14.06.2013 Views

Book of Abstracts - Dipartimento di Matematica

Book of Abstracts - Dipartimento di Matematica

Book of Abstracts - Dipartimento di Matematica

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Workshop on<br />

Non-Standard Numerical Methods for PDE’s<br />

Pavia (Italy), June 29th - July 2nd, 2010<br />

<strong>Book</strong> <strong>of</strong> <strong>Abstracts</strong>


Organizing Commetee<br />

Daniele B<strong>of</strong>fi<br />

Annalisa Buffa<br />

Carlo Lova<strong>di</strong>na<br />

Ilaria Perugia<br />

Giancarlo Sangalli<br />

Fun<strong>di</strong>ng<br />

Istituto <strong>di</strong> Alta <strong>Matematica</strong> “F. Severi”<br />

c<strong>of</strong>ounded by:<br />

ERC Project GeoPDEs<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong> “F. Casorati”,<br />

Università <strong>di</strong> Pavia


Program<br />

Tuesday Wednesday Thursday Friday<br />

9:00-9:50 D. N. Arnold P. Monk F. Brezzi E. Cohen<br />

9:50-10:20 M. Costabel T. Betcke G. Manzini B. Jüttler<br />

Break Break Break Break<br />

10:50-11:20 S. Christiansen T. Luostari M. F. Wheeler A. Reali<br />

11:20-11:50 J. Schoeberl G. Gabard I. Yotov J. A. Evans<br />

11:50-12:20 R. Falk J. M. Melenk<br />

Lunch<br />

L. Beirão da<br />

Veiga<br />

J. Rivas<br />

14:00-14:50 L. Demkowicz R. Hiptmair K. Lipnikov T. Dokken<br />

14:50-15:20 F. Gar<strong>di</strong>ni A. Moiola P. Bochev C. Manni<br />

15:20-15:50 R. Winther S. A. Sauter<br />

15:20-15:40<br />

D. Svyatskiy R. Duvigneau<br />

15:40-16:00<br />

A. Cangiani<br />

Break Break Break<br />

16:00-16:20<br />

A. Quaglino<br />

16:10-16:30 M. Dauge C. H<strong>of</strong>reither F. Cirak<br />

Break<br />

16:30-16:50 H. Heumann J. Phillips P. N. Nielsen<br />

16:50-17:10 A. Palha A. M. Marica A. Ratnani<br />

17:10-17:30 J. Kreeft M. Ruess<br />

16:40-20:00<br />

Panel Session C. Heinrich<br />

17:30-17:50 P. Gatto<br />

20:30<br />

Social <strong>di</strong>nner


Contents<br />

Plenary lectures 1<br />

Doug Arnold<br />

Hilbert Complexes and the Finite Element Exterior Calculus . . . . . . . 3<br />

Franco Brezzi<br />

Scalar products and reconstructions in MFD . . . . . . . . . . . . . . . . 4<br />

Elaine Cohen<br />

Analysis Aware Modeling for Isogeometric Analysis . . . . . . . . . . . . . 5<br />

L. Demkowicz, J. Bramwell and W. Qiu<br />

Solution <strong>of</strong> dual-mixed elasticity equations using Arnold-Falk-Winther element<br />

and <strong>di</strong>scontinuous Petrov-Galerkin method, a comparison . . . . . 6<br />

Tor Dokken<br />

Locally Refined Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

R. Hiptmair, C. Gittelson, A. Moiola, and I. Perugia<br />

Plane Wave Discontinuous Galerkin Methods . . . . . . . . . . . . . . . . 9<br />

K. Lipnikov<br />

Mimetic finite <strong>di</strong>fference method for solving PDEs on polygonal and polyhedral<br />

meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

Peter Monk<br />

The solution <strong>of</strong> time harmonic wave equations using complete families <strong>of</strong><br />

elementary solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

Invited talks 13<br />

L. Beirão da Veiga<br />

Mimetic <strong>di</strong>scretization <strong>of</strong> the <strong>di</strong>ffusion problem: a higher order method<br />

and a posteriori error estimates . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

Timo Betcke<br />

Nonpolynomial FEM with MPSPACK . . . . . . . . . . . . . . . . . . . . 16<br />

Pavel Bochev<br />

Optimization-based computational models, or how to let someone else do<br />

the hard work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

Snorre Christiansen<br />

Mixed finite elements as inverse systems <strong>of</strong> <strong>di</strong>fferential forms . . . . . . . . 18<br />

Martin Costabel<br />

Regularized Poincaré operator and p version approximation <strong>of</strong> the Maxwell<br />

eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19


R. Duvigneau<br />

Aerodynamic Analysis and Design using an Isogeometric Approach . . . . 20<br />

Annalisa Buffa, John A. Evans, Thomas J.R. Hughes, Giancarlo Sangalli<br />

Isogeometric Analysis in Fluid Dynamics: Divergence-Free Discretizations<br />

for the Stokes and Navier-Stokes Equations . . . . . . . . . . . . . . . . . 21<br />

R. Falk<br />

Canonical Families <strong>of</strong> Finite Element Differential Forms and Their Properties<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

G. Gabard, R.J. Astley, P. Gamallo, G. Kennedy<br />

A brief review <strong>of</strong> wave-based computational methods for aero-acoustics . . 23<br />

Francesca Gar<strong>di</strong>ni<br />

Mimetic finite <strong>di</strong>fferences for eigenvalue problems . . . . . . . . . . . . . 24<br />

Bert Jüttler<br />

Dimensions and Bases <strong>of</strong> Bivariate Hierarchical Tensor-product Splines . 26<br />

Teemu Luostari, Tomi Huttunen and Peter Monk<br />

A 3D plane wave basis for elastic wave problems . . . . . . . . . . . . . . 27<br />

Carla Manni, Francesca Pelosi and Maria Lucia Sampoli<br />

Beyond NURBS: Non-Standard CAGD Tools in Isogeometric Analysis . . 29<br />

G. Manzini<br />

High-order accurate nodal formulation <strong>of</strong> the Mimetic Finite Difference<br />

Method for Elliptic Problems . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

J.M. Melenk<br />

Mapping properties <strong>of</strong> Helmholtz integral operators and their application<br />

to the hp-BEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

Ralf Hiptmair, Andrea Moiolaand Ilaria Perugia<br />

Approximation by plane waves . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

Alessandro Reali<br />

Isogeometric Analysis in Pavia . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

L. Beirão da Veiga, A. Buffa, J. Rivasand G. Sangalli<br />

Some estimates for hpk-refinement in Isogeometric Analysis . . . . . . . . 35<br />

Stefan A. Sauter<br />

A Posteriori Error Estimation for Highly Indefinite Helmholtz Problems . 36<br />

Joachim Schöberl<br />

Nitsche-type Mortaring for Maxwell’s Equations . . . . . . . . . . . . . . 37<br />

Mary F. Wheeler<br />

A Convergent MFMFE for Highly Distorted Hexahedra . . . . . . . . . . 38<br />

R. Winther<br />

Cochain projections in finite element exterior calculus . . . . . . . . . . . 39<br />

Ivan Yotov<br />

A Multiscale Mortar Multipoint Flux Mixed Finite Element Method . . . 40<br />

Contributed talks 41


Andrea Cangiani<br />

Mimetic Finite Difference methods for convection-<strong>di</strong>ffusion problems . . . 43<br />

Fehmi Cirakand Quan Long<br />

A unified sub<strong>di</strong>vision <strong>di</strong>scretization approach for thick and thin shells . . 44<br />

Monique Dauge<br />

Skin effect in electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

Paolo Gatto, Leszek Demkowicz<br />

Modeling <strong>of</strong> bone conduction <strong>of</strong> sound in the human head using hp-finite<br />

elements: code design and verification. . . . . . . . . . . . . . . . . . . . . 47<br />

Ch. Heinrich, A.-V. Vuong, B. Simeon<br />

Finite Volume Methods on NURBS Geometries with Application to Fluid<br />

Flow and Fluid-Structure Interaction . . . . . . . . . . . . . . . . . . . . . 48<br />

Holger Heumann<br />

High order Galerkin Methods for General Advection Problems . . . . . . 49<br />

Clemens H<strong>of</strong>reither<br />

A non-standard finite element method based on boundary integral operators 51<br />

J.J. Kreeft, A. Palha, M.I. Gerritsma<br />

Higher-order <strong>di</strong>scretization <strong>of</strong> the Laplace-Beltrami operator . . . . . . . . 52<br />

Aurora-Mihaela Marica(joint work with Enrique Zuazua)<br />

Localized solutions and filtering mechanisms for the <strong>di</strong>scontinuous Galerkin<br />

semi-<strong>di</strong>scretizations <strong>of</strong> the 1 − d wave equation . . . . . . . . . . . . . . . 53<br />

Peter Nørt<strong>of</strong>t Nielsen, Manh Dang Nguyen, Anton Evgrafov,<br />

Allan Roulund Gersborg and Jens Gravesen<br />

Isogeometric Shape Optimization . . . . . . . . . . . . . . . . . . . . . . . 55<br />

A. Palha, J.J. Kreeft, M.I. Gerritsma<br />

Higher order cochain interpolation . . . . . . . . . . . . . . . . . . . . . . 56<br />

Joel Phillips<br />

Quadrature for Finite Elements on Pyramids . . . . . . . . . . . . . . . . 57<br />

Joachim Linn, Alessio Quaglino, Max Wardetzky and Clarisse Weischedel<br />

Towards a Mimetic Nonlinear Shearable Shell . . . . . . . . . . . . . . . . 58<br />

Ahmed Ratnani, Eric Sonnendrucker and Nicolas Crouseilles<br />

High-Order Spline Finite Element Solver for the Time Domain Maxwell<br />

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

M. Ruessand E. Rank<br />

A Fictitious Domain Method for Dynamic Analyses . . . . . . . . . . . . 62<br />

D. Svyatskiy<br />

Analysis <strong>of</strong> the Discrete Maximum Principle in the Mimetic Finite Difference<br />

Method for Elliptic Problems . . . . . . . . . . . . . . . . . . . . . . 64<br />

List <strong>of</strong> participants 65


Plenary lectures<br />

1


Plenary lectures<br />

Hilbert Complexes and the Finite Element Exterior Calculus<br />

Doug Arnold<br />

Institute for Mathematics and its Applications, University <strong>of</strong> Minnesota,<br />

Minneapolis, MN 55455, USA<br />

arnold@ima.umn.edu<br />

The finite element exterior calculus (FEEC) provides a framework in which to understand<br />

and develop stable finite element methods for a variety <strong>of</strong> problems. Hilbert<br />

complexes provide a natural framework for FEEC. In this talk we will survey the basic<br />

theory <strong>of</strong> Hilbert complexes and their <strong>di</strong>scretization, <strong>di</strong>scuss their applications to finite<br />

element methods, and draw connections to results from geometry and topology.<br />

3


Plenary lectures<br />

Scalar products and reconstructions in MFD<br />

Franco Brezzi<br />

Istituto <strong>di</strong> <strong>Matematica</strong> Applicata e Tecnologie Iinformatiche, CNR,<br />

via Ferrata 1, 27100 Pavia, Italia<br />

brezzi@imati.cnr.it<br />

It is well known that in many cases one has a fair amount <strong>of</strong> freedom in the choice <strong>of</strong><br />

scalar products for Mimetic Finite Differences. The best use <strong>of</strong> such freedom in many<br />

circumstances is still to be assessed. Here in particular we will <strong>di</strong>scuss the cases in<br />

which the MFD scalar product could be interpreted as a tra<strong>di</strong>tional scalar product in<br />

conforming or nonconforming finite element spaces. The usual consistency requirements<br />

for the scalar products will be related to the classical “patch test” used by engineers in<br />

order to assess the convergence <strong>of</strong> a given finite element <strong>di</strong>scretization.<br />

4


Analysis Aware Modeling for Isogeometric Analysis<br />

Elaine Cohen<br />

School <strong>of</strong> Computing, University <strong>of</strong> Utah,<br />

50 S. Central Campus Drive, 3190 MEB, Salt Lake City, UT, 84112, USA<br />

cohen@cs.utah.edu<br />

Plenary lectures<br />

Isogeometric Analysis (IA) has been proposed as a methodology for bridging the gap<br />

between Computer Aided Design (CAD) and Finite Element Analysis (FEA). While<br />

CAD typically focuses on a boundary representation, FEA has focused on volumetric<br />

representations that are low order (linear) approximations to the geometry. Creating<br />

high quality representations for just one <strong>of</strong> these goals can be challenging. However,<br />

proposed representations for IA must create parameterizations and elements suitable<br />

for supporting both good geometric computations and have good qualities for this new<br />

mode <strong>of</strong> analysis. This presentations <strong>di</strong>scusses some <strong>of</strong> the desirable attributes, challenges<br />

in moving from current representational and modeling methodologies, and some<br />

initial modeling/reconstruction methodologies towards creating models that satisfy both<br />

domains.<br />

5


Plenary lectures<br />

Solution <strong>of</strong> dual-mixed elasticity equations using Arnold-<br />

Falk-Winther element and <strong>di</strong>scontinuous Petrov-Galerkin<br />

method, a comparison<br />

L. Demkowicz, J. Bramwell and W. Qiu<br />

Institute for Computational Engineering and Sciences, The University <strong>of</strong> Texas at Austin,<br />

Austin, TX 78712, USA<br />

demlow@ms.uky.edu<br />

Construction <strong>of</strong> stable Finite Element (FE) <strong>di</strong>scretizations for the dual-mixed system<br />

<strong>of</strong> linear elasticity has been an area <strong>of</strong> research for three decades. The recent element<br />

<strong>of</strong> Arnold, Falk and Winther [1] builds upon reproducing on the <strong>di</strong>screte level an exact<br />

sequence for the elasticity equations (with weakly imposed symmetry) that provides a<br />

basis for stability <strong>of</strong> the continuous problem. The situation is more complicated than<br />

for the classical grad-curl-<strong>di</strong>v sequence where the <strong>di</strong>screte spaces are accompanied by<br />

the operators from the continuous setting. Construction <strong>of</strong> the <strong>di</strong>screte elasticity complex<br />

involves not only definition <strong>of</strong> appropriate <strong>di</strong>screte polynomial spaces but also a<br />

necessary mo<strong>di</strong>fication <strong>of</strong> the operators that involve besides the grad-curl-<strong>di</strong>v operator<br />

purely algebraic operations. In the end, the pro<strong>of</strong> <strong>of</strong> <strong>di</strong>screte stability boils down to the<br />

construction <strong>of</strong> appropriate interpolation operators that make simultaneously commute<br />

three particular <strong>di</strong>agrams related to the elasticity complex.<br />

The AFW element has been recently extended to elements <strong>of</strong> variable order [6,7,8].<br />

Whereas the generalization <strong>of</strong> polynomial spaces is standard, the construction <strong>of</strong> the<br />

interpolation operators is not and rather technical. 2D numerical experiments confirm<br />

the stability not only for h-refined meshes <strong>of</strong> variable order, but for hp-refinements as<br />

well. Showing the independence <strong>of</strong> stability constants upon order p, however, remains<br />

open.<br />

The main promise <strong>of</strong> the recently introduced Discontinuous Petrov Galerkin (DPG)<br />

method with optimal test functions is that it guarantees the <strong>di</strong>screte stability, if the underlying<br />

continuous problem is well-posed. The method delivers the best approximation<br />

in a problem-dependent energy (residual) norm [2,3,4]. Moreover, with an appropriate<br />

choice <strong>of</strong> norm for the test space, one can deliver the best approximation in a norm <strong>of</strong><br />

choice, starting with the L 2 -norm [5,9].<br />

The presentation will be devoted to a numerical comparison and illustration <strong>of</strong> the two<br />

methods using 2D examples. After a brief introduction <strong>of</strong> both methodologies, we shall<br />

use an L-shape domain problem to study the stability <strong>of</strong> both methods by comparing<br />

the actual approximation error with the best approximation error in context <strong>of</strong> uniform<br />

as well as h- and hp-adaptive refinements.<br />

6


References<br />

Plenary lectures<br />

[1] D. N. Arnold, R. S. Falk, and R. Winther. Mixed finite element methods for linear elasticity<br />

with weakly imposed symmetry. Mathematics <strong>of</strong> Computation, 76:1699-1723, 2007.<br />

[2] L. Demkowicz and J. Gopalakrishnan. A class <strong>of</strong> <strong>di</strong>scontinuous Petrov-Galerkin methods.<br />

Part I: The transport equation. Comput. Methods Appl. Mech. Engrg., 2009. accepted, see<br />

also ICES Report 2009-12.<br />

[3] L. Demkowicz and J. Gopalakrishnan. A class <strong>of</strong> <strong>di</strong>scontinuous Petrov-Galerkin methods.<br />

Part II: Optimal test functions. Technical Report 16, ICES, 2009. Numer. Meth. Part. D.<br />

E., in review.<br />

[4] L. Demkowicz, J. Gopalakrishnan, and A. Niemi. A class <strong>of</strong> <strong>di</strong>scontinuous Petrov-Galerkin<br />

methods. Part III: Adaptivity. Technical Report 1, ICES, 2010.<br />

[5] A.H. Niemi, J.A. Bramwell, and L.F. Demkowicz. Discontinuous Petrov-Galerkin method<br />

with optimal test functions for thin-body problems in solid mechanics. Technical Report 13,<br />

ICES, 2010.<br />

[6] W. Qiu and L. Demkowicz. Mixed hp-finite element method for linear elasticity with weakly<br />

imposed symmetry. Comput. Methods Appl. Mech. Engrg., 198:3682-3701, 2009.<br />

[7] W. Qiu and L. Demkowicz. Mixed hp-finite element method for linear elasticity with weakly<br />

imposed symmetry II: Curvilinear elements in 2D. Technical Report 6, ICES, 2010.<br />

[8] W. Qiu and L. Demkowicz. Mixed hp-finite element method for linear elasticity with weakly<br />

imposed symmetry III: 3D elements. Technical report, ICES, 2010, in preparation.<br />

[9] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo, and V. Calo. A class <strong>of</strong><br />

<strong>di</strong>scontinuous Petrov-Galerkin methods. Part IV: Wave propagation problems. Technical<br />

Report 17, ICES, 2010.<br />

7


Plenary lectures<br />

Locally Refined Splines<br />

Tor Dokken<br />

Department <strong>of</strong> Applied Mathematics, SINTEF ICT,<br />

Forskningsveien 1, Oslo<br />

tor.dokken@sintef.no<br />

The central idea <strong>of</strong> isogeometric analysis is to replace tra<strong>di</strong>tional Finite Elements<br />

by NonUniform Rational B-splines (NURBS) to provide accurate shape description and<br />

higher order elements in analysis. Since the introduction <strong>of</strong> the idea by T. Hughes in 2005<br />

excellent results have been obtained documenting the potential <strong>of</strong> isogeometric analysis.<br />

However, it has also been demonstrated that NURBS do not support the local refinement<br />

needed in efficient isogeometric analysis. T-splines <strong>of</strong>fer some local refinement but have<br />

been shown to be linearly dependent in specific configurations, a situation not acceptable<br />

in analysis. Rather than adapting technology such as T-splines developed for Computer<br />

Aided Geometric Design (CAGD), Locally Refined Splines (LR-splines) are developed<br />

from the dual viewpoints <strong>of</strong> CAGD and analysis. T-splines represent the refinement<br />

in the grid <strong>of</strong> control vertices, a natural approach in CAGD. However, this hides the<br />

<strong>di</strong>mensionality <strong>of</strong> the spline space, gives refinement a fairly large footprint, and can in<br />

certain situations trigger an unwanted growth in the number <strong>of</strong> coefficients. LR-splines<br />

code the refinement <strong>di</strong>rectly in the parameterization <strong>of</strong> the spline space by insertion <strong>of</strong><br />

knot line segments. This approach gives refinement a small footprint, provides control <strong>of</strong><br />

the <strong>di</strong>mensionality <strong>of</strong> the spline space, and supplies a basis composed <strong>of</strong> tensor product<br />

B-spline basis functions with <strong>di</strong>fferent levels <strong>of</strong> refinement. The LR-spline basis also<br />

satisfies the important partition <strong>of</strong> unity property without resorting to rational scaling<br />

as in T-splines. The talk will report on the current status <strong>of</strong> the development <strong>of</strong> LRsplines,<br />

and show the first examples <strong>of</strong> the flexible refinement <strong>of</strong> LR-splines.<br />

8


Plane Wave Discontinuous Galerkin Methods<br />

R. Hiptmair † , C. Gittelson † , A. Moiola † , and I. Perugia ‡<br />

† Seminar for Applied Mathematics, ETH,<br />

Rämistrasse 101, 8092 Zürich, Switzerland<br />

‡ <strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Pavia,<br />

Via Ferrata 1, 27100 Pavia, Italia<br />

Plenary lectures<br />

{hiptmair,gittelson,moiola}@sam.math.ethz.ch, ilaria.perugia@unipv.it<br />

A natural idea to improve the accuracy <strong>of</strong> Galerkin methods for wave propagation<br />

problems in the frequency domain is to incorporate qualitative information about the<br />

oscillatory behavior <strong>of</strong> solutions into the trial spaces. For the homogeneous Helmholtz<br />

equation −∇u − ω 2 u = 0 this idea naturally resorts to plane wave functions x →<br />

exp(iωd · x), |d| = 1, and it has given rise to various plane-wave based methods. Prominent<br />

examples <strong>of</strong> such methods are the plane wave partition <strong>of</strong> unity finite element<br />

method [2], the ultraweak Galerkin <strong>di</strong>scretization (UWVF) [4, 5], the <strong>di</strong>scontinuous enrichment<br />

method [1, 13], and the VTCR (variational theory <strong>of</strong> complex rays) approach<br />

[12]. All perform fairly well in computations, see [8-10] for computational results for the<br />

ultra-weak approach. This presentation will focus on plane wave <strong>di</strong>scontinous Galerkin<br />

methods (PWDG), <strong>of</strong> which the UWVF is a special incarnation, see [3, 6]. In the framework<br />

<strong>of</strong> Trefftz-DG methods the formulation is derived and, subsequently, the available<br />

theoretical results on convergence <strong>of</strong> the h-version and the p-version will be surveyed [6,<br />

7], resorting to refined plane wave approximation estimates from [11], cf. the talk by A.<br />

Moiola. Numerical results on the performance <strong>of</strong> PWDG will be <strong>di</strong>scussed along with<br />

the extension <strong>of</strong> convergence theory to electromagnetic wave propagation. An outlook<br />

will address the potential <strong>of</strong> adaptive plane wave methods and Trefftz-DG methods in<br />

for other singularly perturbed boundary value problems.<br />

References<br />

[1] M. Amara, R. Djellouli, and C. Farhat, Convergence analysis <strong>of</strong> a <strong>di</strong>scontin- uous Galerkin<br />

method with plane waves and lagrange multipliers for the solution <strong>of</strong> Helmholtz problems,<br />

SIAM J. Numer. Anal., 47 (2009), pp. 1038–1066.<br />

[2] I. Babuˇska and J. Melenk, The partition <strong>of</strong> unity method, Int. J. Numer. Methods Eng., 40<br />

(1997), pp. 727–758.<br />

[3] A. Buffa and P. Monk, Error estimates for the ultra weak variational formulation <strong>of</strong> the<br />

Helmholtz equation, Math. Mod. Numer. Anal., 42 (2008), pp. 925–940. Published online<br />

August 12, 2008, DOI 10.1051/m2an:2008033.<br />

9


Plenary lectures<br />

[4] O. Cessenat and B. Després, Application <strong>of</strong> an ultra weak variational formulation <strong>of</strong> elliptic<br />

PDEs to the two-<strong>di</strong>mensional Helmholtz equation, SIAM J. Numer. Anal., 35 (1998), pp.<br />

255–299.<br />

[5] — , Using plane waves as base functions for solving time harmonic equations with the ultra<br />

weak variational formulation, J. Computational Acoustics, 11 (2003), pp. 227–238.<br />

[6] C. Gittelson, R. Hiptmair, and I. Perugia, Plane wave <strong>di</strong>scontinuous Galerkin methods:<br />

Analysis <strong>of</strong> the h-version, Math. Model. Numer. Anal., 43 (2009), pp. 297– 331.<br />

[7] R. Hiptmair, A. Moiola, and I. Perugia, Plane wave <strong>di</strong>scontinuous Galerkin methods for<br />

the 2D Helmholtz equation: Analysis <strong>of</strong> the p-version, Report 2009-20, SAM, ETH Zürich,<br />

Zürich, Switzerland, 2009. Submitted to SINUM.<br />

[8] T. Huttunen, M. Malinen, and P. Monk, Solving Maxwell’s equations using the ultra weak<br />

variational formulation, J. Comp. Phys., 223 (2007), pp. 731–758.<br />

[9] T. Huttunen and P. Monk, The use <strong>of</strong> plane waves to approximate wave propagation in<br />

anisotropic me<strong>di</strong>a, J. Computational Mathematics, 25 (2007), pp. 350–367.<br />

[10] T. Huttunen, P. Monk, and J. Kaipio, Computational aspects <strong>of</strong> the ultra-weak variational<br />

formulation, J. Comp. Phys., 182 (2002), pp. 27–46.<br />

[11] A. Moiola, R. Hiptmair, and I. Perugia, Approximation by plane waves, Report 2009-27,<br />

SAM, ETH Zürich, Zürich, Switzerland, August 2009.<br />

[12] P. Rouch and P. Ladeveze, The variational theory <strong>of</strong> complex rays: A pre<strong>di</strong>ctive tool for<br />

me<strong>di</strong>um-frequency vibrations, Comp. Meth. Appl. Mech. Engr., 15 (2003), pp. 3301–3315.<br />

[13] R. Tezaur and C. Farhat, Three-<strong>di</strong>mensional <strong>di</strong>scontinuous Galerkin elements with plane<br />

waves and lagrange multipliers for the solution <strong>of</strong> mid-frequency Helmholtz problems, Int.<br />

J. Numer. Meth. Engr., 66 (2006), pp. 796–815.<br />

10


Plenary lectures<br />

Mimetic finite <strong>di</strong>fference method for solving PDEs on polygonal<br />

and polyhedral meshes<br />

K. Lipnikov<br />

Los Alamos National Laboratory, Theoretical Division, MS B284<br />

Los Alamos, NM, USA, 87545<br />

lipnikov@lanl.gov<br />

A successful <strong>di</strong>scretization method inherits or mimics fundamental properties <strong>of</strong> the<br />

PDE such as conservation laws, symmetries, positivity structures and maximum principles.<br />

Construction <strong>of</strong> such a method is made more <strong>di</strong>fficult when the mesh is <strong>di</strong>storted<br />

so that it can conform and adapt to the physical domain and problem solution. The<br />

talk is about one such method - the mimetic finite <strong>di</strong>fference (MFD) method. The MFD<br />

method can be applied for solving problems with full tensor coefficients on unstructured<br />

polygonal and polyhedral meshes. These meshes may include arbitrary elements:<br />

tetrahedrons, pyramids, hexahedrons, degenerated and non-convex polyhedrons, and<br />

generalized polyhedrons.<br />

The classical MFD method has many similarities with other low-order <strong>di</strong>scretization<br />

methods, in particular, with the low-order mixed finite element method. Both methods<br />

try to preserve fundamental properties <strong>of</strong> physical and mathematical models. The essential<br />

<strong>di</strong>fference is that the MFD method uses only the surface representation <strong>of</strong> <strong>di</strong>screte<br />

unknowns to build elemental stiffness and mass matrices. Since no basis functions (no<br />

extension inside the mesh element) is required, practical implementation <strong>of</strong> the MFD<br />

method is simple for complex elements. Existence (but not uniqueness!) <strong>of</strong> real basis<br />

functions correspon<strong>di</strong>ng to stiffness and mass matrices is used only in the convergence<br />

analysis.<br />

The talk introduces basic elements <strong>of</strong> the MFD method. Its various generalizations<br />

developed over the last 5 years will be presented in other talks at this session. As an illustration<br />

<strong>of</strong> the mimetic methodology, I present construction <strong>of</strong> the MFD method for <strong>di</strong>ffusion<br />

problem on generalized polyhedral meshes (joint work with F.Brezzi, M.Shashkov<br />

and V.Simoncini). I describe families <strong>of</strong> <strong>di</strong>screte MFD schemes, summarize known theoretical<br />

results and verify them with numerical experiments.<br />

11


Plenary lectures<br />

The solution <strong>of</strong> time harmonic wave equations using complete<br />

families <strong>of</strong> elementary solutions<br />

Peter Monk<br />

Department <strong>of</strong> Mathematical Sciences, University <strong>of</strong> Delaware<br />

Newark, DE 19716, USA<br />

monk@math.udel.edu<br />

This presentation is devoted to <strong>di</strong>scussing plane wave methods for approximating the<br />

time-harmonic wave equation paying particular attention to the Ultra Weak Variational<br />

Formulation (UWVF). This method is essentially an upwind Discontinuous Galerkin<br />

(DG) method in which the approximating basis functions are special traces <strong>of</strong> solutions<br />

<strong>of</strong> the underlying wave equation. In the classical UWVF, due to Cessenat and Després,<br />

sums <strong>of</strong> plane wave solutions are used element by element to approximate the global<br />

solution. For these basis functions, convergence analysis and considerable computational<br />

experience shows that, under mesh refinement, the method exhibits a high order <strong>of</strong><br />

convergence depen<strong>di</strong>ng on the number <strong>of</strong> plane wave used on each element. Convergence<br />

can also be achieved by increasing the number <strong>of</strong> basis functions on a fixed mesh (or<br />

a combination <strong>of</strong> the two strategies). However ill-con<strong>di</strong>tioning arising from the plane<br />

wave basis can ultimately destroy convergence. This is particularly a problem near a<br />

reentrant corner where we expect to need to refine the mesh.<br />

The presentation will start with a summary <strong>of</strong> the UWVF and some typical analytical<br />

and numerical results for the Hemholtz equation. It may be that <strong>di</strong>fferent basis functions<br />

need to be used in <strong>di</strong>fferent parts <strong>of</strong> the domain. I shall present some numerical results<br />

investigating convergence on an L-shaped domain using singular Bessel functions near<br />

the corner. An alternative, that also extends to 3D, is to use polynomial basis functions<br />

on small elements. Using mixed finite element methods, we can view the UWVF as a<br />

hybri<strong>di</strong>zation strategy and I shall also present theoretical and numerical results for this<br />

approach.<br />

Although neither the Bessel function or the plane wave UWVF are free <strong>of</strong> <strong>di</strong>spersion<br />

error (pollution error) they can provide a method that can use large elements and small<br />

number <strong>of</strong> degrees <strong>of</strong> freedom per wavelength to approximate the solution. Extensions<br />

to Maxwell’s equations and elasticity will be briefly <strong>di</strong>scussed. Perhaps the main open<br />

problems are how to improve on the bi-conjugate gra<strong>di</strong>ent method that is currently used<br />

to solve the linear system, and how to adaptively refine the approximation scheme.<br />

12


Invited talks<br />

13


Invited talks<br />

Mimetic <strong>di</strong>scretization <strong>of</strong> the <strong>di</strong>ffusion problem: a higher<br />

order method and a posteriori error estimates<br />

L. Beirão da Veiga<br />

Department <strong>of</strong> Mathematics “F.Enriques”, University <strong>of</strong> Milan,<br />

Via Sal<strong>di</strong>ni 50, 20133 Milano, Italy<br />

lourenco.beirao@unimi.it<br />

The main characteristic <strong>of</strong> the Mimetic Finite Difference (MFD) method, when compared<br />

to a more standard finite element approach, is that the basis functions related to<br />

the <strong>di</strong>screte degrees <strong>of</strong> freedom are not explicitly defined. As a consequence, the operators<br />

and other quantities appearing in the problem must be approximated by <strong>di</strong>screte<br />

counterparts that satisfy finite <strong>di</strong>mensional analogs <strong>of</strong> some fundamental property. This<br />

approach allows for a greater flexibility <strong>of</strong> the mesh and the possibility to mimic intrinsic<br />

properties <strong>of</strong> the <strong>di</strong>fferential problem under study. In particular, general polyhedral (or<br />

polygonal in 2 <strong>di</strong>mensions) meshes, even with non convex and non matching elements,<br />

can be adopted. This talk covers two developements on the mimetic approximation <strong>of</strong><br />

the <strong>di</strong>ffusion problem in mixed form.<br />

The first one is a higher order version <strong>of</strong> the original approximation proposed by Brezzi<br />

et al. in 2005, which guarantees an O(h 2 ) approximation both for pressures and fluxes. A<br />

post-processing procedure allows morevoer to build a piecewise quadratic pressure with<br />

improved approximation properties. We note that a mo<strong>di</strong>fied consistency con<strong>di</strong>tion must<br />

be adopted in order to mantain the order <strong>of</strong> accuracy also when the <strong>di</strong>ffusivity tensor is<br />

variable across the domain.<br />

In the second part <strong>of</strong> the talk we introduce a local a-posteriori error estimator for the<br />

method, which applies both to the low and the high order method. The error estimator is<br />

shown to be both reliable and efficient with respect to an energy type norm involving the<br />

post-processed pressure. Finally, the error in<strong>di</strong>cator is combined with a simple adaptive<br />

process and a set <strong>of</strong> numerical tests for the low order case is presented.<br />

15


Invited talks<br />

Nonpolynomial FEM with MPSPACK<br />

Timo Betcke<br />

Department <strong>of</strong> Mathematics, University <strong>of</strong> Rea<strong>di</strong>ng, Whiteknights,<br />

PO Box 220, Berkshire, RG6 6AX, United Kingdom<br />

The understan<strong>di</strong>ng <strong>of</strong> nonpolynomial finite element methods for Helmholtz problems<br />

has seen tremendous progress over recent years. A common feature <strong>of</strong> most implementations<br />

is that they are based on meshes with element sizes <strong>of</strong> a few wavelengths<br />

in <strong>di</strong>ameter, having local approximation spaces consisting <strong>of</strong> plane waves or sometimes<br />

Fourier-Bessel functions. This follows the philosophy <strong>of</strong> standard finite element methods<br />

<strong>of</strong> having many elements and few basis functions per element, lea<strong>di</strong>ng to large and sparse<br />

matrices with relatively small dense blocks.<br />

In this talk we describe implementations <strong>of</strong> nonpolynomial finite elements based on<br />

the philosophy <strong>of</strong> using as few elements as possible and to achieve convergence by pure<br />

p-refinement on each <strong>of</strong> these global elements, where the types <strong>of</strong> basis functions can<br />

<strong>di</strong>ffer from one element to another. The goal is to use on each element basis functions<br />

that locally guarantee fast exponential convergence. This global element approach leads<br />

to moderately sized, essentially dense matrices.<br />

We present several examples based on the freely available Matlab Toolbox MPSPACK<br />

developed by Barnett and Betcke for the solution <strong>of</strong> Helmholtz problems using global<br />

elements and various types <strong>of</strong> nonpolynomial basis functions. In particular, we show<br />

how to implement a simple and fast nonpolynomial finite element method for scattering<br />

from convex and nonconvex polygons, which gives exponentially accurate results.<br />

16


Invited talks<br />

Optimization-based computational models, or how to let<br />

someone else do the hard work<br />

Pavel Bochev<br />

Applied Mathematics and Applications, San<strong>di</strong>a National Laboratories 1<br />

MS 1320, Albuquerque, NM 87185, USA<br />

pbboche@san<strong>di</strong>a.gov<br />

Discretization is a model reduction process which converts infinite <strong>di</strong>mensional mathematical<br />

models into finite <strong>di</strong>mensional algebraic equations that can be solved on a<br />

computer. Consequently, <strong>di</strong>scretization is accompanied by inevitable losses <strong>of</strong> information<br />

which can adversely affect the pre<strong>di</strong>ctiveness <strong>of</strong> the <strong>di</strong>screte models. Compatible<br />

and regularized <strong>di</strong>scretizations control these losses <strong>di</strong>rectly by choosing suitable field<br />

representations and/or by mo<strong>di</strong>fications <strong>of</strong> the correspon<strong>di</strong>ng variational forms. Such<br />

methods excel in control- ling “structural” information losses responsible for the stability<br />

and well-posedness <strong>of</strong> the <strong>di</strong>screte equations. However, they encounter considerable<br />

<strong>di</strong>fficulties in at least two cases: multi-physics models which combine constituent components<br />

with fundamentally <strong>di</strong>fferent mathematical properties, and loss <strong>of</strong> “qualitative”<br />

properties such as maximum principles, monotonicity and local bounds preservation.<br />

In this talk we show optimization ideas can be used to control externally information<br />

losses which are <strong>di</strong>fficult (or impractical) to manage <strong>di</strong>rectly in the <strong>di</strong>scretization<br />

process. This allows us to improve pre<strong>di</strong>ctiveness <strong>of</strong> computational models, increase<br />

robustness and accuracy <strong>of</strong> solvers, and enable efficient reuse <strong>of</strong> code. Two examples<br />

will be presented: an optimization-based framework for multi-physics coupling, and an<br />

optimization-based algorithm for constrained interpolation (remap). In the first case,<br />

our approach allows to synthesize a robust and efficient solver for a coupled multiphysics<br />

problem from simpler solvers for its constituent components. To illustrate the<br />

scope <strong>of</strong> the approach we derive a robust and efficient solver for nearly hyperbolic PDEs<br />

from standard, <strong>of</strong>f-the-shelf algebraic multigrid solvers for the Poisson equation, which<br />

by themselves cannot solve the original equations. The second example demonstrates<br />

how optimization ideas enable design <strong>of</strong> high- order conservative, monotone, bounds<br />

preserving remap and transport schemes which are linearity preserving on arbitrary<br />

unstructured grids, inclu<strong>di</strong>ng grids with polyhedral and polygonal cells.<br />

This is a joint work with D. Ridzal , G. Scovazzi (SNL) and M. Shashkov (LANL)<br />

17


Invited talks<br />

Mixed finite elements as inverse systems <strong>of</strong> <strong>di</strong>fferential forms<br />

Snorre Christiansen<br />

CMA c/o Department <strong>of</strong> Mathematics, University <strong>of</strong> Oslo,<br />

P.O. Box 1053 Blindern, NO-0316 Oslo, Norway<br />

snorrec@math.uio.no<br />

Conforming mixed finite elements for the grad, curl and <strong>di</strong>v operators can be thought<br />

<strong>of</strong> in terms <strong>of</strong> <strong>di</strong>fferential forms. More precisely we argue that they are inverse systems<br />

<strong>of</strong> finite <strong>di</strong>mensional complexes <strong>of</strong> <strong>di</strong>fferential forms, i.e. special functors from the set<br />

<strong>of</strong> geometric objects in the mesh (ordered by inclusion) to the category <strong>of</strong> <strong>di</strong>fferential<br />

complexes (equipped with pull-back). The Galerkin spaces are then recovered from the<br />

local data as inverse limits in the sense <strong>of</strong> category theory. We show how the theory <strong>of</strong><br />

mixed finite elements can be developed in this setting, which naturally accommodates<br />

polyhedral meshes as well as non-polynomial functions.<br />

18


Invited talks<br />

Regularized Poincaré operator and p version approximation<br />

<strong>of</strong> the Maxwell eigenvalue problem<br />

Martin Costabel<br />

IRMAR, Université de Rennes 1, Campus de Beaulieu,<br />

35042, Rennes Cedex, France<br />

martin.costabel@univ-rennes1.fr<br />

The regularized Poincaré integral operators are a new tool in the analysis <strong>of</strong> <strong>di</strong>fferential<br />

forms that have a variety <strong>of</strong> <strong>di</strong>fferent applications. In particular, they allow the<br />

construction <strong>of</strong> vector and scalar potentials <strong>of</strong> optimal regularity in terms <strong>of</strong> fractional<br />

order Sobolev norms. This can be used to complete a crucial step in the pro<strong>of</strong> <strong>of</strong> the<br />

<strong>di</strong>screte compactness <strong>of</strong> the p version edge elements, and therefore <strong>of</strong> their spectrally<br />

correct approximation <strong>of</strong> the Maxwell eigenvalue problem.<br />

In the talk, these integral operators and their companions, the Bogovskiĭ integral<br />

operators, are presented with their main properties. Their role for the p version edge<br />

element approximation <strong>of</strong> the Maxwell eigenproblem is explained.<br />

Collaboration with:<br />

Daniele B<strong>of</strong>fi (Pavia), Monique Dauge (Rennes), Leszek Demkowicz (Austin), Ralf Hitmair<br />

(Zürich), Alan McIntosh (Canberra).<br />

References<br />

[1] M. Costabel, A. McIntosh: On Bogovskiĭ and regularized Poincaré integral operators<br />

for de Rham complexes on Lipschitz domains. Math. Z. 265, No 2 (2010), 297–320.<br />

[2] D. B<strong>of</strong>fi, M. Costabel, M. Dauge, L. Demkowicz, R. Hiptmair: Discrete compactness<br />

for the p-version <strong>of</strong> <strong>di</strong>screte <strong>di</strong>fferential forms. IRMAR-Preprint 09-39, Universite<br />

Rennes 1 2009. HAL : hal-00420150 ; arXiv : 0909.5079<br />

19


Invited talks<br />

Aerodynamic Analysis and Design using an Isogeometric<br />

Approach<br />

R. Duvigneau<br />

INRIA Sophia-Antipolis Mé<strong>di</strong>terranée,<br />

BP 93, 2004 route des lucioles 06902 Sophia-Antipolis, France<br />

Automated design optimization procedures are now commonly used in aerodynamics,<br />

for drag minimization exercises or target pressure reconstruction problems. However,<br />

these procedures are <strong>of</strong>ten cumbersome, since they are achieved by coupling existing sophisticated<br />

numerical tools, originating from Computer Aided Design (CAD), optimization<br />

(descent or evolutionary methods), simulation (finite-element, finite-volume), grid<br />

generation (structured or unstructured), etc. Moreover, these tools are based on <strong>di</strong>fferent<br />

geometrical representations, ranging form NURBS (Non-Uniform Rational B-Splines)<br />

used in CAD, grids used by physical solvers, to ad-hoc design parameterizations (angles,<br />

lengths, volumes, etc) <strong>of</strong>ten used in optimization. Hence, several geometrical transformations<br />

are required in practice to couple these tools, that could have severe consequences:<br />

loss <strong>of</strong> accuracy, generation <strong>of</strong> spurious noise, local optima, non-<strong>di</strong>fferentiability, etc.<br />

To definitely overcome these <strong>di</strong>fficulties, T. Hughes proposed a few years ago to consider<br />

a design process entirely based on NURBS, in which the simulation is achieved<br />

using parameterized surfaces and volumes instead <strong>of</strong> grids.<br />

In this study, the application <strong>of</strong> isogeometric analysis to aerodynamic problems will<br />

be explored. Especially, a variational approach is carried out using a NURBS basis to<br />

define the geometry and solution fields for compressible Euler equations, yiel<strong>di</strong>ng highorder,<br />

adaptive and hierarchical numerical schemes. The <strong>di</strong>fferences with respect to<br />

the classical approach are underlined and some examples are demonstrated, concerning<br />

aerodynamic analysis and design problems.<br />

20


Invited talks<br />

Isogeometric Analysis in Fluid Dynamics: Divergence-Free<br />

Discretizations for the Stokes and Navier-Stokes Equations<br />

Annalisa Buffa, John A. Evans, Thomas J.R. Hughes, Giancarlo Sangalli<br />

Institute for Computational Engineering and Sciences, University <strong>of</strong> Texas at Austin,<br />

3517 North Hills Drive, #T301, Austin, TX, USA 78731<br />

evans@ices.utexas.edu<br />

In this talk, I <strong>di</strong>scuss recently developed isogeometric <strong>di</strong>scretizations for the Stokes and<br />

Navier-Stokes equations. These <strong>di</strong>scretizations are a smooth generalization <strong>of</strong> classical<br />

Raviart-Thomas elements in two <strong>di</strong>mensions and Raviart-Thomas-Nedelec elements in<br />

three <strong>di</strong>mensions. When coupled with a weak enforcement <strong>of</strong> slip boundary con<strong>di</strong>tions,<br />

these <strong>di</strong>scretizations lead to provably inf-sup stable and high-order convergent numerical<br />

methods. As such, they are a natural can<strong>di</strong>date for use in the simulation <strong>of</strong> Stokes or<br />

Navier-Stokes flow. In fact, when applied to incompressible flows, these <strong>di</strong>scretizations<br />

provide pointwise <strong>di</strong>vergence-free velocity fields. This is an especially useful property<br />

for coupled flow-transport problems where mass conservation is <strong>of</strong> great importance.<br />

Furthermore, these <strong>di</strong>scretizations admit a natural decomposition <strong>of</strong> the velocity basis<br />

into <strong>di</strong>vergence-free and complementary sub-bases, a useful property for fast and robust<br />

solution <strong>of</strong> the resulting <strong>di</strong>screte system <strong>of</strong> equations. Numerical examples will be shown<br />

illustrating optimal convergence rates for model problems and the effectiveness <strong>of</strong> this<br />

technology for general incompressible flows.<br />

21


Invited talks<br />

Canonical Families <strong>of</strong> Finite Element Differential Forms and<br />

Their Properties<br />

R. Falk<br />

Department <strong>of</strong> Mathematics, Rutgers University,<br />

110 Frelinghuysen Road, Piscataway, NJ 08854<br />

falk@math.rutgers.edu<br />

We consider two families <strong>of</strong> finite element <strong>di</strong>fferential forms defined on simplicial<br />

meshes in R n . The first family, which we denote by PrΛ k , is based on the space Pr<br />

<strong>of</strong> polynomials <strong>of</strong> degree less than or equal to r and is a generalization <strong>of</strong> the BDM and<br />

second kind Nédélec elements, while the second, which we denote by P − r Λ k , is based on<br />

a polynomial space between Pr−1 and Pr and is a generalization <strong>of</strong> the Raviart-Thomas<br />

and first kind Nédélec elements. We consider a number <strong>of</strong> important properties <strong>of</strong> these<br />

spaces and especially their connections.<br />

22


Invited talks<br />

A brief review <strong>of</strong> wave-based computational methods for<br />

aero-acoustics<br />

G. Gabard, R.J. Astley, P. Gamallo, G. Kennedy<br />

ISVR, University <strong>of</strong> Southampton,<br />

University Road, Southampton, SO17 1BJ, UK<br />

gabard@soton.ac.uk<br />

Several wave-based methods developed for pre<strong>di</strong>cting sound propagation in non- uniform<br />

flows are reviewed. The basic principle <strong>of</strong> wave-based methods is to incorporate<br />

some known properties <strong>of</strong> the underlying physics into the numerical model. For instance,<br />

instead <strong>of</strong> using standard polynomials or Chebyshev polynomials to approximate the solution,<br />

wave-based methods generally use canonical solutions such as Green’s functions<br />

or plane waves to construct a local description <strong>of</strong> the solution. The methods described<br />

in this paper include the Green’s function <strong>di</strong>scretisation, the partition <strong>of</strong> unity finite<br />

element method and the wave-based <strong>di</strong>scontinuous Galerkin method. The principles<br />

<strong>of</strong> these methods are described and their performance and shortcomings are <strong>di</strong>scussed.<br />

While the methods are intended to be used with strongly inhomogeneous propagation<br />

me<strong>di</strong>a, the canonical solutions used as interpolating functions are only valid for uniform<br />

coefficients. Another issue that will be <strong>di</strong>scussed is that <strong>of</strong> mesh generation.<br />

23


Invited talks<br />

Mimetic finite <strong>di</strong>fferences for eigenvalue problems<br />

Francesca Gar<strong>di</strong>ni<br />

Università degli Stu<strong>di</strong> <strong>di</strong> Pavia,<br />

via Ferrata 1, 27100 Pavia, Italy<br />

francesca.gar<strong>di</strong>ni@unipv.it<br />

In the last two decades, a variety <strong>of</strong> mimetic <strong>di</strong>scretizations for the numerical approximation<br />

<strong>of</strong> Partial Differential Equations has been developed. These numerical methods<br />

are designed to mimic some fundamental properties <strong>of</strong> the continuous problems through<br />

the definition <strong>of</strong> <strong>di</strong>screte operators that satisfy <strong>di</strong>screte analogs <strong>of</strong> the fundamental relations<br />

<strong>of</strong> vector and tensor calculus, e.g., Gauss-Green’s identities.<br />

In this talk, we extend the mimetic finite <strong>di</strong>fference method to the solution <strong>of</strong> eigenvalue<br />

problems. For more general results and exhaustive bibliography we refer to [3].<br />

The convergence analysis is set in the framework <strong>of</strong> the classical spectral approximation<br />

theory for compact operators; see [1]. The correct spectral approximation, i.e., a good<br />

approximation <strong>of</strong> eigenmodes and the absence <strong>of</strong> spurious modes, is thus obtained by<br />

proving the uniform convergence <strong>of</strong> the <strong>di</strong>screte solution operators to the continuous one.<br />

The uniform convergence is a <strong>di</strong>rect consequence <strong>of</strong> a new a priori error estimate for the<br />

source problem, which improves the original a priori error analysis in [2] by relaxing the<br />

H 1 -regularity assumption for the forcing term. Here, we obtain an improved error bound<br />

in terms <strong>of</strong> the L 2 -norm <strong>of</strong> the right-hand side <strong>of</strong> the source problem by reformulating<br />

the latter using an elemental lifting operator. Numerical results confirming the optimal<br />

behavior <strong>of</strong> the method are presented.<br />

The talk is based on a joint work with Andrea Cangiani (Università <strong>di</strong> Milano Bicocca)<br />

and Gianmarco Manzini (Istituto <strong>di</strong> <strong>Matematica</strong> Applicata e Tecnologie Informatiche -<br />

CNR).<br />

References<br />

[1] Babuˇska I., and Osborn J. 1991 Eigenvalue Problems. In Handbook <strong>of</strong> Numerical Analysis<br />

(ed. P. Ciarlet and J. Lions), vol. 2, pp. 641–787. North Holland.<br />

[2] Brezzi F., Lipnikov K., and Shashkov M. 2005 Convergence <strong>of</strong> the mimetic finite <strong>di</strong>fference<br />

method for <strong>di</strong>ffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43, 1872–1896.<br />

24


Invited talks<br />

[3] Cangiani A., Gar<strong>di</strong>ni F., and Manzini G. 2009 Convergence <strong>of</strong> the mimetic finite <strong>di</strong>fference<br />

method for eigenvalue problems in mixed form. Technical Report 31PV09/24/0, IMATI-CNR<br />

(submitted to Comput. Methods Appl. Mech. Engrg.).<br />

25


Invited talks<br />

Dimensions and Bases <strong>of</strong> Bivariate Hierarchical Tensorproduct<br />

Splines<br />

Bert Jüttler<br />

Institute <strong>of</strong> Applied Geometry, Johannes Kepler University,<br />

Altenberger Str. 69, 4040 Linz, Austria<br />

bert.juettler@jku.at<br />

Due to their potential applications for isogeometric analysis, tensor-product spline<br />

spaces with local refinability have recently become an active topic <strong>of</strong> research. Most<br />

<strong>of</strong> the existing and ongoing work focuses on the so-called T-splines <strong>of</strong> Sederberg et al.<br />

These spline spaces, however, possess certain limitations, in particular with respect to<br />

the locality <strong>of</strong> refinement operations. The talk will recall the classical construction <strong>of</strong><br />

hierarchical tensor-product splines. In ad<strong>di</strong>tion, it will <strong>di</strong>scuss <strong>di</strong>mensions and bases <strong>of</strong><br />

hierarchically refined tensor-product spline spaces and it will show how do construct<br />

bases which are, non-negative, locally supported, and form a partition <strong>of</strong> unity.<br />

26


A 3D plane wave basis for elastic wave problems<br />

Teemu Luostari † , Tomi Huttunen † and Peter Monk ‡<br />

† Department <strong>of</strong> Physics and Mathematics, University <strong>of</strong> Eastern Finland,<br />

Kuopio Campus, P.O. Box 1627, FIN-70211, Finland.<br />

‡ Department <strong>of</strong> Mathematical Sciences, University <strong>of</strong> Delaware,<br />

Newark, DE 19716, USA.<br />

teemu.luostari@uef.fi<br />

Invited talks<br />

Elastic wave problems and the Navier equation arise in many practical applications<br />

in engineering. However, the modeling <strong>of</strong> elastic waves is more challenging and time<br />

consuming than the modeling <strong>of</strong> the acoustics since the solution consists <strong>of</strong> <strong>di</strong>fferent<br />

wave modes (e.g. P-, SH- and SV-wave components). These modes can propagate with<br />

<strong>di</strong>fferent speeds in a me<strong>di</strong>um. Therefore dense meshes are <strong>of</strong>ten needed in the standard<br />

finite element method (FEM) to model the problem accurately. We shall consider a<br />

competitive method to FEM, the ultra weak variational formulation (UWVF), which is<br />

a special form <strong>of</strong> the <strong>di</strong>scontinuos Galerkin method (DGM), see [2,3]. The UWVF was<br />

first introduced and developed to the Helmholtz equation and Maxwell’s equation by<br />

Cessenat and Després [1]. The feasibility <strong>of</strong> the UWVF for the elastic wave problems in<br />

2D was stu<strong>di</strong>ed in [4].<br />

The UWVF is a non-polynomial volume based method that uses plane wave basis<br />

functions, i.e. physical basis functions. In the elastic-UWVF the plane wave basis<br />

consists <strong>of</strong> pressure and shear waves. Therefore in the UWVF the number <strong>of</strong> basis<br />

functions is chosen separately for <strong>di</strong>fferent wave modes. Using the plane wave basis the<br />

computational burden is reduced because the integrals encountered in the method can<br />

be computed efficiently in closed form. However, the plane wave basis may produce an<br />

ill-con<strong>di</strong>tioned matrix system which deteriorates the accuracy.<br />

We shall consider the UWVF for the 3D elastic wave problem (Navier equation). The<br />

model problem is simple elastic wave propagation in a cubic domain. We investigate<br />

the performance <strong>of</strong> the UWVF with <strong>di</strong>fferent wave numbers and <strong>di</strong>fferent combinations<br />

<strong>of</strong> the P-, SH- and SV-wave basis function ratios. We shall show the convergence with<br />

<strong>di</strong>fferent number <strong>of</strong> basis functions and <strong>di</strong>scuss the con<strong>di</strong>tioning <strong>of</strong> the method.<br />

References<br />

[1] Cessenat O, Després B. Application <strong>of</strong> an ultra weak variational formulation <strong>of</strong> elliptic<br />

PDEs to the two-<strong>di</strong>mensional Helmholtz problem. SIAM Journal <strong>of</strong> Numerical Analysis<br />

1998; 35(1):255–299.<br />

27


Invited talks<br />

[2] Gabard G. Discontinuous Galerkin methods with plane waves for time-harmonic problems.<br />

Journal <strong>of</strong> Computational Physics, 225(2):1961–1984, 2007.<br />

[3] Huttunen T, Malinen M, Monk P. Solving Maxwell’s equations using the ultra weak variational<br />

formulation. Journal <strong>of</strong> Computational Physics 2007; 223(2):731–758.<br />

[4] Huttunen T, Monk P, Collino F, Kaipio JP. The ultra weak variational formulation for<br />

elastic wave problems. SIAM Journal on Scientific Computing, 25(5):1717–1742, 2004.<br />

28


Invited talks<br />

Beyond NURBS: Non-Standard CAGD Tools in Isogeometric<br />

Analysis<br />

Carla Manni † , Francesca Pelosi † and Maria Lucia Sampoli ‡<br />

† Department <strong>of</strong> Mathematics, Università <strong>di</strong> Roma “Tor Vergata”,<br />

Via della Ricerca Scientifica 1, 00133 Roma, Italy<br />

‡ Department <strong>of</strong> Mathematics and Computer Sciences, Università <strong>di</strong> Siena,<br />

Pian dei Mantellini 44, 53100 Siena, Italy<br />

manni@mat.uniroma2.it<br />

NURBS-based isogeometric analysis can be seen as a superset <strong>of</strong> FEM and <strong>of</strong>fers a<br />

powerful tool in the area <strong>of</strong> numerical methods for <strong>di</strong>fferential problems. The NURBSbased<br />

approach leads to remarkable results, not only in the context <strong>of</strong> structural analysis,<br />

but also in advection dominated flow phenomena, <strong>of</strong>ten characterized by sharp layers<br />

involving very strong gra<strong>di</strong>ents.<br />

Nevertheless the rational model (NURBS) presents several drawbacks both from the<br />

geometrical and the analytical point <strong>of</strong> view. Therefore our attention has been focused on<br />

overcoming the problems <strong>of</strong> NURBS standards, analyzing Isogeometric Analysis schemes<br />

with <strong>di</strong>fferent bases, but still equipped with refinement properties, geometric features<br />

and classical algorithms as degree elevation, knot insertion, <strong>di</strong>fferentiation formulas,<br />

etc. . . Such spaces admit a representation in term <strong>of</strong> functions which are a natural extension<br />

<strong>of</strong> polynomial B-splines so that they are properly referred to as generalized<br />

B-splines.<br />

In this talk, after a general presentation, we focus on suitable spaces <strong>of</strong> generalized Bsplines<br />

whose <strong>di</strong>stinguishing property is the ability to efficiently describe sharp variations<br />

without introducing extraneous oscillations. Thus, they seem particularly well suited to<br />

face advection dominated flow phenomena.<br />

29


Invited talks<br />

High-order accurate nodal formulation <strong>of</strong> the Mimetic Finite<br />

Difference Method for Elliptic Problems<br />

G. Manzini<br />

Istituto <strong>di</strong> <strong>Matematica</strong> Applicata e Tecnologie Informatiche, CNR,<br />

via Ferrata 1, 27100 Pavia, Italy,<br />

Centro per la Simulazione Numerica Avanzata CeSNA, IUSS,<br />

27100 Pavia, Italy<br />

marco.manzini@imati.cnr.it<br />

The nodal formulation <strong>of</strong> the Mimetic Finite Difference Method for two-<strong>di</strong>mensional<br />

elliptic problems is based on a consistency con<strong>di</strong>tion that reproduces exactly the integration<br />

by parts formula for linear polynomials. Increasing the degrees <strong>of</strong> the polynomials<br />

for which a consistency con<strong>di</strong>tion holds is a possible way to achieve higher order formulations,<br />

but requires some care in the proper formulation <strong>of</strong> the method and in its<br />

implementation. Basically, a new kind <strong>of</strong> degrees <strong>of</strong> freedom, moments <strong>of</strong> polynomials,<br />

are introduced in the mimetic formulation to represent the elemental integral originated<br />

by the integration by parts formula. Likewise, the edge integrals requires new ad<strong>di</strong>tional<br />

nodes and high order quadrature formulas <strong>of</strong> Gauss-Lobatto type. For example, when<br />

quadratic polynomials are considered to implement a formally third-accurate method we<br />

need one more degree <strong>of</strong> freedom per cell and one more degree <strong>of</strong> freedom per edge.<br />

From a theoretical standpoint, optimal convergence rate is proved in a mesh-dependent<br />

H 1 norm for polynomials <strong>of</strong> any order for meshes with very general shaped elements.<br />

Experimental results confirm this behavior and show the optimal convergence rate in<br />

this norm for polynomials <strong>of</strong> degree up to five when the method is applied to meshes <strong>of</strong><br />

quadrilateral and (possibly non-convex) polygonal cells. On such meshes, we have also<br />

an experimental in<strong>di</strong>cation <strong>of</strong> optimal behavior when approximation errors are measured<br />

using the L 2 norm.<br />

This is a joint work with L. Beirao da Veiga and K. Lipnikov.<br />

30


Invited talks<br />

Mapping properties <strong>of</strong> Helmholtz integral operators and<br />

their application to the hp-BEM<br />

J.M. Melenk<br />

Institut für Analysis und Scientific Computing (E101), Technische Universität Wien<br />

Wiedner Hauptstraße 8-10, A-1040 Wien, Austria<br />

melenk@tuwien.ac.at<br />

For the Helmholtz equation (with wavenumber k) on analytic curves and surfaces Γ<br />

we analyze the mapping properties <strong>of</strong> the single layer, double layer as well a combined<br />

potential boundary integral operator. A k-explicit regularity theory for the single layer<br />

and double layer potentials is developed, in which these operators are decomposed into<br />

three parts: the first part is the single or double layer potential for the Laplace equation,<br />

the second part is an operator with finite shift properties, and the third part is an<br />

operator that maps into a space <strong>of</strong> piecewise analytic functions. For all parts, the kdependence<br />

is made explicit. We also develop a k-explicit regularity theory for the<br />

inverse <strong>of</strong> the combined potential operator A = ±1/2 + K ′ − ikV and its adjoint, where<br />

V and K are the single layer and double layer operators for the Helmholtz kernel. Under<br />

the assumption that A −1 L 2 (Γ)←L 2 (Γ) grows at most polynomially in k, the inverse A −1<br />

is decomposed into an operator A1 : L 2 (Γ) → L 2 (Γ) with bounds independent <strong>of</strong> k and<br />

a smoothing operator A2 that maps into a space <strong>of</strong> analytic functions on Γ. The kdependence<br />

<strong>of</strong> the mapping properties <strong>of</strong> A2 is made explicit. We show quasi-optimality<br />

(in an L 2 (Γ)-setting) <strong>of</strong> the hp-version <strong>of</strong> the Galerkin BEM applied to A under the<br />

assumption <strong>of</strong> scale resolution, i.e., the polynomial degree p is at least O(log k) and<br />

kh/p is bounded by a number that is sufficiently small, but independent <strong>of</strong> k. Under this<br />

assumption, the constant in the quasi-optimality estimate is independent <strong>of</strong> k. Numerical<br />

examples in 2D illustrate the theoretical results.<br />

This work is joint with M. Löhndorf (Vienna).<br />

31


Invited talks<br />

Approximation by plane waves<br />

Ralf Hiptmair † , Andrea Moiola † and Ilaria Perugia ‡<br />

† Seminar for Applied Mathematics, ETH,<br />

Rämistrasse 101, 8092 Zürich , Switzerland<br />

‡ <strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Pavia,<br />

Via Ferrata 1, 27100 Pavia - Italy<br />

hiptmair@sam.math.ethz.ch, moiola@sam.math.ethz.ch,<br />

ilaria.perugia@unipv.it<br />

The Trefftz methods are special finite element methods where the trial and test functions<br />

are solutions <strong>of</strong> the underlying PDE in the interior <strong>of</strong> each element. In the case<br />

<strong>of</strong> the homogeneous Helmholtz equation −∆u − ω 2 u = 0, plane waves (x ↦→ e iωx·d ) or<br />

circular/spherical waves are usually used as basis functions.<br />

One <strong>of</strong> the main steps in the convergence analysis <strong>of</strong> any <strong>of</strong> these methods is the pro<strong>of</strong><br />

<strong>of</strong> a best approximation estimate for the trial space. The only results <strong>of</strong> this kind for<br />

plane wave spaces available in literature (see [?] and [?]) are limited to two <strong>di</strong>mensional<br />

domains and are not completely satisfactory.<br />

In order to improve and generalize these estimates we proceed in two steps. In the<br />

first one, we show how u can be approximated by the so-called generalized harmonic<br />

polynomials, i.e. the circular (in two <strong>di</strong>mensions) and the spherical (in three <strong>di</strong>mensions)<br />

waves:<br />

x = re iψ ↦→ e ±ilψ <br />

x<br />

Jl(ωr), x ↦→ Yl,m |x|<br />

jl(ω|x|), 0 ≤ |m| ≤ l ∈ N.<br />

The main tool used is the Vekua transform, a bijective integral operator that maps<br />

Helmholtz solutions into harmonic functions on the same domain. This allows to reduce<br />

the problem to the simpler case <strong>of</strong> the approximation <strong>of</strong> harmonic functions by harmonic<br />

polynomials.<br />

In the second step we approximate these functions with plane waves. The link between<br />

plane waves and circular/spherical waves is provided by the Jacobi-Anger expansion. We<br />

truncate the expansion and give a bound on the solution <strong>of</strong> the linear system obtained;<br />

in three <strong>di</strong>mensions this requires a careful choice <strong>of</strong> the propagating <strong>di</strong>rections <strong>of</strong> the<br />

plane waves.<br />

We show that, for any solution u ∈ H K+1 (D) <strong>of</strong> the homogeneous Helmholtz equation,<br />

D ⊂ R N starshaped with <strong>di</strong>ameter h, N = 2, 3, it is possible to approximate u with a<br />

linear combination <strong>of</strong> p plane waves <strong>of</strong> given <strong>di</strong>rections {dk}k=1,...,p with error<br />

inf<br />

α∈C p<br />

<br />

u − p <br />

iωx·dk<br />

k=1αke ≤ C h j,ω,D K+1−j q −λ(K+1−j) uK+1,ω,D 32


Invited talks<br />

where the Sobolev norms are weighted with ω, the constant C depends on ωh (explicitly),<br />

j, k, {dk} and the shape <strong>of</strong> D. The number p <strong>of</strong> plane waves is linked to the parameter q<br />

as p = 2q + 1 in two <strong>di</strong>mensions and as p = (q + 1) 2 in three <strong>di</strong>mensions. The parameter<br />

λ depends only on the shape <strong>of</strong> D: in two <strong>di</strong>mensions it can be chosen arbitrarily close<br />

to 1 while in three <strong>di</strong>mensions we can only prove its positivity.<br />

The pro<strong>of</strong> <strong>of</strong> analogous bounds for Maxwell equations (curl curl u − ω 2 u = 0) is more<br />

<strong>di</strong>fficult because the Vekua operators are not appropriate for these equations. We use<br />

Herglotz functions, vector spherical harmonics and a special Jacobi-Anger formula to<br />

separate the vectorial plane/spherical waves that are solution <strong>of</strong> Maxwell equations from<br />

the ones that are not <strong>di</strong>vergence free. With these tools we can prove a h-estimate for<br />

spherical waves with the same order <strong>of</strong> convergence proved for the Helmholtz case but<br />

using only a few more basis functions.<br />

References<br />

[1] O. Cessenat and B. Despres, Application <strong>of</strong> an ultra weak variational formulation <strong>of</strong> elliptic<br />

PDEs to the two-<strong>di</strong>mensional Helmholtz equation, SIAM J. Numer. Anal. 35 1 (1998), 255–<br />

299.<br />

[2] R. Hiptmair, A. Moiola and I. Perugia, Approximation by plane waves, SAM Report 2009-<br />

27, ETH Zürich.<br />

[3] J.M. Melenk, On Generalized Finite Element Methods, Ph.D. thesis (1995), University <strong>of</strong><br />

Maryland, USA.<br />

33


Invited talks<br />

Isogeometric Analysis in Pavia<br />

Alessandro Reali<br />

Structural Mechanics Department, University <strong>of</strong> Pavia,<br />

Via Ferrata 1, 27100 Pavia, Italy<br />

alessandro.reali@unipv.it<br />

Isogeometric analysis (IGA), introduced by the pioneering work <strong>of</strong> Hughes et al. in<br />

2005, can now be considered more than just a promising technique in the framework <strong>of</strong><br />

numerical methods for PDEs, with many groups around the world contributing to its<br />

development and <strong>di</strong>ffusion. Some researchers from Pavia started working on IGA from<br />

its infancy and now an entire research group is active on this topic, studying problems<br />

ranging from mathematical analysis to code generation, from element technology to<br />

engineering applications in solid mechanics, fluid dynamics, electromagnetics, etc. The<br />

aim <strong>of</strong> this talk is to show some <strong>of</strong> the results obtained by our research group within<br />

this context.<br />

34


Invited talks<br />

Some estimates for hpk-refinement in Isogeometric Analysis<br />

L. Beirão da Veiga ∗ , A. Buffa † , J. Rivas ‡ and G. Sangalli §<br />

∗ <strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong> “F. Enriques”; Via Sal<strong>di</strong>ni, 50, 20133 Milano, Italy.<br />

† IMATI, CNR; Via Ferrata 1, 27100 Pavia, Italy<br />

‡ Departamento de Matemáticas, Universidad del País Vasco-Euskal Herriko Unibertsitatea,<br />

Barrio Sarriena s/n, 48940 Leioa (Bizkaia), Spain<br />

§ <strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Pavia; Via Ferrata 1, 27100 Pavia, Italy<br />

lourenco.beirao@unimi.it, annalisa@imati.cnr.it, ju<strong>di</strong>th.rivas@ehu.es,<br />

giancarlo.sangalli@unipv.it<br />

New results on the approximation properties <strong>of</strong> two-<strong>di</strong>mensional Non-Uniform Rational<br />

B-splines (NURBS) spaces will be presented. More precisely, we will define a new<br />

projection operator into certain spaces <strong>of</strong> NURBS and give arror estimates in Sobolev<br />

norms which are explicit in the three <strong>di</strong>scretization parameters: mesh size, h, degree<br />

p and regularity k. We firstly construct a one-<strong>di</strong>mensional projector onto the space <strong>of</strong><br />

splines <strong>of</strong> degree p with continuous derivatives up to the order k − 1, with the restriction<br />

that 2k − 1 ≤ p, and obtain the correspon<strong>di</strong>ng error estimates. The extension to two<strong>di</strong>mensional<br />

spline approximations is done through a tensor product construction and,<br />

finally, the projector onto a NUBRS space is defined by multiplication with the weight<br />

and composition with the mapping associated to the considered NURBS space. These<br />

results are a first step in the analysis <strong>of</strong> the approximation properties <strong>of</strong> NURBS spaces<br />

in terms, not only <strong>of</strong> the mesh size, but also <strong>of</strong> the other <strong>di</strong>scretization parameters.<br />

However, the restiction over the regularity, k, still leaves the most interesting cases <strong>of</strong><br />

higher regularity (up to k = p) open.<br />

35


Invited talks<br />

A Posteriori Error Estimation for Highly Indefinite<br />

Helmholtz Problems<br />

Stefan A. Sauter<br />

Institut für Mathematik, Universität Zürich,<br />

Winterthurerstrasse 190, 8057 Zürich<br />

stas@math.uzh.ch<br />

In this talk, we will consider Galerkin <strong>di</strong>scretizations <strong>of</strong> highly indefinite Helmholtz<br />

problems. Standard a priori and a posteriori error estimates, typically, suffer from the<br />

ill-con<strong>di</strong>tioned behaviour <strong>of</strong> the <strong>di</strong>screte Galerkin operator for large wave-numbers k.<br />

Recently, it has been shown that - by choosing the polynomial order p in an hp-finite<br />

element space accor<strong>di</strong>ng to p = O(log(k)) - the optimal a priori error estimates are<br />

preserved. The result is based on a new regularity theory which employs a wave-number<br />

dependent frequency splitting <strong>of</strong> the solution. In this talk, we generalize this regularity<br />

theory for the posteriori error estimation <strong>of</strong> highly indefinite Helmholtz problems.<br />

This talk comprises joint work with Willy Dörfler.<br />

36


Nitsche-type Mortaring for Maxwell’s Equations<br />

Joachim Schöberl<br />

Institute for Analysis and Scientific Computing, Vienna University <strong>of</strong> Technology,<br />

Wiedner Hauptstrasse 8-10, Wien, Austria<br />

joachim.schoeberl@rwth-aachen.de<br />

Invited talks<br />

We propose a new method for treating transmission con<strong>di</strong>tions on non-matching<br />

meshes. The basic method is a hybrid version <strong>of</strong> Nitsche’s method. By introducing<br />

a scalar potential on the interface we obtain a robust method for the low frequency<br />

limit. In order to simplify numerical integration, we use smooth B-spline basis functions<br />

<strong>of</strong> Nedelec-type on the interface. We present numerical results for scalar equations and<br />

Maxwell’s equations in frequency domain.<br />

37


Invited talks<br />

A Convergent MFMFE for Highly Distorted Hexahedra<br />

Mary F. Wheeler<br />

Center for Subsurface Modeling, The University <strong>of</strong> Texas at Austin,<br />

1 University Station C0200, Austin, Texas 78712, USA<br />

mfw@ices.utexas.edu<br />

In this presentation, we develop a new mixed finite element method for elliptic problems<br />

on general quadrilateral and hexahedral grids that reduces to a cell-centered finite<br />

<strong>di</strong>fference scheme. A special non-symmetric quadrature rule is employed that yields a<br />

positive definite cell-centered system for the pressure by eliminating local velocities. In<br />

ad<strong>di</strong>tion, this scheme is shown to be accurate on highly <strong>di</strong>storted quadrilateral and hexahedral<br />

grids. Theoretical and numerical results in<strong>di</strong>cate first-order convergence for the<br />

pressure and face fluxes. Extensions to parabolic and two phase flow in porous me<strong>di</strong>a<br />

are <strong>di</strong>scussed.<br />

This work has been done in collaboration with G. Xue and I. Yotov.<br />

38


Invited talks<br />

Cochain projections in finite element exterior calculus<br />

R. Winther<br />

Centre <strong>of</strong> Mathematics for Applications (CMA), University <strong>of</strong> Oslo,<br />

CMA, P.O. Box 1053, Blindern, 0316 Oslo, Norway<br />

ragnar.winther@cma.uio.no<br />

We will focus on the role <strong>of</strong> cochain projections, i.e. projections which commute with<br />

the exterior derivative, in finite element exterior calculus. In particular, we will <strong>di</strong>scuss<br />

the relations between various uniform bounds on such projections and the convergence<br />

properties <strong>of</strong> the associated finite element methods for boundary value problems and<br />

eigenvalue problems. Furthermore, a new construction <strong>of</strong> local cochain projections <strong>of</strong><br />

Clément type will be presented.<br />

39


Invited talks<br />

A Multiscale Mortar Multipoint Flux Mixed Finite Element<br />

Method<br />

Ivan Yotov<br />

Department <strong>of</strong> Mathematics, University <strong>of</strong> Pittsburgh,<br />

301 Thackeray Hall, Pittsburgh, PA 15260, USA<br />

yotov@math.pitt.edu<br />

We present a multiscale mortar multipoint flux mixed finite element method for second<br />

order elliptic problems. The equations in the coarse elements (or subdomains) are<br />

<strong>di</strong>scretized on a fine grid scale by a multipoint flux mixed finite element method that<br />

reduces to cell-centered finite <strong>di</strong>fferences on irregular grids. The subdomain grids do<br />

not have to match across the interfaces. Continuity <strong>of</strong> flux between coarse elements is<br />

imposed via a mortar finite element space on a coarse grid scale. With an appropriate<br />

choice <strong>of</strong> polynomial degree <strong>of</strong> the mortar space, we derive optimal order convergence<br />

on the fine scale for both the multiscale pressure and velocity, as well as the coarse<br />

scale mortar pressure. Some superconvergence results are also derived. The algebraic<br />

system is reduced via a non-overlapping domain decomposition to a coarse scale mortar<br />

interface problem that is solved using a multiscale flux basis. Numerical experiments<br />

are presented to confirm the theory and illustrate the efficiency and flexibility <strong>of</strong> the<br />

method.<br />

This is joint work with Mary F. Wheeler and Guangri Xue, the University <strong>of</strong> Texas<br />

at Austin.<br />

40


Contributed talks<br />

41


Contributed talks<br />

Mimetic Finite Difference methods for convection-<strong>di</strong>ffusion<br />

problems<br />

Andrea Cangiani<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong> e Applicazioni, Università <strong>di</strong> Milano Bicocca,<br />

via Cozzi 53, 20125 Milano, Italy<br />

andrea.cangiani@unimib.it<br />

We present recent results on the extension <strong>of</strong> the Mimetic Finite Difference method<br />

to elliptic equations comprising convection terms. We consider mimetic <strong>di</strong>scretizations<br />

based on both the nodal and mixed formulation <strong>of</strong> the problem. These are low order<br />

methods that extend, respectively, the linear and Raviart-Thomas finite element to general<br />

polygonal meshes. The analysis relies on the existence <strong>of</strong> appropriate elemental<br />

lifting operators and, in the case <strong>of</strong> the mixed formulation, on the connection between<br />

the mimetic formulation and the lowest order Raviart-Thomas mixed finite element<br />

method. Stabilization techniques in the convection-dominated regimes will also be presented.<br />

Numerical experiments on general polygonal meshes, also inclu<strong>di</strong>ng non-convex<br />

shaped elements, confirm the theoretical results and in<strong>di</strong>cate a superconvergence effects<br />

in some particular cases.<br />

This a joint work with G. Manzini and A. Russo.<br />

43


Contributed talks<br />

A unified sub<strong>di</strong>vision <strong>di</strong>scretization approach for thick and<br />

thin shells<br />

Fehmi Cirak and Quan Long<br />

Department <strong>of</strong> Engineering, University <strong>of</strong> Cambridge,<br />

Trumpington Street, Cambridge CB2 1PZ , UK<br />

http://www-g.eng.cam.ac.uk/csml/<br />

fc286@eng.cam.ac.uk<br />

We present a unified model and an associated <strong>di</strong>scretization scheme for thin (shearrigid)<br />

and thick (shear-flexible) shells. The equilibrium equations in weak form are<br />

derived following a standard semi-inverse approach. Thereby, any configuration <strong>of</strong> the<br />

shell is assumed to be defined as<br />

ϕ = x + ζ(n + w) with − t t<br />

2 ≤ ζ ≤ 2<br />

where ϕ is the position vector <strong>of</strong> a material point within the shell volume, x is the<br />

position vector <strong>of</strong> a material point on the mid-surface, n is the unit normal to the midsurface,<br />

w is a vector for allowing out-<strong>of</strong>-plane shear deformations and t is the thickness<br />

<strong>of</strong> the shell. In the assumed kinematics, x and w are the independent variables and n is<br />

a function <strong>of</strong> x. Importantly, in the thin limit (t → 0) the Kirchh<strong>of</strong>f-Love model with<br />

|w| ≡ 0 is recovered.<br />

The conforming finite element <strong>di</strong>scretization <strong>of</strong> the shell equations with the assumed<br />

kinematics requires C 1 -continuous shape functions. In the present method, smooth<br />

sub<strong>di</strong>vision shape functions are used for interpolating the mid-surface position vector<br />

x and the shear vector w. In the thin-shell limit, the resulting finite elements do not<br />

exhibit shear locking simply because the concurrent interpolation <strong>of</strong> x = 0 and w ≡ 0<br />

with the same shape functions does not lead to any compatibility problems.<br />

44


Skin effect in electromagnetism<br />

Monique Dauge<br />

IRMAR, Université de Rennes 1, Campus de Beaulieu,<br />

35042, Rennes Cedex, France<br />

monique.dauge@univ-rennes1.fr<br />

Contributed talks<br />

We consider the Maxwell equations in a domain made <strong>of</strong> two parts, <strong>di</strong>electric and<br />

conductor. We are interested in the behavior <strong>of</strong> solutions when the conductivity in the<br />

conductor part is large.<br />

In a first stage, we assume smoothness for the <strong>di</strong>electric–conductor interface and we<br />

exhibit a multiscale asymptotic expansion with pr<strong>of</strong>ile terms rapidly decaying inside<br />

the conductor. We measure this skin effect by introducing a skin depth function that<br />

turns out to depend on the mean curvature <strong>of</strong> the boundary <strong>of</strong> the conductor. We<br />

then confirm these asymptotic results by numerical experiments in various axisymmetric<br />

configurations.<br />

In a second stage, motivated by numerical experiments in cylindrical configurations,<br />

we also investigate the case <strong>of</strong> nonsmooth interfaces.<br />

We bring extension or complements to previous works [10,6,7,5].<br />

From collaboration with: Victor Péron (Bordeaux, and soon, Pau), Gabriel Caloz<br />

(Rennes), Erwan Faou (Rennes), and Clair Poignard (Bordeaux), see [9,3,1,4].<br />

Computations done with Finite Element Library Mélina [8].<br />

References<br />

[1] G. Caloz, M. Dauge, V. Péron. Uniform estimates for transmission problems<br />

with high contrast in heat conduction and electromagnetism. To appear in Journal<br />

<strong>of</strong> Mathematical Analysis and Applications (2010). http://hal.archives-ouvertes.fr/hal-<br />

00422315/en/http://hal.archives-ouvertes.fr/hal-00422315/en/.<br />

[2] G. Caloz, M. Dauge, E. Faou, V. Péron. On the influence <strong>of</strong> the geometry on skin<br />

effect in electromagnetism. (In preparation), 2010.<br />

[3] M. Dauge, E. Faou, V. Péron. Comportement asymptotique à haute conductivité de<br />

l’épaisseur de peau en électromagnétisme. C. R. Acad. Sci. Paris Sér. I Math. (348) (2010)<br />

385–390.<br />

[4] M. Dauge, V. Péron, C. Poignard. Asymptotic expansion for the solution <strong>of</strong> a stiff<br />

transmission problem in electromagnetism with a singular interface. (In preparation), 2010.<br />

45


Contributed talks<br />

[5] H. Haddar, P. Joly, H.-M. Nguyen. Generalized impedance boundary con<strong>di</strong>tions for<br />

scattering problems from strongly absorbing obstacles: the case <strong>of</strong> Maxwell’s equations.<br />

Math. Models Methods Appl. Sci. 18(10) (2008) 1787–1827.<br />

[6] R. C. MacCamy, E. Stephan. Solution procedures for three-<strong>di</strong>mensional eddy current<br />

problems. J. Math. Anal. Appl. 101(2) (1984) 348–379.<br />

[7] R. C. MacCamy, E. Stephan. A skin effect approximation for eddy current problems.<br />

Arch. Rational Mech. Anal. 90(1) (1985) 87–98.<br />

[8] D. Martin. Mélina, bibliothèque de calculs éléments finis. Source code. http://anummaths.univ-rennes1.fr/melinahttp://anum-maths.univ-rennes1.fr/melina,<br />

1990-2010.<br />

[9] V. Péron. Modélisation mathématique de phénomènes électromagnétiques dans des<br />

matériaux à fort contraste. PhD thesis, Université Rennes 1 2009. http://tel.archivesouvertes.fr/tel-00421736/fr/http://tel.archives-ouvertes.fr/tel-00421736/fr/.<br />

[10] E. Stephan. Solution procedures for interface problems in acoustics and electromagnetics.<br />

In Theoretical acoustics and numerical techniques, volume 277 <strong>of</strong> CISM Courses and<br />

Lectures, pages 291–348. Springer, Vienna 1983.<br />

46


Contributed talks<br />

Modeling <strong>of</strong> bone conduction <strong>of</strong> sound in the human head<br />

using hp-finite elements: code design and verification.<br />

Paolo Gatto, Leszek Demkowicz<br />

Inst. for Comp. Engineering and Sciences, University <strong>of</strong> Texas at Austin,<br />

Austin, TX 78712, USA<br />

We focus on the development <strong>of</strong> a reliable numerical model for investigating the boneconducted<br />

sound in the human head. The main <strong>di</strong>fficulty <strong>of</strong> the problem arises from the<br />

lack <strong>of</strong> fundamental knowledge regar<strong>di</strong>ng the transmission <strong>of</strong> acoustic energy through<br />

non-airborne pathways to the cochlea, i.e. the most sensitive organ <strong>of</strong> the middle ear.<br />

A fully coupled model based on the acoustic/elastic interaction problem with a detailed<br />

resolution <strong>of</strong> the cochlea region and its interface with the skull and the air pathways,<br />

should provide an insight into this fundamental, long stan<strong>di</strong>ng research problem. To this<br />

aim, we have developed a 3-D finite element code that supports elements <strong>of</strong> all shapes –<br />

tetrahedra, prisms, and pyramids – in order to fully capture the complicated geometry<br />

<strong>of</strong> the problem. We have tested our code employing the case <strong>of</strong> a multilayered sphere,<br />

for which an analytical solution in terms <strong>of</strong> Hankel’s functions is known.<br />

47


Contributed talks<br />

Finite Volume Methods on NURBS Geometries with Application<br />

to Fluid Flow and Fluid-Structure Interaction<br />

Ch. Heinrich, A.-V. Vuong, B. Simeon<br />

Centre for Mathematical Sciences, Technische Universität München,<br />

Fakultät für Mathematik (M2), Lehrstuhl für Numerische Mathematik, Boltzmannstraße 3 D,<br />

85748 Garching bei München, Germany<br />

heinrich@ma.tum.de<br />

Isogeometric Analysis extends isoparametric finite elements to more general basis functions<br />

such as B-splines and NURBS. In this way, it is possible to fit exact geometries<br />

at the coarsest level <strong>of</strong> <strong>di</strong>scretization and eliminate geometry errors from the very beginning.<br />

In CFD simulations, however, the Finite Volume Method (FVM) is still the<br />

method-<strong>of</strong>-choice. This contribution <strong>di</strong>scusses approaches to incorporate the idea <strong>of</strong> an<br />

exact boundary representation and NURBS geometries in connection with the FVM. In<br />

particular, we transform the problem formulation to the parametric domain and analyze<br />

the <strong>di</strong>scretization <strong>of</strong> the arising integral terms. Furthermore, the convergence behaviour<br />

is stu<strong>di</strong>ed for numerical examples in the field <strong>of</strong> flow simulations. Finally we present a<br />

partitioned Fluid-Structure Interaction (FSI) coupling algorithm combining the solver<br />

described above with a structural solver based on Isogeometric Analysis solving the<br />

equations <strong>of</strong> linear elasticity. In this context, we also <strong>di</strong>scuss an approach to incorporate<br />

a matching interface.<br />

48


Contributed talks<br />

High order Galerkin Methods for General Advection Problems<br />

Holger Heumann<br />

Seminar for Applied Mathematics, ETH Zürich<br />

Rämistrasse 101, 8092 Zürich, Switzerland<br />

Holger.Heumann@sam.math.ethz.ch<br />

Co-or<strong>di</strong>nate free <strong>di</strong>fferential forms <strong>of</strong>fer considerable benefits for the construction <strong>of</strong><br />

compatible <strong>di</strong>scretizations. We adopt here the perspective <strong>of</strong> <strong>di</strong>fferential forms to derive<br />

Galerkin schemes for general advection problems:<br />

∗ω + ∗Lβω = f in Ω ⊂ R n ,<br />

ı ∗ ω = ı ∗ ω0 on inflow boundary,<br />

iβω = iβω0 on inflow boundary.<br />

(3.1)<br />

These are boundary value problems for unknown l-forms ω, 0 ≤ l ≤ n, in the domain<br />

Ω. The symbol ∗ stands for the Hodge operator mapping a l-form to a (n − l)-form.<br />

Boundary con<strong>di</strong>tions on the inflow boundary are imposed via the trace ı ∗ ω and the<br />

contraction iβω <strong>of</strong> ω. By Lβ we denote the Lie derivative for a given velocity field β.<br />

The Lie derivative generalizes the concept <strong>of</strong> <strong>di</strong>rectional derivatives <strong>of</strong> scalar functions to<br />

<strong>di</strong>fferential forms, hence it models advection. For n = 3 the vector analytic incarnations<br />

<strong>of</strong> the Lie derivative for unknown fields u or functions u are:<br />

• l=0: β · grad u;<br />

• l=1: curl u × β + grad(u · β);<br />

• l=2: β<strong>di</strong>vu + curl(β × u);<br />

• l=3: <strong>di</strong>v(βu).<br />

While the cases l = 0 and l = 3 have been object <strong>of</strong> intense research, the cases l = 1 and<br />

l = 2 have received scant attention, though they are relevant for numerical modeling in<br />

e.g. symmetrized MHD [2] or magnetic <strong>di</strong>ffusion convection problems [4].<br />

By means <strong>of</strong> <strong>di</strong>fferential forms calculus we derive a consistent and stable Galerkin<br />

<strong>di</strong>scretization <strong>of</strong> (1) for general, not necessarily conforming, approximation spaces. For<br />

<strong>di</strong>scontinuous approximation spaces we even obtain stability in some mesh dependent<br />

norm, which is stronger than the L 2 -norm. In the cases l = 0 and l = n these schemes are<br />

49


Contributed talks<br />

the usual Galerkin schemes for scalar advection and globally continuous or <strong>di</strong>scontinuous<br />

approximation spaces.<br />

1<br />

k+ We then prove for the case l = 1 and n = 3 optimal convergence <strong>of</strong> order O(h 2 )<br />

for either fully <strong>di</strong>scontinuous, normally continuous or tangentially continuous piecewise<br />

polynomial approximation spaces. The pro<strong>of</strong> is very much inspired from the correspon<strong>di</strong>ng<br />

pro<strong>of</strong> for l = 2, n = 2 [3] and the principle ideas can be extended to the curl- and<br />

<strong>di</strong>v-conforming approximation spaces due to the build-in finite element de Rham complex<br />

[1].<br />

References<br />

[1] D.N. Arnold, R.S. Falk and R. Winther: Finite element exterior calculus, homological techniques,<br />

and applications, Acta Numerica, vol. 15 (2006), 1-155.<br />

[2] T. Barth: On the role <strong>of</strong> involutions in the <strong>di</strong>scontinous Galerkin <strong>di</strong>scretization <strong>of</strong> Maxwell<br />

and magnetohydrodynamic systems, Compatible spatial <strong>di</strong>scretizations, IMA Vol. Math.<br />

Appl.,vol 142 (2006), 69-88<br />

[3] F. Brezzi, L.D.Marini, E. Süli: Discontinuous Galerkin methods for first-order hyperbolic<br />

problems, Math. Models Methods Appl. Sci., vol 14 (2004), 1893–1903<br />

[4] Holger Heumann, Ralf Hiptmair and Jinchao Xu: A semi–Lagrangian method for convection<br />

<strong>of</strong> <strong>di</strong>fferential forms, SAM-Report 2009-9, 2009.<br />

50


Contributed talks<br />

A non-standard finite element method based on boundary<br />

integral operators<br />

Clemens H<strong>of</strong>reither<br />

Institute <strong>of</strong> Computational Mathematics,<br />

Altenberger Strasse 69, A-4040 Linz, Austria/Europe<br />

clemens.h<strong>of</strong>reither@dk-compmath.jku.at<br />

Joint work Ulrich Langer and Clemens Pechstein.<br />

We present a non-standard finite element method based on the use <strong>of</strong> boundary integral<br />

operators that permits polyhedral element shapes as well as meshes with hanging<br />

nodes. The method employs elementwise PDE-harmonic trial functions and can thus be<br />

interpreted as a local Trefftz method. The construction principle requires the explicit<br />

knowledge <strong>of</strong> the fundamental solution <strong>of</strong> the partial <strong>di</strong>fferential operator, but only locally,<br />

i.e. in every polyhedral element. This allows us to solve PDEs with elementwise<br />

constant coefficients. In this talk we consider the <strong>di</strong>ffusion equation as a model problem,<br />

but the method can be generalized to convection-<strong>di</strong>ffusion-reaction problems and to<br />

systems <strong>of</strong> PDEs like the linear elasticity system with elementwise constant coefficients.<br />

We provide a rigorous error analysis <strong>of</strong> the method for the three-<strong>di</strong>mensional case under<br />

quite general assumptions on the geometric properties <strong>of</strong> the elements. Some numerical<br />

tests confirm the theoretical results.<br />

51


Contributed talks<br />

Higher-order <strong>di</strong>scretization <strong>of</strong> the Laplace-Beltrami operator<br />

J.J. Kreeft, A. Palha, M.I. Gerritsma<br />

Delft University <strong>of</strong> Technology<br />

Kluyverweg 1, 2629 HS Delft, The Netherlands<br />

J.J.Kreeft@tudelft.nl<br />

The Laplace-Beltrami operator acting on <strong>di</strong>fferential forms is given by ∇ := δd + dδ :<br />

Λ k ↦→ Λ k . This operator resembles among others the Laplace <strong>of</strong> scalars as well as the<br />

Laplace acting on vectors. An example <strong>of</strong> the former is in the Poisson equation and the<br />

later can be found e.g. in fluid dynamics and electro-magnetism [1].<br />

In this talk we show how this operator fits in the double DeRham-complex [2] and the<br />

two <strong>di</strong>fferent ways to <strong>di</strong>scretize/approximate the Laplace-Beltrami operator. The first is<br />

in approximating the Hodge-⋆ operator, resulting in a staggered-grid finite-volume like<br />

method, and the second is in approximating the dual DeRham-complex, resulting in a<br />

(mixed) finite-element like formulation [3].<br />

The presented formulations are combined with the mimetic spectral element method,<br />

a higher-order interpolation method for cochains, the <strong>di</strong>screte counterpart <strong>of</strong> <strong>di</strong>fferential<br />

forms. The robustness <strong>of</strong> the proposed method is demonstrated using highly curved<br />

grids while still maintaining higher-order convergence.<br />

References<br />

[1] F. Brezzi, A. Buffa, Innovative mimetic <strong>di</strong>scretizations for electromagnetic problems, Journal<br />

<strong>of</strong> Computational and Applied Mathematics, 234, 1980-1987, (2010).<br />

[2] M. Desbrun, E. Kanso, Y. Tongy, Discrete <strong>di</strong>fferential forms for computational modeling,<br />

in procee<strong>di</strong>ngs <strong>of</strong> International conference on computer graphics and interactive techniques,<br />

(2005).<br />

[3] D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus: from Hodge theory<br />

to numerical stability, Bulletin <strong>of</strong> the American mathematical society, 47, 281-354, (2010).<br />

52


Contributed talks<br />

Localized solutions and filtering mechanisms for the <strong>di</strong>scontinuous<br />

Galerkin semi-<strong>di</strong>scretizations <strong>of</strong> the 1−d wave equation<br />

Aurora-Mihaela Marica (joint work with Enrique Zuazua)<br />

BCAM - Basque Center for Applied Mathematics,<br />

Bizkaia Technology Park, 500, E-48160, Derio, Basque Country, Spain<br />

marica@bcamath.org<br />

We perform a complete Fourier analysis <strong>of</strong> the semi-<strong>di</strong>screte 1 − d wave equation<br />

obtained through P1 <strong>di</strong>scontinuous Galerkin (DG) approximations <strong>of</strong> the continuous<br />

wave equation on an uniform grid. The resulting system exhibits the interaction <strong>of</strong><br />

two types <strong>of</strong> components: a physical one and a spurious one, related to the possible<br />

<strong>di</strong>scontinuities that the numerical solution allows. Each <strong>di</strong>spersion relation contains<br />

critical points where the correspon<strong>di</strong>ng group velocity vanishes. Following previous<br />

constructions in [5], we rigorously build wave packets with arbitrarily small velocity <strong>of</strong><br />

propagation concentrated either on the physical or on the spurious component. We also<br />

develop filtering mechanisms aimed at recovering the uniform velocity <strong>of</strong> propagation <strong>of</strong><br />

the continuous solutions. Finally, some applications to numerical approximation issues <strong>of</strong><br />

control problems and connections to the <strong>di</strong>screte estimates for the Schrö<strong>di</strong>nger equation<br />

are presented.<br />

Key words: wave equation, <strong>di</strong>scontinuous Galerkin methods, Fourier analysis, <strong>di</strong>spersion<br />

relation, group velocity, filtering, bigrid algorithm.<br />

References<br />

[1] D.N.Arnold, F.Brezzi, B.Cockburn, L.D.Marini, Unified analysis <strong>of</strong> Discontinuous Galerkin<br />

Methods for Elliptic Problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.<br />

[2] R.Glowinski, J.-L.Lions, J.He, Exact and approximate controllability for <strong>di</strong>stributed parameter<br />

systems: a numerical approach, Encyclope<strong>di</strong>a <strong>of</strong> Mathematics and its Applications,<br />

Cambridge University Press, 117 (2008).<br />

[3] L.Ignat, E.Zuazua, Convergence <strong>of</strong> a multi-grid method for the control <strong>of</strong> waves, J. Eur.<br />

Math. Soc., 11 (2009), 351391.<br />

[4] L.Ignat, E.Zuazua, Numerical <strong>di</strong>spersive schemes for the nonlinear Schrö<strong>di</strong>nger equation,<br />

SIAM. J. Numer. Anal., 47(2) (2009), 1366-1390.<br />

[5] A.Marica, E.Zuazua, Localized solutions for the finite <strong>di</strong>fference semi-<strong>di</strong>scretization <strong>of</strong> the<br />

wave equation, C.R. Acad. Sci. Paris, to appear.<br />

53


Contributed talks<br />

[6] A.Marica, E.Zuazua, Localized solutions and filtering mechanisms for the <strong>di</strong>scontinuous<br />

Galerkin semi-<strong>di</strong>scretizations <strong>of</strong> the 1 − d wave equation, C.R. Acad. Sci. Paris, submitted.<br />

[7] E.Zuazua, Exponential decay for the semilinear wave equation with localized damping in<br />

unbounded domains, J. Math. Pures Appl., 70 (1991), 513-529.<br />

[8] E.Zuazua, Propagation, Observation, Control and Numerical Approximations <strong>of</strong> Waves,<br />

SIAM Review, 47(2)(2005), 197-243.<br />

54


Isogeometric Shape Optimization<br />

Peter Nørt<strong>of</strong>t Nielsen ∗† , Manh Dang Nguyen ∗ , Anton Evgrafov ∗ ,<br />

Allan Roulund Gersborg † and Jens Gravesen ∗<br />

∗ DTU Mathematics, Technical University <strong>of</strong> Denmark,<br />

Bygning 303S, DK-2800 Kgs. Lyngby, Denmark<br />

† DTU Mechanical Engineering, Technical University <strong>of</strong> Denmark<br />

Nils Koppels Allé, Buil<strong>di</strong>ng 404, DK-2800 Kgs. Lyngby, Denmark<br />

p.n.nielsen@mat.dtu.dk<br />

Contributed talks<br />

Isogeometric analysis unites the power to analyse complex engineering problems from<br />

finite element analysis (FEA) with the ability to represent complicated shapes from<br />

computer aided design (CAD)[1, 2]. Being a mixture <strong>of</strong> CAD and FEA, isogeometric<br />

analysis serves as an ideal basis for shape optimization [1, 3, 4].<br />

In the first part <strong>of</strong> the talk we apply the method <strong>of</strong> isogeometric shape optimization<br />

to 2-<strong>di</strong>mensional, steady-state Stokes flow problems with Dirichlet boundary con<strong>di</strong>tions.<br />

We present implementation details and results for a simple optimization problem in<br />

which the objective is to find the most energy efficient shape <strong>of</strong> a 2-<strong>di</strong>mensional pipe<br />

bend.<br />

In the second part, we present isogeometric shape optimization towards the problem<br />

<strong>of</strong> designing vibrating membranes where their first few eigenfrequencies are prescribed.<br />

Some nice shapes have been obtained by <strong>di</strong>fferent methods. They thus show the robustness<br />

<strong>of</strong> our approach and support the integration <strong>of</strong> isogeometric analysis into shape<br />

optimization.<br />

References<br />

[1] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements,<br />

NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194,<br />

4135–4195, 2005.<br />

[2] J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis. Toward Integration <strong>of</strong><br />

CAD and FEA, John Wiley and Sons, 2009.<br />

[3] W.A. Wall, M.A. Frenzel, C. Cyron, Isogeometric structural shape optimization, Comput.<br />

Methods Appl. Mech. Engrg., 197, 2976–2988, 2008.<br />

[4] S. Cho, S.-H. Ha, Isogeometric shape design optimization: exact ge- ometry and enhanced<br />

sensitivity, Struct. Multi<strong>di</strong>sc. Optim, 38, 53–70, 2009.<br />

55


Contributed talks<br />

Higher order cochain interpolation<br />

A. Palha ∗ , J.J. Kreeft † , M.I. Gerritsma †<br />

∗ Delft University <strong>of</strong> Technology<br />

Kluyverweg 1, 2629 HS Delft, The Netherlands<br />

{a.palha,j.j.kreeft,m.i.gerritsma}@tudelft.nl<br />

Algebraic topology can be considered as the natural <strong>di</strong>screte analogue <strong>of</strong> <strong>di</strong>fferential<br />

geometry. This analogy is used in so-called mimetic <strong>di</strong>scretization schemes. The kforms<br />

from <strong>di</strong>fferential geometry have a natural <strong>di</strong>screte counterpart in the k-cochains<br />

in algebraic toplogy. The exterior derivative, d, from <strong>di</strong>fferential geometry with all its<br />

properties can be represented <strong>di</strong>scretely by the coboundary operator, δ, with similar<br />

properties. The DeRham map, R, maps k-forms onto k-cochains, whereas the Whitney<br />

map, I, maps k-cochains onto k-forms. The DeRham map consists <strong>of</strong> integration <strong>of</strong> kforms<br />

over oriented k-<strong>di</strong>mensional geometric objects, whereas the Whitney map consists<br />

<strong>of</strong> interpolation, [1]. The maps should be constructed such that<br />

R · I ≡ I and I· = O(hp), (3.2)<br />

where I is the identity map, h is the characteristic mesh size and p the order <strong>of</strong> the<br />

Whitney map. Furthermore, we require that<br />

R · d = δ · R and d · I = I · δ. (3.3)<br />

Given a cell complex, K, the DeRham map is trivial. This talk will present a Whitney<br />

map <strong>of</strong> arbitrary order satisfying the above requirements. In ad<strong>di</strong>tion, it will be shown<br />

that if these interpolation functions are used as basis functions for finite element formulations<br />

for conservation laws, well-known finite volume <strong>di</strong>scretizations are obtained.<br />

Since all operators are purely topological, all these relations remain valid in severely<br />

<strong>di</strong>storted domains, [2].<br />

References<br />

[1] P.B. Bochev and J.M. Hyman, Principles <strong>of</strong> mimetic <strong>di</strong>scretizations <strong>of</strong> <strong>di</strong>fferential equations,<br />

IMA, 142, Eds. D. Arnold, P. Bochev, R. Nicolaides and M. Shashkov, (2006).<br />

[2] M. Gerritsma, Edge functions for spectral element methods, in procee<strong>di</strong>ngs <strong>of</strong> ICOSAHOM<br />

2009, (2010).<br />

56


Quadrature for Finite Elements on Pyramids<br />

Joel Phillips<br />

Mathematics, Rea<strong>di</strong>ng University,<br />

Whiteknights, PO Box 220, Rea<strong>di</strong>ng RG6 6AX, UK<br />

joel.phillips@rea<strong>di</strong>ng.ac.uk<br />

Contributed talks<br />

High order finite elements on pyramidal domains that conform to and commute with<br />

the spaces <strong>of</strong> the de Rham sequence have recently been constructed. A practical implementation<br />

<strong>of</strong> a finite element method requires a quadrature rule, <strong>of</strong> which the basic<br />

requirement is that it not decrease the order <strong>of</strong> convergence <strong>of</strong> the method.<br />

The analysis <strong>of</strong> the effect <strong>of</strong> quadrature on polynomial elements is classical. One<br />

rule <strong>of</strong> thumb is that for the approximation <strong>of</strong> an elliptic problem using finite elements<br />

consisting <strong>of</strong> polynomials <strong>of</strong> degree k, it is sufficient to use a quadrature rule that exactly<br />

integrates all polynomials <strong>of</strong> degree 2k − 2. However, useful conforming pyramidal finite<br />

elements cannot be constructed with purely polynomial approximation spaces - it is<br />

essential to include certain rational functions.<br />

Quadrature rules for pyramids based on conical product formulae that exactly integrate<br />

polynomials <strong>of</strong> a given degree have been known for over half a century. Promisingly,<br />

these rules also exactly integrate the rational functions included in each <strong>of</strong> the pyramidal<br />

finite element families. However, the classical theory requires that the approximation<br />

space is a subspace <strong>of</strong> H k (K) for each element K. This con<strong>di</strong>tion is not satisfied by the<br />

rational functions present in the pyramidal elements and so the classical rule <strong>of</strong> thumb<br />

does not imme<strong>di</strong>ately generalise.<br />

In this talk, we shall show how to overcome this problem via a refinement <strong>of</strong> the<br />

Bramble-Hilbert lemma.<br />

57


Contributed talks<br />

Towards a Mimetic Nonlinear Shearable Shell<br />

Joachim Linn ∗ , Alessio Quaglino † , Max Wardetzky † and Clarisse Weischedel †<br />

∗ Fraunh<strong>of</strong>er Institute for Industrial Mathematics, Kaiserslautern, Germany,<br />

† Department <strong>of</strong> Numerical and Applied Mathematics, University <strong>of</strong> Göttingen, Germany<br />

quaglino@math.uni-goettingen.de<br />

Linear shearable plates have received wide attention due to the effort <strong>of</strong> deriving compatible<br />

finite element <strong>di</strong>scretizations for the Reissner-Mindlin model [1], a topic which<br />

by now enjoys a mature literature. The inherent kinematic assumptions, allowing for<br />

transverse shear strain, have been successfully employed in the geometrically nonlinear<br />

setting, lea<strong>di</strong>ng to the well-known Nagh<strong>di</strong> shell model.<br />

The fact that the FE view <strong>of</strong>ttimes occludes the geometry behind a given physical<br />

model has stirred recent interest in <strong>di</strong>screte geometric models, e.g., grounded in exterior<br />

calculus [2]. By incorporating a geometric viewpoint for the case <strong>of</strong> shells, we propose a<br />

mimetic FD <strong>di</strong>scretization, with the aim to provide a unified language for geometrically<br />

linear and nonlinear deformations <strong>of</strong> shells and plates. We argue that this goal can be<br />

achieved by <strong>di</strong>scretizing the geometric quantities underlying the smooth theory in an<br />

invariant, parameterization-free manner.<br />

We present in detail one particular triangular element that is derived from these<br />

considerations. We show that this <strong>di</strong>scretization <strong>of</strong>fers an independent derivation <strong>of</strong> a<br />

shell element proposed by Flores et al. [3] and generalizes a previously considered <strong>di</strong>screte<br />

thin-shell model by Grinspun et al. [4]. We further argue that any low-order finite<br />

element for the Reissner-Mindlin model can be translated into our geometric language.<br />

Ad<strong>di</strong>tionally, we provide a geometric intuition for shear locking.<br />

Overview<br />

In contrast to the the Nagh<strong>di</strong> description <strong>of</strong> shells, the geometric view describes curvatures<br />

by the change <strong>of</strong> normals instead <strong>of</strong> derivatives <strong>of</strong> positions. Within this framework,<br />

moderately thick shells may be treated by the Cosserat model [5] that allows for midsurface<br />

“normals”—referred to as <strong>di</strong>rectors—to undergo transverse shear, i.e., to deviate<br />

from true midsurface normals. By attaching <strong>di</strong>rectors to surfaces, the Cosserat model<br />

imme<strong>di</strong>ately lends itself to a <strong>di</strong>fferential-geometric treatment, based on the theory <strong>of</strong><br />

Cartan’s moving frames. If the <strong>di</strong>rectors coincide with surface normals, it recovers the<br />

Koiter model <strong>of</strong> thin shells.<br />

58


Contributed talks<br />

We represent the first and second fundamental forms <strong>of</strong> the deformed surface, enco<strong>di</strong>ng<br />

intrinsic metric and extrinsic curvature properties, respectively, by<br />

I = dφ T dφ, II = 1<br />

<br />

dd<br />

2<br />

T dφ + dφ T <br />

dd , (3.4)<br />

where φ : ¯ S → R3 denotes the (orientation preserving) deformation <strong>of</strong> the midsurface,<br />

d : ¯ S → R3 denotes the <strong>di</strong>rector field, and d denotes the (metric-free) Cartan outer<br />

derivative. To get a low-order model, we choose φ to be a P1 -mapping between the<br />

undeformed and deformed configuration, so that dφ (and therefore the first fundamental<br />

form) is rea<strong>di</strong>ly obtained in the <strong>di</strong>screte case. A Cosserat shell’s elastic potential energy<br />

is the sum over membrane, ben<strong>di</strong>ng, and shearing contributions:<br />

W = t<br />

2<br />

<br />

¯S<br />

I − Ī2 Km + t2 II − ĪI2 Kb + ksd tan 2 . (3.5)<br />

Here Ī, ĪI denote the fundamental forms <strong>of</strong> the undeformed surface, respectively, and<br />

dtan is the <strong>di</strong>rector’s tangential component with respect to the deformed surface. Further,<br />

· K denotes a norm enco<strong>di</strong>ng material stiffnesses, respectively for membrane and<br />

ben<strong>di</strong>ng, and ks represents the shearing stiffness, which can be treated as a scalar in the<br />

isotropic case. While our invariant energy formulation is equivalent to a parameterizationdependent<br />

description considered by, e.g., Simo and coworkers [6], we are not aware <strong>of</strong> a<br />

similarly compact representation as ours—a formulation that almost imme<strong>di</strong>ately carries<br />

over to the <strong>di</strong>screte setting.<br />

For a <strong>di</strong>screte treatment <strong>of</strong> shear, we assign surface normals and <strong>di</strong>rectors to edge<br />

degrees <strong>of</strong> freedom <strong>of</strong> a triangulated surface mesh. While it might appear that <strong>di</strong>screte<br />

surface normals are naturally defined as angle-bisecting ones, we present numerical evidence<br />

that this choice leads to shear locking when the <strong>di</strong>screte mesh interpolates a given<br />

smooth surface. Instead, we allow the unit midedge normal to adjusts itself accor<strong>di</strong>ng<br />

to minimizing the elastic energy, and show that this choice is equivalent to reduced<br />

integration in the FE language.<br />

For obtaining a <strong>di</strong>screte second fundamental form II, we observe that dd is a (multivalued)<br />

1-form in the language <strong>of</strong> exterior calculus. In the <strong>di</strong>screte view, dd is an<br />

integrated quantity, which can be applied to 1-<strong>di</strong>mensional cells. We choose midedge<br />

connecting lines as such requisite 1-cells, giving three <strong>di</strong>rections per triangle for which II<br />

can be evaluated. Fortunately, in <strong>di</strong>mension two, any quadratic form (and hence II) is<br />

uniquely determined by its action on three <strong>di</strong>fferent vectors, yiel<strong>di</strong>ng a constant ben<strong>di</strong>ng<br />

strain per triangle, which can be expressed in a similarly compact and invariant manner<br />

as the strain <strong>of</strong> a constant strain triangle.<br />

References<br />

[1] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.<br />

[2] D. Arnold, R. Falk, R. Winther, Finite Elements Exterior Calculus, Acta Numerica, 2006.<br />

[3] F. G. Flores, E. Oñate, F. Larate, New assumed strain triangles for non linear shell analysis,<br />

J. Comp. Mech., pp. 107-114, Vol. 17, 1995.<br />

59


Contributed talks<br />

[4] E. Grinspun, Y. Gingold, J. Reisman, D. Zorin, Computing <strong>di</strong>screte shape operators on<br />

general meshes, Eurographics (Com- puter Graphics Forum), Vol. 25, 2006.<br />

[5] M. Bisch<strong>of</strong>f, W. A. Wall, K.-U. Bletzinger, E. Ramm, Models and Finite Elements for Thinwalled<br />

Structures, Encyclope<strong>di</strong>a <strong>of</strong> Computational Mechanics Vol. 2, Wiley, 2004.<br />

[6] J. C. Simo, D. D. Fox, On Stress Resultant Geometrically Exact Shell Model. Part I: Formulation<br />

and Optimal Parametrization, J. Comp. Meth. Appl. Mech. Eng., pp. 267-304, Vol.<br />

72, 1989.<br />

60


Contributed talks<br />

High-Order Spline Finite Element Solver for the Time Domain<br />

Maxwell equations<br />

Ahmed Ratnani ∗ , Eric Sonnendrucker † and Nicolas Crouseilles ∗<br />

∗ INRIA and University <strong>of</strong> Strasbourg, France,<br />

† University <strong>of</strong> Strasbourg, France<br />

ahmed.ratnani@math.unistra.fr<br />

Isogeometric analysis has been developed recently in order to be able to use the CAD<br />

description <strong>of</strong> the computational domain to define Finite Element basis functions. In the<br />

same spirit, we developed an exact sequence <strong>of</strong> Finite Element spaces based on splines<br />

having the same properties as the Whitney Finite Element spaces tra<strong>di</strong>tionnally used<br />

for the Finite Element solution <strong>of</strong> Maxwell’s equations. As with the Whitney elements,<br />

one <strong>of</strong> Ampere’s or Faraday’s law can be <strong>di</strong>scretized with a relation between the spline<br />

coefficients <strong>of</strong> the eletric and magnetic fields independent <strong>of</strong> the topology <strong>of</strong> the mesh.<br />

The metric comes in through a <strong>di</strong>screte Finite Element Hodge operator which appears as<br />

the mass matrix involved in the other equation. All domains represented by NURBS can<br />

be represented exactly and arbitrary high degree splines can be used. We shall describe<br />

a Time Domain Maxwell solver based on these Finite Elements and a few validation test<br />

cases.<br />

References<br />

[1] Ratnani, Sonnendrucker, Crouseilles. Arbitrary High-Order Spline Finite Element Solver for<br />

the Time Domain Maxwell equations (In preparation)<br />

61


Contributed talks<br />

A Fictitious Domain Method for Dynamic Analyses<br />

M. Ruess and E. Rank<br />

Center for Simulation Technology in Engineering - CeSIM, Technische Universität München,<br />

Arcisstrasse 21, 80333 München, Germany<br />

ruess@tum.de<br />

The analysis <strong>of</strong> the dynamic response <strong>of</strong> complex structures from solid mechanics <strong>of</strong>ten<br />

requires an essential abstraction and simplification <strong>of</strong> the true structural properties due<br />

to a tremendous <strong>di</strong>scretization effort and <strong>of</strong>ten is limited with tra<strong>di</strong>tional methods.<br />

With the Finite Cell Method (FCM) [1, 2], a novel high-order fictitious domain method<br />

was proposed that fully embeds the structure in an extended, coarse orthogonal cell<br />

structure and identifies its true geometry on the numerical integration level. The method<br />

has been intensively stu<strong>di</strong>ed for linear analyses and recently showed very promising<br />

results also for nonlinear analyses [3]. Dynamic analyses, however, haven’t yet gained<br />

much attention and will be thoroughly examined in this contribution.<br />

The Finite Cell Method dramatically simplifies the modelling effort for complex geometries<br />

and/or multi-material interfaces and essentially keeps the advantageous properties<br />

<strong>of</strong> the p-version <strong>of</strong> the Finite Element Method, thus combining high accuracy, exponential<br />

convergence rates and pre<strong>di</strong>ctable error properties. Even more, the method turns out<br />

to be highly suited for non-homogeneous material models where the constitutive properties<br />

change continuously within the computation domain. The quality <strong>of</strong> the solution<br />

for the proposed method depends on several factors, such as the numerical integration<br />

scheme and a balanced h/p refinement strategy that will be <strong>di</strong>scussed and analysed with<br />

regard to dynamic structure response.<br />

The numerical integration scheme requires a dense <strong>di</strong>stribution <strong>of</strong> integration points<br />

to accurately capture the structural inhomogeneity and to confine the integration error.<br />

An adaptive integration scheme is used to counteract a tremendous integration effort,<br />

that still is an essential criteria for the efficiency <strong>of</strong> the method if several large and dense<br />

element matrices (e.g. stiffness, mass) are required, as they appear for higher polynomial<br />

Ansatz functions. In the case <strong>of</strong> isotropic material properties the orthogonality <strong>of</strong> the<br />

cell structure can be favorably exploited since the mapping <strong>of</strong> a global cell element to a<br />

normalized hexahedral reference element is considerably simplified and allows a subcellbased<br />

pre-computation <strong>of</strong> an element-independent stiffness and mass matrix except for<br />

scaling factors representing material constants <strong>of</strong> each subcell. An optimal configuration<br />

<strong>of</strong> polynomial degree and mesh density will be derived from several benchmark tests and<br />

62


Contributed talks<br />

Figure 3.1: Convergence plot for the first three circular frequencies <strong>of</strong> a cantilever beam<br />

with circular cross-section and a moderate number <strong>of</strong> cells and p-elements,<br />

respectively. A consistent mass <strong>di</strong>stribution is applied. The numerical results<br />

are compared to the analytical Bernoulli solution as an approximation to the<br />

exact 3D solution as in<strong>di</strong>cated by the curves levelling <strong>of</strong>f at p > 3.<br />

systematically analysed concerning accuracy, numerical stability and efficiency.<br />

This contribution will give a brief overview about the basic idea <strong>of</strong> the Finite Cell<br />

Method for dynamic problems inclu<strong>di</strong>ng mass lumping strategies and the proper choice<br />

<strong>of</strong> boundary con<strong>di</strong>tions. A frequency analysis on cell and domain level is presented and<br />

compared to results from classical h- and p-FEM computations to reveal the potentials<br />

and limitations <strong>of</strong> the method for dynamic analyses. The proposed method is applied<br />

to multi-material continuum problems.<br />

References<br />

[1] A. Düster, J. Parvizian, Z. Yang, E. Rank. “The finite cell method for three- <strong>di</strong>mensional<br />

problems <strong>of</strong> solid mechanics”, Comput. Methods Appl. Mech. Engrg, v. 197, p. 3768-3782,<br />

2008<br />

[2] J. Parvizian, A. Düster, E. Rank. “Finite cell method – h- and p-extension for embedded<br />

domain problems in solid mechanics”, Comput. Mech., v. 41, p. 121-133, 2007<br />

[3] D. Schillinger, S. Kollmannsberger, R.-P. Mundani, E. Rank. “The Hierarchical B- Spline<br />

Version <strong>of</strong> the Finite Cell Method for Geometrically Nonlinear Problems <strong>of</strong> Solid Mechanics”,<br />

in Proc. IV ECCM, Paris, France, May 16-21, 2010<br />

63


Contributed talks<br />

Analysis <strong>of</strong> the Discrete Maximum Principle in the Mimetic<br />

Finite Difference Method for Elliptic Problems<br />

D. Svyatskiy<br />

Applied Mathematics and Plasma Physics Group, Theoretical Division,<br />

Los Alamos National Laboratory, Los Alamos, NM 87545, USA<br />

dasvyat@lanl.gov<br />

The Maximum Principle is one <strong>of</strong> the most important properties <strong>of</strong> solutions <strong>of</strong> partial<br />

<strong>di</strong>fferential equations. Its numerical analog, the Discrete Maximum Principle (DMP), is<br />

one <strong>of</strong> the properties that are very <strong>di</strong>fficult to incorporate into numerical methods, especially<br />

when the computational mesh contains <strong>di</strong>storted or degenerate cells or the problem<br />

coefficients are highly heterogeneous and anisotropic. A violation <strong>of</strong> DMP may lead to<br />

numerical instabilities such as oscillations and to non-physical solutions, for example,<br />

when heat flows from a cold material to a hot one. Some physical quantities, like concentration<br />

and temperature, are non-negative by their nature and their approximations<br />

should be non-negative as well.<br />

The family <strong>of</strong> the Mimetic Finite Difference (MFD) methods provides flexibility in the<br />

choice <strong>of</strong> parameters which define a particular member <strong>of</strong> the family. For example, the<br />

MFD <strong>di</strong>scretization scheme for quadrilateral meshes depends on three parameters. The<br />

correct choice <strong>of</strong> these parameters may guarantee that the resulting numerical scheme<br />

satisfy the DMP principle. The analysis <strong>of</strong> this strategy is based on the properties <strong>of</strong> Mmatrices.<br />

The monotonicity limits <strong>of</strong> MFD method are investigated in several practically<br />

important cases inclu<strong>di</strong>ng meshes generated using the Adaptive Mesh Refinement (AMR)<br />

strategy.<br />

64


List <strong>of</strong> participants<br />

65


Jade Gesare Abuga jadeabuga@yahoo.com<br />

Mathematics, University <strong>of</strong> Eastern Africa, Baraton<br />

P.O.Box 2500, 30100, Eldoret, Kenya<br />

Paola Antonietti paola.antonietti@polimi.it<br />

MOX-<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Politecnico <strong>di</strong> Milano<br />

Via Bonar<strong>di</strong> 9, 20133 Milano<br />

Blanca Ayuso de Dios bayuso@crm.cat<br />

Centre de Recerca <strong>Matematica</strong> (CRM), UAB Science Faculty<br />

08193 Bellaterra Barcelona, Spain<br />

Douglas Arnold arnold@ima.umn.edu<br />

List <strong>of</strong> participants<br />

Institut for Mathematics and its Applications, University <strong>of</strong> Minnesota<br />

Minneapolis, MN 55455, USA<br />

Fer<strong>di</strong>nando Auricchio auricchio@unipv.it<br />

<strong>Dipartimento</strong> <strong>di</strong> Meccanica Strutturale, Università <strong>di</strong> Pavia<br />

Via Ferrata 1, 27100 Pavia<br />

Lourenco Beirão da Veiga lourenco.beirao@unimi.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong> “F. Enriques”, Università <strong>di</strong> Milano<br />

Via Sal<strong>di</strong>ni 50, 20133 Milano, Italy<br />

Timo Betcke t.betcke@rea<strong>di</strong>ng.ac.uk<br />

Department <strong>of</strong> Mathematics, University <strong>of</strong> Rea<strong>di</strong>ng<br />

Whiteknights, PO Box 220, Rea<strong>di</strong>ng, RG6 6AX, UK<br />

Michel Bercovier berco@cs.huji.ac.il<br />

School <strong>of</strong> Computer Science and Engineering, Hebrew University <strong>of</strong> Jerusalem<br />

E.J. Safra Campus, Givat-Ram Jerusalem 91904, Israel<br />

Pavel Bochev pbboche@san<strong>di</strong>a.gov<br />

Applied Mathematics and Applications, San<strong>di</strong>a National Laboratories<br />

P.O. Box 5800, MS 1320, Albuquerque, NM 87185-1320<br />

Daniele B<strong>of</strong>fi daniele.b<strong>of</strong>fi@unipv.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Pavia<br />

Via Ferrata 1, 27100 Pavia<br />

Luca Bonaventura luca.bonaventura@polimi.it<br />

MOX - <strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Politecnico <strong>di</strong> Milano<br />

Via Bonar<strong>di</strong> 9, 20133 Milano<br />

Francesca Bonizzoni francesca1.bonizzoni@mail.polimi.it<br />

MOX, <strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong> “F. Brioschi”, Politecnico <strong>di</strong> Milano<br />

Via Bonar<strong>di</strong> 9, e<strong>di</strong>ficio 14 “La Nave”, VI piano, 20133 Milano<br />

67


List <strong>of</strong> participants<br />

Andrea Bressan andrea.bressan@unipv.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Pavia<br />

Via Ferrata 1, 27100 Pavia<br />

Franco Brezzi brezzi@imati.cnr.it<br />

Istituto <strong>di</strong> <strong>Matematica</strong> Applicata e Tecnologie Informatiche, C.N.R.<br />

Via Ferrata 1, 27100 Pavia<br />

Annalisa Buffa annalisa@imati.cnr.it<br />

Istituto <strong>di</strong> <strong>Matematica</strong> Applicata e Tecnologie Informatiche, C.N.R.<br />

Via Ferrata 1, 27100 Pavia<br />

Andrea Cangiani andrea.cangiani@unimib.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong> e Applicazioni<br />

Via Roberto Cozzi 53, E<strong>di</strong>ficio U5, 20125 Milano<br />

Fausto Cavalli fausto.cavalli@ing.unibs.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Brescia<br />

Via Valotti 9, Brescia Italia<br />

Zhiming Chen zmchen@lsec.cc.ac.cn<br />

LSEC, Institute <strong>of</strong> Computational Mathematics, Chinese Academy <strong>of</strong> Sci-<br />

ences<br />

Beijing 100190, China<br />

Clau<strong>di</strong>a Chinosi clau<strong>di</strong>a.chinosi@mfn.unipmn.it<br />

<strong>Dipartimento</strong> <strong>di</strong> Scienze e Tecnologie Avanzate, Università del Piemonte<br />

Orientale<br />

viale T. Michel 11, Alessandria<br />

Durkbin Cho durkbin@imati.cnr.it<br />

Istituto <strong>di</strong> <strong>Matematica</strong> Applicata e Tecnologie Informatiche, C.N.R.<br />

Via Ferrata 1, 27100 Pavia, Italy<br />

Lagat Robert Cheruiyot lagat.robert@yahoo.co.uk<br />

Mathematics and physics, University <strong>of</strong> Eastern Africa<br />

Baraton, P.O Box 2500 Eldoret<br />

Snorre Christiansen snorrec@math.uio.no<br />

CMA and Dept. Math., University <strong>of</strong> Oslo<br />

PO Box 1053 Blindern, NO-0316 Oslo, Norway<br />

Fehmi Cirak fc286@eng.cam.ac.uk<br />

Department <strong>of</strong> Engineering, University <strong>of</strong> Cambridge<br />

Trumpington Street, Cambridge CB2 1PZ, U.K.<br />

68


Elaine Cohen cohen@cs.utah.edu<br />

School <strong>of</strong> Computing, University <strong>of</strong> Utah<br />

List <strong>of</strong> participants<br />

50 S. Central Campus Drive, 3190 MEB, Salt Lake City, UT, 84112, USA<br />

Martin Costabel costabel@univ-rennes1.fr<br />

IRMAR, Institut Mathématique, Université de Rennes 1<br />

Campus de Beaulieu, 35042 Rennes Cedex, France<br />

Catterina Dagnino catterina.dagnino@unito.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Torino<br />

Via Carlo Alberto 10, 10124 Torino, Italia<br />

Monique Dauge monique.dauge@univ-rennes1.fr<br />

IRMAR, Université de Rennes 1<br />

Campus de Beaulieu, 35042 Renne Cedex, France<br />

Carlo de Falco carlo.defalco@polimi.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Politecnico <strong>di</strong> Milano<br />

P.zza Leonardo da Vinci 32<br />

Leszek Demkowicz leszek@ices.utexas.edu<br />

ICES, The University <strong>of</strong> Texas at Austin<br />

ACE 6.326, 201 E.24th Street, Austin, TX 78712, USA<br />

Alan Demlow demlow@ms.uky.edu<br />

Department <strong>of</strong> Mathematics, University <strong>of</strong> Kentucky<br />

715 Patterson Office Tower, Lexington, Kentucky 40506, USA<br />

Tor Dokken tor.dokken@sintef.no<br />

Department <strong>of</strong> Applied Mathematics, SINTEF ICT<br />

Forskningsveien 1, Oslo<br />

Régis Duvigneau Regis.Duvigneau@sophia.inria.fr<br />

OPALE Project-Team, INRIA Sophia-Antipolis<br />

2004 route des Lucioles, 06902 Sophia-Antipolis, France<br />

John Evans evans@ices.utexas.edu<br />

Institute for Computational Engineering and Sciences, University <strong>of</strong> Texas<br />

at Austin<br />

3517 North Hills Drive, #T301, Austin, TX, USA 78731<br />

Richard Falk falk@math.rutgers.edu<br />

Marco Favino favinom@usi.ch<br />

Department <strong>of</strong> Mathematics, Rutgers University<br />

110 Frelinghuysen Road, Piscataway, NJ 08854<br />

Institute <strong>of</strong> Computational Science, University <strong>of</strong> Lugano<br />

Via Giuseppe Buffi 13, Lugano, 6900<br />

69


List <strong>of</strong> participants<br />

Algiane Froehly algiane.froehly@inria.fr<br />

INRIA<br />

351,cours de la liberation,Bat A29 bis,33405 Talence Cedex, France<br />

Gwenael Gabard gabard@soton.ac.uk<br />

ISVR, University <strong>of</strong> Southampton<br />

University Road, Southampton, SO17 1BJ, UK<br />

Francesca Gar<strong>di</strong>ni francesca.gar<strong>di</strong>ni@unipv.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Pavia<br />

Via Ferrata 1, 27100 Pavia, Italy<br />

Lucia Gastal<strong>di</strong> lucia.gastal<strong>di</strong>@ing.unibs.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Brescia<br />

Via Valotti 9, 25133 Brescia, Italy<br />

Paolo Gatto gatto@ices.utexas.edu<br />

ICES, University <strong>of</strong> Texas at Austin<br />

ACE 4.102, 201 E 24th Street, Austin, TX 78712, U.S.A.<br />

Loredana Gau<strong>di</strong>o loredana.gau<strong>di</strong>o@polimi.it<br />

MOX - <strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong> “F. Brioschi”, Politecnico <strong>di</strong> Milano<br />

Via Bonar<strong>di</strong> 9, 20133 Milano<br />

Ivan Georgiev john@parallel.bas.bg<br />

Institute <strong>of</strong> Mathematics and Informatics, Bulgarian Academy <strong>of</strong> Sciences<br />

Acad. G. Bonchev St. 8, 1113 S<strong>of</strong>ia, Bulgaria<br />

Irina Georgieva irina@math.bas.bg<br />

Mathematical Modeling, Institute <strong>of</strong> Mathematics and Informatics, Bulgar-<br />

ian Academy <strong>of</strong> Sciences<br />

Bulgaria, S<strong>of</strong>ia 1113, ul. Acad. Georgi Bonchev 8<br />

Marc Gerritsma M.I.Gerritsma@TUDelft.nl<br />

Faculty <strong>of</strong> Aerspace Engineering, TU Delft<br />

Kluyverweg 1, 2629 HS Delft, The Netherlands<br />

Antti Hannukainen antti.hannukainen@tkk.fi<br />

Department <strong>of</strong> Mathematics and Systems Analysis, Aalto University<br />

P.O. Box 11100, FI-00076 Aalto, Finland<br />

Christoph Heinrich heinrich@ma.tum.de<br />

Centre for Mathematical Sciences, Technische Universität München<br />

Fakultät für Mathematik (M2), Lehrstuhl für Numerische Mathematik, Boltz-<br />

mannstraße 3 D, 85748 Garching bei München, Germany<br />

70


Holger Heumann hheumann@math.ethz.ch<br />

Seminar for Applied Mathematics, ETH Zürich<br />

Rämistrasse 101, 8092 Zürich, Switzerland<br />

Ralf Hiptmair hiptmair@sam.math.ethz.ch<br />

SAM, D-MATH, ETH Zürich<br />

Rämistrasse 101, CH 8092 Zürich<br />

Anil Hirani hirani@cs.illinois.edu<br />

List <strong>of</strong> participants<br />

Department <strong>of</strong> Computer Science, University <strong>of</strong> Illinois at Urbana-Champaign<br />

201 N. Goodwin Ave., Urbana, IL 61801, USA<br />

Clemens H<strong>of</strong>reither clemens.h<strong>of</strong>reither@dk-compmath.jku.at<br />

DK Computational Mathematics, JKU University Linz<br />

Altenbergerstr. 69, 4040 Linz, Austria<br />

Akhlaq Husain akhlaq@iitk.ac.in<br />

Mathematics, In<strong>di</strong>an Institute <strong>of</strong> Technology Kanpur<br />

Department o Mathematics and Statistics, IIT Kanpur, Kanpur, Pin: 208016,<br />

In<strong>di</strong>a<br />

Bert Jüttler bert.juettler@jku.at<br />

Institute <strong>of</strong> Applied Geometry, Johannes Kepler University<br />

Altenberger Str. 69, 4040 Linz, Austria<br />

Clement Jourdana clement@imati.cnr.it<br />

<strong>Dipartimento</strong> <strong>di</strong> matematica, Università <strong>di</strong> Pavia<br />

Via Ferrata 1, 27100 Pavia, Italy<br />

Peter Knabner knabner@am.uni-erlangen.de<br />

Department <strong>of</strong> Mathematics, Friedrich-Alexander Universität Erlangen-Nürn-<br />

berg<br />

Alexander Kolpakov algk@ngs.ru<br />

Martensstrasse 3 D 91058 Erlangen<br />

DAEIMI, Cassino University<br />

Via Di Biasio, 43 03043 Cassino (FR), Italy<br />

Jasper Kreeft j.j.kreeft@tudelft.nl<br />

Aerospace Engineering - Aerodynamics, Delft University <strong>of</strong> Technology<br />

Kluyverweg 1, 2629 HS Delft, The Netherlands<br />

Mukesh Kumar mukesh@imati.cnr.it<br />

Instituto <strong>di</strong> <strong>Matematica</strong> Applicata e Tecnologie Iinformatiche, CNR<br />

Via Ferrata 1, 27100 Pavia<br />

71


List <strong>of</strong> participants<br />

Joachim Linn joachim.linn@itwm.fraunh<strong>of</strong>er.de<br />

Mathematical Methods in Dynamics and Durability, Fraunh<strong>of</strong>er Institute<br />

for Industrial Mathematics (ITWM)<br />

Konstantin Lipnikov lipnikov@lanl.gov<br />

Fraunh<strong>of</strong>er Platz 1 D, 67663 Kaiserslautern, Germany<br />

Applied Mathematics and Plasma Physics, Los Alamos National Laboratory<br />

MS B284, Los Alamos, NM 87545, USA<br />

Carlo Lova<strong>di</strong>na carlo.lova<strong>di</strong>na@unipv.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Pavia<br />

Via Ferrata 1, 27100 Pavia<br />

Teemu Luostari teemu.luostari@uef.fi<br />

Department <strong>of</strong> Physics and Mathematics, University <strong>of</strong> Eastern Finland<br />

University <strong>of</strong> Eastern Finland, Department <strong>of</strong> Physics and Mathematics,<br />

Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland<br />

Carla Manni manni@mat.uniroma2.it<br />

<strong>Matematica</strong>, Universita <strong>di</strong> Roma “Tor Vergata”<br />

Via della Ricerca Scientifica 1, 00133 Roma<br />

Gianmarco Manzini marco.manzini@imati.cnr.it<br />

IMATI, CNR<br />

Via Ferrata 1, 27100 Pavia, Italia<br />

Aurora Mihaela Marica marica@bcamath.org<br />

Ikerbasque, Basque Center for Applied Mathematics<br />

Bizkaia Technology Park, Buil<strong>di</strong>ng 500, 48160, Derio, Basque Country, Spain<br />

Ilario Mazzieri ilario.mazzieri@mail.polimi.it<br />

Politecnico <strong>di</strong> Milano<br />

Via Bonar<strong>di</strong> 9, 20133 Milano<br />

Azaiez Mej<strong>di</strong> azaiez@ipb.fr<br />

Mecanics, Institut Polytechnique de Bordeaux<br />

Jens Markus Melenk melenk@tuwien.ac.at<br />

Lab TREFLE, 16 Av Pey Berland 33607 Pessac Cedex<br />

Institut für Analysis und Scientific Computing (E101), Technische Univer-<br />

sität Wien<br />

Wiedner Hauptstraße 8-10, A-1040 Wien, Austria<br />

Andrea Moiola andrea.moiola@sam.math.ethz.ch<br />

Seminar for Applied Mathematics, ETH Zürich<br />

HG J 45, Rämistrasse 101, 8092 Zürich, CH<br />

72


Peter Monk monk@math.udel.edu<br />

List <strong>of</strong> participants<br />

Department <strong>of</strong> Mathematical Sciences, University <strong>of</strong> Delaware<br />

Newark, DE 19716, USA<br />

Dang Manh Nguyen d.m.nguyen@mat.dtu.dk<br />

Department <strong>of</strong> Mathematics, Technical University <strong>of</strong> Denmark<br />

Matematiktorvet, Buil<strong>di</strong>ng 303S, Kgs. Lyngby, Denmark<br />

Peter Nørt<strong>of</strong>t Nielsen p.n.nielsen@mat.dtu.dk<br />

DTU Mathematics, Technical University <strong>of</strong> Denmark<br />

Bygning 303S, DK-2800 Kgs. Lyngby, Denmark<br />

Artur Palha a.palha@tudelft.nl<br />

Aerodynamics Department, Faculty <strong>of</strong> Aerospace Engineering, TUDelft<br />

Kluyverweg 2, 2629 HT Delft, The Netherlands<br />

Asieh Parsania asieh.parsania@math.uzh.ch<br />

Department <strong>of</strong> Mathematics, Zürich University<br />

Winterthurerstrasse 190, CH-8057 Zürich, Switzerland<br />

Luca Pavarino luca.pavarino@unimi.it<br />

Department <strong>of</strong> Mathematics, Università <strong>di</strong> Milano<br />

Via Sal<strong>di</strong>ni 50, 20133 Milano<br />

Ilaria Perugia ilaria.perugia@unipv.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Pavia<br />

Via Ferrata 1, 27100 Pavia<br />

Jorg Peters jorg@cise.ufl.edu<br />

CISE, University <strong>of</strong> Florida<br />

Gainesville FL 32605<br />

Joel Phillips joel.phillips@rea<strong>di</strong>ng.ac.uk<br />

Mathematics, Rea<strong>di</strong>ng University<br />

Whiteknights, PO Box 220, Rea<strong>di</strong>ng RG6 6AX, UK<br />

Paola Pietra pietra@imati.cnr.it<br />

IMATI, CNR<br />

Via Ferrata 1, 27100 Pavia<br />

Valentina Poletti valentina.poletti@gmail.com<br />

Computational Science Institute, University <strong>of</strong> Lugano<br />

Via Giuseppe Buffi 13, Lugano, 6900<br />

Alessio Quaglino quaglino@math.uni-goettingen.de<br />

Numerical and Applied Maths, Göttingen University<br />

Lotzestr. 16 Göttingen 37073 Germany<br />

73


List <strong>of</strong> participants<br />

Ahmed Ratnani ahmed.ratnani@math.unistra.fr<br />

Applied mathematics, IRMA University <strong>of</strong> Strasbourg, INRIA Grand-Est<br />

7 rue René-Descartes, 67084 Strasbourg Cedex, France<br />

Alessandro Reali alessandro.reali@unipv.it<br />

Structural Mechanics Department, University <strong>of</strong> Pavia<br />

Via Ferrata 1, 27100, Pavia, Italy<br />

Elisabetta Repossi elisabetta.repossi@tiscali.it<br />

MOX- <strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Politecnico <strong>di</strong> Milano<br />

Via Bonar<strong>di</strong>, 9 20133 Milano, Italia<br />

Ju<strong>di</strong>th Rivas ju<strong>di</strong>th.rivas@ehu.es<br />

Martin Ruess ruess@tum.de<br />

Mathematics, University <strong>of</strong> the Basque Country<br />

Barrio Sarriena s/n, 48940 Leioa, Spain<br />

Center for Simulation Technology in Engineering, Technische Universität<br />

München<br />

Arcisstraße 21, 80333 München<br />

Gianni Sacchi gianni.sacchi@imati.cnr.it<br />

IMATI, CNR<br />

Via Ferrata 1, 27100 Pavia, Italy<br />

Giancarlo Sangalli giancarlo.sangalli@unipv.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Pavia<br />

Via Ferrata 1, 27100 Pavia<br />

Marcus Sarkis msarkis@wpi.edu<br />

Mathematical Sciences , Worcester Polytechnic Institute<br />

100 Institute Road, Worcester, MA 01609, USA<br />

Stefan Sauter stas@math.uzh.ch<br />

Institut für Mathematik, Universität Zürich<br />

Winterthurerstrasse 190, 8057 Zürich<br />

Simone Scacchi simone.scacchi@unimi.it<br />

Department <strong>of</strong> Mathematics, University <strong>of</strong> Milan<br />

Via Sal<strong>di</strong>ni 50, 20133 Milano, Italia<br />

Joachim Schöberl joachim.schoeberl@rwth-aachen.de<br />

Institute for Analysis and Scientific Computing, Vienna University <strong>of</strong> Tech-<br />

nology<br />

Wiedner Hauptstrasse 8-10, Wien, Austria<br />

74


Corina Simian corina.simian@math.uzh.ch<br />

List <strong>of</strong> participants<br />

Numerical Analyses, Institute for Mathematics, Zürich University<br />

Winterthurerstrasse 190, CH-8057 Zürich<br />

Daniil Svyatskiy dasvyat@lanl.gov<br />

Theoretical Division, Los Alamos National Laboratory<br />

Mail Stop B284, Los Alamos National Laboratory, Los Alamos, NM 87545,<br />

U.S.A.<br />

Pragnesh Thakkar pragnesh.thakkar@nirmauni.ac.in<br />

Mathematics Scection, Institute <strong>of</strong> Diploma Stu<strong>di</strong>es, Nirma University<br />

4,Varsha Apartment, Plot#184, Nehru Park, Opp.Vastrapur Lake, Vastra-<br />

pur, Ahmedabad, Gujarat, In<strong>di</strong>a<br />

Satyendra Tomar satyendra.tomar@ricam.oeaw.ac.at<br />

RICAM, Austrian Academy <strong>of</strong> Sciences<br />

Altenbergerstrasse 69, 4040 Linz, Austria<br />

Rafael Vázquez vazquez@imati.cnr.it<br />

Instituto <strong>di</strong> <strong>Matematica</strong> Applicata e Tecnologie Informatiche, CNR<br />

Via Ferrata 1, 27100 Pavia, Italia<br />

Alexander Veit alexander.veit@math.uzh.ch<br />

Institut für Mathematik, University <strong>of</strong> Zürich<br />

Winterthurerstrasse 190, CH-8057 Zürich<br />

Marco Verani marco.verani@polimi.it<br />

MOX-Department <strong>of</strong> Mathematics, Politecnico <strong>di</strong> Milano<br />

Via Bonar<strong>di</strong>, 9 20133 Milano<br />

Clau<strong>di</strong>o Ver<strong>di</strong> clau<strong>di</strong>o.ver<strong>di</strong>@unimi.it<br />

<strong>Dipartimento</strong> <strong>di</strong> <strong>Matematica</strong>, Università <strong>di</strong> Milano<br />

Via Sal<strong>di</strong>ni 50, 20133 Milano<br />

Anh-Vu Vuong vuong@ma.tum.de<br />

Centre for Mathematical Sciences, Technische Universität München<br />

Fakultät für Mathematik, Lehrstuhl für Numerische Mathematik (M2), Boltz-<br />

mannstraße 3 D, 85748 Garching, Germany<br />

Mary F. Wheeler mfw@ices.utexas.edu<br />

Center for Subsurface Modeling, The University <strong>of</strong> Texas at Austin<br />

1 University Station C0200, Austin, Texas 78712<br />

Ragnar Winther ragnar.winther@cma.uio.no<br />

Centre <strong>of</strong> Mathematics for Applications (CMA), University <strong>of</strong> Oslo<br />

CMA, P.O. Box 1053, Blindern, 0316 Oslo, Norway<br />

75


List <strong>of</strong> participants<br />

Gang Xu gxu@sophia.inria.fr<br />

GALAAD Team, INRIA Sophia-antipolis<br />

2004, route des Lucioles B.P. 93 F, 06902 Sophia Antipolis Cedex, France<br />

Ivan Yotov yotov@math.pitt.edu<br />

Department <strong>of</strong> Mathematics, University <strong>of</strong> Pittsburgh<br />

301 Thackeray Hall, Pittsburgh, PA 15260, USA<br />

76

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!