20.06.2013 Views

pdf 30Mb

pdf 30Mb

pdf 30Mb

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Microfabricated traps<br />

Winfried K. Hensinger<br />

University of Sussex<br />

Ion Quantum Technology<br />

http://www.sussex.ac.uk/physics/iqt/


Ion Quantum Technology at Sussex<br />

We gratefully acknowledge funding from:<br />

Sussex Ion Quantum<br />

Technology group:<br />

PI and group leader:<br />

Winfried Hensinger<br />

Grad students:<br />

Jim McLoughlin<br />

James Siverns<br />

Robin Sterling<br />

Altaf Nizamani<br />

Undergrads:<br />

Rajiv Ramasawmy<br />

Merlin Bevan-Stevenson<br />

Ben Johnson<br />

Marcus Hughes<br />

Graduated July 2007:<br />

Dan Brown, Nick Davies, Jack<br />

Friedlander, Jessica Grove-<br />

Smith, Ben Pruess, David<br />

Scrivener, Tim Short<br />

Collaborators:<br />

Jim Rabchuk, West. Illinois<br />

Keith Schwab, Cornell<br />

Chris Monroe, Maryland


Trapped Ion Quantum Computing group at the<br />

University of Michigan (now at Maryland!!)<br />

We gratefully acknowledge funding from:<br />

PI and group leader:<br />

Chris Monroe<br />

Former Postdoc, now visiting faculty:<br />

Winfried Hensinger<br />

Grad students:<br />

Jon Sterk<br />

Mark Acton<br />

Louis Deslauriers (now at Stanford)<br />

Martin Madsen (now at Wabash College)<br />

Daniel Stick (now at Sandia)<br />

Steven Olmschenk<br />

Undergrads:<br />

David Hucul (now at MIT)<br />

Jacob Burress<br />

Mark Yeo<br />

Collaborators:<br />

Jim Rabchuk, West. Illinois Univ.<br />

Keith Schwab, LPS and Cornell<br />

FOCUS


How to trap an ion<br />

Potential<br />

Position Position<br />

∇⋅ E r r<br />

=<br />

0


Charged particle trap


Trapology for beginners – an ion trap<br />

Axial confinement:<br />

Static “endcaps”<br />

Transverse confinement:<br />

Ponderomotive potential<br />

dc<br />

rf<br />

dc<br />

dc<br />

rf<br />

dc<br />

dc<br />

rf<br />

dc<br />

dc<br />

rf<br />

dc


Microfabricated traps<br />

• Electrode - ion distance<br />

- Micron dimensions<br />

• Fabrication<br />

- Photolithography<br />

- Manual assembly


Applications<br />

• Measurement based quantum computing<br />

D<br />

- high photon capture rate by getting imaging elements close to the ion<br />

coincidence<br />

photon<br />

detection<br />

D<br />

1 2<br />

|Ψ〉 = (|↓〉 1 |V〉 1 + |↑〉 1 |Η〉 1 )⊗(|↓〉 2 |V〉 2 + |↑〉 2 |Η〉 2 )<br />

upon coincidence photon detection<br />

|Ψ |Ψ〉 |Ψ ⇒ |↓〉 1 |↑〉 2 − |↑〉 2 |↓〉 2<br />

Entanglement of single-atom quantum bits at a<br />

distance, D. L. Moehring, P. Maunz, S. Olmschenk, K.<br />

C. Younge, D. N. Matsukevich, L.-M. Duan, and C.<br />

Monroe, Nature 449, 68 (2007).


Applications<br />

• Cavity quantum electrodynamics<br />

- small mode volume towards strong<br />

coupling<br />

Keller et al., Nature 431, 1075 (2004)


Applications<br />

•Ion trap transducers for quantum<br />

electromechanical oscillators<br />

Also see talk by<br />

Hartmut Haeffner<br />

W. K. Hensinger, D. Wahyu Utami, H.-S. Goan, K. Schwab, C. Monroe and G. J.<br />

Milburn, Phys. Rev. A 72, 041405(R) (2005)<br />

L. Tian, P. Rabl, R. Blatt, and P. Zoller, Phys. Rev. Lett., 92:247902 (2004)


Towards ion trap quantum<br />

computation<br />

• Deterministic 8-ion entanglement<br />

• Two-qubit Phase gate<br />

• Quantum state tomography<br />

• Quantum error correction<br />

• Ion-Photon entanglement<br />

• Teleportation<br />

• Various quantum algorithms (such as search)<br />

•<br />

•<br />

•<br />

Amazing<br />

achievements<br />

by the groups of<br />

Wineland, Blatt,<br />

Steane, Monroe<br />

and others.<br />

With help of<br />

theorists such as<br />

Chirac, Zoller,<br />

Milburn,<br />

Molmer/Sorensen<br />

and others


What’s missing?


Applications<br />

• Scaling ion trap quantum computing<br />

ENIAC<br />

(1946)


Large scale arrays<br />

Wineland et al., NIST J. Res. 103, 259 (1998)<br />

Kielpinski, Monroe and Wineland, Nature 417, 709 (2002)<br />

Steane, quant-ph/0412165


Trapology for beginners – symmetric<br />

Symmetric trap:<br />

Trap electrodes surround the ion pathway<br />

symmetrically<br />

dc<br />

rf<br />

dc<br />

dc<br />

rf<br />

dc<br />

versus asymmetric<br />

Asymmetric trap (also referred to as surface trap):<br />

Trap electrodes reside in a single plane and the ion<br />

pathway is above that plane<br />

dc rf dc dc rf dc


Fabricating ion chips<br />

Design and implementation of scalable ion trap<br />

fabrication methods is of key importance for ion trap<br />

quantum computing.<br />

Photolithography<br />

No manual assembly


gnd<br />

Two-Layer Ion Trap<br />

rf<br />

rf gnd<br />

V 0 cosWt<br />

+U<br />

0<br />

+U<br />

+U<br />

0<br />

+U


MEMS Gallium-Arsenide ion<br />

trap in a microchip<br />

60 µm<br />

D. Stick<br />

W. K. Hensinger<br />

S. Olmschenk<br />

M. Madsen<br />

K. Schwab<br />

C. Monroe


8.6 µm<br />

60 µm<br />

130 µm


Ion Trapped in a Semiconductor Chip<br />

Secular frequencies: ω/2π = 1.0 MHz, 3.3 MHz and 4.3 MHz<br />

single<br />

Cd + ion<br />

RF amplitude 8V at 15.9 MHz, Static: +1V, -0.33V<br />

Trap depth: 0.08 eV<br />

Life time: 30 min observed, 10 min typical<br />

Shuttled to adjacent electrode segment<br />

60 µm<br />

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen,<br />

K. Schwab and C. Monroe, Nature Physics 2, 36 (2006)


GaAs Ion Trap Fabrication<br />

~10 mm<br />

~10 mm<br />

100 µm<br />

Si doped GaAs<br />

AlGaAs<br />

Ge:Au


GaAs Ion Trap Fabrication<br />

~10 mm<br />

~10 mm<br />

100 µm<br />

Si doped GaAs<br />

AlGaAs<br />

Ge:Au


GaAs Ion Trap Fabrication<br />

~10 mm<br />

~10 mm<br />

100 µm<br />

Si doped GaAs<br />

AlGaAs<br />

Ge:Au


MEMS Silicon ion traps<br />

53 step process!<br />

In collaboration with:<br />

Dan Stick, Jon Sterk, Martin Madsen, Winfried Hensinger, Chris Monroe, Bill<br />

Noonan, Michael Pedersen, Steve Gross, and Michael Huff


Corresponding electric circuit


53 step process!<br />

Dan Stick, Jon Sterk, Martin Madsen, Winfried Hensinger, Chris Monroe, Bill<br />

Noonan, Michael Pedersen, Steve Gross, and Michael Huff


Dan Stick, Jon Sterk, Martin Madsen, Winfried Hensinger, Chris Monroe, Bill<br />

Noonan, Michael Pedersen, Steve Gross, and Michael Huff


First chip<br />

Dan Stick, Jon Sterk, Martin Madsen, Winfried Hensinger, Chris Monroe, Bill<br />

Noonan, Michael Pedersen, Steve Gross, and Michael Huff


Ion chip efforts elsewhere<br />

(incomplete…)<br />

• NIST: Boron doped Silicon electrodes, 7070 glass insulator and anodic bonding<br />

Design and operation: D. J. Wineland, et al., in Laser Spectroscopy, Proc. XVII Int. Conf. on Laser<br />

Spectroscopy, Avemore, Scotland, pp. 393–402, J. Britton et al., arXiv:quant-ph/0605170v1 (2006)<br />

• NIST: Gold electrodes on a fused silica substrate<br />

Design and operation: S. Seidelin et al., Phys. Rev. Lett. 96, 253003 (2006)<br />

• Lucent: Silicon waver with Aluminum/Tungsten electrodes<br />

Design: J. Kim et al., Quantum Inf. Comput. 5, 515 (2005), operated at Michigan<br />

• Sandia: Gold coated tungsten electrodes on Silicon substrate<br />

Design: Proceeding of TIQC 2006, Boulder, USA, operated at Oxford, see poster Curtis et al.<br />

• MIT: Gold electrodes coated on Quartz substrate<br />

Design and operation: J. Labaziewicz et al., arXiv:quant-ph0706.3763v1 (2007)<br />

• NPL: Gold coated Silicon oxide electrodes on Silicon substrate<br />

Design: M. Brownnut et al, New Journal of Physics 8 (2006) 232, see poster Wilpers et al.


DC<br />

Contact<br />

pads<br />

NIST Planar Trap Chip<br />

Gold on fused silica<br />

low pass filters<br />

John Chiaverini, Signe Seidelin, Didi Leibfried, David Wineland (NIST)<br />

RF<br />

trapping<br />

region


Magnified trap electrodes<br />

endcap<br />

control<br />

control<br />

endcap<br />

GND<br />

NIST Planar Trap Chip<br />

RF<br />

100 µm<br />

CCD pictures of strings of Mg + ions<br />

(trapped 40 mm above surface)<br />

5 µm<br />

Seidelin et al., PRL 96, 253003 (2006).<br />

John Chiaverini, Signe Seidelin, Didi Leibfried, David Wineland


Lucent ion trap<br />

Fabricated: Dick Slusher, Lucent<br />

Operated: Dan Stick, Michigan


NPL design<br />

Monolithic microfabricated ion trap chip design for scaleable quantum processors<br />

M. Brownnutt, G. Wilpers, P. Gill, R.C. Thompson, A.G. Sinclair, New J. Phys. 8, 232(2006).


NIST racetrack trap design study<br />

2.5 mm<br />

gold on fused silica<br />

4 crosses<br />

200 Zones<br />

400 Electrodes<br />

2 separate loading zones<br />

20 zones implemented and<br />

loaded<br />

Jason Amini


Shuttling and junctions in large scale<br />

arrays – multilayer alumina traps<br />

Important for entanglement of separated ions<br />

(qubits) in the array<br />

First shuttling in two-layer geometry along a line<br />

Rowe et al., Quantum Inf. Comput. 2, 257 (2002).<br />

Barrett et al., Nature 429, 737 (2005)


A quantum algorithm…<br />

Ike Chuang, MIT


W. K. Hensinger<br />

S. Olmschenk<br />

D. Stick<br />

D. Hucul<br />

M. Yeo<br />

J. Rabchuck<br />

C. Monroe<br />

1 mm<br />

49-electrode<br />

11-zone<br />

T-junction


low<br />

400 mm


Shuttling a single atom…<br />

Laser


T-Junction ponderomotive<br />

Potential


Imaging<br />

Laser 1<br />

Making the corner<br />

500µm<br />

Imaging<br />

Laser 2<br />

W. K. Hensinger, S.<br />

Olmschenk, D. Stick, D.<br />

Hucul, M. Yeo, M. Acton, L.<br />

Deslauriers, J. Rabchuk and<br />

C. Monroe, Applied Physics<br />

Letters 88, 034101 (2006)


Voltage evolution


Simulation


Kinetic energy evolution during the turn


Separating two ions


Atomic three-point turn


The controls…


Junctions in asymmetric traps and symmetric twoand<br />

three layer traps<br />

Asymmetric<br />

(surface/planar) traps<br />

Two-layer symmetric<br />

traps<br />

Three-layer symmetric<br />

traps


NIST two layer cross trap<br />

Mg + and Be + moved through<br />

junction > 10 4 times without ion loss<br />

Characterization of heating during<br />

shuttling in progress<br />

Brad Blakestad, Didi Leibfried and<br />

David Wineland<br />

2 wafers of alumina (0.2 mm thick)<br />

gold conducting surfaces (2 µm)<br />

dc<br />

18 zones, 1 cross<br />

rf


Ulm linear multizone trap<br />

Stefan Schulz, Ulrich Poschinger, Frank Ziesel and Ferdinand Schmidt-Kaler


Scaling laws for three-layer junctions<br />

Cross-sectional view of ion trap:<br />

Aspect ratio:<br />

a/b<br />

b<br />

a<br />

D. Hucul, M. Yeo, W.K. Hensinger, J. Rabchuk, S.<br />

Olmschenk, and C. Monroe, Quantum Information<br />

and Computation 8, 0501 (2008)


Adiabatic shuttling: Which shuttling<br />

voltage time profile is the best?<br />

Average motional state n after shuttling as a function of the time to shuttle the ion T<br />

hyperbolic tan<br />

sinusoidal<br />

linear<br />

For a given shuttling time, hyperbolic tan protocol always wins<br />

D. Hucul, M. Yeo,<br />

W.K. Hensinger,<br />

J. Rabchuk, S. Olmschenk,<br />

and C. Monroe,<br />

Quantum Information and<br />

Computation 8, 0501<br />

(2008)<br />

quant-ph/0702175 (2007)


Average motional state n after shuttling as a function of the time to shuttle the ion T<br />

hyperbolic tan<br />

sinusoidal<br />

For a long enough shuttling time, sinusoidal protocol always wins


How micro can micro-traps be?<br />

What about nano-traps?


Motional heating in ion traps


Two mechanisms:<br />

Heating due to Johnson noise?<br />

S E (ω) ~ d -2<br />

Heating due to fluctuating patch potential ?<br />

S E (ω) ~ d -4<br />

Heating and spectral noise density:<br />

2<br />

2<br />

e ⎛<br />

⎞<br />

⎜<br />

z<br />

n& ω<br />

= ⎟<br />

⎜<br />

SE<br />

( ωz<br />

) + S ( Ω ± )<br />

2 E ωz<br />

4mhω<br />

⎟<br />

z ⎝ 2Ω<br />


Ion trap with adjustable electrodes<br />

23 – 250 µm<br />

Scaling and Suppression of Anomalous Quantum Decoherence in Ion Traps,<br />

L. Deslauriers, S. Olmschenk, D. Stick, W. K. Hensinger, J. Sterk, and C. Monroe,<br />

Physical Review Letters 97, 103007 (2006)


15 mm diameter needle tips


Scaling of heating with trap size:<br />

Without cooling:<br />

n& ∝<br />

Significant suppression of patch potential heating by modest cooling!<br />

zo<br />

1<br />

3<br />

. 5


MIT cryogenic surface trap<br />

Before annealing After annealing<br />

Annealing makes<br />

a big difference<br />

J. Labaziewicz, Y. Ge, P. Antohi, D. Leibrandt, K.R. Brown, and I.L. Chuang.<br />

Suppression of heating rates in cryogenic surface-electrode ion traps.<br />

Phys. Rev. Lett., 100:013001 (2008)


Field Noise [(V/m) 2 Field Noise [(V/m) /Hz] 2 /Hz]<br />

10-8 10-8 10-9 10-9 10-10 10-10 10-11 10-11 10-12 10-12 10-13 10-13 10-14 10-14 Way forward<br />

Field Noise History: 0.6 - 6.0 MHz traps<br />

SE ( ωz<br />

)<br />

Barium<br />

Mercury<br />

Ytterbium<br />

Calcium<br />

Beryllium<br />

Cadmium<br />

Cadmium (needle trap at 300K)<br />

Cadmium (needle trap at 150K)<br />

20 50 100 200 500 1000<br />

Ion-electrode spacing (µm)<br />

MIT result at<br />

4 K with<br />

electrodes<br />

annealed at<br />

760 ◦ C


Sussex Ytterbium Experiment


Versatile vacuum system for ion chip<br />

operation<br />

See poster Jim McLoughlin


Summary<br />

• Scaling ion trap quantum computing requires atomic<br />

physics – condensed matter interface.<br />

• Highly successful implementation for quantum information<br />

processing.<br />

• Microfabricated ion traps have a vast range of applications<br />

• We do have a good idea about motional heating in ion<br />

traps<br />

• Ion Quantum Technology is a vastly growing field with<br />

many opportunities


Ion Quantum Technology at Sussex<br />

We are always looking for interested students, potential<br />

postdocs, academic or commercial collaborators.<br />

Please contact us:<br />

w.k.hensinger@sussex.ac.uk<br />

More information at:<br />

http://www.sussex.ac.uk/physics/iqt/<br />

There is also a second ion trapping group at<br />

Sussex: Single-Ion-Cavity-QED group of<br />

Wolfgang Lange (see poster by Matthias<br />

Keller and Anders Mortensen).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!