19.06.2013 Views

A Framework for Fast CFD-based Aero-Servo-Thermo-Elastic Analysis

A Framework for Fast CFD-based Aero-Servo-Thermo-Elastic Analysis

A Framework for Fast CFD-based Aero-Servo-Thermo-Elastic Analysis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Politecnico di Milano<br />

Dipartimento di Ingegneria <strong>Aero</strong>spaziale<br />

Dottorato di Ricerca di Ingegneria <strong>Aero</strong>spaziale (XXVI ciclo)<br />

A <strong>Framework</strong> <strong>for</strong> <strong>Fast</strong> <strong>CFD</strong>-<strong>based</strong><br />

<strong>Aero</strong>-<strong>Servo</strong>-<strong>Thermo</strong>-<strong>Elastic</strong> <strong>Analysis</strong><br />

PhD student: Matteo Ripepi<br />

Advisor: Prof. Paolo Mantegazza<br />

March 2, 2011


PhD research proposal PhD work planning<br />

Outline<br />

1 PhD research proposal<br />

Introduction<br />

Research project<br />

2 PhD work planning<br />

Courses<br />

Software<br />

Work planning<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Outline<br />

1 PhD research proposal<br />

Introduction<br />

Research project<br />

2 PhD work planning<br />

Courses<br />

Software<br />

Work planning<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Computational aeroservoelasticity<br />

Load factor<br />

3<br />

2<br />

1<br />

0<br />

Loads database prediction<br />

Flaps Down<br />

is fundamental in the overall aircraft design and development<br />

involves a large amount of aeroelastic analyses<br />

Flaps Up<br />

<strong>CFD</strong> mostly done<br />

near cruise point<br />

VEAS<br />

High-fidelity computational aeroservoelasticity<br />

still too computationally expensive <strong>for</strong> the preliminary design stage,<br />

and there<strong>for</strong>e used <strong>for</strong> a limited number of cases (e.g. flutter).<br />

high potential <strong>for</strong> the prediction of critical flight loads<br />

necessary to address new challenges in aircraft design<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Purpose of the research<br />

Accelerate and improve the efficiency and accuracy of high-fidelity<br />

computational aeroservoelastic analysis<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel multidomain coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Accuracy/fidelity<br />

Area of<br />

interest<br />

Potential<br />

Methods<br />

Euler<br />

Methods<br />

Navier-Stokes<br />

Methods<br />

Computational resources (cost/time)<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel multidomain coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel multidomain coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Variable fidelity multimodel multidomain coupling approach<br />

FSI <strong>based</strong> on a partitioned approach, coupling solvers with<br />

different levels of fidelity to speed-up full order aeroelastic analysis.<br />

Coupling in time ⇒ hierarchical approach<br />

Coupling in space ⇒ hybrid approach<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Variable fidelity multimodel multidomain coupling approach<br />

FSI <strong>based</strong> on a partitioned approach, coupling solvers with<br />

different levels of fidelity to speed-up full order aeroelastic analysis.<br />

Coupling in time ⇒ hierarchical approach<br />

Coupling in space ⇒ hybrid approach<br />

Switch during the simulation between full/low order model and<br />

multigrid to accelerate the convergence of high fidelity subiterations.<br />

Adaptive ROM by basis enrichment<br />

During the RANS simulation ⇒ extract low-order subspace<br />

ROM used to continue the simulation while the solution error<br />

is sufficiently small.<br />

If error rises ⇒ return to a full order model initialised by ROM<br />

RANS simulation will continue and will update the subspace<br />

until the ROM can be used again.<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Variable fidelity multimodel multidomain coupling approach<br />

FSI <strong>based</strong> on a partitioned approach, coupling solvers with<br />

different levels of fidelity to speed-up full order aeroelastic analysis.<br />

Coupling in time ⇒ hierarchical approach<br />

Coupling in space ⇒ hybrid approach<br />

Switch during the simulation between full/low order model and<br />

multigrid to accelerate the convergence of high fidelity subiterations.<br />

Low-fidelity on coarse mesh<br />

prolongation<br />

⇄<br />

restriction<br />

High-fidelity on fine mesh<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Variable fidelity multimodel multidomain coupling approach<br />

FSI <strong>based</strong> on a partitioned approach, coupling solvers with<br />

different levels of fidelity to speed-up full order aeroelastic analysis.<br />

Coupling in time ⇒ hierarchical approach<br />

Coupling in space ⇒ hybrid approach<br />

Low/full order domain decomposition<br />

Criterion <strong>for</strong> the distance between interface and wall boundary<br />

Interface operator (conservative, stability, robustness, . . . )<br />

Numerical scheme to solve the low-full order coupled model<br />

Far field<br />

POTENTIAL/ROM<br />

Ω<br />

out Γ<br />

Ω<br />

in<br />

Near field<br />

RANS<br />

ROM used locally where the<br />

solution error is sufficiently small.<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

New reduced order modelling techniques<br />

ROM requires a set of instantaneous flow solutions (snapshots)<br />

Projection of onto a reduced subspace<br />

Direct identification of a system of the required <strong>for</strong>m<br />

Hilbert-Huang Trans<strong>for</strong>m decomposition of aeroelastic system<br />

adaptive data analysis <strong>for</strong> nonlinear and nonstationary processes.<br />

Subspace-<strong>based</strong> identification methods<br />

identify a state-space model directly from input-output data<br />

Global aeroelastic ROM<br />

parametric input space<br />

interpolation of flight data<br />

(full/low order simulations)<br />

Polinomial response surface<br />

Kriging/Co-Kriging<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Mesh motion enhancements<br />

Robust dynamic mesh handling <strong>for</strong> aeroservoelastic simulation<br />

purposes, trough the use of a mesh motion solver and topological<br />

optimization (e.g smoothing, refinement, edge/face swapping).<br />

Mesquite library<br />

[Menon et al.,2010]<br />

Large structural de<strong>for</strong>mations/motions keeping mesh quality<br />

Control surfaces motion<br />

Dual-mesh: cell-centered (CC) ⇄ cell-vertex (CV) discretization<br />

accuracy in the computation of derivatives<br />

direct computation of the pressure on the wall<br />

problem: may create non-convex cells near the boundary<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Numerical scalability is required to take full advantage of parallel<br />

computing techniques.<br />

Newton-Krylov methods<br />

standard <strong>for</strong> solvers of implicit, large-scale, nonlinear systems<br />

fast convergence<br />

ability to effectively use scalable preconditioners.<br />

Preconditioner<br />

multigrid techniques<br />

approximate factorization of Jacobian (Jacobian-Free method)<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Thermal solver <strong>for</strong> <strong>CFD</strong>-<strong>based</strong> aerodynamic heating<br />

aero-thermo-elasticity<br />

hypersonic aeroelastic stability problems<br />

aeroelastic analysis that accounts <strong>for</strong> the effect of thermal<br />

stresses and material degradation.<br />

<strong>Aero</strong>thermoelasticity will also take advantage of ROM tecniques.<br />

q aero<br />

q strd<br />

q cond<br />

q rad<br />

wing<br />

structure<br />

Exposed<br />

surface/TPS<br />

Heat<br />

transfer<br />

<strong>Aero</strong>dynamic<br />

<strong>for</strong>ces<br />

Structural<br />

displacements<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis<br />

Inertial<br />

effects


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Thermal solver <strong>for</strong> <strong>CFD</strong>-<strong>based</strong> aerodynamic heating<br />

aero-thermo-elasticity<br />

hypersonic aeroelastic stability problems<br />

aeroelastic analysis that accounts <strong>for</strong> the effect of thermal<br />

stresses and material degradation.<br />

<strong>Aero</strong>thermoelasticity will also take advantage of ROM tecniques.<br />

q aero<br />

q strd<br />

q cond<br />

q rad<br />

wing<br />

structure<br />

Exposed<br />

surface/TPS<br />

Control<br />

Heat<br />

transfer<br />

<strong>Aero</strong>dynamic<br />

<strong>for</strong>ces<br />

Structural<br />

displacements<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis<br />

Inertial<br />

effects


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

<strong>Aero</strong>elastic applications<br />

highly nonlinear flow phenomena arising in critical loads conditions<br />

transonic flutter<br />

LCO involving nonlinear aerodynamics<br />

buffeting<br />

transonic flow with shocks<br />

and flow separation<br />

gust response<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Courses Tools Planning<br />

Outline<br />

1 PhD research proposal<br />

Introduction<br />

Research project<br />

2 PhD work planning<br />

Courses<br />

Software<br />

Work planning<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Courses Tools Planning<br />

PhD work planning<br />

Courses<br />

Credits<br />

Functional <strong>Analysis</strong> and PDEs (F. Gazzola) 5<br />

Dynamics of Multibody Systems (P. Masarati, F. Cheli) 10<br />

Computational Gasdynamics (L. Quartapelle) 5<br />

Model Identification and Data <strong>Analysis</strong> (S. Bittanti) 5<br />

Dynamic of Nonlinear Systems (S. Rinaldi) 5<br />

Other activities<br />

Summer schools, seminars, publications on journals, presentations<br />

at international conferences and exchange periods at <strong>for</strong>eign<br />

universities.<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Courses Tools Planning<br />

PhD work planning<br />

Tools<br />

High-fidelity <strong>CFD</strong> solver <strong>Aero</strong>Foam (<strong>based</strong> on OpenFOAM)<br />

[Romanelli, Serioli, Mantegazza, 2010].<br />

In-house potential flow solver [Parinello, Mantegazza, 2010]<br />

Finite element solver Code-Aster<br />

MultiBody Dynamics (MBDyn)<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Courses Tools Planning<br />

PhD work planning<br />

Bibliographic research<br />

Familiarization with C++, PETSc, <strong>Aero</strong>Foam, CodeAster, MBDyn<br />

Development and implementation of dynamic mesh motion solver<br />

Development and implementation of model order reduction techniques<br />

Development and implementation of low/high fidelity aeroelastic coupling<br />

Development and implementation of implicit solver <strong>for</strong> <strong>CFD</strong><br />

Development and implementation of thermal solver <strong>for</strong> aero-thermo-elasticity<br />

Validation and assessment through the application to test cases and real cases<br />

Courses<br />

Bibliography<br />

Codes tutorial<br />

Multi-model solvers<br />

Mesh solver<br />

ROMs techniques<br />

Implicit solver<br />

Thermal solver<br />

Applications<br />

Doctoral thesis<br />

2010 2011 2012<br />

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


Bibliography<br />

Dowell, E.H. and Hall, K.C., “Modeling of Fluid-Structure Interaction”,<br />

Annual Reviews of Fluid Mechanics, 33:445-490, 2001.<br />

Schuster, D.M, Liu, D.D, Huttsell, L.J., “Computational aeroelasticity:<br />

success, progress, challenge”, J. Aircraft, 40(5):843-56, 2003.<br />

Lucia, D.J., Beran, P.S., Silva, W.A., “Reduced-order modeling: New<br />

approaches <strong>for</strong> computational physics”, Progress in <strong>Aero</strong>space Sciences, Vol.<br />

40, no. 1-2, pp. 51-117. Feb. 2004.<br />

A. Parinello, P. Mantegazza, “Independent Two-Fields Solution <strong>for</strong><br />

Full-Potential Unsteady Transonic Flows”, AIAA Journal, vol.48 no.7<br />

(1391-1402), 2010.<br />

Romanelli, G., Serioli, E., Mantegazza, P., “A “Free” Approach to<br />

Computational <strong>Aero</strong>elasticity”, 48th AIAA <strong>Aero</strong>space Sciences Meeting<br />

Including the New Horizons Forum and <strong>Aero</strong>space Exposition. Orlando, Florida,<br />

Jan. 4-7, 2010.<br />

Culler, A.J. and McNamara, J.J., “Studies on Fluid-Thermal-Structural<br />

Coupling <strong>for</strong> <strong>Aero</strong>thermoelasticity in Hypersonic Flow”, AIAA Journal, Vol.<br />

48, No. 8, August 2010, pg. 1721-1738.<br />

<strong>Aero</strong>Foam; http://www.aero.polimi.it/freecase/<br />

MultiBody Dynamics (MBDyn); http://www.mbdyn.org/<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!