16.06.2013 Views

Leaf Area Index Modeling of Mangrove based on Hyperspectral ...

Leaf Area Index Modeling of Mangrove based on Hyperspectral ...

Leaf Area Index Modeling of Mangrove based on Hyperspectral ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Leaf</str<strong>on</strong>g> <str<strong>on</strong>g>Area</str<strong>on</strong>g> <str<strong>on</strong>g>Index</str<strong>on</strong>g> <str<strong>on</strong>g>Modeling</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Mangrove</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Hyperspectral</strong><br />

Remote Sensing and in-situ Hemispherical Photography<br />

in Maipo Ramsar Site <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>g K<strong>on</strong>g<br />

*WONG, Kwan Kit Frankie and FUNG, Tung<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Geography and Resource Management, The Chinese University <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>g K<strong>on</strong>g<br />

1. Introducti<strong>on</strong><br />

kkit@cuhk.edu.hk<br />

<str<strong>on</strong>g>Mangrove</str<strong>on</strong>g>s are important primary producers in coastal ecosystem. Not <strong>on</strong>ly do they provide<br />

shelters for many marine and terrestrial animals, they also help stabilizing the coastal areas<br />

from erosi<strong>on</strong>. However, mangroves are globally threatened due to unsustainable exploitati<strong>on</strong>,<br />

development and polluti<strong>on</strong> (Valiela et al., 2001). Informati<strong>on</strong> related to spatial extent,<br />

photosynthesis, productivity level is essential to m<strong>on</strong>itor the ecological c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mangrove.<br />

Given the envir<strong>on</strong>mental c<strong>on</strong>straints in most <str<strong>on</strong>g>of</str<strong>on</strong>g> the mangrove ecosystems, remote sensing has<br />

l<strong>on</strong>g been regarded as a cost-effective and timely tool for mangrove c<strong>on</strong>servati<strong>on</strong> study.<br />

The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> the study is to make use <str<strong>on</strong>g>of</str<strong>on</strong>g> the field-measured <str<strong>on</strong>g>Leaf</str<strong>on</strong>g> <str<strong>on</strong>g>Area</str<strong>on</strong>g> <str<strong>on</strong>g>Index</str<strong>on</strong>g> (LAI) and<br />

spectral indices derived from hyperspectral image in order to:<br />

- estimate LAI in Inner Deep Bay;<br />

- evaluate the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> indices (VIs) in LAI mapping;<br />

- compare the LAI <str<strong>on</strong>g>of</str<strong>on</strong>g> different mangrove species; and<br />

- c<strong>on</strong>tribute to existing research <strong>on</strong> mangrove m<strong>on</strong>itoring, management and c<strong>on</strong>servati<strong>on</strong>.<br />

2. Remote sensing and biophysical parameter m<strong>on</strong>itoring<br />

Remote sensing has l<strong>on</strong>g been used for vegetati<strong>on</strong> studies. With well-developed studies <strong>on</strong><br />

fundamental parameters affecting vegetati<strong>on</strong> reflectance as well as advancement in technology,<br />

the scopes <str<strong>on</strong>g>of</str<strong>on</strong>g> remote sensing had not limited to classificati<strong>on</strong> and had extended to ecological<br />

applicati<strong>on</strong>s. Crucial ecological-related parameters such as fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> absorbed<br />

photosynthetically active radiati<strong>on</strong>, leaf area index, albedo and gross primary vegetati<strong>on</strong><br />

productivity can be estimated through remote sensing imageries at regi<strong>on</strong>al and global scale.<br />

1


Every single material <strong>on</strong> earth has its unique spectral resp<strong>on</strong>se light. In other words, the amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong>, transmittance and reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different materials is wavelength dependent.<br />

Specifically for vegetati<strong>on</strong> science, factors such as species, healthiness and moisture levels<br />

would affect their resp<strong>on</strong>ses to light in different wavelengths. Taking this characteristics into<br />

c<strong>on</strong>siderati<strong>on</strong>, the advancement <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperspectral sensors allow satellites to capture<br />

excepti<strong>on</strong>ally fine, narrow and c<strong>on</strong>tiguous spectral bands <str<strong>on</strong>g>of</str<strong>on</strong>g> different materials <strong>on</strong> earth surface.<br />

Compared with the multispectral counterpart, the narrowband characteristic has significantly<br />

enhanced the spectral measurement capabilities that are useful for detecti<strong>on</strong> and modeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial ecosystem (Kumar et al., 2001; Thenkabail et al., 2004).<br />

Researches showed that hyperspectral data performs better in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> mapping as<br />

well as biophysical and biochemical parameters extracti<strong>on</strong> when compared with multispectral<br />

counterpart (Gao, 1999; Broge & Leblanc, 2000; G<strong>on</strong>g et al., 2003; Hirano et al., 2003; Pu et al.,<br />

2005; Zhao, 2007).<br />

The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> vital ecosystem processes such as carb<strong>on</strong> dioxide flux, evapotranspirati<strong>on</strong>,<br />

rainfall intercepti<strong>on</strong>, photosynthesis and so <strong>on</strong>, take place in foliage elements. <str<strong>on</strong>g>Leaf</str<strong>on</strong>g> area index<br />

(LAI) is always used to quantify the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> live green leaf materials in the canopy. It is a<br />

dimensi<strong>on</strong>less variable defined as the total <strong>on</strong>e-sided area <str<strong>on</strong>g>of</str<strong>on</strong>g> all leaves in the canopy per unit<br />

ground area (Pierce and Running, 1988; G<strong>on</strong>g et al., 2003; Lee et al., 2004). LAI is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

most important elements in ecological field and modeling studies (Chas<strong>on</strong> et al., 1991). The<br />

success <str<strong>on</strong>g>of</str<strong>on</strong>g> LAI estimati<strong>on</strong> can simulate the ecological process and predict the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ecosystem (Green et al., 1997).<br />

Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> LAI is generally divided into two main categories – direct methods and indirect<br />

methods (Chas<strong>on</strong> et al., 1991; Chen et al., 1997; J<strong>on</strong>ckheere et al., 2004; Welles, 1990). Direct<br />

methods such as area harvest, litter collecti<strong>on</strong>, allometry, involve direct measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> area,<br />

shape, orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual foliage. If the methodology is strictly followed, it is the most<br />

accurate method. However, the process is extremely time-c<strong>on</strong>suming, costly and labour<br />

intensive. The feasibility is questi<strong>on</strong>able when spatial and temporal scales <str<strong>on</strong>g>of</str<strong>on</strong>g> the study are<br />

c<strong>on</strong>cerned.<br />

Indirect method is to infer LAI from observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> another variable. The optical methods <str<strong>on</strong>g>based</str<strong>on</strong>g><br />

<strong>on</strong> radiative transfer theory are the most popular technique. Since canopy architecture directly<br />

affects the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> intercepti<strong>on</strong>, the optical methods measure the probability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> not obstructed by vegetative elements from a view angle, which is called the gap<br />

fracti<strong>on</strong> (Ross, 1981; Welles, 1990; Welles and Norman, 1991). With appropriate radiative<br />

transfer model, LAI is computed from the inversi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the exp<strong>on</strong>ential expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gap fracti<strong>on</strong>.<br />

With reference to the theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Miller 1967, the relati<strong>on</strong>ship between gap fracti<strong>on</strong> and LAI is<br />

expressed as:<br />

<br />

2<br />

L 2<br />

ln( T(<br />

)) cos<br />

sind<br />

<br />

0<br />

2


Where L is the LAI; T(θ) is the gap fracti<strong>on</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zenith angle θ; and cosθ indicates the<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> radiance with increase in path length (and zenith angle θ) through the<br />

canopy. LAI is computed as the integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural logarithm <str<strong>on</strong>g>of</str<strong>on</strong>g> gap fracti<strong>on</strong> measured at<br />

zenith angle θ, ranging from 0 - π/2 <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the assumpti<strong>on</strong> that the foliage elements are<br />

randomly distributed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> azimuth angle φ.<br />

The optical methods are comparatively faster, n<strong>on</strong>-destructive, amendable to automati<strong>on</strong> (both<br />

data acquisiti<strong>on</strong> by electr<strong>on</strong>ic instruments and data processing by programme and s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware),<br />

and therefore allow sampling <str<strong>on</strong>g>of</str<strong>on</strong>g> large area and with higher frequency. Comm<strong>on</strong> practices<br />

include LAI-2000 Plant Canopy Analyzer, hemispherical photography, quantum sensor, DEMON<br />

and TRAC. However, the optical methods cannot separate vegetative elements, i.e. branches<br />

from foliage, stem from foliage, it is usually referred to ‘effective LAI (LAIe)’. Besides, the optical<br />

methods assume that foliar elements are randomly distributed. The assumpti<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten violated<br />

which generally underestimate LAI for about 25-50%. Clumping index is always used to<br />

compensate the dispersi<strong>on</strong> or aggregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the canopy (Chen and Black, 1992).<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> remote sensing supplemented with field measurements to estimate biophysical<br />

variables at larger scale becomes feasible.<br />

3. Methodology<br />

The study aimed at calibrating the spectral data extracted from hyperspectral images with insitu<br />

field measured LAI data using multivariate statistical analysis. Figure 1 shows the<br />

methodological workflow <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

Figure 1. The methodological workflow<br />

3


The <strong>Hyperspectral</strong> data from the <strong>on</strong>board Hyperi<strong>on</strong> sensor <str<strong>on</strong>g>of</str<strong>on</strong>g> NASA Earth Observing 1 (EO-1)<br />

satellite was acquired, atmospherically and geometrically corrected. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong><br />

indices were derived from the narrowbands. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> LAI measurement, the hemispherical<br />

photos were taken with locati<strong>on</strong>s recorded by GPS. Linear regressi<strong>on</strong> models were then used to<br />

estimate the LAI <str<strong>on</strong>g>of</str<strong>on</strong>g> study area. The predicted LAI results were evaluated and compared am<strong>on</strong>g<br />

species. The procedures were described below.<br />

3.1 Study area<br />

The Mai Po Nature Reserve in the Inner Deep Bay flourishing the largest mangrove stand at the<br />

northwestern part <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>g K<strong>on</strong>g (22°29'N - 22°31'N, 113°59'E - 114°03'E) was the chosen site <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

study. Figure 2 shows the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mangrove stands in H<strong>on</strong>g K<strong>on</strong>g and locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> study<br />

area. It covers an area about 172 hectares and keeps extending towards Deep Bay steadily every<br />

year. The site was designated as “Wetland <str<strong>on</strong>g>of</str<strong>on</strong>g> Internati<strong>on</strong>al Importance” under the Ramsar<br />

C<strong>on</strong>venti<strong>on</strong> in 1995 and nurtures four native species including Acanthus ilicifolius, Aegiceras<br />

corniculatum, Avicennia marina, and Kandelia obovata as well as two exotic species S<strong>on</strong>neratia<br />

caseolaris and S<strong>on</strong>neratia apetala which propagated from the plantati<strong>on</strong> al<strong>on</strong>g the Shenzhen<br />

River in Futian Nati<strong>on</strong>al Nature Reserve in Shenzhen.<br />

Deep Bay<br />

Mai Po in Inner Deep Bay<br />

Lantau Island<br />

New Territories<br />

H<strong>on</strong>g K<strong>on</strong>g Island<br />

114°20’0”E<br />

22°30’0”N<br />

Figure 2. The locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mai Po Nature Reserve and the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mangrove stand in H<strong>on</strong>g<br />

K<strong>on</strong>g<br />

4


3.2 Field measurement – Hemispherical photography<br />

Field measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> LAI was c<strong>on</strong>ducted using hemispherical photographic technique during<br />

October to November, 2008, which was scheduled to coincide with the Hyperi<strong>on</strong> data. A Nik<strong>on</strong><br />

Coolpix 5400 digital camera mounted with Nik<strong>on</strong> FC-E9 fish-eye lens c<strong>on</strong>verter (180 degrees<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> view) was used to capture the canopy characteristics. The camera was set <strong>on</strong> a selfleveling<br />

O-mount for automatic leveling with an electr<strong>on</strong>ic NorthFinder indicating the north<br />

directi<strong>on</strong> in each <str<strong>on</strong>g>of</str<strong>on</strong>g> the hemispherical photo taken (Regent Instruments Inc., 2008). The whole<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> instrument was mounted <strong>on</strong> a tripod and the height was adjusted to around breast height<br />

by fully extending tripod legs and central shaft. A remote c<strong>on</strong>troller was used to trigger the<br />

shutter with a view to minimize undesirable manual distorti<strong>on</strong> to the horiz<strong>on</strong>tal leveling <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

camera.<br />

A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 95 plots were visited and 1,140 hemispherical photographs were taken in the field<br />

al<strong>on</strong>g four different pre-defined transects. Each plot was designed to cover an area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

approximately 30 meters x 30 meters. The coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> the central locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each plot was<br />

recorded with the Trimble GPS GeoXH Handheld. A Hurricane antenna was attached to ensure<br />

signal was well-received under canopy. Within each plot, four points were chosen for the photo<br />

acquisiti<strong>on</strong> covering the centre <str<strong>on</strong>g>of</str<strong>on</strong>g> the plot as well as the corners. During photo acquisiti<strong>on</strong>,<br />

exposure bracketing was used to capture photographs with three different exposure levels, i.e.<br />

0EV, -1.0EV and -2.0EV. The aim was to acquire photos with higher c<strong>on</strong>trast level between sky<br />

and vegetative elements. The 95 plots covered two dominant species, Avicennia marina and<br />

Kandelia obovata.<br />

3.3 Field LAI Extracti<strong>on</strong><br />

The set <str<strong>on</strong>g>of</str<strong>on</strong>g> image files with -2.0EV were chosen from which canopy informati<strong>on</strong> was extracted<br />

due to higher c<strong>on</strong>trast between sky and vegetative elements. WinSCANOPY 2006a from Regent<br />

Instruments Inc was used to covert gap fracti<strong>on</strong> to LAI using two methods provided by<br />

WinSCANOPY including calculati<strong>on</strong> proposed by B<strong>on</strong>homme and Chartier in 1972 and a method<br />

similar to Li-Cor’s LAI-2000 plant canopy analyzer which was abbreviated as B<strong>on</strong>homme’s LAI<br />

and LAI-2000’s LAI respectively in the following article. The B<strong>on</strong>homme’s method measures the<br />

gap fracti<strong>on</strong> with zenith angles centered at 57.5°, which is found to be insensitive to leaf angle<br />

distributi<strong>on</strong>. LAI was computed using the simple formula LAI = -1.1In[GapFr(57.5)] (Regent<br />

Instrument Inc., 2008). Comparatively, the LAI-2000 method measured gap fracti<strong>on</strong>s at five<br />

default range <str<strong>on</strong>g>of</str<strong>on</strong>g> zenith rings (θ) centered at 7°, 23°, 38°, 53°, and 68° with a total field <str<strong>on</strong>g>of</str<strong>on</strong>g> view<br />

148°, which was then c<strong>on</strong>verted to LAI using the Miller’s (1967) theorem as described previously<br />

in Secti<strong>on</strong> 2. Since it is always measured at five fixed zenith angles, the expressi<strong>on</strong> is expressed<br />

as:<br />

5


5<br />

<br />

1<br />

L 2 ln( T ( )) cos<br />

sind<br />

Prior to analysis, image defects such as uneven illuminated sky and sun flares due to<br />

unfavourable and varied sky c<strong>on</strong>diti<strong>on</strong>s were removed. This is followed by the specificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

specific regi<strong>on</strong>s in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> zenith and azimuth angles to be analyzed. Since the camera and the<br />

lens were well calibrated by the company, pixel classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> images was then c<strong>on</strong>ducted to<br />

produce a binary image. For each photo, a threshold was manually selected by visual<br />

interpretati<strong>on</strong> with a view to maximally separate the vegetative elements from the sky.<br />

Thresholds ranged from 90 to 140 were set <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> image c<strong>on</strong>trast. Figure 3a shows the<br />

original image overlaid with sky grids divided self-defined azimuthal and zenithal divisi<strong>on</strong>s as<br />

well as the suntracks. Figure 3b shows the interactive threshold selecti<strong>on</strong> interface in deriving<br />

the binary image. Parameters describing the canopy structure including gap fracti<strong>on</strong>, LAI<br />

(computed with different method), leaf inclinati<strong>on</strong> angle distributi<strong>on</strong>, clumping index were<br />

calculated automatically after the binary classificati<strong>on</strong>. Since the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves was<br />

observed to be n<strong>on</strong>-random in nature, the clumping compensati<strong>on</strong> described in Van Gardingen<br />

(1999) was taken into account during LAI computati<strong>on</strong>. Finally, the LAI <str<strong>on</strong>g>of</str<strong>on</strong>g> each plot was<br />

calculated as the average <str<strong>on</strong>g>of</str<strong>on</strong>g> the four measurement points within the plot.<br />

a) Raw image overlaid with<br />

sky grids and suntracks<br />

b) Binary image with chosen threshold (130)<br />

Figure 3. The transformati<strong>on</strong> from raw to binary image for LAI estimati<strong>on</strong>.<br />

6


3.4 <strong>Hyperspectral</strong> Data and Processing<br />

The satellite image used was a hyperspectral image which was acquired by the <strong>on</strong>board<br />

Hyperi<strong>on</strong> sensor <str<strong>on</strong>g>of</str<strong>on</strong>g> NASA Earth Observing 1 (EO-1) satellite, covering a complete spectrum<br />

ranged 357-2576 nm with a spectral interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 nm. A Level 1R Hyperi<strong>on</strong> image centered at<br />

22.452°N, 114.014°E, was acquired <strong>on</strong> 21 st , November, 2008 at 14:48:53 GTM covering the Inner<br />

Deep Bay. The image is <str<strong>on</strong>g>of</str<strong>on</strong>g> high quality with minimal effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cloud. The study area is totally<br />

cloud-free.<br />

The uncalibrated bands (1-7 and 58-76) and duplicated bands (57 and 77) were removed from<br />

the dataset. The remaining 196 calibrated band were carried forward for further processing.<br />

Processing steps including abnormal pixel and line correcti<strong>on</strong>, strip removal and noise reducti<strong>on</strong><br />

were c<strong>on</strong>ducted in order to rectify the artifacts created during the image correcti<strong>on</strong>.<br />

Atmospheric correcti<strong>on</strong> was then c<strong>on</strong>ducted in order to extract the reflectance characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the mangroves using the Fast Line-<str<strong>on</strong>g>of</str<strong>on</strong>g>-sight Atmospheric Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Spectral Hypercubes<br />

(FLAASH) in ENVI. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the important merits <str<strong>on</strong>g>of</str<strong>on</strong>g> FLAASH is its ability to calculate and extract<br />

essential atmospheric parameters such as aerosol level and water amount from the absorpti<strong>on</strong><br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> the narrow spectral bands. Another essential feature <str<strong>on</strong>g>of</str<strong>on</strong>g> FLAASH is the ability to<br />

automatically correct the ‘smile effect’ inherited in Hyperi<strong>on</strong> sensor.<br />

Geometric rectificati<strong>on</strong> was then preformed to match with the projecti<strong>on</strong> and coordinate<br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> field data. 28 GCPs were collected evenly from the image with an overall root mean<br />

square error <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.07 pixels (2 meters). The error was within tolerance limit.<br />

3.5 Vegetati<strong>on</strong> <str<strong>on</strong>g>Index</str<strong>on</strong>g> Extracti<strong>on</strong><br />

Spectral vegetati<strong>on</strong> indices (VIs) derived from narrowband hyperspectral data were used to for<br />

LAI predicti<strong>on</strong> in the Inner Deep Bay. The selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> VIs is important as dem<strong>on</strong>strated by<br />

previous researches that issues such as saturati<strong>on</strong> problem, model linearity and stability were<br />

noteworthy (Elvidge & Chen, 1995; Roujean & Bre<strong>on</strong>, 1995; Broge & Leblanc, 2001; Brown et al.,<br />

2000; G<strong>on</strong>g et al., 2003; Zhao et al., 2007). For instances, according to Zhao et al. (2007), VIs<br />

computed from the narrowband combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 700nm and 800nm generally produced a better<br />

result than the band combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 670nm and 800nm. Ray et al. (2006) found that VIs such as<br />

NDVI and SAVI computed using 680nm and 780nm showed maximum correlati<strong>on</strong> to LAI am<strong>on</strong>g<br />

other band combinati<strong>on</strong>.<br />

Correlati<strong>on</strong> matrix was used to explore the relati<strong>on</strong>ship between 95 LAI measurements and 196<br />

spectral bands. Linear correlati<strong>on</strong>s with reflectance were weak in the red and SWIR regi<strong>on</strong>s but<br />

str<strong>on</strong>g in near-infrared regi<strong>on</strong>s. Narrow spectral bands with highest correlati<strong>on</strong> coefficients at<br />

682nm and 825nm were used to represent red and near infrared regi<strong>on</strong> respectively. Due to the<br />

fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reflectance and low correlati<strong>on</strong> with LAI in the SWIR bands, the reflectance<br />

7


etween 1550nm and 1650nm were averaged to represent SWIR band. Figure 4 shows the<br />

selected bands covering the study area. Table 1 described the vegetati<strong>on</strong> indices used for LAI<br />

predicti<strong>on</strong> in the study. The typical <strong>on</strong>es were Simple Ratio (SR) and Normalized Difference<br />

Vegetati<strong>on</strong> <str<strong>on</strong>g>Index</str<strong>on</strong>g> (NDVI) while Renormalized Difference Vegetati<strong>on</strong> <str<strong>on</strong>g>Index</str<strong>on</strong>g> (RDVI), N<strong>on</strong>-Linear<br />

Vegetati<strong>on</strong> <str<strong>on</strong>g>Index</str<strong>on</strong>g> (NLVI), Modified Simple Ratio (MSR) and Reduced Simple Ratio (RSR) were<br />

designed to suppress background effect. The reflectance at Red Edge Positi<strong>on</strong> (REP) calculated<br />

using the linear interpolati<strong>on</strong> method, is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the important features in vegetati<strong>on</strong> analysis<br />

and correlates well with chlorophyll, LAI and healthiness as dem<strong>on</strong>strate in other studies.<br />

Figure 4. The selected NIR (825nm), red (682nm) and SWIR (Averaged 1550-1650nm) reflectance<br />

images <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area (from left to right).<br />

8


Table 1. The Spectral Vegetati<strong>on</strong> <str<strong>on</strong>g>Index</str<strong>on</strong>g> (VIs) used for LAI modeling<br />

Simple Ratio<br />

(SR)<br />

<str<strong>on</strong>g>Index</str<strong>on</strong>g> Formula Descripti<strong>on</strong> References<br />

Normalized Difference<br />

Vegetati<strong>on</strong> <str<strong>on</strong>g>Index</str<strong>on</strong>g><br />

(NDVI)<br />

Renormalized<br />

Difference Vegetati<strong>on</strong><br />

<str<strong>on</strong>g>Index</str<strong>on</strong>g><br />

(RDVI)<br />

N<strong>on</strong>-Linear Vegetati<strong>on</strong><br />

<str<strong>on</strong>g>Index</str<strong>on</strong>g><br />

(NLVI)<br />

Modified Simple Ratio<br />

(MSR)<br />

Reduced Simple Ratio<br />

(RSR) SR* 1 –<br />

Reflectance at<br />

Red Edge Positi<strong>on</strong><br />

(REP)<br />

ρNIR /ρR<br />

(ρNIR – ρR)/( ρNIR+ρR)<br />

(ρNIR – ρR)/( ρNIR + ρR) 1/2<br />

(ρSWIR - ρSWIRmin)<br />

(ρSWIRmax - ρSWIRmin)<br />

Relates the changes in green biomass, pigment c<strong>on</strong>tent, etc.<br />

Enhance the c<strong>on</strong>trast between vegetati<strong>on</strong> and soil and minimizing the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

illuminati<strong>on</strong>.<br />

Resp<strong>on</strong>ds to the changes in green biomass, pigment c<strong>on</strong>tent, etc.<br />

Effective in predicting canopy properties in moderate vegetati<strong>on</strong> density.<br />

Higher linearity with canopy parameters.<br />

Incorporate the advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> the NDVI and Difference Vegetati<strong>on</strong> <str<strong>on</strong>g>Index</str<strong>on</strong>g> (DVI), which is<br />

sensitive for high and low density vegetati<strong>on</strong> covers respectively.<br />

Tucher, 1979;<br />

Baret & Guyot, 1991<br />

Rouse et al., 1974<br />

Roujean & Bre<strong>on</strong>,<br />

1995<br />

(ρ 2 NIR – ρR)/( ρ 2 NIR+ρR) Develop linear relati<strong>on</strong>ships with surface parameters that tend to be n<strong>on</strong>linear. Goel & Qin, 1994<br />

(ρNIR / ρR – 1)<br />

(ρNIR / ρR) 1/2 + 1<br />

ρ 670nm + ρ780nm<br />

2<br />

An enhancement over RDVI by developing a linear relati<strong>on</strong>ship between the index and<br />

biophysical parameters.<br />

Chen, 1996<br />

Modified SR by SWIR reflectance.<br />

Compensate for differences in background reflectance and canopy closure. Brown et al., 2000<br />

Reflectance <str<strong>on</strong>g>of</str<strong>on</strong>g> the point with the maximum slope al<strong>on</strong>g the red edge.<br />

Relatively insensitive to soil background, atmospheric effects, and solar angle.<br />

Dans<strong>on</strong> & Plummer,<br />

1995<br />

Shafri et al., 2006<br />

9


3.6 Linear Regressi<strong>on</strong> <str<strong>on</strong>g>Modeling</str<strong>on</strong>g><br />

Linear regressi<strong>on</strong> model was developed (Green et al., 1997; Kovacs et al., 2004; Kovacs et al.,<br />

2005) using vegetati<strong>on</strong> indices as independent variable to predict LAI, the dependent variable.<br />

The 95 in-situ LAI samples were divided equally into training and testing dataset. Three sets <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

training and testing data were generated through random sampling. The coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

determinati<strong>on</strong> R 2 which is proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> variance explained by the regressi<strong>on</strong> model and the<br />

mean residuals were used to measure model performance.<br />

The LAI map was produced using the unstandardized beta coefficient and c<strong>on</strong>stant given by the<br />

regressi<strong>on</strong> model. Based <strong>on</strong> the known spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species, the LAI for different<br />

species was extracted and compared using univariate statistics.<br />

4. Results and Discussi<strong>on</strong><br />

4.1 Field measured LAI<br />

LAI derived from B<strong>on</strong>homme’s method had a range from 1.31 to 3.56 while that derived from<br />

LAI-2000 method had a range from 1.27 to 3.0. The mean (standard deviati<strong>on</strong>) LAI was 2.27<br />

(0.49) and 2.15 (0.45) for B<strong>on</strong>homme’s method and LAI-2000 method respectively. The<br />

B<strong>on</strong>homme’s LAI was generally higher than LAI-2000 method. Figure 5 shows the frequency<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LAI for both methods.<br />

Figure 5. The frequency distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measured LAI for B<strong>on</strong>homme’s and LAI- 2000 methods<br />

4.3 Regressi<strong>on</strong> and Validati<strong>on</strong><br />

Table 2 shows the average performances <str<strong>on</strong>g>of</str<strong>on</strong>g> regressi<strong>on</strong> models extracted from the three<br />

randomly-generated datasets. The RDVI model has the best performance with the highest R-<br />

10


square (B<strong>on</strong>homme R 2 = 0.614; LAI-2000 R 2 = 0.707) and low mean residual (B<strong>on</strong>homme = 0.046;<br />

LAI-2000 = 0.05). According to Roujean and Bre<strong>on</strong> (1995), RDVI combines advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> NDVI<br />

(not affected by orientati<strong>on</strong> and optical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves and working better under high<br />

vegetati<strong>on</strong> coverage) and DVI (less influenced by background spectral signature under sparse<br />

vegetati<strong>on</strong>, while is much affected by spectral and directi<strong>on</strong>al canopy properties under high<br />

vegetati<strong>on</strong> density). The REP model is the sec<strong>on</strong>d best model though the R 2 is low (B<strong>on</strong>homme<br />

R 2 = 0.0.492; LAI-2000 R 2 = 0.57). The red edge, a distinctive spectral feature <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>, is the<br />

spectral regi<strong>on</strong> with abrupt reflectance change caused by str<strong>on</strong>g chlorophyll absorpti<strong>on</strong> and leaf<br />

interior scattering. Variati<strong>on</strong> in factors like LAI, plant health status, ages, seas<strong>on</strong>al patterns will<br />

cause a shift in REP positi<strong>on</strong> (in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> wavelength) and change <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> reflectance at<br />

REP (Shafri et al., 2006). However, the relati<strong>on</strong>ship with LAI was likely to be n<strong>on</strong>-linear as<br />

suggested by Dans<strong>on</strong> and Plummer (1995). Regressi<strong>on</strong> models using SR, NDVI, NLVI, MSR and<br />

RSR did not provide good fitting soluti<strong>on</strong>s with RSR gave the worst result.<br />

Figure 6 shows the scatterplots <str<strong>on</strong>g>of</str<strong>on</strong>g> field-measured and predicted LAI (using RDVI) for two<br />

computati<strong>on</strong> methods. Three sets <str<strong>on</strong>g>of</str<strong>on</strong>g> predicti<strong>on</strong> are represented by different colors. The linear<br />

regressi<strong>on</strong> models for the two methods were:<br />

B<strong>on</strong>homme’s LAI = -4.785 + 0.113 (RDVI)<br />

LAI-2000 LAI = -4.725 + 0.11 (RDVI)<br />

Judging from the three regressi<strong>on</strong> models, the LAI predicti<strong>on</strong> for the LAI-2000 method was more<br />

c<strong>on</strong>sistent as indicated by less discrepancy am<strong>on</strong>g the predicti<strong>on</strong>s. This was also reflected by the<br />

lower average standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> residual for LAI-2000 method though the mean residual is<br />

about the same in Table 2. The LAI model derived from LAI-2000 method was comparatively<br />

more robust and stable.<br />

Table 2. The average performance <str<strong>on</strong>g>of</str<strong>on</strong>g> regressi<strong>on</strong> models from the three random sets <str<strong>on</strong>g>of</str<strong>on</strong>g> sample<br />

SR NDVI RDVI NLVI MSR RSR REP<br />

B<strong>on</strong>homme’s method<br />

Model R 2 - Total 0.193 0.328 0.614 0.445 0.236 0.055 0.492<br />

Model R 2 - Training 0.140 0.280 0.561 0.397 0.179 0.048 0.444<br />

Model R 2 - Independent 0.260 0.386 0.671 0.500 0.309 0.062 0.545<br />

Mean Residual - Independent 0.070 0.066 0.046 0.373 0.072 0.802 0.050<br />

S.D. Residual - Independent 0.446 0.398 0.288 0.356 0.430 0.492 0.339<br />

LAI – 2000’s method<br />

Model R 2 - Total 0.186 0.348 0.707 0.478 0.235 0.032 0.570<br />

Model R 2 - Training 0.134 0.300 0.658 0.429 0.178 0.033 0.522<br />

Model R 2 - Independent 0.253 0.404 0.759 0.533 0.306 0.032 0.620<br />

Mean Residual - Independent 0.071 0.069 0.050 0.067 0.073 0.504 0.043<br />

S.D. Residual - Independent 0.407 0.355 0.223 0.312 0.390 0.450 0.281<br />

11


R 2 = 0.658<br />

R 2 = 0.707<br />

Figure 6. The scatterplots <str<strong>on</strong>g>of</str<strong>on</strong>g> measured and predicted LAI <str<strong>on</strong>g>of</str<strong>on</strong>g> the 95 plots<br />

The corresp<strong>on</strong>ding LAI predicted maps are shown in Figure 7. The predicted B<strong>on</strong>homme’s LAI<br />

was generally higher than that predicted by LAI-2000’s method. The maximum LAI is 3.97 and<br />

3.80 for B<strong>on</strong>homme’s method and LAI-2000’s method respectively. However, no distinctive<br />

difference in the spatial pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> LAI was observed.<br />

Sample set 1<br />

Sample set 2<br />

Sample set 3<br />

Regressi<strong>on</strong> fit line<br />

Figure 7 also indicates the locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pure patches <str<strong>on</strong>g>of</str<strong>on</strong>g> mangrove <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> previous documents<br />

and researches. Site 1 is Kandelia obovata; site 2 is Avicennia marina; site 3 is Kandelia obovata;<br />

and site 4 is Acanthus ilicifolius. The two K. obovata sites showed significant difference in LAI<br />

with site 3 much higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g> site 1. As documented in the government database,<br />

mangroves in site 1 and the areas adjacent to the Gai Wai had appeared as early as 1945. Over<br />

the years, the mangroves extended seawards to the Deep Bay in a steady rate. Site 3 had begun<br />

to emerge since 1990 and not until 2005 had it grown to the current status. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> factors,<br />

such as the natural setting and human-related activities had affected to their growths. Although<br />

they are <str<strong>on</strong>g>of</str<strong>on</strong>g> the same species, they were significantly different in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> their growth structure<br />

and canopy characteristics, which in turn affect the gap fracti<strong>on</strong> and LAI. The LAI <str<strong>on</strong>g>of</str<strong>on</strong>g> site 1 is<br />

significantly lower than that <str<strong>on</strong>g>of</str<strong>on</strong>g> site 3. Mediusm LAI was found in site 2 and 4. LAI computed from<br />

both methods exhibited the same spatial pattern.<br />

12


Deep Bay<br />

Mudflat<br />

3<br />

2<br />

4<br />

1<br />

Gai Wai<br />

Figure 7. The spatial pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> LAI modeled with regressi<strong>on</strong> analysis<br />

Simple statistical measures were used to measure the variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> LAI at species levels. Table 3<br />

shows the predicted LAI in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> species. A. marina had the highest average LAI (B<strong>on</strong>homme<br />

= 2.018; LAI-2000 = 1.909); this was followed by A. ilicifolius, K. obovata and A. corniculatum.<br />

The standard deviati<strong>on</strong> was relatively large (about 0.8) for A. corniculatum and A. ilicifolius. This<br />

was due to the presences <str<strong>on</strong>g>of</str<strong>on</strong>g> comparatively large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> sites with LAI equal to or<br />

approaching zero. A. ilicifolius is a pi<strong>on</strong>eer species, which extend towards the fringe <str<strong>on</strong>g>of</str<strong>on</strong>g> mangrove,<br />

the mixed pixel problem tends to be more serious, especially when a medium resoluti<strong>on</strong> sensor<br />

was used. The recorded distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A. corniculatum also tends to be coastal, which therefore<br />

face the same problem. The c<strong>on</strong>straint <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed pixel also existed in the other two species but<br />

the magnitude was less prominent.<br />

3<br />

2<br />

4<br />

1<br />

13


Table 3. Statistical comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted LAI am<strong>on</strong>g species<br />

B<strong>on</strong>homme's method LAI-2000’s method<br />

*Species Ac Ai Am Ko Ac Ai Am Ko<br />

Mean 1.661 1.951 2.018 1.879 1.583 1.852 1.909 1.772<br />

S.D. 0.875 0.825 0.635 0.595 0.828 0.784 0.602 0.566<br />

Minimum 0.009 0.008 0.019 0.021 0.002 0.001 0.008 0.008<br />

Maximum 3.813 3.969 3.372 3.514 3.644 3.797 3.216 3.353<br />

*Species: Ac - Aegiceras corrniculatum; Ai - Acanthus ilicifolius; Am - Avicennia marina; Ko - Kandelia obovata<br />

5. C<strong>on</strong>clusi<strong>on</strong><br />

The study dem<strong>on</strong>strated the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> in-situ field measurement and vegetati<strong>on</strong> indices<br />

derived from narrowband hyperspectral image in mapping <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the vital biophysical<br />

parameters – <str<strong>on</strong>g>Leaf</str<strong>on</strong>g> <str<strong>on</strong>g>Area</str<strong>on</strong>g> <str<strong>on</strong>g>Index</str<strong>on</strong>g> (LAI) in a mangrove site <str<strong>on</strong>g>of</str<strong>on</strong>g> worldwide importance. Two methods,<br />

B<strong>on</strong>homme and LAI-2000, were used to calculate LAI <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the measured gap fracti<strong>on</strong>.<br />

Am<strong>on</strong>g the vegetati<strong>on</strong> indices, Renormalized Difference Vegetati<strong>on</strong> <str<strong>on</strong>g>Index</str<strong>on</strong>g> (RDVI) explained the<br />

highest proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> variability in the linear regressi<strong>on</strong> model, which was then used to predict<br />

LAI <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-surveyed areas. The predicted B<strong>on</strong>homme’s LAI was relatively higher than that<br />

predicted by LAI-2000 method though the spatial pattern was comparable. The final sessi<strong>on</strong><br />

compared LAI difference in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> species. Of the same species, significant LAI difference was<br />

found due to temporal variati<strong>on</strong>. Besides, species showed quite a distinctive LAI pattern.<br />

RDVI showed relatively str<strong>on</strong>g and linear relati<strong>on</strong>ship with LAI. The fast and simple computati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> RDVI enables effective m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> mangrove. However, the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> other VIs<br />

hindered the derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> robust model. The poor performance was most probably due to<br />

intrinsic property <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong> indices, like background or n<strong>on</strong>-linearity with LAI. Another<br />

possible cause was the selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> unrepresentative narrowbands for VIs computati<strong>on</strong>. Instead<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> picking the narrowbands using correlati<strong>on</strong>, more robust feature selecti<strong>on</strong> algorithms can be<br />

explored in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> spectral band selecti<strong>on</strong> and generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spectral derivatives having better<br />

resp<strong>on</strong>se to the biophysical parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> interest in the next step. The feature selecti<strong>on</strong><br />

technique is especially essential in the SWIR spectral regi<strong>on</strong> when low signal-to-noise ratio was<br />

encountered. All in all, the role remote sensing in ecological survey and m<strong>on</strong>itoring has been<br />

well-established over the past decades. The c<strong>on</strong>tinuous emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> new spaceborne sensors,<br />

techniques and algorithms has c<strong>on</strong>tinuously <str<strong>on</strong>g>of</str<strong>on</strong>g>fered a cost effective way in m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> earth<br />

ecological resources at different scales.<br />

14


Acknowledgement<br />

This research is supported by a Research Grant Council General Research Grant (Project<br />

2160368). The authors would also like to thank the Agriculture, Fisheries and C<strong>on</strong>servati<strong>on</strong><br />

Development, HKSAR for providing full support <strong>on</strong> field data collecti<strong>on</strong> and validati<strong>on</strong>.<br />

References<br />

Broge, N. H. & E. Leblanc. (2001). Comparing predicti<strong>on</strong> power and stability <str<strong>on</strong>g>of</str<strong>on</strong>g> broadband and<br />

hyperspectral vegetati<strong>on</strong> indices for estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> green leaf area index and canopy<br />

chlorophyll density. Remote Sensing <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, 76, 156-172.<br />

Brown, L., J. M. Chen, S. G. Leblanc & J. Cihlar. (2000). A shortwave infrared modificati<strong>on</strong> to the<br />

simple ratio for LAI retrieval in boreal forests: An image and model analysis. Remote<br />

Sensing <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, 71, 16-25.<br />

Chas<strong>on</strong>, J., D. Baldocchi & M. Huts<strong>on</strong>. (1991). A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> direct and indirect methods for<br />

estimating forest leaf area. Agricultural and Forest Meteorology, 57, 107-128.<br />

Chen, J. M. & T. A. Black. (1992). Defining leaf-area index for n<strong>on</strong>-flat leaves. Plant, Cell and<br />

Envir<strong>on</strong>ment, 15, 421-429.<br />

Chen, J. M., P. M. Rich, S. T. Gower, J. M. Norman & S. Plummer. (1997). <str<strong>on</strong>g>Leaf</str<strong>on</strong>g> area index <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

boreal forests: theory, techniques, and measurements. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical Research,<br />

102, 429-443.<br />

Dans<strong>on</strong>, F.M. and S.E. Plummer (1995). Red-edge resp<strong>on</strong>se to forest leaf area index.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing, 16, 183-188.<br />

Daws<strong>on</strong>, T.P. and P.J. Curran (1998). A new technique for interpolating the reflectance red edge<br />

positi<strong>on</strong>. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing, 19, 2133-2139.<br />

Elvidge, C. D. & Z. Chen. (1995). Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> broad-band and narrow-band red and nearinfrared<br />

vegetati<strong>on</strong> indices. Remote Sensing <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, 54, 38-48.<br />

Gao, J. (1999). A comparative study <strong>on</strong> spatial and spectral resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> satellite data in<br />

mapping mangrove forests. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing, 20, 2823-2833.<br />

G<strong>on</strong>g, P., R. Pu, G. Biging & M. Larrieu. (2003). Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest leaf area index using<br />

vegetati<strong>on</strong> indices derived from Hyperi<strong>on</strong> hyperspectral data. IEEE Transacti<strong>on</strong>s <strong>on</strong><br />

Geoscience and Remote Sensing, 41, 1355-1362.<br />

15


Green, E. P., P. J. Mumby, A. J. Edwards, C. D. Clark & A. C. Ellis. (1997). Estimating leaf area<br />

index <str<strong>on</strong>g>of</str<strong>on</strong>g> mangroves from satellite data. Aquatic Botany, 58, 11-19.<br />

Hirano, A., M. Madden & R. Welch. (2003). <strong>Hyperspectral</strong> image data for mapping wetland<br />

vegetati<strong>on</strong>. Wetlands, 23, 436-448.<br />

J<strong>on</strong>ckheere, I., S. Fleck, K. Nackaerts, B. Muys, P. Coppin, M. Weiss & F. Baret. (2004). Review <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

methods for in situ leaf area index determinati<strong>on</strong> Part I. Theories, sensors and<br />

hemispherical photography. Agricultural and Forest Meteorology, 121, 19-35.<br />

Kovacs, J. M., Flores-Verdugo, F., Wang, J., & Aspden, L. P. (2004). Estimating leaf area index <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

degraded mangrove forest using high spatial resoluti<strong>on</strong> satellite data. Aquatic Botany,<br />

80, 13-22.<br />

Kovacs, J. M., Wang, J., & Flores-Verdugo, F. (2005). Mapping mangrove leaf area index at the<br />

species level using IKONOS and LAI-2000 sensors for the agua brava lago<strong>on</strong>, Mexican<br />

pacific. Estuarine, Coastal and Shelf Science, 62, 377-384.<br />

Kumar, L., K. Schmidt, S. Dury & A. Skidmore. (2001). Imaging spectrometry and vegetati<strong>on</strong><br />

science. In Imaging Spectrometry: Basic Principles and Prospective Applicati<strong>on</strong>s (eds). F.<br />

D. Van der Meer & S. M. De J<strong>on</strong>g, pp.111-155. Dordrecht: Kluwer Academic Publishers.<br />

Lee, K. S., W. B. Cohen, R. E. Kennedy, T. K. Maiersperger & S. T. Gower. (2004). <strong>Hyperspectral</strong><br />

versus multispectral data for estimating leaf area index in four different biomes. Remote<br />

Sensing <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, 91, 508-520.<br />

Pierce, L. L. & S. W. Running. (1988). Rapid estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>iferous forest leaf index using a<br />

portable integrating radiometer. Ecology, 69, 1762-1767.<br />

Pu, R., Q. Yu, P. G<strong>on</strong>g & G. S. Biging. (2005). EO-1 Hyperi<strong>on</strong>, ALI and Landsat 7 ETM+ data<br />

comparis<strong>on</strong> for estimating forest crown closure and leaf area index. Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing, 26, 457-474.<br />

Ray, S. S.; Das, G.; Singh, J. P.; Panigrahy, S. (2006). Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperspectral indices for LAI<br />

estimati<strong>on</strong> and discriminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potato crop under different irrigati<strong>on</strong> treatments.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing, 27, 5373-5387.<br />

Regent Instruments Inc. (2008) WinSCANOPY 2006a,b For Canopy Analysis. Regent Instruments<br />

Inc.<br />

Ross, J. (1981). The radiati<strong>on</strong> regime and architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> plant stands. The Hague, The<br />

Netherlands: Dr Junk W.<br />

Rougean, J. L., & Bre<strong>on</strong>, F. M. (1995). Estimating PAR absorbed by vegetati<strong>on</strong> from bidirecti<strong>on</strong>al<br />

reflectance measurements. Remote Sensing Envir<strong>on</strong>ment, 51, 375– 384.<br />

16


Shafri, H.Z.M., M.A.M. Salleh, and A. Ghiyamat (2006). <strong>Hyperspectral</strong> remote sensing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vegetati<strong>on</strong> using red edge positi<strong>on</strong> technique. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences, 3,<br />

1864-1871.<br />

Thenkabail, P.S., E.A. Encl<strong>on</strong>a, M.S. Asht<strong>on</strong>, and B. Van Der Meer (2004). Accuracy assessments<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hyperspectral waveband performance for vegetati<strong>on</strong> analysis applicati<strong>on</strong>s. Remote<br />

Sensing <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, 91, 354-376.<br />

Valiela, I., Bowen, J.L., & York, J.K. (2001). <str<strong>on</strong>g>Mangrove</str<strong>on</strong>g> forests: One <str<strong>on</strong>g>of</str<strong>on</strong>g> the world's threatened<br />

major tropical envir<strong>on</strong>ments. BioScience, 51, 807-815.<br />

Van Gardingen, P.R., G.E. Jacks<strong>on</strong>, S. Hernandez-Daumas, G. Russell, and L. Sharp (1999). <str<strong>on</strong>g>Leaf</str<strong>on</strong>g><br />

area index estimates obtained for clumped canopies using hemispherical photography.<br />

Agricultural and Forest Meteorology, 94, 243-257.<br />

Verstraete, M. M. (1994). Scientific issues and instrumental opportunities in remote sensing and<br />

high resoluti<strong>on</strong> spectrometry. In Imaging Spectrometry - A Tool for Envir<strong>on</strong>mental<br />

Observati<strong>on</strong>s (eds). J. Hill & J. Megier, pp.25-38. Dordrecht: Kluwer Academic Publishers.<br />

Welles, J. M. (1990). Some indirect methods <str<strong>on</strong>g>of</str<strong>on</strong>g> estimating canopy structure. Remote Sensing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Envir<strong>on</strong>ment, 5, 31-43.<br />

Welles, J. M. & J. M. Norman. (1991). Instrument for indirect measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> canopy<br />

architecture. Agr<strong>on</strong>omy Journal, 83, 818-825.<br />

Zhao, D., L. Huang, J. Li & J. Qi. (2007). A comparative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> broadband and narrowband<br />

derived vegetati<strong>on</strong> indices in predicting LAI and CCD <str<strong>on</strong>g>of</str<strong>on</strong>g> a cott<strong>on</strong> canopy. ISPRS Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Photogrammetry and Remote Sensing, 62, 25-33.<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!