19.06.2013 Views

Effects of fruit position on fruit mass and seed germination in the ...

Effects of fruit position on fruit mass and seed germination in the ...

Effects of fruit position on fruit mass and seed germination in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>and</strong> <strong>seed</strong> germ<strong>in</strong>ati<strong>on</strong><br />

<strong>in</strong> <strong>the</strong> alien species Heracleum mantegazzianum (Apiaceae)<br />

<strong>and</strong> <strong>the</strong> implicati<strong>on</strong>s for its <strong>in</strong>vasi<strong>on</strong><br />

Lenka Moravcová a , Irena Perglová a , Petr Pyšek a,b, *, Vojtěch Jarošík a,b , Jan Pergl a<br />

a Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany, Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Czech Republic, CZ-252 43 Pru˚h<strong>on</strong>ice, Czech Republic<br />

b Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Charles University, V<strong>in</strong>ičná 7, CZ-128 01 Praha 2, Czech Republic<br />

Received 16 July 2004; accepted 21 January 2005<br />

Available <strong>on</strong>l<strong>in</strong>e 17 March 2005<br />

The aims <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper are to determ<strong>in</strong>e whe<strong>the</strong>r <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>on</strong> a plant affects <strong>the</strong> germ<strong>in</strong>ati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Heracleum mantegazzianum (Apiaceae), a Caucasian species <strong>in</strong>vasive <strong>in</strong> Europe, <strong>and</strong> <strong>the</strong> germ<strong>in</strong>ati<strong>on</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> this species. Reproductive<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> H. mantegazzianum were studied at seven sites <strong>in</strong> <strong>the</strong> Czech Republic where this species is abundant. Fruits were collected<br />

<strong>and</strong> weighed from eight plants at each site, from three umbel types (term<strong>in</strong>al, satellite <strong>and</strong> branch) <strong>and</strong> two <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s with<strong>in</strong> an umbel<br />

(central or marg<strong>in</strong>al). Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividual umbels (durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flower<strong>in</strong>g, size) <strong>and</strong> plants (fecundity, age, height, basal diameter) were<br />

recorded. Percentage germ<strong>in</strong>ati<strong>on</strong> <strong>and</strong> germ<strong>in</strong>ati<strong>on</strong> rate (time to when 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>seed</strong>s had germ<strong>in</strong>ated) were assessed. At each site, <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong><br />

<strong>and</strong> percentage germ<strong>in</strong>ati<strong>on</strong> varied greatly am<strong>on</strong>g plants. Fruits from term<strong>in</strong>al <strong>in</strong>florescences were heavier than those from satellites <strong>and</strong><br />

branches, <strong>and</strong> those produced <strong>in</strong> <strong>the</strong> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> an umbel were heavier than those from <strong>the</strong> marg<strong>in</strong>. Mean percentage germ<strong>in</strong>ati<strong>on</strong> was 91%,<br />

which varied am<strong>on</strong>g sites but was not affected by <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> a plant. Germ<strong>in</strong>ati<strong>on</strong> rate <strong>in</strong>creased with <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong>. Nei<strong>the</strong>r umbel size nor<br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> flower<strong>in</strong>g had a significant effect <strong>on</strong> germ<strong>in</strong>ati<strong>on</strong> characteristics. At some sites, <strong>the</strong>re was a negative relati<strong>on</strong>ship between <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong><br />

<strong>and</strong> plant height. A comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive traits (high fecundity, high germ<strong>in</strong>ati<strong>on</strong> capacity, opportunistic behaviour associated with<br />

limited effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> a plant <strong>on</strong> germ<strong>in</strong>ati<strong>on</strong> characteristics) might determ<strong>in</strong>e this species ability to successfully <strong>in</strong>vade new<br />

habitats.<br />

© 2005 Elsevier SAS. All rights reserved.<br />

Keywords: Czech Republic; Fruit <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>; Fruit <strong>mass</strong>; Germ<strong>in</strong>ati<strong>on</strong> rate; Percentage germ<strong>in</strong>ati<strong>on</strong><br />

1. Introducti<strong>on</strong><br />

Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> traits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vasive plants have documented<br />

that certa<strong>in</strong> reproductive characteristics are crucial for <strong>the</strong>ir<br />

success (Rejmánek, 1996; Grottkop et al., 2002). A m<strong>in</strong>ority<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vaders, some <str<strong>on</strong>g>of</str<strong>on</strong>g> which are extremely successful (Pyšek<br />

et al., 2003; M<strong>and</strong>ák et al., 2004), rely exclusively <strong>on</strong> vegetative<br />

reproducti<strong>on</strong> but <strong>the</strong> majority depend <strong>on</strong> <strong>seed</strong> dispersal<br />

(Pyšek, 1997). It is repeatedly stated that <strong>the</strong> ability to produce<br />

a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s (Baker, 1965; Noble, 1989; Ash-<br />

* Corresp<strong>on</strong>d<strong>in</strong>g author. Petr Pyšek: Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany, Academy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Czech Republic, CZ-252 43 Pru˚h<strong>on</strong>ice, Czech Republic.<br />

fax: 420 2 67750031.<br />

E-mail addresses: moravcova@ibot.cas.cz (L. Moravcová),<br />

pysek@ibot.cas.cz (P. Pyšek), jarosik@mbox.cesnet.cz (V. Jarošík).<br />

1146-609X/$ - see fr<strong>on</strong>t matter © 2005 Elsevier SAS. All rights reserved.<br />

doi:10.1016/j.actao.2005.01.004<br />

Acta Oecologica 28 (2005) 1–10<br />

www.elsevier.com/locate/actoec<br />

t<strong>on</strong> <strong>and</strong> Mitchell, 1989; Roy, 1990; Saxena, 1991; Richards<strong>on</strong><br />

<strong>and</strong> Cowl<strong>in</strong>g, 1992; Rejmánek, 1996) is <strong>on</strong>e feature <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

successful <strong>in</strong>vader. Successful germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> a wide range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s (Baker, 1965; Forcella et al., 1984; Forcella,<br />

1985; Roy, 1990; Richards<strong>on</strong> <strong>and</strong> Cowl<strong>in</strong>g, 1992) <strong>in</strong>creases<br />

<strong>the</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> naturalizati<strong>on</strong> <strong>and</strong> subsequent <strong>in</strong>vasi<strong>on</strong> (<strong>in</strong><br />

<strong>the</strong> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Richards<strong>on</strong> et al., 2000; Pyšek et al., 2004).<br />

The current <strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> biological <strong>in</strong>vasi<strong>on</strong>s largely relies<br />

<strong>on</strong> comparative studies <str<strong>on</strong>g>of</str<strong>on</strong>g> large species sets (L<strong>on</strong>sdale, 1999).<br />

However, fur<strong>the</strong>r progress <strong>in</strong> determ<strong>in</strong><strong>in</strong>g a species <strong>in</strong>vasiveness<br />

is dependent <strong>on</strong> improv<strong>in</strong>g <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>put data,<br />

namely <strong>the</strong> <strong>in</strong>formati<strong>on</strong> <strong>on</strong> species traits. Case studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vasive<br />

species can <strong>the</strong>refore c<strong>on</strong>tribute substantially to underst<strong>and</strong><strong>in</strong>g<br />

<strong>the</strong> mechanisms underly<strong>in</strong>g plant <strong>in</strong>vasi<strong>on</strong>s.<br />

The present paper deals with Heracleum mantegazzianum,<br />

an <strong>in</strong>vasive species <strong>in</strong> <strong>the</strong> Czech Republic (Central


2 L. Moravcová et al. / Acta Oecologica 28 (2005) 1–10<br />

Europe). About <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> flora <str<strong>on</strong>g>of</str<strong>on</strong>g> this country is made<br />

up <str<strong>on</strong>g>of</str<strong>on</strong>g> alien species (Pyšek et al., 2002), research <strong>on</strong> which is<br />

receiv<strong>in</strong>g c<strong>on</strong>siderable attenti<strong>on</strong> (Dančák, 2002; Mihulka et<br />

al., 2003; Šída, 2003; Petrˇík, 2003). Heracleum mantegazzianum<br />

is an important <strong>in</strong>vader not <strong>on</strong>ly <strong>in</strong> this country but<br />

also <strong>in</strong> o<strong>the</strong>r parts <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe <strong>and</strong> is regularly listed <strong>in</strong> global<br />

overviews <str<strong>on</strong>g>of</str<strong>on</strong>g> noxious <strong>in</strong>vasive species (Cr<strong>on</strong>k <strong>and</strong> Fuller,<br />

1995; Weber, 2004). It does not reproduce vegetatively <strong>and</strong><br />

depends <strong>on</strong> reproducti<strong>on</strong> by <strong>seed</strong> (Pyšek et al., 1995; Tiley et<br />

al., 1996). Although <strong>the</strong> distributi<strong>on</strong> <strong>and</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> H. mantegazzianum<br />

is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten studied, good <strong>in</strong>formati<strong>on</strong> <strong>on</strong> its reproductive<br />

characteristics is lack<strong>in</strong>g <strong>and</strong> comes from comparative<br />

overviews <str<strong>on</strong>g>of</str<strong>on</strong>g> large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> species (Grime et al., 1981;<br />

Thomps<strong>on</strong> et al., 1997; Bask<strong>in</strong> <strong>and</strong> Bask<strong>in</strong>, 1998).<br />

The <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>seed</strong> or <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>on</strong> a plant can affect <strong>seed</strong><br />

<strong>mass</strong>, morphology, germ<strong>in</strong>ati<strong>on</strong> <strong>and</strong> dormancy characteristics<br />

(see Gutterman, 1992; Bask<strong>in</strong> <strong>and</strong> Bask<strong>in</strong>, 1998 for<br />

review), <strong>and</strong> such effects are reported for some species <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Apiaceae. Fruit <strong>mass</strong> <strong>and</strong> <strong>seed</strong> germ<strong>in</strong>ati<strong>on</strong> are dependent <strong>on</strong><br />

umbel <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> Angelica archangelica subsp. archangelica<br />

(Ojala, 1985), Apium graveolens (Thomas et al.,<br />

1978; Thomas et al., 1979), Daucus carota (Thomas et al.,<br />

1978; Jacobsohn <strong>and</strong> Globers<strong>on</strong>, 1980; Barbedo et al., 2000)<br />

<strong>and</strong> Past<strong>in</strong>aca sativa (Hendrix, 1984a; Hendrix <strong>and</strong> Trapp,<br />

1992). Umbel <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> affects <strong>seed</strong> germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> Petroselium<br />

crispum (Thomas, 1996). Intraspecific variati<strong>on</strong> <strong>in</strong> <strong>seed</strong><br />

<strong>mass</strong> depend<strong>in</strong>g <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> umbel <strong>on</strong> <strong>the</strong> mo<strong>the</strong>r<br />

plant is reported for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> species (Thomps<strong>on</strong>, 1984;<br />

Hendrix <strong>and</strong> Sun, 1989).<br />

The present study aims to answer <strong>the</strong> follow<strong>in</strong>g questi<strong>on</strong>s:<br />

1. How does <strong>the</strong> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>on</strong> H. mantegazzianum<br />

plants affect its <strong>mass</strong> <strong>and</strong> <strong>the</strong> germ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>seed</strong>? 2. Is<br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>and</strong> <strong>seed</strong> germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong>fluenced by plant characteristics?<br />

In additi<strong>on</strong>, this is <strong>the</strong> first study to provide reliable<br />

<strong>in</strong>formati<strong>on</strong> <strong>on</strong> <strong>the</strong> germ<strong>in</strong>ati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> this <strong>in</strong>vasive<br />

alien species. Published germ<strong>in</strong>ati<strong>on</strong> studies for o<strong>the</strong>r<br />

members <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Apiaceae have not previously dealt with a<br />

highly successful <strong>in</strong>vasive species.<br />

2. Material <strong>and</strong> methods<br />

2.1. Study species<br />

Heracleum mantegazzianum Sommier et Levier (Apiaceae)<br />

is a perennial m<strong>on</strong>ocarpic herb, flower<strong>in</strong>g <strong>in</strong> <strong>the</strong> third<br />

to fifth year (J. Pergl et al., unpublished data), 200–500 cm<br />

tall, with a thick tap root <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 45–60 cm <strong>and</strong> leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> up<br />

to 250 cm l<strong>on</strong>g. Flowers are arranged <strong>in</strong> compound umbels,<br />

up to 80 cm across, with <strong>the</strong> term<strong>in</strong>al umbel <strong>the</strong> largest, surrounded<br />

by satellite umbels <strong>and</strong> additi<strong>on</strong>al term<strong>in</strong>al umbels<br />

that may be borne <strong>on</strong> <strong>the</strong> ma<strong>in</strong> branches. Umbels mature <strong>in</strong><br />

sequence. Flowers are <strong>in</strong>sect-poll<strong>in</strong>ated, hermaphrodite <strong>and</strong><br />

prot<strong>and</strong>rous; <strong>the</strong> an<strong>the</strong>rs dehisce <strong>and</strong> pollen is shed before<br />

<strong>the</strong> stigma becomes receptive, but <strong>the</strong>re is some overlap <strong>in</strong><br />

<strong>the</strong> stam<strong>in</strong>ate <strong>and</strong> pistillate phase between flowers, which<br />

makes self-fertilizati<strong>on</strong> possible (Steward <strong>and</strong> Grace, 1984;<br />

I. Perglová et al., unpublished data). Plants <strong>in</strong> <strong>the</strong> study area<br />

flowered from <strong>the</strong> last third <str<strong>on</strong>g>of</str<strong>on</strong>g> June to late July <strong>and</strong> sequential<br />

ripen<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong> followed. Umbels bear oval-elliptical,<br />

broadly w<strong>in</strong>ged <str<strong>on</strong>g>fruit</str<strong>on</strong>g>, which split <strong>in</strong>to two w<strong>in</strong>ged mericarps<br />

(Holub, 1997; for simplicity <strong>the</strong> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> generative reproducti<strong>on</strong><br />

is termed a “<str<strong>on</strong>g>fruit</str<strong>on</strong>g>” throughout this paper ra<strong>the</strong>r than <strong>the</strong><br />

morphologically correct “mericarp”, <strong>and</strong> <strong>the</strong> term “<strong>seed</strong>” is<br />

used when referr<strong>in</strong>g to germ<strong>in</strong>ati<strong>on</strong>); <strong>the</strong> mericarps are<br />

6–18 mm l<strong>on</strong>g <strong>and</strong> 4–10 mm wide. The embryo is rudimentary<br />

<strong>and</strong> surrounded by endosperm (Mart<strong>in</strong>, 1946). The<br />

endosperm is oily <strong>and</strong> mature <str<strong>on</strong>g>fruit</str<strong>on</strong>g>s have a str<strong>on</strong>g res<strong>in</strong>ous<br />

smell (Tiley et al., 1996).<br />

A s<strong>in</strong>gle plant is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> produc<strong>in</strong>g a large quantity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>and</strong> estimates range from 5 000 to more than 100 000 per<br />

plant (Pyšek et al., 1995; Tiley et al., 1996). Unfortunately<br />

such estimates are for a s<strong>in</strong>gle plant without any measure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variati<strong>on</strong>; <strong>the</strong> maximum value reported is 107 984 (Caffrey,<br />

1999). An average value for eight plants <strong>in</strong> <strong>the</strong> Czech Republic<br />

is 16 139 ± 2 617 (mean ± st<strong>and</strong>ard deviati<strong>on</strong>, S.D.) <str<strong>on</strong>g>fruit</str<strong>on</strong>g><br />

per plant (Pyšek et al., 1995).<br />

Seeds germ<strong>in</strong>ate early <strong>in</strong> spr<strong>in</strong>g (March toApril <strong>in</strong> <strong>the</strong> study<br />

area) <strong>and</strong> cold stratificati<strong>on</strong> is necessary for germ<strong>in</strong>ati<strong>on</strong><br />

(Nikolaeva et al., 1985; Tiley et al., 1996; Otte <strong>and</strong> Franke,<br />

1998); <strong>the</strong>y do not germ<strong>in</strong>ate after dry storage (Grime et al.,<br />

1981). The <strong>seed</strong>s exhibit a morphophysiological dormancy<br />

<strong>in</strong> <strong>the</strong> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Nikolaeva et al. (1985) <strong>and</strong> Bask<strong>in</strong> <strong>and</strong> Bask<strong>in</strong><br />

(1998). They have underdeveloped embryos <strong>and</strong> are physiologically<br />

dormant. Embryo growth must occur <strong>and</strong> physiological<br />

dormancy must be broken before germ<strong>in</strong>ati<strong>on</strong>. Both<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> dormancy are broken by cold c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> autumn<br />

<strong>and</strong> w<strong>in</strong>ter.<br />

The species is native to <strong>the</strong> western Caucasus, where it<br />

occurs <strong>in</strong> <strong>the</strong> upper forest belt <strong>on</strong> sou<strong>the</strong>rn slopes, ma<strong>in</strong>ly <strong>in</strong><br />

meadows, clear<strong>in</strong>gs <strong>and</strong> forest marg<strong>in</strong>s (M<strong>and</strong>enova, 1950).<br />

In <strong>the</strong> Czech flora, H. mantegazzianum is c<strong>on</strong>sidered <strong>in</strong>vasive<br />

(Pyšek et al., 2002), follow<strong>in</strong>g <strong>the</strong> criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> Richards<strong>on</strong><br />

et al. (2000) <strong>and</strong> Pyšek et al. (2004). It was <strong>in</strong>troduced as a<br />

garden ornamental to a chateau <strong>in</strong> Lázně Kynžvart (Slavkovský<br />

les regi<strong>on</strong>), western Bohemia <strong>in</strong> 1862 <strong>and</strong> <strong>the</strong> oldest<br />

herbarium specimen document<strong>in</strong>g its occurrence outside cultivati<strong>on</strong><br />

close to <strong>the</strong> <strong>in</strong>troducti<strong>on</strong> site is dated 1877 (Holub,<br />

1997). The species spread from this regi<strong>on</strong>, encouraged <strong>in</strong><br />

areas with a high human populati<strong>on</strong> density but restricted to<br />

those with low January iso<strong>the</strong>rm. It has been reported from<br />

603 localities <strong>in</strong> <strong>the</strong> Czech Republic (P. Pyšek <strong>and</strong> K. Prach,<br />

unpublished data).<br />

Heracleum mantegazzianum is <strong>the</strong> largest herb <strong>in</strong> Central<br />

Europe <strong>and</strong> rapidly atta<strong>in</strong>s dom<strong>in</strong>ance, with up to 40% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

suitable habitats covered by st<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this species <strong>in</strong> <strong>the</strong> area<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Slavkovský les (Pyšek <strong>and</strong> Pyšek, 1995). Replacement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

native vegetati<strong>on</strong> <strong>and</strong> <strong>in</strong>juries to human sk<strong>in</strong> caused by phototoxic<br />

substances (Drever <strong>and</strong> Hunter, 1970; Tiley et al.,<br />

1996) are <strong>the</strong> ma<strong>in</strong> reas<strong>on</strong>s for attempt<strong>in</strong>g to eradicate it (de<br />

Waal et al., 1994). The substantial fecundity <strong>and</strong> efficient dispersal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> by water, w<strong>in</strong>d <strong>and</strong> human-related factors


(Pyšek <strong>and</strong> Prach, 1993) c<strong>on</strong>tribute to its rapid spread. Disturbed<br />

habitats with good possibilities for <strong>the</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> dispersal<br />

<strong>and</strong> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong> are readily <strong>in</strong>vaded, but <strong>the</strong> species<br />

also <strong>in</strong>vades sem<strong>in</strong>atural vegetati<strong>on</strong> (Pyšek <strong>and</strong> Pyšek, 1995).<br />

Heracleum mantegazzianum is naturalized or <strong>in</strong>vasive <strong>in</strong><br />

a number <str<strong>on</strong>g>of</str<strong>on</strong>g> European countries <strong>and</strong> Central Russia (see Tiley<br />

et al., 1996 for <strong>the</strong> list <strong>and</strong> references). Outside Europe, it is<br />

found naturalized <strong>in</strong> Canada <strong>and</strong> United States (Mort<strong>on</strong>, 1978;<br />

Ochsmann, 1996; Kartesz <strong>and</strong> Meacham, 1999).<br />

2.2. Germ<strong>in</strong>ati<strong>on</strong> experiments<br />

Data were collected <strong>in</strong> <strong>the</strong> Slavkovský les Protected Area<br />

<strong>in</strong> <strong>the</strong> western part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Czech Republic. Seven sites dom<strong>in</strong>ated<br />

by H. mantegazzianum were selected; <strong>the</strong> area covered<br />

by this species at <strong>the</strong> study sites varied from 4 711 to<br />

47 110 m 2 (Table 1). At each site, eight plants were r<strong>and</strong>omly<br />

selected <strong>and</strong> <strong>the</strong>ir <str<strong>on</strong>g>fruit</str<strong>on</strong>g> collected as it ripened <strong>on</strong> several occasi<strong>on</strong>s<br />

dur<strong>in</strong>g August 2002. From each plant, <str<strong>on</strong>g>fruit</str<strong>on</strong>g> was collected<br />

from six morphological <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s: <strong>the</strong> three umbel <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s<br />

(term<strong>in</strong>al, satellite <strong>and</strong> branch; termed “umbel type”)<br />

<strong>and</strong> <strong>the</strong> two <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s with<strong>in</strong> an umbel (centre <strong>and</strong> marg<strong>in</strong>;<br />

termed “<str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>”) (Fig. 1). Fruit was transported to <strong>the</strong><br />

laboratory <strong>in</strong> labelled paper bags, dried for 2 weeks at room<br />

temperature (20 °C) <strong>and</strong> stored at 15 °C for 8 m<strong>on</strong>ths until<br />

<strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> germ<strong>in</strong>ati<strong>on</strong> experiment. Fruit was kept<br />

for 2 weeks at room temperature (20 °C) before stratificati<strong>on</strong><br />

<strong>and</strong> weigh<strong>in</strong>g.<br />

The experimental design c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> six treatments (three<br />

umbel types/two <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s) performed <strong>on</strong> eight plants<br />

from seven sites. There were five replicates <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

treatment/plant/site comb<strong>in</strong>ati<strong>on</strong>, giv<strong>in</strong>g a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 1680<br />

(=3×2×7×8×5)samples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fruit</str<strong>on</strong>g>. Samples c<strong>on</strong>sist<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

25 r<strong>and</strong>omly selected healthy <str<strong>on</strong>g>fruit</str<strong>on</strong>g> were weighed <strong>and</strong> placed<br />

<strong>in</strong> Petri dishes with sterilised moist s<strong>and</strong> for stratificati<strong>on</strong>.<br />

Tap water was used <strong>and</strong> <strong>the</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> was not treated with dis<strong>in</strong>fectant.<br />

Fruit was stratified for 2 m<strong>on</strong>ths at 2–4 °C <strong>and</strong> <strong>the</strong>n<br />

germ<strong>in</strong>ated <strong>in</strong> <strong>the</strong> dark at 8–10 °C. This temperature mimics<br />

<strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> is exposed to dur<strong>in</strong>g germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong><br />

spr<strong>in</strong>g. In <strong>the</strong> study area, March <strong>and</strong> April temperatures are<br />

L. Moravcová et al. / Acta Oecologica 28 (2005) 1–10<br />

Fig. 1. Diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> umbel types <strong>and</strong> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>on</strong> a plant <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

H. mantegazzianum. This is relevant to <strong>the</strong> term<strong>in</strong>ology used <strong>in</strong> <strong>the</strong> germ<strong>in</strong>ati<strong>on</strong><br />

experiments. Umbel <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>: T – term<strong>in</strong>al, S – satellite, B – branch;<br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>: c – centre, m – marg<strong>in</strong>.<br />

ra<strong>the</strong>r low <strong>and</strong> rarely exceed 10 °C. Pilot experiments us<strong>in</strong>g<br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> from <strong>the</strong> study area showed that germ<strong>in</strong>ati<strong>on</strong> is not<br />

affected by light <strong>and</strong> that <strong>seed</strong>s germ<strong>in</strong>ate at up to 10 cm below<br />

<strong>the</strong> soil surface (L. Moravcová et al., unpublished data).<br />

Germ<strong>in</strong>ati<strong>on</strong> was recorded weekly start<strong>in</strong>g <strong>on</strong> 24 July 2003.<br />

S<strong>in</strong>ce <strong>the</strong> aim was to determ<strong>in</strong>e <strong>the</strong> germ<strong>in</strong>ati<strong>on</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this species (as a crucial feature <str<strong>on</strong>g>of</str<strong>on</strong>g> its <strong>in</strong>vasi<strong>on</strong> potential), <strong>the</strong><br />

experiment was run for 6 m<strong>on</strong>ths. Fruit that decayed dur<strong>in</strong>g<br />

<strong>the</strong> experiment was c<strong>on</strong>sidered dead, viable <strong>seed</strong>s that did<br />

not germ<strong>in</strong>ate were c<strong>on</strong>sidered to be dormant. The viability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dormant <strong>seed</strong>s was tested by squeez<strong>in</strong>g <strong>the</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> us<strong>in</strong>g forceps.<br />

Prior to <strong>the</strong> experiment, <strong>the</strong> results obta<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong><br />

tetrazolium test were compared with those obta<strong>in</strong>ed by<br />

squeez<strong>in</strong>g <strong>the</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g>; <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dead <str<strong>on</strong>g>fruit</str<strong>on</strong>g> was very low<br />

(4.8%) <strong>and</strong> not c<strong>on</strong>sidered <strong>in</strong> <strong>the</strong> statistical analyses.<br />

Table 1<br />

Geographical locati<strong>on</strong>, altitude (m a.s.l.) <strong>and</strong> populati<strong>on</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> Heracleum mantegazzianum estimated from aerial photographs taken <strong>in</strong> 1996, except as<br />

<strong>in</strong>dicated (J. Müllerová et al., Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany Pru˚h<strong>on</strong>ice, unpublished). Percentage germ<strong>in</strong>ati<strong>on</strong> (mean ± <strong>the</strong> central 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data) is shown for particular<br />

treatments, i.e. umbel types (term<strong>in</strong>al, satellites, branches; pooled across <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s) <strong>and</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s (central, marg<strong>in</strong>al; pooled across umbel types).<br />

Values are based <strong>on</strong> 8 plants <strong>and</strong> 5 replicates, giv<strong>in</strong>g <strong>the</strong> sample sizes n = 80 <strong>and</strong> 120 for umbel type <strong>and</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>, respectively. For localities pooled across<br />

treatments n = 240 <strong>and</strong> for <strong>the</strong> gr<strong>and</strong> total n = 1680.<br />

Site characteristics F<strong>in</strong>al germ<strong>in</strong>ati<strong>on</strong><br />

Locality Latitude L<strong>on</strong>gitude Altitude<br />

(m a.s.l.) Populati<strong>on</strong><br />

(m2 )<br />

Term<strong>in</strong>al Satellite Branches Central Marg<strong>in</strong>al Total<br />

Arnoltov 50°06.801 12°36.147 575 47 170a 90.9(86–96) 91.1(88–9 6) 90.5(80–96) 90.9(84–96) 91.0(84–96) 90.9(84–96 )<br />

Dvorečky 50°05.982 12°34.137 506 24 817 90.0(80–92) 90.6(84 –96) 91.3(84 –100) 91.1(84–96) 91.1(80–96) 91.1(80–96)<br />

Krásná Lípa 1 50°05.692 12°38.544 597 n. a. 91.4(89–100) 90.6(87–100) 91.1(87 –96) 91.2(88–9 6) 91.2(88–100) 91.1(87–9 8)<br />

Krásná Lípa 2 50°06.306 12°38.393 596 7945a 91.(88–100) 90.9 (88–100) 91 .0(88–96) 91.2(88–100) 91.1 (88–96) 91.0(88–100)<br />

Litrbachy 50°06.009 12°43.777 800 4711 90.2(8 0–94) 90.6(80–96) 90.8 (90–100) 90.9(84–96) 90.7(84–9 6) 90.9(84–96)<br />

Žitný I 50°03.754 12°37.569 787 99 121 91.4(90–100) 91.0(88–100) 91.6(88–100) 91.3 (88–100) 91.2(90 –100) 91.2(90–100)<br />

Žitný II 50°03.837 12°37.304 734 65 273 91.2 (88–100) 91.7(90–100) 91.4(89–100) 91.2(90–100) 91.3(90–100) 91.2(90–100)<br />

Total<br />

a<br />

from 2000.<br />

90.9(8 8–97) 91.2 (86–98) 91.2(86–98) 91.2(8 7–98) 91.1(86 –98) 91.1(88 –100)<br />

3


4 L. Moravcová et al. / Acta Oecologica 28 (2005) 1–10<br />

Phenological characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividual umbels (‘start’,<br />

open<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first flower <strong>in</strong> <strong>the</strong> <strong>in</strong>florescence; ‘end’, wi<strong>the</strong>r<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> last flower; ‘flower<strong>in</strong>g’, period between start <strong>and</strong><br />

end; ‘umbel diameter’) were recorded <strong>and</strong> plant characteristics<br />

(fecundity, height <strong>and</strong> basal diameter, recorded when <strong>the</strong><br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> was ripe; age) measured <strong>on</strong> <strong>the</strong> same plants as <str<strong>on</strong>g>fruit</str<strong>on</strong>g> was<br />

collected from for germ<strong>in</strong>ati<strong>on</strong> experiments. Fecundity <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

umbel was estimated us<strong>in</strong>g a regressi<strong>on</strong> model based <strong>on</strong> <strong>the</strong><br />

relati<strong>on</strong>ship between umbel diameter, proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> developed<br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> plant (I. Perglová, unpublished<br />

data). Plant age was determ<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g> herbchr<strong>on</strong>ology<br />

(Dietz <strong>and</strong> Ullmann, 1997).<br />

2.3. Statistical analysis<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> umbel type <strong>and</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong><br />

(total <strong>mass</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 <str<strong>on</strong>g>fruit</str<strong>on</strong>g>s) <strong>and</strong> percentage germ<strong>in</strong>ati<strong>on</strong> (% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>seed</strong>s that germ<strong>in</strong>ated up to <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment) was<br />

analysed us<strong>in</strong>g ANOVA. At each site, four plants <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eight<br />

sampled were r<strong>and</strong>omly selected <strong>and</strong> replicates were averaged<br />

for <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> (central <strong>and</strong> marg<strong>in</strong>al). In <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

four plants, replicates were averaged for umbel type.<br />

Ei<strong>the</strong>r <strong>the</strong> umbel type (with three levels: term<strong>in</strong>al, satellite<br />

<strong>and</strong> branch) or <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> (with two levels: central <strong>and</strong> marg<strong>in</strong>al)<br />

was an orthog<strong>on</strong>al fixed factor, whereas site was an<br />

orthog<strong>on</strong>al r<strong>and</strong>om factor. Plants were nested <strong>in</strong> <strong>the</strong> comb<strong>in</strong>ati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se two orthog<strong>on</strong>al factors. The c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

l<strong>in</strong>ear models <strong>and</strong> calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom,<br />

mean square estimates <strong>and</strong> F-ratios <strong>in</strong> <strong>the</strong>se analyses follow<br />

Underwood (1997, p. 358–369). Differences am<strong>on</strong>g <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s<br />

were tested us<strong>in</strong>g a posteriori Student–Newman–Keuls<br />

(SNK) sequential tests (Underwood, 1997). To normalize <strong>the</strong><br />

error distributi<strong>on</strong>, <strong>the</strong> proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> germ<strong>in</strong>ated <strong>seed</strong>s were<br />

angular transformed (Sokal <strong>and</strong> Rohlf, 1995). Homogeneity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> variance was checked by Cochran’s test.<br />

Germ<strong>in</strong>ati<strong>on</strong> rate was analysed separately for each plant<br />

<strong>and</strong> site by survival analysis, follow<strong>in</strong>g Crawley (1993, p.<br />

325–330). The time to germ<strong>in</strong>ati<strong>on</strong> (<strong>in</strong> weeks) <str<strong>on</strong>g>of</str<strong>on</strong>g> each <strong>seed</strong><br />

<strong>in</strong> each replicate <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 <strong>seed</strong>s, summed for <strong>the</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> or<br />

umbel type, was <strong>the</strong> resp<strong>on</strong>se variable. Dormant <strong>seed</strong>s were<br />

censored. Seeds from <strong>the</strong> same four plants as <strong>in</strong> <strong>the</strong> analyses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> umbel type <strong>and</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> f<strong>in</strong>al germ<strong>in</strong>ati<strong>on</strong><br />

percentages were analysed. Umbel types <strong>and</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s<br />

were factors as <strong>in</strong> previous analyses, while <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong><br />

was added as a covariate. Differences <strong>in</strong> germ<strong>in</strong>ati<strong>on</strong> rate were<br />

fitted by likelihood functi<strong>on</strong>s, described by two parameters,<br />

mean time to germ<strong>in</strong>ati<strong>on</strong>, µ, <strong>and</strong> a shape parameter, . The<br />

mean time to germ<strong>in</strong>ati<strong>on</strong> was <strong>the</strong> time at which 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>seed</strong> had germ<strong>in</strong>ated. The shape parameter <strong>in</strong>dicated <strong>the</strong><br />

appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> germ<strong>in</strong>ati<strong>on</strong> curves. The curves, <strong>in</strong> which P is<br />

a proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>seed</strong>s that germ<strong>in</strong>ated as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

time, t, were P(t) = exp(–kt a ), where k =µ -a .<br />

To evaluate <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividual umbels charateristics<br />

(umbel diameter, flower<strong>in</strong>g start, flower<strong>in</strong>g end <strong>and</strong> flower<strong>in</strong>g<br />

durati<strong>on</strong>) <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong>, percentage germ<strong>in</strong>ati<strong>on</strong> <strong>and</strong> germ<strong>in</strong>ati<strong>on</strong><br />

rate, i.e. resp<strong>on</strong>se variables representative <str<strong>on</strong>g>of</str<strong>on</strong>g> whole<br />

umbels, were obta<strong>in</strong>ed by averag<strong>in</strong>g data for each <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>.<br />

All eight plants at a site were <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> model.<br />

Fruit <strong>mass</strong>, percentage germ<strong>in</strong>ati<strong>on</strong> <strong>and</strong> germ<strong>in</strong>ati<strong>on</strong> rate were<br />

resp<strong>on</strong>se variables, umbel type was a factor (with three levels:<br />

term<strong>in</strong>al, satellite <strong>and</strong> branch), <strong>and</strong> umbel diameter, flower<strong>in</strong>g<br />

start, flower<strong>in</strong>g end, <strong>and</strong> flower<strong>in</strong>g durati<strong>on</strong> were covariates.<br />

Analyses were made separately for each site, us<strong>in</strong>g<br />

general l<strong>in</strong>ear models.<br />

The <strong>in</strong>tenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each general l<strong>in</strong>ear model was to determ<strong>in</strong>e<br />

<strong>the</strong> m<strong>in</strong>imal adequate model. In this model, all parameters<br />

were significantly (p < 0.05) different from zero <strong>and</strong><br />

from <strong>on</strong>e ano<strong>the</strong>r. This was achieved by a step-wise process<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> model simplificati<strong>on</strong>, beg<strong>in</strong>n<strong>in</strong>g with <strong>the</strong> maximal model,<br />

which c<strong>on</strong>ta<strong>in</strong>ed all three levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> factor umbel type (term<strong>in</strong>al,<br />

satellite <strong>and</strong> branch), <strong>and</strong> all <strong>in</strong>teracti<strong>on</strong>s am<strong>on</strong>g its<br />

levels <strong>and</strong> covariates. This model was simplified by <strong>the</strong> elim<strong>in</strong>ati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-significant terms, us<strong>in</strong>g deleti<strong>on</strong> tests, <strong>and</strong> retenti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> significant terms, until <strong>the</strong> m<strong>in</strong>imal adequate model,<br />

which c<strong>on</strong>ta<strong>in</strong>ed <strong>on</strong>ly significant terms, was determ<strong>in</strong>ed<br />

(Crawley, 1993, p. 188–210). All covariates were st<strong>and</strong>ardized<br />

(zero mean, variance <strong>on</strong>e) to achieve, <strong>in</strong> absolute terms,<br />

a comparable <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir effects. The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir<br />

effects is not directly comparable without this st<strong>and</strong>ardizati<strong>on</strong>,<br />

because each covariate was measured <strong>on</strong> a different scale.<br />

The adequacy <str<strong>on</strong>g>of</str<strong>on</strong>g> fitted statistics was c<strong>on</strong>firmed by plott<strong>in</strong>g<br />

st<strong>and</strong>ardized residuals aga<strong>in</strong>st fitted values <strong>and</strong> by <strong>the</strong> normal<br />

probability plots <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fitted values (Crawley, 1993). All<br />

calculati<strong>on</strong>s were made <strong>in</strong> <strong>the</strong> commercial statistical package<br />

GLIM ® v.4(Francis et al., 1994).<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> plant characteristics (fecundity, basal diameter<br />

<strong>and</strong> height) <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong>, f<strong>in</strong>al germ<strong>in</strong>ati<strong>on</strong> percentage<br />

<strong>and</strong> germ<strong>in</strong>ati<strong>on</strong> rate were analysed by general l<strong>in</strong>ear models,<br />

us<strong>in</strong>g <strong>the</strong> same procedures as <strong>in</strong> <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variati<strong>on</strong><br />

am<strong>on</strong>g umbels. Resp<strong>on</strong>se variables representative <str<strong>on</strong>g>of</str<strong>on</strong>g> whole<br />

plants were obta<strong>in</strong>ed by averag<strong>in</strong>g data over <strong>the</strong> umbel type<br />

<strong>and</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>. All eight plants <strong>in</strong> a site were <strong>in</strong>cluded <strong>in</strong><br />

<strong>the</strong> model. Fruit <strong>mass</strong>, f<strong>in</strong>al germ<strong>in</strong>ati<strong>on</strong> percentage <strong>and</strong> germ<strong>in</strong>ati<strong>on</strong><br />

rate were resp<strong>on</strong>se variables, site was a factor, <strong>and</strong><br />

plant fecundity, basal diameter <strong>and</strong> height were covariates.<br />

3. Results<br />

3.1. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> umbel type, <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>, plant identity<br />

<strong>and</strong> site <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>and</strong> germ<strong>in</strong>ati<strong>on</strong><br />

Percentage germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> H. mantegazzianum is very high,<br />

with an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 91.1% pooled across variables. At particular<br />

sites, germ<strong>in</strong>ati<strong>on</strong> varied between 90.9 <strong>and</strong> 91.2%<br />

(Table 1). The most strik<strong>in</strong>g effect <strong>in</strong> <strong>the</strong> analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> umbel<br />

type <strong>and</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> both <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>and</strong> percentage germ<strong>in</strong>ati<strong>on</strong><br />

was highly significant variati<strong>on</strong> am<strong>on</strong>g <strong>in</strong>dividual<br />

plants at each site (Tables 2 <strong>and</strong> 3). This idiosyncratic effect<br />

was larger than <strong>the</strong> general effect <str<strong>on</strong>g>of</str<strong>on</strong>g> umbel type, <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g><br />

or site.<br />

Mean <strong>mass</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 <str<strong>on</strong>g>fruit</str<strong>on</strong>g>, pooled across treatments, plants<br />

<strong>and</strong> sites, was 327 ± 92 mg (mean ± S.D., n = 700), giv<strong>in</strong>g


Table 2<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> umbel type (term<strong>in</strong>al, satellite, branch), sites, plants, <strong>and</strong> <strong>the</strong>ir mutual <strong>in</strong>teracti<strong>on</strong>s, <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>and</strong> percentage germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> H. mantegazzianum<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> df Fruit <strong>mass</strong> F<strong>in</strong>al germ<strong>in</strong>ati<strong>on</strong> percentage<br />

MS Fs MS Fs Am<strong>on</strong>g umbel types 2 0.58 48.79 *** 0.058 0.974 ns<br />

Am<strong>on</strong>g sites 6 0.10 3.04 * 0.31 3.54 **<br />

(Umbel type) × (site) 12 0.012 0.347 ns 0.057 0.657 ns<br />

Am<strong>on</strong>g plants with<strong>in</strong> (umbel type) × (site) 63 0.035 134.8 *** 0.087 6.33 ***<br />

Residual<br />

*** p < 0.001, ** p < 0.01, * p < 0.05, ns = not significant.<br />

336 0.0003 0.014<br />

Table 3<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> (centre, marg<strong>in</strong>), sites, plants, <strong>and</strong> <strong>the</strong>ir mutual <strong>in</strong>teracti<strong>on</strong>s, <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>and</strong> percentage germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> H. mantegazzianum<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> df Fruit <strong>mass</strong> F<strong>in</strong>al germ<strong>in</strong>ati<strong>on</strong> percentage<br />

MS Fs MS Fs Between <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s 1 0.00736 19.75 ** 0.00170 0.057 ns<br />

Am<strong>on</strong>g sites 6 0.027 1.37 ns 0.103 1.51 ns<br />

(Fruit <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>) × (site) 6 0.000372 0.019 ns 0.0300 0.442 ns<br />

Am<strong>on</strong>g plants with<strong>in</strong> (<str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>) × (site) 42 0.020 92.90 *** 0.0680 2.08 ***<br />

Residual<br />

*** p < 0.001, ** p < 0.01, ns = not significant.<br />

224 0.000216 0.03270<br />

<strong>the</strong> mean <strong>mass</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a s<strong>in</strong>gle <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 13.1 mg. Fruit <strong>mass</strong> was<br />

significantly different am<strong>on</strong>g umbel types <strong>and</strong> sites (Table 2).<br />

Fruit produced by term<strong>in</strong>al umbels was significantly heavier<br />

(405 ± 71 mg, n = 25; range 239–567 mg) than that from satellites<br />

(293 ± 92; 92–592) or branches (293 ± 91; 141–594)<br />

(Fig. 2). The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> was also<br />

highly significant (Table 3) with those from <strong>the</strong> centres <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fig. 2. Differences <strong>in</strong> mean <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> (with variance) am<strong>on</strong>g (a) umbel types<br />

<strong>and</strong> (b) between <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s <strong>in</strong> H. mantegazzianum. Different letters <strong>in</strong>side<br />

<strong>the</strong> bars <strong>in</strong>dicate significant (p < 0.05) differences am<strong>on</strong>g umbel types (SNK<br />

test) <strong>and</strong> between <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s (ANOVA). All sample sizes are n =140.<br />

L. Moravcová et al. / Acta Oecologica 28 (2005) 1–10<br />

umbels (328 ± 63 mg, 25 <str<strong>on</strong>g>fruit</str<strong>on</strong>g>s) be<strong>in</strong>g heavier than those from<br />

<strong>the</strong> marg<strong>in</strong>s (318 ± 60) (Fig. 2).<br />

Percentage germ<strong>in</strong>ati<strong>on</strong> was significantly different am<strong>on</strong>g<br />

sites (Table 2), but was affected by nei<strong>the</strong>r umbel type<br />

(Table 2) nor <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> (Table 3). However, <strong>the</strong> umbel<br />

type <strong>and</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> significantly affected germ<strong>in</strong>ati<strong>on</strong> rate.<br />

Large <strong>seed</strong>s germ<strong>in</strong>ated faster than small <strong>seed</strong>s; germ<strong>in</strong>ati<strong>on</strong><br />

rate <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>and</strong> this pattern was<br />

c<strong>on</strong>sistent for all plants at each site (Fig. 3). S<strong>in</strong>ce <str<strong>on</strong>g>fruit</str<strong>on</strong>g> from<br />

term<strong>in</strong>als were heavier than those from branches (Fig. 2), <strong>the</strong><br />

former germ<strong>in</strong>ated so<strong>on</strong>er than <strong>the</strong> latter (Fig. 4).<br />

Fig. 3. Relati<strong>on</strong>ship between mean germ<strong>in</strong>ati<strong>on</strong> rate <strong>and</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> for umbel<br />

types (term<strong>in</strong>al, satellite, branch) <str<strong>on</strong>g>of</str<strong>on</strong>g> a r<strong>and</strong>omly chosen plant <str<strong>on</strong>g>of</str<strong>on</strong>g> H. mantegazzianum<br />

(n = 715 <strong>seed</strong>s). Term<strong>in</strong>al: rate = 1/exp(–3.345+3.852<strong>mass</strong>) (1/2.45) ;<br />

satellite: rate = 1/exp(–4.296+8.171<strong>mass</strong>) (1/2.45) ; branch = 1/exp(–<br />

3.763+6.441<strong>mass</strong>) (1/2.45) . v 2 = 1301.0; df =5;p < 0.001. The y-axis is reversed<br />

so <strong>the</strong> <strong>seed</strong>s that germ<strong>in</strong>ate first appear above those that germ<strong>in</strong>ate last<br />

for a given <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong>. (Note that although, for most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ranges <strong>in</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g><br />

<strong>mass</strong>, <strong>the</strong> germ<strong>in</strong>ati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> is higher for satellites<br />

<strong>and</strong> branches than term<strong>in</strong>als, <strong>the</strong> average germ<strong>in</strong>ati<strong>on</strong> rate for term<strong>in</strong>als is<br />

higher than for satellites <strong>and</strong> branches because <str<strong>on</strong>g>fruit</str<strong>on</strong>g> from term<strong>in</strong>al umbels is,<br />

<strong>on</strong> average, much heavier than that from <strong>the</strong> o<strong>the</strong>r two umbel types).<br />

5


6 L. Moravcová et al. / Acta Oecologica 28 (2005) 1–10<br />

Fig. 4. Mean time to germ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>seed</strong> from a r<strong>and</strong>omly chosen<br />

plant, for term<strong>in</strong>al, satellite <strong>and</strong> branch umbels <str<strong>on</strong>g>of</str<strong>on</strong>g> H. mantegazzianum<br />

(n = 210 <strong>seed</strong>s). Different letters <strong>in</strong>side <strong>the</strong> bars <strong>in</strong>dicate significant (p < 0.05)<br />

differences am<strong>on</strong>g umbel types <strong>in</strong> deleti<strong>on</strong> tests. St<strong>and</strong>ard errors are slightly<br />

asymmetrical due to <strong>the</strong> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> germ<strong>in</strong>ati<strong>on</strong> curves. v 2 = 14.2; df =2;<br />

p < 0.001. Germ<strong>in</strong>ati<strong>on</strong> rate is <strong>the</strong> time to when 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>seed</strong>s had germ<strong>in</strong>ated,<br />

hence shorter bars <strong>in</strong>dicate faster germ<strong>in</strong>ati<strong>on</strong>. (Note <strong>the</strong> large difference<br />

between <strong>the</strong> mean germ<strong>in</strong>ati<strong>on</strong> rates for <strong>the</strong> two r<strong>and</strong>omly chosen<br />

plants <strong>in</strong> Figs. 3 <strong>and</strong> 4, which dem<strong>on</strong>strates <strong>the</strong> large variati<strong>on</strong> am<strong>on</strong>g plants<br />

<strong>and</strong> sites).<br />

3.2. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> umbel characteristics <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong>,<br />

percentage germ<strong>in</strong>ati<strong>on</strong> <strong>and</strong> germ<strong>in</strong>ati<strong>on</strong> rate<br />

Percentage germ<strong>in</strong>ati<strong>on</strong> was not affected by <strong>the</strong> measured<br />

variables relat<strong>in</strong>g to umbels. Nei<strong>the</strong>r umbel diameter nor <strong>the</strong><br />

tim<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> flower<strong>in</strong>g (start, end <strong>and</strong> durati<strong>on</strong>) had a significant<br />

effect at any <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sites. Germ<strong>in</strong>ati<strong>on</strong> rate varied unpredictably<br />

with <strong>the</strong> measured umbel characteristics.<br />

Fruit <strong>mass</strong> significantly <strong>in</strong>creased with umbel diameter.<br />

The 95% c<strong>on</strong>fidence <strong>in</strong>tervals <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> regressi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong><br />

<strong>on</strong> umbel diameter for <strong>the</strong> different sites overlapped broadly,<br />

<strong>and</strong> <strong>the</strong>se relati<strong>on</strong>ships were <strong>the</strong> same for each umbel type<br />

(deleti<strong>on</strong> test <strong>on</strong> a different regressi<strong>on</strong> slope <strong>on</strong> umbel diameter<br />

for term<strong>in</strong>al, satellite <strong>and</strong> branch: F = 0.35; df = 4, 163;<br />

NS). Comm<strong>on</strong> regressi<strong>on</strong> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong><br />

with umbel diameter is shown <strong>in</strong> Fig. 5.<br />

3.3. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> plant characteristics <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong>,<br />

percentage germ<strong>in</strong>ati<strong>on</strong> <strong>and</strong> germ<strong>in</strong>ati<strong>on</strong> rate<br />

Percentage germ<strong>in</strong>ati<strong>on</strong> was not affected by plant fecundity,<br />

basal diameter or height <strong>and</strong> <strong>the</strong> germ<strong>in</strong>ati<strong>on</strong> rate varied<br />

Fig. 5. Relati<strong>on</strong>ship between <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>and</strong> <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> an umbel <strong>in</strong> H. mantegazzianum<br />

based <strong>on</strong> data pooled across all sites. Fruit <strong>mass</strong> = 0.33 + 0.054<br />

umbel diameter. F = 88.73; df =1,163;p < 0.001; R 2 = 0.35.<br />

Table 4<br />

Significant (p < 0.05) effects <str<strong>on</strong>g>of</str<strong>on</strong>g> plant fecundity, height <strong>and</strong> basal diameter<br />

<strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>in</strong> H. mantegazzianum at <strong>in</strong>dividual sites (n = 8 at each site)<br />

Explanatory variable Site Regressi<strong>on</strong> slope ± st<strong>and</strong>ard error<br />

Plant fecundity Arnoltov –0.074 ± 0.023<br />

Plant height Dvorečky –0.044 ± 0.018<br />

Krásná Lípa I –0.10 ± 0.038<br />

Žitný II –0.11 ± 0.032<br />

Plant basal diameter Krásná Lípa I 0.15 ± 0.032<br />

<strong>in</strong>c<strong>on</strong>sistently. At some sites, <strong>the</strong>se characteristics had a significant<br />

effect <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong>, which decreased with <strong>in</strong>creas<strong>in</strong>g<br />

fecundity at <strong>on</strong>e site. A negative effect <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant<br />

height <strong>and</strong> fecundity <strong>and</strong> a positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> plant basal diameter<br />

were found at three <strong>and</strong> <strong>on</strong>e site, respectively (Table 4).<br />

4. Discussi<strong>on</strong><br />

4.1. Percentage germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> H. mantegazzianum:<br />

higher than <strong>the</strong> family average<br />

Percentage germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> H. mantegazzianum was extremely<br />

high. An extensive study <str<strong>on</strong>g>of</str<strong>on</strong>g> germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> 88 members<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> family Apiaceae carried out at <strong>the</strong> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Botany <strong>in</strong> <strong>the</strong> 1980s (M. Lhotská, unpublished data) allows<br />

<strong>the</strong> results obta<strong>in</strong>ed for H. mantegazzianum to be placed at<br />

wider phylogenetic c<strong>on</strong>text. Seventeen species (i.e., 19% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

those tested) exhibited 90–100% germ<strong>in</strong>ati<strong>on</strong> under optimum<br />

c<strong>on</strong>diti<strong>on</strong>s. Of <strong>the</strong> three naturalized neophytes (alien<br />

species <strong>in</strong>troduced after <strong>the</strong> discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> America; Richards<strong>on</strong><br />

et al., 2000, Pyšek et al., 2004) <strong>on</strong> <strong>the</strong> list, <strong>on</strong>ly Smyrnium<br />

perfoliatum (92%) has a higher percentage germ<strong>in</strong>ati<strong>on</strong>, <strong>and</strong><br />

for <strong>the</strong> o<strong>the</strong>r two it is lower: Imperatoria ostruthium (74%),<br />

Myrrhis odorata (72%). Heracleum mantegazzianum is <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 24 neophytes bel<strong>on</strong>g<strong>in</strong>g to <strong>the</strong> Apiaceae <strong>in</strong> <strong>the</strong> flora <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Czech Republic (Pyšek et al., 2002) seven <str<strong>on</strong>g>of</str<strong>on</strong>g> which are classified<br />

as naturalized <strong>and</strong> four are <strong>in</strong>vasive (Pyšek et al., 2004).<br />

Published data are available <strong>on</strong>ly for A. archangelica subsp.<br />

archangelica, ano<strong>the</strong>r <strong>in</strong>vasive species, for which <strong>the</strong> percentage<br />

germ<strong>in</strong>ati<strong>on</strong> reaches 82% <strong>and</strong> is enhanced by light (Ojala,<br />

1985).<br />

Good germ<strong>in</strong>ati<strong>on</strong> has also been reported for a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

o<strong>the</strong>r species <strong>in</strong> <strong>the</strong> Apiaceae <strong>in</strong> <strong>the</strong> literature, for example<br />

94% <strong>in</strong> A. graveolens (Thomas et al., 1979) <strong>and</strong> 83% <strong>in</strong> P.<br />

sativa (Hendrix, 1984a). Germ<strong>in</strong>ati<strong>on</strong> exceeded 80% <strong>in</strong> 29<br />

(33%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 88 species studied by M. Lhotská <strong>and</strong> <strong>the</strong> values<br />

recorded by her for H. mantegazzianum (80%) <strong>and</strong> <strong>in</strong> <strong>the</strong><br />

present study (91%) are higher than <strong>the</strong> average for <strong>the</strong> family<br />

(68.7 ± 23.2%, mean ± S.D., n = 88). An extremely high<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> germ<strong>in</strong>ati<strong>on</strong> is typical <str<strong>on</strong>g>of</str<strong>on</strong>g> this <strong>in</strong>vasive alien even<br />

with<strong>in</strong> <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> its family, <strong>seed</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> which generally<br />

readily germ<strong>in</strong>ate <strong>on</strong>ce dormancy is broken (Bask<strong>in</strong> <strong>and</strong><br />

Bask<strong>in</strong>, 1990,1991; Bask<strong>in</strong> et al., 1995).<br />

Percentage germ<strong>in</strong>ati<strong>on</strong> recorded under laboratory c<strong>on</strong>diti<strong>on</strong>s<br />

is not always realized <strong>in</strong> <strong>the</strong> wild. In our study, cold <strong>and</strong>


dark c<strong>on</strong>diti<strong>on</strong>s mimicked closely <strong>the</strong> natural situati<strong>on</strong> under<br />

<strong>the</strong> soil surface dur<strong>in</strong>g spr<strong>in</strong>g. The high percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> germ<strong>in</strong>ati<strong>on</strong><br />

recorded <strong>in</strong> <strong>the</strong> laboratory corresp<strong>on</strong>ds with that<br />

obta<strong>in</strong>ed <strong>in</strong> a comm<strong>on</strong> garden burial experiment, where 90%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s stored <strong>in</strong> <strong>the</strong> soil germ<strong>in</strong>ated over <strong>the</strong> first w<strong>in</strong>ter (L.<br />

Moravcová et al., unpublished data).<br />

4.2. Fruit <strong>mass</strong> <strong>and</strong> germ<strong>in</strong>ati<strong>on</strong> characteristics:<br />

<strong>the</strong> limited effect <str<strong>on</strong>g>of</str<strong>on</strong>g> umbel type, <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g><br />

<strong>and</strong> <strong>in</strong>traspecific variati<strong>on</strong><br />

The mean <strong>mass</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fruit</str<strong>on</strong>g> (13.1 mg) recorded <strong>in</strong> <strong>the</strong> present<br />

study is with<strong>in</strong> <strong>the</strong> range given by Tiley et al. (1996) for this<br />

species (4.6–23.2 mg) <strong>and</strong> Šerá (2003) gives a mean value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

7.43 mg for <strong>the</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> H. mantegazzianum dried at 80 °C.<br />

More importantly, <strong>the</strong> present study <strong>in</strong>dicates that <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong><br />

<strong>in</strong> Apiaceae cannot be directly compared without know<strong>in</strong>g<br />

<strong>the</strong> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>on</strong> a plant. Fruit from term<strong>in</strong>al <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s<br />

weighed an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 16.2 mg, while <str<strong>on</strong>g>fruit</str<strong>on</strong>g> from satellite<br />

<strong>and</strong> branch <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g>s was smaller (11.7 mg). Fruit from<br />

<strong>the</strong> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> umbels (13.1 mg) was significantly heavier than<br />

that from <strong>the</strong> marg<strong>in</strong>s (12.7 mg). O<strong>the</strong>r published studies<br />

report even greater variati<strong>on</strong> <strong>in</strong> <strong>the</strong> <strong>mass</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> produced <strong>on</strong><br />

different umbels <strong>in</strong>Apiaceae.A six-fold variati<strong>on</strong> <strong>in</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong><br />

is reported for P. sativa, when <str<strong>on</strong>g>fruit</str<strong>on</strong>g> from <strong>the</strong> tertiary umbels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a small plant is compared with that from primary umbels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a large plant (Hendrix, 1984a; see also Thomps<strong>on</strong>, 1984;<br />

Hendrix, 1984b for o<strong>the</strong>r species). Hendrix <strong>and</strong> Sun (1989)<br />

reported a three- to 16-fold variati<strong>on</strong> <strong>in</strong> seven species, <strong>and</strong><br />

c<strong>on</strong>cluded that <strong>in</strong>traspecific variati<strong>on</strong> <strong>in</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> is <strong>the</strong> rule<br />

ra<strong>the</strong>r than <strong>the</strong> excepti<strong>on</strong> due to <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> developmental<br />

factors such as <str<strong>on</strong>g>fruit</str<strong>on</strong>g> number, time <str<strong>on</strong>g>of</str<strong>on</strong>g> flower<strong>in</strong>g <strong>and</strong> locati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>florescences. However, <strong>the</strong>se factors may not affect <strong>the</strong><br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>in</strong> <strong>the</strong> same way, which makes it difficult to assign<br />

causality to with<strong>in</strong> plant variati<strong>on</strong> <strong>in</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong>. The smaller<br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> produced by <strong>the</strong> last umbels formed later <strong>in</strong> a seas<strong>on</strong><br />

may suffer from a lower availability <str<strong>on</strong>g>of</str<strong>on</strong>g> reserves as suggested<br />

by Hendrix (1984a,1984b) for P. sativa <strong>and</strong> Heracleum lanatum.<br />

Obviously, this is less important <strong>in</strong> H. mantegazzianum.<br />

Percentage germ<strong>in</strong>ati<strong>on</strong> was not affected by <strong>the</strong> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> H. mantegazzianum mo<strong>the</strong>r plant but germ<strong>in</strong>ati<strong>on</strong><br />

rate was. Large <strong>seed</strong> germ<strong>in</strong>ated faster than small<br />

<strong>seed</strong>, but <strong>the</strong> difference was <strong>on</strong>ly obvious <strong>in</strong> <strong>the</strong> early weeks<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment. In a number <str<strong>on</strong>g>of</str<strong>on</strong>g> species, lower percentages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> small <strong>seed</strong>s germ<strong>in</strong>ate than <str<strong>on</strong>g>of</str<strong>on</strong>g> large <strong>seed</strong>s (Ojala, 1985;<br />

Hendrix <strong>and</strong> Sun, 1989; Hendrix <strong>and</strong> Trapp, 1992), but <strong>the</strong><br />

opposite relati<strong>on</strong>ship has also been reported (see Thomas et<br />

al., 1979 study <strong>on</strong> A. graveolens). A detailed study <str<strong>on</strong>g>of</str<strong>on</strong>g> Hendrix<br />

(1984a) <strong>on</strong> P. sativa revealed <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> tim<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong> germ<strong>in</strong>ati<strong>on</strong>. The proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> germ<strong>in</strong>at<strong>in</strong>g <strong>seed</strong> did<br />

not differ <strong>in</strong> autumn (i.e., without stratificati<strong>on</strong>), whereas <strong>in</strong><br />

<strong>the</strong> spr<strong>in</strong>g a greater percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> big <strong>seed</strong> germ<strong>in</strong>ate than<br />

small (Hendrix, 1984a).<br />

There is little published <strong>in</strong>formati<strong>on</strong> <strong>on</strong> germ<strong>in</strong>ati<strong>on</strong> rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> species <str<strong>on</strong>g>of</str<strong>on</strong>g> Apiaceae. A pattern opposite to that found <strong>in</strong> <strong>the</strong><br />

present study is reported for P. sativa, where small <strong>seed</strong> ger-<br />

L. Moravcová et al. / Acta Oecologica 28 (2005) 1–10<br />

m<strong>in</strong>ated more rapidly than large <strong>seed</strong> (Hendrix, 1984a). However,<br />

this was <strong>on</strong>ly true <strong>in</strong> autumn <strong>and</strong> <strong>the</strong>re was no difference<br />

<strong>in</strong> spr<strong>in</strong>g. These results suggest that small <strong>seed</strong>s may<br />

have a competitive advantage over large <strong>seed</strong>s <strong>in</strong> autumn due<br />

to faster germ<strong>in</strong>ati<strong>on</strong>, but are at a disadvantage <strong>in</strong> spr<strong>in</strong>g<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> lower percentage germ<strong>in</strong>ati<strong>on</strong>. As most germ<strong>in</strong>ati<strong>on</strong><br />

<strong>in</strong> <strong>the</strong> field occurs <strong>in</strong> spr<strong>in</strong>g, populati<strong>on</strong> recruitment from<br />

small <strong>seed</strong>s is likely to be substantially less than that from<br />

large <strong>seed</strong>s (Hendrix, 1984a).<br />

In our study area, H. mantegazzianum germ<strong>in</strong>ates <strong>on</strong>ly <strong>in</strong><br />

spr<strong>in</strong>g (no <strong>seed</strong>l<strong>in</strong>gs were observed <strong>in</strong> study plots <strong>in</strong> <strong>the</strong><br />

autumn). For that reas<strong>on</strong>, <strong>the</strong> germ<strong>in</strong>ati<strong>on</strong> experiment was<br />

designed to mimic <strong>the</strong> temperature <strong>in</strong> spr<strong>in</strong>g; under such c<strong>on</strong>diti<strong>on</strong>s<br />

large <strong>seed</strong>s germ<strong>in</strong>ate faster than small <strong>seed</strong>s. As large<br />

<strong>seed</strong>s also produce bigger <strong>seed</strong>l<strong>in</strong>gs (Harper, 1977; Thomas,<br />

1996; Thomas et al., 1979), which provide <strong>the</strong>m with a competitive<br />

advantage over <strong>seed</strong>l<strong>in</strong>gs produced by small <strong>seed</strong>,<br />

<strong>the</strong>se results suggest that little c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small <strong>seed</strong>s to<br />

populati<strong>on</strong> recruitment can be expected <strong>in</strong> H. mantegazzianum.<br />

4.3. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> plant characteristics <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong><br />

Plant size, expressed as height <strong>and</strong> basal diameter, had no<br />

effect <strong>on</strong> <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H. mantegazzianum <strong>seed</strong> that germ<strong>in</strong>ated;<br />

<strong>on</strong>ly <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> was affected. Relati<strong>on</strong>ships between<br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>and</strong> characteristics related to plant vigour, as found<br />

at some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sites, <strong>in</strong>dicate a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between allocati<strong>on</strong> to<br />

vegetative growth <strong>and</strong> generative reproducti<strong>on</strong> (Harper, 1977).<br />

The negative effect <str<strong>on</strong>g>of</str<strong>on</strong>g> height <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong>, found at three<br />

study sites, reflects a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>in</strong> <strong>the</strong> allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resources<br />

to competiti<strong>on</strong> for light <strong>and</strong> reproducti<strong>on</strong>. In H. mantegazzianum,<br />

however, small <strong>seed</strong> is not at a major disadvantage<br />

as it achieves similarly high germ<strong>in</strong>ati<strong>on</strong> percentages as large<br />

<strong>seed</strong>.<br />

The basal diameter <strong>in</strong> H. mantegazzianum is closely associated<br />

with plant vigour <strong>and</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> producti<strong>on</strong> significantly<br />

depends <strong>on</strong> this characteristic (Pyšek et al., 1995). At <strong>on</strong>e<br />

site, <strong>the</strong> most vigorous plants produced <strong>the</strong> heaviest <str<strong>on</strong>g>fruit</str<strong>on</strong>g>, <strong>in</strong>dicat<strong>in</strong>g<br />

that <strong>the</strong> best perform<strong>in</strong>g plants are not <strong>on</strong>ly <strong>the</strong> most<br />

fecund (Pyšek et al., 1995) but also produce high quality <str<strong>on</strong>g>fruit</str<strong>on</strong>g>.<br />

That <strong>the</strong> more vigorous plants produce <strong>the</strong> heavier <str<strong>on</strong>g>fruit</str<strong>on</strong>g> is<br />

also <strong>in</strong>dicated by <strong>the</strong> positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> umbel size <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g><br />

<strong>mass</strong>.<br />

The absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a significant relati<strong>on</strong>ship at most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

study sites might be partly due to small sample size (n =8)<br />

<strong>and</strong> high variati<strong>on</strong>. For technical reas<strong>on</strong>s, it was not possible<br />

to <strong>in</strong>clude more plants per study site hence <strong>the</strong> result<strong>in</strong>g power<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tests was ra<strong>the</strong>r low. For that reas<strong>on</strong>, any c<strong>on</strong>clusi<strong>on</strong><br />

about <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> plant vigour <strong>on</strong> germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> H. mantegazzianum<br />

must be treated with cauti<strong>on</strong>. While studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

correlati<strong>on</strong> between plant size <strong>and</strong> fecundity, expressed as<br />

<strong>seed</strong> number or <strong>seed</strong> <strong>mass</strong>, c<strong>on</strong>sistently reveal a positive relati<strong>on</strong>ship<br />

(Hendrix <strong>and</strong> Sun, 1989 for seven species <str<strong>on</strong>g>of</str<strong>on</strong>g> Apiaceae),<br />

those attempt<strong>in</strong>g to relate plant size <strong>and</strong> <strong>in</strong>dividual<br />

<strong>seed</strong> <strong>mass</strong> are less successful. In <strong>the</strong> same study, Hendrix <strong>and</strong><br />

7


8 L. Moravcová et al. / Acta Oecologica 28 (2005) 1–10<br />

Sun (1989) found heavier <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>on</strong> bigger plants <strong>in</strong> <strong>on</strong>ly three<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> seven species (see also Hendrix, 1984a). In general, it<br />

appears that while at <strong>the</strong> <strong>in</strong>terspecific level <strong>seed</strong> <strong>mass</strong> is positively<br />

related to various measures <str<strong>on</strong>g>of</str<strong>on</strong>g> plant size (Moles et al.,<br />

2004), variati<strong>on</strong> am<strong>on</strong>g <strong>in</strong>dividual plants with<strong>in</strong> a populati<strong>on</strong><br />

makes it more difficult to reveal <strong>the</strong> same relati<strong>on</strong>ships at <strong>the</strong><br />

<strong>in</strong>traspecific level.<br />

4.4. Implicati<strong>on</strong>s for <strong>in</strong>vasi<strong>on</strong>: superior comb<strong>in</strong>ati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive traits<br />

Interspecific comparis<strong>on</strong>s show that <strong>the</strong>re is a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

between <strong>the</strong> number <strong>and</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong> (Harper, 1977; Šerá <strong>and</strong><br />

Šerý, 2004). High fecundity promotes <strong>in</strong>vasiveness (Ewell,<br />

1986; Roy, 1990; Richards<strong>on</strong> <strong>and</strong> Cowl<strong>in</strong>g, 1992; Rejmánek,<br />

1996; Meyer, 1998), simply because more propagules are<br />

spread <strong>and</strong> <strong>the</strong> probability that some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>m reach safe sites<br />

<strong>in</strong>creases. Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fewer larger <strong>seed</strong>s may be an alternative<br />

strategy. Data from field studies <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s under<br />

natural c<strong>on</strong>diti<strong>on</strong>s showed that large-<strong>seed</strong>ed species have<br />

higher survival dur<strong>in</strong>g early <strong>seed</strong>l<strong>in</strong>g establishment than small<strong>seed</strong>ed<br />

species (Moles <strong>and</strong> Westoby, 2004). Compared to o<strong>the</strong>r<br />

species, H. mantegazzianum is superior both <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> fecundity<br />

<strong>and</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> size. The reproductive potential <str<strong>on</strong>g>of</str<strong>on</strong>g> this species<br />

is enormous <strong>and</strong> seems to be a crucial feature <str<strong>on</strong>g>of</str<strong>on</strong>g> its <strong>in</strong>vasi<strong>on</strong><br />

success (Pyšek et al., 1995; Tiley et al., 1996). In <strong>the</strong> study<br />

area, an average plant produced 20 500 <str<strong>on</strong>g>fruit</str<strong>on</strong>g> (I. Perglová et<br />

al., unpublished data). However, H. mantegazzianum is also<br />

remarkably large-<strong>seed</strong>ed <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> temperate flora. Mean<br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species exceeds <strong>the</strong> average value found for<br />

498 species <strong>in</strong> <strong>the</strong> Czech Republic (2.56 ± 7.59 mg,<br />

mean ± S.D.) by Šerá (2003); <strong>the</strong> <strong>mass</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a H. mantegazzianum<br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>in</strong> her sample was 7.4 mg. These features,<br />

toge<strong>the</strong>r with vigorous growth <strong>and</strong> shad<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> resident vegetati<strong>on</strong><br />

(Tiley et al., 1996), enable this species, which does<br />

not reproduce vegetatively <strong>and</strong> relies completely <strong>on</strong> <strong>seed</strong> producti<strong>on</strong>,<br />

to <strong>in</strong>vade new areas <strong>and</strong> achieve dom<strong>in</strong>ance.<br />

In general, <strong>the</strong> determ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>in</strong> H. mantegazzianum<br />

follows <strong>the</strong> same pattern as <strong>in</strong> o<strong>the</strong>r members <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Apiaceae (Hendrix, 1984a; Hendrix, 1984b; Hendrix <strong>and</strong> Sun,<br />

1989), but <strong>the</strong> variati<strong>on</strong> is several orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude lower<br />

than <strong>in</strong> some o<strong>the</strong>r species. C<strong>on</strong>sequently, even small <strong>seed</strong> is<br />

“big enough” <strong>and</strong> does not suffer from <strong>the</strong> negative c<strong>on</strong>sequences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> small size. In additi<strong>on</strong>, be<strong>in</strong>g small does not represent<br />

much <str<strong>on</strong>g>of</str<strong>on</strong>g> a disadvantage s<strong>in</strong>ce size <strong>on</strong>ly affects germ<strong>in</strong>ati<strong>on</strong><br />

rate. Over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> three m<strong>on</strong>ths (<strong>in</strong> <strong>the</strong> field,<br />

<strong>seed</strong>l<strong>in</strong>gs appear up until May), <strong>the</strong> difference <strong>in</strong> percentage<br />

germ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small <strong>and</strong> large <strong>seed</strong>s disappears. Under certa<strong>in</strong><br />

circumstances, delayed germ<strong>in</strong>ati<strong>on</strong> may even have positive<br />

c<strong>on</strong>sequences because such <strong>seed</strong>l<strong>in</strong>gs may avoid frosts<br />

that are comm<strong>on</strong> <strong>in</strong> <strong>the</strong> study area, which is located at a relatively<br />

high altitude (Table 1). In additi<strong>on</strong>, populati<strong>on</strong> selfth<strong>in</strong>n<strong>in</strong>g<br />

<strong>in</strong> H. mantegazzianum (less than 0.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>l<strong>in</strong>gs<br />

survive to <strong>the</strong> next year; J. Pergl, unpublished data) may<br />

enable small <strong>seed</strong> with delayed germ<strong>in</strong>ati<strong>on</strong> to c<strong>on</strong>tribute to<br />

populati<strong>on</strong> ma<strong>in</strong>tenance.<br />

More importantly, over 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong> germ<strong>in</strong>ated regardless<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> vigour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mo<strong>the</strong>r plant or where it was produced<br />

<strong>on</strong> <strong>the</strong> plant. Many <strong>in</strong>vasive species are good germ<strong>in</strong>ators<br />

(see for example Gleadow, 1982; Dugg<strong>in</strong> <strong>and</strong> Gentle,<br />

1998; Ernst, 1998) but this is not always <strong>the</strong> case (Grice, 1996;<br />

Meyer <strong>and</strong> Schmid, 1999). Given its fecundity, H. mantegazzianum<br />

exerts enormous pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> highly germ<strong>in</strong>able<br />

propagules <strong>in</strong> <strong>in</strong>vaded sites. This has practical implicati<strong>on</strong> as<br />

mechanical c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g>ten focuses <strong>on</strong> cutt<strong>in</strong>g term<strong>in</strong>al umbels<br />

or stems at flower<strong>in</strong>g time. Regenerati<strong>on</strong> occurs via higherorder<br />

umbels (Pyšek et al., 1995) <strong>and</strong> as <strong>in</strong>dicated <strong>in</strong> this study<br />

<strong>the</strong>se produce good quality <strong>seed</strong>.<br />

The most strik<strong>in</strong>g aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> umbel type <strong>and</strong><br />

<str<strong>on</strong>g>fruit</str<strong>on</strong>g> <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>fruit</str<strong>on</strong>g> <strong>mass</strong> <strong>and</strong> percentage germ<strong>in</strong>ati<strong>on</strong> was<br />

<strong>the</strong> highly significant variati<strong>on</strong> <strong>in</strong> <strong>the</strong> measured characteristics<br />

am<strong>on</strong>g <strong>in</strong>dividual plants at each site. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> site<br />

was much less important than <strong>in</strong>dividual variability, suggest<strong>in</strong>g<br />

that <strong>the</strong> species is able to cope with <strong>the</strong> envir<strong>on</strong>mental<br />

variati<strong>on</strong> with<strong>in</strong> <strong>the</strong> study area. It should be noted that <strong>the</strong><br />

study was c<strong>on</strong>ducted <strong>in</strong> a regi<strong>on</strong> where H. mantegazzianum<br />

was first <strong>in</strong>troduced to <strong>the</strong> Czech Republic (Pyšek, 1991) <strong>and</strong><br />

that <strong>the</strong>re is a good climate match between this regi<strong>on</strong> <strong>and</strong> its<br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> orig<strong>in</strong>. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Czech Republic, Slavkovský<br />

les is located at a ra<strong>the</strong>r high altitude, <strong>and</strong> hence provides<br />

climatic c<strong>on</strong>diti<strong>on</strong>s for H. mantegazzianum comparable to<br />

those <strong>in</strong> <strong>the</strong> native area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Caucasus. This is supported by<br />

<strong>the</strong> fact that n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> parameters related to <strong>the</strong> tim<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

flower<strong>in</strong>g were significant <strong>in</strong> <strong>the</strong> present study. Invasi<strong>on</strong><br />

throughout <strong>the</strong> Czech Republic proceeded from <strong>the</strong> study area<br />

to o<strong>the</strong>r parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> country (Pyšek, 1991) <strong>and</strong> it is possible<br />

that <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>ment would be more marked if compared<br />

across <strong>the</strong> whole range <str<strong>on</strong>g>of</str<strong>on</strong>g> occupied habitats.<br />

The superior comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive traits is fur<strong>the</strong>r<br />

enhanced by <strong>the</strong> species hav<strong>in</strong>g a large, short-term persistent<br />

<strong>seed</strong> bank (sensu Thomps<strong>on</strong> et al., 1997). In 2002, <strong>the</strong> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> viable <strong>seed</strong>s varied from 2 707 m −2 <strong>in</strong> autumn to<br />

1 462 <strong>in</strong> spr<strong>in</strong>g to 75 <strong>in</strong> summer. In a burial experiment, 8.8%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> buried <strong>seed</strong>s were dormant after <strong>the</strong> first year, <strong>and</strong> 2.7%<br />

after <strong>the</strong> sec<strong>on</strong>d (L. Moravcová et al., unpublished data). The<br />

high fecundity <strong>and</strong> opportunistic behaviour associated with<br />

high percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> germ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cold-stratified <strong>seed</strong>, as<br />

well as <strong>the</strong> high <strong>seed</strong> producti<strong>on</strong> (Pyšek et al., 1995; Tiley et<br />

al., 1996), may account for <strong>the</strong> successful <strong>in</strong>vasi<strong>on</strong> by H. mantegazzianum<br />

<strong>in</strong> Central Europe.<br />

Acknowledgements<br />

We thank two an<strong>on</strong>ymous referees for <strong>the</strong>ir comments <strong>on</strong><br />

<strong>the</strong> manuscript <strong>and</strong> T<strong>on</strong>y Dix<strong>on</strong> (Norwich) for improv<strong>in</strong>g our<br />

English. The study was supported by <strong>the</strong> project “Giant Hogweed<br />

(H. mategazzianum) a pernicious <strong>in</strong>vasive weed: develop<strong>in</strong>g<br />

a susta<strong>in</strong>able strategy for alien <strong>in</strong>vasive plant management<br />

<strong>in</strong> Europe”, funded with<strong>in</strong> <strong>the</strong> “Energy, Envir<strong>on</strong>ment<br />

<strong>and</strong> Susta<strong>in</strong>able Development Programme” (grant no. EVK2-<br />

CT-2001-00128) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> European Uni<strong>on</strong> 5th Framework Pro-


gramme, <strong>and</strong> by <strong>the</strong> <strong>in</strong>stituti<strong>on</strong>al l<strong>on</strong>g-term research plan no.<br />

AV0Z60050516 funded by <strong>the</strong> Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Czech Republic. V. J. <strong>and</strong> P.P. were supported by grant no.<br />

MSMT CR 0021620828. Our thanks are also to Zuzana Sixtová,<br />

Ivan Ostrý, Šárka Jahodová, Helena Uhlírˇová <strong>and</strong> Petr<br />

Zákravský for technical support.<br />

References<br />

Asht<strong>on</strong>, P.J., Mitchell, D.S., 1989. Aquatic plants: patterns <strong>and</strong> modes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>vasi<strong>on</strong>, attributes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vad<strong>in</strong>g species <strong>and</strong> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol programmes.<br />

In: Drake, J.A., et al. (Eds.), Biological Invasi<strong>on</strong>s: A Global<br />

Perspective. John Wiley <strong>and</strong> S<strong>on</strong>s, Chichester, pp. 111–154.<br />

Baker, H.G., 1965. Characteristics <strong>and</strong> modes <str<strong>on</strong>g>of</str<strong>on</strong>g> orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weeds. In:<br />

Baker, H.G., Stebb<strong>in</strong>s, C.L. (Eds.), The Genetics <str<strong>on</strong>g>of</str<strong>on</strong>g> Col<strong>on</strong>iz<strong>in</strong>g Species.<br />

Academic Press, New York, pp. 147–169.<br />

Barbedo, A.S.C., Camara, F.L.A., Nakagawa, J., Barbedo, C.J., 2000. Plant<br />

populati<strong>on</strong>, harvest method <strong>and</strong> <strong>seed</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> carrot, Brasilia cultivar.<br />

Pesquisa Agropecularia Brasileira 35, 1645–1652.<br />

Bask<strong>in</strong>, J.M., Bask<strong>in</strong>, C.C., 1990. Germ<strong>in</strong>ati<strong>on</strong> ecophysiology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> w<strong>in</strong>ter<br />

annual: Chaerophyllum ta<strong>in</strong>turieri: a new type <str<strong>on</strong>g>of</str<strong>on</strong>g> morphophysiological<br />

dormancy. J. Ecol. 78, 993–1004.<br />

Bask<strong>in</strong>, J.M., Bask<strong>in</strong>, C.C., 1991. N<strong>on</strong>deep complex <str<strong>on</strong>g>of</str<strong>on</strong>g> morphophysiological<br />

dormancy <strong>in</strong> <strong>seed</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Osmorhiza clayt<strong>on</strong>ii. Am. J. Bot. 78, 588–593.<br />

Bask<strong>in</strong>, C.C., Bask<strong>in</strong>, J.M., 1998. Seeds. Ecology, Biogeography <strong>and</strong> Evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Dormancy <strong>and</strong> Germ<strong>in</strong>ati<strong>on</strong>. Academic Press, San Diego.<br />

Bask<strong>in</strong>, C.C., Meyer, S.E., Bask<strong>in</strong>, J.M., 1995. Two types <str<strong>on</strong>g>of</str<strong>on</strong>g> morphophysiological<br />

dormancy <strong>in</strong> <strong>seed</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> two genera (Osmorhiza <strong>and</strong> Erythr<strong>on</strong>ium)<br />

with an arcto-tertiary distributi<strong>on</strong> pattern. Am. J. Bot. 82, 293–298.<br />

Caffrey, J.M.,1999. Phenology <strong>and</strong> l<strong>on</strong>g term c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Heracleum mantegazzianum.<br />

Hydrobiologia 415, 223–228.<br />

Crawley, M.J., 1993. GLIM for Ecologists. Blackwell Scientific Publicati<strong>on</strong>s,<br />

L<strong>on</strong>d<strong>on</strong>.<br />

Cr<strong>on</strong>k, Q.C.B., Fuller, J.L., 1995. Plant Invaders. The Threat to Natural<br />

Ecosystems. Chapman <strong>and</strong> Hall, L<strong>on</strong>d<strong>on</strong>.<br />

Dančák, M., 2002. Glyceria striata—a new alien grass species <strong>in</strong> <strong>the</strong> flora <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Czech Republic. Preslia 74, 281–289.<br />

Dietz, H., Ullmann, I., 1997. Age-determ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dicotyled<strong>on</strong>ous herbaceous<br />

perennials by means <str<strong>on</strong>g>of</str<strong>on</strong>g> annual r<strong>in</strong>gs: excepti<strong>on</strong> or rule? Ann. Bot.<br />

(L<strong>on</strong>d.) 80, 377–379.<br />

Drever, J.C., Hunter, J.A., 1970. Giant hogweed dermatitis. Scott. Med. J.<br />

15, 315–319.<br />

Dugg<strong>in</strong>, J.A., Gentle, C.B., 1998. Experimental evidence <strong>on</strong> <strong>the</strong> importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance <strong>in</strong>tensity for <strong>in</strong>vasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lantana camara L. <strong>in</strong> dry<br />

ra<strong>in</strong>forest–open forest ecot<strong>on</strong>es <strong>in</strong> north-eastern NSW, Australia. For.<br />

Ecol. Manage. 109, 279–292.<br />

Ernst, W.H.O., 1998. Invasi<strong>on</strong>, dispersal <strong>and</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> South African<br />

neophyte Senecio <strong>in</strong>aequidens <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s: from wool alien to<br />

railway <strong>and</strong> road alien. Acta Botanica Neerl<strong>and</strong>ica 47, 131–151.<br />

Ewell, J.J., 1986. Invasibility: Less<strong>on</strong>s from South Florida. In: Mo<strong>on</strong>ey, H.,<br />

Drake, J.A. (Eds.), Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Invasi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> North America<br />

<strong>and</strong> Hawai. Spr<strong>in</strong>ger Verlag., New York, pp. 214–230.<br />

Forcella, F., 1985. F<strong>in</strong>al distributi<strong>on</strong> is related to rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <strong>in</strong> alien<br />

weeds. Weed Res. 25, 181–192.<br />

Forcella, F., Wood, J.T., Dill<strong>on</strong>, S.P., 1984. Characteristics dist<strong>in</strong>guish<strong>in</strong>g<br />

<strong>in</strong>vasive weeds <strong>in</strong> Echium. Weed Res. 26, 351–364.<br />

Francis, B., Green, M., Payne, C., 1994. The GLIM System. Release<br />

4 Manual. Clarend<strong>on</strong> Press, Oxford.<br />

Gleadow, R.M., 1982. Invasi<strong>on</strong> by Pittosporum undulatum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> forests <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Central Victoria. II. Dispersal, germ<strong>in</strong>ati<strong>on</strong> <strong>and</strong> establishment. Aust. J.<br />

Bot. 30, 185–195.<br />

Grice, A.C., 1996. Seed producti<strong>on</strong>, dispersal <strong>and</strong> germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> Cryptostegia<br />

gr<strong>and</strong>iflora <strong>and</strong> Ziziphus mauritiana, two <strong>in</strong>vasive shrubs <strong>in</strong> tropical<br />

woodl<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>rn Australia. Aust. J. Ecol. 21, 324–331.<br />

L. Moravcová et al. / Acta Oecologica 28 (2005) 1–10<br />

Grime, J.P., Mas<strong>on</strong>, G., Curtis, A.V., Rodman, J., B<strong>and</strong>, S.R., Mowforth,<br />

M.A., et al., 1981. A comparative study <str<strong>on</strong>g>of</str<strong>on</strong>g> germ<strong>in</strong>ati<strong>on</strong> characteristics<br />

<strong>in</strong> a local flora. J. Ecol. 69, 1017–1059.<br />

Grotkopp, E., Rejmánek, M., Rost, T.L., 2002. Toward a causal explanati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> plant <strong>in</strong>vasiveness: <strong>seed</strong>l<strong>in</strong>g growth <strong>and</strong> life-history strategies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

29 p<strong>in</strong>e (P<strong>in</strong>us) species. Am. Nat. 159, 396–419.<br />

Gutterman, Y., 1992. Maternal effects <strong>on</strong> <strong>seed</strong>s dur<strong>in</strong>g development. In:<br />

Fenner, M. (Ed.), Seeds. The Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Regenerati<strong>on</strong> <strong>in</strong> Plant Communities.<br />

CABI Publish<strong>in</strong>g, Wall<strong>in</strong>gford.<br />

Harper, J.L., 1977. Populati<strong>on</strong> Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Plants. Academic Press, L<strong>on</strong>d<strong>on</strong>.<br />

Hendrix, S.D., 1984a. Variati<strong>on</strong> <strong>in</strong> <strong>seed</strong> weight <strong>and</strong> its effect <strong>on</strong> germ<strong>in</strong>ati<strong>on</strong><br />

<strong>in</strong> Past<strong>in</strong>aca sativa L. (Umbelliferae). Am. J. Bot. 71, 795–802.<br />

Hendrix, S.D., 1984b. Reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Heracleum lanatum to floral herbivory<br />

by Depressaria past<strong>in</strong>acella. Ecology 65, 191–197.<br />

Hendrix, S.D., Sun, I.-F., 1989. Inter- <strong>and</strong> <strong>in</strong>traspecific variati<strong>on</strong> <strong>in</strong> <strong>seed</strong><br />

<strong>mass</strong> <strong>in</strong> seven species <str<strong>on</strong>g>of</str<strong>on</strong>g> umbellifer. New Phytol. 112, 445–451.<br />

Hendrix, S.D., Trapp, E.J., 1992. Populati<strong>on</strong> demography <str<strong>on</strong>g>of</str<strong>on</strong>g> Past<strong>in</strong>aca<br />

sativa (Apiaceae): effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong> <strong>mass</strong> <strong>on</strong> emergence, survival, <strong>and</strong><br />

recruitment. Am. J. Bot. 79, 365–375.<br />

Holub, J., 1997. 44. Heracleum—bolševník. In: Slavík, B., Chrtek jun, J.,<br />

Tomšovic, P. (Eds.), Květena České republiky 5. Academia, Praha.<br />

pp. 386–395.<br />

Jacobsohn, R., Globers<strong>on</strong>, D., 1980. Daucus carota (carrot) <strong>seed</strong>s quality: I.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong> size <strong>on</strong> germ<strong>in</strong>ati<strong>on</strong>, emergence <strong>and</strong> plant growth under<br />

subtropical c<strong>on</strong>diti<strong>on</strong>s. II. The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> primary umbels <strong>in</strong><br />

carrot-<strong>seed</strong> producti<strong>on</strong>. In: Hebblethwai<strong>the</strong>, P.D. (Ed.), Seed Producti<strong>on</strong>.<br />

Butterworths, L<strong>on</strong>d<strong>on</strong>, pp. 637–646.<br />

Kartesz, J.T., Meacham, C.A., 1999. Syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North American Flora.<br />

Versi<strong>on</strong> 1.0, North Carol<strong>in</strong>a Botanical Garden. Chapel Hill.<br />

L<strong>on</strong>sdale, W.M., 1999. Global patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> plant <strong>in</strong>vasi<strong>on</strong>s <strong>and</strong> <strong>the</strong> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>vasibility. Ecology 80, 1522–1536.<br />

M<strong>and</strong>ák, B., Pyšek, P., Bímová, K., 2004. History <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>vasi<strong>on</strong> <strong>and</strong><br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Reynoutria taxa <strong>in</strong> <strong>the</strong> Czech Republic: a hybrid spread<strong>in</strong>g<br />

faster than its parents. Preslia 76, 15–64.<br />

Mart<strong>in</strong>, A.C., 1946. The comparative <strong>in</strong>ternal morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s. Amer.<br />

Midl. Nat. 36, 513–660.<br />

Meyer, A.H., Schmid, B., 1999. Seed dynamics <strong>and</strong> <strong>seed</strong>l<strong>in</strong>g establishment<br />

<strong>in</strong> <strong>the</strong> <strong>in</strong>vad<strong>in</strong>g perennial Solidago altissima under different experimental<br />

treatments. J. Ecol. 87, 28–41.<br />

Meyer, J.Y., 1998. Observati<strong>on</strong>s <strong>on</strong> <strong>the</strong> reproductive biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Mic<strong>on</strong>ia<br />

calvescens DC (Melastomataceae), an alien <strong>in</strong>vasive tree <strong>on</strong> <strong>the</strong> isl<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Tahiti (South Pacific Ocean). Biotropica 30, 609–624.<br />

Mihulka, S., Pyšek, P., Pyšek, A., 2003. Oeno<strong>the</strong>ra cor<strong>on</strong>ifera, a new alien<br />

species for <strong>the</strong> Czech flora, <strong>and</strong> Oeno<strong>the</strong>ra stricta, recorded aga<strong>in</strong> after<br />

two centuries. Preslia 75, 263–270.<br />

M<strong>and</strong>enova, I.P., 1950. Kavkazskye vidy roda Heracleum. Izdatelstvo Akademii<br />

Nauk Gruz<strong>in</strong>skoj SSR, Tbilisi.<br />

Moles, A.T., Falster, D.S., Leishmann, M.R., Westoby, M., 2004. Small<strong>seed</strong>ed<br />

species produce more <strong>seed</strong>s per square metre <str<strong>on</strong>g>of</str<strong>on</strong>g> canopy per year,<br />

but not per <strong>in</strong>dividual per lifetime. J. Ecol. 92, 384–396.<br />

Moles, A.T., Westoby, M., 2004. Seedl<strong>in</strong>g survival <strong>and</strong> <strong>seed</strong> size: a syn<strong>the</strong>sis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> literature. J. Ecol. 92, 372–383.<br />

Mort<strong>on</strong>, J.K., 1978. Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> giant cow parsnip (Heracleum<br />

mantegazzianum) <strong>in</strong> Canada. Can. Field Nat. 92, 182–185.<br />

Nikolaeva, M.G., Rasumova, M.V., Gladkova, V.N., 1985. Reference Book<br />

<strong>on</strong> Dormant Seed Germ<strong>in</strong>ati<strong>on</strong>. Nauka Publishers, Len<strong>in</strong>grad.<br />

Noble, I.R., 1989. Attributes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vaders <strong>and</strong> <strong>the</strong> <strong>in</strong>vad<strong>in</strong>g process: terrestrial<br />

<strong>and</strong> vascular plants. In: Drake, J.A., et al. (Eds.), Biological Invasi<strong>on</strong>s: A<br />

Global Perspective. John Wiley <strong>and</strong> S<strong>on</strong>s, Chichester, pp. 301–313.<br />

Ochsmann, J., 1996. Heracleum mantegazzianum Sommier et Levier<br />

(Apiaceae) <strong>in</strong> Deutschl<strong>and</strong>: Untersuchungen zur Biologie, Verbreitung,<br />

Morphologie und Tax<strong>on</strong>omie. Feddes Repert. 107, 557–595.<br />

Ojala, A., 1985. Seed dormancy <strong>and</strong> germ<strong>in</strong>ati<strong>on</strong> <strong>in</strong> Angelica archangelica<br />

subsp. archangelica (Apiaceae). Ann. Bot. Fenn. 22, 53–62.<br />

Otte, A., Franke, R., 1998. The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Caucasian herbaceous perennial<br />

Heracleum mantegazzianum Somm. et Lev. (Giant Hogweed) <strong>in</strong> cultural<br />

ecosystems <str<strong>on</strong>g>of</str<strong>on</strong>g> Central Europe. Phytocoenologia 28, 205–232.<br />

9


10 L. Moravcová et al. / Acta Oecologica 28 (2005) 1–10<br />

Petrˇík, P., 2003. Cyperus eragrostis—a new alien species for <strong>the</strong> Czech flora<br />

<strong>and</strong> <strong>the</strong> history <str<strong>on</strong>g>of</str<strong>on</strong>g> its <strong>in</strong>vasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe. Preslia 75, 17–28.<br />

Pyšek, P., 1991. Heracleum mantegazzianum <strong>in</strong> <strong>the</strong> Czech Republic: <strong>the</strong><br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> spread<strong>in</strong>g from <strong>the</strong> historical perspective. Folia Geobotanica<br />

et Phytotax<strong>on</strong>omica 26, 439–454.<br />

Pyšek, P., 1997. Cl<strong>on</strong>ality <strong>and</strong> plant <strong>in</strong>vasi<strong>on</strong>s: can a trait make a difference?<br />

In: de Kro<strong>on</strong>, H., van Groenendael, J. (Eds.), The Ecology <strong>and</strong> Evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cl<strong>on</strong>al Plants. Backhuys Publishers, Leiden, pp. 405–427.<br />

Pyšek, P., Brock, J.H., Bímová, K., M<strong>and</strong>ák, B., Jarošík, V., Koukolíková, I.,<br />

et al., 2003. Vegetative regenerati<strong>on</strong> <strong>in</strong> <strong>in</strong>vasive Reynoutria<br />

(Polyg<strong>on</strong>aceae) taxa: <strong>the</strong> determ<strong>in</strong>ant <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vasibility at <strong>the</strong> genotype<br />

level. Am. J. Bot. 90, 1487–1495.<br />

Pyšek, P., Kučera, T., Puntieri, J., M<strong>and</strong>ák, B., 1995. Regenerati<strong>on</strong> <strong>in</strong><br />

Heracleum mantegazzianum—resp<strong>on</strong>se to removal <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative <strong>and</strong><br />

generative parts. Preslia 67, 161–171.<br />

Pyšek, P., Prach, K., 1993. Plant <strong>in</strong>vasi<strong>on</strong>s <strong>and</strong> <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> riparian<br />

habitats—a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> four species alien to central Europe. J. Biogeogr.<br />

20, 413–420.<br />

Pyšek, P., Pyšek, A., 1995. Invasi<strong>on</strong> by Heracleum mantegazzianum <strong>in</strong><br />

different habitats <strong>in</strong> <strong>the</strong> Czech Republic. J. Veg. Sci. 6, 711–718.<br />

Pyšek, P., Richards<strong>on</strong>, D.M., Rejmánek, M., Webster, G., Williams<strong>on</strong>, M.,<br />

Kirschner, J., 2004. Alien plants <strong>in</strong> checklists <strong>and</strong> floras: towards better<br />

communicati<strong>on</strong> between tax<strong>on</strong>omists <strong>and</strong> ecologists. Tax<strong>on</strong> 53, 131–<br />

143.<br />

Pyšek, P., Sádlo, J., M<strong>and</strong>ák, B., 2002. Catalogue <str<strong>on</strong>g>of</str<strong>on</strong>g> alien plants <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Czech<br />

Republic. Preslia 74, 97–186.<br />

Rejmánek, M., 1996. A <strong>the</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong> plant <strong>in</strong>vasiveness: <strong>the</strong> first sketch.<br />

Biol. C<strong>on</strong>serv. 78, 171–181.<br />

Richards<strong>on</strong>, D.M., Cowl<strong>in</strong>g, R.M., 1992. Why is mounta<strong>in</strong> fynbos <strong>in</strong>vasible,<br />

<strong>and</strong> which species <strong>in</strong>vade? In: van Wilgen, B.W., Richards<strong>on</strong>, D.M.,<br />

Kruger, F.J., van Hensbergen, B.J. (Eds.), Swartbosklo<str<strong>on</strong>g>of</str<strong>on</strong>g>—Fire <strong>in</strong> South<br />

African Mounta<strong>in</strong> Fynbos. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cape Town, pp. 161–179.<br />

Richards<strong>on</strong>, D.M., Pyšek, P., Rejmánek, M., Barbour, M.G., Panetta, F.D.,<br />

West, C.J., 2000. Naturalizati<strong>on</strong> <strong>and</strong> <strong>in</strong>vasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alien plants: c<strong>on</strong>cepts<br />

<strong>and</strong> def<strong>in</strong>iti<strong>on</strong>s. Divers. Distrib. 6, 93–107.<br />

Roy, J., 1990. In search <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> plant <strong>in</strong>vaders. In: di<br />

Castri, F., Hansen, A.J., Debussche, M. (Eds.), Biological Invasi<strong>on</strong>s <strong>in</strong><br />

Europe <strong>and</strong> <strong>the</strong> Mediterranean Bas<strong>in</strong>. Kluwer Academic Publishers,<br />

Dordrecht, pp. 335–352.<br />

Saxena, K.G., 1991. Biological <strong>in</strong>vasi<strong>on</strong>s <strong>in</strong> <strong>the</strong> Indian subc<strong>on</strong>t<strong>in</strong>ent: review<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vasi<strong>on</strong> by plants. In: Ramakrishnan, P.S. (Ed.), Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological<br />

Invasi<strong>on</strong>s <strong>in</strong> <strong>the</strong> Tropics. Internati<strong>on</strong>al Scientific Publishers. Delhi,<br />

pp. 53–73.<br />

Sokal, R., Rohlf, F.J., 1995. Biometry. Freeman, New York.<br />

Šerá, B., 2003. Reproducti<strong>on</strong> by Seed <strong>in</strong> Herbaceous Plants. Thesis, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> South Bohemia, České Budějovice.<br />

Šerá, B., Šerý, M., 2004. Number <strong>and</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s <strong>and</strong> reproductive<br />

strategies <str<strong>on</strong>g>of</str<strong>on</strong>g> herbaceous plants. Folia Geobot. 39, 27–40.<br />

Šída, O., 2003. C<strong>on</strong>yza triloba, new to Europe, <strong>and</strong> C<strong>on</strong>yza b<strong>on</strong>ariensis,<br />

new to <strong>the</strong> Czech Republic. Preslia 75, 249–254.<br />

Steward, F., Grace, J., 1984. An experimental study <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong><br />

between Heracleum mantegazzianum Somm. & Levier <strong>and</strong> H. sph<strong>on</strong>dylium<br />

L. subsp. sph<strong>on</strong>dylium (Umbelliferae). Wats<strong>on</strong>ia 15, 73–83.<br />

Thomas, T.H., 1996. Relati<strong>on</strong>ships between <str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> parent plant <strong>and</strong><br />

germ<strong>in</strong>ati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> parsley (Petroselium crispum<br />

Nym). Plant Growth Regul. 18, 175–181.<br />

Thomas, T.H., Gray, D., Bidd<strong>in</strong>gt<strong>on</strong>, N.L., 1978. The <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>seed</strong> <strong>on</strong> <strong>the</strong> mo<strong>the</strong>r plant <strong>on</strong> <strong>seed</strong> <strong>and</strong> <strong>seed</strong>l<strong>in</strong>g performance.<br />

Acta Hortic. 83, 57–66.<br />

Thomas, T.H., Bidd<strong>in</strong>gt<strong>on</strong>, N.L., O’Toole, D.F., 1979. Relati<strong>on</strong>ship between<br />

<str<strong>on</strong>g>positi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> parent plant <strong>and</strong> dormancy characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

three cultivars <str<strong>on</strong>g>of</str<strong>on</strong>g> Celery (Apium graveolens). Physiol. Plant. 45, 492–<br />

496.<br />

Thomps<strong>on</strong>, J.T., 1984. Variati<strong>on</strong> am<strong>on</strong>g <strong>in</strong>dividual <strong>seed</strong> <strong>mass</strong>es <strong>in</strong> Lomatium<br />

grayi (Umbelliferae) under c<strong>on</strong>trolled c<strong>on</strong>diti<strong>on</strong>s: magnitude <strong>and</strong> partiti<strong>on</strong><strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variance. Ecology 65, 626–631.<br />

Thomps<strong>on</strong>, K., Bakker, J.P., Bekker, R.M., 1997. The Soil Seed Bank <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

North West Europe: Methodology, Density <strong>and</strong> L<strong>on</strong>gevity. Cambridge<br />

University Press, Cambridge.<br />

Tiley, G.E.D., Dodd, F.S., Wade, P.M., 1996. Biological flora <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> British<br />

Isles. 190. Heracleum mantegazzianum Sommier et Levier. J. Ecol. 84,<br />

297–319.<br />

Underwood, A.J., 1997. Experiments <strong>in</strong> Ecology. Cambridge University<br />

Press, Cambridge.<br />

Weber, E., 2004. Invasive Plant Species <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> World: A Reference Guide to<br />

Envir<strong>on</strong>mental Weeds. CABI Publish<strong>in</strong>g, Wall<strong>in</strong>gford.<br />

de Waal, L.C., Child, L.E., Wade, P.M., Brock, J.H., 1994. Ecology <strong>and</strong><br />

Management <str<strong>on</strong>g>of</str<strong>on</strong>g> Invasive Riverside Plants. John Wiley <strong>and</strong> S<strong>on</strong>s,<br />

Chichester.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!