19.06.2013 Views

A Framework for Fast CFD-based Aero-Servo-Thermo-Elastic Analysis

A Framework for Fast CFD-based Aero-Servo-Thermo-Elastic Analysis

A Framework for Fast CFD-based Aero-Servo-Thermo-Elastic Analysis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Politecnico di Milano<br />

Dipartimento di Ingegneria <strong>Aero</strong>spaziale<br />

Dottorato di Ricerca di Ingegneria <strong>Aero</strong>spaziale (XXVI ciclo)<br />

A <strong>Framework</strong> <strong>for</strong> <strong>Fast</strong> <strong>CFD</strong>-<strong>based</strong><br />

<strong>Aero</strong>-<strong>Servo</strong>-<strong>Thermo</strong>-<strong>Elastic</strong> <strong>Analysis</strong><br />

PhD student: Matteo Ripepi<br />

Advisor: Prof. Paolo Mantegazza<br />

March 2, 2011


PhD research proposal PhD work planning<br />

Outline<br />

1 PhD research proposal<br />

Introduction<br />

Research project<br />

2 PhD work planning<br />

Courses<br />

Software<br />

Work planning<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Outline<br />

1 PhD research proposal<br />

Introduction<br />

Research project<br />

2 PhD work planning<br />

Courses<br />

Software<br />

Work planning<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Computational aeroservoelasticity<br />

Load factor<br />

3<br />

2<br />

1<br />

0<br />

Loads database prediction<br />

Flaps Down<br />

is fundamental in the overall aircraft design and development<br />

involves a large amount of aeroelastic analyses<br />

Flaps Up<br />

<strong>CFD</strong> mostly done<br />

near cruise point<br />

VEAS<br />

High-fidelity computational aeroservoelasticity<br />

still too computationally expensive <strong>for</strong> the preliminary design stage,<br />

and there<strong>for</strong>e used <strong>for</strong> a limited number of cases (e.g. flutter).<br />

high potential <strong>for</strong> the prediction of critical flight loads<br />

necessary to address new challenges in aircraft design<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Purpose of the research<br />

Accelerate and improve the efficiency and accuracy of high-fidelity<br />

computational aeroservoelastic analysis<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel multidomain coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Accuracy/fidelity<br />

Area of<br />

interest<br />

Potential<br />

Methods<br />

Euler<br />

Methods<br />

Navier-Stokes<br />

Methods<br />

Computational resources (cost/time)<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel multidomain coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel multidomain coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Variable fidelity multimodel multidomain coupling approach<br />

FSI <strong>based</strong> on a partitioned approach, coupling solvers with<br />

different levels of fidelity to speed-up full order aeroelastic analysis.<br />

Coupling in time ⇒ hierarchical approach<br />

Coupling in space ⇒ hybrid approach<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Variable fidelity multimodel multidomain coupling approach<br />

FSI <strong>based</strong> on a partitioned approach, coupling solvers with<br />

different levels of fidelity to speed-up full order aeroelastic analysis.<br />

Coupling in time ⇒ hierarchical approach<br />

Coupling in space ⇒ hybrid approach<br />

Switch during the simulation between full/low order model and<br />

multigrid to accelerate the convergence of high fidelity subiterations.<br />

Adaptive ROM by basis enrichment<br />

During the RANS simulation ⇒ extract low-order subspace<br />

ROM used to continue the simulation while the solution error<br />

is sufficiently small.<br />

If error rises ⇒ return to a full order model initialised by ROM<br />

RANS simulation will continue and will update the subspace<br />

until the ROM can be used again.<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Variable fidelity multimodel multidomain coupling approach<br />

FSI <strong>based</strong> on a partitioned approach, coupling solvers with<br />

different levels of fidelity to speed-up full order aeroelastic analysis.<br />

Coupling in time ⇒ hierarchical approach<br />

Coupling in space ⇒ hybrid approach<br />

Switch during the simulation between full/low order model and<br />

multigrid to accelerate the convergence of high fidelity subiterations.<br />

Low-fidelity on coarse mesh<br />

prolongation<br />

⇄<br />

restriction<br />

High-fidelity on fine mesh<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Variable fidelity multimodel multidomain coupling approach<br />

FSI <strong>based</strong> on a partitioned approach, coupling solvers with<br />

different levels of fidelity to speed-up full order aeroelastic analysis.<br />

Coupling in time ⇒ hierarchical approach<br />

Coupling in space ⇒ hybrid approach<br />

Low/full order domain decomposition<br />

Criterion <strong>for</strong> the distance between interface and wall boundary<br />

Interface operator (conservative, stability, robustness, . . . )<br />

Numerical scheme to solve the low-full order coupled model<br />

Far field<br />

POTENTIAL/ROM<br />

Ω<br />

out Γ<br />

Ω<br />

in<br />

Near field<br />

RANS<br />

ROM used locally where the<br />

solution error is sufficiently small.<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

New reduced order modelling techniques<br />

ROM requires a set of instantaneous flow solutions (snapshots)<br />

Projection of onto a reduced subspace<br />

Direct identification of a system of the required <strong>for</strong>m<br />

Hilbert-Huang Trans<strong>for</strong>m decomposition of aeroelastic system<br />

adaptive data analysis <strong>for</strong> nonlinear and nonstationary processes.<br />

Subspace-<strong>based</strong> identification methods<br />

identify a state-space model directly from input-output data<br />

Global aeroelastic ROM<br />

parametric input space<br />

interpolation of flight data<br />

(full/low order simulations)<br />

Polinomial response surface<br />

Kriging/Co-Kriging<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Mesh motion enhancements<br />

Robust dynamic mesh handling <strong>for</strong> aeroservoelastic simulation<br />

purposes, trough the use of a mesh motion solver and topological<br />

optimization (e.g smoothing, refinement, edge/face swapping).<br />

Mesquite library<br />

[Menon et al.,2010]<br />

Large structural de<strong>for</strong>mations/motions keeping mesh quality<br />

Control surfaces motion<br />

Dual-mesh: cell-centered (CC) ⇄ cell-vertex (CV) discretization<br />

accuracy in the computation of derivatives<br />

direct computation of the pressure on the wall<br />

problem: may create non-convex cells near the boundary<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Numerical scalability is required to take full advantage of parallel<br />

computing techniques.<br />

Newton-Krylov methods<br />

standard <strong>for</strong> solvers of implicit, large-scale, nonlinear systems<br />

fast convergence<br />

ability to effectively use scalable preconditioners.<br />

Preconditioner<br />

multigrid techniques<br />

approximate factorization of Jacobian (Jacobian-Free method)<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Thermal solver <strong>for</strong> <strong>CFD</strong>-<strong>based</strong> aerodynamic heating<br />

aero-thermo-elasticity<br />

hypersonic aeroelastic stability problems<br />

aeroelastic analysis that accounts <strong>for</strong> the effect of thermal<br />

stresses and material degradation.<br />

<strong>Aero</strong>thermoelasticity will also take advantage of ROM tecniques.<br />

q aero<br />

q strd<br />

q cond<br />

q rad<br />

wing<br />

structure<br />

Exposed<br />

surface/TPS<br />

Heat<br />

transfer<br />

<strong>Aero</strong>dynamic<br />

<strong>for</strong>ces<br />

Structural<br />

displacements<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis<br />

Inertial<br />

effects


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

Thermal solver <strong>for</strong> <strong>CFD</strong>-<strong>based</strong> aerodynamic heating<br />

aero-thermo-elasticity<br />

hypersonic aeroelastic stability problems<br />

aeroelastic analysis that accounts <strong>for</strong> the effect of thermal<br />

stresses and material degradation.<br />

<strong>Aero</strong>thermoelasticity will also take advantage of ROM tecniques.<br />

q aero<br />

q strd<br />

q cond<br />

q rad<br />

wing<br />

structure<br />

Exposed<br />

surface/TPS<br />

Control<br />

Heat<br />

transfer<br />

<strong>Aero</strong>dynamic<br />

<strong>for</strong>ces<br />

Structural<br />

displacements<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis<br />

Inertial<br />

effects


PhD research proposal PhD work planning Intro Multimodel ROM Mesh Implicit <strong>Thermo</strong><br />

Research project<br />

Developments towards a faster CAE <strong>based</strong> loads analysis process:<br />

Variable fidelity multimodel coupling approach<br />

New reduced order modelling techniques<br />

Mesh motion enhancements<br />

Implicit solver <strong>for</strong> <strong>CFD</strong><br />

Thermal solver <strong>for</strong> aerothermoelasticity<br />

<strong>Aero</strong>elastic applications<br />

highly nonlinear flow phenomena arising in critical loads conditions<br />

transonic flutter<br />

LCO involving nonlinear aerodynamics<br />

buffeting<br />

transonic flow with shocks<br />

and flow separation<br />

gust response<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Courses Tools Planning<br />

Outline<br />

1 PhD research proposal<br />

Introduction<br />

Research project<br />

2 PhD work planning<br />

Courses<br />

Software<br />

Work planning<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Courses Tools Planning<br />

PhD work planning<br />

Courses<br />

Credits<br />

Functional <strong>Analysis</strong> and PDEs (F. Gazzola) 5<br />

Dynamics of Multibody Systems (P. Masarati, F. Cheli) 10<br />

Computational Gasdynamics (L. Quartapelle) 5<br />

Model Identification and Data <strong>Analysis</strong> (S. Bittanti) 5<br />

Dynamic of Nonlinear Systems (S. Rinaldi) 5<br />

Other activities<br />

Summer schools, seminars, publications on journals, presentations<br />

at international conferences and exchange periods at <strong>for</strong>eign<br />

universities.<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Courses Tools Planning<br />

PhD work planning<br />

Tools<br />

High-fidelity <strong>CFD</strong> solver <strong>Aero</strong>Foam (<strong>based</strong> on OpenFOAM)<br />

[Romanelli, Serioli, Mantegazza, 2010].<br />

In-house potential flow solver [Parinello, Mantegazza, 2010]<br />

Finite element solver Code-Aster<br />

MultiBody Dynamics (MBDyn)<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


PhD research proposal PhD work planning Courses Tools Planning<br />

PhD work planning<br />

Bibliographic research<br />

Familiarization with C++, PETSc, <strong>Aero</strong>Foam, CodeAster, MBDyn<br />

Development and implementation of dynamic mesh motion solver<br />

Development and implementation of model order reduction techniques<br />

Development and implementation of low/high fidelity aeroelastic coupling<br />

Development and implementation of implicit solver <strong>for</strong> <strong>CFD</strong><br />

Development and implementation of thermal solver <strong>for</strong> aero-thermo-elasticity<br />

Validation and assessment through the application to test cases and real cases<br />

Courses<br />

Bibliography<br />

Codes tutorial<br />

Multi-model solvers<br />

Mesh solver<br />

ROMs techniques<br />

Implicit solver<br />

Thermal solver<br />

Applications<br />

Doctoral thesis<br />

2010 2011 2012<br />

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis


Bibliography<br />

Dowell, E.H. and Hall, K.C., “Modeling of Fluid-Structure Interaction”,<br />

Annual Reviews of Fluid Mechanics, 33:445-490, 2001.<br />

Schuster, D.M, Liu, D.D, Huttsell, L.J., “Computational aeroelasticity:<br />

success, progress, challenge”, J. Aircraft, 40(5):843-56, 2003.<br />

Lucia, D.J., Beran, P.S., Silva, W.A., “Reduced-order modeling: New<br />

approaches <strong>for</strong> computational physics”, Progress in <strong>Aero</strong>space Sciences, Vol.<br />

40, no. 1-2, pp. 51-117. Feb. 2004.<br />

A. Parinello, P. Mantegazza, “Independent Two-Fields Solution <strong>for</strong><br />

Full-Potential Unsteady Transonic Flows”, AIAA Journal, vol.48 no.7<br />

(1391-1402), 2010.<br />

Romanelli, G., Serioli, E., Mantegazza, P., “A “Free” Approach to<br />

Computational <strong>Aero</strong>elasticity”, 48th AIAA <strong>Aero</strong>space Sciences Meeting<br />

Including the New Horizons Forum and <strong>Aero</strong>space Exposition. Orlando, Florida,<br />

Jan. 4-7, 2010.<br />

Culler, A.J. and McNamara, J.J., “Studies on Fluid-Thermal-Structural<br />

Coupling <strong>for</strong> <strong>Aero</strong>thermoelasticity in Hypersonic Flow”, AIAA Journal, Vol.<br />

48, No. 8, August 2010, pg. 1721-1738.<br />

<strong>Aero</strong>Foam; http://www.aero.polimi.it/freecase/<br />

MultiBody Dynamics (MBDyn); http://www.mbdyn.org/<br />

Matteo Ripepi <strong>Fast</strong> high-fidelity aero-servo-thermo-elastic analysis

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!