18.06.2013 Views

university, bhopal assignment question paper - Madhya Pradesh ...

university, bhopal assignment question paper - Madhya Pradesh ...

university, bhopal assignment question paper - Madhya Pradesh ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

M P BHOJ (OPEN) UNIVERSITY, BHOPAL<br />

ASSIGNMENT QUESTION PAPER<br />

2009-10<br />

CLASS : M.Sc. Final Year SUBJECT: Mathematics<br />

Paper - I - Integration theorey and Functional Analysis<br />

funsZ'k %&<br />

1- lHkh iz- Lo;a dh gLrfyfi esa gy djuk vfuok;Z gSA 2- nksuksa l=h; iz-i= gy djuk vfuok;Z gsa<br />

3- l=h; dk;Z mÙkjiqfLrdk ds vafre i`"B ij lacaf/kr fo"k; dh laiUu<br />

laidZ d{kkvksa dh frfFk;ksa ,oa ijke'kZnkrk ds uke ,oa in dk<br />

vo'; mYys[k djsaA<br />

5- l=h; dk;Z mÙkjiqfLrdk,a tek djus dh vafre frfFk 20<br />

vizsy 2010 gSA<br />

4- vafre frfFk mijkar l=h; dk;Z mÙkjiqfLrdkvksa dks ekU; ugha djrs<br />

gq, ewY;kafdr ugha dh tkosxhA<br />

6- l=h; dk;Z mÙkjiqfLrdk,a tek djus dh jlhn vo'; izkIr dj ysaA<br />

7- nks l=h; dk;Z izkIrkadksa esa ls fdlh ,d esa vf/kdre vad dh iwoZ izpfyr O;oLFkk ds LFkku ij nksuksa l=h; dk;ksZa ds izkIrkadksa<br />

ds vkSlr vad l=kar ijh{kk ifj.kke esa tksM+s tk,axsA lHkh iz-ksa ds vad leku gSaA<br />

First Assignment Max Marks - 30<br />

Q.1 State and prove Hahn decompodition theorem. OR State and prove Radon-Nikodym<br />

theorem.<br />

Q.2 If a real valued continuous function f on x is st. the set N(f) ={ x:f(x)≠0} is σ -bounded<br />

then f is Baire measurable. OR State and prove Riesz- Markoff theorem.<br />

Q.3 Show that the real linear space R & the complex linear space c are Banach space under<br />

the norm || x || = | x | x ε c or R<br />

OR Define Dual spaces and give an example.<br />

Q.4 State and prove Boundedness theorem. OR State and prove Riesz lemma.<br />

Q.5 If x is inner product space then<br />

| x,y | ≤ √(x,x) √(y,y) x,y ε x<br />

i.e. | x,y | ≤ || x || . || y ||<br />

OR An operator T on Hilbert space H is said to be self adjoint it T*=T.<br />

Second Assignment Max Marks - 30<br />

Q.1 State and prove Fubini’s theorem. OR State and prove Extension theorem.<br />

Q.2 Let µ* be a topologically regular outer measure on x then suc Barel set is µ* measur<br />

able. OR A finite disjoint union of inner regular set of finite measure is inner regular.<br />

Q.3 Let x 1 and x 2 be two normed linear space of same finite dimention n with same scalor<br />

field then x 1 and x 2 are topological isomorphism. OR For a bounded linear<br />

transformation T the follouing are equivalent -<br />

i) || T || = { || T(x) || : || x ||≤ 1}<br />

|| T || = sup{ || T(x) || : || x ||= 1}<br />

Q.4 State and prove uniform bounded theorem. OR State and prove Hahn Banech theorem<br />

for complex linear space.<br />

Q.5 If x is an inner product space tan √(x,x) has the property of a norm. OR Show that the<br />

unitory operators on a Hilbert space H form a group.


M P BHOJ (OPEN) UNIVERSITY, BHOPAL<br />

ASSIGNMENT QUESTION PAPER<br />

2009-10<br />

CLASS : M.Sc. Final SUBJECT: Mathematics<br />

Paper - II - Partial differential Equations & Mechanics<br />

funsZ'k %&<br />

1- lHkh iz'u Lo;a dh gLrfyfi esa gy djuk vfuok;Z gSA 2- nksuksa l=h; iz'ui= gy djuk vfuok;Z gsa<br />

3- l=h; dk;Z mÙkjiqfLrdk ds vafre i`"B ij lacaf/kr fo"k; dh laiUu<br />

laidZ d{kkvksa dh frfFk;ksa ,oa ijke'kZnkrk ds uke ,oa in dk<br />

vo'; mYys[k djsaA<br />

5- l=h; dk;Z mÙkjiqfLrdk,a tek djus dh vafre frfFk 20<br />

vizsy 2010 gSA<br />

4- vafre frfFk mijkar l=h; dk;Z mÙkjiqfLrdkvksa dks ekU; ugha djrs<br />

gq, ewY;kafdr ugha dh tkosxhA<br />

6- l=h; dk;Z mÙkjiqfLrdk,a tek djus dh jlhn vo'; izkIr dj ysaA<br />

7- nks l=h; dk;Z izkIrkadksa esa ls fdlh ,d esa vf/kdre vad dh iwoZ izpfyr O;oLFkk ds LFkku ij nksuksa l=h; dk;ksZa ds izkIrkadksa<br />

ds vkSlr vad l=kar ijh{kk ifj.kke esa tksM+s tk,axsA lHkh iz'uksa ds vad leku gSaA<br />

Q1. Find the solution of ∂ 2 u/∂x 2 + 3∂ 2 u/∂x∂y + 2∂ 2 u/∂y 2 = 0.<br />

First Assignment Max Marks - 30<br />

Q2. Solve y′′′ - 3y′ + 3y′ - y = t 2 e t , where y(0) = 1 , y′(o) = 0 & y′′′(0) = -2, by using Laplace<br />

transform, where y′ = ∂y/∂x.<br />

Q3. A particle of mass m moves along the x – axis & is attracted towards origin O with a force<br />

numerically equal to kx, k > 0. A damping force given by β dx/ dt , β > 0 also acts. Discus the<br />

motion treating all cases, assuming that X(0) = X0 , Y′ (0) = V0.<br />

Q4. A tightly streached flexible string has its end fixed at x = 0 & x = l. At time t = 0 the string has<br />

given a shape defined by F(x) = µx ( l – x), where µ is a constant and then released. Find the<br />

displacement of any point x of the string at any time t > 0.<br />

Q5. Find the solution of the wave equation ∂ 2 y/∂t 2 = c 2 ∂ 2 y/∂x 2 Such that y = p0 cos pt (p0 is a<br />

constant) when x = l and y = 0 when x = 0.<br />

Second Assignment Max Marks - 30<br />

Q1. Solve ∂u/∂t = 2 ∂ 2 u/∂x 2 , u(0, t) = 0 , u(5 ,t) = 6, u(x, 0) = 10sin4πx.<br />

Q2. Solve ∂ 2 z/∂x 2 + ∂ 2 z/∂y 2 = cosmx cosny<br />

Q3 A string is stretched between the fixed points (0, 0) & (1, 0) & released from rest from the<br />

position y(x,0) = Asin2πx.. Find the displacement y(x, t).<br />

Q4. Find the temperature u(x, t) in a bar of length l, which is perfectly insulated whose ends are<br />

already kept at temp. zero & initial temp. is<br />

x , 0 < x < l/2<br />

F(x) = l-x, l/2 < x


M P BHOJ (OPEN) UNIVERSITY, BHOPAL<br />

ASSIGNMENT QUESTION PAPER<br />

2009-10<br />

CLASS : M.Sc. Final SUBJECT: Mathematics<br />

Paper - III - Operation Research<br />

funsZ'k %&<br />

1- lHkh iz'u Lo;a dh gLrfyfi esa gy djuk vfuok;Z gSA 2- nksuksa l=h; iz'ui= gy djuk vfuok;Z gsa<br />

3- l=h; dk;Z mÙkjiqfLrdk ds vafre i`"B ij lacaf/kr fo"k; dh laiUu<br />

laidZ d{kkvksa dh frfFk;ksa ,oa ijke'kZnkrk ds uke ,oa in dk<br />

vo'; mYys[k djsaA<br />

5- l=h; dk;Z mÙkjiqfLrdk,a tek djus dh vafre frfFk 20<br />

vizsy 2010 gSA<br />

4- vafre frfFk mijkar l=h; dk;Z mÙkjiqfLrdkvksa dks ekU; ugha djrs<br />

gq, ewY;kafdr ugha dh tkosxhA<br />

6- l=h; dk;Z mÙkjiqfLrdk,a tek djus dh jlhn vo'; izkIr dj ysaA<br />

7- nks l=h; dk;Z izkIrkadksa esa ls fdlh ,d esa vf/kdre vad dh iwoZ izpfyr O;oLFkk ds LFkku ij nksuksa l=h; dk;ksZa ds izkIrkadksa<br />

ds vkSlr vad l=kar ijh{kk ifj.kke esa tksM+s tk,axsA lHkh iz'uksa ds vad leku gSaA<br />

First Assignment Max Marks - 30<br />

Q.1. A Company produces two kinds of leather belts A and B . A is of superior quality and B is of<br />

lower quality. The respective profits are Rs. 10 and Rs. 5 per belt. The supply of raw material is<br />

sufficient for making 850 belts per day. For belt A special type of buckle is required and 500 are<br />

available per day. There are 700 buckles available for belt B per day. Belt A needs twice as much<br />

time as that required for belt b. & company can produce 500 belts of all of them were of type A.<br />

Formulate LPP & solve it graphically.<br />

Q2. Solve following transportation problem & test the optimality by MODI method.<br />

F1 F2 F3 F4 SUPPLY<br />

W1 21 16 25 13 8<br />

W2 17 18 14 23 10<br />

W3 32 27 18 41 12<br />

DEMAND 20 15 15 30 20<br />

Q3. Use Branch & Bound technique to find an solution<br />

Max. Z = x 1 + 4 x2<br />

Sub. to 2x1 + 4x2 ≤ 7<br />

5x1 + 3x2 ≤ 15, x1 , x2 ≥ 0.<br />

Q4. Solve the following pay-off matrix , determine the optimal strategies and value of game<br />

A = 5 1<br />

3 4<br />

Q5. Solve the following by Simplex method to<br />

Minimize z = x1 – 3x2 + 2x3<br />

Sub. to 3x1 – x2 + 3x3 ≤ 7<br />

-2x1 + 4x2 ≤ 12 & x1, x2 ≥ 0<br />

Second Assignment Max Marks – 30<br />

P.T.O.


From Pre Page<br />

Q1. Show that the collection of all feasible solutions to LP problems constitutes a conver set whose<br />

extreme pairts correspond to the basic feasible solutions.<br />

Q2. State the priiciple of optionality in dynamic programming and give a methematical formalation<br />

of a dynamic programming problem.<br />

Q3. What is scpoe of O.R. in daily life.<br />

Q4. Define convex programming.<br />

Q5. Write short notes on the following<br />

(a) Network simplex method (b) Game Theory


M P BHOJ (OPEN) UNIVERSITY, BHOPAL<br />

ASSIGNMENT QUESTION PAPER<br />

2009-10<br />

CLASS : M.Sc. Final SUBJECT: Mathematics<br />

Paper - IV - Integral transform with applications<br />

funsZ'k %&<br />

1- lHkh iz'u Lo;a dh gLrfyfi esa gy djuk vfuok;Z gSA 2- nksuksa l=h; iz'ui= gy djuk vfuok;Z gsa<br />

3- l=h; dk;Z mÙkjiqfLrdk ds vafre i`"B ij lacaf/kr fo"k; dh laiUu<br />

laidZ d{kkvksa dh frfFk;ksa ,oa ijke'kZnkrk ds uke ,oa in dk<br />

vo'; mYys[k djsaA<br />

5- l=h; dk;Z mÙkjiqfLrdk,a tek djus dh vafre frfFk 20<br />

vizsy 2010 gSA<br />

4- vafre frfFk mijkar l=h; dk;Z mÙkjiqfLrdkvksa dks ekU; ugha djrs<br />

gq, ewY;kafdr ugha dh tkosxhA<br />

6- l=h; dk;Z mÙkjiqfLrdk,a tek djus dh jlhn vo'; izkIr dj ysaA<br />

7- nks l=h; dk;Z izkIrkadksa esa ls fdlh ,d esa vf/kdre vad dh iwoZ izpfyr O;oLFkk ds LFkku ij nksuksa l=h; dk;ksZa ds izkIrkadksa<br />

ds vkSlr vad l=kar ijh{kk ifj.kke esa tksM+s tk,axsA lHkh iz'uksa ds vad leku gSaA<br />

First Assignment Max Marks - 30<br />

Q1. Find the Laplace transform of<br />

t 2 , 0 < t < 2<br />

F(t) = t – 1, 2 < t < 3<br />

7, t > 3<br />

Q2. Solve ( t D 2 + (1-2t) D – 2) y = 0 , where y(0) = 1 , y’(0) = 2 .<br />

Q3. An alternating EMF esinωt is applied to an inductance L & a capacitance C in series. Show that<br />

the current in the circuit is { eω / (n 2 - ω 2 ) L} (cos ωt – cosnt), where n 2 = 1/ LC .<br />

Q4. Find the fourier series for the periodic function f(x) defined by<br />

- π where - π < x < 0<br />

f(x) = x 0 < x < π<br />

Q5. A string is stretched between the fixed points (0,0) & (1,0) & released at rest from the position u(x,<br />

0) = A sin 2πx. Find the displacement u(x, t).<br />

Second Assignment Max Marks - 30<br />

Q1. Using Laplace transform solve d 2 y/dx 2 + y = 0, under the condition that y = 1 , dy/dt = 0, when t<br />

= 0.<br />

Q2. Find L -1 {log(s 2 +1/s(s+1))<br />

Q3. Find the surface satisfying t = 6x 3 y, containing two lines y = 0 = z, y =1 = z using partial<br />

differential equation.<br />

Q4. Find the Fourier half range cosine series of the function<br />

2t, 0< t


M P BHOJ (OPEN) UNIVERSITY, BHOPAL<br />

ASSIGNMENT QUESTION PAPER<br />

2009-10<br />

CLASS : M.Sc. Final SUBJECT: Mathematics<br />

Paper - V - Programming in C (Theory & Practical)<br />

funsZ'k %&<br />

1- lHkh iz'u Lo;a dh gLrfyfi esa gy djuk vfuok;Z gSA 2- nksuksa l=h; iz'ui= gy djuk vfuok;Z gsa<br />

3- l=h; dk;Z mÙkjiqfLrdk ds vafre i`"B ij lacaf/kr fo"k; dh laiUu<br />

laidZ d{kkvksa dh frfFk;ksa ,oa ijke'kZnkrk ds uke ,oa in dk<br />

vo'; mYys[k djsaA<br />

5- l=h; dk;Z mÙkjiqfLrdk,a tek djus dh vafre frfFk 20<br />

vizsy 2010 gSA<br />

4- vafre frfFk mijkar l=h; dk;Z mÙkjiqfLrdkvksa dks ekU; ugha djrs<br />

gq, ewY;kafdr ugha dh tkosxhA<br />

6- l=h; dk;Z mÙkjiqfLrdk,a tek djus dh jlhn vo'; izkIr dj ysaA<br />

7- nks l=h; dk;Z izkIrkadksa esa ls fdlh ,d esa vf/kdre vad dh iwoZ izpfyr O;oLFkk ds LFkku ij nksuksa l=h; dk;ksZa ds izkIrkadksa<br />

ds vkSlr vad l=kar ijh{kk ifj.kke esa tksM+s tk,axsA lHkh iz'uksa ds vad leku gSaA<br />

First Assignment Max Marks - 30<br />

Q.1 write a program to print series of prime no. from 1 to n. Where n is a user defined no.<br />

Q.2 Write a program to add digits of a no. given by the user.<br />

Q.3 write a program to print given no. in reverse order without using array.<br />

Q.4 Write a program for reversing an array.<br />

Q.5 Give characterstics of good programming?<br />

Q.6 write short notes on<br />

(i) OOPS; (ii)Tokens.<br />

Q.7 What will be the value of a & b after the execution of the following statement:<br />

a=a++ + ++a + b++ + (b35;<br />

(iii)If the employee is not married & female , age> 30.<br />

In all other cases insurance is denied . Age, gender & martial status is given by<br />

user & check wheather he or she is eligible for insurance or not. Usintg neste if & logical<br />

operators.<br />

Q.4 Take two number in two variables and swap them by using functions (by passing address of the<br />

wwo no.s in the function).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!