14.06.2013 Views

Adaptive evolution of digestive RNASE1 genes in leaf-eating ...

Adaptive evolution of digestive RNASE1 genes in leaf-eating ...

Adaptive evolution of digestive RNASE1 genes in leaf-eating ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Adaptive</strong> <strong>evolution</strong> <strong>of</strong> <strong>digestive</strong> <strong>RNASE1</strong> <strong>genes</strong> <strong>in</strong> <strong>leaf</strong>-eat<strong>in</strong>g monkeys revisited:<br />

new <strong>in</strong>sights from 10 additional Colob<strong>in</strong>es<br />

Li Yu* ,$ , Xiao-yan Wang* ,$ , Wei J<strong>in</strong>*, Peng-tao Luan*, Nelson T<strong>in</strong>g § , Ya-p<strong>in</strong>g<br />

Zhang*‡<br />

MBE Advance Access published September 11, 2009<br />

*Laboratory for Conservation and Utilization <strong>of</strong> Bio-resource & Key Laboratory for<br />

Microbial Resources <strong>of</strong> the M<strong>in</strong>istry <strong>of</strong> Education, Yunnan University, Kunm<strong>in</strong>g,<br />

650091, PR, Ch<strong>in</strong>a;<br />

‡State Key Laboratory <strong>of</strong> Genetic Resources and Evolution, and Laboratory <strong>of</strong><br />

Molecular Biology <strong>of</strong> Domestic Animals, Kunm<strong>in</strong>g Institute <strong>of</strong> Zoology, Kunm<strong>in</strong>g<br />

650223, Ch<strong>in</strong>a;<br />

§Anthropology Program, City University <strong>of</strong> New York Graduate Center, 365 Fifth<br />

Avenue, New York, NY 10016, USA<br />

$ These authors contributed equally to this work<br />

Correspondence to:<br />

Ya-p<strong>in</strong>g Zhang,<br />

State Key Laboratory <strong>of</strong> Genetic Resources and Evolution, Kunm<strong>in</strong>g Institute <strong>of</strong><br />

Zoology, Kunm<strong>in</strong>g 650223, Ch<strong>in</strong>a<br />

Phone: 86-871-5190761<br />

FAX: 86-871-5195430<br />

E-mail: zhangyp1@263.net.cn or zhangyp@mail.kiz.ac.cn<br />

Li Yu,<br />

Laboratory for Conservation and Utilization <strong>of</strong> Bio-resource, Yunnan University,<br />

Kunm<strong>in</strong>g 650091, Ch<strong>in</strong>a;<br />

Phone: 86-871-5033362<br />

FAX: 86-871-5033362<br />

E-mail: yuli1220@yahoo.com.cn<br />

© The Author 2009. Published by Oxford University Press on behalf <strong>of</strong> the Society for Molecular Biology<br />

and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Abstract:<br />

Pancreatic RNase <strong>genes</strong> implicated <strong>in</strong> the adaptation <strong>of</strong> the colob<strong>in</strong>e monkeys to<br />

<strong>leaf</strong>-eat<strong>in</strong>g have long <strong>in</strong>trigued <strong>evolution</strong>ary biologists s<strong>in</strong>ce the identification <strong>of</strong> a<br />

duplicated <strong>RNASE1</strong> gene with enhanced <strong>digestive</strong> efficiencies <strong>in</strong> Pygathrix nemaeus.<br />

The recent emergence <strong>of</strong> two contrast<strong>in</strong>g hypotheses, i.e., <strong>in</strong>dependent duplication and<br />

one duplication event hypotheses, make it <strong>in</strong>to focus aga<strong>in</strong>. Current understand<strong>in</strong>g <strong>of</strong><br />

Colob<strong>in</strong>e <strong>RNASE1</strong> gene <strong>evolution</strong> largely depends on the analyses <strong>of</strong> few colob<strong>in</strong>e<br />

species. The present study with more <strong>in</strong>tensive taxonomic and character sampl<strong>in</strong>g not<br />

only provides a clearer picture <strong>of</strong> Colob<strong>in</strong>e <strong>RNASE1</strong> gene <strong>evolution</strong>, but also allows to<br />

have a more thorough understand<strong>in</strong>g about the molecular basis underly<strong>in</strong>g the<br />

adaptation <strong>of</strong> Colob<strong>in</strong>ae to the unique <strong>leaf</strong>-feed<strong>in</strong>g lifestyle. The present broader and<br />

detailed phylogenetic analyses yielded two important f<strong>in</strong>d<strong>in</strong>gs: (1) All trees based on<br />

the analyses <strong>of</strong> cod<strong>in</strong>g, noncod<strong>in</strong>g and both regions provided consistent evidence<br />

<strong>in</strong>dicat<strong>in</strong>g <strong>RNASE1</strong> duplication occurred after Asian and African colob<strong>in</strong>es speciation,<br />

i.e., <strong>in</strong>dependent duplication hypothesis; (2) No obvious evidence <strong>of</strong> gene conversion<br />

<strong>in</strong> <strong>RNASE1</strong> gene was found, favor<strong>in</strong>g <strong>in</strong>dependent <strong>evolution</strong> <strong>of</strong> Colob<strong>in</strong>e <strong>RNASE1</strong><br />

gene duplicates. The conclusion drawn from previous studies that gene conversion has<br />

played a significant role <strong>in</strong> the <strong>evolution</strong> <strong>of</strong> Colob<strong>in</strong>e <strong>RNASE1</strong> was not supported. Our<br />

selective constra<strong>in</strong>t analyses also provided <strong>in</strong>terest<strong>in</strong>g <strong>in</strong>sights, with significant<br />

evidence <strong>of</strong> positive selection detected on ancestor l<strong>in</strong>eages lead<strong>in</strong>g to duplicated gene<br />

copies. The identification <strong>of</strong> a handful <strong>of</strong> new adaptive sites and am<strong>in</strong>o acid changes<br />

that have not been characterized previously also provide a necessary foundation for<br />

further experimental <strong>in</strong>vestigations <strong>of</strong> <strong>RNASE1</strong> functional <strong>evolution</strong> <strong>in</strong> Colob<strong>in</strong>ae.<br />

Runn<strong>in</strong>g head: New <strong>in</strong>sights <strong>of</strong> <strong>Adaptive</strong> <strong>evolution</strong> <strong>of</strong> Colob<strong>in</strong>e <strong>RNASE1</strong><br />

Key words: <strong>RNASE1</strong>, Colob<strong>in</strong>es, <strong>Adaptive</strong> <strong>evolution</strong>, Gene conversion, Independent<br />

duplication<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Introduction:<br />

Gene duplication has long been thought as the primary source for <strong>evolution</strong>ary<br />

<strong>in</strong>novations and functional adaptations specific to certa<strong>in</strong> groups <strong>of</strong> organisms (Ohno<br />

1970; Clegg et al. 1997; Force et al. 1999; Zhang 2003; Rispe et al. 2008). One <strong>of</strong> the<br />

most compell<strong>in</strong>g examples comes from the duplication <strong>of</strong> pancreatic ribonucleases<br />

(<strong>RNASE1</strong>) gene <strong>in</strong> <strong>leaf</strong>-eat<strong>in</strong>g colob<strong>in</strong>e monkeys (Zhang et al. 2002; Zhang 2006).<br />

Us<strong>in</strong>g both molecular analyses and functional assays, Zhang et al. have revealed that<br />

the duplicated <strong>RNASE1</strong> <strong>genes</strong> <strong>in</strong> two colob<strong>in</strong>es, Asian Pygathrix nemaeus and African<br />

Colobus guereza, evolved rapidly under positive selection for enhanced <strong>digestive</strong><br />

efficiencies, as an adaptive response to the <strong>in</strong>creased demands for the enzyme for<br />

digest<strong>in</strong>g bacterial RNA (Zhang et al. 2002; Zhang 2006). Furthermore, phylogenetic<br />

analysis and molecular dat<strong>in</strong>g <strong>of</strong> the 2-kb <strong>RNASE1</strong> gene sequences, <strong>in</strong>clud<strong>in</strong>g cod<strong>in</strong>g<br />

and flank<strong>in</strong>g noncod<strong>in</strong>g regions, showed that the duplication postdated the separation<br />

<strong>of</strong> Asian and African colob<strong>in</strong>es, i.e. <strong>in</strong>dependent duplication hypothesis. Duplicated<br />

<strong>RNASE1</strong> gene <strong>in</strong> Asian and African colob<strong>in</strong>es are the result <strong>of</strong> <strong>in</strong>dependent duplications<br />

but have been subject to the same selective pressures and underwent similar functional<br />

changes (Zhang et al. 2002; Zhang 2006; hypothesis A <strong>in</strong> Fig. 1).<br />

Recently, however, Schienman et al. (2006) and Xu et al. (2009) suggested that<br />

the cod<strong>in</strong>g and noncod<strong>in</strong>g regions portray entirely different <strong>evolution</strong>ary scenario <strong>of</strong><br />

RNases <strong>in</strong> the <strong>leaf</strong>-eat<strong>in</strong>g monkeys. Their analyses based on five colob<strong>in</strong>es, <strong>in</strong>clud<strong>in</strong>g<br />

three additional species, Asian Semnopithecus entellus, Nasalis larvatus and African<br />

Piliocolobus badius, showed that noncod<strong>in</strong>g phylogeny divided <strong>RNASE1</strong> <strong>genes</strong> <strong>in</strong>to<br />

Asian and African-specific clades, <strong>in</strong> which the duplicates with<strong>in</strong> each <strong>of</strong> five species<br />

are more closely related to each other than to their orthologues, a pattern consistent<br />

with the <strong>in</strong>dependent duplications <strong>in</strong> Asian and African colob<strong>in</strong>es; whereas cod<strong>in</strong>g<br />

phylogeny clustered the duplicated <strong>RNASE1</strong> <strong>genes</strong> <strong>of</strong> all <strong>leaf</strong> monkeys together,<br />

suggest<strong>in</strong>g an ancient duplication event preced<strong>in</strong>g the divergence between Asian and<br />

African colob<strong>in</strong>es (hypothesis B <strong>in</strong> Fig. 1). This result promoted Xu et al. to claim that<br />

the duplicated <strong>RNASE1</strong> <strong>genes</strong> <strong>in</strong> <strong>leaf</strong> monkeys were actually produced by a s<strong>in</strong>gle<br />

gene duplication event prior to <strong>leaf</strong> monkey speciation, i.e., one gene duplication<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


hypothesis, and attribute the results <strong>in</strong>ferred from their noncod<strong>in</strong>g trees and that <strong>of</strong><br />

Zhang (2006)’s study to gene conversion. Hence, the <strong>evolution</strong>ary pattern <strong>of</strong> <strong>RNASE1</strong><br />

<strong>genes</strong> <strong>in</strong> <strong>leaf</strong>-eat<strong>in</strong>g monkeys seems more complex and confus<strong>in</strong>g than has previously<br />

been recognized.<br />

Though it has long been believed that phylogenetic analyses have contributed<br />

much to trace scenario <strong>of</strong> gene <strong>evolution</strong>, however, the tree topology <strong>of</strong> phylogenetic<br />

trees can sometimes be biased by sampl<strong>in</strong>g errors, lead<strong>in</strong>g to an unreliable estimation.<br />

More complete sampl<strong>in</strong>g <strong>of</strong> the animal group <strong>in</strong> question and <strong>of</strong> the nucleotide sites <strong>in</strong><br />

use would provide a clearer picture <strong>of</strong> gene <strong>evolution</strong> (Pollock et al. 2002; Zwickl and<br />

Hillis 2002; Kuraku et al. 2009). Currently, our understand<strong>in</strong>g <strong>of</strong> Colob<strong>in</strong>e <strong>RNASE1</strong><br />

gene <strong>evolution</strong> largely depends on the analyses <strong>of</strong> limited taxonomic sampl<strong>in</strong>g. So it<br />

would be <strong>of</strong> considerable <strong>in</strong>terest and importance to study <strong>RNASE1</strong> sequences <strong>of</strong> more<br />

<strong>leaf</strong> monkeys to shed new lights on the clarification <strong>of</strong> the two contrast<strong>in</strong>g hypotheses,<br />

which is critical for a deeper understand<strong>in</strong>g about the true <strong>evolution</strong>ary history <strong>of</strong><br />

Colob<strong>in</strong>es RNases. In addition, analysis <strong>of</strong> additional <strong>RNASE1</strong> gene sequences allows<br />

us to have a more thorough understand<strong>in</strong>g about the molecular basis underly<strong>in</strong>g the<br />

adaptation <strong>of</strong> Colob<strong>in</strong>ae to the unique <strong>leaf</strong>-feed<strong>in</strong>g lifestyle.<br />

In the present study, we newly determ<strong>in</strong>ed <strong>RNASE1</strong> <strong>genes</strong> <strong>of</strong> two African<br />

colob<strong>in</strong>es, Colobus polykomos and Colobus angolensis, and 8 Asian colob<strong>in</strong>es,<br />

Trachypithecus johnii, Trachypithecus vetulus, Trachypithecus francoisi<br />

leucocephalus, Trachypithecus francoisi, Trachypithecus phayrei, Rh<strong>in</strong>opithecus<br />

avunculus, Rh<strong>in</strong>opithecus bieti, and Rh<strong>in</strong>opithecus roxellanae. A total <strong>of</strong> 21 sequences<br />

were obta<strong>in</strong>ed, <strong>in</strong> which three <strong>RNASE1</strong> <strong>genes</strong> were found <strong>in</strong> Trachypithecus vetulus,<br />

while two <strong>genes</strong> <strong>in</strong> all the other colob<strong>in</strong>es. Together with previously reported five <strong>leaf</strong><br />

monkeys, the most comprehensive <strong>in</strong>vestigation to date <strong>of</strong> <strong>RNASE1</strong> gene <strong>evolution</strong> <strong>in</strong><br />

Colob<strong>in</strong>ae were performed <strong>in</strong> this study.<br />

Materials and Methods<br />

Data Sets<br />

The colob<strong>in</strong>es (Colob<strong>in</strong>ae subfamily) are a diverse clade <strong>of</strong> Old World primates<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


and their generic classifications have long been <strong>in</strong> debate, from 4 to 10 genera (Szalay<br />

and Delson 1979; Groves 1970, 2001; Zhang and Ryder 1998; Brandon-Jones et al.<br />

2004; Sterner et al. 2006). Here the genus name followed Sterner et al. (2006)’s<br />

classification scheme. In total, fifteen species belong<strong>in</strong>g to seven genera <strong>of</strong> Colob<strong>in</strong>ae<br />

subfamily were exam<strong>in</strong>ed <strong>in</strong> this study. The seven genera are African Colobus,<br />

Piliocolobus and Asian Nasalis, Pygathrix, Semnopithecus, Trachypithecus and<br />

Rh<strong>in</strong>opithecus. For each sample, total genomic DNA was isolated from blood or<br />

frozen tissues us<strong>in</strong>g standard prote<strong>in</strong>ase K, phenol/chlor<strong>of</strong>orm extraction (Sambrook<br />

et al. 1989).<br />

Pancreatic ribonuclease gene (<strong>RNASE1</strong>) with an approximate length <strong>of</strong> 2-kb,<br />

span<strong>in</strong>g the entire cod<strong>in</strong>g region and an upstream noncod<strong>in</strong>g exon separated by an<br />

<strong>in</strong>tron, were amplified by PCR us<strong>in</strong>g primer pair reported by Zhang et al. (2002). The<br />

amplified PCR products were cloned <strong>in</strong>to PMD18-T vector (Takara, Ch<strong>in</strong>a) and<br />

transformed <strong>in</strong>to an ultracompetent E.coli cell (Takara, Ch<strong>in</strong>a). Plasmids conta<strong>in</strong><strong>in</strong>g<br />

the <strong>RNASE1</strong> <strong>in</strong>serts were extracted us<strong>in</strong>g GenElute TM Plasmid M<strong>in</strong>iprep Kit (Sigma-<br />

Aldrich Co.). About thirty clones per ligation reaction were sequenced <strong>in</strong> both<br />

directions with an ABI PRISM 3700 DNA sequencer (PE Biosystems, USA). Only<br />

those sequences with more than 3 mutations <strong>in</strong> prote<strong>in</strong> sequence and corroborated by<br />

at least two times <strong>of</strong> <strong>in</strong>dependent amplification and sequenc<strong>in</strong>g were used <strong>in</strong> the<br />

analysis. These sequences were supported by most clones. The newly determ<strong>in</strong>ed<br />

<strong>RNASE1</strong> gene sequences are <strong>in</strong> GenBank under accession numbers GQ334693-<br />

GQ334713. In our analysis, <strong>RNASE1</strong> sequences <strong>of</strong> Pygathrix nemaeus and Colobus<br />

guereza were those from Zhang et al. (2002) and Zhang (2006). For those previously<br />

reported <strong>RNASE1</strong> sequences <strong>of</strong> Nasalis larvatus, Semnopithecus entellus, and<br />

Piliocolobus badius (Schienman et al. 2006), two very similar sequences were found<br />

from a species <strong>in</strong> some cases, which could be attributed to putative alleles. We just<br />

used one sequence <strong>of</strong> alleles as an <strong>in</strong>dependent gene copy <strong>in</strong> the analyses. In addition,<br />

<strong>RNASE1</strong> sequences <strong>of</strong> six non-colob<strong>in</strong>e primates available from GenBank were also<br />

downloaded. A New World Monkey, Marmoset Callithrix jacchus, were used as<br />

outgroup.<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Phylogenetic Reconstructions<br />

Separate and comb<strong>in</strong>ed alignments <strong>of</strong> <strong>RNASE1</strong> cod<strong>in</strong>g (468bp) and noncod<strong>in</strong>g<br />

DNA sequences (1575bp) for 33 <strong>in</strong>group and 2 outgroup sequences were carried out<br />

with CLUSTAL X program (Thompson et al. 1997) and when necessary edited by eye.<br />

The prote<strong>in</strong> alignment is shown <strong>in</strong> supplementary Figure 1 (Supplementary Material<br />

onl<strong>in</strong>e). Phylogenetic trees were reconstructed us<strong>in</strong>g MEGA4 (Kumar et al. 2008) for<br />

neighbor-jo<strong>in</strong><strong>in</strong>g (NJ) analyses based on Kimura 2-parameters model with complete<br />

deletion option for gaps, as well as PAUP*4.0b8 (Sw<strong>of</strong>ford 2001) for maximum<br />

parsimony (MP) analyses. For MP analyses, a heuristic search strategy was employed<br />

with the TBR branch swapp<strong>in</strong>g algorithm, random addition <strong>of</strong> taxa and 1000<br />

replicates per search. Only one <strong>of</strong> the best trees found dur<strong>in</strong>g branch swapp<strong>in</strong>g was<br />

saved (MULTREES=NO <strong>in</strong> PAUP*) and zero length branches were collapsed. The<br />

reliability <strong>of</strong> the tree topologies was evaluated us<strong>in</strong>g bootstrap support (Felsenste<strong>in</strong><br />

1985; BS) with 1000 replicates for NJ and MP analyses.<br />

Selective Constra<strong>in</strong>t Analyses<br />

The nonsynonymous to synonymous rate ratio ω (dn/ds) provided an <strong>in</strong>dication <strong>of</strong><br />

the change <strong>of</strong> selective pressures. A dn/ds ratio = 1, 1 will <strong>in</strong>dicate neutral<br />

<strong>evolution</strong>, purify<strong>in</strong>g selection, and positive selection on the prote<strong>in</strong> <strong>in</strong>volved,<br />

respectively. We first applied the method <strong>of</strong> Yang and Nielsen (2000) for estimat<strong>in</strong>g<br />

dn and ds between two sequences. The Codon substitution models implemented <strong>in</strong> the<br />

CODEML program <strong>in</strong> the PAML package (Yang 2007) were then used to analyze<br />

changes <strong>of</strong> selective pressure. All models correct the transition/transversion rate and<br />

codon usage biases (F3×4). Different start<strong>in</strong>g ω values were also used to avoid the<br />

local optima on the likelihood surface (Suzuki and Nei 2001). To detect changes <strong>in</strong><br />

selective pressure after gene duplication, the ‘‘two-ratios’’ model was used, which<br />

assumes that the branches <strong>of</strong> <strong>in</strong>terest have different ratios from the background ratio<br />

ω0 (Yang 1998, 2002; Yang and Nielsen 1998) <strong>in</strong> the branch-specific models. Model<br />

B assumes two ω ratios: one restricted to l<strong>in</strong>eages predat<strong>in</strong>g a gene duplication event,<br />

and the second restricted to l<strong>in</strong>eages result<strong>in</strong>g from the gene duplications. Model C<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


assumes three ω ratios: one restricted to l<strong>in</strong>eages predat<strong>in</strong>g a gene duplication event,<br />

the second restricted to ancestor l<strong>in</strong>eages lead<strong>in</strong>g to duplicated gene copies, and the<br />

third restricted to l<strong>in</strong>eages correspond<strong>in</strong>g to the duplicated gene copies. Model D<br />

assumes different ω ratios for each <strong>of</strong> the ancestor l<strong>in</strong>eages and the background ratio<br />

for all the other l<strong>in</strong>eages <strong>in</strong> the phylogeny (Hileman and Baum 2003). We also use the<br />

site-specific model, which allow for variable selection patterns among am<strong>in</strong>o acid<br />

sites, M8a, and M8, to test for the presence <strong>of</strong> sites under positive selection and<br />

identify them (Nielsen and Yang 1998; Yang et al. 2000). We construct likelihood<br />

ratio tests (LRT) to compare M8a with M8. Significant difference between the model<br />

was evaluated by calculat<strong>in</strong>g twice the log-likelihood difference follow<strong>in</strong>g a χ 2<br />

distribution, with the number <strong>of</strong> degrees <strong>of</strong> freedom equal to the difference <strong>in</strong> the<br />

numbers <strong>of</strong> free parameters between the model. M8 models allow for positively<br />

selected sites. When this positive-selection models fitted the data significantly better<br />

than the correspond<strong>in</strong>g null model (M8a), the presence <strong>of</strong> sites with ω>1 is suggested.<br />

The conservative Empirical Bayes approach (Yang et al. 2005) will then be used to<br />

calculate the posterior probabilities <strong>of</strong> a specific codon site and identify those most<br />

likely to be under positive selection.<br />

We <strong>in</strong>ferred ancestral <strong>RNASE1</strong> sequences based on parsimony (Li et al. 1983)<br />

and Bayesian (Zhang and Nei 1997) methods. Hon-new s<strong>of</strong>tware (Zhang 2000) was<br />

used to estimate conservative and radical nonsynonymous distances between these<br />

sequences. Numbers <strong>of</strong> radical and conservative substitutions per site for each branch<br />

were calculated. In addition, GENECOVN s<strong>of</strong>tware (Sawyer 1989) was used to<br />

search for evidence <strong>of</strong> gene conversion events among gene duplicates.<br />

Results<br />

Phylogenetic <strong>in</strong>ferences <strong>of</strong> Colob<strong>in</strong>e RNASE gene sequences<br />

Phylogenetic trees for cod<strong>in</strong>g and noncod<strong>in</strong>g sequences were shown <strong>in</strong> Figure 2<br />

and 3, respectively. Noncod<strong>in</strong>g MP and NJ analyses presented similar tree topologies,<br />

and both clearly split <strong>RNASE1</strong> sequences <strong>in</strong>to African (MP BS=82%; NJ BS=88%)<br />

and Asian (MP BS=80%; NJ BS=55%) colob<strong>in</strong>e-specific clusters, support<strong>in</strong>g the<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


<strong>in</strong>dependent duplication <strong>of</strong> <strong>RNASE1</strong> <strong>in</strong> Asian and African colob<strong>in</strong>es. Intrigu<strong>in</strong>gly, both<br />

our MP and NJ cod<strong>in</strong>g phylogeny did not cluster the duplicated <strong>genes</strong> <strong>of</strong> Asian and<br />

African colob<strong>in</strong>es <strong>in</strong>to a s<strong>in</strong>gle clade, as <strong>in</strong>dicated <strong>in</strong> previous cod<strong>in</strong>g analyses <strong>of</strong><br />

fewer colob<strong>in</strong>es species (Schienman et al. 2006; Xu et al. 2009), but group all Asian<br />

RNASE gene sequences together, albeit with weak bootstrapp<strong>in</strong>g supports (BS


(Figure 4). The result<strong>in</strong>g MP and NJ phylogenies both divided <strong>RNASE1</strong> sequences<br />

<strong>in</strong>to African (MP BS=82% and NJ BS=89%) and Asian (MP BS=85% and NJ<br />

BS=88 %) colob<strong>in</strong>e-specific clusters with high statistical supports, re<strong>in</strong>forc<strong>in</strong>g the<br />

classical view that <strong>RNASE1</strong> gene duplications occurred after the divergence between<br />

Asian and African colob<strong>in</strong>es. However, different from both separate analyses, the<br />

comb<strong>in</strong>ed analyses <strong>in</strong>dicated five parallel gene duplication events, two <strong>in</strong> African and<br />

three <strong>in</strong> Asian clusters, occurred after the Asian and African colob<strong>in</strong>es speciation. All<br />

these duplications received high bootstrapp<strong>in</strong>g supports (BS>80%). Although the<br />

<strong>RNASE1</strong> <strong>genes</strong> <strong>of</strong> Pygathrix and Nasalis did not form a monophyletic group, the<br />

duplicated gene copies <strong>of</strong> Pygathrix and Nasalis were clustered with medium to high<br />

BS (MP BS =70%; NJ BS=86%). Interest<strong>in</strong>gly, we f<strong>in</strong>d that the tree topology<br />

support<strong>in</strong>g a s<strong>in</strong>gle gene duplication event prior to the divergence <strong>of</strong> Asian and<br />

African colob<strong>in</strong>es was significantly worse than our comb<strong>in</strong>ed tree (p


In sum, broader and detailed phylogenetic analyses <strong>of</strong> <strong>RNASE1</strong> sequences <strong>of</strong> more<br />

<strong>leaf</strong> monkeys us<strong>in</strong>g cod<strong>in</strong>g, noncod<strong>in</strong>g and comb<strong>in</strong>ed regions provided consistent<br />

evidence <strong>of</strong> support<strong>in</strong>g the <strong>RNASE1</strong> gene is duplicated after the speciation <strong>of</strong> Asia and<br />

African colob<strong>in</strong>es, a hypothesis orig<strong>in</strong>ally proposed by Zhang (2006), although the<br />

statistical supports for the groups <strong>in</strong> the cod<strong>in</strong>g tree were relatively weak. However,<br />

different hypotheses <strong>of</strong> <strong>RNASE1</strong> gene <strong>evolution</strong> with<strong>in</strong> Asian and African colob<strong>in</strong>es<br />

were observed among present cod<strong>in</strong>g, noncod<strong>in</strong>g and comb<strong>in</strong>ed analyses. Despite this,<br />

several l<strong>in</strong>es <strong>of</strong> evidence <strong>in</strong>dicates that cod<strong>in</strong>g analyses is less reliable than noncod<strong>in</strong>g<br />

and comb<strong>in</strong>ed analyses. First, the cod<strong>in</strong>g analyses suffer from a large sampl<strong>in</strong>g error<br />

and from a lack <strong>of</strong> high statistical supports, a situation hav<strong>in</strong>g also been found <strong>in</strong><br />

previous cod<strong>in</strong>g analyses <strong>of</strong> fewer colob<strong>in</strong>es (Schienman et al. 2006; Xu et al. 2009),<br />

mostly due to the much small number <strong>of</strong> nucleotide sites used. By contrast, the<br />

noncod<strong>in</strong>g and comb<strong>in</strong>ed analyses based on four to five times <strong>of</strong> nucleotides than that<br />

<strong>of</strong> cod<strong>in</strong>g analyses demonstrate moderate to high bootstrapp<strong>in</strong>g supports for most <strong>of</strong><br />

the nodes. Second, the <strong>in</strong>ferred relationships among the genera <strong>of</strong> Colob<strong>in</strong>ae from the<br />

cod<strong>in</strong>g analyses were <strong>in</strong>congruent with the published phylogeny, while those from the<br />

noncod<strong>in</strong>g and comb<strong>in</strong>ed analyses followed current knowledge <strong>of</strong> Colob<strong>in</strong>ae<br />

phylogeny. Hence, noncod<strong>in</strong>g or comb<strong>in</strong>ed trees is more likely to represent “true”<br />

<strong>evolution</strong>ary history <strong>of</strong> <strong>RNASE1</strong> <strong>genes</strong> with<strong>in</strong> Asian and African colob<strong>in</strong>es. In<br />

Schienman et al. (2006) and Xu et al. (2009)’s study, they speculated that the tree<br />

based on noncod<strong>in</strong>g sequences could be spurious due to gene conversion. However, <strong>in</strong><br />

present analyses <strong>of</strong> 15 species, only with<strong>in</strong> 5 (T. johnii, T. vetulus, P.nemaeus, N.<br />

larvatus and P. badius) and 1 species (P. badius), <strong>in</strong> noncod<strong>in</strong>g and comb<strong>in</strong>ed trees,<br />

respectively (Figure 3 and 4), the duplicates were more similar to each other than to<br />

their orthologues <strong>in</strong> the other species. Moreover, when gene conversion test <strong>of</strong><br />

Sawyer’s method (1989) was used to exam<strong>in</strong>e the noncod<strong>in</strong>g and comb<strong>in</strong>ed sequences,<br />

no significant results were given, suggest<strong>in</strong>g that gene conversion is unlikely to have<br />

confounded the analyses (data not shown).<br />

Subsequent selective constra<strong>in</strong>t analyses us<strong>in</strong>g CODEML likelihood method on<br />

the comb<strong>in</strong>ed tree topology, which was <strong>in</strong>ferred from the maximum nucleotide sites<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


available, were presented below. Compared to the noncod<strong>in</strong>g tree, the comb<strong>in</strong>ed tree<br />

provided higher statistical supports for major nodes (e.g., MP BS=85% and NJ BS=<br />

88% vs. MP BS=55% and NJ BS=80% for Asian colob<strong>in</strong>es cluster), and more<br />

parsimonious deduction for the number <strong>of</strong> duplication events (eight vs. five). In fact,<br />

consider<strong>in</strong>g that CODEML analyses may be sensitive to the tree topology employed,<br />

we also conducted the analyses us<strong>in</strong>g the noncod<strong>in</strong>g tree, and obta<strong>in</strong>ed nearly the<br />

same results.<br />

Selective Patterns <strong>in</strong> Colob<strong>in</strong>ae subfamily<br />

The method <strong>of</strong> Yang and Nielsen (2000) was used to estimate synonymous (ds)<br />

and nonsynonymous (dn) substitution rates between two sequences. In total, 206 out<br />

<strong>of</strong> 528 pairwise comparisons for these Colob<strong>in</strong>ae <strong>RNASE1</strong> <strong>genes</strong> have a ω (dn/ds) >1,<br />

<strong>in</strong>dicative <strong>of</strong> the positive selection act<strong>in</strong>g dur<strong>in</strong>g colob<strong>in</strong>es <strong>RNASE1</strong>’s <strong>evolution</strong>. The<br />

plot <strong>of</strong> dn aga<strong>in</strong>st ds is shown <strong>in</strong> Figure 5a.<br />

Further exam<strong>in</strong>ation <strong>of</strong> the selective patterns <strong>in</strong> colob<strong>in</strong>es was performed us<strong>in</strong>g the<br />

codon-based maximum likelihood analyses (Table 1). The analyses were conducted<br />

us<strong>in</strong>g the comb<strong>in</strong>ed tree topology but with the poorly-supported nodes <strong>in</strong> NJ and MP<br />

phylogenies (BS


(0.0229/0), ∞ (0.0440/0), and 1.0842 (0.0259/0.0239), respectively.<br />

In addition, we also attempted to divide the nonsynonymous substitutions <strong>in</strong>to<br />

radical and conservative substitutions to look for the signal <strong>of</strong> positive selection <strong>of</strong><br />

<strong>RNASE1</strong> <strong>genes</strong> <strong>in</strong> Colob<strong>in</strong>es. A significantly higher rate <strong>of</strong> radical nonsynonymous<br />

substitution than conservative substitution has been regarded as evidence for positive<br />

selection (Hughes 1992, 1994; Hughes and Hughes 1993). Our results (Table 2)<br />

showed that when am<strong>in</strong>o acid charge was considered, the number <strong>of</strong> radical<br />

substitutions per site was detected to be significantly greater than that <strong>of</strong> conservative<br />

substitutions per site on three (b, c, and d branches) <strong>of</strong> five ancestor branches lead<strong>in</strong>g<br />

to duplicated gene copies (b: p=0.033671; c: p=0.000989; d: p=0.017417; Fisher’s<br />

exact test). Therefore, this result, comb<strong>in</strong>ed with likelihood ratio test results described<br />

above, both provided evidence for the operation <strong>of</strong> positive selection on the ancestor<br />

l<strong>in</strong>eages lead<strong>in</strong>g to duplicated gene copies. Furthermore, our f<strong>in</strong>d<strong>in</strong>g suggested that<br />

follow<strong>in</strong>g gene duplication there has been a change <strong>in</strong> am<strong>in</strong>o acid charge, reflect<strong>in</strong>g<br />

the critical role <strong>of</strong> am<strong>in</strong>o acid charge dur<strong>in</strong>g the adaptive <strong>evolution</strong> <strong>of</strong> <strong>RNASE1</strong> <strong>genes</strong><br />

<strong>in</strong> <strong>leaf</strong> monkeys.<br />

We therefore exam<strong>in</strong>ed important adaptive am<strong>in</strong>o acid replacements that are likely<br />

to be responsible for acquisition <strong>of</strong> <strong>digestive</strong> specified function <strong>of</strong> Colob<strong>in</strong>ae RNase<br />

us<strong>in</strong>g our data sets. Results from maximum likelihood analyses were shown <strong>in</strong> Table<br />

1. The positive-selection model (M8) <strong>in</strong> site-specific models provided a significantly<br />

better fit to the data than did the neutral model (M8a) (p95%). In previous<br />

study <strong>of</strong> P. nemaeus, Zhang et al. (2002) have observed 9 am<strong>in</strong>o-acid substitutions <strong>in</strong><br />

the duplicated <strong>RNASE1</strong> gene. PAML analyses here predicated all but 2 (sites 32 and<br />

83) <strong>of</strong> them as hav<strong>in</strong>g been under positive selection, and moreover identified two<br />

adaptive sites, 78 and 101, that have not been previously characterized <strong>in</strong> previous<br />

studies.<br />

In addition, we <strong>in</strong>vestigated the <strong>evolution</strong>ary pattern <strong>of</strong> the identified 9 positive<br />

sites among the species exam<strong>in</strong>ed. As shown <strong>in</strong> Figure 6, seven parallel am<strong>in</strong>o acid<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


substitutions <strong>in</strong> seven sites occurred <strong>in</strong> Asian and African duplicated <strong>RNASE1</strong> <strong>genes</strong>,<br />

<strong>in</strong>clud<strong>in</strong>g R4Q, K6E, R39W, P42S, R78K, R98Q, and A122D. Among them, R4Q,<br />

K6E, and R39W have been previously observed and characterized by muta<strong>genes</strong>is<br />

experiments <strong>in</strong> Zhang (2006)’s study <strong>of</strong> P. nemaeus and C. guereza, and make up<br />

three known adaptive parallel am<strong>in</strong>o acid replacements contribut<strong>in</strong>g to the decrease <strong>of</strong><br />

the optimal pH <strong>in</strong> the Asian and African colob<strong>in</strong>e small <strong>in</strong>test<strong>in</strong>e. The present analyses,<br />

therefore, identified four previously uncharacterized parallel am<strong>in</strong>o acid changes (P42<br />

S, R78K, R98Q, and A122D), which are particularly <strong>in</strong>terest<strong>in</strong>g candidates for future<br />

study by site-directed muta<strong>genes</strong>is. In addition to the parallel changes displayed<br />

between Asian and African colob<strong>in</strong>e l<strong>in</strong>eages, there are multiple occasions <strong>of</strong> parallel<br />

changes among different l<strong>in</strong>eages with<strong>in</strong> either Asian or African colob<strong>in</strong>e clusters<br />

(Figure 6). For example, 2 parallel substitutions (K6E and R39W) have been acquired<br />

<strong>in</strong> the African d and e branches, and 2 parallel substitutions (R1G and R39W) <strong>in</strong> the<br />

Asian b and c branches, etc.<br />

Besides the parallel changes described above, it is <strong>in</strong>terest<strong>in</strong>g to f<strong>in</strong>d seven non-<br />

parallel am<strong>in</strong>o acid substitutions at five <strong>of</strong> these sites, <strong>in</strong>clud<strong>in</strong>g R1S and R1K <strong>in</strong> the<br />

duplicated <strong>genes</strong> <strong>of</strong> P. badius and Colobus genus species, respectively; R4A and R4G<br />

<strong>in</strong> the duplicated <strong>genes</strong> <strong>of</strong> P. badius and Rh<strong>in</strong>opithecus genus species, respectively;<br />

K6Q <strong>in</strong> those <strong>of</strong> Rh<strong>in</strong>opithecus genus species; R39S <strong>in</strong> those <strong>of</strong> Trachypithecus genus<br />

and S.entellus species; R98G <strong>in</strong> T. johnii, T. vetulus, and S.entellus (Figure 6). It is<br />

possible that these am<strong>in</strong>o acid substitutions may also be important for reduc<strong>in</strong>g the<br />

optimal pH <strong>of</strong> colob<strong>in</strong>e RNases. On the other hand, the observed diversity <strong>of</strong> am<strong>in</strong>o<br />

acid substitutions also <strong>in</strong>dicated that gene conversion is not likely to have acted on the<br />

cod<strong>in</strong>g region, consistent with the view that positive selection may have prevented the<br />

gene conversion <strong>in</strong> <strong>RNASE1</strong> cod<strong>in</strong>g sequences (Schienman et al. 2006).<br />

Molecular Dat<strong>in</strong>g<br />

The relative rate test <strong>of</strong> Li and Bousquet (1992) was performed to test molecular<br />

clock hypothesis. We first divided <strong>RNASE1</strong> <strong>genes</strong> <strong>in</strong>to five groups accord<strong>in</strong>g to five<br />

<strong>in</strong>dependent gene duplication events <strong>in</strong>dicated <strong>in</strong> comb<strong>in</strong>ed tree topology (Figure 4).<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


The outgroup sequences <strong>in</strong> all comparisons were rhesus and baboon. No significant<br />

rate difference was detected between these five groups at 0.5% level (after Bonferroni<br />

correction), suggest<strong>in</strong>g that molecular clock assumption hold for this region. We use<br />

three calibration po<strong>in</strong>ts, i.e., the divergence time <strong>of</strong> 15 million years (Myr) between<br />

colob<strong>in</strong>es and ceropithec<strong>in</strong>es (Delsen 1994), 10.8 Myr between Asian and African<br />

colob<strong>in</strong>es (Sterner et al. 2006), and 8.3 Myr between Colobus and Piliocolobus genus<br />

(Sterner et al. 2006), to roughly estimate the gene duplication times. The results show<br />

that five duplication events (branch 1 to 5 <strong>in</strong>dicated <strong>in</strong> Figure 4) occurred respectively<br />

at the date <strong>of</strong> 4.46 (3.82-5.1) Myr, 5.1 (4.46-5.73) Myr, 2.87 (2.23-3.5) Myr, 9.55<br />

(9.55-10.82) Myr, and 7.96 (7.01-8.92) Myr. We can f<strong>in</strong>d that all duplication events<br />

postdated the divergence <strong>of</strong> Asian and African colob<strong>in</strong>es and also provide evidence<br />

for <strong>in</strong>dependent duplication hypothesis.<br />

Discussions<br />

Pancreatic RNase <strong>genes</strong> implicated <strong>in</strong> the adaptation <strong>of</strong> colob<strong>in</strong>es to <strong>leaf</strong>-eat<strong>in</strong>g<br />

have long <strong>in</strong>trigued <strong>evolution</strong>ary biologist. Our study with more <strong>in</strong>tensive taxonomic<br />

and character sampl<strong>in</strong>g contribute to a clearer picture <strong>of</strong> Colob<strong>in</strong>e <strong>RNASE1</strong> gene<br />

<strong>evolution</strong>.<br />

The present broader and detailed phylogenetic analyses yielded two important<br />

f<strong>in</strong>d<strong>in</strong>gs: (1) All trees provided consistent evidence for <strong>in</strong>dependent duplication<br />

hypothesis proposed by Zhang (2006). The hypothesis <strong>of</strong> a s<strong>in</strong>gle duplication prior to<br />

the radiation <strong>of</strong> Asian and African colob<strong>in</strong>es was not supported here (Schienman et al.<br />

2006; Xu et al. 2009). In Schienman et al. (2006) and Xu et al. (2009)’s study, the<br />

cod<strong>in</strong>g tree clustered all duplicated <strong>RNASE1</strong> <strong>genes</strong> <strong>in</strong>to a s<strong>in</strong>gle clade, whereas the<br />

orig<strong>in</strong>al <strong>genes</strong> were grouped <strong>in</strong>to another clade, with weak bootstrapp<strong>in</strong>g supports<br />

(Figure 1). Our cod<strong>in</strong>g analyses, however, generated different tree topology, albeit<br />

also with low nodal supports. The duplicated <strong>genes</strong> <strong>of</strong> Asian and African colob<strong>in</strong>es are<br />

no longer clustered, and duplicated <strong>genes</strong> <strong>of</strong> African colob<strong>in</strong>es were moved to the<br />

base <strong>of</strong> the phylogeny. All <strong>genes</strong> <strong>of</strong> Asian colob<strong>in</strong>es were grouped <strong>in</strong>to a clade (Figure<br />

2); (2) No obvious evidence <strong>of</strong> gene conversion <strong>in</strong> <strong>RNASE1</strong> gene was found, favor<strong>in</strong>g<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


<strong>in</strong>dependent <strong>evolution</strong> <strong>of</strong> Colob<strong>in</strong>e <strong>RNASE1</strong> gene duplicates. To resolve the tree<br />

topology <strong>in</strong>congruence from their analyses <strong>of</strong> cod<strong>in</strong>g and noncod<strong>in</strong>g regions (Figure<br />

1), Schienman et al. (2006) and Xu et al. (2009) proposed that high levels <strong>of</strong> gene<br />

conversions among <strong>RNASE1</strong> gene duplicates have taken place predom<strong>in</strong>antly <strong>in</strong> the<br />

noncod<strong>in</strong>g region, although they can not rule out the possibility <strong>of</strong> <strong>in</strong>dependent<br />

duplications after speciation. In their noncod<strong>in</strong>g tree, the duplicates with<strong>in</strong> each <strong>of</strong> the<br />

five species exam<strong>in</strong>ed are more closely related to each other than to their orthologues<br />

<strong>in</strong> the other species. Our analyses <strong>of</strong> 15 species, however, showed that only with<strong>in</strong> 4<br />

and 1 species <strong>in</strong> noncod<strong>in</strong>g and comb<strong>in</strong>ed analyses, respectively, the duplicates were<br />

more similar to the each other than to their orthologues (Figure 3 and 4). With regard<br />

to the 5 species previously studied, the duplicates with<strong>in</strong> S.entellus and C. guereza are<br />

no longer clustered <strong>in</strong> our noncod<strong>in</strong>g tree; whereas the duplicates with<strong>in</strong> all but P.<br />

badius, are not clustered <strong>in</strong> the comb<strong>in</strong>ed tree. In addition, the statistical algorithm<br />

GENECOVN did not predict any gene conversion events among the duplicates for our<br />

noncod<strong>in</strong>g and comb<strong>in</strong>ed sequences. Comb<strong>in</strong>ed with the observed diversity <strong>of</strong> am<strong>in</strong>o<br />

acid substitutions among the species exam<strong>in</strong>ed, which is not likely to be expected if<br />

gene conversion occurred, the present study did not support the conclusion drawn by<br />

Schienman et al. (2006) and Xu et al. (2009) that gene conversion played a significant<br />

role <strong>in</strong> the <strong>evolution</strong> <strong>of</strong> Colob<strong>in</strong>e <strong>RNASE1</strong>, and significantly <strong>in</strong>dicated the <strong>in</strong>dependent<br />

<strong>evolution</strong>.<br />

Not only the phylogenetic pattern <strong>of</strong> <strong>RNASE1</strong> sequences reported here provide a<br />

solid reference for further studies <strong>in</strong>vestigat<strong>in</strong>g <strong>RNASE1</strong> <strong>evolution</strong> and function, our<br />

selective constra<strong>in</strong>t analyses also provided <strong>in</strong>terest<strong>in</strong>g <strong>in</strong>sights. Our CODEML branch<br />

analyses f<strong>in</strong>d significant evidence for adaptive <strong>evolution</strong> <strong>of</strong> ancestor l<strong>in</strong>eages lead<strong>in</strong>g<br />

to duplicated gene copies, which is strengthened by the observation <strong>of</strong> a significantly<br />

higher rate <strong>of</strong> radical than conservative nonsynonymous substitution for am<strong>in</strong>o acid<br />

charge on these l<strong>in</strong>eages. The radical/conservative rate ratio results also suggested that<br />

follow<strong>in</strong>g gene duplication there has been a change <strong>in</strong> am<strong>in</strong>o acid charge, consistent<br />

with the results <strong>of</strong> earlier works <strong>of</strong> fewer colob<strong>in</strong>es (Zhang et al. 2002; Zhang 2006;<br />

Schienman et al. 2006), <strong>in</strong> which the charge-alter<strong>in</strong>g substitutions were shown to be<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


selectively favored for enhanced RNase activity at the relatively low pH environment<br />

<strong>of</strong> the colob<strong>in</strong>e small <strong>in</strong>test<strong>in</strong>e. Interest<strong>in</strong>gly, our previous study <strong>of</strong> positive selection<br />

act<strong>in</strong>g on <strong>RNASE1</strong> duplicated <strong>genes</strong> <strong>of</strong> Mustelidae species <strong>in</strong> order Carnivora also<br />

illustrated that the am<strong>in</strong>o acid charge change was one <strong>of</strong> the crucial determ<strong>in</strong>ants <strong>of</strong><br />

am<strong>in</strong>o acid substitutions among the eight positively selected residues identified (Yu<br />

and Zhang 2006). Of course, the relatively small number <strong>of</strong> am<strong>in</strong>o acid substitutions<br />

<strong>in</strong> our case may have limited the power <strong>of</strong> radical/conservative rate ratio test to detect<br />

more l<strong>in</strong>eages with higher radical/conservative rate ratio. Our detection <strong>of</strong> significant<br />

positive selections <strong>in</strong> the ancestor l<strong>in</strong>eages <strong>of</strong> particular species <strong>in</strong>dicates functional<br />

divergences are most likely to occur after the gene duplication and before the<br />

speciation <strong>of</strong> these species.<br />

In addition, CODEML site analyses identified 9 residues under positive selection,<br />

several <strong>of</strong> which have not been previously characterized by muta<strong>genes</strong>is experiments.<br />

These results do not rule out the possibility that positive selection may have occurred<br />

at more l<strong>in</strong>eages and sites, however. It has been suggested that the statistic power <strong>of</strong><br />

CODEML analyses can be reduced when small numbers <strong>of</strong> nucleotide sites were used<br />

and the foreground branches tested were short, just as our case. In fact, we also<br />

attempted to test a model accommodat<strong>in</strong>g ω ratios to vary both among l<strong>in</strong>eages <strong>of</strong><br />

<strong>in</strong>terest and am<strong>in</strong>o acid sites, i.e., the branch-site model, us<strong>in</strong>g our data set. No<br />

significant results from the likelihood ratio (LRT) tests were obta<strong>in</strong>ed. This is not<br />

unexpected when we have the reasons described above <strong>in</strong> m<strong>in</strong>d.<br />

Besides more parallel am<strong>in</strong>o acid changes identified here, we also discovered a<br />

handful <strong>of</strong> non-parallel am<strong>in</strong>o acid changes presented <strong>in</strong> particular Colob<strong>in</strong>e l<strong>in</strong>eages.<br />

We suspected that, when more Colob<strong>in</strong>e <strong>RNASE1</strong> gene sequences became available, it<br />

will be possible to identify additional am<strong>in</strong>o acid changes that may also contribute to<br />

the optimal pH <strong>of</strong> colob<strong>in</strong>e RNases. In sum, our identification <strong>of</strong> new adaptive sites<br />

and am<strong>in</strong>o acid substitutions provide a necessary foundation for further experimental<br />

<strong>in</strong>vestigations <strong>of</strong> <strong>RNASE1</strong> functional <strong>evolution</strong> <strong>in</strong> Colob<strong>in</strong>ae.<br />

As a pr<strong>in</strong>ciple <strong>digestive</strong> enzyme for adaptation <strong>of</strong> unique <strong>leaf</strong> feed<strong>in</strong>g <strong>in</strong> Colob<strong>in</strong>ae,<br />

<strong>RNASE1</strong> gene is so important that it will rema<strong>in</strong> the focus <strong>of</strong> future study. Although<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


available <strong>in</strong>formation suggested <strong>RNASE1</strong> gene duplication appear after divergence <strong>of</strong><br />

Asian and African colob<strong>in</strong>es, and multiple events <strong>of</strong> gene duplication occurred <strong>in</strong> a<br />

l<strong>in</strong>eage-specific mode, the tim<strong>in</strong>g and numbers <strong>of</strong> gene duplication events <strong>in</strong> different<br />

Colob<strong>in</strong>e l<strong>in</strong>eages were still uncerta<strong>in</strong>. The further analyses <strong>of</strong> <strong>RNASE1</strong> <strong>genes</strong> from<br />

representatives <strong>of</strong> the other four genera <strong>in</strong> Colob<strong>in</strong>ae will be expected to address the<br />

question.<br />

Supplementary Materials:<br />

The prote<strong>in</strong> alignment <strong>of</strong> 39 <strong>RNASE1</strong> sequences used <strong>in</strong> this study is available as<br />

Figure 1 <strong>in</strong> the Supplementary Material.<br />

Acknowledgements:<br />

We thank Pr<strong>of</strong>essors Jianzhi Zhang, Pr<strong>of</strong> Peng Shi and Sooch<strong>in</strong> Cho for valuable<br />

comments. This work was supported by grants from the State Key Basic Research and<br />

Development Plan (2007CB411600) and National Natural Science Foundation <strong>of</strong><br />

Ch<strong>in</strong>a (U0836603, 30621092).<br />

Literature Cited<br />

Brandon-Jones, D., A.A. Eudey., T. Geissmann., C.P. Groves., D.J. Melnick., J.C. Morales., M.<br />

Shekelle., C.-B. Stewart, 2004. Asian primate classiWcation. Int J Primatol 25:97–164.<br />

Clegg, M.T., M.P. Cumm<strong>in</strong>gs, and M.L. Durb<strong>in</strong>. 1997. The <strong>evolution</strong> <strong>of</strong> plant nuclear <strong>genes</strong>. Proc<br />

Natl Acad Sci USA 94:7791–7798.<br />

Delson E. 1994. Evolutionary history <strong>of</strong> the colob<strong>in</strong>e monkeys <strong>in</strong> paleoenvironmental perspective.<br />

In: Davies AG, Oates JF, editors. Colob<strong>in</strong>e monkeys: their ecology, behaviour, and<br />

<strong>evolution</strong>. Cambridge, UK; Cambridge University Press. P 11-43.<br />

Felsenste<strong>in</strong>, J. 1985. Confidence limits on phylogenies: an approach us<strong>in</strong>g the bootstrap. Evolution<br />

39:783–791.<br />

Force, A., M. Lynch, F. Pickett, A. Amores, Y.L. Yan, and J. Postlethwait. 1999. Preservation <strong>of</strong><br />

duplicate <strong>genes</strong> by complementary, degenerative mutations. Genetics 151:1531–1545.<br />

Gillespie, J.H. 1991. The causes <strong>of</strong> molecular <strong>evolution</strong>. Oxford: Oxford University Press.<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Gold<strong>in</strong>g GB, Dean AM.<br />

Groves, C. P. 1970. The forgotten <strong>leaf</strong>-eaters, and the phylogeny <strong>of</strong> the colob<strong>in</strong>ae. In Napier, J. R.,<br />

and Napier, P.H. (eds.), Old World Monkeys, Academic Press,NewYork, pp. 555–587.<br />

Groves, C. P. 2001. Primate Taxonomy, Smithsonian Institution Press,Wash<strong>in</strong>gton.<br />

Hileman, L., and D.A. Baum. 2003. Why Do Paralogs Persist? Molecular Evolution <strong>of</strong><br />

CYCLOIDEA and Related Floral Symmetry Genes <strong>in</strong> Antirrh<strong>in</strong>eae (Veronicaceae). Mol<br />

Biol Evol 20: 591–600.<br />

Hughes, A.L. 1992 Co<strong>evolution</strong> <strong>of</strong> the vertebrate <strong>in</strong>tegr<strong>in</strong> a- and b-cha<strong>in</strong> <strong>genes</strong>. Mol Biol Evol 9:<br />

216–234<br />

Hughes, A.L. 1994. Evolution <strong>of</strong> cyste<strong>in</strong>e prote<strong>in</strong>ases <strong>of</strong> eukaryotes. Mol Phylogenet Evol 3: 310–<br />

321<br />

Hughes, A.L., and M.K. Hughes. 1993. <strong>Adaptive</strong> <strong>evolution</strong> <strong>in</strong> the rat olfactory receptor gene<br />

family. J Mol Evol 36: 249–254<br />

Kish<strong>in</strong>o, H., and M. Hasegawa. 1989. Evaluation <strong>of</strong> the maximum likelihood estimate <strong>of</strong> the<br />

<strong>evolution</strong>ary tree topologies from DNA sequence data, and the branch<strong>in</strong>g order <strong>in</strong><br />

hom<strong>in</strong>oidea. J Mol Evol 29:170-179.<br />

Kumar, S., J. Dudley., M. Nei, and K. Tamura. 2008. MEGA: A biologist-centric s<strong>of</strong>tware for<br />

<strong>evolution</strong>ary analysis <strong>of</strong> DNA and prote<strong>in</strong> sequences. Brief<strong>in</strong>gs <strong>in</strong> Bio<strong>in</strong>formatics 9:<br />

299-306.<br />

Kuraku, S.,_A. Meyer.,_ and S. Kuratani. 2009. Tim<strong>in</strong>g <strong>of</strong> Genome Duplications Relative to the<br />

Orig<strong>in</strong> <strong>of</strong> the Vertebrates: Did Cyclostomes Diverge before or after? Mol Biol Evol 26:<br />

47-59.<br />

Li, W.H. and T. Gojobori. 1983. Rapid <strong>evolution</strong> <strong>of</strong> goat and sheep glob<strong>in</strong> <strong>genes</strong> follow<strong>in</strong>g gene<br />

duplication. Mol Biol Evol 1: 94-108.<br />

Li, P. and J. Bousquet. 1992. Relative-rate test for nucleotide substitutions between two l<strong>in</strong>eages.<br />

Mol Biology Evol 9: 1185-1189.<br />

Kumar, S., K. Tamura, and M, Nei. 2004. MEGA3: <strong>in</strong>tegrated s<strong>of</strong>tware for molecular<br />

<strong>evolution</strong>ary genetics analysis and sequence alignment. Brief Bio<strong>in</strong>formatics 5:150–163.<br />

Nielsen, R., and Z. Yang. 1998. Likelihood models for detect<strong>in</strong>g positively selected am<strong>in</strong>o acid<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


sites and applications to the HIV-1 envelope gene. Genetics 148:929-936.<br />

Ohno, S. 1970. Evolution by gene duplication. Heidelberg (Germany): Spr<strong>in</strong>ger-Verlag.<br />

Osterholz, M., L. Walter., and C. Roos. 2008. Phylogenetic position <strong>of</strong> the langur genera<br />

Semnopithecus and Trachypithecus among Asian colob<strong>in</strong>es, and genus affiliations <strong>of</strong> their<br />

species groups. BMC Evol Biol 8:58.<br />

Pollock, D.D., D.J. Zwickl., J.A. McGuire, and D.M. Hillis. 2002. Increased taxon sampl<strong>in</strong>g is<br />

advantageous for phylogenetic <strong>in</strong>ference. Syst Biol 51:664–671.<br />

Rispe, C., M. Kutsukake.,_V. Doublet., S. Hudaverdian., F. Legeai.,_J. C, Simon.,D. Tagu., and T.<br />

Fukatsu. 2007. Large Gene Family Expansion and Variable Selective Pressures for Catheps<strong>in</strong><br />

B <strong>in</strong> Aphids. Mol Biol Evol 25:5-17. 2008.<br />

Sambrook, E., F. Fritsch, and T. Maniatis. 1989. Molecular Clong<strong>in</strong>g. Cold Spr<strong>in</strong>g Harbor Press,<br />

Cold Spr<strong>in</strong>g Harbor, NY.<br />

Sawyer, S. 1989. Statistical tests for detect<strong>in</strong>g gene conversion. Mol Biol Evol 6: 526–538..<br />

Schienman, J.E., R.A. Holt, M.R. Auerbach, and C.B. Stewart. 2006. Duplication and divergence<br />

<strong>of</strong> 2 dist<strong>in</strong>ct pancreatic ribonuclease <strong>genes</strong> <strong>in</strong> <strong>leaf</strong>-eat<strong>in</strong>g African and Asian colob<strong>in</strong>e<br />

monkeys. Mol Biol Evol 23:1465-1479.<br />

Shimodaira, H., and M. Hasegawa. 1999. Multiple comparisons <strong>of</strong> log-likelihoods with<br />

applications to phylogenetic <strong>in</strong>ference. Mol. Biol. Evol. 16:1114-1116.<br />

Sterner, K.N., R.L. Raaum, Y.P. Zhang, C.B. Stewart, and T.R. Disotell. 2006. Mitochondrial data<br />

support an odd-nosed colob<strong>in</strong>e clade. Mol Phylogenet Evol 40:1-7.<br />

Suzuki, Y., and M. Nei. 2001. Reliabilities <strong>of</strong> parsimony-based and likelihood-based methods for<br />

detect<strong>in</strong>g positive selection at s<strong>in</strong>gle am<strong>in</strong>o acid sites. Mol Biol Evol 18: 2179–2185.<br />

Sw<strong>of</strong>ford, D.L. 2001. PAUP*: phylogenetic analysis us<strong>in</strong>g parsimony (* and other methods).<br />

Version 4.0b8. Sunderland (MA): S<strong>in</strong>auer Associates.<br />

Szalay, F. S., and E. Delson, 1979. Evolutionary History <strong>of</strong> the Primates, Academic Press, New<br />

York.<br />

T<strong>in</strong>g, N., A.J. Tosi., Y. Li., Y.P. Zhang., T.R. Disotell. 2008. Phylogenetic <strong>in</strong>congruence between<br />

nuclear and mitochondrial markers <strong>in</strong> the Asian colob<strong>in</strong>es and the <strong>evolution</strong> <strong>of</strong> the langurs<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


and <strong>leaf</strong> monkeys. Mol Phylogenet Evol 46: 466-474.<br />

Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmoug<strong>in</strong>., and D.G. Higg<strong>in</strong>s. 1997. The clustalx<br />

w<strong>in</strong>dows <strong>in</strong>terface: flexible strategies for multiple sequence align ment aided by quality<br />

analysis tools. Nucleic Acids Research 24, 4876-4882.<br />

Xu, L., Z. Su., Z. Gu., X. Gu. 2009. Evolution <strong>of</strong> RNases <strong>in</strong> <strong>leaf</strong> monkeys: be<strong>in</strong>g parallel gene<br />

duplications or parallel gene conversions is a problem <strong>of</strong> molecular phylogeny. Mol<br />

Phylogenet Evol 50: 397-400.<br />

Yang, Z. 1998. Likelihood ratio tests for detect<strong>in</strong>g positive selection and application to primate<br />

lysozyme <strong>evolution</strong>. Mol Biol and Evol 15:568-573.<br />

Yang, Z. 2000. Maximum likelihood estimation on large phylogenies and analysis <strong>of</strong> adaptive<br />

<strong>evolution</strong> <strong>in</strong> human <strong>in</strong>fluenza virus A. Journal <strong>of</strong> Molecular Evolution 51:423-432.<br />

Yang, Z. 2002. Inference <strong>of</strong> selection from multiple species alignments. Curr Op<strong>in</strong>ion Genet Devel<br />

12:688-694.<br />

Yang, Z., and R. Nielsen. 1998. Synonymous and nonsynonymous rate variation <strong>in</strong> nuclear <strong>genes</strong><br />

<strong>of</strong> mammals. Journal <strong>of</strong> Molecular Evolution 46:409-418.<br />

Yang, Z., and R. Nielsen. 2000. Estimat<strong>in</strong>g synonymous and nonsynonymous substitution rates<br />

under realistic <strong>evolution</strong>ary models. Mol Biol and Evol 17:32-43.<br />

Yang, Z., W.S. Wong, and R. Nielsen. 2005. Bayes empirical Bayes <strong>in</strong>ference <strong>of</strong> am<strong>in</strong>o acid sites<br />

under positive selection. Mol Biol Evol 22:1107–1118.<br />

Yang, Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:<br />

1586-1591.<br />

Yu, L., and Y.P. Zhang. 2006. The unusual adaptive expansion <strong>of</strong> pancreatic ribonuclease gene <strong>in</strong><br />

carnivora. Mol Biol Evol 23:2326-2335.<br />

Zhang, J., and M. Nei. 1997. Accuracies <strong>of</strong> ancestral am<strong>in</strong>o acid sequences <strong>in</strong>ferred by parsimony,<br />

likelihood, and distance methods. J Mol Evol 44:S139-S146.<br />

Zhang, J. 2000. Rates <strong>of</strong> conservative and radical nonsynonymous nucleotide substitutions <strong>in</strong><br />

mammalian nuclear <strong>genes</strong>. J Mol Evol 50:56-68.<br />

Zhang, J., Y.P. Zhang, and H.F. Rosenberg. 2002. <strong>Adaptive</strong> <strong>evolution</strong> <strong>of</strong> a duplicated pancreatic<br />

ribonuclease gene <strong>in</strong> a <strong>leaf</strong>-eat<strong>in</strong>g monkey. Nat Genet 30:411-415.<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Zhang, J. 2003. Evolution by gene duplication: an update. Trends <strong>in</strong> Ecology and Evolution. 18:<br />

292-298.<br />

Zhang, J., R, Nielsen, and Z, Yang. 2005. Evaluation <strong>of</strong> an improved branch-site likelihood<br />

method for detect<strong>in</strong>g positive selection at the molecular level. Mol Biol Evol 22:2472–2479.<br />

Zhang, J. 2006. Parallel adaptive orig<strong>in</strong>s <strong>of</strong> <strong>digestive</strong> RNases <strong>in</strong> Asian and African <strong>leaf</strong> monkeys<br />

Nat Genet 38:819-823.<br />

Zhang, Y.P., and O. A. Ryder. 1998. Mitochondrial cytochrome b gene sequences <strong>of</strong> Old World<br />

monkeys:With special reference on <strong>evolution</strong> <strong>of</strong> Asian colob<strong>in</strong>es. Primates 39: 39–49.<br />

Zwickl, D.J., and D.M. Hillis. 2002. Increased taxon sampl<strong>in</strong>g greatly reduces phylogenetic error.<br />

Syst Biol 51:588–598.<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Table 1 CODEML analyses <strong>of</strong> selective pattern for <strong>RNASE1</strong> <strong>genes</strong> <strong>in</strong> Colob<strong>in</strong>ae.<br />

Models ㏑ L Parameter Estimates 2ΔL Positively Selected Sites<br />

Branch-specific models<br />

M0 -1430.376388 ω=0.6591<br />

Model B -1425.11674 ω1=1.1298 ω0=0.2907 (Model B versus M0)<br />

10.519296**<br />

Model C -1421.250942 ω1=2.8014 ω2=0.5289 ω0=0.2904 (Model C versus M0)<br />

18.250892***<br />

Model D -1418.532975 ω1(a branch)=1.079; ω2(b branch)=∞;ω3(c branch)<br />

=∞; ω4(d branch)=∞;ω5(e branch)=1.0842; ω0=<br />

0.3776<br />

(Model D versus M0)<br />

23.686826***<br />

Site-specific models<br />

M8a -1388.997102 p0=0.65038 p=0.00500 q=2.65039 p1=0.34962 ω= 1 Not allowed<br />

M8 -1373.642373 p0=0.90761 p=0.00500 q=0.01177 p1=0.09239 ω=<br />

5.24151<br />

** 0.001


Figure 1 Current <strong>evolution</strong>ary hypotheses for the Colob<strong>in</strong>e <strong>RNASE1</strong> gene sequences.<br />

Hypothesis A (Zhang 2006), i.e., <strong>in</strong>dependent duplication events <strong>in</strong> Asian and African<br />

colob<strong>in</strong>es, was supported by the phylogenies <strong>in</strong>ferred from complete and noncod<strong>in</strong>g<br />

sequences (Zhang 2006; Schienman et al. 2006; Xu et al. 2009). Hypothesis B (Xu et<br />

al. 2009), i.e., one duplication events, was supported by the phylogeny <strong>in</strong>ferred from<br />

cod<strong>in</strong>g sequences (Schienman et al. 2006; Xu et al. 2009).<br />

Figure 2 NJ bootstrap consensus phylogenetic trees based on cod<strong>in</strong>g region (468bp) <strong>of</strong><br />

<strong>RNASE1</strong> <strong>genes</strong>. Arrows are <strong>in</strong>dicat<strong>in</strong>g putative duplication events MP analysis<br />

produced nearly identical tree topology to that <strong>of</strong> NJ analysis with similar<br />

bootstrapp<strong>in</strong>g supports.<br />

Figure 3 NJ bootstrap consensus phylogenetic trees based on noncod<strong>in</strong>g region (1575<br />

bp) <strong>of</strong> <strong>RNASE1</strong> <strong>genes</strong>. Arrows are <strong>in</strong>dicat<strong>in</strong>g putative duplication events MP analysis<br />

produced nearly identical tree topology to that <strong>of</strong> NJ analyses with similar<br />

bootstrapp<strong>in</strong>g supports.<br />

Figure 4 NJ bootstrap consensus phylogenetic trees based on cod<strong>in</strong>g and noncod<strong>in</strong>g<br />

region (2046 bp) <strong>of</strong> <strong>RNASE1</strong> <strong>genes</strong>. MP analysis produced nearly identical tree<br />

topology to that <strong>of</strong> NJ analyses with similar bootstrapp<strong>in</strong>g supports.<br />

Figure 5 The plot <strong>of</strong> nonsynonymous (dn) and synonymous (ds) substitution rates for<br />

pairwise comparisons <strong>of</strong> <strong>RNASE1</strong> sequences<br />

Figure 6 Evolutionary pattern <strong>of</strong> positively-selected sites among species exam<strong>in</strong>ed.<br />

The parallel am<strong>in</strong>o acid substitutions were boldface and the non-parallel am<strong>in</strong>o acid<br />

substitutions were boldface and underl<strong>in</strong>ed.<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Figure 1<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Figure 2<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Figure 3<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Figure 4<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Figure 5<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013


Figure 6<br />

Downloaded from<br />

http://mbe.oxfordjournals.org/ by guest on June 14, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!