17.06.2013 Views

plant dna barcoding

plant dna barcoding

plant dna barcoding

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PLANT DNA BARCODING:<br />

PROBLEMS AND APPLICATIONS<br />

R<br />

Massimo Labra<br />

massimo.labra@unimib.it<br />

ZooPlantLab


PLANT BIODIVERSITY AND<br />

AGROBIODIVERSITY<br />

RELATIONSHIP BETWEEN PLANT AND<br />

ENVIRONMENT<br />

DEVELOPMENTAL BIOLOGY AND<br />

REGULATION MECHANISMS


TOOL FOR PLANT<br />

BIODIVERSITY ANALYSIS


RFLP<br />

RAPD<br />

AFLP<br />

SSR<br />

cpSSR<br />

SNP<br />

MOLECULAR MARKERS<br />

= Restriction Fragment length polymorphism<br />

= Random Amplification of Polymorphic DNA<br />

= Amplified Fragment Length Polymorphism<br />

= Simple Sequence Repeat<br />

= Chlorplast Simple Sequence Repeat<br />

= Single Nucleotide Polymorphisms


1<br />

2<br />

3<br />

THE MOLECULAR MARKERS<br />

ANALYSIS<br />

PLANT SELECTION<br />

IDENTIFICATION MARKER(S)<br />

SETTING TOOL(S)<br />

ANALYSIS<br />

DATA ANALYSIS


THE MOST FREQUENT QUESTIONS<br />

> PLANT IDENTIFICATIONS<br />

> RELATIONSHIPS AMONG<br />

CLOSE RELATED TAXA<br />

(SPECIES, CULTIVAR, ECC)


ANSWER<br />

ATCGGATCAATGA<br />

PLANT DNA BARCODING


Cytochrome c Oxidase 1<br />

NOT WORK IN PLANTS !<br />

The <strong>plant</strong> mitochondrial genome is structurally complex.<br />

Plant mitochondrial genomes frequently undergoes<br />

rearrangement.<br />

Wolfe et al., 1987 PNAS, 84: 9054; Mower et al., 2007 BMC Evol. Biol 7: 135.


IN FLOWERING PLANTS, THE MITOCHONDRIAL GENES EVOLVE:<br />

- A FEW TIMES MORE SLOWLY THAN CHLOROPLAST GENES;<br />

- ABOUT TEN TIMES MORE SLOWLY THAN PLANT AND MAMMAL<br />

NUCLEAR GENES;<br />

- 50100 TIMES MORE SLOWLY THAN MAMMALIAN<br />

MITOCHONDRIAL GENES.


must be universal for all <strong>plant</strong>s.<br />

IN PLANTS, LOW RATE OF DNA CHANGES WERE DETECTED IN<br />

MITOCHONDRIAL GENES.<br />

HOWEVER SOME GROUPS (I.E. PLANTAGO, PELARGONIUM,)<br />

SHOWED A DRAMATIC INCREASE IN THE MITOCHONDRIAL<br />

RATE OF SYNONYMOUS SUBSTITUTION.<br />

SOME OF THESE RATE INCREASES WERE TEMPORARY, WITH<br />

RATES APPROACHING OR RETURNING TO NORMALLY LOW<br />

LEVELS IN CERTAIN DESCENDENT LINEAGES<br />

SOME PLANTS CONTAIN A MIXTURE OF BOTH QUICKLY AND<br />

SLOWLY EVOLVING MITOCHONDRIAL GENES.<br />

Cho Y et al. 2004. Mitochondrial substitution rates are extraordinarily elevated and variable in a<br />

genus of flowering <strong>plant</strong>s. PNAS 101:17741-46.<br />

Parkinson CL et al., 2005. Multiple major increases and decreases in mitochondrial substitution<br />

rates in the <strong>plant</strong> family Geraniaceae. BMC Evol Biol 5:73.


Second International Barcode of<br />

Life Conference<br />

16 to 21 September 2007<br />

Taipei, Taiwan.<br />

ELIZABETH PENNISI SCIENCE 2007


Characteristic of DNA <strong>barcoding</strong><br />

region(s)<br />

- POLYMORPHIC DNA REGION<br />

- CONSERVED REGIONS FOR DESIGNING UNIVERSAL PRIMERS<br />

- EASY AMPLIFICATION<br />

- SEQUENCE LENGTH SUITABLE FOR SEQUENCING<br />

- LOW INTRASPECIFIC VARIABILITY<br />

- HIGH INTERSPECIFIC DIVERSITY<br />

From Meyer and Paulay, PLoS Biology, 2005


Additional characteristics for <strong>plant</strong>s<br />

> the gene sequences used for <strong>barcoding</strong> should be short<br />

enough to be PCR amplified easily also with degraded DNA!


Additional characteristics for <strong>plant</strong>s<br />

> Plants hybridize frequently! The selected<br />

markers should be able to distinguish hybrids<br />

from parental species!<br />

NUCLEAR OR PLASTIDIAL<br />

MARKERS ?<br />

R. hirsutum L.<br />

R. ferrugineum L.<br />

R. x intermedium Tausch


Additional characteristics for <strong>plant</strong>s<br />

> THE PLANTS ARE OFTEN POLYPLOIDS<br />

(ALLOPOLYPLOIDS AUTOPOLYPLOIDS)<br />

NUCLEAR MARKERS ?


SEVERAL COMPLETE NUCLEAR<br />

GENOME OF PLANTS<br />

NUCLEAR DNA BARCODING<br />

ITS > 40.000 SEQUENCES IN<br />

GENBANK.<br />

MORE THAN 90 PLASTIDIAL<br />

GENOMES<br />

(RAVI ET AL., 2008. PL SYST EVOL 271: 101)<br />

PLASTIDIAL DNA BARCODING<br />

- GENES (matK, rpoB, rbcL)<br />

- Spacer region (trnH-psbA )


FIRST HYPOTHESIS:<br />

NUCLEAR AND PLASTIDIAL REGION<br />

ITS<br />

trnH-psbA<br />

THE PROBLEM OF ITS AND<br />

NUCLEAR MARKERS!


NUCLEAR GENOME SEQUENCE<br />

ITS<br />

CONSIDERATIONS:<br />

NUCLEAR DNA SEGMENT PROVIDE MORE INFORMATION ON<br />

SPECIES IDENTITY, INCLUDING HYBRIDIZATION EVENTS,<br />

IN DNA DATABASE THERE ARE AL LOT OF ITS SEQUENCES<br />

PROBLEMS:<br />

PROBLEMS ARISING FROM PARALOGOUS SEQUENCES,<br />

PSEUDOGENES<br />

THE LOW SPECIES DISCRIMINATORY POWER AT THE<br />

SPECIES LEVEL IN SOME ANGIOSPERM GROUPS<br />

THECNICAL PROBLEMS:<br />

DIFFICULT TO OBTAIN A UNIVERSAL PCR AMPLIFICATION<br />

ESPECIALLY FROM DEGRADED AND LOW-QUALITY DNA<br />

DNA CONTAMINATION (i.e. PLANTS CONTAIN FUNGAL<br />

ENDOPHYTES; HERBARIUM AND FUNGAL).


THE CBOL-PLANT WORKING GROUP HAS NOT REGARDED nrITS<br />

SUITABLE FOR A UNIVERSAL PLANT DNA BARCODE<br />

MAY BE A SUPPLEMENTARY LOCUS FOR TAXONOMIC GROUPS<br />

WHICH HAVE LESS RESOLUTION WITH cpDNA AND WHERE<br />

DIRECT SEQUENCING OF ITS IS POSSIBLE.


Different plastidial markers<br />

- Universal (easy amplification, sequencing)<br />

- Size<br />

- Polymorphisms levels at the specie-genus-family..<br />

- Sequence structure<br />

rbcL<br />

atpB<br />

rpoC1<br />

ndhJ<br />

trnH-psbA<br />

matK


70%<br />

LIMITS OF DNA BARCODING ?<br />

LIMITS OF (MORPHO)SPECIES ?


Nature (2006) 440, 524-527


907 SAMPLES:<br />

445 ANGIOSPERM,<br />

38 GYMNOSPERM,<br />

67 CRYPTOGAM


ATCGGATCAATGA<br />

rbcL<br />

matK<br />

CBOL Plant Working Group<br />

rbcL + matk<br />

-It is the best characterized gene<br />

-There are universal primers not only for angiosperms<br />

-It produce a high-quality bidirectional sequences<br />

-It is one of the most rapidly evolving plastid<br />

coding regions<br />

-It shows high levels of discrimination among<br />

angiosperm species<br />

list of supplementary loci including the noncoding plastid<br />

regions (trnHpsbA, atpFatpH), intron (trnL), ITS could be<br />

used in the cases of degraded tissue or in the analysis of<br />

critical taxonomic groups.


May 2011 | Volume 6 | Issue 5 | e19254


cL: discrimination ability<br />

Kress (PNAS 2005) By comparison, ITS had a much higher<br />

divergence value (13.6%) than any of the plastid regions, and<br />

rbcL was by far the lowest in divergence (0.83%).


THE rbcL IS EASY TO AMPLIFY, SEQUENCE, AND ALIGN IN MOST LAND<br />

PLANTS AND PROVIDES A USEFUL BACKBONE TO THE BARCODE DATASET,<br />

DESPITE IT HAVING ONLY MODEST DISCRIMINATORY POWER (PLANT<br />

WORKING GROUP CBLOD).


matK: Universal amplification<br />

From: Dunning and Savolainen 2010


LIMITS: - SMALL NUMBER OF SPECIES FOR FAMILY<br />

- NOT SUITABLE FOR BARCODING IDEA


- IDENTIFICATION OF CLADE -SPECIFIC PRIMERS<br />

-MODIFICATIONS THE PRIMERS AND REACTION CONDITIONS<br />

TO OBTAIN TO INCREASE THE AMPLIFICATION SUCCESS<br />

DEFINITION OF A PRIMER COCKTAILS AROUND EXISTING<br />

MATK BARCODE PRIMING SITES.<br />

WORK IN PROGRESS!


trH-psbA<br />

- GOOD AMPLIFICATION ACROSS LAND PLANTS WITH A<br />

SINGLE PAIR OF PRIMERS (>90 % FOR ANGIOSPERMS)<br />

- HIGH LEVELS OF SPECIES DISCRIMINATION (More than rbcL<br />

+ matK in Ficus, Alnus and complex groups of Saliz and<br />

Quercus)<br />

PROBLEMS<br />

-PROBLEMS TO OBTAIN HIGH QUALITY BIDIRECTIONAL<br />

SEQUENCES.<br />

-MEDIAN LENGTH OF trnH-psbA IS ABOUT 420 BP IN<br />

EUDICOTS, BUT UPPER LENGTH OF >1,000 BP IN SOME<br />

MONOCOT AND CONIFER SPECIES! TOO MUCH<br />

-DIFFERENCES IN THE trnH-psbA LENGTH OF DIFFERENT TAXA<br />

RESULTED IN ALIGNMENT PROBLEMS FOR ESTIMATE GENETIC<br />

DISTANCES


Hollingswort et al., 2001


STATE OF ART<br />

PLANT DNA BARCODING IS BASED ON TWO<br />

CODING REGIONS: matK and rbcL<br />

HOWEVER<br />

THE MATK PRIMERS NEEDING IMPROVING, AND THE ABSOLUTE<br />

LEVELS OF DISCRIMINATORY POWER OF RBCL+MATK IS<br />

UNCERTAINTY<br />

THUS <br />

THE STANDARD CORE-BARCODE FOR LAND PLANTS BY CBOL IS<br />

SUBJECT TO A REVIEW<br />

DURING THIS REVIEW PHASE, CONTINUED SEQUENCING AND<br />

EXPLORATION OF THE PROPERTIES OF OTHER NON-CODING<br />

MARKERS IS RECOMMENDED (PARTICULARLY trnH-psbA AND<br />

THE INTERNAL TRANSCRIBED SPACERS OF NUCLEAR<br />

RIBOSOMAL DNA nrITS/nrITS2).


FACTORS INFLUENCING THE DISCRIMINATION SUCCESS<br />

OF PLANT BARCODES<br />

Hollingsworth 2011, Plos One 6: e19254<br />

The DNA <strong>barcoding</strong> approach doesn work in:<br />

- Clades where speciation has been very recent.<br />

- Woody species with long generation times and/or slow<br />

mutation rates<br />

- Polyploid speciation can lead to incongruence between<br />

barcode sequences and taxon concepts;<br />

- In taxonomically complex groups (TCGs)


Species dispersal: in species where dispersal is poor and it is<br />

constituted from isolated populations the neutral mutational<br />

variants can be slow to spread throughout a range.<br />

Thus the DNA <strong>barcoding</strong> is not universal for the same species!<br />

A secondary consequence of poor dispersal is that the<br />

permeability of a species to inter-specific gene flow may be<br />

increased. No DNA <strong>barcoding</strong> gap!<br />

Hollingsworth et al., 2011.


PLANT DNA BARCODE APPLICATIONS<br />

A- SPECIES-LEVEL TAXONOMY<br />

B- IDENTIFYING UNKNOWN SPECIMENS TO<br />

KNOWN SPECIES


A- SPECIES-LEVEL TAXONOMY


TAXONOMICALLY COMPLEX GROUPS (TCGs)<br />

Thymus (215 species)<br />

TAXA N<br />

Thymus brevicalyx Strobl 5<br />

Thymus catharinae Camarda 1<br />

Thymus oenipontanus Heinr.Braun 4<br />

Thymus paronychioides Celak. 2<br />

Thymus praecox subsp. polytrichus (A.Kern ex Borbàs) Jalas 3<br />

Thymus pulegioides L. 5<br />

Thymus spinulosus Ten. 3<br />

Thymus striatus Vahl 8<br />

Thymus vulgaris L. 3<br />

Thymus dolomiticus H.J. Coste 1<br />

Thymbra capitata (L.) Cav (=Thymus capitatus (L.)) 3<br />

11 species; 38 samples;<br />

Different geographical locations: IT; FR,<br />

SV; SPA


% variation<br />

between sp.<br />

(S.E.%)<br />

Range %<br />

between sp.<br />

Mean %<br />

variation within<br />

sp. (S.E.%)<br />

Range %<br />

within sp.<br />

matK 0.66 (0.20) 0.29-1.84 0.48 (0.10) 0.00-0.75<br />

trnH-psbA 2.39 (0.50) 1.33-3.53 2.18 (0.50) 0.74-3.60<br />

rbcL 0.17 (0.10) 0.00-0.42 0.07 (0.05) 0.00-0.16


High intraspecific variability!<br />

19 haplotypes with matK<br />

TAXA N<br />

Thymus brevicalyx Strobl 5<br />

Thymus oenipontanus Heinr.Braun 4<br />

Thymus pulegioides L. 5<br />

Thymus striatus Vahl 8<br />

Thymbra capitata (L.) Cav 3


B- IDENTIFYING UNKNOWN SPECIMENS TO KNOWN SPECIES


DNA BARCODING WORK WELL IN<br />

A- PLANT IDENTIFICATION STARTING FROM A FRAGMENTS<br />

OF PLANT MATERIALS (LEAVES, FRUITS)<br />

B - PLANT IDENTIFICATION (INCLUDING CULTIVARS)<br />

STARTING FROM A SET OF TARGET SPECIES.<br />

C- IDENTIFICATION PROBLEM RELATES TO UNFAMILIARITY<br />

WITH A GIVEN SPECIES (I.E. EXOTIC SPECIES).<br />

D- IDENTIFICATION OF PLANT SPECIES OF A SPECIFIC<br />

GEOGRAPHIC AREA WHERE THE SPECIES ARE NOT<br />

NECESSARILY CLOSELY RELATED.


A- PLANT IDENTIFICATION STARTING FROM PLANT FRAGMENTS


GRUPPO I<br />

ORMAMENTAL PLANTS WITH TOXIC METABOLITES<br />

Nandina domestica Thunb.<br />

Ilex aquifolium L.<br />

Aucuba japonica Thunb.<br />

Arum italicum Mill.<br />

Arum maculatum L.<br />

Convallaria majalis L.<br />

Euphorbia pulcherrima Willd. ex Klotzsch<br />

Spathiphyllum wallisii Regel<br />

Sansevieria trifasciata Prain<br />

Anthurium andreanum Linden


GRUPPO II<br />

CONGENERIC TAXA WITH/WITHOUT TOXIC METABOLITES<br />

Aconitum lycoctonum L.<br />

Aconitum napellus L.<br />

Aconitum degenii Gàyer subsp. paniculatum<br />

(Arcang.) Mucher<br />

Aconitum anthora L.<br />

Gruppo IIa<br />

Gruppo IIb<br />

Sambucus ebulus L.<br />

Sambucus racemosa L.<br />

Sambucus nigra L.


Gruppo IIIa<br />

GRUPPO III<br />

EDIBLE AND INEDIBLE PLANTS<br />

Prunus laurocerasus L. TOX<br />

Prunus armeniaca L. (albicocco)<br />

Prunus avium L. (ciliegio)<br />

Prunus persica (L.) Batsch (pesca)<br />

Prunus cerasus L. (amarena)<br />

Prunus domestica L. (susino)<br />

Gruppo IIIb<br />

Solanum dulcamara L. TOX<br />

Solanum nigrum L. TOX<br />

Solanum lycopersicum L.<br />

Solanum tuberosum L.


PLASTIDIAL rpoB; matK,<br />

trnH-psbA<br />

NUCLEAR Sqd1; At103<br />

trnH-psbA and matK


B - PLANT IDENTIFICATION (INCLUDING CULTIVARS)<br />

STARTING FROM A SET OF TARGET SPECIES.<br />

DNA BARCODING AND FOOD TRACEABILITY


Gruppo 1<br />

Mentha piperita L.<br />

Mentha aquatica L.<br />

Mentha spicata L.<br />

<br />

Gruppo 4<br />

Salvia officinalis L.<br />

Salvia rutilans<br />

Salvia sclarea<br />

Salvia uliginosa<br />

<br />

Gruppo 2<br />

Ocimum gratissimum L.<br />

Ocimum tenuiflorum L.<br />

Ocimum basilicum L (cultivars)<br />

<br />

Gruppo 3<br />

Origanum majorana L.<br />

Origanum vulgare L.<br />

Origanum pseudodictamnius Sieber<br />

Origanum heracleoticum<br />

<br />

Gruppo 5<br />

Thymus vulgaris L.<br />

<br />

Gruppo 6<br />

Rosmarinus officinalis L.


Markers PLASTIDIA matK; trnH-psbA; rbcL<br />

NUCLEAR: ITS; At103; Agt1<br />

ms oc ts mns ro mnc bs<br />

PCR<br />

Specific band<br />

Nonspecific band


The non-coding trnH-psbA intergenic spacer and matK are the<br />

most suitable marker for molecular spices identification.<br />

In a context of food traceability the two markers are useful to<br />

identify commercial processed spice species (sold as dried<br />

material).<br />

Basil: sequence divergences of<br />

marker trnH-psbA, matK and rbcL<br />

clearly distinguish O. gratissimum L.,<br />

and O. tenuiflorum L. from common<br />

basil (O. basilicum L.) while only<br />

trnH-psbA and matK showed<br />

appreciable differences among the<br />

basil cultivars


Origanum samples (Group III) did not show any<br />

sequence polymorphism !<br />

M. piperita L. is a sterile hybrid of M. aquatica L. × M. spicata L.<br />

The chloroplast uniparental markers used in this study, confirm<br />

that M. spicata L. is the maternal parental of M. piperita L.<br />

because both species showed the same plastidial DNA profile.


C- IDENTIFICATION PROBLEM RELATES TO UNFAMILIARITY<br />

WITH A GIVEN SPECIES (I.E. EXOTIC SPECIES).<br />

SMART DRUGS


MORPHOLOGICAL<br />

ANALYSIS<br />

CHEMICAL<br />

ANALYSIS<br />

DNA BAROCIDNG<br />

ANALYSIS<br />

ATCGGATCAATGA


DNA BARCODING ANALYSIS: rbcL, matK and trnH-psbA<br />

SOME COMMERCIAL PLANT MIX SHOWED FRAGMENTS<br />

OF MARIJUANA LEAVES <br />

SOME COMMERCIAL PLANT<br />

MIX SHOWED FRAGMENTS OF<br />

PLANT RICH OF ALKALOIDS<br />

SUCH AS Turnera diffusa L<br />

IN SOME COMMERCIAL MIX THE<br />

PLANT ARE ONLY A SHUTTLE FOR<br />

TRANSPOR SYNTHETIC DRUGS


D- IDENTIFICATION OF PLANT SPECIES OF A SPECIFIC<br />

GEOGRAPHIC AREA WHERE THE SPECIES ARE NOT<br />

NECESSARILY CLOSELY RELATED.<br />

INTEGRATED TAXONOMIC APPROACH: FLORA OF MONTE<br />

VALERIO (TRIESTE).<br />

R<br />

ZooPlantLab<br />

PLANT SAMPLING - DNA ANALYSIS AND<br />

DIGITAL IDENTIFICATION KEY<br />

STATISTICAL ANALYSIS (in progress)


Calluna vulgaris (L.) Hull<br />

Famiglia: ERICACEAE<br />

Nomi italiani: Brentoli, Brughiera, Brugo,<br />

Calluna, Erica falsa, Grecchia, Scopetti,<br />

Sorcelli.


343 PLANT COLLECTED<br />

300 WERE AMPLIFIED WITH ALL MARKERS<br />

trnH-psbA: 316 MOTU on 322 amplified samples<br />

matK: 304 MOTU on 323 amplified samples<br />

rbcL: 293 MOTU on 337 amplified samples<br />

trnH-psba matK rbcL<br />

Gr1- Acer (4) 4 1 1<br />

Gr2- Euphorbia (6) 6 6 4<br />

Gr3-Geranium (4) 4 4 2<br />

Gr4-Medicago (4) 4 3 2<br />

Gr5-Prunus (4) 3 4 2<br />

Gr6-Senecio (3) 3 2 2<br />

Gr7-Solanum (3) 3 3 3<br />

Gr8-Trifolium (5) 4 5 3


MOLECULAR TAXONOMY<br />

MORPHOLOGICAL TAXONOMY


Interactive keys<br />

DNA barcoder


Fabrizio De Mattia Ilaria Bruni Alessia Losa<br />

R<br />

ZooPlantLab<br />

www.zoo<strong>plant</strong>lab.btbs.unimib.it<br />

Maurizio Casiraghi Massimo Labra<br />

Michela Barbuto<br />

Andrea Galimberti<br />

Emanuele Ferri<br />

Sara Baccei<br />

Anna<br />

Sandionigi<br />

Silvia Federici

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!