19.06.2013 Views

6. Theorem of Ceva, Menelaus and Van Aubel.

6. Theorem of Ceva, Menelaus and Van Aubel.

6. Theorem of Ceva, Menelaus and Van Aubel.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Then<br />

Pro<strong>of</strong> Let x = |AX| <strong>and</strong> y = |AY |.<br />

x + y =<br />

a + b + c<br />

2<br />

where a, b <strong>and</strong> c are lengths <strong>of</strong> sides.<br />

Furthermore,<br />

so<br />

1<br />

2<br />

. . . (a)<br />

= area(AXY )<br />

area(ABC) = xy sin( A)<br />

bc sin( A) ,<br />

xy = bc<br />

2<br />

. . . (b).<br />

Consider b( |XB| C|<br />

) + c(|Y<br />

|XA| |Y A| )<br />

c − x − y<br />

= b( ) + c(b )<br />

x y<br />

= b( 1 1<br />

+ ) − b − c<br />

x y<br />

a + b + c<br />

= bc( .<br />

2<br />

2<br />

) − b − c<br />

bc<br />

= a.<br />

Thus by Corollary 2, incentre I belongs to the line XY.<br />

Figure 9:<br />

<strong>Theorem</strong> 6 Let ABC be an equilateral triangle <strong>and</strong> X, Y <strong>and</strong> Z points<br />

on the sides BC, CA <strong>and</strong> AB respectively (Figure 10). Then the minimum<br />

value <strong>of</strong><br />

|ZX| 2 + |XY | 2 + |Y Z| 2<br />

is attained when X, Y, Z are the midpoints <strong>of</strong> the sides.<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!