Fragmentation Effect on Batches of Pine Wood Char Burning in a ...

Fragmentation Effect on Batches of Pine Wood Char Burning in a ... Fragmentation Effect on Batches of Pine Wood Char Burning in a ...

paginas.fe.up.pt
from paginas.fe.up.pt More from this publisher
14.06.2013 Views

Energy Fuels 2010, 24, 318–323 : DOI:10.1021/ef900806z Published on Web 11/09/2009 ong>Fragmentationong> ong>Effectong> on Batches of Pine Wood Char Burning in a Fluidized Bed Nelson Rangel and Carlos Pinho* Centro de Estudos de Fenomenos de Transporte (CEFT)-Departamento de Engenharia Mec^anica (DEMec), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal Received July 29, 2009. Revised Manuscript Received October 20, 2009 Batches of Pinus pinea char particles with average diameters of 2.2, 2.8, and 3.6 mm were burned in a bubbling fluidized bed at temperatures of 600, 700, and 750 °C, with a velocities ratio U/U mf = 9. The results show that only primary fragmentation occurs with an average fragmentation ratio of 1.5. No effect of the secondary fragmentation phenomena is observed. The increase in the number of particles in the bed because of fragmentation is accounted over the burning time, and its effect is evaluated on the determination of the global combustion resistance. Introduction The fragmentation of combustible particles during the burning in a fluidized bed was studied for the first time by Campbell and Davidson. 1 These authors have studied the breaking that occurs during the burning process, which is defined as secondary fragmentation. This type of fragmentation results from the physical shocks that occur between particles during their burning in the bed and produces fragments of non-elutriable dimension. The breaking of the particles occurs because of the fragility of their internal structure, because of the internal burning that destroys the structural links of the particles. If a particle burns only at the surface, it is not supposed to experience the phenomenon of secondary fragmentation. The so-called primary fragmentation is due to thermal shock that exists when the particles of fuel are released initially into the bed. From the contact of the particles with the bed at high temperature, there are thermal stresses accompanied by an increase in the pressure of the volatile matter contained within the particles that cause the breakup. This type of breaking produces relatively large fragments that remain in the bed; they are not elutriated. Besides these two types of fragmentation, there is the attrition resulting from collisions of the particles between themselves and with the walls of the reactor, as well as the fragmentation that results from percolation, associated with the loss of the structure of the particles resulting from the internal burning. Both the attrition and the fragmentation associated with the phenomenon of percolation produce easily elutriable fragments. Beer et al. 2 have studied the combustion of coal in a fluidized bed, searching for a relationship between the type of coal and the amount of elutriated fines. These authors have suggested that the attrition of the particles competes directly with the combustion itself in reducing the size of the particles *To whom correspondence should be addressed. Telephone: þ351- 225081400. Fax: þ351-225081440. E-mail: ctp@fe.up.pt. (1) Campbell, E. K.; Davidson, J. F. Institute of Fuel Symposium Series Number 1: Fluidised Combustion, London, U.K., 1975; paper A2. (2) Beer, J. M.; Massimilla, L.; Sarofim, A. F. Institute of Energy Symposium Series Number 4, Fluidised Combustion: Systems and Applications, London, U.K., 1980; paper IV-5. r 2009 American Chemical Society 318 pubs.acs.org/EF and that this relative effect is strongly affected by the reactivity of the particles. The more reactive particles have greater immunity to the effects of erosion by staying in the bed for a shorter time, because of the shorter burning time. The study was fulfilled in two facilities, and one of them had heattransfer elements within the bed, which contributed to attrition. The fluidization velocities were of the order of 40 times the minimum fluidization velocity, which also promoted the attrition by contact between the particles. D’Amore et al. 3 have continued the study of the influence of the reactivity of the fuel particles in the distribution of sizes, using fossil fuels and other carbonaceous materials, concluding that there is more attrition during the combustion of less reactive coals. Chirone et al. 4 have studied the rates of fines elutriation of carbon, which resulted from attrition during the combustion of a South African mineral coal, for various sizes of particles fed to the bed. Still focused on the problem of abrasion, Salatino and Massimilla 5 have proposed a model that took into account the interaction between the burning inside the pores, the weakening of the mechanical structure of the particle, and the attrition. In comparison of the measured rates of elutriated carbon from the combustion of the char of a bituminous coal to those provided by the model, a good correlation was found between them, suggesting that the elutriated fragments are originated from attrition between particles and are also the result of the burning inside the pores, which may have caused their coalescence accompanied by the release of carbon fragments that left the particle and bed without burning. Arena et al. 6 have also studied the phenomenon of attrition, obtaining the attrition rate constants of carbon for various operating conditions of the bed and for chars obtained from a bituminous coal. The studies mentioned above focused mainly on the phenomenon of elutriation of small carbon particles because of (3) D’Amore, M.; Donsi, G.; Massimilla, L. Proceedings of the 6th International Conference on Fluidized Bed Combustion, Atlanta, GA, 1980; pp 675-685. (4) Chirone, R.; Cammarota, A.; D’Amore, M.; Massimilla, L. Proceedings of the 19th International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, 1982; pp 1213-1221. (5) Salatino, P.; Massimilla, L. Chem. Eng. Sci. 1985, 40, 1905–1916. (6) Arena, U.; D’Amore, M.; Massimilla, L.; Meo, S.; Miccio, M. AIChE J. 1986, 32, 869–871.

Energy Fuels 2010, 24, 318–323 : DOI:10.1021/ef900806z<br />

Published <strong>on</strong> Web 11/09/2009<br />

<str<strong>on</strong>g>Fragmentati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>on</strong> <strong>Batches</strong> <strong>of</strong> <strong>P<strong>in</strong>e</strong> <strong>Wood</strong> <strong>Char</strong> <strong>Burn<strong>in</strong>g</strong> <strong>in</strong> a Fluidized Bed<br />

Nels<strong>on</strong> Rangel and Carlos P<strong>in</strong>ho*<br />

Centro de Estudos de Fenomenos de Transporte (CEFT)-Departamento de Engenharia Mec^anica (DEMec),<br />

Faculty <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g, University <strong>of</strong> Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal<br />

Received July 29, 2009. Revised Manuscript Received October 20, 2009<br />

<strong>Batches</strong> <strong>of</strong> P<strong>in</strong>us p<strong>in</strong>ea char particles with average diameters <strong>of</strong> 2.2, 2.8, and 3.6 mm were burned <strong>in</strong> a<br />

bubbl<strong>in</strong>g fluidized bed at temperatures <strong>of</strong> 600, 700, and 750 °C, with a velocities ratio U/U mf = 9. The<br />

results show that <strong>on</strong>ly primary fragmentati<strong>on</strong> occurs with an average fragmentati<strong>on</strong> ratio <strong>of</strong> 1.5. No effect<br />

<strong>of</strong> the sec<strong>on</strong>dary fragmentati<strong>on</strong> phenomena is observed. The <strong>in</strong>crease <strong>in</strong> the number <strong>of</strong> particles <strong>in</strong> the bed<br />

because <strong>of</strong> fragmentati<strong>on</strong> is accounted over the burn<strong>in</strong>g time, and its effect is evaluated <strong>on</strong> the<br />

determ<strong>in</strong>ati<strong>on</strong> <strong>of</strong> the global combusti<strong>on</strong> resistance.<br />

Introducti<strong>on</strong><br />

The fragmentati<strong>on</strong> <strong>of</strong> combustible particles dur<strong>in</strong>g the<br />

burn<strong>in</strong>g <strong>in</strong> a fluidized bed was studied for the first time by<br />

Campbell and Davids<strong>on</strong>. 1 These authors have studied the<br />

break<strong>in</strong>g that occurs dur<strong>in</strong>g the burn<strong>in</strong>g process, which is<br />

def<strong>in</strong>ed as sec<strong>on</strong>dary fragmentati<strong>on</strong>. This type <strong>of</strong> fragmentati<strong>on</strong><br />

results from the physical shocks that occur between<br />

particles dur<strong>in</strong>g their burn<strong>in</strong>g <strong>in</strong> the bed and produces fragments<br />

<strong>of</strong> n<strong>on</strong>-elutriable dimensi<strong>on</strong>. The break<strong>in</strong>g <strong>of</strong> the<br />

particles occurs because <strong>of</strong> the fragility <strong>of</strong> their <strong>in</strong>ternal<br />

structure, because <strong>of</strong> the <strong>in</strong>ternal burn<strong>in</strong>g that destroys the<br />

structural l<strong>in</strong>ks <strong>of</strong> the particles. If a particle burns <strong>on</strong>ly at the<br />

surface, it is not supposed to experience the phenomen<strong>on</strong> <strong>of</strong><br />

sec<strong>on</strong>dary fragmentati<strong>on</strong>.<br />

The so-called primary fragmentati<strong>on</strong> is due to thermal<br />

shock that exists when the particles <strong>of</strong> fuel are released <strong>in</strong>itially<br />

<strong>in</strong>to the bed. From the c<strong>on</strong>tact <strong>of</strong> the particles with the bed at<br />

high temperature, there are thermal stresses accompanied by<br />

an <strong>in</strong>crease <strong>in</strong> the pressure <strong>of</strong> the volatile matter c<strong>on</strong>ta<strong>in</strong>ed<br />

with<strong>in</strong> the particles that cause the breakup. This type <strong>of</strong><br />

break<strong>in</strong>g produces relatively large fragments that rema<strong>in</strong> <strong>in</strong><br />

the bed; they are not elutriated.<br />

Besides these two types <strong>of</strong> fragmentati<strong>on</strong>, there is the<br />

attriti<strong>on</strong> result<strong>in</strong>g from collisi<strong>on</strong>s <strong>of</strong> the particles between<br />

themselves and with the walls <strong>of</strong> the reactor, as well as the<br />

fragmentati<strong>on</strong> that results from percolati<strong>on</strong>, associated with<br />

the loss <strong>of</strong> the structure <strong>of</strong> the particles result<strong>in</strong>g from the<br />

<strong>in</strong>ternal burn<strong>in</strong>g. Both the attriti<strong>on</strong> and the fragmentati<strong>on</strong><br />

associated with the phenomen<strong>on</strong> <strong>of</strong> percolati<strong>on</strong> produce easily<br />

elutriable fragments.<br />

Beer et al. 2 have studied the combusti<strong>on</strong> <strong>of</strong> coal <strong>in</strong> a<br />

fluidized bed, search<strong>in</strong>g for a relati<strong>on</strong>ship between the type<br />

<strong>of</strong> coal and the amount <strong>of</strong> elutriated f<strong>in</strong>es. These authors have<br />

suggested that the attriti<strong>on</strong> <strong>of</strong> the particles competes directly<br />

with the combusti<strong>on</strong> itself <strong>in</strong> reduc<strong>in</strong>g the size <strong>of</strong> the particles<br />

*To whom corresp<strong>on</strong>dence should be addressed. Teleph<strong>on</strong>e: þ351-<br />

225081400. Fax: þ351-225081440. E-mail: ctp@fe.up.pt.<br />

(1) Campbell, E. K.; Davids<strong>on</strong>, J. F. Institute <strong>of</strong> Fuel Symposium<br />

Series Number 1: Fluidised Combusti<strong>on</strong>, L<strong>on</strong>d<strong>on</strong>, U.K., 1975; paper A2.<br />

(2) Beer, J. M.; Massimilla, L.; Sar<strong>of</strong>im, A. F. Institute <strong>of</strong> Energy<br />

Symposium Series Number 4, Fluidised Combusti<strong>on</strong>: Systems and<br />

Applicati<strong>on</strong>s, L<strong>on</strong>d<strong>on</strong>, U.K., 1980; paper IV-5.<br />

r 2009 American Chemical Society 318 pubs.acs.org/EF<br />

and that this relative effect is str<strong>on</strong>gly affected by the reactivity<br />

<strong>of</strong> the particles. The more reactive particles have greater<br />

immunity to the effects <strong>of</strong> erosi<strong>on</strong> by stay<strong>in</strong>g <strong>in</strong> the bed for a<br />

shorter time, because <strong>of</strong> the shorter burn<strong>in</strong>g time. The study<br />

was fulfilled <strong>in</strong> two facilities, and <strong>on</strong>e <strong>of</strong> them had heattransfer<br />

elements with<strong>in</strong> the bed, which c<strong>on</strong>tributed to attriti<strong>on</strong>.<br />

The fluidizati<strong>on</strong> velocities were <strong>of</strong> the order <strong>of</strong> 40 times<br />

the m<strong>in</strong>imum fluidizati<strong>on</strong> velocity, which also promoted the<br />

attriti<strong>on</strong> by c<strong>on</strong>tact between the particles. D’Amore et al. 3<br />

have c<strong>on</strong>t<strong>in</strong>ued the study <strong>of</strong> the <strong>in</strong>fluence <strong>of</strong> the reactivity <strong>of</strong><br />

the fuel particles <strong>in</strong> the distributi<strong>on</strong> <strong>of</strong> sizes, us<strong>in</strong>g fossil fuels<br />

and other carb<strong>on</strong>aceous materials, c<strong>on</strong>clud<strong>in</strong>g that there is<br />

more attriti<strong>on</strong> dur<strong>in</strong>g the combusti<strong>on</strong> <strong>of</strong> less reactive coals.<br />

Chir<strong>on</strong>e et al. 4 have studied the rates <strong>of</strong> f<strong>in</strong>es elutriati<strong>on</strong> <strong>of</strong><br />

carb<strong>on</strong>, which resulted from attriti<strong>on</strong> dur<strong>in</strong>g the combusti<strong>on</strong><br />

<strong>of</strong> a South African m<strong>in</strong>eral coal, for various sizes <strong>of</strong> particles<br />

fed to the bed. Still focused <strong>on</strong> the problem <strong>of</strong> abrasi<strong>on</strong>,<br />

Salat<strong>in</strong>o and Massimilla 5 have proposed a model that took<br />

<strong>in</strong>to account the <strong>in</strong>teracti<strong>on</strong> between the burn<strong>in</strong>g <strong>in</strong>side the<br />

pores, the weaken<strong>in</strong>g <strong>of</strong> the mechanical structure <strong>of</strong> the<br />

particle, and the attriti<strong>on</strong>. In comparis<strong>on</strong> <strong>of</strong> the measured<br />

rates <strong>of</strong> elutriated carb<strong>on</strong> from the combusti<strong>on</strong> <strong>of</strong> the char <strong>of</strong> a<br />

bitum<strong>in</strong>ous coal to those provided by the model, a good<br />

correlati<strong>on</strong> was found between them, suggest<strong>in</strong>g that the<br />

elutriated fragments are orig<strong>in</strong>ated from attriti<strong>on</strong> between<br />

particles and are also the result <strong>of</strong> the burn<strong>in</strong>g <strong>in</strong>side the pores,<br />

which may have caused their coalescence accompanied by the<br />

release <strong>of</strong> carb<strong>on</strong> fragments that left the particle and bed<br />

without burn<strong>in</strong>g. Arena et al. 6 have also studied the phenomen<strong>on</strong><br />

<strong>of</strong> attriti<strong>on</strong>, obta<strong>in</strong><strong>in</strong>g the attriti<strong>on</strong> rate c<strong>on</strong>stants <strong>of</strong><br />

carb<strong>on</strong> for various operat<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> the bed and for<br />

chars obta<strong>in</strong>ed from a bitum<strong>in</strong>ous coal.<br />

The studies menti<strong>on</strong>ed above focused ma<strong>in</strong>ly <strong>on</strong> the phenomen<strong>on</strong><br />

<strong>of</strong> elutriati<strong>on</strong> <strong>of</strong> small carb<strong>on</strong> particles because <strong>of</strong><br />

(3) D’Amore, M.; D<strong>on</strong>si, G.; Massimilla, L. Proceed<strong>in</strong>gs <strong>of</strong> the 6th<br />

Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Fluidized Bed Combusti<strong>on</strong>, Atlanta, GA,<br />

1980; pp 675-685.<br />

(4) Chir<strong>on</strong>e, R.; Cammarota, A.; D’Amore, M.; Massimilla, L.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the 19th Internati<strong>on</strong>al Symposium <strong>on</strong> Combusti<strong>on</strong>,<br />

The Combusti<strong>on</strong> Institute, Pittsburgh, PA, 1982; pp 1213-1221.<br />

(5) Salat<strong>in</strong>o, P.; Massimilla, L. Chem. Eng. Sci. 1985, 40, 1905–1916.<br />

(6) Arena, U.; D’Amore, M.; Massimilla, L.; Meo, S.; Miccio, M.<br />

AIChE J. 1986, 32, 869–871.


Energy Fuels 2010, 24, 318–323 : DOI:10.1021/ef900806z Rangel and P<strong>in</strong>ho<br />

attriti<strong>on</strong>. However, other authors, such as Dakic et al., 7 were<br />

c<strong>on</strong>cerned with the phenomen<strong>on</strong> <strong>of</strong> primary fragmentati<strong>on</strong>,<br />

say<strong>in</strong>g that it is very complex and <strong>in</strong>sufficiently studied and that<br />

the changes <strong>in</strong> size and shape <strong>of</strong> the particles dur<strong>in</strong>g this process<br />

may affect the subsequent combusti<strong>on</strong> stage. Stub<strong>in</strong>gt<strong>on</strong> and<br />

Wang 8 have also turned to the study <strong>of</strong> the elutriati<strong>on</strong> <strong>of</strong> small<br />

particles <strong>of</strong> unburned carb<strong>on</strong> result<strong>in</strong>g from the combusti<strong>on</strong> <strong>of</strong><br />

Australian black coals <strong>in</strong> a pressurized fluidized bed, <strong>in</strong>dicat<strong>in</strong>g<br />

that the attriti<strong>on</strong> with<strong>in</strong> the bed is the dom<strong>in</strong>ant mechanism for<br />

generati<strong>on</strong> <strong>of</strong> carb<strong>on</strong> f<strong>in</strong>es, and observed primary and sec<strong>on</strong>dary<br />

fragmentati<strong>on</strong> phenomena for particles larger than 2 mm.<br />

Cui and Stub<strong>in</strong>gt<strong>on</strong> 9 have focused <strong>on</strong> the study <strong>of</strong> sec<strong>on</strong>dary<br />

fragmentati<strong>on</strong>, whereas Zhang et al. 10 have c<strong>on</strong>cluded that the<br />

ma<strong>in</strong> reas<strong>on</strong> for the particle fragmentati<strong>on</strong> is the primary<br />

fragmentati<strong>on</strong>, stat<strong>in</strong>g that this is the dom<strong>in</strong>ant type <strong>of</strong> fragmentati<strong>on</strong>.<br />

In a study <strong>on</strong> the fragmentati<strong>on</strong> effects <strong>of</strong> carb<strong>on</strong>ized<br />

biomass particles, Scala et al. 11 have shown that,<br />

dependent up<strong>on</strong> the type <strong>of</strong> biomass, the particles may experience<br />

significant changes <strong>in</strong> size because <strong>of</strong> the primary and<br />

sec<strong>on</strong>dary fragmentati<strong>on</strong> phenomena, thus <strong>in</strong>fluenc<strong>in</strong>g the<br />

distributi<strong>on</strong> <strong>of</strong> particle sizes <strong>in</strong> the bed.<br />

As menti<strong>on</strong>ed above, for several years, the studies <strong>on</strong> the<br />

phenomena <strong>of</strong> fragmentati<strong>on</strong> focused <strong>on</strong> the problem <strong>of</strong><br />

particle attriti<strong>on</strong> and the c<strong>on</strong>sequent reducti<strong>on</strong> <strong>of</strong> the combusti<strong>on</strong><br />

efficiency by elutriati<strong>on</strong> <strong>of</strong> unburned f<strong>in</strong>es. Gradually, the<br />

importance <strong>of</strong> the primary and sec<strong>on</strong>dary fragmentati<strong>on</strong><br />

effects has been recognized, particularly the primary fragmentati<strong>on</strong>,<br />

<strong>in</strong> the combusti<strong>on</strong> process <strong>of</strong> batches <strong>of</strong> carb<strong>on</strong><br />

particles <strong>in</strong> fluidized beds.<br />

In the present study, the importance <strong>of</strong> fragmentati<strong>on</strong><br />

dur<strong>in</strong>g the combusti<strong>on</strong> <strong>of</strong> nut p<strong>in</strong>e char particles <strong>in</strong> a laboratory-scale<br />

fluidized-bed reactor was assessed and the experimental<br />

data were analyzed accord<strong>in</strong>g to the fragmentati<strong>on</strong><br />

model <strong>of</strong> P<strong>in</strong>ho. 12 As such, a simple overview <strong>of</strong> the menti<strong>on</strong>ed<br />

fragmentati<strong>on</strong> model is presented here<strong>in</strong>.<br />

<str<strong>on</strong>g>Fragmentati<strong>on</strong></str<strong>on</strong>g> Model<br />

In the work referred above, the fragmentati<strong>on</strong> effect <strong>on</strong> the<br />

combusti<strong>on</strong> rate <strong>of</strong> batches <strong>of</strong> particles <strong>in</strong> the fluidized bed was<br />

discussed. In that work, the follow<strong>in</strong>g expressi<strong>on</strong> was presented<br />

to obta<strong>in</strong> the equivalent average diameter dcorr <strong>of</strong> the<br />

fragmented particles compos<strong>in</strong>g a batch:<br />

dcorr ¼ di<br />

ð1 - f Þ 1=3<br />

P<br />

1=3<br />

Nj<br />

j Nc<br />

where di is the <strong>in</strong>itial diameter <strong>of</strong> the particles and f is the<br />

c<strong>on</strong>sumed mass fracti<strong>on</strong> <strong>of</strong> the batch<br />

f ¼ 1 -<br />

P<br />

j mj<br />

with mc be<strong>in</strong>g the <strong>in</strong>itial mass <strong>of</strong> the batch <strong>of</strong> char particles. Nj<br />

is the number <strong>of</strong> particles for the j-size fracti<strong>on</strong><br />

Nj ¼ 6mj<br />

Fcπdj 3<br />

ð3Þ<br />

(7) Dakic, D. V.; Grubor, B. D.; Oka, S. N. Proceed<strong>in</strong>gs <strong>of</strong> the 41st<br />

IAE Fluidized Bed C<strong>on</strong>versi<strong>on</strong> Meet<strong>in</strong>g, Salerno, Italy, 2000.<br />

(8) Stub<strong>in</strong>gt<strong>on</strong>, J. F.; Wang, A. L. T. Proceed<strong>in</strong>gs <strong>of</strong> the 41st IAE<br />

Fluidized Bed C<strong>on</strong>versi<strong>on</strong> Meet<strong>in</strong>g, Salerno, Italy, 2000.<br />

(9) Cui, Y.; Stub<strong>in</strong>gt<strong>on</strong>, J. F. Fuel 2001, 80, 2245–2251.<br />

(10) Zhang, H.; Cen, K.; Yan, J.; Ni, M. Fuel 2002, 81, 1835–1840.<br />

(11) Scala, F.; Chir<strong>on</strong>e, R.; Salat<strong>in</strong>o, P. Energy Fuels 2006, 20,91–102.<br />

(12) P<strong>in</strong>ho, C. Chem. Eng. J. 2006, 115, 147–155.<br />

mc<br />

ð1Þ<br />

ð2Þ<br />

319<br />

where F c is the density <strong>of</strong> the fuel particles and d j is the average<br />

diameter for the j-size fracti<strong>on</strong>. N c is the number <strong>of</strong> particles<br />

<strong>in</strong>itially <strong>in</strong> the batch, i.e., before fragmentati<strong>on</strong> occurred<br />

Nc ¼ 6mc<br />

Fcπdi 3<br />

ð4Þ<br />

Equati<strong>on</strong> 1 suggests that, because <strong>of</strong> the occurrence <strong>of</strong> fragmentati<strong>on</strong>,<br />

the diameter <strong>of</strong> the particles for a given c<strong>on</strong>sumed<br />

fracti<strong>on</strong> <strong>of</strong> the batch, which <strong>in</strong> the absence <strong>of</strong> fragmentati<strong>on</strong> is<br />

given by<br />

d ¼ dið1 - f Þ 1=3<br />

ð5Þ<br />

should be corrected by divid<strong>in</strong>g it by the factor<br />

0 11=3<br />

X Nj @ A<br />

j<br />

Nc<br />

obta<strong>in</strong>ed from experimental data <strong>of</strong> fragmentati<strong>on</strong>, namely,<br />

the values <strong>of</strong> N j.<br />

Global Combusti<strong>on</strong> Resistance Corrected by the <str<strong>on</strong>g>Fragmentati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g>. To apply the fragmentati<strong>on</strong> model, it is necessary<br />

to f<strong>in</strong>d an equati<strong>on</strong> to calculate the value <strong>of</strong> the<br />

corrected global combusti<strong>on</strong> resistance. Ross and Davids<strong>on</strong><br />

13 have found that the global combusti<strong>on</strong> resistance could<br />

be given by<br />

1<br />

K ¼ 12d2 mc<br />

F c di 3 AtUk 0<br />

From eqs 4 and 7, it can be written that<br />

1<br />

K ¼ 2d2Ncπ AtUk0 where the quantity N cπd 2 is the superficial area <strong>of</strong> the<br />

reacti<strong>on</strong> for a number <strong>of</strong> N c particles <strong>of</strong> diameter d, A t is<br />

the cross-secti<strong>on</strong>al area <strong>of</strong> the bed, U is the superficial<br />

velocity <strong>of</strong> the fluidiz<strong>in</strong>g air, and k 0 is the dimensi<strong>on</strong>less<br />

c<strong>on</strong>stant for the oxygen c<strong>on</strong>sumpti<strong>on</strong> rate <strong>in</strong> the bed. When<br />

the fragmentati<strong>on</strong> effect is taken <strong>in</strong>to account, the total<br />

number <strong>of</strong> particles <strong>in</strong> the bed is different from the <strong>in</strong>itial<br />

value, with the global combusti<strong>on</strong> resistance 1/K corr be<strong>in</strong>g<br />

corrected by the fragmentati<strong>on</strong> effect, given by<br />

1<br />

Kcorr<br />

¼ 2dcorr 2 Nπ<br />

AtUk 0<br />

where N is the total number <strong>of</strong> particles <strong>in</strong> the bed after<br />

fragmentati<strong>on</strong> and d corr is the average diameter <strong>of</strong> those<br />

particles given by eq 1; N = P jN j.<br />

Divid<strong>in</strong>g eqs 8 and 9 gives a relati<strong>on</strong>ship between the<br />

corrected and n<strong>on</strong>corrected values <strong>of</strong> the global reacti<strong>on</strong><br />

c<strong>on</strong>stant, K corr and K<br />

Kcorr ¼ d2Nc dcorr 2 N<br />

ð6Þ<br />

ð7Þ<br />

ð8Þ<br />

ð9Þ<br />

K ð10Þ<br />

Tak<strong>in</strong>g <strong>in</strong>to account eq 1 for dcorr and eq 5 for d, it can be<br />

written that<br />

1<br />

Kcorr ¼ K ð11Þ<br />

1=3<br />

ðN=NcÞ<br />

(13) Ross, I. B.; Davids<strong>on</strong>, J. F. Trans. Inst. Chem. Eng. 1981, 59, 108–<br />

114.


Energy Fuels 2010, 24, 318–323 : DOI:10.1021/ef900806z Rangel and P<strong>in</strong>ho<br />

C<strong>on</strong>sider<strong>in</strong>g the def<strong>in</strong>iti<strong>on</strong> <strong>of</strong> the multiplicati<strong>on</strong> factor <strong>of</strong> the<br />

particles or fragmentati<strong>on</strong> ratio σ, as def<strong>in</strong>ed by P<strong>in</strong>ho, 6<br />

σ ¼ X Nj<br />

¼<br />

Nc<br />

N<br />

ð12Þ<br />

Nc<br />

then<br />

j<br />

Kcorr ¼ 1<br />

K ð13Þ<br />

σ1=3 The relati<strong>on</strong> between Kcorr and K is <strong>on</strong>ly a functi<strong>on</strong> <strong>of</strong> the<br />

fragmentati<strong>on</strong> ratio σ, which is obta<strong>in</strong>ed from experimental<br />

data.<br />

Experimental Secti<strong>on</strong><br />

The experiments were carried out <strong>in</strong> an electrically heated<br />

fluidized bed reactor with 54.5 mm <strong>of</strong> <strong>in</strong>ternal diameter operat<strong>in</strong>g<br />

<strong>in</strong> bubbl<strong>in</strong>g regime. The bed was fluidized by air, and the <strong>in</strong>ert<br />

material <strong>of</strong> the bed was silica sand (200-250 μm). The combustible<br />

particles were fed above the free surface <strong>of</strong> the bed, which<br />

had a height <strong>of</strong> 100 mm. The tests were performed through<br />

<strong>in</strong>terrupted combusti<strong>on</strong> <strong>of</strong> 5 g batches <strong>of</strong> nut p<strong>in</strong>e (P<strong>in</strong>us p<strong>in</strong>ea)<br />

char particles, with average diameters <strong>of</strong> 2.2, 2.8, and 3.6 mm, for<br />

superficial velocities <strong>of</strong> 9Umf and bed temperatures <strong>of</strong> 600, 700,<br />

and 750 °C. The properties <strong>of</strong> nut p<strong>in</strong>e char are shown <strong>in</strong> Table 1.<br />

The combusti<strong>on</strong> was stopped after 30, 60, 120, and 180 s, when<br />

burn<strong>in</strong>g smaller particles, whereas for particles <strong>of</strong> larger size (di=<br />

3.6 mm), experiments were carried out until 240 s; this additi<strong>on</strong>al<br />

stoppage is due to the greater burn<strong>in</strong>g time <strong>of</strong> these larger<br />

particles. The freez<strong>in</strong>g <strong>of</strong> the reacti<strong>on</strong> was achieved by replac<strong>in</strong>g<br />

the fluidizati<strong>on</strong> air by nitrogen and subsequently cool<strong>in</strong>g the bed.<br />

After the cool<strong>in</strong>g <strong>of</strong> the bed, the particles were extracted by<br />

sucti<strong>on</strong> (particles <strong>of</strong> carb<strong>on</strong> and <strong>in</strong>ert material) and passed<br />

through a sieve set, which varied accord<strong>in</strong>g to the size <strong>of</strong> particles<br />

that were be<strong>in</strong>g tested. The sieve sets used for the three <strong>in</strong>itial sizes<br />

<strong>of</strong> studied particles are detailed <strong>in</strong> Table 2.<br />

After a siev<strong>in</strong>g time <strong>of</strong> around 2 m<strong>in</strong>, the particles reta<strong>in</strong>ed <strong>in</strong><br />

the sieves were weighed, obta<strong>in</strong><strong>in</strong>g the mass <strong>of</strong> particles mj<br />

corresp<strong>on</strong>d<strong>in</strong>g to the four average diameters <strong>of</strong> the sieve set.<br />

The average diameters were obta<strong>in</strong>ed from the arithmetic mean <strong>of</strong><br />

the sieve meshes, <strong>in</strong> which the particles were reta<strong>in</strong>ed at the end <strong>of</strong><br />

the siev<strong>in</strong>g process.<br />

Know<strong>in</strong>g the experimental values <strong>of</strong> average diameters and the<br />

masses corresp<strong>on</strong>d<strong>in</strong>g to them, for each value <strong>of</strong> combusti<strong>on</strong><br />

time, it is possible through the fragmentati<strong>on</strong> model presented<br />

above to evaluate the evoluti<strong>on</strong> <strong>of</strong> the number <strong>of</strong> particles <strong>in</strong><br />

the bed al<strong>on</strong>g the burn<strong>in</strong>g process as well as to obta<strong>in</strong> the<br />

correcti<strong>on</strong> factors for the fragmentati<strong>on</strong> effects al<strong>on</strong>g the burn<strong>in</strong>g<br />

process.<br />

Results and Discussi<strong>on</strong><br />

<str<strong>on</strong>g>Fragmentati<strong>on</strong></str<strong>on</strong>g> Ratio. The degree <strong>of</strong> fragmentati<strong>on</strong> <strong>of</strong> the<br />

particles for different test c<strong>on</strong>diti<strong>on</strong>s is shown <strong>in</strong> Figure 1. It<br />

represents the evoluti<strong>on</strong> <strong>of</strong> the total number <strong>of</strong> particles N <strong>in</strong><br />

the bed al<strong>on</strong>g the combusti<strong>on</strong> for the studied bed temperatures<br />

and <strong>in</strong>itial particle diameters.<br />

For all studied cases, as shown <strong>in</strong> Figure 1, the <strong>in</strong>crease <strong>in</strong><br />

the number <strong>of</strong> particles occurs <strong>on</strong>ly dur<strong>in</strong>g the first 30 s <strong>of</strong><br />

burn<strong>in</strong>g. Afterward, the number <strong>of</strong> particles rema<strong>in</strong>s unchanged<br />

or decreases. This suggests that the particle fragmentati<strong>on</strong><br />

occurs just after the release <strong>of</strong> the batch <strong>in</strong> the bed<br />

because <strong>of</strong> thermal shock underg<strong>on</strong>e by them, i.e., primary<br />

fragmentati<strong>on</strong>. There is not, therefore, experimental evidence<br />

<strong>of</strong> further fragmentati<strong>on</strong> throughout the combusti<strong>on</strong>.<br />

If fragmentati<strong>on</strong> did occur dur<strong>in</strong>g the combusti<strong>on</strong> process,<br />

the number <strong>of</strong> particles <strong>in</strong> the bed when the reacti<strong>on</strong> was<br />

frozen at 60 and 120 s should be greater than at 30 s.<br />

320<br />

Table 1. Proximate Analysis and Density Value <strong>of</strong> Nut <strong>P<strong>in</strong>e</strong> <strong>Char</strong><br />

particle density a<br />

(g/cm 3 )<br />

moisture at<br />

105 °C<br />

proximate analysis (wt %, as received)<br />

ashes at<br />

500 °C<br />

volatile matter at<br />

900 °C<br />

fixed<br />

carb<strong>on</strong><br />

0.77 7.7 0.7 17.7 73.9<br />

a<br />

Density was obta<strong>in</strong>ed with a mercury porosimeter.<br />

Table 2. Sieve Sets Used To Obta<strong>in</strong> the Batch Granulometric<br />

<strong>Char</strong>acterizati<strong>on</strong> after the Freez<strong>in</strong>g <strong>of</strong> the Reacti<strong>on</strong> with Nitrogen<br />

di (mm) DIN standard sieve sets (mm)<br />

3.6 -4 þ 3.15 -3.15 þ 2.5 -2.5 þ 2 -2 þ 0.8<br />

2.8 -3.15 þ 2.5 -2.5 þ 2 -2 þ 1.6 -1.6 þ 0.8<br />

2.2 -2.5 þ 2 -2 þ 1.6 -1.6 þ 0.8 -0.8 þ 0.5<br />

Figure 1. Evoluti<strong>on</strong> <strong>of</strong> the total number <strong>of</strong> particles <strong>in</strong> the bed over<br />

time. Bed temperatures were (a) 750 °C, (b) 700 °C, and (c) 600 °C,<br />

and particles had <strong>in</strong>itial diameters <strong>of</strong> 3.6, 2.8, and 2.2 mm. The zero<br />

<strong>in</strong>stant corresp<strong>on</strong>ds to the moment before the release <strong>of</strong> the particles<br />

<strong>in</strong>to the bed (N = N c).<br />

The results are <strong>in</strong>c<strong>on</strong>clusive with respect to the correlati<strong>on</strong><br />

<strong>of</strong> the primary fragmentati<strong>on</strong> ratio with both the particle size<br />

and bed temperature. The limited range <strong>of</strong> tested sizes and<br />

temperatures can expla<strong>in</strong> this. The reduced number <strong>of</strong><br />

particles at the end <strong>of</strong> burn<strong>in</strong>g is due to the disappearance<br />

<strong>of</strong> smaller particles, which are the first to burn out. The<br />

experimental values <strong>of</strong> the fragmentati<strong>on</strong> ratios are presented<br />

<strong>in</strong> Table 3.


Energy Fuels 2010, 24, 318–323 : DOI:10.1021/ef900806z Rangel and P<strong>in</strong>ho<br />

C<strong>on</strong>sider<strong>in</strong>g the values for t=30 s as those referr<strong>in</strong>g to the<br />

primary fragmentati<strong>on</strong> ratio, by Table 3, it can be c<strong>on</strong>cluded<br />

that, after releas<strong>in</strong>g the particles <strong>in</strong>to the bed, their number<br />

<strong>in</strong>creases about 46% <strong>on</strong> average.<br />

The average values <strong>of</strong> the fragmentati<strong>on</strong> ratio for the three<br />

bed temperatures tested <strong>in</strong> this work are compared to some<br />

data published <strong>in</strong> the literature <strong>in</strong> Table 4. The present results<br />

are comparable to data published by Chir<strong>on</strong>e et al. 4 for<br />

m<strong>in</strong>eral coal particles with <strong>in</strong>itial diameters (1-3 mm)<br />

equivalent to those found <strong>in</strong> the present study. Larger<br />

particles <strong>in</strong> the Chir<strong>on</strong>e et al. 4 data present higher fragmentati<strong>on</strong><br />

ratios. As far as the data from the work <strong>of</strong> Scala et al. 11<br />

are c<strong>on</strong>cerned, <strong>on</strong>ly for <strong>on</strong>e type <strong>of</strong> biomass char tested by<br />

these authors is there similarity <strong>on</strong> the fragmentati<strong>on</strong> ratio,<br />

despite an <strong>in</strong>itial diameter <strong>of</strong> char particles 3 times higher<br />

than the present <strong>on</strong>es. In this sec<strong>on</strong>d case, the proximate<br />

analysis and c<strong>on</strong>sequently the volatile matter c<strong>on</strong>tent are not<br />

available for comparis<strong>on</strong>.<br />

It should be stressed that the bed temperatures studied<br />

here were lower than those c<strong>on</strong>sidered by the other referred<br />

authors, with this fact hav<strong>in</strong>g major importance <strong>on</strong> fragmentati<strong>on</strong><br />

as is c<strong>on</strong>sensually accepted, although this phenomen<strong>on</strong><br />

was not observed <strong>in</strong> the narrow temperature range<br />

tested, as menti<strong>on</strong>ed. Probably the effect <strong>of</strong> the bed temperature<br />

<strong>on</strong> the primary fragmentati<strong>on</strong> ratio is not relevant when<br />

a range <strong>of</strong> relatively low bed temperatures is taken <strong>in</strong>to<br />

c<strong>on</strong>siderati<strong>on</strong>. A similar phenomen<strong>on</strong> <strong>on</strong> the dependence<br />

<strong>of</strong> primary fragmentati<strong>on</strong> with an <strong>in</strong>itial diameter <strong>of</strong> particles<br />

was observed by Zhang et al. 10 These authors have shown<br />

that, for diameters between 1 and 4 mm, there is a very weak<br />

dependence <strong>of</strong> primary fragmentati<strong>on</strong> with the particle<br />

diameter, whereas for diameters larger than 4 mm, the<br />

t (s) T (°C)<br />

Table 3. <str<strong>on</strong>g>Fragmentati<strong>on</strong></str<strong>on</strong>g> Ratios<br />

di = 3.6 mm;<br />

Nc = 270<br />

fragmentati<strong>on</strong> ratio (σ)<br />

di = 2.8 mm;<br />

Nc = 547<br />

di = 2.2 mm;<br />

Nc = 1083<br />

30 600 1.61 1.15 1.59<br />

700 1.38 1.27 1.49<br />

750 1.68 1.38 1.63<br />

60 600 1.54 1.13 1.25<br />

700 1.42 1.22 1.43<br />

750 1.64 1.38 1.57<br />

120 600 1.51 1.18 1.15<br />

700 1.39 1.31 1.20<br />

750 1.68 1.23 0.93<br />

180 600 0.95 0.78 0.59<br />

700 1.25 0.81 0.47<br />

750 1.09 0.39 0.25<br />

240 600 0.67 not available not available<br />

700 0.85<br />

750 0.41<br />

Table 4. Comparis<strong>on</strong> <strong>of</strong> Primary <str<strong>on</strong>g>Fragmentati<strong>on</strong></str<strong>on</strong>g> Ratios<br />

321<br />

dependence is exp<strong>on</strong>ential; the particle breakage soars with<br />

the <strong>in</strong>crease <strong>of</strong> the particle size. The data <strong>in</strong> Table 4 c<strong>on</strong>firm<br />

the results <strong>of</strong> Zhang et al. 10 Accord<strong>in</strong>gly, for smaller particle<br />

diameters, the fragmentati<strong>on</strong> ratio is relatively low and does<br />

not vary c<strong>on</strong>siderably with the <strong>in</strong>itial particle size; thus,<br />

with<strong>in</strong> the range <strong>of</strong> diameters studied <strong>in</strong> this work, the values<br />

<strong>of</strong> σ 1 are approximately the same.<br />

<str<strong>on</strong>g>Fragmentati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g>. From the experimental data, it was<br />

possible to calculate the diameter <strong>of</strong> particles corrected by<br />

the fragmentati<strong>on</strong> effect through eq 1 and the global combusti<strong>on</strong><br />

resistance through eq 9 for each <strong>in</strong>stant <strong>in</strong> which the<br />

combusti<strong>on</strong> was stopped and compare them to the corresp<strong>on</strong>d<strong>in</strong>g<br />

uncorrected values (Figure 2). Such comparis<strong>on</strong>s<br />

<strong>in</strong> the figure are for the three tested bed temperatures.<br />

As Figure 2 shows, the <strong>in</strong>corporati<strong>on</strong> <strong>of</strong> the fragmentati<strong>on</strong><br />

effect <strong>in</strong> the model for calculat<strong>in</strong>g the global combusti<strong>on</strong><br />

resistance affects the values <strong>of</strong> 1/K and d <strong>in</strong> a different way at<br />

the beg<strong>in</strong>n<strong>in</strong>g or at the end <strong>of</strong> burn<strong>in</strong>g.<br />

At the beg<strong>in</strong>n<strong>in</strong>g and after the fragmentati<strong>on</strong>, there are<br />

more particles <strong>in</strong> the bed than <strong>in</strong> the absence <strong>of</strong> such an event<br />

and the corrected diameters are lower than those obta<strong>in</strong>ed<br />

without c<strong>on</strong>sider<strong>in</strong>g the fragmentati<strong>on</strong>. However, when this<br />

fragmentati<strong>on</strong> event is ignored, such an <strong>in</strong>crease <strong>on</strong> the<br />

reacti<strong>on</strong> area will be <strong>in</strong>terpreted as an apparent <strong>in</strong>crease <strong>on</strong><br />

the reactivity <strong>of</strong> the particles or, <strong>in</strong> other words, as a reducti<strong>on</strong><br />

<strong>of</strong> the global resistance.<br />

At the end <strong>of</strong> combusti<strong>on</strong>, the <strong>in</strong>verse phenomen<strong>on</strong> occurs;<br />

there are fewer particles <strong>in</strong> the bed as a c<strong>on</strong>sequence <strong>of</strong><br />

the burnout <strong>of</strong> the smaller <strong>on</strong>es created dur<strong>in</strong>g the primary<br />

fragmentati<strong>on</strong> process, and the corrected diameters are now<br />

greater than when the effect <strong>of</strong> particle breakage is not<br />

c<strong>on</strong>sidered. It should be remembered that, when particle<br />

breakage is ignored, their number is c<strong>on</strong>sidered c<strong>on</strong>stant<br />

throughout the combusti<strong>on</strong> experiment and equal to the<br />

<strong>in</strong>itial value. Therefore, <strong>in</strong> practical terms, when the fragmentati<strong>on</strong><br />

phenomen<strong>on</strong> is ignored, it appears as if there is a<br />

decrease <strong>of</strong> the global resistance at the end <strong>of</strong> combusti<strong>on</strong>,<br />

while the true situati<strong>on</strong> is a reducti<strong>on</strong> <strong>of</strong> the global reactive<br />

surface.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>of</strong> the Primary <str<strong>on</strong>g>Fragmentati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the Global Reacti<strong>on</strong><br />

C<strong>on</strong>stant. With the experimental data from primary<br />

fragmentati<strong>on</strong> (Table 3), it is possible to quantify the <strong>in</strong>fluence<br />

<strong>of</strong> this phenomen<strong>on</strong> <strong>on</strong> the values <strong>of</strong> the global reacti<strong>on</strong><br />

c<strong>on</strong>stant by eq 13.<br />

To account for the <strong>in</strong>fluence <strong>of</strong> primary fragmentati<strong>on</strong>,<br />

<strong>on</strong>ly the number <strong>of</strong> particles rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the bed 30 s after<br />

the start <strong>of</strong> the combusti<strong>on</strong> process are c<strong>on</strong>sidered for the<br />

correcti<strong>on</strong> procedure. It is supposed that such a new number<br />

<strong>of</strong> particles exist<strong>in</strong>g <strong>in</strong> the bed after the above-menti<strong>on</strong>ed<br />

primary fragmentati<strong>on</strong> rema<strong>in</strong> c<strong>on</strong>stant until the end <strong>of</strong> the<br />

proximate analysis (% <strong>on</strong> a dry basis)<br />

T (°C) di (mm) density (g/cm 3 ) fuel tested fixed carb<strong>on</strong> volatile matter ash σ1 Chir<strong>on</strong>e<br />

et al. 4<br />

850 1-3 m<strong>in</strong>eral coal 60 25 15 1.5<br />

3-6 3.1<br />

6-9 7.0<br />

Scala<br />

et al. 11<br />

850 8.5 0.49 biomass chars 1.6<br />

10.4 0.17 4.5<br />

5.2 0.17 2.5<br />

4.6 0.40 1.0<br />

this work 600-750 2.2 0.77 nut p<strong>in</strong>e char 80 19.2 0.8 1.6<br />

2.8 1.3<br />

3.6 1.6


Energy Fuels 2010, 24, 318–323 : DOI:10.1021/ef900806z Rangel and P<strong>in</strong>ho<br />

Figure 2. <str<strong>on</strong>g>Fragmentati<strong>on</strong></str<strong>on</strong>g> effect <strong>on</strong> the global combusti<strong>on</strong> resistance<br />

and the diameter <strong>of</strong> particles. The superficial velocity was 9U mf,<br />

and the static bed height was 100 mm. The bed temperatures were<br />

(a) 600 °C, (b) 700 °C, and (c) 750 °C.<br />

combusti<strong>on</strong> process, which is not effectively true, as expla<strong>in</strong>ed<br />

<strong>in</strong> the previous secti<strong>on</strong>, when c<strong>on</strong>sider<strong>in</strong>g the f<strong>in</strong>al<br />

stages <strong>of</strong> the combusti<strong>on</strong> process.<br />

Table 5 presents the ratios <strong>of</strong> corrected and uncorrected<br />

K values. Accord<strong>in</strong>g to the experimental data presented <strong>in</strong><br />

the table, it is possible to c<strong>on</strong>clude that the primary fragmentati<strong>on</strong><br />

leads <strong>on</strong> average to a 12% reducti<strong>on</strong> <strong>on</strong> the global<br />

reacti<strong>on</strong> c<strong>on</strong>stant (Kcorr = 0.88K).<br />

For the range <strong>of</strong> temperatures and particle diameters be<strong>in</strong>g<br />

tested and for nut p<strong>in</strong>e char, ignorance <strong>of</strong> the primary<br />

fragmentati<strong>on</strong> phenomen<strong>on</strong> has some <strong>in</strong>fluence <strong>on</strong> the<br />

322<br />

Table 5. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>of</strong> the Primary <str<strong>on</strong>g>Fragmentati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the<br />

Global Reacti<strong>on</strong> C<strong>on</strong>stant<br />

K corr/K<br />

T (°C) di = 3.6 mm di = 2.8 mm di = 2.2 mm<br />

600 0.85 0.95 0.86<br />

700 0.90 0.92 0.88<br />

750 0.84 0.90 0.85<br />

global reacti<strong>on</strong> c<strong>on</strong>stant obta<strong>in</strong>ed through the experiments<br />

and, c<strong>on</strong>sequently, uncorrected K values can be used without<br />

great c<strong>on</strong>cern. However, such may not be true for higher<br />

combusti<strong>on</strong> temperatures when the thermal shock subsequent<br />

to the <strong>in</strong>troducti<strong>on</strong> <strong>of</strong> the char particles <strong>in</strong> the bed can<br />

be more severe, enhanc<strong>in</strong>g the primary fragmentati<strong>on</strong> process.<br />

It is expected that, <strong>in</strong> such circumstances, neglect<strong>in</strong>g<br />

the fragmentati<strong>on</strong> impact can lead to serious experimental<br />

errors.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

The primary fragmentati<strong>on</strong> phenomen<strong>on</strong> was observed<br />

with an average fragmentati<strong>on</strong> ratio <strong>of</strong> 1.5; i.e., after releas<strong>in</strong>g<br />

the particles <strong>in</strong>to the bed, their number <strong>in</strong>creases 50%<br />

because <strong>of</strong> the breakage caused by the thermal shock that<br />

they have underg<strong>on</strong>e. This value is <strong>in</strong> agreement with some<br />

results 4 published <strong>in</strong> the literature for fragmentati<strong>on</strong> <strong>of</strong><br />

particles with the same <strong>in</strong>itial diameter, whereas for biomass<br />

chars, 11 agreement was <strong>on</strong>ly obta<strong>in</strong>ed for <strong>on</strong>e particle size.<br />

This comb<strong>in</strong>ati<strong>on</strong> <strong>of</strong> agreement and discrepancies leads<br />

to the c<strong>on</strong>clusi<strong>on</strong> that, besides the particle size, the type <strong>of</strong><br />

char might have an important role <strong>on</strong> the degree <strong>of</strong> fragmentati<strong>on</strong>.<br />

No effect was observed result<strong>in</strong>g from the sec<strong>on</strong>dary fragmentati<strong>on</strong><br />

<strong>of</strong> the particles, suggest<strong>in</strong>g that, for the studied<br />

char, this phenomen<strong>on</strong> is not present.<br />

Without c<strong>on</strong>sider<strong>in</strong>g the effect <strong>of</strong> primary fragmentati<strong>on</strong> <strong>in</strong><br />

calculat<strong>in</strong>g the global combusti<strong>on</strong> resistance, the value <strong>of</strong> the<br />

reactivity <strong>of</strong> the char particles appears to be higher than it<br />

actually is, because <strong>of</strong> the deceptive effect <strong>of</strong> the <strong>in</strong>creased<br />

surface area for the reacti<strong>on</strong>, as a result <strong>of</strong> the <strong>in</strong>creased<br />

number <strong>of</strong> particles caused by the breakage, which c<strong>on</strong>tributes<br />

to the <strong>in</strong>crease <strong>of</strong> the burn<strong>in</strong>g rate.<br />

For the rate <strong>of</strong> primary fragmentati<strong>on</strong> found for this type <strong>of</strong><br />

char, there is a reducti<strong>on</strong> <strong>of</strong> 12% <strong>on</strong> the value <strong>of</strong> the reacti<strong>on</strong><br />

rate c<strong>on</strong>stant when the impact <strong>of</strong> primary fragmentati<strong>on</strong> is<br />

taken <strong>in</strong>to account. Therefore, ignor<strong>in</strong>g the <strong>in</strong>fluence <strong>of</strong><br />

primary fragmentati<strong>on</strong> <strong>on</strong> the evaluati<strong>on</strong> <strong>of</strong> the global reacti<strong>on</strong><br />

c<strong>on</strong>stant, for the temperature range covered <strong>in</strong> the<br />

experiments, has some impact <strong>on</strong> this parameter.<br />

Nomenclature<br />

A t = cross-secti<strong>on</strong>al area <strong>of</strong> the bed (m 2 )<br />

D = bed diameter (m)<br />

d = diameter <strong>of</strong> char particles (m)<br />

d corr = corrected particle diameter by the fragmentati<strong>on</strong><br />

effect (m)<br />

di = <strong>in</strong>itial diameter <strong>of</strong> char particles (m)<br />

f = burned fracti<strong>on</strong><br />

f c = mass fracti<strong>on</strong> <strong>of</strong> carb<strong>on</strong> <strong>in</strong> the batch<br />

K = global reacti<strong>on</strong> c<strong>on</strong>stant (m/s)<br />

k 0 = dimensi<strong>on</strong>less c<strong>on</strong>stant for the oxygen c<strong>on</strong>sumpti<strong>on</strong><br />

rate


Energy Fuels 2010, 24, 318–323 : DOI:10.1021/ef900806z Rangel and P<strong>in</strong>ho<br />

K corr = corrected global reacti<strong>on</strong> c<strong>on</strong>stant (m/s)<br />

m c = mass <strong>of</strong> carb<strong>on</strong> <strong>in</strong> a batch <strong>of</strong> coal particles (kg)<br />

mj = mass <strong>of</strong> particles <strong>in</strong> j-size fracti<strong>on</strong> (kg)<br />

N = total number <strong>of</strong> particles <strong>in</strong> the bed<br />

N c = number <strong>of</strong> particles <strong>in</strong> a carb<strong>on</strong> or char batch<br />

N j = number <strong>of</strong> particles for the j-size fracti<strong>on</strong><br />

T = temperature (°C orK)<br />

323<br />

U = superficial air velocity (m/s)<br />

Umf=superficial air velocity at <strong>in</strong>cipient fluidizati<strong>on</strong> (m/s)<br />

Greek Letters<br />

Fc = mass <strong>of</strong> carb<strong>on</strong> per unit volume <strong>of</strong> particle (kg/m 3 )<br />

σ = fragmentati<strong>on</strong> ratio or particle multiplicati<strong>on</strong> factor<br />

σ1 = primary fragmentati<strong>on</strong> ratio

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!