 72<br />

Frimpong, I., 75, 83, 86, 87<br />

Fu, Z., 129<br />

Fuchs, G., 19, 74, 75<br />

Fuhrman, J.A., 4, 6, 19<br />

Fuhrmann, J., 132, 134<br />

Fujii, T., 78<br />

Fujiwara, S., 56<br />

Furst, V.W., 60<br />

Gagneux, S., 83<br />

Gahan, C.G.M., 131, 137<br />

Gaillot, O., 128, 129, 131<br />

Gallardo, V., 34<br />

Gallone, A., 127<br />

Gandhi, N.R., 47<br />

Gao, L., 33<br />

Gao, X., 50, 97<br />

Garcia, J.-L., 3<br />

Garforth, S.J., 74–77<br />

Garg, S., 91<br />

Garg, S.K., 91<br />

Garnier, T., 90<br />

Garrett, R.A., 22<br />

Garrido, E.O., 62<br />

Garrigues, C., 15<br />

Gars<strong>in</strong>, D.A., 128, 130<br />

Garton, N.J., 59, 84, 90<br />

Gas, S., 90<br />

Gasch, A.P., 62<br />

Gaston, B., 90<br />

Gatfield, J., 91<br />

Geenevasen, J.A., 13<br />

Geertman, J.M., 64<br />

Geiman, D.E., 91<br />

Geng, J., 60, 83<br />

Gengenbacher, M., 83, 89


AUTHOR INDEX 151<br />

Genghof, D.S., 79<br />

Gennaro, M.L., 59<br />

Gens<strong>in</strong>i, G., 61, 75, 77, 83<br />

Gentles, S., 90<br />

Georgopoulos, C., 132<br />

Gerbl, F.W., 33<br />

Gerth, U., 123, 124, 127–130, 132, 138<br />

Gertz, S., 124, 127<br />

Geth<strong>in</strong>g, M.J., 122<br />

Ghanavi, J., 47<br />

Ghanny, S., 59<br />

Ghyczy, M., 49, 50, 97<br />

Gibrat, J.-F., 124, 125<br />

Gicquel, B., 59<br />

Giles, G.I., 91–93<br />

Gilles-Gonzalez, M.A., 60, 83, 84<br />

Gilmour, R., 129<br />

Glockner, F., 4<br />

Gokhale, R.S., 94<br />

Golbeck, J.H., 96<br />

Gollabgir, A., 16, 17<br />

Gomez, J.E., 47, 90<br />

Gomez, L.M., 83<br />

Gonzales, J., 60, 84, 86<br />

Gonzalez, G., 60, 83, 84<br />

Gonzalez-Juarrero, M., 59<br />

Goodman, R.M., 4<br />

Goodw<strong>in</strong>, M.B., 57<br />

Gop<strong>in</strong>athan, K.P., 48<br />

Gordon, S.V., 90<br />

Gores, G.J., 50<br />

Gorovitz, B., 79, 80<br />

Gossner, A., 89<br />

Gottesman, S., 122, 123, 138<br />

G€otz, F., 89, 134<br />

Govender, T., 47<br />

Graber, J.R., 4<br />

Granath, K., 63<br />

Grandvalet, C., 125, 127, 128<br />

Grant, C.M., 62, 63<br />

Grant, R.A., 122, 123, 128<br />

Grasemann, H., 89<br />

Gray, C.T., 64, 65<br />

Green, J., 78, 96<br />

Gregoire, I.P., 84, 86<br />

Gribaldo, S., 20<br />

Grimaldi, C., 124, 125<br />

Grode, L., 59<br />

Grosset, J.H., 84<br />

Grundmeier, M., 130<br />

Guest, J.R., 53<br />

Guidry, L., 68, 87, 90–99<br />

Gustafsson, L., 63<br />

Gustafsson, L.E., 85<br />

Gutterridge, J.M.C., 53, 78, 79<br />

Guzzo, J., 125, 127, 128<br />

Gygi, S.P., 128<br />

Haapanen, J.H., 61, 75, 77, 83<br />

Hacker, J., 124, 127<br />

Hackett, M., 95<br />

Hadd, A., 15<br />

Hahn, J., 128, 130, 131<br />

Hall, S.R., 60, 85<br />

Hallam, S.J., 16, 29, 33<br />

Halliwell, B., 53, 78, 79<br />

Halpern, A.L., 6, 7, 10, 15, 16, 22, 34<br />

Hamann, C.W., 64<br />

Haml<strong>in</strong>, N., 90<br />

Hammel, J., 90<br />

Hammer, K., 129, 130, 132, 136<br />

Handelsman, J., 4, 34<br />

Hanschke, R., 123, 128, 129<br />

Hansman, R.L., 6, 29<br />

Harraghy, N., 130<br />

Harrell, M.I., 49, 54, 59, 61, 68, 82–84, 89<br />

Harris, D., 90<br />

Hartl, F.U., 122, 123, 135<br />

Hartl<strong>in</strong>g, J.A., 123<br />

Hartmann, P., 91, 96<br />

Harwood, C.R., 127<br />

Harwood, C.S., 71, 77<br />

Hashimoto, S., 78<br />

Hatzenpichler, R., 11, 12, 20, 22, 23<br />

Hayer-Hartl, M., 122, 123, 135<br />

Hayes, J.M., 6<br />

Hayes, L.G., 54, 60, 83<br />

Hazbon, M.H., 80


152 AUTHOR INDEX<br />

Hazleton, E.B., 84<br />

He, J., 23, 24, 26–28<br />

He, J.Z., 26<br />

Hecker, M., 123, 124, 127–132,<br />

134–136, 138<br />

Hedderich, R., 94, 95<br />

Hedlund, B.P., 33<br />

Heidelberg, J.F., 6, 7, 10, 15, 16, 22, 34<br />

Heidelberg, K.B., 34<br />

Heifets, L., 91<br />

Helmann, J.D., 135<br />

Hemp, J., 16, 17<br />

Henn<strong>in</strong>ger, K., 129<br />

Hentschel, U., 13, 33, 34<br />

Heo, J., 77, 84<br />

Herbaud, M.L., 128<br />

Herfort, L., 30<br />

Herman, B., 50<br />

Hernandez, M.E., 70–72<br />

Herndl, G.J., 6, 29, 30<br />

Herrmann, M., 32, 130<br />

Hersch, G.L., 122, 123, 128<br />

Hertel, C., 131<br />

Hett, E.C., 48<br />

Heuer, H., 23, 25, 28<br />

Hicks, R.E., 6<br />

Higenbottam, T., 85<br />

Hill, C., 131, 137<br />

Hill, P., 127, 130<br />

Hill, P.J., 128, 129<br />

Hill, R.T., 34<br />

H<strong>in</strong>ds, J., 47, 59, 84, 90<br />

H<strong>in</strong>ojosa, R., 83<br />

H<strong>in</strong>zen, B., 129<br />

Ho, J.L., 60, 83<br />

Hoff, D.R., 59<br />

Hoffart, L.M., 96<br />

Hoffman, J., 6, 7, 10, 15, 16, 22<br />

Hoffman, J.M., 34<br />

Hoffmann, F., 13, 33, 34<br />

Hoffner, S.E., 47<br />

Hofreiter, M., 33<br />

Hohmann, S., 63<br />

Hol, W.G., 82<br />

Holben, W., 6, 16<br />

Holgu<strong>in</strong>, F., 85, 90<br />

Holroyd, S., 90<br />

Hols, P., 127<br />

Holtappels, M., 13, 33, 34<br />

Homuth, G., 125, 132, 135<br />

Honaker, R.W., 49, 82, 83, 85, 90<br />

Hondalus, M.K., 91–93, 97<br />

Honer zu Bentrup, K., 52, 54, 55<br />

Hood, D., 137<br />

Hopmans, E.C., 13, 14, 30, 32<br />

Horn, R., 79<br />

Hornsby, T., 90<br />

Horton, E., 68<br />

Horwich, A.L., 123<br />

Howard, S.T., 59<br />

Hu, Y., 124<br />

Huang, Z., 13, 32<br />

Huang, Z.Y., 33<br />

Huet, G., 93<br />

H€ufner, E., 131<br />

H€ugler, M., 16, 17, 74, 75<br />

Humphrey, T.J., 137<br />

Hunter, G.J.E., 57<br />

Husa<strong>in</strong>, M., 68<br />

Hussey, G., 47<br />

Hutte, R., 86<br />

Hutter, B., 78<br />

Hwang, C., 62<br />

Hwang, E.H., 77, 84<br />

Ibrahim, Y.M., 129, 130<br />

Ido, Y., 50<br />

Igarashi, Y., 74<br />

Ikeda, T., 74<br />

Imlay, J.A., 53<br />

Ingalls, A.E., 6, 11–13, 29, 32, 33<br />

Ingmer, H., 123, 125, 127–131,<br />

134–136<br />

Inskeep, W.P., 33<br />

Ioannidis, I., 89<br />

Ioanoviciu, A., 83<br />

Ishii, M., 74<br />

Ishikawa, M., 72


AUTHOR INDEX 153<br />

Ito, K., 85, 90<br />

Itoh, M., 52, 75, 76<br />

Izzo, A., 82<br />

Jackson, L.S., 130<br />

Jacobs Jr., W.R., 52, 54, 55, 59, 68, 74–77,<br />

80, 82, 91–94, 97<br />

Jagels, K., 90<br />

Ja<strong>in</strong>, A., 59<br />

Ja<strong>in</strong>, M., 52, 59, 68, 94, 95<br />

Ja<strong>in</strong>, S.K., 84<br />

Jakimowicz, P., 91<br />

Jayaswal, R.K., 130<br />

Jeney, V., 84, 86<br />

Jenney Jr., F.E., 72, 73<br />

Jenn<strong>in</strong>gs, L.D., 123<br />

Jeoung, J.H., 76<br />

Jia, Z., 23, 24, 26, 28<br />

J<strong>in</strong>, W., 13<br />

Johnson, C., 80<br />

Johnson, T., 81<br />

Johnston, S.A., 59<br />

Jones, A.K., 72<br />

Jones-Carson, J., 68<br />

Jonuscheit, M., 3, 6, 7<br />

Joshi, S.A., 122, 123, 128<br />

Jovanovich, S.B., 15<br />

Juretschko, S., 4<br />

Jurgens, G., 3, 4, 6, 7<br />

Jyothisri, K., 82<br />

Kajfasz, J.K., 129, 130<br />

Kalscheuer, R., 68<br />

Kana, B.D., 59<br />

Kaneko, F., 86<br />

Kao, C.M., 62<br />

Kappler, A., 70<br />

Kapur, V., 82<br />

Karakousis, P.C., 84<br />

Karatzas, K.A.G., 131, 137<br />

Karl, D.M., 29, 30, 32, 34<br />

Karner, M.B., 29<br />

Karr, E.A., 16, 17<br />

Kass, I., 61, 75, 77, 83<br />

Kaster, A.K., 94, 95<br />

Katayama, Y., 72<br />

Katsumata, R., 78<br />

Katsura, K., 72<br />

Kaufmann, S.H., 47, 48<br />

Kaufmann, S.H.E., 59<br />

Kaupenjohann, M., 23, 25, 28<br />

Kavuru, M., 90<br />

Kawakami, R.P., 91–93, 97<br />

Keat<strong>in</strong>gs, V.M., 71, 89<br />

Kelemen, G.H., 92<br />

Keller, C., 60, 84, 89<br />

Kelley, W.L., 134<br />

Kelly, R.M., 73<br />

Kendall, S., 84<br />

Kenniston, J.A., 122, 123, 128<br />

Keough, B.P., 6<br />

Kerr, A.R., 129, 130<br />

Kesavan, A.K., 84<br />

Khan, S., 50<br />

Kharitonov, S.A., 85, 90<br />

Khodursky, A.B., 52, 66, 68<br />

Kielland-Brandt, M.C., 64<br />

Kilo, C., 50<br />

Kilstrup, M., 129, 130<br />

Kim, E., 77, 84<br />

Kim, H.J., 91<br />

Kim, J.A., 77, 84<br />

Kim, J.H., 77<br />

Kim, L., 125, 132<br />

Kim, P., 91<br />

Kim, S.W., 77, 84, 129, 130<br />

Kim, S.Y., 77, 84<br />

Kim, T.H., 91<br />

Kim, Y., 91<br />

Kim, Y.I., 127, 130<br />

Kim, Y.M., 77, 84<br />

K<strong>in</strong>g, G.M., 77, 84<br />

K<strong>in</strong>ger, A.K., 81<br />

K<strong>in</strong>kel, H., 6<br />

Kirste<strong>in</strong>, J., 128, 129, 131, 132, 138<br />

Kishan, K.V., 91<br />

Kleerebezem, M., 127<br />

Kle<strong>in</strong>, E., 60, 84, 86


154 AUTHOR INDEX<br />

Kle<strong>in</strong>, M.R., 82<br />

Kleman, G.L., 55<br />

Klenk, H.-P., 6, 7, 9, 10, 15–18, 22<br />

Kletz<strong>in</strong>, A., 6, 7, 9, 10, 15, 17, 22<br />

Klichko, V.I., 50<br />

Kl<strong>in</strong>kenberg, L.G., 84<br />

Klotz, M.G., 16, 17<br />

Knap, A.H., 6, 7, 10, 15, 16, 22<br />

Knosp, O., 67<br />

Ko, M., 80<br />

Ko, Y.F., 56<br />

Kobayashi, Y., 125<br />

Koch, C., 84<br />

Kock, H., 123, 128–130<br />

Kockelkorn, D., 19<br />

Kohno, S., 54, 59, 68, 82<br />

Kolattukudy, P.E., 68, 90, 94<br />

Koled<strong>in</strong>, T., 79, 80<br />

K€onneke, M., 9–13, 16, 17, 33<br />

Konstant<strong>in</strong>idis, K.T., 16, 29, 33<br />

Koo, H., 129, 130<br />

Koon<strong>in</strong>, E.V., 15, 16, 123<br />

Koops, H.P., 4<br />

Kosaka, K., 54<br />

Kosmiadi, G.A., 59<br />

Kotzerke, A., 23, 25, 28<br />

Kovacevic, S., 80<br />

Kowalchuk, G.A., 3, 4<br />

Kramer, N., 131<br />

Kramnik, I., 49, 54, 61, 68, 85, 86, 89<br />

Kravitz, S., 34<br />

Krebs, C., 96<br />

Krebs, W., 73<br />

Krogh, A., 90<br />

Kroll, H.-P., 129<br />

Kr€uger, E., 123, 124, 128–132, 134,<br />

136, 138<br />

Kumar, A., 49, 54, 60, 61, 68, 82–86, 89<br />

Kunst, F., 128–130<br />

Kuo, H.P., 60, 83, 85<br />

Kushmaro, A., 33<br />

Kusters, I., 123, 128–130<br />

Kuypers, M.M., 14, 30, 32<br />

Kuypers, M.M.M., 6, 13, 33, 34<br />

Kvist, T., 32<br />

Kwon, H.-Y., 129, 130<br />

Labisch<strong>in</strong>ski, H., 129<br />

LaCourse, R., 60, 83<br />

Ladel, C., 129<br />

Lai, D., 13<br />

Lalk, M., 135<br />

Lalloo, U., 47<br />

Lambert, P.H., 47<br />

Lamichhane, G., 84<br />

Lancaster Jr., J.R., 49, 60, 82–86<br />

Lancaster, J.R., 91–93<br />

Lang, D., 16, 17<br />

Lanzen, A., 17, 18<br />

Lanzen, J.L., 60<br />

Lapa e Silva, J.R., 60, 83<br />

Laskowski, D., 86<br />

Laughl<strong>in</strong>, J., 68<br />

Lavik, G., 13, 33, 34<br />

Lawton, T.J., 16, 17<br />

Leary, J.A., 52, 59, 68, 94, 95<br />

Leavell, M.D., 52, 59, 68, 94, 95<br />

Lebedeva, E., 11<br />

Lebedeva, E.V., 11, 12<br />

Lee, H.S., 91<br />

Lee, K.H., 77, 84<br />

Lee, N., 56<br />

Lee, S., 127<br />

Lee, S.M., 59, 84, 90<br />

Legan, S.K., 50<br />

Lehner, A., 132, 134<br />

Lehtovirta, L.E., 23<br />

Leichert, L.I.O., 134<br />

Leigh, J.A., 95<br />

Leija, A., 66, 67<br />

Le<strong>in</strong><strong>in</strong>ger, S., 6, 7, 9, 10, 14, 15, 22–25, 28<br />

Leistikow, R.L., 75, 82, 83, 86, 87<br />

Lemasters, J.J., 50<br />

Lemos, J.A., 129, 130<br />

Lemos, J.A.C., 128, 134<br />

Lenaerts, A.J., 59<br />

Lenz, O., 72<br />

Leone, A.M., 60, 85


AUTHOR INDEX 155<br />

Leopold, J.A., 50<br />

Levanon, S.S., 93<br />

Levchenko, I., 122, 123, 127, 128, 130<br />

Levitt, M.D., 72<br />

Levy, S., 6, 7, 10, 15, 16, 22<br />

Lew, D., 134<br />

Li, C., 50, 97<br />

Li, J., 13<br />

Li, K., 34<br />

Li, Q., 84<br />

Li, R., 82, 83<br />

Li, T., 13<br />

Li, W.J., 33<br />

Liao, R., 54, 59, 68, 82–84, 89<br />

Liao, R.P., 82<br />

Libby, S.J., 78<br />

Licht, S., 123<br />

Lie, T.J., 95<br />

Liebeke, M., 135<br />

Lieberman, R.L., 8<br />

Lienhardt, C., 47<br />

Likolammi, M., 4<br />

Lilie, H., 129<br />

L<strong>in</strong>, H., 68<br />

L<strong>in</strong>, H.C., 60, 83, 85<br />

L<strong>in</strong>, P.L., 60, 84, 86<br />

L<strong>in</strong>hares, C., 60, 83<br />

L<strong>in</strong>nane, S.J., 71, 89<br />

Liu, C.Y., 60, 83, 85<br />

Liu, L., 50, 97, 130<br />

Liu, W., 80<br />

Liu, X., 34<br />

Liu, Y., 91<br />

Liu, Z., 80<br />

Locht, C., 59<br />

Lodish, H.F., 62<br />

Lomas, M.W., 6, 7, 10, 15, 16, 22<br />

López-Garcıa, P., 15, 16<br />

Lopez-Nevot, M.A., 83<br />

Loscalzo, J., 50<br />

Losick, R., 128, 130<br />

Loss, C., 124<br />

Lothrop, W.C., 58, 60<br />

Loux, V., 124, 125<br />

Lowe, T., 16, 17<br />

Ludwig, H., 128, 131, 138<br />

Lun, D.S., 123<br />

Luzardo, Y., 130<br />

Ly, L.H., 84<br />

Lyons, R., 59<br />

Ma, K., 73<br />

Ma, Y., 50, 97<br />

Ma, Z., 47<br />

MacGregor, B.J., 6<br />

MacMick<strong>in</strong>g, J.D., 60, 83<br />

M€ader, U., 135<br />

Maglica, Z., 127<br />

Magu<strong>in</strong>, E., 124, 125<br />

Mai, D., 68, 87, 90–99<br />

Maier, R.J., 72, 73<br />

Maier, S.E., 73<br />

Malhotra, V., 82, 84<br />

Mal<strong>in</strong>ski, T., 60<br />

Mallidis, C.G., 137<br />

Malm, S., 60, 84, 89<br />

Malzan, A., 60, 84, 89<br />

Manabe, Y.C., 84<br />

Mangenot, S., 124, 125<br />

Manjunatha, U., 60, 84, 86<br />

Mann, B.E., 61, 86<br />

Mann<strong>in</strong>g, G., 16, 17<br />

Manzanillo, P., 54, 61, 82, 85, 86<br />

Manzei, S., 32<br />

Markieton, T., 131<br />

Marsh, T.L., 15<br />

Martens-Habbena, W., 10, 16, 17<br />

Marteus, H., 85<br />

Mart<strong>in</strong>, J., 83<br />

Mart<strong>in</strong>ez, A.R., 129, 130<br />

Mart<strong>in</strong>ez, G.J., 80<br />

Masjedi, M.R., 47<br />

Massana, R., 30<br />

Masuda, S., 125<br />

Masuo, S., 78<br />

Matic, I., 137<br />

Mat-Jan, F., 56<br />

Matter, E., 57


156 AUTHOR INDEX<br />

Matthews, B.W., 134<br />

Matthies, M., 23, 25, 28<br />

Maurizi, M.R., 122, 123<br />

Mavrodi, D.V., 70, 72<br />

Mayuri, Bagchi, G., 82<br />

McCallum, K., 4, 19<br />

McCollister, B.D., 68<br />

McCue, L.A., 49, 61, 76<br />

McDonough, K.A., 49, 61, 76<br />

McIlleron, H., 47<br />

McK<strong>in</strong>lay, J.B., 77<br />

McK<strong>in</strong>ney, J.D., 47, 52, 54, 55, 94<br />

McLean, J., 90<br />

McLeod, C.W., 61, 86<br />

McLoughl<strong>in</strong>, P., 71, 89<br />

McNeil, M., 94<br />

McNichol, A.P., 6<br />

Mechtler, K., 132, 134<br />

Medard, M., 123<br />

Med<strong>in</strong>a, V.G., 63<br />

Medlar, E.M., 83, 84<br />

Meena, L.S., 49<br />

Meijer, W.G., 78<br />

Mengewe<strong>in</strong>, A., 32<br />

Mentel, M., 70<br />

Merrill, M.H., 56, 57, 89<br />

Meurer, G., 6, 15, 17<br />

Meurer, G.b., 15<br />

Meyer, J., 72<br />

Meyer, K.C., 59, 71, 85, 89<br />

Meyer, M., 33<br />

Meyer, O., 77<br />

Michaelis, L., 70<br />

Michalik, S., 123, 128–130<br />

Miczak, A., 52, 54, 55<br />

Middelburg, J.J., 30<br />

Middlebrook, G., 61, 75, 77, 83<br />

Miethke, M., 128–130, 132<br />

Miller, C.C., 81<br />

Mills, G., 13<br />

Milohanic, E., 130<br />

M<strong>in</strong>, X., 50, 97<br />

M<strong>in</strong>cer, T.J., 29, 30, 32, 33<br />

M<strong>in</strong>ch, K.J., 47, 49<br />

Miranker, A.D., 123<br />

Mitchell, T.J., 129, 130<br />

Mizrahi, V., 47, 59<br />

Mockett, R.J., 50<br />

Moenne-Loccoz, P., 83<br />

Mogk, A., 125, 127, 129, 132<br />

Mohamed, N.M., 34<br />

Mohan, V.P., 54, 59, 68, 82<br />

Mohanty, D., 94<br />

Moliere, N., 128<br />

Mol<strong>in</strong>ski, T.F., 10–12, 33<br />

Moll, A., 47<br />

Mollenkopf, H., 59<br />

Monbouquette, H.G., 13<br />

Moncada, S., 60, 85<br />

Monk, C.E., 61, 86<br />

Montonen, L., 4<br />

Mora, J., 66, 67<br />

Mora, Y., 66, 67<br />

Morbidoni, H.R., 68<br />

Moreira, D., 15, 16<br />

Mori, T., 54<br />

Morowitz, H.J., 74, 75<br />

Morozk<strong>in</strong>a, E.V., 87, 89<br />

Morris, R.P., 91<br />

Morton, R.A., 75, 83, 86, 87<br />

Moser, D.P., 6<br />

Mosier, A.C., 32<br />

Mossman, M.R., 64, 65<br />

Mostertz, J., 128, 135<br />

Mota, M.M., 84, 86<br />

Motterl<strong>in</strong>i, R., 61, 86<br />

Mougous, J.D., 52, 59, 68, 94, 95<br />

Moule, S., 90<br />

Moxon, R., 137<br />

Moynihan, J.B., 71, 89<br />

Msadek, T., 124, 125, 127–131, 136<br />

Mudgett, J.S., 60, 83<br />

Muller, E.G., 62<br />

Mumford, R., 60, 83<br />

Munch, J.C., 23, 25, 28<br />

Munoz-Elias, E.J., 52, 54, 55<br />

Munster, U., 4<br />

Muratsubaki, H., 75


AUTHOR INDEX 157<br />

Murphy, L., 90<br />

Murray, A.E., 30<br />

Murray, J.F., 60<br />

Murthy, P.S., 48, 54, 58<br />

Muscariello, L., 127<br />

Muttucumaru, D.G., 47<br />

Myrold, D.D., 24<br />

Nair, S., 128–131<br />

Nakano, M.M., 128<br />

Nakano, S., 128<br />

Namsaraev, B., 11<br />

Nandi, R., 72, 73<br />

Narasimhulu, K.V., 91–93<br />

Narayanan, P.R., 84<br />

Nathan, C., 52, 60, 75, 76, 83<br />

Nathan, C.F., 60, 83<br />

Nealson, K., 6, 7, 10, 15, 16, 22, 34<br />

Nealson, K.H., 6, 16<br />

Neher, S.B., 122, 123, 128<br />

Nelson, K.E., 6, 7, 10, 15, 16, 22<br />

Nelson, W., 6, 7, 10, 15, 16, 22<br />

Neubauer, H., 89<br />

Neuwald, A.F., 123<br />

Newman, D.K., 70–72<br />

Newton, G.L., 79–81<br />

Ng, W.-L., 129<br />

Nguyen, K., 91<br />

Nguyen, L., 91, 130<br />

Nguyen, L.P., 15<br />

Nguyen, T.T.H., 135<br />

Nicholson, H., 134<br />

Nicholson, S., 60, 83<br />

Nicol, G., 17, 18, 26, 28<br />

Nicol, G.W., 6, 11, 14, 23–26<br />

Nicolas, P., 124, 125<br />

Nielsen, J., 64<br />

Niem<strong>in</strong>en, A.L., 50<br />

Nishimaki, K., 72<br />

Nissen, N., 91, 96<br />

Nissen, T.L., 64<br />

Norbeck, J., 63<br />

North, R.J., 59, 60, 83<br />

Novak, R., 130<br />

Nowag, A., 91, 96<br />

Nunn, A.J., 47<br />

O’Brien, P.J., 50<br />

O’Callaghan, M., 24, 26–28<br />

O’Connor, C.M., 71, 89<br />

O’Mullan, G.D., 30<br />

Oakes, E.C., 128<br />

Oakes, E.S.C., 122, 123, 128<br />

Oakley, B.B., 29, 32<br />

Ochsenreiter, T., 4, 6, 11, 15, 17, 23<br />

Odelberg, S.J., 50<br />

Oelgeschlager, E., 76, 77<br />

Oenema, O., 4<br />

Offre, P., 26, 28<br />

Og<strong>in</strong>o, T., 56<br />

Ogunniyi, A.D., 129, 130<br />

Ogura, M., 128<br />

Oh, J.I., 77, 84<br />

Oh, N.N., 80<br />

Ohlmeier, S., 123, 128, 129, 131<br />

Ohmori, D., 74<br />

Ohno, H., 54, 59, 68, 82<br />

Ohsawa, I., 72<br />

Ohta, S., 72<br />

Olczak, A., 72, 73<br />

Oliver, K., 90<br />

Ollivier, B., 3<br />

Olson, J., 72, 73<br />

Olson, J.W., 72, 73<br />

Oman, J., 60<br />

Onstott, T.C., 6<br />

Orosz, A., 50<br />

Orr, W.C., 50<br />

Orsi, R.H., 124<br />

Osborne, J., 90<br />

Ouverney, C.C., 6<br />

Oztas, S., 124, 125<br />

Page, W.J., 67<br />

Paget, M.S., 78, 96<br />

Paige, C., 49<br />

Palva, A., 129, 130, 132, 136<br />

Pamplona, A., 84, 86


158 AUTHOR INDEX<br />

Pan, Q., 128, 130<br />

Pancost, R.D., 6<br />

Pane-Farre, J., 124<br />

Parente, E., 131<br />

Parish, T., 47, 84<br />

Park, H., 77, 84<br />

Park, J.S., 91<br />

Park, S.-H., 129, 130<br />

Park, S.J., 77<br />

Park, S.W., 77, 84<br />

Park, T.H., 68, 87, 95, 99<br />

Parkhill, J., 90<br />

Parsons, R., 6, 7, 10, 15, 16, 22<br />

Patel, B.K.C., 3<br />

Patel, H., 62<br />

Patel, M.P., 81<br />

Patel, R.P., 49, 60, 82–86<br />

Paton, J.C., 129, 130<br />

Paulsen, H., 129<br />

Paulsen, I., 6, 7, 10, 15, 16, 22<br />

Paw<strong>in</strong>ski, R., 47<br />

Pearson, A., 6, 13, 29, 32<br />

Pelicic, V., 59<br />

Pellegr<strong>in</strong>i, E., 128–130<br />

Penaud, S., 124, 125<br />

Pereira, I.A.C., 73<br />

Perham, R.N., 81<br />

Perk<strong>in</strong>s, M.D., 47<br />

Pernthaler, A., 6<br />

Pernthaler, J., 6<br />

Perrella, M.A., 60, 85<br />

Perrone, G., 62<br />

Persson, M.G., 85<br />

Peshock, R.M., 50<br />

Peters, G., 130<br />

Petersen, A., 70<br />

Peterson, J., 6, 7, 10, 15, 16, 22<br />

Pethe, K., 68, 76, 83, 86, 87, 89, 95, 99<br />

Petzold, C.J., 52, 59, 68, 94, 95<br />

Pfannkoch, C., 6, 7, 10, 15, 16, 22<br />

Pfenn<strong>in</strong>ger-Li, X.D., 73<br />

Pickart, C.M., 123<br />

Pierre, F., 127, 128<br />

Pieters, J., 91<br />

Pillay, M., 47<br />

P<strong>in</strong>el, N., 16, 17<br />

Pitcher, A., 13, 14<br />

Platt, T., 34<br />

Plum, G., 91, 96<br />

Pommeren<strong>in</strong>g-R€oser, A., 4<br />

Poole, R.K., 61, 86<br />

Popp, B.N., 29, 30<br />

Portugal, S., 84, 86<br />

Pouyssegur, J., 60<br />

Pratt, C.W., 49, 55<br />

Preston, C., 16, 29, 30, 32, 33<br />

Preston, C.M., 10–12, 15, 16, 30, 33<br />

Price-Whelan, A., 70–72<br />

Proctor, R.A., 130, 134<br />

Pronk, J.T., 63, 64<br />

Prosser, J., 3<br />

Prosser, J.I., 14, 23–28<br />

Prudhomme, M., 127–130<br />

Purkayastha, A., 49, 61, 76<br />

Purkhold, U., 4<br />

Putnam, N., 16, 29, 33<br />

Puzewicz, J., 132<br />

Pyo, S.-N., 129, 130<br />

Qazi, S., 127, 130<br />

Qazi, S.N.A., 128, 129<br />

Qi, J., 14, 23–25<br />

Qi, R., 82, 83<br />

Qian, B., 50, 97<br />

Qoronfleh, M.W., 130<br />

Quail, M.A., 90<br />

Quaiser, A., 4, 6, 11, 15, 17, 23<br />

Quivey, R.G., 129, 130<br />

Rachman, H., 59<br />

Radax, R., 13, 33, 34<br />

Raddatz, G., 6, 15, 17<br />

Raddatz, S., 129<br />

Radha Kishan, K.V., 91<br />

Radyuk, S.N., 50<br />

Raengpradub, S., 124<br />

Raghunand, T.R., 91<br />

Ragsdale, S.W., 76


AUTHOR INDEX 159<br />

Rajakumar, K., 59, 84, 90<br />

Rajandream, M.A., 90<br />

Rajasekaran, N.S., 50<br />

Rajni, 49<br />

Ramakrishnan, L., 47, 48<br />

Ramakrishnan, T., 48, 54, 58<br />

Ramal<strong>in</strong>gam, B., 59<br />

Ramanathan, V.D., 84<br />

Rand, J.D., 63<br />

Rand, L., 76, 86, 87<br />

Randell, S., 59, 71, 85, 89<br />

Rao, S.P., 76, 83, 86, 87, 89<br />

Rapoport, G., 125, 128–131<br />

Rapp, H.T., 13, 33, 34<br />

Rasmussen, K.N., 61, 83, 84<br />

Ratjen, F., 89<br />

Ratledge, C., 47, 51, 52<br />

Rattei, T., 20, 22, 23<br />

Rawat, M., 79–81<br />

Ray, S.M., 60, 84, 86<br />

Rebr<strong>in</strong>, I., 50<br />

Redd<strong>in</strong>g, K.E., 91–93<br />

Reed, M.B., 83<br />

Reeves, R.E., 58, 60<br />

Reid, B.G., 123<br />

Reigstad, L.J., 13, 33<br />

Re<strong>in</strong>thaler, T., 6<br />

Rem<strong>in</strong>gton, K., 6, 7, 10, 15, 16, 22, 34<br />

Ren, B., 53<br />

Renfrow, M.B., 68, 87, 90, 93–99<br />

Reysenbach, A.L., 14, 32<br />

Rhee, D.-K., 129, 130<br />

Ricciardi, A., 131<br />

Rich, A.R., 61, 83, 84<br />

Richardson, A.R., 78<br />

Richardson, D.J., 68, 69, 87, 89<br />

Richardson, P.M., 16, 29, 33<br />

Richter, A., 11–13, 33<br />

Rietveld, P., 81<br />

Rieu, A., 127<br />

Rijpstra, W.I., 14, 32<br />

Riley, R.L., 61, 83<br />

Ripio, M.T., 129, 130<br />

Ritz, D., 62<br />

Rivera-Ramos, I., 129, 130<br />

Ro, Y.T., 77, 84<br />

Robert, C., 124, 125<br />

Roberts, D.M., 82<br />

Roberts, G., 47<br />

Roberts, G.P., 4<br />

Roberts, K., 33<br />

Roberts, K.J., 29, 32<br />

Robertson, G.T., 129<br />

Rob<strong>in</strong>son, N., 91, 96<br />

Robson, R., 72<br />

Rocha, E.P.C., 137<br />

Rodrigues, C.D., 84, 86<br />

Rodrıguez-Valera, F., 15, 16<br />

Rogers, J., 90<br />

Rogers, Y.H., 6, 7, 10, 15, 16, 22, 34<br />

Rohwer, F., 33<br />

Rom, W., 60, 83<br />

Romanek, C.S., 13, 32, 33<br />

Rondon, E., 59<br />

Rose, M., 129, 130<br />

Rosenzweig, A.C., 8, 16, 17<br />

Ross, C., 33<br />

Rossano, R., 131<br />

Rother, M., 76, 77<br />

Rouanet, C., 59<br />

Rouquette, C., 129, 130<br />

Rub<strong>in</strong>, B.K., 89<br />

Rub<strong>in</strong>, E.J., 47, 48<br />

Rudolph, F.B., 68<br />

Rusch, D., 6, 7, 10, 15, 16, 22<br />

Rusch, D.B., 34<br />

Russell, D.A., 87, 89<br />

Russell, D.G., 52, 54, 55<br />

Russell, G.C., 53<br />

Rustad, T.R., 47, 49, 83, 84<br />

Rutter, S., 90<br />

Ryan, G.J., 59<br />

Rybniker, J., 91, 96<br />

Ryter, S.W., 60, 85<br />

Saano, A., 4<br />

Sacchett<strong>in</strong>i, J.C., 47, 52, 54, 55, 80<br />

Sachdeva, S., 82


160 AUTHOR INDEX<br />

Sahl, H.-G., 129<br />

Sa<strong>in</strong>i, D.K., 82, 84<br />

Saito, K., 34<br />

Sambrook, J., 122<br />

San, K.Y., 66, 68, 87, 93<br />

Sanchez, A.M., 68<br />

Sandaa, R.A., 4<br />

Sangu<strong>in</strong>etti, G., 61, 86<br />

Sangurdekar, D.P., 52, 66, 68<br />

Santoro, A.E., 29, 32<br />

Santos, G.M., 6, 29<br />

Sarath, G., 78<br />

Sareen, D., 79, 80<br />

Sariyar, B., 68<br />

Sathyendranath, S., 34<br />

Sauer, R.T., 122, 123, 127,<br />

128, 130<br />

Saunders, A.M., 32<br />

Saves, I., 93<br />

Savijoki, K., 128, 129<br />

Sawers, G., 68, 69<br />

Sayavedra-Soto, L.A., 16, 17<br />

Schafer, F.Q., 78, 79<br />

Scharf, C., 124, 127, 134, 135<br />

Schauss, K., 23, 25, 28<br />

Sched<strong>in</strong>, U., 85<br />

Scheffers, W.A., 63, 64<br />

Schelle, M.W., 52, 59, 68, 94, 95<br />

Schicho, R.N., 73<br />

Schittone, S., 82<br />

Schl€appy, M.-L., 13, 33, 34<br />

Schlegel, H.G., 77<br />

Schleper, C., 3, 4, 6, 7, 9–11, 13–18, 20,<br />

22–25, 28, 29, 33, 34<br />

Schlieker, C., 127<br />

Schloter, M., 14, 23–25, 28<br />

Schlothauer, T., 129<br />

Schluger, N.W., 60<br />

Schmid, F.X., 125, 132<br />

Schmid, M.C., 4<br />

Schmid, R., 124, 127<br />

Schmidt, A., 132, 134<br />

Schmidt, T.M., 4, 6<br />

Schmitt, S., 13<br />

Schnapp<strong>in</strong>ger, D., 49, 52, 54, 59, 61, 68,<br />

82, 83, 87, 89, 91, 95, 99, 100<br />

Scholz, C., 125, 132<br />

Schoolnik, G.K., 49, 54, 59, 61, 68,<br />

81–83, 89<br />

Schouten, S., 6, 13–15, 30, 32<br />

Schramm, A., 32<br />

Schroeder, W., 129<br />

Schuchhardt, J., 59<br />

Schumann, W., 124, 125, 128, 132<br />

Schuster, S.C., 6, 7, 9, 10, 14, 15,<br />

17, 22–25<br />

Schut, G.J., 73<br />

Schwab, U., 59, 71, 85, 89, 124<br />

Schwark, L., 13, 14, 23–25, 33<br />

Schwartzberg, P., 130<br />

Scrutton, N.S., 81<br />

Sears, H.J., 68, 69<br />

Seedorf, H., 94, 95<br />

Seeger, K., 90<br />

Segal, W., 48, 51, 53, 54, 58–60, 99<br />

Seifritz, C., 89<br />

Seitz, H., 15, 16<br />

Selezi, D., 4, 11, 23<br />

Sengupta, S., 72, 73<br />

Senior, P.J., 66, 67<br />

Senner, C., 59, 84, 90<br />

Sensen, C.W., 15<br />

Seravalli, J., 76<br />

Shah, S.K., 60, 83<br />

Shah, S.R., 6, 29<br />

Shakila, H., 84<br />

Shalel-Levanon, S., 93<br />

Sharma, D., 84<br />

Sharma, S., 23, 25, 28<br />

Sheehan, H.L., 58<br />

Shen, G., 96<br />

Shen, J., 23, 24, 26–28<br />

Shen, J.P., 26<br />

Sherman, D.R., 47–49, 54, 59, 61, 68,<br />

82–84, 89<br />

Sherratt, A.L., 59, 84, 90<br />

Sherrid, A.M., 47, 49<br />

Shi, L., 59


AUTHOR INDEX 161<br />

Shiloh, M.U., 54, 61, 82, 83, 85, 86<br />

Shimizu, M., 78<br />

Sh<strong>in</strong>, M., 16, 17<br />

Shizuya, H., 15<br />

Shock, E.L., 33<br />

Siboni, N., 33<br />

Siddiqui, S.M., 122, 123, 128<br />

Sieber, S.A., 129<br />

Siegers, K., 122<br />

Sievert, S.M., 16, 17, 74, 75<br />

Silva, N.A., 129, 130<br />

Silver, R.F., 84<br />

Simon, H.M., 4<br />

S<strong>in</strong>gh, A., 68, 87, 90–99<br />

S<strong>in</strong>gh, K.K., 82<br />

S<strong>in</strong>gh, S.K., 123<br />

S<strong>in</strong>gh, V.K., 130<br />

S<strong>in</strong>ha, B., 130<br />

S<strong>in</strong>skey, A.J., 62<br />

Sirakova, T.D., 68, 90, 94<br />

Sirsi, M., 54, 58<br />

Sivan, A., 33<br />

Skelton, J., 90<br />

Small, P.M., 83<br />

Smalla, K., 23, 25, 28<br />

Smith, D.A., 84<br />

Smith, H., 34<br />

Smith, H.O., 6, 7, 10, 15, 16, 22<br />

Smith, I., 59<br />

Smith, R.J., 59, 84, 90<br />

Smittenberg, R.H., 13, 32<br />

Snoep, J.L., 64, 65, 68, 78, 87<br />

Snyder, S.A., 60<br />

Soares, M.P., 84, 86<br />

Sohal, R.S., 50<br />

Sohaskey, C.D., 59, 89<br />

Somerville, G.A., 130<br />

Song, T., 77, 84<br />

Song, Z.Q., 33<br />

Soni, V., 91<br />

Sørensen, K., 127, 130<br />

Soteropoulos, P., 59<br />

Sousa, E.H., 60, 83, 84<br />

Souza, V., 34<br />

Spang, A., 20, 22, 23<br />

Spano, G., 127<br />

Spellman, P.T., 62<br />

Spencer, J.S., 59<br />

Spencer, M.E., 53<br />

Spieck, E., 11, 12, 20, 22, 23<br />

Spiess, S., 132, 134<br />

Spiro, S., 87, 89<br />

Spouge, J.L., 123<br />

Spr<strong>in</strong>gstead, J.R., 13<br />

Squares, R., 90<br />

Squares, S., 90<br />

Sridharan, V., 94<br />

Sr<strong>in</strong>ivasan, V., 74, 75<br />

Srivastava, B.S., 59<br />

Srivastava, R., 59<br />

Srivastava, V., 59<br />

Stabler, R.A., 47<br />

Stahl, D.A., 6, 9–13, 16, 17, 20, 22, 23, 33<br />

Standfest, S., 13<br />

Stan-Lotter, H., 33<br />

Staubli, A., 51<br />

Steenkamp, D.J., 81<br />

Steffek, M., 79<br />

Steger, D., 13, 33, 34<br />

Ste<strong>in</strong>, J.L., 15, 16<br />

Ste<strong>in</strong>, L., 34<br />

Ste<strong>in</strong>buchel, A., 67, 68, 90, 94<br />

Stenzel, U., 33<br />

Stephen, J.R., 3, 4<br />

Steuber, J., 73<br />

Stevenson, T.J., 50<br />

Stewart, A., 82<br />

Stewart, C., 34<br />

Steyn, A.J., 49, 54, 60, 61, 68, 82–87,<br />

89–99<br />

Steyn, A.J.C., 49, 82, 83, 85, 90–93<br />

Stoecker, K., 11, 12<br />

Stoker, N.G., 84<br />

Stolarczyk, E., 60<br />

Storz, G., 62<br />

Stoveken, T., 67<br />

Strausberg, R.L., 34<br />

Streit, W., 20, 22, 23


162 AUTHOR INDEX<br />

Strohl, W.R., 55<br />

Strong, M., 30, 59<br />

Stuehr, D.J., 86<br />

Sturm, A.W., 47<br />

Suematsu, M., 52, 75, 76<br />

Sugahara, J., 16, 29, 33<br />

Suhail Alam, M., 91<br />

Sulston, J.E., 90<br />

Suter, E., 57<br />

Sutton, G., 34<br />

Suzuki, M.T., 15<br />

Swanson, I., 95<br />

Swanson, R.V., 15, 16<br />

Swenson, D., 52, 54, 55<br />

Switzer, R.L., 123, 128–130<br />

Ta, P., 79, 80<br />

Tabarsi, P., 47<br />

Taddei, F., 137<br />

Tahlan, K., 68, 87, 95, 99<br />

Takahashi, K., 72<br />

Takai, K., 6<br />

Takaya, N., 78<br />

Tal, Y., 34<br />

Talaat, A.M., 59<br />

Tamayo-Castillo, G., 34<br />

Tan, G., 53<br />

Tanaka, K., 84<br />

Tanaka, Y., 54<br />

Tarran, R., 59, 71, 85, 89<br />

Tascon, R.I., 129, 130<br />

Tassou, C.C., 137<br />

Tavano, C., 59<br />

Taylor, C.D., 74, 75<br />

Taylor, C.J., 87, 89<br />

Taylor, K., 60, 84, 86, 90<br />

Taylor, L.T., 15, 16, 29, 30, 32<br />

Taylor, M.W., 13, 33, 34<br />

Taylor, R.P., 50<br />

Teague, W.G., 85, 90<br />

Teal, T.K., 70, 71<br />

Teira, E., 6, 30<br />

Teixeira de Mattos, M.J., 64, 65, 68, 87<br />

Tekaia, F., 90<br />

Tepper, R., 54<br />

Tessarz, P., 127<br />

Thauer, R.K., 94, 95<br />

Thevele<strong>in</strong>, J.M., 63<br />

Thiele-Bruhn, S., 23, 25, 28<br />

Thomashow, L.S., 70, 72<br />

Thomassen, M.J., 90<br />

Thompson, E.T., 129<br />

Thompson, M.W., 123<br />

Thomson, A.J., 91<br />

Thorpe, J., 34<br />

Thunnissen, F.B., 90<br />

Tian, F., 13<br />

Tian, J., 52, 75, 76<br />

Tickoo, R., 94<br />

Tilton, R.G., 50<br />

Timmers, P., 30<br />

Tischendorf, G., 129<br />

Tischer, K., 124, 127<br />

Tischler, P., 20, 22, 23<br />

Toledo, J.C., 49, 60, 82–86<br />

Tomboulian, P., 60<br />

Tomkiewicz, R.P., 89<br />

T€ornberg, D.C., 85<br />

Torre, O., 85, 90<br />

Torsvik, V., 4<br />

Touchon, M., 137<br />

Tourna, M., 26<br />

Tran, B., 34<br />

Treangen, T.J., 137<br />

Tremblay, G.A., 84<br />

Treusch, A.H., 6, 7, 9, 10, 15, 17, 22<br />

Triccas, J.A., 59<br />

Trivedi, O.A., 94<br />

Trombley, J., 91–93<br />

Trotter, E.W., 62<br />

Tsai, F.T.F., 127<br />

Tsai, M.C., 84<br />

Tsukahara, K., 128<br />

Tuckerman, J.R., 60, 83, 84<br />

Tufariello, J.A., 84<br />

Tuomanen, E., 130<br />

Turgay, K., 128–132, 134, 138<br />

Tyagi, J.S., 81, 82, 84


AUTHOR INDEX 163<br />

Ulrich, M., 59, 71, 85, 89<br />

Ulrichs, T., 48, 59<br />

Unson, M.D., 80<br />

Upton, A.M., 52, 55, 94<br />

Urakawa, H., 10, 16, 17<br />

Urich, T., 13, 14, 23–25, 33<br />

Utaida, S., 130<br />

Utterback, T., 34<br />

Vadali, R.V., 68<br />

Valadi, A., 63<br />

Valadi, H., 63<br />

Valdramidis, V.P., 137<br />

Valente, F.M.A., 73<br />

Van Aken, H., 6<br />

Van Beusichem, M.L., 4<br />

van Bleijswijk, J., 14, 30, 32<br />

Van Damme, O., 79<br />

van de Guchte, M., 124, 125<br />

Van der L<strong>in</strong>den, E., 72<br />

van der Meer, M.T., 14, 32<br />

Van Der Merwe, M.J., 78<br />

Van Der Weijden, C.C., 78<br />

van Dijken, J.P., 63, 64<br />

van Du<strong>in</strong>, A.C., 13<br />

van Gumpel, E., 91, 96<br />

Van Keulen, G., 78<br />

van Maris, A.J.A., 63<br />

Varcamonti, M., 131<br />

Varma, K.G., 54<br />

Varmanen, P., 125, 128–132,<br />

134, 136<br />

Vats, A., 94<br />

Vaudaux, P., 134<br />

Vazquez-Boland, J.A., 129, 130<br />

Vazquez-Torres, A., 68<br />

Velayati, A.A., 47<br />

Veldhuis, M.J.W., 30<br />

Velez, L., 83<br />

Velthof, G.L., 4<br />

Vemuri, G.N., 52, 66, 68<br />

Venceslau, S.S., 73<br />

Venter, J.C., 6, 7, 10, 15, 16, 22, 34<br />

Venter, J.E., 34<br />

Veth, C., 6<br />

Via, L.E., 60, 84, 86<br />

Vignais, P.M., 72<br />

Vilchez, J.R., 83<br />

Vilcheze, C., 74–77, 80<br />

Villacorta, R., 15<br />

Villadsen, J., 64<br />

Villen, J., 128<br />

Visconti, K., 91<br />

Visconti, K.C., 49, 54, 59, 61, 68,<br />

81–83, 89<br />

Voet, D., 49, 55<br />

Voet, J.G., 49, 55<br />

Vogensen, F.K., 125, 129–132, 134–136<br />

Vogt, R.N., 81<br />

V€olker, U., 124, 130, 132, 134<br />

Voskuil, M., 54, 59, 68, 82, 89<br />

Voskuil, M.I., 49, 54, 59, 61, 68, 75,<br />

81–83, 85–87, 89, 90, 93–99<br />

Waddell, S.J., 59, 84, 90<br />

Wagner, K., 60, 75, 83, 84, 86, 87, 89<br />

Wagner, M., 4, 11–13, 20, 22, 23, 33, 34<br />

Wah, D.A., 122, 123, 128<br />

Wakeham, S.G., 14, 30, 32<br />

Waldm<strong>in</strong>ghaus, T., 128<br />

Walker, C.B., 9–13, 16, 17, 33<br />

Waltermann, M., 67<br />

Walunas, T., 124, 125<br />

Wang, C.H., 60, 83, 85<br />

Wang, H., 130<br />

Wang, J., 123<br />

Wang, T., 95, 96<br />

Wang, X., 47<br />

Ward, B.B., 30<br />

Ward, D.E., 78<br />

Ward, D.M., 14, 32<br />

Ward, S.K., 59<br />

Warner, D.F., 47<br />

Watanabe, M., 72<br />

Watanabe, Y., 16, 29, 33<br />

Waterbury, J.B., 9, 10, 12<br />

Wawrzynow, A., 132<br />

Wayne, L.G., 54, 60, 83, 89


164 AUTHOR INDEX<br />

Weber-Ban, E.U., 123, 127<br />

Wegley, L., 33<br />

Weibezahn, J., 127<br />

Weidler, G.W., 33<br />

Weidmann, S., 127<br />

Weidner, J.R., 60, 83<br />

Weigand, W.A., 56<br />

Weiss, T., 59, 71, 85, 89<br />

Weissenbach, J., 124, 125<br />

Weitzberg, E., 85<br />

Wells-Bennik, M.H.J., 137<br />

Weraarchakul, W., 130<br />

West, J.B., 61<br />

Westerhoff, H.V., 78<br />

Westermann, P., 32<br />

Whalan, S., 13, 33, 34<br />

Wheeler, P.R., 47, 51, 52<br />

White, O., 6, 7, 10, 15, 16, 22<br />

Whitehead, S., 90<br />

Whiteley, M., 70<br />

Whitman, W.B., 3<br />

Whitwell, F., 58<br />

Wickner, S., 122, 123<br />

Wiebe, W.J., 3<br />

Wiedmann, M., 124<br />

Wiegel, J., 13, 32, 33<br />

Wiegert, T., 128<br />

Wiklund, N.P., 85<br />

Wilke, B.M., 23, 25, 28<br />

Wilk<strong>in</strong>son, B.J., 130<br />

Wilk<strong>in</strong>son, R.J., 49, 52, 59, 61, 100<br />

Williams Jr., C.H., 81<br />

Williams, K.J., 68, 87, 95, 99<br />

Williamson, J.R., 50<br />

Williamson, S., 34<br />

Willms, K., 66, 67<br />

Wimpenny, J.W., 64, 65<br />

Wimpenny, J.W.T., 70, 71<br />

W<strong>in</strong>efield, C., 24, 26–28<br />

W<strong>in</strong>efield, C.S., 26<br />

W<strong>in</strong>kler, M.E., 129<br />

W<strong>in</strong>stanley, C., 70, 71<br />

Wipat, A., 127<br />

Wirsen, C.O., 74, 75<br />

Wisedchaisri, G., 82<br />

Witt, E., 123, 128, 129, 131, 138<br />

Woebken, D., 13, 33, 34<br />

Woese, C.R., 13<br />

Wolfe, A.J., 56, 64, 65<br />

Wol<strong>in</strong>, M.J., 49, 61, 76<br />

Wong, P.M., 95<br />

Wong, S.L., 125<br />

Woodruff, R.V., 127, 130<br />

Worlitzsch, D., 59, 71, 85, 89<br />

Wouters, J.A., 131, 137<br />

Wrage, N., 4<br />

Wright, D.E., 57<br />

Wu, C.W., 59<br />

Wu, D., 6, 7, 10, 15, 16, 22, 34<br />

Wu, K., 30<br />

Wu, K.-F., 130<br />

Wu, K.Y., 10–12, 15, 16, 33<br />

Wu, L., 34<br />

Wu, Y., 96<br />

Wuchter, C., 6, 14, 15, 30<br />

Xia, D., 95<br />

Xie, Q.W., 60, 83<br />

Xu, J., 84<br />

Xu, M., 23<br />

Xu, S.-X., 130<br />

Xu, W.-C., 130<br />

Xu, X., 68, 87, 95, 99<br />

Yamagata, K., 72<br />

Yamamoto, M., 74<br />

Yan, B.S., 49, 54, 61, 68, 85, 86, 89<br />

Yan, L.J., 50<br />

Yan, T., 34<br />

Yang, J., 53<br />

Yang, Y.T., 68<br />

Yankaskas, J.R., 59, 71, 85, 89<br />

Yao, Y., 50, 97<br />

Ye, Q., 33<br />

Yee, C.H., 61, 86<br />

Yi-Lian, L., 13<br />

Y<strong>in</strong>, Y.-B., 130<br />

Yooseph, S., 34


AUTHOR INDEX 165<br />

Young, D., 49, 52, 59,<br />

61, 100<br />

Young, D.B., 47<br />

Young, J.C., 122<br />

Yu, C.A., 95<br />

Yu, C.T., 60, 83, 85<br />

Yu, J.Y., 77<br />

Yu, L., 95<br />

Yuan, G., 125<br />

Yukl, E.T., 83<br />

Yun, C.S., 68, 87, 95, 99<br />

Yura, T., 124<br />

Zagorec, M., 131<br />

Zahn, R., 127<br />

Zbell, A.L., 73<br />

Zeiher, A.M., 50<br />

Zeller, K., 47<br />

Zellmeier, S., 128<br />

Zentgraf, H., 127<br />

Zervos, A., 137<br />

Zhang, C.L., 13, 32, 33<br />

Zhang, L., 23<br />

Zhang, Q., 130<br />

Zhang, X., 13, 50, 97<br />

Zhang, X.-M., 130<br />

Zhang, X.Q., 50<br />

Zhao, W.D., 33<br />

Zheng, G., 128<br />

Zheng, M., 62<br />

Zheng, R., 81<br />

Zheng, Y., 23<br />

Zhou, J., 34<br />

Zhu, G., 54, 59, 68, 82, 84<br />

Zhu, Y., 23<br />

Ziazarifi, A.H., 47<br />

Ziebandt, A.K., 124, 127<br />

Zolkiewski, M., 123<br />

Zotta, T., 131<br />

Zuber, P., 128<br />

Zuber, U., 125<br />

Z€uhlke, D., 128, 131, 132, 138<br />

Zvyagilskaya, R.A., 87, 89<br />

Zylicz, M., 132


This page <strong>in</strong>tentionally left blank


Subject Index<br />

Note: The page numbers taken from figures and tables are given <strong>in</strong> italics.<br />

A<br />

Acetyl-CoA synthase (ACS), 76<br />

Acetyl-coenzyme A (acetyl-CoA), 51<br />

N-Acetylglucosam<strong>in</strong>yl<strong>in</strong>ositol, 79, 80<br />

Aerobic ammonia oxidation, 4<br />

Aerobic archaea, 3<br />

Aerobic carboxydotrophic bacteria, 76<br />

Aerobic microorganisms, 4<br />

Allylthiourea, 11<br />

Ammonia, 3, 4<br />

competition for, 30<br />

conversion to nitrite, 33<br />

oxidation, 3, 4, 13, 17, 25, 30<br />

source of, 25<br />

Ammonia monooxygenase (AMO), 6<br />

pMMO-related prote<strong>in</strong>, 8<br />

PMO, phylogenetic relationship, 8<br />

Ammonia oxidation, 3, 4<br />

Ammonia oxidisers<br />

as dist<strong>in</strong>ct phylum with<strong>in</strong> archaea, 4,<br />

19–22<br />

phylogenetic tree, 23<br />

process<strong>in</strong>g genes, distribution,<br />

20–22<br />

uncultivated, metagenomic studies,<br />

15–16<br />

amo-related genes, 15<br />

confirm<strong>in</strong>g close relationship of, 16<br />

microheterogeneity, 16<br />

Ammonia-oxidis<strong>in</strong>g archaea (AOA), 4,<br />

6–13<br />

ammonia oxidation k<strong>in</strong>etics, 10<br />

amo/pmo genes, 8<br />

associated with mar<strong>in</strong>e <strong>in</strong>vertebrates,<br />

33–34<br />

sponge-associated<br />

communities, 34<br />

Cenarchaeum/Ax<strong>in</strong>ella<br />

association, 11<br />

contrast<strong>in</strong>g response to nitrogen<br />

deposition, 27<br />

cultivated, 12<br />

diversity, distribution and activity,<br />

22–23<br />

phylogenetic tree, 24<br />

enrichments, 11<br />

genomes and metagenomes, 15<br />

BAC-derived fosmid vectors, 15<br />

WGS approach, 15<br />

<strong>in</strong> geothermal environments, 32–33<br />

isolation, 9<br />

<strong>in</strong> mar<strong>in</strong>e environment, 28–29<br />

activity, 30–32<br />

fluxes <strong>in</strong> <strong>in</strong>organic nitrogen concentrations,<br />

31<br />

membrane lipids of, 13–15<br />

GDGT, 13, 14<br />

phospholipids, 13<br />

recovery of crenarchaeol, 13<br />

TEX 86 <strong>in</strong>dex, 14<br />

oligotrophic lifestyle, 10<br />

open read<strong>in</strong>g frames (ORFs) cod<strong>in</strong>g<br />

for, 6<br />

phylogenetic relationship, of AMO<br />

and PMO, 8<br />

predicted ORFs, on 43 kb soil fosmid<br />

54d9, 7<br />

<strong>in</strong> sediments, 32


168 SUBJECT INDEX<br />

<strong>in</strong> soil environment, 23–24<br />

activity, 25–28<br />

amoA gene abundance <strong>in</strong>, 25<br />

growth of acetylene-sensitive<br />

ammonia-oxidis<strong>in</strong>g archaea <strong>in</strong>, 28<br />

16S rRNA-based PCR surveys, 11<br />

Ammonia-oxidis<strong>in</strong>g bacteria (AOB),<br />

4, 6<br />

amoA gene abundance <strong>in</strong> soils, 25<br />

autotrophic, fixation of carbon, 19<br />

contrast<strong>in</strong>g response to nitrogen<br />

deposition, 27<br />

environmental factors, 22<br />

growth characteristics, 25<br />

growth dynamics, 26<br />

nitrification activity, 28<br />

pathways of nitrogen, oxygen and<br />

electron flow, 18<br />

ratio of AOA to AOB amoA genes,<br />

23, 25<br />

amoA genes, 9, 14, 29<br />

Anti-mycobacterial drug, 47<br />

Anti-sigma factor, SpoIIAB, 128<br />

AOA. See Ammonia-oxidis<strong>in</strong>g archaea<br />

(AOA)<br />

AOB. See Ammonia-oxidis<strong>in</strong>g<br />

bacteria (AOB)<br />

Archaea<br />

carbon metabolism, 6<br />

<strong>in</strong> moderate aerobic habitats, 4<br />

phylogenetic relationship, 5<br />

role <strong>in</strong> global cycles, 3<br />

16S rRNA gene-def<strong>in</strong>ed l<strong>in</strong>eages, 5<br />

Arthrobacter oxydans, 78<br />

Aspergillus nidulans, 78<br />

ATPase, 123, 129<br />

ATP citrate lyase, 74<br />

ATP-dependent proteases, 123<br />

ATP hydrolysis, 123<br />

ATP synthesis, 69, 89<br />

Auto-phosphorylation, 138<br />

Ax<strong>in</strong>ella mexicana, 11, 13, 16, 33<br />

Azorhizobium, 67<br />

Azotobacter beijer<strong>in</strong>ckii, 66<br />

Azotobacter v<strong>in</strong>elandii, 64, 67<br />

B<br />

BAC-derived fosmid vector, 15<br />

Bacillaceae, 127<br />

Bacillales, 124, 131<br />

Bacille Calmette-Guer<strong>in</strong> (BCG)<br />

vacc<strong>in</strong>e, 47<br />

survival, under hypoxic conditions, 61<br />

Bacillus stearothermophilus, 132<br />

Bacillus subtilis, 124, 125, 128<br />

Bacterial artificial chromosomes<br />

(BACs), 15<br />

Bacterial regulatory circuits, 138<br />

Blood–bra<strong>in</strong> barrier, 86<br />

Bone marrow-derived macrophages, 85<br />

Bradyrhizobium, 67<br />

C<br />

Calv<strong>in</strong>–Bassham–Benson cycle, 19<br />

Calv<strong>in</strong> cycle, 76, 77<br />

Candida boid<strong>in</strong>ii, 66<br />

Carbon cycle, 3<br />

Carbon dioxide (CO2), 49<br />

Carbon monoxide (CO), 49<br />

b<strong>in</strong>d<strong>in</strong>g of CO to DosS and<br />

DosT, 84<br />

Dos regulon and, 85–86<br />

as energy source, 77<br />

<strong>in</strong> Mtb persistence, 60<br />

oxidation, 77<br />

utilis<strong>in</strong>g microorganisms use enzyme<br />

CODH to, 76<br />

Carbon monoxide (CO) dehydrogenase<br />

(CODH), 76–77<br />

Carbon oxidation state (COS), 54–56<br />

Carboxydotrophic microbes, 76<br />

Cellular chaperone mach<strong>in</strong>ery, 122<br />

Cenarchaeum symbiosum, 10, 11<br />

ammonia oxidation by, 11


SUBJECT INDEX 169<br />

from concatenated dataset of<br />

ribosomal prote<strong>in</strong>s, 20<br />

fluorescent <strong>in</strong> situ hybridisation, 10<br />

genes for urease, 17<br />

genome of, 15, 16<br />

G + C content, 16<br />

pathway for carbon fixation, 19<br />

Chemolithoautotrophic ammonia<br />

oxidisers, 9<br />

Clostridium welchii, 70<br />

clpC, clpP and clpB operons, 124<br />

clpL <strong>in</strong> staphylococci, 127<br />

Clp mach<strong>in</strong>ery, 123<br />

ClpP complex, 123<br />

Clp protease, 123<br />

Clp-specific degradation, 128<br />

clpX expression, regulation of, 127<br />

13<br />

C-metabolic flux analysis, 99<br />

CoA-dependent KDH, 75<br />

Corynebacterium glutamicum, 91<br />

Crabtree effect, 65<br />

Crenarchaeol, 13, 14, 31, 32<br />

Crenarchaeota, 4, 6, 20<br />

hyperthermophilic, 13<br />

CtsR degradation<br />

McsB k<strong>in</strong>ase activity, 138<br />

role of McsB as adaptor, 138<br />

YwlE, to counteract, 138<br />

ctsR gene, 124, 125, 127, 137<br />

CtsR <strong>in</strong>activation, 124–125, 136<br />

dur<strong>in</strong>g oxidative stress, 135<br />

CtsR prote<strong>in</strong>, 134<br />

CtsR-regulated genes, 124–127<br />

cellular functions of, 127–131<br />

CtsR-regulated prote<strong>in</strong>s,<br />

distribution, 126<br />

CtsR regulon, physiological<br />

function, 127<br />

CtsR repressor, 124, 131<br />

mechanisms for <strong>in</strong>activation of, 131<br />

heat <strong>in</strong>activation of CtsR, 131–134<br />

dur<strong>in</strong>g other stress conditions,<br />

136–137<br />

dur<strong>in</strong>g oxidative stress, 134–136<br />

Cyste<strong>in</strong>e, 79<br />

Cystic fibrosis (CF), 59<br />

Cytochromes, 17<br />

D<br />

Denitrification, 4, 17, 19, 34<br />

Dihydroxyacetone phosphate<br />

(DHAP), 63<br />

Dissolved O2 tension (DOT), 65<br />

Dithiothreitol (DTT), 62<br />

DNA damage-<strong>in</strong>ducible<br />

regulator, 129<br />

Dos two-component system, 81<br />

Drosophila melanogaster, 50<br />

E<br />

Ecosystems, 3<br />

Energy-dependent prote<strong>in</strong><br />

degradation, 123<br />

Enterococcus faecalis, 78<br />

Environmental stress response<br />

(ESR), 62<br />

Escherichia coli, 15, 56, 64–66, 70, 124<br />

acetate excretion, 56<br />

fermentation, 64–66 (see also<br />

Reductive s<strong>in</strong>ks)<br />

<strong>in</strong>tracellular redox state, 65<br />

nark narU mutant, 89<br />

TCA cycle, 52<br />

Estuaries, 4<br />

Ethionamide (ETH), 80<br />

Euryarchaeota, 4, 20<br />

Extensively drug resistant<br />

(XDR), 47<br />

Extremophiles, 3<br />

F<br />

Fatty acids (FAs), 49<br />

Ferredox<strong>in</strong>s, 74<br />

Fe–S cluster prote<strong>in</strong>s, 96


170 SUBJECT INDEX<br />

Formate dehydrogenase (FDH)<br />

reaction, 64<br />

Fumarate reductase (FRD), 53, 75<br />

G<br />

Genetic mutation, 137<br />

Genomic techniques, advancement, 15<br />

Gibbs free energy, 89<br />

Glucuronic acid, 50<br />

Glucose-6-phosphate dehydrogenase<br />

(G6PD), 50<br />

Glutathione disulfide–glutathione<br />

couple (GSSG/2GSH), 78<br />

Glycerol dialkyl glycerol tetraethers<br />

(GDGTs), 13, 14<br />

Glycerol formation, 63<br />

Glycerol-phosphate dehydrogenase<br />

(GPD2) mutant, 63<br />

G3PD isoform, 63<br />

Greenhouse gas, 4<br />

Groundwater pollution, 4<br />

GSH/GSSG ratio, 50<br />

H<br />

Heat shock prote<strong>in</strong>s (Hsp), 50, 124,<br />

127, 134<br />

Hsp18, 127<br />

Hsp27, 50<br />

Hsp 100/Clp, 123, 127<br />

Helicobacter pylori, 73<br />

Helix-turn-helix (HTH), 90, 131<br />

Heme oxygenase-1 (HO-1), 60<br />

High-hydrostatic pressure (HHP)tolerant<br />

mutants, 136<br />

HrcA-dependent genes, 125<br />

HrcA repressor, 125<br />

Hsp. See Heat shock prote<strong>in</strong>s (Hsp)<br />

Hydrogenases (H2ases), 54, 72–74<br />

Hydroxylam<strong>in</strong>e oxidoreductase<br />

(HAO), 9, 17<br />

Hyperthermophilic organisms, 4<br />

Hypoxia, 50, 76, 84<br />

I<br />

Inducible nitric oxide synthase (iNOS),<br />

60, 83<br />

Isoniazid (INH), 80<br />

K<br />

a-Ketoglutarate (KG), 53<br />

a-Ketoglutarate decarboxylase<br />

(KGD), 75<br />

a-Ketoglutarate:ferredox<strong>in</strong><br />

oxidoreductase (KOR), 74<br />

Klebsiella aerogenes, 70<br />

Klebsiella pneumoniae, 73<br />

L<br />

Lactobacillaceae, 127<br />

Lactobacillales, 125, 138<br />

Lactobacillus acidophilus, 124<br />

Lactobacillus plantarum, 127<br />

Lactobacillus sakeii, 131<br />

Listeriaceae, 127<br />

Listeria monocytogenes, 124, 130, 137<br />

Lactate, 77, 78<br />

Low-molecular-weight (LMW), 79<br />

Low-molecular-weight prote<strong>in</strong> tyros<strong>in</strong>e<br />

phosphatase (LMWPTP), 132<br />

M<br />

Macrophages, 59, 60, 85, 95, 99<br />

Mar<strong>in</strong>e archaea<br />

carbon metabolism, 6<br />

complete genome sequences,<br />

predictions from, 16–19<br />

genomic fragments from, 6<br />

tractable system for study of, 11<br />

McsB adaptor, 138


SUBJECT INDEX 171<br />

McsB k<strong>in</strong>ase, 136, 138<br />

Metallosphaera sedula, 19<br />

Methanobacterium mazei Go1, 70<br />

Methanogenic archaea, 3<br />

5-N-Methyl-1-hydroxyphenaz<strong>in</strong>e, 70<br />

Methyl-malonyl CoA (MMCoA), 94<br />

Methylococcus capsulatus, 8<br />

Microarray analysis, 62, 73, 81<br />

Microautoradiography, 6<br />

Molecular chaperones dnaK and<br />

groE, 125<br />

Mono-cistronic gene, 127<br />

MSH acetyltransferase, 79<br />

MSH-dependent enzymes, 81<br />

MSH disulfide reductase, 81<br />

MSH mutants, 80, 98<br />

Msm mutant, 74, 80<br />

Mtb. See Mycobacterium tuberculosis<br />

(Mtb)<br />

Mtb dos dormancy regulon, 81<br />

biological role, and function,<br />

81–84<br />

Dos regulon and CO, 85–86<br />

and reductive stress, 86–87<br />

nitrate reductase, 87–90<br />

TAG production, 90<br />

and virulence, 84–85<br />

Mtb DwhiB3 mutant, 92, 93<br />

Mtb tgs1, expression of, 68<br />

Mtb virulence lipid, 59, 94<br />

Mtb WhiB7<br />

depict<strong>in</strong>g, sens<strong>in</strong>g and dissipat<strong>in</strong>g<br />

reductive stress to, 96<br />

as <strong>in</strong>tracellular redox sensor, 90<br />

Mtb whiB genes, 91<br />

Multidrug resistant (MDR), 47<br />

Mycobacteriophage TM4, 91<br />

Mycobacterium bovis, 76<br />

Mycobacterium smegmatis, 73<br />

Mycobacterium tuberculosis (Mtb),<br />

45, 47<br />

culture <strong>in</strong> vitro, 48<br />

Dos dormancy regulon, and role<br />

<strong>in</strong>, 48<br />

DwhiB3 deletion stra<strong>in</strong>, 92<br />

environmental factors, <strong>in</strong>fluenc<strong>in</strong>g<br />

metabolism, 52<br />

balanc<strong>in</strong>g act <strong>in</strong> vitro and <strong>in</strong> vivo,<br />

58–60<br />

carbon oxidation state (COS),<br />

54–56<br />

gaseous environment, of lung,<br />

60–61<br />

metabolites, excretion of, 56–58<br />

redox balance, 56–58<br />

TCA cycle, 52–54<br />

historical knowledge, 48, 51–52<br />

physiological characteristics, 51–61<br />

W-Beij<strong>in</strong>g l<strong>in</strong>eage, 82<br />

WhiB3 and virulence, 91–93<br />

Mycolic acid, 93<br />

Mycothiol (MSH), 79<br />

biosynthetic pathway, 80<br />

Mycothiol S-conjugate amidase<br />

(Mca), 81<br />

N<br />

NADH/NAD + ratio, 50, 66, 87<br />

NAD + /NADH-<strong>in</strong>dependent<br />

enzymes, 74<br />

NAD + /NADH ratio, 67, 71<br />

NADPH/NADP + system, 49<br />

Nitrate reductase (Nap), 69, 87–90<br />

Nitric oxide (NO), 49, 92<br />

Nitrification, 3, 4<br />

aerobic ammonia oxidation dur<strong>in</strong>g, 9<br />

Nitrifier-denitrification mechanisms, 4<br />

Nitrite, 3<br />

Nitrite-oxidis<strong>in</strong>g bacteria, 4, 9<br />

Nitrogen cycle, 3<br />

Nitrosocaldus yellowstonii, 11<br />

Nitrosopumilus maritimus, 9, 10, 17,<br />

19, 20<br />

stra<strong>in</strong> SCM1, 10


172 SUBJECT INDEX<br />

Nitrososphaera gargensis, 11<br />

belongs to l<strong>in</strong>eage of AOA dist<strong>in</strong>ct<br />

from, 11<br />

conta<strong>in</strong> crenarchaeol, 13<br />

GDGTs of, 14<br />

genomic <strong>in</strong>formation, 20<br />

Nitrosothiol reductase, 81<br />

Nitroxyl (HNO), 17<br />

NO dehydrogenase (NODH), 77<br />

O<br />

Oenococcus oeni, 125<br />

Open read<strong>in</strong>g frames (ORFs), 6<br />

b-Oxidation, 67, 76, 86, 88, 94<br />

Oxidation–reduction reactions, 97<br />

metabolic homeostasis, 45<br />

Oxidative phosphorylation, 47<br />

Oxidative stress, 45, 91, 122, 135<br />

importance, 45<br />

role, 49<br />

2-Oxoglutarate dehydrogenase complex<br />

(ODHC), 53<br />

2-Oxoglutarate:ferredox<strong>in</strong><br />

oxidoreductase (OGFO), 74–75<br />

Oxygen (O2), 49<br />

Oxygen radicals, 53<br />

P<br />

Paleothermometry, 14<br />

Paracoccus pantotrophus, 69<br />

Particulate methane monooxygenase<br />

(pMMO), 8<br />

PHB mutant, 67<br />

Phenaz<strong>in</strong>es, 69–72<br />

Poly b-hydroxybutyrate (PHB), 66, 67<br />

Polyhydroxyalkonate (PHA)<br />

biosynthesis, 66<br />

central regulator, 67<br />

support, direct evidence, 67<br />

Polyketide, 66, 68, 87, 93<br />

Polymer deposition<br />

poly-b-hydroxybutyrate (PHB),<br />

66–68<br />

polyhydroxyalkonate (PHA), 66–68<br />

triacylglycerol (TAG), 51, 59, 66–68,<br />

84, 90, 93, 94, 96<br />

Polymorphism, <strong>in</strong> iNOS, 83<br />

Proteases, 123<br />

26S proteasome system, 123<br />

Prote<strong>in</strong> degradation <strong>in</strong> eukaryotes, 123<br />

Prote<strong>in</strong> homeostasis, 122<br />

Prote<strong>in</strong> turnover, 123<br />

Proteobacteria, 4<br />

Proton motive force, 87<br />

Pseudomonas aerug<strong>in</strong>osa, 70, 71<br />

Pyocyan<strong>in</strong>, 70<br />

Pyrococcus furiosus, 73<br />

Pyruvate catabolism, 64, 65<br />

R<br />

Reactive oxygen species (ROS), 50, 72<br />

Rec-<strong>in</strong>dependent mutations, 137<br />

Redox couples, 49<br />

Redox homeostasis, 88, 98<br />

Redox reactions, 49<br />

Reductive s<strong>in</strong>ks<br />

<strong>in</strong> microbes<br />

carbon monoxide (CO)<br />

dehydrogenase (CODH), 76–77<br />

fermentation, 61–66<br />

hydrogenases, 72–74<br />

nitrate reductase, 68–69<br />

phenaz<strong>in</strong>e production, 69–72<br />

polymer deposition, 66–68<br />

reverse TCA (rTCA) cycle, 74–76<br />

<strong>in</strong> mycobacteria, 78<br />

Dos dormancy regulon, 81–90<br />

<strong>in</strong>tracellular redox environment,<br />

78–81<br />

WhiB prote<strong>in</strong>s, as <strong>in</strong>tracellular<br />

redox sensor, 90–97<br />

Reductive stress, 46, 49, 97<br />

concept of, 49–51


SUBJECT INDEX 173<br />

Regulatory AAA+ prote<strong>in</strong>, 123<br />

Regulatory prote<strong>in</strong>, 70<br />

Reverse TCA (rTCA) cycle, 74–76<br />

enzymes for, 74–75<br />

Rhizobium etli, 67<br />

Rhodococcus opacus, 68<br />

Rhodococcus ruber, 67<br />

Ribulose bisphosphate carboxylase/<br />

oxygenase (RubisCO), 19<br />

16S rRNA gene sequences, 6<br />

S<br />

Saccharomyces cerevisiae<br />

fermentation, 61–64<br />

FRDs, 75<br />

Salmonella, 55, 65, 73<br />

Sense-and-lock model, 86<br />

Shigella, 65<br />

Sigma factor, 97, 124<br />

S<strong>in</strong>gle po<strong>in</strong>t mutation, 91<br />

Sorbitol, 50<br />

ssrA-tagged prote<strong>in</strong>s, 128<br />

Staphylococcaceae, 127<br />

Staphylococcus albus, 70<br />

Staphylococcus aureus, 77, 78, 134<br />

Staphylococcus carnosus, 89<br />

Streptococcus mutans, 128<br />

Streptococcus pneumoniae, 128<br />

<strong>in</strong> mice, 129<br />

nox gene, 66<br />

Streptococcus salivarius, 125, 127<br />

Streptococcus thermophilus,<br />

125, 127<br />

Streptomyces spp., 70, 90<br />

Stress prote<strong>in</strong>, 82<br />

Succ<strong>in</strong>ate dehydrogenase (SDH), 53<br />

Succ<strong>in</strong>ic semialdehyde (SSA), 75<br />

Succ<strong>in</strong>ic semialdehyde dehydrogenase<br />

(SSADH), 75<br />

SufBCD system, 93<br />

Super-XDR (S-XDR), 47<br />

T<br />

TAG anabolism, 68<br />

TAG-produc<strong>in</strong>g bacteria, 67<br />

TAG production, 90, 93<br />

TCA cycle, 19, 33, 52–54, 67<br />

Thaumarchaeota, 20, 23, 29<br />

Thiol-oxidis<strong>in</strong>g agent diamide, 62<br />

Thioredox<strong>in</strong>, 79<br />

Transcription factors, 95, 127<br />

Transhydrogenase activity, 64<br />

a,a’-Trehalose dimycolate (TDM), 93<br />

a,a’-Trehalose monomycolate (TMM),<br />

93<br />

Tuberculosis (TB), 45<br />

<strong>in</strong>fection model, 84<br />

treatment regimes, 47<br />

Tuberculous granuloma, 48<br />

V<br />

Virulence factors, 129<br />

W<br />

Warburg manometry, 58<br />

Wastewater, treatment plants, 4<br />

Wayne model of <strong>in</strong> vitro dormancy, 54,<br />

68, 90<br />

role <strong>in</strong> Mtb survival, 83<br />

WhiB family of prote<strong>in</strong>s, 90–91<br />

and DNA b<strong>in</strong>d<strong>in</strong>g, 95–97<br />

and reductive stress, 93–95<br />

and virulence, 91–93<br />

Whole-genome shotgun (WGS), 6<br />

Wood–Ljungdahl pathway, 76<br />

X<br />

Xanthobacter flavus, 78<br />

Z<br />

Zwitterion, 70


This page <strong>in</strong>tentionally left blank

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!